xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f8dfb47c02c2b81c3391a5572c612430a97563f6)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/StackMaps.h"
39 #include "llvm/CodeGen/WinEHFuncInfo.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/MC/MCSymbol.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetFrameLowering.h"
62 #include "llvm/Target/TargetInstrInfo.h"
63 #include "llvm/Target/TargetIntrinsicInfo.h"
64 #include "llvm/Target/TargetLowering.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include "llvm/Target/TargetSubtargetInfo.h"
67 #include <algorithm>
68 #include <utility>
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "isel"
72 
73 /// LimitFloatPrecision - Generate low-precision inline sequences for
74 /// some float libcalls (6, 8 or 12 bits).
75 static unsigned LimitFloatPrecision;
76 
77 static cl::opt<unsigned, true>
78 LimitFPPrecision("limit-float-precision",
79                  cl::desc("Generate low-precision inline sequences "
80                           "for some float libcalls"),
81                  cl::location(LimitFloatPrecision),
82                  cl::init(0));
83 
84 static cl::opt<bool>
85 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
86                 cl::desc("Enable fast-math-flags for DAG nodes"));
87 
88 // Limit the width of DAG chains. This is important in general to prevent
89 // DAG-based analysis from blowing up. For example, alias analysis and
90 // load clustering may not complete in reasonable time. It is difficult to
91 // recognize and avoid this situation within each individual analysis, and
92 // future analyses are likely to have the same behavior. Limiting DAG width is
93 // the safe approach and will be especially important with global DAGs.
94 //
95 // MaxParallelChains default is arbitrarily high to avoid affecting
96 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
97 // sequence over this should have been converted to llvm.memcpy by the
98 // frontend. It easy to induce this behavior with .ll code such as:
99 // %buffer = alloca [4096 x i8]
100 // %data = load [4096 x i8]* %argPtr
101 // store [4096 x i8] %data, [4096 x i8]* %buffer
102 static const unsigned MaxParallelChains = 64;
103 
104 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
105                                       const SDValue *Parts, unsigned NumParts,
106                                       MVT PartVT, EVT ValueVT, const Value *V);
107 
108 /// getCopyFromParts - Create a value that contains the specified legal parts
109 /// combined into the value they represent.  If the parts combine to a type
110 /// larger then ValueVT then AssertOp can be used to specify whether the extra
111 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
112 /// (ISD::AssertSext).
113 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
114                                 const SDValue *Parts,
115                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
116                                 const Value *V,
117                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
118   if (ValueVT.isVector())
119     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
120                                   PartVT, ValueVT, V);
121 
122   assert(NumParts > 0 && "No parts to assemble!");
123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
124   SDValue Val = Parts[0];
125 
126   if (NumParts > 1) {
127     // Assemble the value from multiple parts.
128     if (ValueVT.isInteger()) {
129       unsigned PartBits = PartVT.getSizeInBits();
130       unsigned ValueBits = ValueVT.getSizeInBits();
131 
132       // Assemble the power of 2 part.
133       unsigned RoundParts = NumParts & (NumParts - 1) ?
134         1 << Log2_32(NumParts) : NumParts;
135       unsigned RoundBits = PartBits * RoundParts;
136       EVT RoundVT = RoundBits == ValueBits ?
137         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
138       SDValue Lo, Hi;
139 
140       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
141 
142       if (RoundParts > 2) {
143         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
144                               PartVT, HalfVT, V);
145         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
146                               RoundParts / 2, PartVT, HalfVT, V);
147       } else {
148         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
149         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
150       }
151 
152       if (DAG.getDataLayout().isBigEndian())
153         std::swap(Lo, Hi);
154 
155       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
156 
157       if (RoundParts < NumParts) {
158         // Assemble the trailing non-power-of-2 part.
159         unsigned OddParts = NumParts - RoundParts;
160         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
161         Hi = getCopyFromParts(DAG, DL,
162                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
163 
164         // Combine the round and odd parts.
165         Lo = Val;
166         if (DAG.getDataLayout().isBigEndian())
167           std::swap(Lo, Hi);
168         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
169         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
170         Hi =
171             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
172                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
173                                         TLI.getPointerTy(DAG.getDataLayout())));
174         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
175         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
176       }
177     } else if (PartVT.isFloatingPoint()) {
178       // FP split into multiple FP parts (for ppcf128)
179       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
180              "Unexpected split");
181       SDValue Lo, Hi;
182       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
183       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
184       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
185         std::swap(Lo, Hi);
186       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
187     } else {
188       // FP split into integer parts (soft fp)
189       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
190              !PartVT.isVector() && "Unexpected split");
191       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
192       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
193     }
194   }
195 
196   // There is now one part, held in Val.  Correct it to match ValueVT.
197   EVT PartEVT = Val.getValueType();
198 
199   if (PartEVT == ValueVT)
200     return Val;
201 
202   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
203       ValueVT.bitsLT(PartEVT)) {
204     // For an FP value in an integer part, we need to truncate to the right
205     // width first.
206     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
207     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
208   }
209 
210   if (PartEVT.isInteger() && ValueVT.isInteger()) {
211     if (ValueVT.bitsLT(PartEVT)) {
212       // For a truncate, see if we have any information to
213       // indicate whether the truncated bits will always be
214       // zero or sign-extension.
215       if (AssertOp != ISD::DELETED_NODE)
216         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
217                           DAG.getValueType(ValueVT));
218       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
219     }
220     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
221   }
222 
223   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
224     // FP_ROUND's are always exact here.
225     if (ValueVT.bitsLT(Val.getValueType()))
226       return DAG.getNode(
227           ISD::FP_ROUND, DL, ValueVT, Val,
228           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
229 
230     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
231   }
232 
233   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
234     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
235 
236   llvm_unreachable("Unknown mismatch!");
237 }
238 
239 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
240                                               const Twine &ErrMsg) {
241   const Instruction *I = dyn_cast_or_null<Instruction>(V);
242   if (!V)
243     return Ctx.emitError(ErrMsg);
244 
245   const char *AsmError = ", possible invalid constraint for vector type";
246   if (const CallInst *CI = dyn_cast<CallInst>(I))
247     if (isa<InlineAsm>(CI->getCalledValue()))
248       return Ctx.emitError(I, ErrMsg + AsmError);
249 
250   return Ctx.emitError(I, ErrMsg);
251 }
252 
253 /// getCopyFromPartsVector - Create a value that contains the specified legal
254 /// parts combined into the value they represent.  If the parts combine to a
255 /// type larger then ValueVT then AssertOp can be used to specify whether the
256 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
257 /// ValueVT (ISD::AssertSext).
258 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
259                                       const SDValue *Parts, unsigned NumParts,
260                                       MVT PartVT, EVT ValueVT, const Value *V) {
261   assert(ValueVT.isVector() && "Not a vector value");
262   assert(NumParts > 0 && "No parts to assemble!");
263   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
264   SDValue Val = Parts[0];
265 
266   // Handle a multi-element vector.
267   if (NumParts > 1) {
268     EVT IntermediateVT;
269     MVT RegisterVT;
270     unsigned NumIntermediates;
271     unsigned NumRegs =
272     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
273                                NumIntermediates, RegisterVT);
274     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
275     NumParts = NumRegs; // Silence a compiler warning.
276     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
277     assert(RegisterVT.getSizeInBits() ==
278            Parts[0].getSimpleValueType().getSizeInBits() &&
279            "Part type sizes don't match!");
280 
281     // Assemble the parts into intermediate operands.
282     SmallVector<SDValue, 8> Ops(NumIntermediates);
283     if (NumIntermediates == NumParts) {
284       // If the register was not expanded, truncate or copy the value,
285       // as appropriate.
286       for (unsigned i = 0; i != NumParts; ++i)
287         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
288                                   PartVT, IntermediateVT, V);
289     } else if (NumParts > 0) {
290       // If the intermediate type was expanded, build the intermediate
291       // operands from the parts.
292       assert(NumParts % NumIntermediates == 0 &&
293              "Must expand into a divisible number of parts!");
294       unsigned Factor = NumParts / NumIntermediates;
295       for (unsigned i = 0; i != NumIntermediates; ++i)
296         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
297                                   PartVT, IntermediateVT, V);
298     }
299 
300     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
301     // intermediate operands.
302     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
303                                                 : ISD::BUILD_VECTOR,
304                       DL, ValueVT, Ops);
305   }
306 
307   // There is now one part, held in Val.  Correct it to match ValueVT.
308   EVT PartEVT = Val.getValueType();
309 
310   if (PartEVT == ValueVT)
311     return Val;
312 
313   if (PartEVT.isVector()) {
314     // If the element type of the source/dest vectors are the same, but the
315     // parts vector has more elements than the value vector, then we have a
316     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
317     // elements we want.
318     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
319       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
320              "Cannot narrow, it would be a lossy transformation");
321       return DAG.getNode(
322           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
323           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
324     }
325 
326     // Vector/Vector bitcast.
327     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
328       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
329 
330     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
331       "Cannot handle this kind of promotion");
332     // Promoted vector extract
333     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
334 
335   }
336 
337   // Trivial bitcast if the types are the same size and the destination
338   // vector type is legal.
339   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
340       TLI.isTypeLegal(ValueVT))
341     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
342 
343   // Handle cases such as i8 -> <1 x i1>
344   if (ValueVT.getVectorNumElements() != 1) {
345     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
346                                       "non-trivial scalar-to-vector conversion");
347     return DAG.getUNDEF(ValueVT);
348   }
349 
350   if (ValueVT.getVectorNumElements() == 1 &&
351       ValueVT.getVectorElementType() != PartEVT)
352     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
353 
354   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
355 }
356 
357 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
358                                  SDValue Val, SDValue *Parts, unsigned NumParts,
359                                  MVT PartVT, const Value *V);
360 
361 /// getCopyToParts - Create a series of nodes that contain the specified value
362 /// split into legal parts.  If the parts contain more bits than Val, then, for
363 /// integers, ExtendKind can be used to specify how to generate the extra bits.
364 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
365                            SDValue Val, SDValue *Parts, unsigned NumParts,
366                            MVT PartVT, const Value *V,
367                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
368   EVT ValueVT = Val.getValueType();
369 
370   // Handle the vector case separately.
371   if (ValueVT.isVector())
372     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
373 
374   unsigned PartBits = PartVT.getSizeInBits();
375   unsigned OrigNumParts = NumParts;
376   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
377          "Copying to an illegal type!");
378 
379   if (NumParts == 0)
380     return;
381 
382   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
383   EVT PartEVT = PartVT;
384   if (PartEVT == ValueVT) {
385     assert(NumParts == 1 && "No-op copy with multiple parts!");
386     Parts[0] = Val;
387     return;
388   }
389 
390   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
391     // If the parts cover more bits than the value has, promote the value.
392     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
393       assert(NumParts == 1 && "Do not know what to promote to!");
394       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
395     } else {
396       if (ValueVT.isFloatingPoint()) {
397         // FP values need to be bitcast, then extended if they are being put
398         // into a larger container.
399         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
400         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401       }
402       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
403              ValueVT.isInteger() &&
404              "Unknown mismatch!");
405       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
406       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
407       if (PartVT == MVT::x86mmx)
408         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
409     }
410   } else if (PartBits == ValueVT.getSizeInBits()) {
411     // Different types of the same size.
412     assert(NumParts == 1 && PartEVT != ValueVT);
413     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
414   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
415     // If the parts cover less bits than value has, truncate the value.
416     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
417            ValueVT.isInteger() &&
418            "Unknown mismatch!");
419     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
420     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
421     if (PartVT == MVT::x86mmx)
422       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
423   }
424 
425   // The value may have changed - recompute ValueVT.
426   ValueVT = Val.getValueType();
427   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
428          "Failed to tile the value with PartVT!");
429 
430   if (NumParts == 1) {
431     if (PartEVT != ValueVT)
432       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
433                                         "scalar-to-vector conversion failed");
434 
435     Parts[0] = Val;
436     return;
437   }
438 
439   // Expand the value into multiple parts.
440   if (NumParts & (NumParts - 1)) {
441     // The number of parts is not a power of 2.  Split off and copy the tail.
442     assert(PartVT.isInteger() && ValueVT.isInteger() &&
443            "Do not know what to expand to!");
444     unsigned RoundParts = 1 << Log2_32(NumParts);
445     unsigned RoundBits = RoundParts * PartBits;
446     unsigned OddParts = NumParts - RoundParts;
447     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
448                                  DAG.getIntPtrConstant(RoundBits, DL));
449     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
450 
451     if (DAG.getDataLayout().isBigEndian())
452       // The odd parts were reversed by getCopyToParts - unreverse them.
453       std::reverse(Parts + RoundParts, Parts + NumParts);
454 
455     NumParts = RoundParts;
456     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
457     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
458   }
459 
460   // The number of parts is a power of 2.  Repeatedly bisect the value using
461   // EXTRACT_ELEMENT.
462   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
463                          EVT::getIntegerVT(*DAG.getContext(),
464                                            ValueVT.getSizeInBits()),
465                          Val);
466 
467   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
468     for (unsigned i = 0; i < NumParts; i += StepSize) {
469       unsigned ThisBits = StepSize * PartBits / 2;
470       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
471       SDValue &Part0 = Parts[i];
472       SDValue &Part1 = Parts[i+StepSize/2];
473 
474       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
475                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
476       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
477                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
478 
479       if (ThisBits == PartBits && ThisVT != PartVT) {
480         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
481         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
482       }
483     }
484   }
485 
486   if (DAG.getDataLayout().isBigEndian())
487     std::reverse(Parts, Parts + OrigNumParts);
488 }
489 
490 
491 /// getCopyToPartsVector - Create a series of nodes that contain the specified
492 /// value split into legal parts.
493 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
494                                  SDValue Val, SDValue *Parts, unsigned NumParts,
495                                  MVT PartVT, const Value *V) {
496   EVT ValueVT = Val.getValueType();
497   assert(ValueVT.isVector() && "Not a vector");
498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
499 
500   if (NumParts == 1) {
501     EVT PartEVT = PartVT;
502     if (PartEVT == ValueVT) {
503       // Nothing to do.
504     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
505       // Bitconvert vector->vector case.
506       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
507     } else if (PartVT.isVector() &&
508                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
509                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
510       EVT ElementVT = PartVT.getVectorElementType();
511       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
512       // undef elements.
513       SmallVector<SDValue, 16> Ops;
514       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
515         Ops.push_back(DAG.getNode(
516             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
517             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
518 
519       for (unsigned i = ValueVT.getVectorNumElements(),
520            e = PartVT.getVectorNumElements(); i != e; ++i)
521         Ops.push_back(DAG.getUNDEF(ElementVT));
522 
523       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
524 
525       // FIXME: Use CONCAT for 2x -> 4x.
526 
527       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
528       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
529     } else if (PartVT.isVector() &&
530                PartEVT.getVectorElementType().bitsGE(
531                  ValueVT.getVectorElementType()) &&
532                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
533 
534       // Promoted vector extract
535       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
536     } else{
537       // Vector -> scalar conversion.
538       assert(ValueVT.getVectorNumElements() == 1 &&
539              "Only trivial vector-to-scalar conversions should get here!");
540       Val = DAG.getNode(
541           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
542           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
543 
544       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
545     }
546 
547     Parts[0] = Val;
548     return;
549   }
550 
551   // Handle a multi-element vector.
552   EVT IntermediateVT;
553   MVT RegisterVT;
554   unsigned NumIntermediates;
555   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
556                                                 IntermediateVT,
557                                                 NumIntermediates, RegisterVT);
558   unsigned NumElements = ValueVT.getVectorNumElements();
559 
560   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
561   NumParts = NumRegs; // Silence a compiler warning.
562   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
563 
564   // Split the vector into intermediate operands.
565   SmallVector<SDValue, 8> Ops(NumIntermediates);
566   for (unsigned i = 0; i != NumIntermediates; ++i) {
567     if (IntermediateVT.isVector())
568       Ops[i] =
569           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
570                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
571                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
572     else
573       Ops[i] = DAG.getNode(
574           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
575           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
576   }
577 
578   // Split the intermediate operands into legal parts.
579   if (NumParts == NumIntermediates) {
580     // If the register was not expanded, promote or copy the value,
581     // as appropriate.
582     for (unsigned i = 0; i != NumParts; ++i)
583       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
584   } else if (NumParts > 0) {
585     // If the intermediate type was expanded, split each the value into
586     // legal parts.
587     assert(NumIntermediates != 0 && "division by zero");
588     assert(NumParts % NumIntermediates == 0 &&
589            "Must expand into a divisible number of parts!");
590     unsigned Factor = NumParts / NumIntermediates;
591     for (unsigned i = 0; i != NumIntermediates; ++i)
592       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
593   }
594 }
595 
596 RegsForValue::RegsForValue() {}
597 
598 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
599                            EVT valuevt)
600     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
601 
602 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
603                            const DataLayout &DL, unsigned Reg, Type *Ty) {
604   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
605 
606   for (EVT ValueVT : ValueVTs) {
607     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
608     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
609     for (unsigned i = 0; i != NumRegs; ++i)
610       Regs.push_back(Reg + i);
611     RegVTs.push_back(RegisterVT);
612     Reg += NumRegs;
613   }
614 }
615 
616 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
617 /// this value and returns the result as a ValueVT value.  This uses
618 /// Chain/Flag as the input and updates them for the output Chain/Flag.
619 /// If the Flag pointer is NULL, no flag is used.
620 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
621                                       FunctionLoweringInfo &FuncInfo,
622                                       SDLoc dl,
623                                       SDValue &Chain, SDValue *Flag,
624                                       const Value *V) const {
625   // A Value with type {} or [0 x %t] needs no registers.
626   if (ValueVTs.empty())
627     return SDValue();
628 
629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
630 
631   // Assemble the legal parts into the final values.
632   SmallVector<SDValue, 4> Values(ValueVTs.size());
633   SmallVector<SDValue, 8> Parts;
634   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
635     // Copy the legal parts from the registers.
636     EVT ValueVT = ValueVTs[Value];
637     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
638     MVT RegisterVT = RegVTs[Value];
639 
640     Parts.resize(NumRegs);
641     for (unsigned i = 0; i != NumRegs; ++i) {
642       SDValue P;
643       if (!Flag) {
644         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
645       } else {
646         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
647         *Flag = P.getValue(2);
648       }
649 
650       Chain = P.getValue(1);
651       Parts[i] = P;
652 
653       // If the source register was virtual and if we know something about it,
654       // add an assert node.
655       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
656           !RegisterVT.isInteger() || RegisterVT.isVector())
657         continue;
658 
659       const FunctionLoweringInfo::LiveOutInfo *LOI =
660         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
661       if (!LOI)
662         continue;
663 
664       unsigned RegSize = RegisterVT.getSizeInBits();
665       unsigned NumSignBits = LOI->NumSignBits;
666       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
667 
668       if (NumZeroBits == RegSize) {
669         // The current value is a zero.
670         // Explicitly express that as it would be easier for
671         // optimizations to kick in.
672         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
673         continue;
674       }
675 
676       // FIXME: We capture more information than the dag can represent.  For
677       // now, just use the tightest assertzext/assertsext possible.
678       bool isSExt = true;
679       EVT FromVT(MVT::Other);
680       if (NumSignBits == RegSize)
681         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
682       else if (NumZeroBits >= RegSize-1)
683         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
684       else if (NumSignBits > RegSize-8)
685         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
686       else if (NumZeroBits >= RegSize-8)
687         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
688       else if (NumSignBits > RegSize-16)
689         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
690       else if (NumZeroBits >= RegSize-16)
691         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
692       else if (NumSignBits > RegSize-32)
693         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
694       else if (NumZeroBits >= RegSize-32)
695         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
696       else
697         continue;
698 
699       // Add an assertion node.
700       assert(FromVT != MVT::Other);
701       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
702                              RegisterVT, P, DAG.getValueType(FromVT));
703     }
704 
705     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
706                                      NumRegs, RegisterVT, ValueVT, V);
707     Part += NumRegs;
708     Parts.clear();
709   }
710 
711   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
712 }
713 
714 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
715 /// specified value into the registers specified by this object.  This uses
716 /// Chain/Flag as the input and updates them for the output Chain/Flag.
717 /// If the Flag pointer is NULL, no flag is used.
718 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
719                                  SDValue &Chain, SDValue *Flag, const Value *V,
720                                  ISD::NodeType PreferredExtendType) const {
721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
722   ISD::NodeType ExtendKind = PreferredExtendType;
723 
724   // Get the list of the values's legal parts.
725   unsigned NumRegs = Regs.size();
726   SmallVector<SDValue, 8> Parts(NumRegs);
727   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
728     EVT ValueVT = ValueVTs[Value];
729     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
730     MVT RegisterVT = RegVTs[Value];
731 
732     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
733       ExtendKind = ISD::ZERO_EXTEND;
734 
735     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
736                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
737     Part += NumParts;
738   }
739 
740   // Copy the parts into the registers.
741   SmallVector<SDValue, 8> Chains(NumRegs);
742   for (unsigned i = 0; i != NumRegs; ++i) {
743     SDValue Part;
744     if (!Flag) {
745       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
746     } else {
747       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
748       *Flag = Part.getValue(1);
749     }
750 
751     Chains[i] = Part.getValue(0);
752   }
753 
754   if (NumRegs == 1 || Flag)
755     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
756     // flagged to it. That is the CopyToReg nodes and the user are considered
757     // a single scheduling unit. If we create a TokenFactor and return it as
758     // chain, then the TokenFactor is both a predecessor (operand) of the
759     // user as well as a successor (the TF operands are flagged to the user).
760     // c1, f1 = CopyToReg
761     // c2, f2 = CopyToReg
762     // c3     = TokenFactor c1, c2
763     // ...
764     //        = op c3, ..., f2
765     Chain = Chains[NumRegs-1];
766   else
767     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
768 }
769 
770 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
771 /// operand list.  This adds the code marker and includes the number of
772 /// values added into it.
773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
774                                         unsigned MatchingIdx, SDLoc dl,
775                                         SelectionDAG &DAG,
776                                         std::vector<SDValue> &Ops) const {
777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
778 
779   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
780   if (HasMatching)
781     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
782   else if (!Regs.empty() &&
783            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
784     // Put the register class of the virtual registers in the flag word.  That
785     // way, later passes can recompute register class constraints for inline
786     // assembly as well as normal instructions.
787     // Don't do this for tied operands that can use the regclass information
788     // from the def.
789     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
790     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
791     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
792   }
793 
794   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
795   Ops.push_back(Res);
796 
797   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
798   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
799     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
800     MVT RegisterVT = RegVTs[Value];
801     for (unsigned i = 0; i != NumRegs; ++i) {
802       assert(Reg < Regs.size() && "Mismatch in # registers expected");
803       unsigned TheReg = Regs[Reg++];
804       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
805 
806       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
807         // If we clobbered the stack pointer, MFI should know about it.
808         assert(DAG.getMachineFunction().getFrameInfo()->
809             hasOpaqueSPAdjustment());
810       }
811     }
812   }
813 }
814 
815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                                const TargetLibraryInfo *li) {
817   AA = &aa;
818   GFI = gfi;
819   LibInfo = li;
820   DL = &DAG.getDataLayout();
821   Context = DAG.getContext();
822   LPadToCallSiteMap.clear();
823 }
824 
825 /// clear - Clear out the current SelectionDAG and the associated
826 /// state and prepare this SelectionDAGBuilder object to be used
827 /// for a new block. This doesn't clear out information about
828 /// additional blocks that are needed to complete switch lowering
829 /// or PHI node updating; that information is cleared out as it is
830 /// consumed.
831 void SelectionDAGBuilder::clear() {
832   NodeMap.clear();
833   UnusedArgNodeMap.clear();
834   PendingLoads.clear();
835   PendingExports.clear();
836   CurInst = nullptr;
837   HasTailCall = false;
838   SDNodeOrder = LowestSDNodeOrder;
839   StatepointLowering.clear();
840 }
841 
842 /// clearDanglingDebugInfo - Clear the dangling debug information
843 /// map. This function is separated from the clear so that debug
844 /// information that is dangling in a basic block can be properly
845 /// resolved in a different basic block. This allows the
846 /// SelectionDAG to resolve dangling debug information attached
847 /// to PHI nodes.
848 void SelectionDAGBuilder::clearDanglingDebugInfo() {
849   DanglingDebugInfoMap.clear();
850 }
851 
852 /// getRoot - Return the current virtual root of the Selection DAG,
853 /// flushing any PendingLoad items. This must be done before emitting
854 /// a store or any other node that may need to be ordered after any
855 /// prior load instructions.
856 ///
857 SDValue SelectionDAGBuilder::getRoot() {
858   if (PendingLoads.empty())
859     return DAG.getRoot();
860 
861   if (PendingLoads.size() == 1) {
862     SDValue Root = PendingLoads[0];
863     DAG.setRoot(Root);
864     PendingLoads.clear();
865     return Root;
866   }
867 
868   // Otherwise, we have to make a token factor node.
869   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
870                              PendingLoads);
871   PendingLoads.clear();
872   DAG.setRoot(Root);
873   return Root;
874 }
875 
876 /// getControlRoot - Similar to getRoot, but instead of flushing all the
877 /// PendingLoad items, flush all the PendingExports items. It is necessary
878 /// to do this before emitting a terminator instruction.
879 ///
880 SDValue SelectionDAGBuilder::getControlRoot() {
881   SDValue Root = DAG.getRoot();
882 
883   if (PendingExports.empty())
884     return Root;
885 
886   // Turn all of the CopyToReg chains into one factored node.
887   if (Root.getOpcode() != ISD::EntryToken) {
888     unsigned i = 0, e = PendingExports.size();
889     for (; i != e; ++i) {
890       assert(PendingExports[i].getNode()->getNumOperands() > 1);
891       if (PendingExports[i].getNode()->getOperand(0) == Root)
892         break;  // Don't add the root if we already indirectly depend on it.
893     }
894 
895     if (i == e)
896       PendingExports.push_back(Root);
897   }
898 
899   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
900                      PendingExports);
901   PendingExports.clear();
902   DAG.setRoot(Root);
903   return Root;
904 }
905 
906 void SelectionDAGBuilder::visit(const Instruction &I) {
907   // Set up outgoing PHI node register values before emitting the terminator.
908   if (isa<TerminatorInst>(&I))
909     HandlePHINodesInSuccessorBlocks(I.getParent());
910 
911   ++SDNodeOrder;
912 
913   CurInst = &I;
914 
915   visit(I.getOpcode(), I);
916 
917   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
918       !isStatepoint(&I)) // statepoints handle their exports internally
919     CopyToExportRegsIfNeeded(&I);
920 
921   CurInst = nullptr;
922 }
923 
924 void SelectionDAGBuilder::visitPHI(const PHINode &) {
925   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
926 }
927 
928 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
929   // Note: this doesn't use InstVisitor, because it has to work with
930   // ConstantExpr's in addition to instructions.
931   switch (Opcode) {
932   default: llvm_unreachable("Unknown instruction type encountered!");
933     // Build the switch statement using the Instruction.def file.
934 #define HANDLE_INST(NUM, OPCODE, CLASS) \
935     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
936 #include "llvm/IR/Instruction.def"
937   }
938 }
939 
940 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
941 // generate the debug data structures now that we've seen its definition.
942 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
943                                                    SDValue Val) {
944   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
945   if (DDI.getDI()) {
946     const DbgValueInst *DI = DDI.getDI();
947     DebugLoc dl = DDI.getdl();
948     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
949     DILocalVariable *Variable = DI->getVariable();
950     DIExpression *Expr = DI->getExpression();
951     assert(Variable->isValidLocationForIntrinsic(dl) &&
952            "Expected inlined-at fields to agree");
953     uint64_t Offset = DI->getOffset();
954     SDDbgValue *SDV;
955     if (Val.getNode()) {
956       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
957                                     Val)) {
958         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
959                               false, Offset, dl, DbgSDNodeOrder);
960         DAG.AddDbgValue(SDV, Val.getNode(), false);
961       }
962     } else
963       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
964     DanglingDebugInfoMap[V] = DanglingDebugInfo();
965   }
966 }
967 
968 /// getCopyFromRegs - If there was virtual register allocated for the value V
969 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
970 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
971   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
972   SDValue Result;
973 
974   if (It != FuncInfo.ValueMap.end()) {
975     unsigned InReg = It->second;
976     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
977                      DAG.getDataLayout(), InReg, Ty);
978     SDValue Chain = DAG.getEntryNode();
979     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
980     resolveDanglingDebugInfo(V, Result);
981   }
982 
983   return Result;
984 }
985 
986 /// getValue - Return an SDValue for the given Value.
987 SDValue SelectionDAGBuilder::getValue(const Value *V) {
988   // If we already have an SDValue for this value, use it. It's important
989   // to do this first, so that we don't create a CopyFromReg if we already
990   // have a regular SDValue.
991   SDValue &N = NodeMap[V];
992   if (N.getNode()) return N;
993 
994   // If there's a virtual register allocated and initialized for this
995   // value, use it.
996   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
997     return copyFromReg;
998 
999   // Otherwise create a new SDValue and remember it.
1000   SDValue Val = getValueImpl(V);
1001   NodeMap[V] = Val;
1002   resolveDanglingDebugInfo(V, Val);
1003   return Val;
1004 }
1005 
1006 // Return true if SDValue exists for the given Value
1007 bool SelectionDAGBuilder::findValue(const Value *V) const {
1008   return (NodeMap.find(V) != NodeMap.end()) ||
1009     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1010 }
1011 
1012 /// getNonRegisterValue - Return an SDValue for the given Value, but
1013 /// don't look in FuncInfo.ValueMap for a virtual register.
1014 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it.
1016   SDValue &N = NodeMap[V];
1017   if (N.getNode()) {
1018     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1019       // Remove the debug location from the node as the node is about to be used
1020       // in a location which may differ from the original debug location.  This
1021       // is relevant to Constant and ConstantFP nodes because they can appear
1022       // as constant expressions inside PHI nodes.
1023       N->setDebugLoc(DebugLoc());
1024     }
1025     return N;
1026   }
1027 
1028   // Otherwise create a new SDValue and remember it.
1029   SDValue Val = getValueImpl(V);
1030   NodeMap[V] = Val;
1031   resolveDanglingDebugInfo(V, Val);
1032   return Val;
1033 }
1034 
1035 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1036 /// Create an SDValue for the given value.
1037 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039 
1040   if (const Constant *C = dyn_cast<Constant>(V)) {
1041     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1042 
1043     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1044       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1045 
1046     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1047       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1048 
1049     if (isa<ConstantPointerNull>(C)) {
1050       unsigned AS = V->getType()->getPointerAddressSpace();
1051       return DAG.getConstant(0, getCurSDLoc(),
1052                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1053     }
1054 
1055     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1056       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1057 
1058     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1059       return DAG.getUNDEF(VT);
1060 
1061     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1062       visit(CE->getOpcode(), *CE);
1063       SDValue N1 = NodeMap[V];
1064       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1065       return N1;
1066     }
1067 
1068     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1069       SmallVector<SDValue, 4> Constants;
1070       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1071            OI != OE; ++OI) {
1072         SDNode *Val = getValue(*OI).getNode();
1073         // If the operand is an empty aggregate, there are no values.
1074         if (!Val) continue;
1075         // Add each leaf value from the operand to the Constants list
1076         // to form a flattened list of all the values.
1077         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1078           Constants.push_back(SDValue(Val, i));
1079       }
1080 
1081       return DAG.getMergeValues(Constants, getCurSDLoc());
1082     }
1083 
1084     if (const ConstantDataSequential *CDS =
1085           dyn_cast<ConstantDataSequential>(C)) {
1086       SmallVector<SDValue, 4> Ops;
1087       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1088         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1089         // Add each leaf value from the operand to the Constants list
1090         // to form a flattened list of all the values.
1091         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092           Ops.push_back(SDValue(Val, i));
1093       }
1094 
1095       if (isa<ArrayType>(CDS->getType()))
1096         return DAG.getMergeValues(Ops, getCurSDLoc());
1097       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1098                                       VT, Ops);
1099     }
1100 
1101     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1102       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1103              "Unknown struct or array constant!");
1104 
1105       SmallVector<EVT, 4> ValueVTs;
1106       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1107       unsigned NumElts = ValueVTs.size();
1108       if (NumElts == 0)
1109         return SDValue(); // empty struct
1110       SmallVector<SDValue, 4> Constants(NumElts);
1111       for (unsigned i = 0; i != NumElts; ++i) {
1112         EVT EltVT = ValueVTs[i];
1113         if (isa<UndefValue>(C))
1114           Constants[i] = DAG.getUNDEF(EltVT);
1115         else if (EltVT.isFloatingPoint())
1116           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1117         else
1118           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1119       }
1120 
1121       return DAG.getMergeValues(Constants, getCurSDLoc());
1122     }
1123 
1124     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1125       return DAG.getBlockAddress(BA, VT);
1126 
1127     VectorType *VecTy = cast<VectorType>(V->getType());
1128     unsigned NumElements = VecTy->getNumElements();
1129 
1130     // Now that we know the number and type of the elements, get that number of
1131     // elements into the Ops array based on what kind of constant it is.
1132     SmallVector<SDValue, 16> Ops;
1133     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1134       for (unsigned i = 0; i != NumElements; ++i)
1135         Ops.push_back(getValue(CV->getOperand(i)));
1136     } else {
1137       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1138       EVT EltVT =
1139           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1140 
1141       SDValue Op;
1142       if (EltVT.isFloatingPoint())
1143         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144       else
1145         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       Ops.assign(NumElements, Op);
1147     }
1148 
1149     // Create a BUILD_VECTOR node.
1150     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1151   }
1152 
1153   // If this is a static alloca, generate it as the frameindex instead of
1154   // computation.
1155   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1156     DenseMap<const AllocaInst*, int>::iterator SI =
1157       FuncInfo.StaticAllocaMap.find(AI);
1158     if (SI != FuncInfo.StaticAllocaMap.end())
1159       return DAG.getFrameIndex(SI->second,
1160                                TLI.getPointerTy(DAG.getDataLayout()));
1161   }
1162 
1163   // If this is an instruction which fast-isel has deferred, select it now.
1164   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1165     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1166     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1167                      Inst->getType());
1168     SDValue Chain = DAG.getEntryNode();
1169     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1170   }
1171 
1172   llvm_unreachable("Can't get register for value!");
1173 }
1174 
1175 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1176   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1177   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1178   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1179   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1180   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1181   if (IsMSVCCXX || IsCoreCLR)
1182     CatchPadMBB->setIsEHFuncletEntry();
1183 
1184   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1185 }
1186 
1187 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1188   // Update machine-CFG edge.
1189   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1190   FuncInfo.MBB->addSuccessor(TargetMBB);
1191 
1192   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1193   bool IsSEH = isAsynchronousEHPersonality(Pers);
1194   if (IsSEH) {
1195     // If this is not a fall-through branch or optimizations are switched off,
1196     // emit the branch.
1197     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1198         TM.getOptLevel() == CodeGenOpt::None)
1199       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1200                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1201     return;
1202   }
1203 
1204   // Figure out the funclet membership for the catchret's successor.
1205   // This will be used by the FuncletLayout pass to determine how to order the
1206   // BB's.
1207   // A 'catchret' returns to the outer scope's color.
1208   Value *ParentPad = I.getCatchSwitchParentPad();
1209   const BasicBlock *SuccessorColor;
1210   if (isa<ConstantTokenNone>(ParentPad))
1211     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1212   else
1213     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1214   assert(SuccessorColor && "No parent funclet for catchret!");
1215   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1216   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1217 
1218   // Create the terminator node.
1219   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1220                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1221                             DAG.getBasicBlock(SuccessorColorMBB));
1222   DAG.setRoot(Ret);
1223 }
1224 
1225 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1226   // Don't emit any special code for the cleanuppad instruction. It just marks
1227   // the start of a funclet.
1228   FuncInfo.MBB->setIsEHFuncletEntry();
1229   FuncInfo.MBB->setIsCleanupFuncletEntry();
1230 }
1231 
1232 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1233 /// many places it could ultimately go. In the IR, we have a single unwind
1234 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1235 /// This function skips over imaginary basic blocks that hold catchswitch
1236 /// instructions, and finds all the "real" machine
1237 /// basic block destinations. As those destinations may not be successors of
1238 /// EHPadBB, here we also calculate the edge probability to those destinations.
1239 /// The passed-in Prob is the edge probability to EHPadBB.
1240 static void findUnwindDestinations(
1241     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1242     BranchProbability Prob,
1243     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1244         &UnwindDests) {
1245   EHPersonality Personality =
1246     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1247   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1248   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1249 
1250   while (EHPadBB) {
1251     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1252     BasicBlock *NewEHPadBB = nullptr;
1253     if (isa<LandingPadInst>(Pad)) {
1254       // Stop on landingpads. They are not funclets.
1255       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1256       break;
1257     } else if (isa<CleanupPadInst>(Pad)) {
1258       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1259       // personalities.
1260       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1261       UnwindDests.back().first->setIsEHFuncletEntry();
1262       break;
1263     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1264       // Add the catchpad handlers to the possible destinations.
1265       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1266         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1267         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1268         if (IsMSVCCXX || IsCoreCLR)
1269           UnwindDests.back().first->setIsEHFuncletEntry();
1270       }
1271       NewEHPadBB = CatchSwitch->getUnwindDest();
1272     } else {
1273       continue;
1274     }
1275 
1276     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1277     if (BPI && NewEHPadBB)
1278       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1279     EHPadBB = NewEHPadBB;
1280   }
1281 }
1282 
1283 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1284   // Update successor info.
1285   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1286   auto UnwindDest = I.getUnwindDest();
1287   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1288   BranchProbability UnwindDestProb =
1289       (BPI && UnwindDest)
1290           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1291           : BranchProbability::getZero();
1292   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1293   for (auto &UnwindDest : UnwindDests) {
1294     UnwindDest.first->setIsEHPad();
1295     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1296   }
1297   FuncInfo.MBB->normalizeSuccProbs();
1298 
1299   // Create the terminator node.
1300   SDValue Ret =
1301       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1302   DAG.setRoot(Ret);
1303 }
1304 
1305 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1306   report_fatal_error("visitCatchSwitch not yet implemented!");
1307 }
1308 
1309 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1311   auto &DL = DAG.getDataLayout();
1312   SDValue Chain = getControlRoot();
1313   SmallVector<ISD::OutputArg, 8> Outs;
1314   SmallVector<SDValue, 8> OutVals;
1315 
1316   if (!FuncInfo.CanLowerReturn) {
1317     unsigned DemoteReg = FuncInfo.DemoteRegister;
1318     const Function *F = I.getParent()->getParent();
1319 
1320     // Emit a store of the return value through the virtual register.
1321     // Leave Outs empty so that LowerReturn won't try to load return
1322     // registers the usual way.
1323     SmallVector<EVT, 1> PtrValueVTs;
1324     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1325                     PtrValueVTs);
1326 
1327     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1328                                         DemoteReg, PtrValueVTs[0]);
1329     SDValue RetOp = getValue(I.getOperand(0));
1330 
1331     SmallVector<EVT, 4> ValueVTs;
1332     SmallVector<uint64_t, 4> Offsets;
1333     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1334     unsigned NumValues = ValueVTs.size();
1335 
1336     // An aggregate return value cannot wrap around the address space, so
1337     // offsets to its parts don't wrap either.
1338     SDNodeFlags Flags;
1339     Flags.setNoUnsignedWrap(true);
1340 
1341     SmallVector<SDValue, 4> Chains(NumValues);
1342     for (unsigned i = 0; i != NumValues; ++i) {
1343       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1344                                 RetPtr.getValueType(), RetPtr,
1345                                 DAG.getIntPtrConstant(Offsets[i],
1346                                                       getCurSDLoc()),
1347                                 &Flags);
1348       Chains[i] =
1349         DAG.getStore(Chain, getCurSDLoc(),
1350                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1351                      // FIXME: better loc info would be nice.
1352                      Add, MachinePointerInfo(), false, false, 0);
1353     }
1354 
1355     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1356                         MVT::Other, Chains);
1357   } else if (I.getNumOperands() != 0) {
1358     SmallVector<EVT, 4> ValueVTs;
1359     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1360     unsigned NumValues = ValueVTs.size();
1361     if (NumValues) {
1362       SDValue RetOp = getValue(I.getOperand(0));
1363 
1364       const Function *F = I.getParent()->getParent();
1365 
1366       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1367       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1368                                           Attribute::SExt))
1369         ExtendKind = ISD::SIGN_EXTEND;
1370       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1371                                                Attribute::ZExt))
1372         ExtendKind = ISD::ZERO_EXTEND;
1373 
1374       LLVMContext &Context = F->getContext();
1375       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1376                                                       Attribute::InReg);
1377 
1378       for (unsigned j = 0; j != NumValues; ++j) {
1379         EVT VT = ValueVTs[j];
1380 
1381         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1382           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1383 
1384         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1385         MVT PartVT = TLI.getRegisterType(Context, VT);
1386         SmallVector<SDValue, 4> Parts(NumParts);
1387         getCopyToParts(DAG, getCurSDLoc(),
1388                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1389                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1390 
1391         // 'inreg' on function refers to return value
1392         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1393         if (RetInReg)
1394           Flags.setInReg();
1395 
1396         // Propagate extension type if any
1397         if (ExtendKind == ISD::SIGN_EXTEND)
1398           Flags.setSExt();
1399         else if (ExtendKind == ISD::ZERO_EXTEND)
1400           Flags.setZExt();
1401 
1402         for (unsigned i = 0; i < NumParts; ++i) {
1403           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1404                                         VT, /*isfixed=*/true, 0, 0));
1405           OutVals.push_back(Parts[i]);
1406         }
1407       }
1408     }
1409   }
1410 
1411   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1412   CallingConv::ID CallConv =
1413     DAG.getMachineFunction().getFunction()->getCallingConv();
1414   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1415       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1416 
1417   // Verify that the target's LowerReturn behaved as expected.
1418   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1419          "LowerReturn didn't return a valid chain!");
1420 
1421   // Update the DAG with the new chain value resulting from return lowering.
1422   DAG.setRoot(Chain);
1423 }
1424 
1425 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1426 /// created for it, emit nodes to copy the value into the virtual
1427 /// registers.
1428 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1429   // Skip empty types
1430   if (V->getType()->isEmptyTy())
1431     return;
1432 
1433   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1434   if (VMI != FuncInfo.ValueMap.end()) {
1435     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1436     CopyValueToVirtualRegister(V, VMI->second);
1437   }
1438 }
1439 
1440 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1441 /// the current basic block, add it to ValueMap now so that we'll get a
1442 /// CopyTo/FromReg.
1443 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1444   // No need to export constants.
1445   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1446 
1447   // Already exported?
1448   if (FuncInfo.isExportedInst(V)) return;
1449 
1450   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1451   CopyValueToVirtualRegister(V, Reg);
1452 }
1453 
1454 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1455                                                      const BasicBlock *FromBB) {
1456   // The operands of the setcc have to be in this block.  We don't know
1457   // how to export them from some other block.
1458   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1459     // Can export from current BB.
1460     if (VI->getParent() == FromBB)
1461       return true;
1462 
1463     // Is already exported, noop.
1464     return FuncInfo.isExportedInst(V);
1465   }
1466 
1467   // If this is an argument, we can export it if the BB is the entry block or
1468   // if it is already exported.
1469   if (isa<Argument>(V)) {
1470     if (FromBB == &FromBB->getParent()->getEntryBlock())
1471       return true;
1472 
1473     // Otherwise, can only export this if it is already exported.
1474     return FuncInfo.isExportedInst(V);
1475   }
1476 
1477   // Otherwise, constants can always be exported.
1478   return true;
1479 }
1480 
1481 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1482 BranchProbability
1483 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1484                                         const MachineBasicBlock *Dst) const {
1485   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1486   const BasicBlock *SrcBB = Src->getBasicBlock();
1487   const BasicBlock *DstBB = Dst->getBasicBlock();
1488   if (!BPI) {
1489     // If BPI is not available, set the default probability as 1 / N, where N is
1490     // the number of successors.
1491     auto SuccSize = std::max<uint32_t>(
1492         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1493     return BranchProbability(1, SuccSize);
1494   }
1495   return BPI->getEdgeProbability(SrcBB, DstBB);
1496 }
1497 
1498 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1499                                                MachineBasicBlock *Dst,
1500                                                BranchProbability Prob) {
1501   if (!FuncInfo.BPI)
1502     Src->addSuccessorWithoutProb(Dst);
1503   else {
1504     if (Prob.isUnknown())
1505       Prob = getEdgeProbability(Src, Dst);
1506     Src->addSuccessor(Dst, Prob);
1507   }
1508 }
1509 
1510 static bool InBlock(const Value *V, const BasicBlock *BB) {
1511   if (const Instruction *I = dyn_cast<Instruction>(V))
1512     return I->getParent() == BB;
1513   return true;
1514 }
1515 
1516 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1517 /// This function emits a branch and is used at the leaves of an OR or an
1518 /// AND operator tree.
1519 ///
1520 void
1521 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1522                                                   MachineBasicBlock *TBB,
1523                                                   MachineBasicBlock *FBB,
1524                                                   MachineBasicBlock *CurBB,
1525                                                   MachineBasicBlock *SwitchBB,
1526                                                   BranchProbability TProb,
1527                                                   BranchProbability FProb) {
1528   const BasicBlock *BB = CurBB->getBasicBlock();
1529 
1530   // If the leaf of the tree is a comparison, merge the condition into
1531   // the caseblock.
1532   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1533     // The operands of the cmp have to be in this block.  We don't know
1534     // how to export them from some other block.  If this is the first block
1535     // of the sequence, no exporting is needed.
1536     if (CurBB == SwitchBB ||
1537         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1538          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1539       ISD::CondCode Condition;
1540       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1541         Condition = getICmpCondCode(IC->getPredicate());
1542       } else {
1543         const FCmpInst *FC = cast<FCmpInst>(Cond);
1544         Condition = getFCmpCondCode(FC->getPredicate());
1545         if (TM.Options.NoNaNsFPMath)
1546           Condition = getFCmpCodeWithoutNaN(Condition);
1547       }
1548 
1549       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1550                    TBB, FBB, CurBB, TProb, FProb);
1551       SwitchCases.push_back(CB);
1552       return;
1553     }
1554   }
1555 
1556   // Create a CaseBlock record representing this branch.
1557   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1558                nullptr, TBB, FBB, CurBB, TProb, FProb);
1559   SwitchCases.push_back(CB);
1560 }
1561 
1562 /// FindMergedConditions - If Cond is an expression like
1563 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1564                                                MachineBasicBlock *TBB,
1565                                                MachineBasicBlock *FBB,
1566                                                MachineBasicBlock *CurBB,
1567                                                MachineBasicBlock *SwitchBB,
1568                                                Instruction::BinaryOps Opc,
1569                                                BranchProbability TProb,
1570                                                BranchProbability FProb) {
1571   // If this node is not part of the or/and tree, emit it as a branch.
1572   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1573   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1574       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1575       BOp->getParent() != CurBB->getBasicBlock() ||
1576       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1577       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1578     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1579                                  TProb, FProb);
1580     return;
1581   }
1582 
1583   //  Create TmpBB after CurBB.
1584   MachineFunction::iterator BBI(CurBB);
1585   MachineFunction &MF = DAG.getMachineFunction();
1586   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1587   CurBB->getParent()->insert(++BBI, TmpBB);
1588 
1589   if (Opc == Instruction::Or) {
1590     // Codegen X | Y as:
1591     // BB1:
1592     //   jmp_if_X TBB
1593     //   jmp TmpBB
1594     // TmpBB:
1595     //   jmp_if_Y TBB
1596     //   jmp FBB
1597     //
1598 
1599     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1600     // The requirement is that
1601     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1602     //     = TrueProb for original BB.
1603     // Assuming the original probabilities are A and B, one choice is to set
1604     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1605     // A/(1+B) and 2B/(1+B). This choice assumes that
1606     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1607     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1608     // TmpBB, but the math is more complicated.
1609 
1610     auto NewTrueProb = TProb / 2;
1611     auto NewFalseProb = TProb / 2 + FProb;
1612     // Emit the LHS condition.
1613     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1614                          NewTrueProb, NewFalseProb);
1615 
1616     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1617     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1618     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1619     // Emit the RHS condition into TmpBB.
1620     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1621                          Probs[0], Probs[1]);
1622   } else {
1623     assert(Opc == Instruction::And && "Unknown merge op!");
1624     // Codegen X & Y as:
1625     // BB1:
1626     //   jmp_if_X TmpBB
1627     //   jmp FBB
1628     // TmpBB:
1629     //   jmp_if_Y TBB
1630     //   jmp FBB
1631     //
1632     //  This requires creation of TmpBB after CurBB.
1633 
1634     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1635     // The requirement is that
1636     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1637     //     = FalseProb for original BB.
1638     // Assuming the original probabilities are A and B, one choice is to set
1639     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1640     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1641     // TrueProb for BB1 * FalseProb for TmpBB.
1642 
1643     auto NewTrueProb = TProb + FProb / 2;
1644     auto NewFalseProb = FProb / 2;
1645     // Emit the LHS condition.
1646     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1647                          NewTrueProb, NewFalseProb);
1648 
1649     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1650     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1651     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1652     // Emit the RHS condition into TmpBB.
1653     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1654                          Probs[0], Probs[1]);
1655   }
1656 }
1657 
1658 /// If the set of cases should be emitted as a series of branches, return true.
1659 /// If we should emit this as a bunch of and/or'd together conditions, return
1660 /// false.
1661 bool
1662 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1663   if (Cases.size() != 2) return true;
1664 
1665   // If this is two comparisons of the same values or'd or and'd together, they
1666   // will get folded into a single comparison, so don't emit two blocks.
1667   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1668        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1669       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1670        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1671     return false;
1672   }
1673 
1674   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1675   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1676   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1677       Cases[0].CC == Cases[1].CC &&
1678       isa<Constant>(Cases[0].CmpRHS) &&
1679       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1680     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1681       return false;
1682     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1683       return false;
1684   }
1685 
1686   return true;
1687 }
1688 
1689 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1690   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1691 
1692   // Update machine-CFG edges.
1693   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1694 
1695   if (I.isUnconditional()) {
1696     // Update machine-CFG edges.
1697     BrMBB->addSuccessor(Succ0MBB);
1698 
1699     // If this is not a fall-through branch or optimizations are switched off,
1700     // emit the branch.
1701     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1702       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1703                               MVT::Other, getControlRoot(),
1704                               DAG.getBasicBlock(Succ0MBB)));
1705 
1706     return;
1707   }
1708 
1709   // If this condition is one of the special cases we handle, do special stuff
1710   // now.
1711   const Value *CondVal = I.getCondition();
1712   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1713 
1714   // If this is a series of conditions that are or'd or and'd together, emit
1715   // this as a sequence of branches instead of setcc's with and/or operations.
1716   // As long as jumps are not expensive, this should improve performance.
1717   // For example, instead of something like:
1718   //     cmp A, B
1719   //     C = seteq
1720   //     cmp D, E
1721   //     F = setle
1722   //     or C, F
1723   //     jnz foo
1724   // Emit:
1725   //     cmp A, B
1726   //     je foo
1727   //     cmp D, E
1728   //     jle foo
1729   //
1730   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1731     Instruction::BinaryOps Opcode = BOp->getOpcode();
1732     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1733         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1734         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1735       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1736                            Opcode,
1737                            getEdgeProbability(BrMBB, Succ0MBB),
1738                            getEdgeProbability(BrMBB, Succ1MBB));
1739       // If the compares in later blocks need to use values not currently
1740       // exported from this block, export them now.  This block should always
1741       // be the first entry.
1742       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1743 
1744       // Allow some cases to be rejected.
1745       if (ShouldEmitAsBranches(SwitchCases)) {
1746         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1747           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1748           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1749         }
1750 
1751         // Emit the branch for this block.
1752         visitSwitchCase(SwitchCases[0], BrMBB);
1753         SwitchCases.erase(SwitchCases.begin());
1754         return;
1755       }
1756 
1757       // Okay, we decided not to do this, remove any inserted MBB's and clear
1758       // SwitchCases.
1759       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1760         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1761 
1762       SwitchCases.clear();
1763     }
1764   }
1765 
1766   // Create a CaseBlock record representing this branch.
1767   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1768                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1769 
1770   // Use visitSwitchCase to actually insert the fast branch sequence for this
1771   // cond branch.
1772   visitSwitchCase(CB, BrMBB);
1773 }
1774 
1775 /// visitSwitchCase - Emits the necessary code to represent a single node in
1776 /// the binary search tree resulting from lowering a switch instruction.
1777 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1778                                           MachineBasicBlock *SwitchBB) {
1779   SDValue Cond;
1780   SDValue CondLHS = getValue(CB.CmpLHS);
1781   SDLoc dl = getCurSDLoc();
1782 
1783   // Build the setcc now.
1784   if (!CB.CmpMHS) {
1785     // Fold "(X == true)" to X and "(X == false)" to !X to
1786     // handle common cases produced by branch lowering.
1787     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1788         CB.CC == ISD::SETEQ)
1789       Cond = CondLHS;
1790     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1791              CB.CC == ISD::SETEQ) {
1792       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1793       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1794     } else
1795       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1796   } else {
1797     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1798 
1799     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1800     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1801 
1802     SDValue CmpOp = getValue(CB.CmpMHS);
1803     EVT VT = CmpOp.getValueType();
1804 
1805     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1806       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1807                           ISD::SETLE);
1808     } else {
1809       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1810                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1811       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1812                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1813     }
1814   }
1815 
1816   // Update successor info
1817   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1818   // TrueBB and FalseBB are always different unless the incoming IR is
1819   // degenerate. This only happens when running llc on weird IR.
1820   if (CB.TrueBB != CB.FalseBB)
1821     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1822   SwitchBB->normalizeSuccProbs();
1823 
1824   // If the lhs block is the next block, invert the condition so that we can
1825   // fall through to the lhs instead of the rhs block.
1826   if (CB.TrueBB == NextBlock(SwitchBB)) {
1827     std::swap(CB.TrueBB, CB.FalseBB);
1828     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1829     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1830   }
1831 
1832   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1833                                MVT::Other, getControlRoot(), Cond,
1834                                DAG.getBasicBlock(CB.TrueBB));
1835 
1836   // Insert the false branch. Do this even if it's a fall through branch,
1837   // this makes it easier to do DAG optimizations which require inverting
1838   // the branch condition.
1839   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1840                        DAG.getBasicBlock(CB.FalseBB));
1841 
1842   DAG.setRoot(BrCond);
1843 }
1844 
1845 /// visitJumpTable - Emit JumpTable node in the current MBB
1846 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1847   // Emit the code for the jump table
1848   assert(JT.Reg != -1U && "Should lower JT Header first!");
1849   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1850   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1851                                      JT.Reg, PTy);
1852   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1853   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1854                                     MVT::Other, Index.getValue(1),
1855                                     Table, Index);
1856   DAG.setRoot(BrJumpTable);
1857 }
1858 
1859 /// visitJumpTableHeader - This function emits necessary code to produce index
1860 /// in the JumpTable from switch case.
1861 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1862                                                JumpTableHeader &JTH,
1863                                                MachineBasicBlock *SwitchBB) {
1864   SDLoc dl = getCurSDLoc();
1865 
1866   // Subtract the lowest switch case value from the value being switched on and
1867   // conditional branch to default mbb if the result is greater than the
1868   // difference between smallest and largest cases.
1869   SDValue SwitchOp = getValue(JTH.SValue);
1870   EVT VT = SwitchOp.getValueType();
1871   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1872                             DAG.getConstant(JTH.First, dl, VT));
1873 
1874   // The SDNode we just created, which holds the value being switched on minus
1875   // the smallest case value, needs to be copied to a virtual register so it
1876   // can be used as an index into the jump table in a subsequent basic block.
1877   // This value may be smaller or larger than the target's pointer type, and
1878   // therefore require extension or truncating.
1879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1880   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1881 
1882   unsigned JumpTableReg =
1883       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1884   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1885                                     JumpTableReg, SwitchOp);
1886   JT.Reg = JumpTableReg;
1887 
1888   // Emit the range check for the jump table, and branch to the default block
1889   // for the switch statement if the value being switched on exceeds the largest
1890   // case in the switch.
1891   SDValue CMP = DAG.getSetCC(
1892       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1893                                  Sub.getValueType()),
1894       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1895 
1896   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1897                                MVT::Other, CopyTo, CMP,
1898                                DAG.getBasicBlock(JT.Default));
1899 
1900   // Avoid emitting unnecessary branches to the next block.
1901   if (JT.MBB != NextBlock(SwitchBB))
1902     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1903                          DAG.getBasicBlock(JT.MBB));
1904 
1905   DAG.setRoot(BrCond);
1906 }
1907 
1908 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1909 /// tail spliced into a stack protector check success bb.
1910 ///
1911 /// For a high level explanation of how this fits into the stack protector
1912 /// generation see the comment on the declaration of class
1913 /// StackProtectorDescriptor.
1914 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1915                                                   MachineBasicBlock *ParentBB) {
1916 
1917   // First create the loads to the guard/stack slot for the comparison.
1918   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1919   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1920 
1921   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1922   int FI = MFI->getStackProtectorIndex();
1923 
1924   const Value *IRGuard = SPD.getGuard();
1925   SDValue GuardPtr = getValue(IRGuard);
1926   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1927 
1928   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1929 
1930   SDValue Guard;
1931   SDLoc dl = getCurSDLoc();
1932 
1933   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1934   // guard value from the virtual register holding the value. Otherwise, emit a
1935   // volatile load to retrieve the stack guard value.
1936   unsigned GuardReg = SPD.getGuardReg();
1937 
1938   if (GuardReg && TLI.useLoadStackGuardNode())
1939     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1940                                PtrTy);
1941   else
1942     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1943                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1944                         true, false, false, Align);
1945 
1946   SDValue StackSlot = DAG.getLoad(
1947       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1948       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1949       false, false, Align);
1950 
1951   // Perform the comparison via a subtract/getsetcc.
1952   EVT VT = Guard.getValueType();
1953   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1954 
1955   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1956                                                         *DAG.getContext(),
1957                                                         Sub.getValueType()),
1958                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1959 
1960   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1961   // branch to failure MBB.
1962   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1963                                MVT::Other, StackSlot.getOperand(0),
1964                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1965   // Otherwise branch to success MBB.
1966   SDValue Br = DAG.getNode(ISD::BR, dl,
1967                            MVT::Other, BrCond,
1968                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1969 
1970   DAG.setRoot(Br);
1971 }
1972 
1973 /// Codegen the failure basic block for a stack protector check.
1974 ///
1975 /// A failure stack protector machine basic block consists simply of a call to
1976 /// __stack_chk_fail().
1977 ///
1978 /// For a high level explanation of how this fits into the stack protector
1979 /// generation see the comment on the declaration of class
1980 /// StackProtectorDescriptor.
1981 void
1982 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1984   SDValue Chain =
1985       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1986                       None, false, getCurSDLoc(), false, false).second;
1987   DAG.setRoot(Chain);
1988 }
1989 
1990 /// visitBitTestHeader - This function emits necessary code to produce value
1991 /// suitable for "bit tests"
1992 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1993                                              MachineBasicBlock *SwitchBB) {
1994   SDLoc dl = getCurSDLoc();
1995 
1996   // Subtract the minimum value
1997   SDValue SwitchOp = getValue(B.SValue);
1998   EVT VT = SwitchOp.getValueType();
1999   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2000                             DAG.getConstant(B.First, dl, VT));
2001 
2002   // Check range
2003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2004   SDValue RangeCmp = DAG.getSetCC(
2005       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2006                                  Sub.getValueType()),
2007       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2008 
2009   // Determine the type of the test operands.
2010   bool UsePtrType = false;
2011   if (!TLI.isTypeLegal(VT))
2012     UsePtrType = true;
2013   else {
2014     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2015       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2016         // Switch table case range are encoded into series of masks.
2017         // Just use pointer type, it's guaranteed to fit.
2018         UsePtrType = true;
2019         break;
2020       }
2021   }
2022   if (UsePtrType) {
2023     VT = TLI.getPointerTy(DAG.getDataLayout());
2024     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2025   }
2026 
2027   B.RegVT = VT.getSimpleVT();
2028   B.Reg = FuncInfo.CreateReg(B.RegVT);
2029   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2030 
2031   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2032 
2033   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2034   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2035   SwitchBB->normalizeSuccProbs();
2036 
2037   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2038                                 MVT::Other, CopyTo, RangeCmp,
2039                                 DAG.getBasicBlock(B.Default));
2040 
2041   // Avoid emitting unnecessary branches to the next block.
2042   if (MBB != NextBlock(SwitchBB))
2043     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2044                           DAG.getBasicBlock(MBB));
2045 
2046   DAG.setRoot(BrRange);
2047 }
2048 
2049 /// visitBitTestCase - this function produces one "bit test"
2050 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2051                                            MachineBasicBlock* NextMBB,
2052                                            BranchProbability BranchProbToNext,
2053                                            unsigned Reg,
2054                                            BitTestCase &B,
2055                                            MachineBasicBlock *SwitchBB) {
2056   SDLoc dl = getCurSDLoc();
2057   MVT VT = BB.RegVT;
2058   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2059   SDValue Cmp;
2060   unsigned PopCount = countPopulation(B.Mask);
2061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2062   if (PopCount == 1) {
2063     // Testing for a single bit; just compare the shift count with what it
2064     // would need to be to shift a 1 bit in that position.
2065     Cmp = DAG.getSetCC(
2066         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2067         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2068         ISD::SETEQ);
2069   } else if (PopCount == BB.Range) {
2070     // There is only one zero bit in the range, test for it directly.
2071     Cmp = DAG.getSetCC(
2072         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2073         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2074         ISD::SETNE);
2075   } else {
2076     // Make desired shift
2077     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2078                                     DAG.getConstant(1, dl, VT), ShiftOp);
2079 
2080     // Emit bit tests and jumps
2081     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2082                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2083     Cmp = DAG.getSetCC(
2084         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2085         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2086   }
2087 
2088   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2089   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2090   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2091   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2092   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2093   // one as they are relative probabilities (and thus work more like weights),
2094   // and hence we need to normalize them to let the sum of them become one.
2095   SwitchBB->normalizeSuccProbs();
2096 
2097   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2098                               MVT::Other, getControlRoot(),
2099                               Cmp, DAG.getBasicBlock(B.TargetBB));
2100 
2101   // Avoid emitting unnecessary branches to the next block.
2102   if (NextMBB != NextBlock(SwitchBB))
2103     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2104                         DAG.getBasicBlock(NextMBB));
2105 
2106   DAG.setRoot(BrAnd);
2107 }
2108 
2109 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2110   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2111 
2112   // Retrieve successors. Look through artificial IR level blocks like
2113   // catchswitch for successors.
2114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2115   const BasicBlock *EHPadBB = I.getSuccessor(1);
2116 
2117   const Value *Callee(I.getCalledValue());
2118   const Function *Fn = dyn_cast<Function>(Callee);
2119   if (isa<InlineAsm>(Callee))
2120     visitInlineAsm(&I);
2121   else if (Fn && Fn->isIntrinsic()) {
2122     switch (Fn->getIntrinsicID()) {
2123     default:
2124       llvm_unreachable("Cannot invoke this intrinsic");
2125     case Intrinsic::donothing:
2126       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2127       break;
2128     case Intrinsic::experimental_patchpoint_void:
2129     case Intrinsic::experimental_patchpoint_i64:
2130       visitPatchpoint(&I, EHPadBB);
2131       break;
2132     case Intrinsic::experimental_gc_statepoint:
2133       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2134       break;
2135     }
2136   } else
2137     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2138 
2139   // If the value of the invoke is used outside of its defining block, make it
2140   // available as a virtual register.
2141   // We already took care of the exported value for the statepoint instruction
2142   // during call to the LowerStatepoint.
2143   if (!isStatepoint(I)) {
2144     CopyToExportRegsIfNeeded(&I);
2145   }
2146 
2147   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2148   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2149   BranchProbability EHPadBBProb =
2150       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2151           : BranchProbability::getZero();
2152   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2153 
2154   // Update successor info.
2155   addSuccessorWithProb(InvokeMBB, Return);
2156   for (auto &UnwindDest : UnwindDests) {
2157     UnwindDest.first->setIsEHPad();
2158     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2159   }
2160   InvokeMBB->normalizeSuccProbs();
2161 
2162   // Drop into normal successor.
2163   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2164                           MVT::Other, getControlRoot(),
2165                           DAG.getBasicBlock(Return)));
2166 }
2167 
2168 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2169   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2170 }
2171 
2172 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2173   assert(FuncInfo.MBB->isEHPad() &&
2174          "Call to landingpad not in landing pad!");
2175 
2176   MachineBasicBlock *MBB = FuncInfo.MBB;
2177   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2178   AddLandingPadInfo(LP, MMI, MBB);
2179 
2180   // If there aren't registers to copy the values into (e.g., during SjLj
2181   // exceptions), then don't bother to create these DAG nodes.
2182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2183   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2184   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2185       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2186     return;
2187 
2188   // If landingpad's return type is token type, we don't create DAG nodes
2189   // for its exception pointer and selector value. The extraction of exception
2190   // pointer or selector value from token type landingpads is not currently
2191   // supported.
2192   if (LP.getType()->isTokenTy())
2193     return;
2194 
2195   SmallVector<EVT, 2> ValueVTs;
2196   SDLoc dl = getCurSDLoc();
2197   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2198   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2199 
2200   // Get the two live-in registers as SDValues. The physregs have already been
2201   // copied into virtual registers.
2202   SDValue Ops[2];
2203   if (FuncInfo.ExceptionPointerVirtReg) {
2204     Ops[0] = DAG.getZExtOrTrunc(
2205         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2206                            FuncInfo.ExceptionPointerVirtReg,
2207                            TLI.getPointerTy(DAG.getDataLayout())),
2208         dl, ValueVTs[0]);
2209   } else {
2210     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2211   }
2212   Ops[1] = DAG.getZExtOrTrunc(
2213       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2214                          FuncInfo.ExceptionSelectorVirtReg,
2215                          TLI.getPointerTy(DAG.getDataLayout())),
2216       dl, ValueVTs[1]);
2217 
2218   // Merge into one.
2219   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2220                             DAG.getVTList(ValueVTs), Ops);
2221   setValue(&LP, Res);
2222 }
2223 
2224 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2225 #ifndef NDEBUG
2226   for (const CaseCluster &CC : Clusters)
2227     assert(CC.Low == CC.High && "Input clusters must be single-case");
2228 #endif
2229 
2230   std::sort(Clusters.begin(), Clusters.end(),
2231             [](const CaseCluster &a, const CaseCluster &b) {
2232     return a.Low->getValue().slt(b.Low->getValue());
2233   });
2234 
2235   // Merge adjacent clusters with the same destination.
2236   const unsigned N = Clusters.size();
2237   unsigned DstIndex = 0;
2238   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2239     CaseCluster &CC = Clusters[SrcIndex];
2240     const ConstantInt *CaseVal = CC.Low;
2241     MachineBasicBlock *Succ = CC.MBB;
2242 
2243     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2244         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2245       // If this case has the same successor and is a neighbour, merge it into
2246       // the previous cluster.
2247       Clusters[DstIndex - 1].High = CaseVal;
2248       Clusters[DstIndex - 1].Prob += CC.Prob;
2249     } else {
2250       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2251                    sizeof(Clusters[SrcIndex]));
2252     }
2253   }
2254   Clusters.resize(DstIndex);
2255 }
2256 
2257 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2258                                            MachineBasicBlock *Last) {
2259   // Update JTCases.
2260   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2261     if (JTCases[i].first.HeaderBB == First)
2262       JTCases[i].first.HeaderBB = Last;
2263 
2264   // Update BitTestCases.
2265   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2266     if (BitTestCases[i].Parent == First)
2267       BitTestCases[i].Parent = Last;
2268 }
2269 
2270 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2271   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2272 
2273   // Update machine-CFG edges with unique successors.
2274   SmallSet<BasicBlock*, 32> Done;
2275   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2276     BasicBlock *BB = I.getSuccessor(i);
2277     bool Inserted = Done.insert(BB).second;
2278     if (!Inserted)
2279         continue;
2280 
2281     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2282     addSuccessorWithProb(IndirectBrMBB, Succ);
2283   }
2284   IndirectBrMBB->normalizeSuccProbs();
2285 
2286   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2287                           MVT::Other, getControlRoot(),
2288                           getValue(I.getAddress())));
2289 }
2290 
2291 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2292   if (DAG.getTarget().Options.TrapUnreachable)
2293     DAG.setRoot(
2294         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2295 }
2296 
2297 void SelectionDAGBuilder::visitFSub(const User &I) {
2298   // -0.0 - X --> fneg
2299   Type *Ty = I.getType();
2300   if (isa<Constant>(I.getOperand(0)) &&
2301       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2302     SDValue Op2 = getValue(I.getOperand(1));
2303     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2304                              Op2.getValueType(), Op2));
2305     return;
2306   }
2307 
2308   visitBinary(I, ISD::FSUB);
2309 }
2310 
2311 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2312   SDValue Op1 = getValue(I.getOperand(0));
2313   SDValue Op2 = getValue(I.getOperand(1));
2314 
2315   bool nuw = false;
2316   bool nsw = false;
2317   bool exact = false;
2318   FastMathFlags FMF;
2319 
2320   if (const OverflowingBinaryOperator *OFBinOp =
2321           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2322     nuw = OFBinOp->hasNoUnsignedWrap();
2323     nsw = OFBinOp->hasNoSignedWrap();
2324   }
2325   if (const PossiblyExactOperator *ExactOp =
2326           dyn_cast<const PossiblyExactOperator>(&I))
2327     exact = ExactOp->isExact();
2328   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2329     FMF = FPOp->getFastMathFlags();
2330 
2331   SDNodeFlags Flags;
2332   Flags.setExact(exact);
2333   Flags.setNoSignedWrap(nsw);
2334   Flags.setNoUnsignedWrap(nuw);
2335   if (EnableFMFInDAG) {
2336     Flags.setAllowReciprocal(FMF.allowReciprocal());
2337     Flags.setNoInfs(FMF.noInfs());
2338     Flags.setNoNaNs(FMF.noNaNs());
2339     Flags.setNoSignedZeros(FMF.noSignedZeros());
2340     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2341   }
2342   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2343                                      Op1, Op2, &Flags);
2344   setValue(&I, BinNodeValue);
2345 }
2346 
2347 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2348   SDValue Op1 = getValue(I.getOperand(0));
2349   SDValue Op2 = getValue(I.getOperand(1));
2350 
2351   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2352       Op2.getValueType(), DAG.getDataLayout());
2353 
2354   // Coerce the shift amount to the right type if we can.
2355   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2356     unsigned ShiftSize = ShiftTy.getSizeInBits();
2357     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2358     SDLoc DL = getCurSDLoc();
2359 
2360     // If the operand is smaller than the shift count type, promote it.
2361     if (ShiftSize > Op2Size)
2362       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2363 
2364     // If the operand is larger than the shift count type but the shift
2365     // count type has enough bits to represent any shift value, truncate
2366     // it now. This is a common case and it exposes the truncate to
2367     // optimization early.
2368     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2369       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2370     // Otherwise we'll need to temporarily settle for some other convenient
2371     // type.  Type legalization will make adjustments once the shiftee is split.
2372     else
2373       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2374   }
2375 
2376   bool nuw = false;
2377   bool nsw = false;
2378   bool exact = false;
2379 
2380   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2381 
2382     if (const OverflowingBinaryOperator *OFBinOp =
2383             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2384       nuw = OFBinOp->hasNoUnsignedWrap();
2385       nsw = OFBinOp->hasNoSignedWrap();
2386     }
2387     if (const PossiblyExactOperator *ExactOp =
2388             dyn_cast<const PossiblyExactOperator>(&I))
2389       exact = ExactOp->isExact();
2390   }
2391   SDNodeFlags Flags;
2392   Flags.setExact(exact);
2393   Flags.setNoSignedWrap(nsw);
2394   Flags.setNoUnsignedWrap(nuw);
2395   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2396                             &Flags);
2397   setValue(&I, Res);
2398 }
2399 
2400 void SelectionDAGBuilder::visitSDiv(const User &I) {
2401   SDValue Op1 = getValue(I.getOperand(0));
2402   SDValue Op2 = getValue(I.getOperand(1));
2403 
2404   SDNodeFlags Flags;
2405   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2406                  cast<PossiblyExactOperator>(&I)->isExact());
2407   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2408                            Op2, &Flags));
2409 }
2410 
2411 void SelectionDAGBuilder::visitICmp(const User &I) {
2412   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2413   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2414     predicate = IC->getPredicate();
2415   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2416     predicate = ICmpInst::Predicate(IC->getPredicate());
2417   SDValue Op1 = getValue(I.getOperand(0));
2418   SDValue Op2 = getValue(I.getOperand(1));
2419   ISD::CondCode Opcode = getICmpCondCode(predicate);
2420 
2421   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2422                                                         I.getType());
2423   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2424 }
2425 
2426 void SelectionDAGBuilder::visitFCmp(const User &I) {
2427   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2428   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2429     predicate = FC->getPredicate();
2430   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2431     predicate = FCmpInst::Predicate(FC->getPredicate());
2432   SDValue Op1 = getValue(I.getOperand(0));
2433   SDValue Op2 = getValue(I.getOperand(1));
2434   ISD::CondCode Condition = getFCmpCondCode(predicate);
2435 
2436   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2437   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2438   // further optimization, but currently FMF is only applicable to binary nodes.
2439   if (TM.Options.NoNaNsFPMath)
2440     Condition = getFCmpCodeWithoutNaN(Condition);
2441   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2442                                                         I.getType());
2443   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2444 }
2445 
2446 void SelectionDAGBuilder::visitSelect(const User &I) {
2447   SmallVector<EVT, 4> ValueVTs;
2448   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2449                   ValueVTs);
2450   unsigned NumValues = ValueVTs.size();
2451   if (NumValues == 0) return;
2452 
2453   SmallVector<SDValue, 4> Values(NumValues);
2454   SDValue Cond     = getValue(I.getOperand(0));
2455   SDValue LHSVal   = getValue(I.getOperand(1));
2456   SDValue RHSVal   = getValue(I.getOperand(2));
2457   auto BaseOps = {Cond};
2458   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2459     ISD::VSELECT : ISD::SELECT;
2460 
2461   // Min/max matching is only viable if all output VTs are the same.
2462   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2463     EVT VT = ValueVTs[0];
2464     LLVMContext &Ctx = *DAG.getContext();
2465     auto &TLI = DAG.getTargetLoweringInfo();
2466 
2467     // We care about the legality of the operation after it has been type
2468     // legalized.
2469     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2470            VT != TLI.getTypeToTransformTo(Ctx, VT))
2471       VT = TLI.getTypeToTransformTo(Ctx, VT);
2472 
2473     // If the vselect is legal, assume we want to leave this as a vector setcc +
2474     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2475     // min/max is legal on the scalar type.
2476     bool UseScalarMinMax = VT.isVector() &&
2477       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2478 
2479     Value *LHS, *RHS;
2480     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2481     ISD::NodeType Opc = ISD::DELETED_NODE;
2482     switch (SPR.Flavor) {
2483     case SPF_UMAX:    Opc = ISD::UMAX; break;
2484     case SPF_UMIN:    Opc = ISD::UMIN; break;
2485     case SPF_SMAX:    Opc = ISD::SMAX; break;
2486     case SPF_SMIN:    Opc = ISD::SMIN; break;
2487     case SPF_FMINNUM:
2488       switch (SPR.NaNBehavior) {
2489       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2490       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2491       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2492       case SPNB_RETURNS_ANY: {
2493         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2494           Opc = ISD::FMINNUM;
2495         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2496           Opc = ISD::FMINNAN;
2497         else if (UseScalarMinMax)
2498           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2499             ISD::FMINNUM : ISD::FMINNAN;
2500         break;
2501       }
2502       }
2503       break;
2504     case SPF_FMAXNUM:
2505       switch (SPR.NaNBehavior) {
2506       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2507       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2508       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2509       case SPNB_RETURNS_ANY:
2510 
2511         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2512           Opc = ISD::FMAXNUM;
2513         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2514           Opc = ISD::FMAXNAN;
2515         else if (UseScalarMinMax)
2516           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2517             ISD::FMAXNUM : ISD::FMAXNAN;
2518         break;
2519       }
2520       break;
2521     default: break;
2522     }
2523 
2524     if (Opc != ISD::DELETED_NODE &&
2525         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2526          (UseScalarMinMax &&
2527           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2528         // If the underlying comparison instruction is used by any other
2529         // instruction, the consumed instructions won't be destroyed, so it is
2530         // not profitable to convert to a min/max.
2531         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2532       OpCode = Opc;
2533       LHSVal = getValue(LHS);
2534       RHSVal = getValue(RHS);
2535       BaseOps = {};
2536     }
2537   }
2538 
2539   for (unsigned i = 0; i != NumValues; ++i) {
2540     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2541     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2542     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2543     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2544                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2545                             Ops);
2546   }
2547 
2548   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2549                            DAG.getVTList(ValueVTs), Values));
2550 }
2551 
2552 void SelectionDAGBuilder::visitTrunc(const User &I) {
2553   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2554   SDValue N = getValue(I.getOperand(0));
2555   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2556                                                         I.getType());
2557   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2558 }
2559 
2560 void SelectionDAGBuilder::visitZExt(const User &I) {
2561   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2562   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2563   SDValue N = getValue(I.getOperand(0));
2564   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2565                                                         I.getType());
2566   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2567 }
2568 
2569 void SelectionDAGBuilder::visitSExt(const User &I) {
2570   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2571   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2572   SDValue N = getValue(I.getOperand(0));
2573   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2574                                                         I.getType());
2575   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2576 }
2577 
2578 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2579   // FPTrunc is never a no-op cast, no need to check
2580   SDValue N = getValue(I.getOperand(0));
2581   SDLoc dl = getCurSDLoc();
2582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2583   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2584   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2585                            DAG.getTargetConstant(
2586                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2587 }
2588 
2589 void SelectionDAGBuilder::visitFPExt(const User &I) {
2590   // FPExt is never a no-op cast, no need to check
2591   SDValue N = getValue(I.getOperand(0));
2592   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2593                                                         I.getType());
2594   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2595 }
2596 
2597 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2598   // FPToUI is never a no-op cast, no need to check
2599   SDValue N = getValue(I.getOperand(0));
2600   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2601                                                         I.getType());
2602   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2603 }
2604 
2605 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2606   // FPToSI is never a no-op cast, no need to check
2607   SDValue N = getValue(I.getOperand(0));
2608   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2609                                                         I.getType());
2610   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2611 }
2612 
2613 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2614   // UIToFP is never a no-op cast, no need to check
2615   SDValue N = getValue(I.getOperand(0));
2616   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2617                                                         I.getType());
2618   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2619 }
2620 
2621 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2622   // SIToFP is never a no-op cast, no need to check
2623   SDValue N = getValue(I.getOperand(0));
2624   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2625                                                         I.getType());
2626   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2627 }
2628 
2629 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2630   // What to do depends on the size of the integer and the size of the pointer.
2631   // We can either truncate, zero extend, or no-op, accordingly.
2632   SDValue N = getValue(I.getOperand(0));
2633   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2634                                                         I.getType());
2635   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2636 }
2637 
2638 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2639   // What to do depends on the size of the integer and the size of the pointer.
2640   // We can either truncate, zero extend, or no-op, accordingly.
2641   SDValue N = getValue(I.getOperand(0));
2642   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2643                                                         I.getType());
2644   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2645 }
2646 
2647 void SelectionDAGBuilder::visitBitCast(const User &I) {
2648   SDValue N = getValue(I.getOperand(0));
2649   SDLoc dl = getCurSDLoc();
2650   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2651                                                         I.getType());
2652 
2653   // BitCast assures us that source and destination are the same size so this is
2654   // either a BITCAST or a no-op.
2655   if (DestVT != N.getValueType())
2656     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2657                              DestVT, N)); // convert types.
2658   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2659   // might fold any kind of constant expression to an integer constant and that
2660   // is not what we are looking for. Only regcognize a bitcast of a genuine
2661   // constant integer as an opaque constant.
2662   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2663     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2664                                  /*isOpaque*/true));
2665   else
2666     setValue(&I, N);            // noop cast.
2667 }
2668 
2669 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2671   const Value *SV = I.getOperand(0);
2672   SDValue N = getValue(SV);
2673   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2674 
2675   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2676   unsigned DestAS = I.getType()->getPointerAddressSpace();
2677 
2678   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2679     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2680 
2681   setValue(&I, N);
2682 }
2683 
2684 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2685   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2686   SDValue InVec = getValue(I.getOperand(0));
2687   SDValue InVal = getValue(I.getOperand(1));
2688   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2689                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2690   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2691                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2692                            InVec, InVal, InIdx));
2693 }
2694 
2695 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2697   SDValue InVec = getValue(I.getOperand(0));
2698   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2699                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2700   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2701                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2702                            InVec, InIdx));
2703 }
2704 
2705 // Utility for visitShuffleVector - Return true if every element in Mask,
2706 // beginning from position Pos and ending in Pos+Size, falls within the
2707 // specified sequential range [L, L+Pos). or is undef.
2708 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2709                                 unsigned Pos, unsigned Size, int Low) {
2710   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2711     if (Mask[i] >= 0 && Mask[i] != Low)
2712       return false;
2713   return true;
2714 }
2715 
2716 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2717   SDValue Src1 = getValue(I.getOperand(0));
2718   SDValue Src2 = getValue(I.getOperand(1));
2719 
2720   SmallVector<int, 8> Mask;
2721   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2722   unsigned MaskNumElts = Mask.size();
2723 
2724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2725   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2726   EVT SrcVT = Src1.getValueType();
2727   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2728 
2729   if (SrcNumElts == MaskNumElts) {
2730     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2731                                       &Mask[0]));
2732     return;
2733   }
2734 
2735   // Normalize the shuffle vector since mask and vector length don't match.
2736   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2737     // Mask is longer than the source vectors and is a multiple of the source
2738     // vectors.  We can use concatenate vector to make the mask and vectors
2739     // lengths match.
2740     if (SrcNumElts*2 == MaskNumElts) {
2741       // First check for Src1 in low and Src2 in high
2742       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2743           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2744         // The shuffle is concatenating two vectors together.
2745         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2746                                  VT, Src1, Src2));
2747         return;
2748       }
2749       // Then check for Src2 in low and Src1 in high
2750       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2751           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2752         // The shuffle is concatenating two vectors together.
2753         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2754                                  VT, Src2, Src1));
2755         return;
2756       }
2757     }
2758 
2759     // Pad both vectors with undefs to make them the same length as the mask.
2760     unsigned NumConcat = MaskNumElts / SrcNumElts;
2761     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2762     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2763     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2764 
2765     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2766     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2767     MOps1[0] = Src1;
2768     MOps2[0] = Src2;
2769 
2770     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2771                                                   getCurSDLoc(), VT, MOps1);
2772     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2773                                                   getCurSDLoc(), VT, MOps2);
2774 
2775     // Readjust mask for new input vector length.
2776     SmallVector<int, 8> MappedOps;
2777     for (unsigned i = 0; i != MaskNumElts; ++i) {
2778       int Idx = Mask[i];
2779       if (Idx >= (int)SrcNumElts)
2780         Idx -= SrcNumElts - MaskNumElts;
2781       MappedOps.push_back(Idx);
2782     }
2783 
2784     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2785                                       &MappedOps[0]));
2786     return;
2787   }
2788 
2789   if (SrcNumElts > MaskNumElts) {
2790     // Analyze the access pattern of the vector to see if we can extract
2791     // two subvectors and do the shuffle. The analysis is done by calculating
2792     // the range of elements the mask access on both vectors.
2793     int MinRange[2] = { static_cast<int>(SrcNumElts),
2794                         static_cast<int>(SrcNumElts)};
2795     int MaxRange[2] = {-1, -1};
2796 
2797     for (unsigned i = 0; i != MaskNumElts; ++i) {
2798       int Idx = Mask[i];
2799       unsigned Input = 0;
2800       if (Idx < 0)
2801         continue;
2802 
2803       if (Idx >= (int)SrcNumElts) {
2804         Input = 1;
2805         Idx -= SrcNumElts;
2806       }
2807       if (Idx > MaxRange[Input])
2808         MaxRange[Input] = Idx;
2809       if (Idx < MinRange[Input])
2810         MinRange[Input] = Idx;
2811     }
2812 
2813     // Check if the access is smaller than the vector size and can we find
2814     // a reasonable extract index.
2815     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2816                                    // Extract.
2817     int StartIdx[2];  // StartIdx to extract from
2818     for (unsigned Input = 0; Input < 2; ++Input) {
2819       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2820         RangeUse[Input] = 0; // Unused
2821         StartIdx[Input] = 0;
2822         continue;
2823       }
2824 
2825       // Find a good start index that is a multiple of the mask length. Then
2826       // see if the rest of the elements are in range.
2827       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2828       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2829           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2830         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2831     }
2832 
2833     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2834       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2835       return;
2836     }
2837     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2838       // Extract appropriate subvector and generate a vector shuffle
2839       for (unsigned Input = 0; Input < 2; ++Input) {
2840         SDValue &Src = Input == 0 ? Src1 : Src2;
2841         if (RangeUse[Input] == 0)
2842           Src = DAG.getUNDEF(VT);
2843         else {
2844           SDLoc dl = getCurSDLoc();
2845           Src = DAG.getNode(
2846               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2847               DAG.getConstant(StartIdx[Input], dl,
2848                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2849         }
2850       }
2851 
2852       // Calculate new mask.
2853       SmallVector<int, 8> MappedOps;
2854       for (unsigned i = 0; i != MaskNumElts; ++i) {
2855         int Idx = Mask[i];
2856         if (Idx >= 0) {
2857           if (Idx < (int)SrcNumElts)
2858             Idx -= StartIdx[0];
2859           else
2860             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2861         }
2862         MappedOps.push_back(Idx);
2863       }
2864 
2865       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2866                                         &MappedOps[0]));
2867       return;
2868     }
2869   }
2870 
2871   // We can't use either concat vectors or extract subvectors so fall back to
2872   // replacing the shuffle with extract and build vector.
2873   // to insert and build vector.
2874   EVT EltVT = VT.getVectorElementType();
2875   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2876   SDLoc dl = getCurSDLoc();
2877   SmallVector<SDValue,8> Ops;
2878   for (unsigned i = 0; i != MaskNumElts; ++i) {
2879     int Idx = Mask[i];
2880     SDValue Res;
2881 
2882     if (Idx < 0) {
2883       Res = DAG.getUNDEF(EltVT);
2884     } else {
2885       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2886       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2887 
2888       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2889                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2890     }
2891 
2892     Ops.push_back(Res);
2893   }
2894 
2895   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2896 }
2897 
2898 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2899   const Value *Op0 = I.getOperand(0);
2900   const Value *Op1 = I.getOperand(1);
2901   Type *AggTy = I.getType();
2902   Type *ValTy = Op1->getType();
2903   bool IntoUndef = isa<UndefValue>(Op0);
2904   bool FromUndef = isa<UndefValue>(Op1);
2905 
2906   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2907 
2908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2909   SmallVector<EVT, 4> AggValueVTs;
2910   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2911   SmallVector<EVT, 4> ValValueVTs;
2912   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2913 
2914   unsigned NumAggValues = AggValueVTs.size();
2915   unsigned NumValValues = ValValueVTs.size();
2916   SmallVector<SDValue, 4> Values(NumAggValues);
2917 
2918   // Ignore an insertvalue that produces an empty object
2919   if (!NumAggValues) {
2920     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2921     return;
2922   }
2923 
2924   SDValue Agg = getValue(Op0);
2925   unsigned i = 0;
2926   // Copy the beginning value(s) from the original aggregate.
2927   for (; i != LinearIndex; ++i)
2928     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2929                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2930   // Copy values from the inserted value(s).
2931   if (NumValValues) {
2932     SDValue Val = getValue(Op1);
2933     for (; i != LinearIndex + NumValValues; ++i)
2934       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2935                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2936   }
2937   // Copy remaining value(s) from the original aggregate.
2938   for (; i != NumAggValues; ++i)
2939     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2940                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2941 
2942   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2943                            DAG.getVTList(AggValueVTs), Values));
2944 }
2945 
2946 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2947   const Value *Op0 = I.getOperand(0);
2948   Type *AggTy = Op0->getType();
2949   Type *ValTy = I.getType();
2950   bool OutOfUndef = isa<UndefValue>(Op0);
2951 
2952   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2953 
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   SmallVector<EVT, 4> ValValueVTs;
2956   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2957 
2958   unsigned NumValValues = ValValueVTs.size();
2959 
2960   // Ignore a extractvalue that produces an empty object
2961   if (!NumValValues) {
2962     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2963     return;
2964   }
2965 
2966   SmallVector<SDValue, 4> Values(NumValValues);
2967 
2968   SDValue Agg = getValue(Op0);
2969   // Copy out the selected value(s).
2970   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2971     Values[i - LinearIndex] =
2972       OutOfUndef ?
2973         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2974         SDValue(Agg.getNode(), Agg.getResNo() + i);
2975 
2976   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2977                            DAG.getVTList(ValValueVTs), Values));
2978 }
2979 
2980 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2981   Value *Op0 = I.getOperand(0);
2982   // Note that the pointer operand may be a vector of pointers. Take the scalar
2983   // element which holds a pointer.
2984   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
2985   SDValue N = getValue(Op0);
2986   SDLoc dl = getCurSDLoc();
2987 
2988   // Normalize Vector GEP - all scalar operands should be converted to the
2989   // splat vector.
2990   unsigned VectorWidth = I.getType()->isVectorTy() ?
2991     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2992 
2993   if (VectorWidth && !N.getValueType().isVector()) {
2994     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2995     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2996     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2997   }
2998   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
2999        GTI != E; ++GTI) {
3000     const Value *Idx = GTI.getOperand();
3001     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3002       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3003       if (Field) {
3004         // N = N + Offset
3005         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3006 
3007         // In an inbouds GEP with an offset that is nonnegative even when
3008         // interpreted as signed, assume there is no unsigned overflow.
3009         SDNodeFlags Flags;
3010         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3011           Flags.setNoUnsignedWrap(true);
3012 
3013         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3014                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3015       }
3016     } else {
3017       MVT PtrTy =
3018           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3019       unsigned PtrSize = PtrTy.getSizeInBits();
3020       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3021 
3022       // If this is a scalar constant or a splat vector of constants,
3023       // handle it quickly.
3024       const auto *CI = dyn_cast<ConstantInt>(Idx);
3025       if (!CI && isa<ConstantDataVector>(Idx) &&
3026           cast<ConstantDataVector>(Idx)->getSplatValue())
3027         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3028 
3029       if (CI) {
3030         if (CI->isZero())
3031           continue;
3032         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3033         SDValue OffsVal = VectorWidth ?
3034           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3035           DAG.getConstant(Offs, dl, PtrTy);
3036 
3037         // In an inbouds GEP with an offset that is nonnegative even when
3038         // interpreted as signed, assume there is no unsigned overflow.
3039         SDNodeFlags Flags;
3040         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3041           Flags.setNoUnsignedWrap(true);
3042 
3043         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3044         continue;
3045       }
3046 
3047       // N = N + Idx * ElementSize;
3048       SDValue IdxN = getValue(Idx);
3049 
3050       if (!IdxN.getValueType().isVector() && VectorWidth) {
3051         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3052         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3053         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3054       }
3055       // If the index is smaller or larger than intptr_t, truncate or extend
3056       // it.
3057       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3058 
3059       // If this is a multiply by a power of two, turn it into a shl
3060       // immediately.  This is a very common case.
3061       if (ElementSize != 1) {
3062         if (ElementSize.isPowerOf2()) {
3063           unsigned Amt = ElementSize.logBase2();
3064           IdxN = DAG.getNode(ISD::SHL, dl,
3065                              N.getValueType(), IdxN,
3066                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3067         } else {
3068           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3069           IdxN = DAG.getNode(ISD::MUL, dl,
3070                              N.getValueType(), IdxN, Scale);
3071         }
3072       }
3073 
3074       N = DAG.getNode(ISD::ADD, dl,
3075                       N.getValueType(), N, IdxN);
3076     }
3077   }
3078 
3079   setValue(&I, N);
3080 }
3081 
3082 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3083   // If this is a fixed sized alloca in the entry block of the function,
3084   // allocate it statically on the stack.
3085   if (FuncInfo.StaticAllocaMap.count(&I))
3086     return;   // getValue will auto-populate this.
3087 
3088   SDLoc dl = getCurSDLoc();
3089   Type *Ty = I.getAllocatedType();
3090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091   auto &DL = DAG.getDataLayout();
3092   uint64_t TySize = DL.getTypeAllocSize(Ty);
3093   unsigned Align =
3094       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3095 
3096   SDValue AllocSize = getValue(I.getArraySize());
3097 
3098   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3099   if (AllocSize.getValueType() != IntPtr)
3100     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3101 
3102   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3103                           AllocSize,
3104                           DAG.getConstant(TySize, dl, IntPtr));
3105 
3106   // Handle alignment.  If the requested alignment is less than or equal to
3107   // the stack alignment, ignore it.  If the size is greater than or equal to
3108   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3109   unsigned StackAlign =
3110       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3111   if (Align <= StackAlign)
3112     Align = 0;
3113 
3114   // Round the size of the allocation up to the stack alignment size
3115   // by add SA-1 to the size. This doesn't overflow because we're computing
3116   // an address inside an alloca.
3117   SDNodeFlags Flags;
3118   Flags.setNoUnsignedWrap(true);
3119   AllocSize = DAG.getNode(ISD::ADD, dl,
3120                           AllocSize.getValueType(), AllocSize,
3121                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3122 
3123   // Mask out the low bits for alignment purposes.
3124   AllocSize = DAG.getNode(ISD::AND, dl,
3125                           AllocSize.getValueType(), AllocSize,
3126                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3127                                                 dl));
3128 
3129   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3130   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3131   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3132   setValue(&I, DSA);
3133   DAG.setRoot(DSA.getValue(1));
3134 
3135   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3136 }
3137 
3138 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3139   if (I.isAtomic())
3140     return visitAtomicLoad(I);
3141 
3142   const Value *SV = I.getOperand(0);
3143   SDValue Ptr = getValue(SV);
3144 
3145   Type *Ty = I.getType();
3146 
3147   bool isVolatile = I.isVolatile();
3148   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3149 
3150   // The IR notion of invariant_load only guarantees that all *non-faulting*
3151   // invariant loads result in the same value.  The MI notion of invariant load
3152   // guarantees that the load can be legally moved to any location within its
3153   // containing function.  The MI notion of invariant_load is stronger than the
3154   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3155   // with a guarantee that the location being loaded from is dereferenceable
3156   // throughout the function's lifetime.
3157 
3158   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3159                      isDereferenceablePointer(SV, DAG.getDataLayout());
3160   unsigned Alignment = I.getAlignment();
3161 
3162   AAMDNodes AAInfo;
3163   I.getAAMetadata(AAInfo);
3164   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3165 
3166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3167   SmallVector<EVT, 4> ValueVTs;
3168   SmallVector<uint64_t, 4> Offsets;
3169   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3170   unsigned NumValues = ValueVTs.size();
3171   if (NumValues == 0)
3172     return;
3173 
3174   SDValue Root;
3175   bool ConstantMemory = false;
3176   if (isVolatile || NumValues > MaxParallelChains)
3177     // Serialize volatile loads with other side effects.
3178     Root = getRoot();
3179   else if (AA->pointsToConstantMemory(MemoryLocation(
3180                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3181     // Do not serialize (non-volatile) loads of constant memory with anything.
3182     Root = DAG.getEntryNode();
3183     ConstantMemory = true;
3184   } else {
3185     // Do not serialize non-volatile loads against each other.
3186     Root = DAG.getRoot();
3187   }
3188 
3189   SDLoc dl = getCurSDLoc();
3190 
3191   if (isVolatile)
3192     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3193 
3194   // An aggregate load cannot wrap around the address space, so offsets to its
3195   // parts don't wrap either.
3196   SDNodeFlags Flags;
3197   Flags.setNoUnsignedWrap(true);
3198 
3199   SmallVector<SDValue, 4> Values(NumValues);
3200   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3201   EVT PtrVT = Ptr.getValueType();
3202   unsigned ChainI = 0;
3203   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3204     // Serializing loads here may result in excessive register pressure, and
3205     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3206     // could recover a bit by hoisting nodes upward in the chain by recognizing
3207     // they are side-effect free or do not alias. The optimizer should really
3208     // avoid this case by converting large object/array copies to llvm.memcpy
3209     // (MaxParallelChains should always remain as failsafe).
3210     if (ChainI == MaxParallelChains) {
3211       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3212       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3213                                   makeArrayRef(Chains.data(), ChainI));
3214       Root = Chain;
3215       ChainI = 0;
3216     }
3217     SDValue A = DAG.getNode(ISD::ADD, dl,
3218                             PtrVT, Ptr,
3219                             DAG.getConstant(Offsets[i], dl, PtrVT),
3220                             &Flags);
3221     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3222                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3223                             isNonTemporal, isInvariant, Alignment, AAInfo,
3224                             Ranges);
3225 
3226     Values[i] = L;
3227     Chains[ChainI] = L.getValue(1);
3228   }
3229 
3230   if (!ConstantMemory) {
3231     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3232                                 makeArrayRef(Chains.data(), ChainI));
3233     if (isVolatile)
3234       DAG.setRoot(Chain);
3235     else
3236       PendingLoads.push_back(Chain);
3237   }
3238 
3239   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3240                            DAG.getVTList(ValueVTs), Values));
3241 }
3242 
3243 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3244   if (I.isAtomic())
3245     return visitAtomicStore(I);
3246 
3247   const Value *SrcV = I.getOperand(0);
3248   const Value *PtrV = I.getOperand(1);
3249 
3250   SmallVector<EVT, 4> ValueVTs;
3251   SmallVector<uint64_t, 4> Offsets;
3252   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3253                   SrcV->getType(), ValueVTs, &Offsets);
3254   unsigned NumValues = ValueVTs.size();
3255   if (NumValues == 0)
3256     return;
3257 
3258   // Get the lowered operands. Note that we do this after
3259   // checking if NumResults is zero, because with zero results
3260   // the operands won't have values in the map.
3261   SDValue Src = getValue(SrcV);
3262   SDValue Ptr = getValue(PtrV);
3263 
3264   SDValue Root = getRoot();
3265   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3266   EVT PtrVT = Ptr.getValueType();
3267   bool isVolatile = I.isVolatile();
3268   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3269   unsigned Alignment = I.getAlignment();
3270   SDLoc dl = getCurSDLoc();
3271 
3272   AAMDNodes AAInfo;
3273   I.getAAMetadata(AAInfo);
3274 
3275   // An aggregate load cannot wrap around the address space, so offsets to its
3276   // parts don't wrap either.
3277   SDNodeFlags Flags;
3278   Flags.setNoUnsignedWrap(true);
3279 
3280   unsigned ChainI = 0;
3281   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3282     // See visitLoad comments.
3283     if (ChainI == MaxParallelChains) {
3284       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3285                                   makeArrayRef(Chains.data(), ChainI));
3286       Root = Chain;
3287       ChainI = 0;
3288     }
3289     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3290                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3291     SDValue St = DAG.getStore(Root, dl,
3292                               SDValue(Src.getNode(), Src.getResNo() + i),
3293                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3294                               isVolatile, isNonTemporal, Alignment, AAInfo);
3295     Chains[ChainI] = St;
3296   }
3297 
3298   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3299                                   makeArrayRef(Chains.data(), ChainI));
3300   DAG.setRoot(StoreNode);
3301 }
3302 
3303 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3304   SDLoc sdl = getCurSDLoc();
3305 
3306   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3307   Value  *PtrOperand = I.getArgOperand(1);
3308   SDValue Ptr = getValue(PtrOperand);
3309   SDValue Src0 = getValue(I.getArgOperand(0));
3310   SDValue Mask = getValue(I.getArgOperand(3));
3311   EVT VT = Src0.getValueType();
3312   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3313   if (!Alignment)
3314     Alignment = DAG.getEVTAlignment(VT);
3315 
3316   AAMDNodes AAInfo;
3317   I.getAAMetadata(AAInfo);
3318 
3319   MachineMemOperand *MMO =
3320     DAG.getMachineFunction().
3321     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3322                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3323                           Alignment, AAInfo);
3324   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3325                                          MMO, false);
3326   DAG.setRoot(StoreNode);
3327   setValue(&I, StoreNode);
3328 }
3329 
3330 // Get a uniform base for the Gather/Scatter intrinsic.
3331 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3332 // We try to represent it as a base pointer + vector of indices.
3333 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3334 // The first operand of the GEP may be a single pointer or a vector of pointers
3335 // Example:
3336 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3337 //  or
3338 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3339 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3340 //
3341 // When the first GEP operand is a single pointer - it is the uniform base we
3342 // are looking for. If first operand of the GEP is a splat vector - we
3343 // extract the spalt value and use it as a uniform base.
3344 // In all other cases the function returns 'false'.
3345 //
3346 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3347                            SelectionDAGBuilder* SDB) {
3348 
3349   SelectionDAG& DAG = SDB->DAG;
3350   LLVMContext &Context = *DAG.getContext();
3351 
3352   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3353   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3354   if (!GEP || GEP->getNumOperands() > 2)
3355     return false;
3356 
3357   const Value *GEPPtr = GEP->getPointerOperand();
3358   if (!GEPPtr->getType()->isVectorTy())
3359     Ptr = GEPPtr;
3360   else if (!(Ptr = getSplatValue(GEPPtr)))
3361     return false;
3362 
3363   Value *IndexVal = GEP->getOperand(1);
3364 
3365   // The operands of the GEP may be defined in another basic block.
3366   // In this case we'll not find nodes for the operands.
3367   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3368     return false;
3369 
3370   Base = SDB->getValue(Ptr);
3371   Index = SDB->getValue(IndexVal);
3372 
3373   // Suppress sign extension.
3374   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3375     if (SDB->findValue(Sext->getOperand(0))) {
3376       IndexVal = Sext->getOperand(0);
3377       Index = SDB->getValue(IndexVal);
3378     }
3379   }
3380   if (!Index.getValueType().isVector()) {
3381     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3382     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3383     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3384     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3385   }
3386   return true;
3387 }
3388 
3389 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3390   SDLoc sdl = getCurSDLoc();
3391 
3392   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3393   const Value *Ptr = I.getArgOperand(1);
3394   SDValue Src0 = getValue(I.getArgOperand(0));
3395   SDValue Mask = getValue(I.getArgOperand(3));
3396   EVT VT = Src0.getValueType();
3397   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3398   if (!Alignment)
3399     Alignment = DAG.getEVTAlignment(VT);
3400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3401 
3402   AAMDNodes AAInfo;
3403   I.getAAMetadata(AAInfo);
3404 
3405   SDValue Base;
3406   SDValue Index;
3407   const Value *BasePtr = Ptr;
3408   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3409 
3410   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3411   MachineMemOperand *MMO = DAG.getMachineFunction().
3412     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3413                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3414                          Alignment, AAInfo);
3415   if (!UniformBase) {
3416     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3417     Index = getValue(Ptr);
3418   }
3419   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3420   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3421                                          Ops, MMO);
3422   DAG.setRoot(Scatter);
3423   setValue(&I, Scatter);
3424 }
3425 
3426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3427   SDLoc sdl = getCurSDLoc();
3428 
3429   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3430   Value  *PtrOperand = I.getArgOperand(0);
3431   SDValue Ptr = getValue(PtrOperand);
3432   SDValue Src0 = getValue(I.getArgOperand(3));
3433   SDValue Mask = getValue(I.getArgOperand(2));
3434 
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3437   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3438   if (!Alignment)
3439     Alignment = DAG.getEVTAlignment(VT);
3440 
3441   AAMDNodes AAInfo;
3442   I.getAAMetadata(AAInfo);
3443   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3444 
3445   SDValue InChain = DAG.getRoot();
3446   if (AA->pointsToConstantMemory(MemoryLocation(
3447           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3448           AAInfo))) {
3449     // Do not serialize (non-volatile) loads of constant memory with anything.
3450     InChain = DAG.getEntryNode();
3451   }
3452 
3453   MachineMemOperand *MMO =
3454     DAG.getMachineFunction().
3455     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3456                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3457                           Alignment, AAInfo, Ranges);
3458 
3459   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3460                                    ISD::NON_EXTLOAD);
3461   SDValue OutChain = Load.getValue(1);
3462   DAG.setRoot(OutChain);
3463   setValue(&I, Load);
3464 }
3465 
3466 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3467   SDLoc sdl = getCurSDLoc();
3468 
3469   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3470   const Value *Ptr = I.getArgOperand(0);
3471   SDValue Src0 = getValue(I.getArgOperand(3));
3472   SDValue Mask = getValue(I.getArgOperand(2));
3473 
3474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3475   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3476   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3477   if (!Alignment)
3478     Alignment = DAG.getEVTAlignment(VT);
3479 
3480   AAMDNodes AAInfo;
3481   I.getAAMetadata(AAInfo);
3482   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3483 
3484   SDValue Root = DAG.getRoot();
3485   SDValue Base;
3486   SDValue Index;
3487   const Value *BasePtr = Ptr;
3488   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3489   bool ConstantMemory = false;
3490   if (UniformBase &&
3491       AA->pointsToConstantMemory(MemoryLocation(
3492           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3493           AAInfo))) {
3494     // Do not serialize (non-volatile) loads of constant memory with anything.
3495     Root = DAG.getEntryNode();
3496     ConstantMemory = true;
3497   }
3498 
3499   MachineMemOperand *MMO =
3500     DAG.getMachineFunction().
3501     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3502                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3503                          Alignment, AAInfo, Ranges);
3504 
3505   if (!UniformBase) {
3506     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3507     Index = getValue(Ptr);
3508   }
3509   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3510   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3511                                        Ops, MMO);
3512 
3513   SDValue OutChain = Gather.getValue(1);
3514   if (!ConstantMemory)
3515     PendingLoads.push_back(OutChain);
3516   setValue(&I, Gather);
3517 }
3518 
3519 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3520   SDLoc dl = getCurSDLoc();
3521   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3522   AtomicOrdering FailureOrder = I.getFailureOrdering();
3523   SynchronizationScope Scope = I.getSynchScope();
3524 
3525   SDValue InChain = getRoot();
3526 
3527   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3528   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3529   SDValue L = DAG.getAtomicCmpSwap(
3530       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3531       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3532       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3533       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3534 
3535   SDValue OutChain = L.getValue(2);
3536 
3537   setValue(&I, L);
3538   DAG.setRoot(OutChain);
3539 }
3540 
3541 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3542   SDLoc dl = getCurSDLoc();
3543   ISD::NodeType NT;
3544   switch (I.getOperation()) {
3545   default: llvm_unreachable("Unknown atomicrmw operation");
3546   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3547   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3548   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3549   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3550   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3551   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3552   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3553   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3554   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3555   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3556   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3557   }
3558   AtomicOrdering Order = I.getOrdering();
3559   SynchronizationScope Scope = I.getSynchScope();
3560 
3561   SDValue InChain = getRoot();
3562 
3563   SDValue L =
3564     DAG.getAtomic(NT, dl,
3565                   getValue(I.getValOperand()).getSimpleValueType(),
3566                   InChain,
3567                   getValue(I.getPointerOperand()),
3568                   getValue(I.getValOperand()),
3569                   I.getPointerOperand(),
3570                   /* Alignment=*/ 0, Order, Scope);
3571 
3572   SDValue OutChain = L.getValue(1);
3573 
3574   setValue(&I, L);
3575   DAG.setRoot(OutChain);
3576 }
3577 
3578 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3579   SDLoc dl = getCurSDLoc();
3580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3581   SDValue Ops[3];
3582   Ops[0] = getRoot();
3583   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3584                            TLI.getPointerTy(DAG.getDataLayout()));
3585   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3586                            TLI.getPointerTy(DAG.getDataLayout()));
3587   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3588 }
3589 
3590 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3591   SDLoc dl = getCurSDLoc();
3592   AtomicOrdering Order = I.getOrdering();
3593   SynchronizationScope Scope = I.getSynchScope();
3594 
3595   SDValue InChain = getRoot();
3596 
3597   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3599 
3600   if (I.getAlignment() < VT.getSizeInBits() / 8)
3601     report_fatal_error("Cannot generate unaligned atomic load");
3602 
3603   MachineMemOperand *MMO =
3604       DAG.getMachineFunction().
3605       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3606                            MachineMemOperand::MOVolatile |
3607                            MachineMemOperand::MOLoad,
3608                            VT.getStoreSize(),
3609                            I.getAlignment() ? I.getAlignment() :
3610                                               DAG.getEVTAlignment(VT));
3611 
3612   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3613   SDValue L =
3614       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3615                     getValue(I.getPointerOperand()), MMO,
3616                     Order, Scope);
3617 
3618   SDValue OutChain = L.getValue(1);
3619 
3620   setValue(&I, L);
3621   DAG.setRoot(OutChain);
3622 }
3623 
3624 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3625   SDLoc dl = getCurSDLoc();
3626 
3627   AtomicOrdering Order = I.getOrdering();
3628   SynchronizationScope Scope = I.getSynchScope();
3629 
3630   SDValue InChain = getRoot();
3631 
3632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3633   EVT VT =
3634       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3635 
3636   if (I.getAlignment() < VT.getSizeInBits() / 8)
3637     report_fatal_error("Cannot generate unaligned atomic store");
3638 
3639   SDValue OutChain =
3640     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3641                   InChain,
3642                   getValue(I.getPointerOperand()),
3643                   getValue(I.getValueOperand()),
3644                   I.getPointerOperand(), I.getAlignment(),
3645                   Order, Scope);
3646 
3647   DAG.setRoot(OutChain);
3648 }
3649 
3650 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3651 /// node.
3652 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3653                                                unsigned Intrinsic) {
3654   bool HasChain = !I.doesNotAccessMemory();
3655   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3656 
3657   // Build the operand list.
3658   SmallVector<SDValue, 8> Ops;
3659   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3660     if (OnlyLoad) {
3661       // We don't need to serialize loads against other loads.
3662       Ops.push_back(DAG.getRoot());
3663     } else {
3664       Ops.push_back(getRoot());
3665     }
3666   }
3667 
3668   // Info is set by getTgtMemInstrinsic
3669   TargetLowering::IntrinsicInfo Info;
3670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3671   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3672 
3673   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3674   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3675       Info.opc == ISD::INTRINSIC_W_CHAIN)
3676     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3677                                         TLI.getPointerTy(DAG.getDataLayout())));
3678 
3679   // Add all operands of the call to the operand list.
3680   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3681     SDValue Op = getValue(I.getArgOperand(i));
3682     Ops.push_back(Op);
3683   }
3684 
3685   SmallVector<EVT, 4> ValueVTs;
3686   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3687 
3688   if (HasChain)
3689     ValueVTs.push_back(MVT::Other);
3690 
3691   SDVTList VTs = DAG.getVTList(ValueVTs);
3692 
3693   // Create the node.
3694   SDValue Result;
3695   if (IsTgtIntrinsic) {
3696     // This is target intrinsic that touches memory
3697     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3698                                      VTs, Ops, Info.memVT,
3699                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3700                                      Info.align, Info.vol,
3701                                      Info.readMem, Info.writeMem, Info.size);
3702   } else if (!HasChain) {
3703     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3704   } else if (!I.getType()->isVoidTy()) {
3705     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3706   } else {
3707     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3708   }
3709 
3710   if (HasChain) {
3711     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3712     if (OnlyLoad)
3713       PendingLoads.push_back(Chain);
3714     else
3715       DAG.setRoot(Chain);
3716   }
3717 
3718   if (!I.getType()->isVoidTy()) {
3719     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3720       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3721       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3722     } else
3723       Result = lowerRangeToAssertZExt(DAG, I, Result);
3724 
3725     setValue(&I, Result);
3726   }
3727 }
3728 
3729 /// GetSignificand - Get the significand and build it into a floating-point
3730 /// number with exponent of 1:
3731 ///
3732 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3733 ///
3734 /// where Op is the hexadecimal representation of floating point value.
3735 static SDValue
3736 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3737   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3738                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3739   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3740                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3741   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3742 }
3743 
3744 /// GetExponent - Get the exponent:
3745 ///
3746 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3747 ///
3748 /// where Op is the hexadecimal representation of floating point value.
3749 static SDValue
3750 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3751             SDLoc dl) {
3752   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3753                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3754   SDValue t1 = DAG.getNode(
3755       ISD::SRL, dl, MVT::i32, t0,
3756       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3757   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3758                            DAG.getConstant(127, dl, MVT::i32));
3759   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3760 }
3761 
3762 /// getF32Constant - Get 32-bit floating point constant.
3763 static SDValue
3764 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3765   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3766                            MVT::f32);
3767 }
3768 
3769 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3770                                        SelectionDAG &DAG) {
3771   // TODO: What fast-math-flags should be set on the floating-point nodes?
3772 
3773   //   IntegerPartOfX = ((int32_t)(t0);
3774   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3775 
3776   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3777   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3778   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3779 
3780   //   IntegerPartOfX <<= 23;
3781   IntegerPartOfX = DAG.getNode(
3782       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3783       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3784                                   DAG.getDataLayout())));
3785 
3786   SDValue TwoToFractionalPartOfX;
3787   if (LimitFloatPrecision <= 6) {
3788     // For floating-point precision of 6:
3789     //
3790     //   TwoToFractionalPartOfX =
3791     //     0.997535578f +
3792     //       (0.735607626f + 0.252464424f * x) * x;
3793     //
3794     // error 0.0144103317, which is 6 bits
3795     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3796                              getF32Constant(DAG, 0x3e814304, dl));
3797     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3798                              getF32Constant(DAG, 0x3f3c50c8, dl));
3799     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3800     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3801                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3802   } else if (LimitFloatPrecision <= 12) {
3803     // For floating-point precision of 12:
3804     //
3805     //   TwoToFractionalPartOfX =
3806     //     0.999892986f +
3807     //       (0.696457318f +
3808     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3809     //
3810     // error 0.000107046256, which is 13 to 14 bits
3811     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3812                              getF32Constant(DAG, 0x3da235e3, dl));
3813     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3814                              getF32Constant(DAG, 0x3e65b8f3, dl));
3815     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3816     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3817                              getF32Constant(DAG, 0x3f324b07, dl));
3818     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3819     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3820                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3821   } else { // LimitFloatPrecision <= 18
3822     // For floating-point precision of 18:
3823     //
3824     //   TwoToFractionalPartOfX =
3825     //     0.999999982f +
3826     //       (0.693148872f +
3827     //         (0.240227044f +
3828     //           (0.554906021e-1f +
3829     //             (0.961591928e-2f +
3830     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3831     // error 2.47208000*10^(-7), which is better than 18 bits
3832     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3833                              getF32Constant(DAG, 0x3924b03e, dl));
3834     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3835                              getF32Constant(DAG, 0x3ab24b87, dl));
3836     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3837     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3838                              getF32Constant(DAG, 0x3c1d8c17, dl));
3839     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3840     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3841                              getF32Constant(DAG, 0x3d634a1d, dl));
3842     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3843     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3844                              getF32Constant(DAG, 0x3e75fe14, dl));
3845     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3846     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3847                               getF32Constant(DAG, 0x3f317234, dl));
3848     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3849     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3850                                          getF32Constant(DAG, 0x3f800000, dl));
3851   }
3852 
3853   // Add the exponent into the result in integer domain.
3854   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3855   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3856                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3857 }
3858 
3859 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3860 /// limited-precision mode.
3861 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3862                          const TargetLowering &TLI) {
3863   if (Op.getValueType() == MVT::f32 &&
3864       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3865 
3866     // Put the exponent in the right bit position for later addition to the
3867     // final result:
3868     //
3869     //   #define LOG2OFe 1.4426950f
3870     //   t0 = Op * LOG2OFe
3871 
3872     // TODO: What fast-math-flags should be set here?
3873     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3874                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3875     return getLimitedPrecisionExp2(t0, dl, DAG);
3876   }
3877 
3878   // No special expansion.
3879   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3880 }
3881 
3882 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3883 /// limited-precision mode.
3884 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3885                          const TargetLowering &TLI) {
3886 
3887   // TODO: What fast-math-flags should be set on the floating-point nodes?
3888 
3889   if (Op.getValueType() == MVT::f32 &&
3890       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3891     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3892 
3893     // Scale the exponent by log(2) [0.69314718f].
3894     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3895     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3896                                         getF32Constant(DAG, 0x3f317218, dl));
3897 
3898     // Get the significand and build it into a floating-point number with
3899     // exponent of 1.
3900     SDValue X = GetSignificand(DAG, Op1, dl);
3901 
3902     SDValue LogOfMantissa;
3903     if (LimitFloatPrecision <= 6) {
3904       // For floating-point precision of 6:
3905       //
3906       //   LogofMantissa =
3907       //     -1.1609546f +
3908       //       (1.4034025f - 0.23903021f * x) * x;
3909       //
3910       // error 0.0034276066, which is better than 8 bits
3911       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3912                                getF32Constant(DAG, 0xbe74c456, dl));
3913       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3914                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3915       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3916       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3917                                   getF32Constant(DAG, 0x3f949a29, dl));
3918     } else if (LimitFloatPrecision <= 12) {
3919       // For floating-point precision of 12:
3920       //
3921       //   LogOfMantissa =
3922       //     -1.7417939f +
3923       //       (2.8212026f +
3924       //         (-1.4699568f +
3925       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3926       //
3927       // error 0.000061011436, which is 14 bits
3928       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3929                                getF32Constant(DAG, 0xbd67b6d6, dl));
3930       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3931                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3932       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3933       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3934                                getF32Constant(DAG, 0x3fbc278b, dl));
3935       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3936       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3937                                getF32Constant(DAG, 0x40348e95, dl));
3938       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3939       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3940                                   getF32Constant(DAG, 0x3fdef31a, dl));
3941     } else { // LimitFloatPrecision <= 18
3942       // For floating-point precision of 18:
3943       //
3944       //   LogOfMantissa =
3945       //     -2.1072184f +
3946       //       (4.2372794f +
3947       //         (-3.7029485f +
3948       //           (2.2781945f +
3949       //             (-0.87823314f +
3950       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3951       //
3952       // error 0.0000023660568, which is better than 18 bits
3953       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3954                                getF32Constant(DAG, 0xbc91e5ac, dl));
3955       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3956                                getF32Constant(DAG, 0x3e4350aa, dl));
3957       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3958       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3959                                getF32Constant(DAG, 0x3f60d3e3, dl));
3960       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3961       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3962                                getF32Constant(DAG, 0x4011cdf0, dl));
3963       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3964       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3965                                getF32Constant(DAG, 0x406cfd1c, dl));
3966       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3967       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3968                                getF32Constant(DAG, 0x408797cb, dl));
3969       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3970       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3971                                   getF32Constant(DAG, 0x4006dcab, dl));
3972     }
3973 
3974     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3975   }
3976 
3977   // No special expansion.
3978   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3979 }
3980 
3981 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3982 /// limited-precision mode.
3983 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3984                           const TargetLowering &TLI) {
3985 
3986   // TODO: What fast-math-flags should be set on the floating-point nodes?
3987 
3988   if (Op.getValueType() == MVT::f32 &&
3989       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3990     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3991 
3992     // Get the exponent.
3993     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3994 
3995     // Get the significand and build it into a floating-point number with
3996     // exponent of 1.
3997     SDValue X = GetSignificand(DAG, Op1, dl);
3998 
3999     // Different possible minimax approximations of significand in
4000     // floating-point for various degrees of accuracy over [1,2].
4001     SDValue Log2ofMantissa;
4002     if (LimitFloatPrecision <= 6) {
4003       // For floating-point precision of 6:
4004       //
4005       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4006       //
4007       // error 0.0049451742, which is more than 7 bits
4008       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4009                                getF32Constant(DAG, 0xbeb08fe0, dl));
4010       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4011                                getF32Constant(DAG, 0x40019463, dl));
4012       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4013       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4014                                    getF32Constant(DAG, 0x3fd6633d, dl));
4015     } else if (LimitFloatPrecision <= 12) {
4016       // For floating-point precision of 12:
4017       //
4018       //   Log2ofMantissa =
4019       //     -2.51285454f +
4020       //       (4.07009056f +
4021       //         (-2.12067489f +
4022       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4023       //
4024       // error 0.0000876136000, which is better than 13 bits
4025       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026                                getF32Constant(DAG, 0xbda7262e, dl));
4027       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4028                                getF32Constant(DAG, 0x3f25280b, dl));
4029       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4030       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4031                                getF32Constant(DAG, 0x4007b923, dl));
4032       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4034                                getF32Constant(DAG, 0x40823e2f, dl));
4035       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4036       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4037                                    getF32Constant(DAG, 0x4020d29c, dl));
4038     } else { // LimitFloatPrecision <= 18
4039       // For floating-point precision of 18:
4040       //
4041       //   Log2ofMantissa =
4042       //     -3.0400495f +
4043       //       (6.1129976f +
4044       //         (-5.3420409f +
4045       //           (3.2865683f +
4046       //             (-1.2669343f +
4047       //               (0.27515199f -
4048       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4049       //
4050       // error 0.0000018516, which is better than 18 bits
4051       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4052                                getF32Constant(DAG, 0xbcd2769e, dl));
4053       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4054                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4055       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4056       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4057                                getF32Constant(DAG, 0x3fa22ae7, dl));
4058       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4059       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4060                                getF32Constant(DAG, 0x40525723, dl));
4061       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4062       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4063                                getF32Constant(DAG, 0x40aaf200, dl));
4064       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4065       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4066                                getF32Constant(DAG, 0x40c39dad, dl));
4067       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4068       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4069                                    getF32Constant(DAG, 0x4042902c, dl));
4070     }
4071 
4072     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4073   }
4074 
4075   // No special expansion.
4076   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4077 }
4078 
4079 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4080 /// limited-precision mode.
4081 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4082                            const TargetLowering &TLI) {
4083 
4084   // TODO: What fast-math-flags should be set on the floating-point nodes?
4085 
4086   if (Op.getValueType() == MVT::f32 &&
4087       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4088     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4089 
4090     // Scale the exponent by log10(2) [0.30102999f].
4091     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4092     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4093                                         getF32Constant(DAG, 0x3e9a209a, dl));
4094 
4095     // Get the significand and build it into a floating-point number with
4096     // exponent of 1.
4097     SDValue X = GetSignificand(DAG, Op1, dl);
4098 
4099     SDValue Log10ofMantissa;
4100     if (LimitFloatPrecision <= 6) {
4101       // For floating-point precision of 6:
4102       //
4103       //   Log10ofMantissa =
4104       //     -0.50419619f +
4105       //       (0.60948995f - 0.10380950f * x) * x;
4106       //
4107       // error 0.0014886165, which is 6 bits
4108       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4109                                getF32Constant(DAG, 0xbdd49a13, dl));
4110       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4111                                getF32Constant(DAG, 0x3f1c0789, dl));
4112       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4113       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4114                                     getF32Constant(DAG, 0x3f011300, dl));
4115     } else if (LimitFloatPrecision <= 12) {
4116       // For floating-point precision of 12:
4117       //
4118       //   Log10ofMantissa =
4119       //     -0.64831180f +
4120       //       (0.91751397f +
4121       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4122       //
4123       // error 0.00019228036, which is better than 12 bits
4124       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4125                                getF32Constant(DAG, 0x3d431f31, dl));
4126       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4127                                getF32Constant(DAG, 0x3ea21fb2, dl));
4128       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4129       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4130                                getF32Constant(DAG, 0x3f6ae232, dl));
4131       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4132       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4133                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4134     } else { // LimitFloatPrecision <= 18
4135       // For floating-point precision of 18:
4136       //
4137       //   Log10ofMantissa =
4138       //     -0.84299375f +
4139       //       (1.5327582f +
4140       //         (-1.0688956f +
4141       //           (0.49102474f +
4142       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4143       //
4144       // error 0.0000037995730, which is better than 18 bits
4145       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4146                                getF32Constant(DAG, 0x3c5d51ce, dl));
4147       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4148                                getF32Constant(DAG, 0x3e00685a, dl));
4149       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4150       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4151                                getF32Constant(DAG, 0x3efb6798, dl));
4152       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4153       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4154                                getF32Constant(DAG, 0x3f88d192, dl));
4155       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4156       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4157                                getF32Constant(DAG, 0x3fc4316c, dl));
4158       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4159       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4160                                     getF32Constant(DAG, 0x3f57ce70, dl));
4161     }
4162 
4163     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4164   }
4165 
4166   // No special expansion.
4167   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4168 }
4169 
4170 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4171 /// limited-precision mode.
4172 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4173                           const TargetLowering &TLI) {
4174   if (Op.getValueType() == MVT::f32 &&
4175       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4176     return getLimitedPrecisionExp2(Op, dl, DAG);
4177 
4178   // No special expansion.
4179   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4180 }
4181 
4182 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4183 /// limited-precision mode with x == 10.0f.
4184 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4185                          SelectionDAG &DAG, const TargetLowering &TLI) {
4186   bool IsExp10 = false;
4187   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4188       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4189     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4190       APFloat Ten(10.0f);
4191       IsExp10 = LHSC->isExactlyValue(Ten);
4192     }
4193   }
4194 
4195   // TODO: What fast-math-flags should be set on the FMUL node?
4196   if (IsExp10) {
4197     // Put the exponent in the right bit position for later addition to the
4198     // final result:
4199     //
4200     //   #define LOG2OF10 3.3219281f
4201     //   t0 = Op * LOG2OF10;
4202     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4203                              getF32Constant(DAG, 0x40549a78, dl));
4204     return getLimitedPrecisionExp2(t0, dl, DAG);
4205   }
4206 
4207   // No special expansion.
4208   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4209 }
4210 
4211 
4212 /// ExpandPowI - Expand a llvm.powi intrinsic.
4213 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4214                           SelectionDAG &DAG) {
4215   // If RHS is a constant, we can expand this out to a multiplication tree,
4216   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4217   // optimizing for size, we only want to do this if the expansion would produce
4218   // a small number of multiplies, otherwise we do the full expansion.
4219   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4220     // Get the exponent as a positive value.
4221     unsigned Val = RHSC->getSExtValue();
4222     if ((int)Val < 0) Val = -Val;
4223 
4224     // powi(x, 0) -> 1.0
4225     if (Val == 0)
4226       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4227 
4228     const Function *F = DAG.getMachineFunction().getFunction();
4229     if (!F->optForSize() ||
4230         // If optimizing for size, don't insert too many multiplies.
4231         // This inserts up to 5 multiplies.
4232         countPopulation(Val) + Log2_32(Val) < 7) {
4233       // We use the simple binary decomposition method to generate the multiply
4234       // sequence.  There are more optimal ways to do this (for example,
4235       // powi(x,15) generates one more multiply than it should), but this has
4236       // the benefit of being both really simple and much better than a libcall.
4237       SDValue Res;  // Logically starts equal to 1.0
4238       SDValue CurSquare = LHS;
4239       // TODO: Intrinsics should have fast-math-flags that propagate to these
4240       // nodes.
4241       while (Val) {
4242         if (Val & 1) {
4243           if (Res.getNode())
4244             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4245           else
4246             Res = CurSquare;  // 1.0*CurSquare.
4247         }
4248 
4249         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4250                                 CurSquare, CurSquare);
4251         Val >>= 1;
4252       }
4253 
4254       // If the original was negative, invert the result, producing 1/(x*x*x).
4255       if (RHSC->getSExtValue() < 0)
4256         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4257                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4258       return Res;
4259     }
4260   }
4261 
4262   // Otherwise, expand to a libcall.
4263   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4264 }
4265 
4266 // getUnderlyingArgReg - Find underlying register used for a truncated or
4267 // bitcasted argument.
4268 static unsigned getUnderlyingArgReg(const SDValue &N) {
4269   switch (N.getOpcode()) {
4270   case ISD::CopyFromReg:
4271     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4272   case ISD::BITCAST:
4273   case ISD::AssertZext:
4274   case ISD::AssertSext:
4275   case ISD::TRUNCATE:
4276     return getUnderlyingArgReg(N.getOperand(0));
4277   default:
4278     return 0;
4279   }
4280 }
4281 
4282 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4283 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4284 /// At the end of instruction selection, they will be inserted to the entry BB.
4285 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4286     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4287     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4288   const Argument *Arg = dyn_cast<Argument>(V);
4289   if (!Arg)
4290     return false;
4291 
4292   MachineFunction &MF = DAG.getMachineFunction();
4293   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4294 
4295   // Ignore inlined function arguments here.
4296   //
4297   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4298   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4299     return false;
4300 
4301   Optional<MachineOperand> Op;
4302   // Some arguments' frame index is recorded during argument lowering.
4303   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4304     Op = MachineOperand::CreateFI(FI);
4305 
4306   if (!Op && N.getNode()) {
4307     unsigned Reg = getUnderlyingArgReg(N);
4308     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4309       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4310       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4311       if (PR)
4312         Reg = PR;
4313     }
4314     if (Reg)
4315       Op = MachineOperand::CreateReg(Reg, false);
4316   }
4317 
4318   if (!Op) {
4319     // Check if ValueMap has reg number.
4320     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4321     if (VMI != FuncInfo.ValueMap.end())
4322       Op = MachineOperand::CreateReg(VMI->second, false);
4323   }
4324 
4325   if (!Op && N.getNode())
4326     // Check if frame index is available.
4327     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4328       if (FrameIndexSDNode *FINode =
4329           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4330         Op = MachineOperand::CreateFI(FINode->getIndex());
4331 
4332   if (!Op)
4333     return false;
4334 
4335   assert(Variable->isValidLocationForIntrinsic(DL) &&
4336          "Expected inlined-at fields to agree");
4337   if (Op->isReg())
4338     FuncInfo.ArgDbgValues.push_back(
4339         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4340                 Op->getReg(), Offset, Variable, Expr));
4341   else
4342     FuncInfo.ArgDbgValues.push_back(
4343         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4344             .addOperand(*Op)
4345             .addImm(Offset)
4346             .addMetadata(Variable)
4347             .addMetadata(Expr));
4348 
4349   return true;
4350 }
4351 
4352 // VisualStudio defines setjmp as _setjmp
4353 #if defined(_MSC_VER) && defined(setjmp) && \
4354                          !defined(setjmp_undefined_for_msvc)
4355 #  pragma push_macro("setjmp")
4356 #  undef setjmp
4357 #  define setjmp_undefined_for_msvc
4358 #endif
4359 
4360 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4361 /// we want to emit this as a call to a named external function, return the name
4362 /// otherwise lower it and return null.
4363 const char *
4364 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4366   SDLoc sdl = getCurSDLoc();
4367   DebugLoc dl = getCurDebugLoc();
4368   SDValue Res;
4369 
4370   switch (Intrinsic) {
4371   default:
4372     // By default, turn this into a target intrinsic node.
4373     visitTargetIntrinsic(I, Intrinsic);
4374     return nullptr;
4375   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4376   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4377   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4378   case Intrinsic::returnaddress:
4379     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4380                              TLI.getPointerTy(DAG.getDataLayout()),
4381                              getValue(I.getArgOperand(0))));
4382     return nullptr;
4383   case Intrinsic::frameaddress:
4384     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4385                              TLI.getPointerTy(DAG.getDataLayout()),
4386                              getValue(I.getArgOperand(0))));
4387     return nullptr;
4388   case Intrinsic::read_register: {
4389     Value *Reg = I.getArgOperand(0);
4390     SDValue Chain = getRoot();
4391     SDValue RegName =
4392         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4393     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4394     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4395       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4396     setValue(&I, Res);
4397     DAG.setRoot(Res.getValue(1));
4398     return nullptr;
4399   }
4400   case Intrinsic::write_register: {
4401     Value *Reg = I.getArgOperand(0);
4402     Value *RegValue = I.getArgOperand(1);
4403     SDValue Chain = getRoot();
4404     SDValue RegName =
4405         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4406     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4407                             RegName, getValue(RegValue)));
4408     return nullptr;
4409   }
4410   case Intrinsic::setjmp:
4411     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4412   case Intrinsic::longjmp:
4413     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4414   case Intrinsic::memcpy: {
4415     SDValue Op1 = getValue(I.getArgOperand(0));
4416     SDValue Op2 = getValue(I.getArgOperand(1));
4417     SDValue Op3 = getValue(I.getArgOperand(2));
4418     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4419     if (!Align)
4420       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4421     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4422     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4423     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4424                                false, isTC,
4425                                MachinePointerInfo(I.getArgOperand(0)),
4426                                MachinePointerInfo(I.getArgOperand(1)));
4427     updateDAGForMaybeTailCall(MC);
4428     return nullptr;
4429   }
4430   case Intrinsic::memset: {
4431     SDValue Op1 = getValue(I.getArgOperand(0));
4432     SDValue Op2 = getValue(I.getArgOperand(1));
4433     SDValue Op3 = getValue(I.getArgOperand(2));
4434     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4435     if (!Align)
4436       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4437     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4438     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4439     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4440                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4441     updateDAGForMaybeTailCall(MS);
4442     return nullptr;
4443   }
4444   case Intrinsic::memmove: {
4445     SDValue Op1 = getValue(I.getArgOperand(0));
4446     SDValue Op2 = getValue(I.getArgOperand(1));
4447     SDValue Op3 = getValue(I.getArgOperand(2));
4448     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4449     if (!Align)
4450       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4451     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4452     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4453     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4454                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4455                                 MachinePointerInfo(I.getArgOperand(1)));
4456     updateDAGForMaybeTailCall(MM);
4457     return nullptr;
4458   }
4459   case Intrinsic::dbg_declare: {
4460     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4461     DILocalVariable *Variable = DI.getVariable();
4462     DIExpression *Expression = DI.getExpression();
4463     const Value *Address = DI.getAddress();
4464     assert(Variable && "Missing variable");
4465     if (!Address) {
4466       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4467       return nullptr;
4468     }
4469 
4470     // Check if address has undef value.
4471     if (isa<UndefValue>(Address) ||
4472         (Address->use_empty() && !isa<Argument>(Address))) {
4473       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4474       return nullptr;
4475     }
4476 
4477     SDValue &N = NodeMap[Address];
4478     if (!N.getNode() && isa<Argument>(Address))
4479       // Check unused arguments map.
4480       N = UnusedArgNodeMap[Address];
4481     SDDbgValue *SDV;
4482     if (N.getNode()) {
4483       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4484         Address = BCI->getOperand(0);
4485       // Parameters are handled specially.
4486       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4487       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4488       if (isParameter && FINode) {
4489         // Byval parameter. We have a frame index at this point.
4490         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4491                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4492       } else if (isa<Argument>(Address)) {
4493         // Address is an argument, so try to emit its dbg value using
4494         // virtual register info from the FuncInfo.ValueMap.
4495         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4496                                  N);
4497         return nullptr;
4498       } else {
4499         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4500                               true, 0, dl, SDNodeOrder);
4501       }
4502       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4503     } else {
4504       // If Address is an argument then try to emit its dbg value using
4505       // virtual register info from the FuncInfo.ValueMap.
4506       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4507                                     N)) {
4508         // If variable is pinned by a alloca in dominating bb then
4509         // use StaticAllocaMap.
4510         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4511           if (AI->getParent() != DI.getParent()) {
4512             DenseMap<const AllocaInst*, int>::iterator SI =
4513               FuncInfo.StaticAllocaMap.find(AI);
4514             if (SI != FuncInfo.StaticAllocaMap.end()) {
4515               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4516                                               0, dl, SDNodeOrder);
4517               DAG.AddDbgValue(SDV, nullptr, false);
4518               return nullptr;
4519             }
4520           }
4521         }
4522         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4523       }
4524     }
4525     return nullptr;
4526   }
4527   case Intrinsic::dbg_value: {
4528     const DbgValueInst &DI = cast<DbgValueInst>(I);
4529     assert(DI.getVariable() && "Missing variable");
4530 
4531     DILocalVariable *Variable = DI.getVariable();
4532     DIExpression *Expression = DI.getExpression();
4533     uint64_t Offset = DI.getOffset();
4534     const Value *V = DI.getValue();
4535     if (!V)
4536       return nullptr;
4537 
4538     SDDbgValue *SDV;
4539     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4540       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4541                                     SDNodeOrder);
4542       DAG.AddDbgValue(SDV, nullptr, false);
4543     } else {
4544       // Do not use getValue() in here; we don't want to generate code at
4545       // this point if it hasn't been done yet.
4546       SDValue N = NodeMap[V];
4547       if (!N.getNode() && isa<Argument>(V))
4548         // Check unused arguments map.
4549         N = UnusedArgNodeMap[V];
4550       if (N.getNode()) {
4551         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4552                                       false, N)) {
4553           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4554                                 false, Offset, dl, SDNodeOrder);
4555           DAG.AddDbgValue(SDV, N.getNode(), false);
4556         }
4557       } else if (!V->use_empty() ) {
4558         // Do not call getValue(V) yet, as we don't want to generate code.
4559         // Remember it for later.
4560         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4561         DanglingDebugInfoMap[V] = DDI;
4562       } else {
4563         // We may expand this to cover more cases.  One case where we have no
4564         // data available is an unreferenced parameter.
4565         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4566       }
4567     }
4568 
4569     // Build a debug info table entry.
4570     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4571       V = BCI->getOperand(0);
4572     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4573     // Don't handle byval struct arguments or VLAs, for example.
4574     if (!AI) {
4575       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4576       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4577       return nullptr;
4578     }
4579     DenseMap<const AllocaInst*, int>::iterator SI =
4580       FuncInfo.StaticAllocaMap.find(AI);
4581     if (SI == FuncInfo.StaticAllocaMap.end())
4582       return nullptr; // VLAs.
4583     return nullptr;
4584   }
4585 
4586   case Intrinsic::eh_typeid_for: {
4587     // Find the type id for the given typeinfo.
4588     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4589     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4590     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4591     setValue(&I, Res);
4592     return nullptr;
4593   }
4594 
4595   case Intrinsic::eh_return_i32:
4596   case Intrinsic::eh_return_i64:
4597     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4598     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4599                             MVT::Other,
4600                             getControlRoot(),
4601                             getValue(I.getArgOperand(0)),
4602                             getValue(I.getArgOperand(1))));
4603     return nullptr;
4604   case Intrinsic::eh_unwind_init:
4605     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4606     return nullptr;
4607   case Intrinsic::eh_dwarf_cfa: {
4608     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4609                                         TLI.getPointerTy(DAG.getDataLayout()));
4610     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4611                                  CfaArg.getValueType(),
4612                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4613                                              CfaArg.getValueType()),
4614                                  CfaArg);
4615     SDValue FA = DAG.getNode(
4616         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4617         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4618     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4619                              FA, Offset));
4620     return nullptr;
4621   }
4622   case Intrinsic::eh_sjlj_callsite: {
4623     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4624     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4625     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4626     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4627 
4628     MMI.setCurrentCallSite(CI->getZExtValue());
4629     return nullptr;
4630   }
4631   case Intrinsic::eh_sjlj_functioncontext: {
4632     // Get and store the index of the function context.
4633     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4634     AllocaInst *FnCtx =
4635       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4636     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4637     MFI->setFunctionContextIndex(FI);
4638     return nullptr;
4639   }
4640   case Intrinsic::eh_sjlj_setjmp: {
4641     SDValue Ops[2];
4642     Ops[0] = getRoot();
4643     Ops[1] = getValue(I.getArgOperand(0));
4644     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4645                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4646     setValue(&I, Op.getValue(0));
4647     DAG.setRoot(Op.getValue(1));
4648     return nullptr;
4649   }
4650   case Intrinsic::eh_sjlj_longjmp: {
4651     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4652                             getRoot(), getValue(I.getArgOperand(0))));
4653     return nullptr;
4654   }
4655   case Intrinsic::eh_sjlj_setup_dispatch: {
4656     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4657                             getRoot()));
4658     return nullptr;
4659   }
4660 
4661   case Intrinsic::masked_gather:
4662     visitMaskedGather(I);
4663     return nullptr;
4664   case Intrinsic::masked_load:
4665     visitMaskedLoad(I);
4666     return nullptr;
4667   case Intrinsic::masked_scatter:
4668     visitMaskedScatter(I);
4669     return nullptr;
4670   case Intrinsic::masked_store:
4671     visitMaskedStore(I);
4672     return nullptr;
4673   case Intrinsic::x86_mmx_pslli_w:
4674   case Intrinsic::x86_mmx_pslli_d:
4675   case Intrinsic::x86_mmx_pslli_q:
4676   case Intrinsic::x86_mmx_psrli_w:
4677   case Intrinsic::x86_mmx_psrli_d:
4678   case Intrinsic::x86_mmx_psrli_q:
4679   case Intrinsic::x86_mmx_psrai_w:
4680   case Intrinsic::x86_mmx_psrai_d: {
4681     SDValue ShAmt = getValue(I.getArgOperand(1));
4682     if (isa<ConstantSDNode>(ShAmt)) {
4683       visitTargetIntrinsic(I, Intrinsic);
4684       return nullptr;
4685     }
4686     unsigned NewIntrinsic = 0;
4687     EVT ShAmtVT = MVT::v2i32;
4688     switch (Intrinsic) {
4689     case Intrinsic::x86_mmx_pslli_w:
4690       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4691       break;
4692     case Intrinsic::x86_mmx_pslli_d:
4693       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4694       break;
4695     case Intrinsic::x86_mmx_pslli_q:
4696       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4697       break;
4698     case Intrinsic::x86_mmx_psrli_w:
4699       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4700       break;
4701     case Intrinsic::x86_mmx_psrli_d:
4702       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4703       break;
4704     case Intrinsic::x86_mmx_psrli_q:
4705       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4706       break;
4707     case Intrinsic::x86_mmx_psrai_w:
4708       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4709       break;
4710     case Intrinsic::x86_mmx_psrai_d:
4711       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4712       break;
4713     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4714     }
4715 
4716     // The vector shift intrinsics with scalars uses 32b shift amounts but
4717     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4718     // to be zero.
4719     // We must do this early because v2i32 is not a legal type.
4720     SDValue ShOps[2];
4721     ShOps[0] = ShAmt;
4722     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4723     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4724     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4725     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4726     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4727                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4728                        getValue(I.getArgOperand(0)), ShAmt);
4729     setValue(&I, Res);
4730     return nullptr;
4731   }
4732   case Intrinsic::convertff:
4733   case Intrinsic::convertfsi:
4734   case Intrinsic::convertfui:
4735   case Intrinsic::convertsif:
4736   case Intrinsic::convertuif:
4737   case Intrinsic::convertss:
4738   case Intrinsic::convertsu:
4739   case Intrinsic::convertus:
4740   case Intrinsic::convertuu: {
4741     ISD::CvtCode Code = ISD::CVT_INVALID;
4742     switch (Intrinsic) {
4743     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4744     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4745     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4746     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4747     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4748     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4749     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4750     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4751     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4752     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4753     }
4754     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4755     const Value *Op1 = I.getArgOperand(0);
4756     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4757                                DAG.getValueType(DestVT),
4758                                DAG.getValueType(getValue(Op1).getValueType()),
4759                                getValue(I.getArgOperand(1)),
4760                                getValue(I.getArgOperand(2)),
4761                                Code);
4762     setValue(&I, Res);
4763     return nullptr;
4764   }
4765   case Intrinsic::powi:
4766     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4767                             getValue(I.getArgOperand(1)), DAG));
4768     return nullptr;
4769   case Intrinsic::log:
4770     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4771     return nullptr;
4772   case Intrinsic::log2:
4773     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4774     return nullptr;
4775   case Intrinsic::log10:
4776     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4777     return nullptr;
4778   case Intrinsic::exp:
4779     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4780     return nullptr;
4781   case Intrinsic::exp2:
4782     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4783     return nullptr;
4784   case Intrinsic::pow:
4785     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4786                            getValue(I.getArgOperand(1)), DAG, TLI));
4787     return nullptr;
4788   case Intrinsic::sqrt:
4789   case Intrinsic::fabs:
4790   case Intrinsic::sin:
4791   case Intrinsic::cos:
4792   case Intrinsic::floor:
4793   case Intrinsic::ceil:
4794   case Intrinsic::trunc:
4795   case Intrinsic::rint:
4796   case Intrinsic::nearbyint:
4797   case Intrinsic::round: {
4798     unsigned Opcode;
4799     switch (Intrinsic) {
4800     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4801     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4802     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4803     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4804     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4805     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4806     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4807     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4808     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4809     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4810     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4811     }
4812 
4813     setValue(&I, DAG.getNode(Opcode, sdl,
4814                              getValue(I.getArgOperand(0)).getValueType(),
4815                              getValue(I.getArgOperand(0))));
4816     return nullptr;
4817   }
4818   case Intrinsic::minnum:
4819     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4820                              getValue(I.getArgOperand(0)).getValueType(),
4821                              getValue(I.getArgOperand(0)),
4822                              getValue(I.getArgOperand(1))));
4823     return nullptr;
4824   case Intrinsic::maxnum:
4825     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4826                              getValue(I.getArgOperand(0)).getValueType(),
4827                              getValue(I.getArgOperand(0)),
4828                              getValue(I.getArgOperand(1))));
4829     return nullptr;
4830   case Intrinsic::copysign:
4831     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4832                              getValue(I.getArgOperand(0)).getValueType(),
4833                              getValue(I.getArgOperand(0)),
4834                              getValue(I.getArgOperand(1))));
4835     return nullptr;
4836   case Intrinsic::fma:
4837     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4838                              getValue(I.getArgOperand(0)).getValueType(),
4839                              getValue(I.getArgOperand(0)),
4840                              getValue(I.getArgOperand(1)),
4841                              getValue(I.getArgOperand(2))));
4842     return nullptr;
4843   case Intrinsic::fmuladd: {
4844     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4845     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4846         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4847       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4848                                getValue(I.getArgOperand(0)).getValueType(),
4849                                getValue(I.getArgOperand(0)),
4850                                getValue(I.getArgOperand(1)),
4851                                getValue(I.getArgOperand(2))));
4852     } else {
4853       // TODO: Intrinsic calls should have fast-math-flags.
4854       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4855                                 getValue(I.getArgOperand(0)).getValueType(),
4856                                 getValue(I.getArgOperand(0)),
4857                                 getValue(I.getArgOperand(1)));
4858       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4859                                 getValue(I.getArgOperand(0)).getValueType(),
4860                                 Mul,
4861                                 getValue(I.getArgOperand(2)));
4862       setValue(&I, Add);
4863     }
4864     return nullptr;
4865   }
4866   case Intrinsic::convert_to_fp16:
4867     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4868                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4869                                          getValue(I.getArgOperand(0)),
4870                                          DAG.getTargetConstant(0, sdl,
4871                                                                MVT::i32))));
4872     return nullptr;
4873   case Intrinsic::convert_from_fp16:
4874     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4875                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4876                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4877                                          getValue(I.getArgOperand(0)))));
4878     return nullptr;
4879   case Intrinsic::pcmarker: {
4880     SDValue Tmp = getValue(I.getArgOperand(0));
4881     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4882     return nullptr;
4883   }
4884   case Intrinsic::readcyclecounter: {
4885     SDValue Op = getRoot();
4886     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4887                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4888     setValue(&I, Res);
4889     DAG.setRoot(Res.getValue(1));
4890     return nullptr;
4891   }
4892   case Intrinsic::bitreverse:
4893     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4894                              getValue(I.getArgOperand(0)).getValueType(),
4895                              getValue(I.getArgOperand(0))));
4896     return nullptr;
4897   case Intrinsic::bswap:
4898     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4899                              getValue(I.getArgOperand(0)).getValueType(),
4900                              getValue(I.getArgOperand(0))));
4901     return nullptr;
4902   case Intrinsic::cttz: {
4903     SDValue Arg = getValue(I.getArgOperand(0));
4904     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4905     EVT Ty = Arg.getValueType();
4906     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4907                              sdl, Ty, Arg));
4908     return nullptr;
4909   }
4910   case Intrinsic::ctlz: {
4911     SDValue Arg = getValue(I.getArgOperand(0));
4912     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4913     EVT Ty = Arg.getValueType();
4914     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4915                              sdl, Ty, Arg));
4916     return nullptr;
4917   }
4918   case Intrinsic::ctpop: {
4919     SDValue Arg = getValue(I.getArgOperand(0));
4920     EVT Ty = Arg.getValueType();
4921     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4922     return nullptr;
4923   }
4924   case Intrinsic::stacksave: {
4925     SDValue Op = getRoot();
4926     Res = DAG.getNode(
4927         ISD::STACKSAVE, sdl,
4928         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4929     setValue(&I, Res);
4930     DAG.setRoot(Res.getValue(1));
4931     return nullptr;
4932   }
4933   case Intrinsic::stackrestore: {
4934     Res = getValue(I.getArgOperand(0));
4935     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4936     return nullptr;
4937   }
4938   case Intrinsic::get_dynamic_area_offset: {
4939     SDValue Op = getRoot();
4940     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4941     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4942     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4943     // target.
4944     if (PtrTy != ResTy)
4945       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4946                          " intrinsic!");
4947     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4948                       Op);
4949     DAG.setRoot(Op);
4950     setValue(&I, Res);
4951     return nullptr;
4952   }
4953   case Intrinsic::stackprotector: {
4954     // Emit code into the DAG to store the stack guard onto the stack.
4955     MachineFunction &MF = DAG.getMachineFunction();
4956     MachineFrameInfo *MFI = MF.getFrameInfo();
4957     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4958     SDValue Src, Chain = getRoot();
4959     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4960     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4961 
4962     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4963     // global variable __stack_chk_guard.
4964     if (!GV)
4965       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4966         if (BC->getOpcode() == Instruction::BitCast)
4967           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4968 
4969     if (GV && TLI.useLoadStackGuardNode()) {
4970       // Emit a LOAD_STACK_GUARD node.
4971       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4972                                                sdl, PtrTy, Chain);
4973       MachinePointerInfo MPInfo(GV);
4974       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4975       unsigned Flags = MachineMemOperand::MOLoad |
4976                        MachineMemOperand::MOInvariant;
4977       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4978                                          PtrTy.getSizeInBits() / 8,
4979                                          DAG.getEVTAlignment(PtrTy));
4980       Node->setMemRefs(MemRefs, MemRefs + 1);
4981 
4982       // Copy the guard value to a virtual register so that it can be
4983       // retrieved in the epilogue.
4984       Src = SDValue(Node, 0);
4985       const TargetRegisterClass *RC =
4986           TLI.getRegClassFor(Src.getSimpleValueType());
4987       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4988 
4989       SPDescriptor.setGuardReg(Reg);
4990       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4991     } else {
4992       Src = getValue(I.getArgOperand(0));   // The guard's value.
4993     }
4994 
4995     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4996 
4997     int FI = FuncInfo.StaticAllocaMap[Slot];
4998     MFI->setStackProtectorIndex(FI);
4999 
5000     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5001 
5002     // Store the stack protector onto the stack.
5003     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5004                                                  DAG.getMachineFunction(), FI),
5005                        true, false, 0);
5006     setValue(&I, Res);
5007     DAG.setRoot(Res);
5008     return nullptr;
5009   }
5010   case Intrinsic::objectsize: {
5011     // If we don't know by now, we're never going to know.
5012     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5013 
5014     assert(CI && "Non-constant type in __builtin_object_size?");
5015 
5016     SDValue Arg = getValue(I.getCalledValue());
5017     EVT Ty = Arg.getValueType();
5018 
5019     if (CI->isZero())
5020       Res = DAG.getConstant(-1ULL, sdl, Ty);
5021     else
5022       Res = DAG.getConstant(0, sdl, Ty);
5023 
5024     setValue(&I, Res);
5025     return nullptr;
5026   }
5027   case Intrinsic::annotation:
5028   case Intrinsic::ptr_annotation:
5029     // Drop the intrinsic, but forward the value
5030     setValue(&I, getValue(I.getOperand(0)));
5031     return nullptr;
5032   case Intrinsic::assume:
5033   case Intrinsic::var_annotation:
5034     // Discard annotate attributes and assumptions
5035     return nullptr;
5036 
5037   case Intrinsic::init_trampoline: {
5038     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5039 
5040     SDValue Ops[6];
5041     Ops[0] = getRoot();
5042     Ops[1] = getValue(I.getArgOperand(0));
5043     Ops[2] = getValue(I.getArgOperand(1));
5044     Ops[3] = getValue(I.getArgOperand(2));
5045     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5046     Ops[5] = DAG.getSrcValue(F);
5047 
5048     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5049 
5050     DAG.setRoot(Res);
5051     return nullptr;
5052   }
5053   case Intrinsic::adjust_trampoline: {
5054     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5055                              TLI.getPointerTy(DAG.getDataLayout()),
5056                              getValue(I.getArgOperand(0))));
5057     return nullptr;
5058   }
5059   case Intrinsic::gcroot: {
5060     MachineFunction &MF = DAG.getMachineFunction();
5061     const Function *F = MF.getFunction();
5062     (void)F;
5063     assert(F->hasGC() &&
5064            "only valid in functions with gc specified, enforced by Verifier");
5065     assert(GFI && "implied by previous");
5066     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5067     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5068 
5069     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5070     GFI->addStackRoot(FI->getIndex(), TypeMap);
5071     return nullptr;
5072   }
5073   case Intrinsic::gcread:
5074   case Intrinsic::gcwrite:
5075     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5076   case Intrinsic::flt_rounds:
5077     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5078     return nullptr;
5079 
5080   case Intrinsic::expect: {
5081     // Just replace __builtin_expect(exp, c) with EXP.
5082     setValue(&I, getValue(I.getArgOperand(0)));
5083     return nullptr;
5084   }
5085 
5086   case Intrinsic::debugtrap:
5087   case Intrinsic::trap: {
5088     StringRef TrapFuncName =
5089         I.getAttributes()
5090             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5091             .getValueAsString();
5092     if (TrapFuncName.empty()) {
5093       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5094         ISD::TRAP : ISD::DEBUGTRAP;
5095       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5096       return nullptr;
5097     }
5098     TargetLowering::ArgListTy Args;
5099 
5100     TargetLowering::CallLoweringInfo CLI(DAG);
5101     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5102         CallingConv::C, I.getType(),
5103         DAG.getExternalSymbol(TrapFuncName.data(),
5104                               TLI.getPointerTy(DAG.getDataLayout())),
5105         std::move(Args), 0);
5106 
5107     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5108     DAG.setRoot(Result.second);
5109     return nullptr;
5110   }
5111 
5112   case Intrinsic::uadd_with_overflow:
5113   case Intrinsic::sadd_with_overflow:
5114   case Intrinsic::usub_with_overflow:
5115   case Intrinsic::ssub_with_overflow:
5116   case Intrinsic::umul_with_overflow:
5117   case Intrinsic::smul_with_overflow: {
5118     ISD::NodeType Op;
5119     switch (Intrinsic) {
5120     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5121     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5122     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5123     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5124     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5125     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5126     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5127     }
5128     SDValue Op1 = getValue(I.getArgOperand(0));
5129     SDValue Op2 = getValue(I.getArgOperand(1));
5130 
5131     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5132     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5133     return nullptr;
5134   }
5135   case Intrinsic::prefetch: {
5136     SDValue Ops[5];
5137     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5138     Ops[0] = getRoot();
5139     Ops[1] = getValue(I.getArgOperand(0));
5140     Ops[2] = getValue(I.getArgOperand(1));
5141     Ops[3] = getValue(I.getArgOperand(2));
5142     Ops[4] = getValue(I.getArgOperand(3));
5143     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5144                                         DAG.getVTList(MVT::Other), Ops,
5145                                         EVT::getIntegerVT(*Context, 8),
5146                                         MachinePointerInfo(I.getArgOperand(0)),
5147                                         0, /* align */
5148                                         false, /* volatile */
5149                                         rw==0, /* read */
5150                                         rw==1)); /* write */
5151     return nullptr;
5152   }
5153   case Intrinsic::lifetime_start:
5154   case Intrinsic::lifetime_end: {
5155     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5156     // Stack coloring is not enabled in O0, discard region information.
5157     if (TM.getOptLevel() == CodeGenOpt::None)
5158       return nullptr;
5159 
5160     SmallVector<Value *, 4> Allocas;
5161     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5162 
5163     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5164            E = Allocas.end(); Object != E; ++Object) {
5165       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5166 
5167       // Could not find an Alloca.
5168       if (!LifetimeObject)
5169         continue;
5170 
5171       // First check that the Alloca is static, otherwise it won't have a
5172       // valid frame index.
5173       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5174       if (SI == FuncInfo.StaticAllocaMap.end())
5175         return nullptr;
5176 
5177       int FI = SI->second;
5178 
5179       SDValue Ops[2];
5180       Ops[0] = getRoot();
5181       Ops[1] =
5182           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5183       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5184 
5185       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5186       DAG.setRoot(Res);
5187     }
5188     return nullptr;
5189   }
5190   case Intrinsic::invariant_start:
5191     // Discard region information.
5192     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5193     return nullptr;
5194   case Intrinsic::invariant_end:
5195     // Discard region information.
5196     return nullptr;
5197   case Intrinsic::stackprotectorcheck: {
5198     // Do not actually emit anything for this basic block. Instead we initialize
5199     // the stack protector descriptor and export the guard variable so we can
5200     // access it in FinishBasicBlock.
5201     const BasicBlock *BB = I.getParent();
5202     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5203     ExportFromCurrentBlock(SPDescriptor.getGuard());
5204 
5205     // Flush our exports since we are going to process a terminator.
5206     (void)getControlRoot();
5207     return nullptr;
5208   }
5209   case Intrinsic::clear_cache:
5210     return TLI.getClearCacheBuiltinName();
5211   case Intrinsic::donothing:
5212     // ignore
5213     return nullptr;
5214   case Intrinsic::experimental_stackmap: {
5215     visitStackmap(I);
5216     return nullptr;
5217   }
5218   case Intrinsic::experimental_patchpoint_void:
5219   case Intrinsic::experimental_patchpoint_i64: {
5220     visitPatchpoint(&I);
5221     return nullptr;
5222   }
5223   case Intrinsic::experimental_gc_statepoint: {
5224     visitStatepoint(I);
5225     return nullptr;
5226   }
5227   case Intrinsic::experimental_gc_result: {
5228     visitGCResult(I);
5229     return nullptr;
5230   }
5231   case Intrinsic::experimental_gc_relocate: {
5232     visitGCRelocate(cast<GCRelocateInst>(I));
5233     return nullptr;
5234   }
5235   case Intrinsic::instrprof_increment:
5236     llvm_unreachable("instrprof failed to lower an increment");
5237   case Intrinsic::instrprof_value_profile:
5238     llvm_unreachable("instrprof failed to lower a value profiling call");
5239   case Intrinsic::localescape: {
5240     MachineFunction &MF = DAG.getMachineFunction();
5241     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5242 
5243     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5244     // is the same on all targets.
5245     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5246       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5247       if (isa<ConstantPointerNull>(Arg))
5248         continue; // Skip null pointers. They represent a hole in index space.
5249       AllocaInst *Slot = cast<AllocaInst>(Arg);
5250       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5251              "can only escape static allocas");
5252       int FI = FuncInfo.StaticAllocaMap[Slot];
5253       MCSymbol *FrameAllocSym =
5254           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5255               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5256       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5257               TII->get(TargetOpcode::LOCAL_ESCAPE))
5258           .addSym(FrameAllocSym)
5259           .addFrameIndex(FI);
5260     }
5261 
5262     return nullptr;
5263   }
5264 
5265   case Intrinsic::localrecover: {
5266     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5267     MachineFunction &MF = DAG.getMachineFunction();
5268     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5269 
5270     // Get the symbol that defines the frame offset.
5271     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5272     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5273     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5274     MCSymbol *FrameAllocSym =
5275         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5276             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5277 
5278     // Create a MCSymbol for the label to avoid any target lowering
5279     // that would make this PC relative.
5280     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5281     SDValue OffsetVal =
5282         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5283 
5284     // Add the offset to the FP.
5285     Value *FP = I.getArgOperand(1);
5286     SDValue FPVal = getValue(FP);
5287     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5288     setValue(&I, Add);
5289 
5290     return nullptr;
5291   }
5292 
5293   case Intrinsic::eh_exceptionpointer:
5294   case Intrinsic::eh_exceptioncode: {
5295     // Get the exception pointer vreg, copy from it, and resize it to fit.
5296     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5297     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5298     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5299     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5300     SDValue N =
5301         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5302     if (Intrinsic == Intrinsic::eh_exceptioncode)
5303       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5304     setValue(&I, N);
5305     return nullptr;
5306   }
5307   }
5308 }
5309 
5310 std::pair<SDValue, SDValue>
5311 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5312                                     const BasicBlock *EHPadBB) {
5313   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5314   MCSymbol *BeginLabel = nullptr;
5315 
5316   if (EHPadBB) {
5317     // Insert a label before the invoke call to mark the try range.  This can be
5318     // used to detect deletion of the invoke via the MachineModuleInfo.
5319     BeginLabel = MMI.getContext().createTempSymbol();
5320 
5321     // For SjLj, keep track of which landing pads go with which invokes
5322     // so as to maintain the ordering of pads in the LSDA.
5323     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5324     if (CallSiteIndex) {
5325       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5326       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5327 
5328       // Now that the call site is handled, stop tracking it.
5329       MMI.setCurrentCallSite(0);
5330     }
5331 
5332     // Both PendingLoads and PendingExports must be flushed here;
5333     // this call might not return.
5334     (void)getRoot();
5335     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5336 
5337     CLI.setChain(getRoot());
5338   }
5339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5340   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5341 
5342   assert((CLI.IsTailCall || Result.second.getNode()) &&
5343          "Non-null chain expected with non-tail call!");
5344   assert((Result.second.getNode() || !Result.first.getNode()) &&
5345          "Null value expected with tail call!");
5346 
5347   if (!Result.second.getNode()) {
5348     // As a special case, a null chain means that a tail call has been emitted
5349     // and the DAG root is already updated.
5350     HasTailCall = true;
5351 
5352     // Since there's no actual continuation from this block, nothing can be
5353     // relying on us setting vregs for them.
5354     PendingExports.clear();
5355   } else {
5356     DAG.setRoot(Result.second);
5357   }
5358 
5359   if (EHPadBB) {
5360     // Insert a label at the end of the invoke call to mark the try range.  This
5361     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5362     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5363     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5364 
5365     // Inform MachineModuleInfo of range.
5366     if (MMI.hasEHFunclets()) {
5367       assert(CLI.CS);
5368       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5369       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5370                                 BeginLabel, EndLabel);
5371     } else {
5372       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5373     }
5374   }
5375 
5376   return Result;
5377 }
5378 
5379 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5380                                       bool isTailCall,
5381                                       const BasicBlock *EHPadBB) {
5382   FunctionType *FTy = CS.getFunctionType();
5383   Type *RetTy = CS.getType();
5384 
5385   TargetLowering::ArgListTy Args;
5386   TargetLowering::ArgListEntry Entry;
5387   Args.reserve(CS.arg_size());
5388 
5389   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5390        i != e; ++i) {
5391     const Value *V = *i;
5392 
5393     // Skip empty types
5394     if (V->getType()->isEmptyTy())
5395       continue;
5396 
5397     SDValue ArgNode = getValue(V);
5398     Entry.Node = ArgNode; Entry.Ty = V->getType();
5399 
5400     // Skip the first return-type Attribute to get to params.
5401     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5402     Args.push_back(Entry);
5403 
5404     // If we have an explicit sret argument that is an Instruction, (i.e., it
5405     // might point to function-local memory), we can't meaningfully tail-call.
5406     if (Entry.isSRet && isa<Instruction>(V))
5407       isTailCall = false;
5408   }
5409 
5410   // Check if target-independent constraints permit a tail call here.
5411   // Target-dependent constraints are checked within TLI->LowerCallTo.
5412   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5413     isTailCall = false;
5414 
5415   TargetLowering::CallLoweringInfo CLI(DAG);
5416   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5417     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5418     .setTailCall(isTailCall);
5419   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5420 
5421   if (Result.first.getNode()) {
5422     const Instruction *Inst = CS.getInstruction();
5423     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5424     setValue(Inst, Result.first);
5425   }
5426 }
5427 
5428 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5429 /// value is equal or not-equal to zero.
5430 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5431   for (const User *U : V->users()) {
5432     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5433       if (IC->isEquality())
5434         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5435           if (C->isNullValue())
5436             continue;
5437     // Unknown instruction.
5438     return false;
5439   }
5440   return true;
5441 }
5442 
5443 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5444                              Type *LoadTy,
5445                              SelectionDAGBuilder &Builder) {
5446 
5447   // Check to see if this load can be trivially constant folded, e.g. if the
5448   // input is from a string literal.
5449   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5450     // Cast pointer to the type we really want to load.
5451     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5452                                          PointerType::getUnqual(LoadTy));
5453 
5454     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5455             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5456       return Builder.getValue(LoadCst);
5457   }
5458 
5459   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5460   // still constant memory, the input chain can be the entry node.
5461   SDValue Root;
5462   bool ConstantMemory = false;
5463 
5464   // Do not serialize (non-volatile) loads of constant memory with anything.
5465   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5466     Root = Builder.DAG.getEntryNode();
5467     ConstantMemory = true;
5468   } else {
5469     // Do not serialize non-volatile loads against each other.
5470     Root = Builder.DAG.getRoot();
5471   }
5472 
5473   SDValue Ptr = Builder.getValue(PtrVal);
5474   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5475                                         Ptr, MachinePointerInfo(PtrVal),
5476                                         false /*volatile*/,
5477                                         false /*nontemporal*/,
5478                                         false /*isinvariant*/, 1 /* align=1 */);
5479 
5480   if (!ConstantMemory)
5481     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5482   return LoadVal;
5483 }
5484 
5485 /// processIntegerCallValue - Record the value for an instruction that
5486 /// produces an integer result, converting the type where necessary.
5487 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5488                                                   SDValue Value,
5489                                                   bool IsSigned) {
5490   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5491                                                     I.getType(), true);
5492   if (IsSigned)
5493     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5494   else
5495     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5496   setValue(&I, Value);
5497 }
5498 
5499 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5500 /// If so, return true and lower it, otherwise return false and it will be
5501 /// lowered like a normal call.
5502 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5503   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5504   if (I.getNumArgOperands() != 3)
5505     return false;
5506 
5507   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5508   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5509       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5510       !I.getType()->isIntegerTy())
5511     return false;
5512 
5513   const Value *Size = I.getArgOperand(2);
5514   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5515   if (CSize && CSize->getZExtValue() == 0) {
5516     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5517                                                           I.getType(), true);
5518     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5519     return true;
5520   }
5521 
5522   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5523   std::pair<SDValue, SDValue> Res =
5524     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5525                                 getValue(LHS), getValue(RHS), getValue(Size),
5526                                 MachinePointerInfo(LHS),
5527                                 MachinePointerInfo(RHS));
5528   if (Res.first.getNode()) {
5529     processIntegerCallValue(I, Res.first, true);
5530     PendingLoads.push_back(Res.second);
5531     return true;
5532   }
5533 
5534   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5535   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5536   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5537     bool ActuallyDoIt = true;
5538     MVT LoadVT;
5539     Type *LoadTy;
5540     switch (CSize->getZExtValue()) {
5541     default:
5542       LoadVT = MVT::Other;
5543       LoadTy = nullptr;
5544       ActuallyDoIt = false;
5545       break;
5546     case 2:
5547       LoadVT = MVT::i16;
5548       LoadTy = Type::getInt16Ty(CSize->getContext());
5549       break;
5550     case 4:
5551       LoadVT = MVT::i32;
5552       LoadTy = Type::getInt32Ty(CSize->getContext());
5553       break;
5554     case 8:
5555       LoadVT = MVT::i64;
5556       LoadTy = Type::getInt64Ty(CSize->getContext());
5557       break;
5558         /*
5559     case 16:
5560       LoadVT = MVT::v4i32;
5561       LoadTy = Type::getInt32Ty(CSize->getContext());
5562       LoadTy = VectorType::get(LoadTy, 4);
5563       break;
5564          */
5565     }
5566 
5567     // This turns into unaligned loads.  We only do this if the target natively
5568     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5569     // we'll only produce a small number of byte loads.
5570 
5571     // Require that we can find a legal MVT, and only do this if the target
5572     // supports unaligned loads of that type.  Expanding into byte loads would
5573     // bloat the code.
5574     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5575     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5576       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5577       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5578       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5579       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5580       // TODO: Check alignment of src and dest ptrs.
5581       if (!TLI.isTypeLegal(LoadVT) ||
5582           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5583           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5584         ActuallyDoIt = false;
5585     }
5586 
5587     if (ActuallyDoIt) {
5588       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5589       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5590 
5591       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5592                                  ISD::SETNE);
5593       processIntegerCallValue(I, Res, false);
5594       return true;
5595     }
5596   }
5597 
5598 
5599   return false;
5600 }
5601 
5602 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5603 /// form.  If so, return true and lower it, otherwise return false and it
5604 /// will be lowered like a normal call.
5605 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5606   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5607   if (I.getNumArgOperands() != 3)
5608     return false;
5609 
5610   const Value *Src = I.getArgOperand(0);
5611   const Value *Char = I.getArgOperand(1);
5612   const Value *Length = I.getArgOperand(2);
5613   if (!Src->getType()->isPointerTy() ||
5614       !Char->getType()->isIntegerTy() ||
5615       !Length->getType()->isIntegerTy() ||
5616       !I.getType()->isPointerTy())
5617     return false;
5618 
5619   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5620   std::pair<SDValue, SDValue> Res =
5621     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5622                                 getValue(Src), getValue(Char), getValue(Length),
5623                                 MachinePointerInfo(Src));
5624   if (Res.first.getNode()) {
5625     setValue(&I, Res.first);
5626     PendingLoads.push_back(Res.second);
5627     return true;
5628   }
5629 
5630   return false;
5631 }
5632 
5633 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5634 /// optimized form.  If so, return true and lower it, otherwise return false
5635 /// and it will be lowered like a normal call.
5636 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5637   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5638   if (I.getNumArgOperands() != 2)
5639     return false;
5640 
5641   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5642   if (!Arg0->getType()->isPointerTy() ||
5643       !Arg1->getType()->isPointerTy() ||
5644       !I.getType()->isPointerTy())
5645     return false;
5646 
5647   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5648   std::pair<SDValue, SDValue> Res =
5649     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5650                                 getValue(Arg0), getValue(Arg1),
5651                                 MachinePointerInfo(Arg0),
5652                                 MachinePointerInfo(Arg1), isStpcpy);
5653   if (Res.first.getNode()) {
5654     setValue(&I, Res.first);
5655     DAG.setRoot(Res.second);
5656     return true;
5657   }
5658 
5659   return false;
5660 }
5661 
5662 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5663 /// If so, return true and lower it, otherwise return false and it will be
5664 /// lowered like a normal call.
5665 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5666   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5667   if (I.getNumArgOperands() != 2)
5668     return false;
5669 
5670   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5671   if (!Arg0->getType()->isPointerTy() ||
5672       !Arg1->getType()->isPointerTy() ||
5673       !I.getType()->isIntegerTy())
5674     return false;
5675 
5676   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5677   std::pair<SDValue, SDValue> Res =
5678     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5679                                 getValue(Arg0), getValue(Arg1),
5680                                 MachinePointerInfo(Arg0),
5681                                 MachinePointerInfo(Arg1));
5682   if (Res.first.getNode()) {
5683     processIntegerCallValue(I, Res.first, true);
5684     PendingLoads.push_back(Res.second);
5685     return true;
5686   }
5687 
5688   return false;
5689 }
5690 
5691 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5692 /// form.  If so, return true and lower it, otherwise return false and it
5693 /// will be lowered like a normal call.
5694 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5695   // Verify that the prototype makes sense.  size_t strlen(char *)
5696   if (I.getNumArgOperands() != 1)
5697     return false;
5698 
5699   const Value *Arg0 = I.getArgOperand(0);
5700   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5701     return false;
5702 
5703   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5704   std::pair<SDValue, SDValue> Res =
5705     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5706                                 getValue(Arg0), MachinePointerInfo(Arg0));
5707   if (Res.first.getNode()) {
5708     processIntegerCallValue(I, Res.first, false);
5709     PendingLoads.push_back(Res.second);
5710     return true;
5711   }
5712 
5713   return false;
5714 }
5715 
5716 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5717 /// form.  If so, return true and lower it, otherwise return false and it
5718 /// will be lowered like a normal call.
5719 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5720   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5721   if (I.getNumArgOperands() != 2)
5722     return false;
5723 
5724   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5725   if (!Arg0->getType()->isPointerTy() ||
5726       !Arg1->getType()->isIntegerTy() ||
5727       !I.getType()->isIntegerTy())
5728     return false;
5729 
5730   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5731   std::pair<SDValue, SDValue> Res =
5732     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5733                                  getValue(Arg0), getValue(Arg1),
5734                                  MachinePointerInfo(Arg0));
5735   if (Res.first.getNode()) {
5736     processIntegerCallValue(I, Res.first, false);
5737     PendingLoads.push_back(Res.second);
5738     return true;
5739   }
5740 
5741   return false;
5742 }
5743 
5744 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5745 /// operation (as expected), translate it to an SDNode with the specified opcode
5746 /// and return true.
5747 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5748                                               unsigned Opcode) {
5749   // Sanity check that it really is a unary floating-point call.
5750   if (I.getNumArgOperands() != 1 ||
5751       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5752       I.getType() != I.getArgOperand(0)->getType() ||
5753       !I.onlyReadsMemory())
5754     return false;
5755 
5756   SDValue Tmp = getValue(I.getArgOperand(0));
5757   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5758   return true;
5759 }
5760 
5761 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5762 /// operation (as expected), translate it to an SDNode with the specified opcode
5763 /// and return true.
5764 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5765                                                unsigned Opcode) {
5766   // Sanity check that it really is a binary floating-point call.
5767   if (I.getNumArgOperands() != 2 ||
5768       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5769       I.getType() != I.getArgOperand(0)->getType() ||
5770       I.getType() != I.getArgOperand(1)->getType() ||
5771       !I.onlyReadsMemory())
5772     return false;
5773 
5774   SDValue Tmp0 = getValue(I.getArgOperand(0));
5775   SDValue Tmp1 = getValue(I.getArgOperand(1));
5776   EVT VT = Tmp0.getValueType();
5777   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5778   return true;
5779 }
5780 
5781 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5782   // Handle inline assembly differently.
5783   if (isa<InlineAsm>(I.getCalledValue())) {
5784     visitInlineAsm(&I);
5785     return;
5786   }
5787 
5788   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5789   ComputeUsesVAFloatArgument(I, &MMI);
5790 
5791   const char *RenameFn = nullptr;
5792   if (Function *F = I.getCalledFunction()) {
5793     if (F->isDeclaration()) {
5794       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5795         if (unsigned IID = II->getIntrinsicID(F)) {
5796           RenameFn = visitIntrinsicCall(I, IID);
5797           if (!RenameFn)
5798             return;
5799         }
5800       }
5801       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5802         RenameFn = visitIntrinsicCall(I, IID);
5803         if (!RenameFn)
5804           return;
5805       }
5806     }
5807 
5808     // Check for well-known libc/libm calls.  If the function is internal, it
5809     // can't be a library call.
5810     LibFunc::Func Func;
5811     if (!F->hasLocalLinkage() && F->hasName() &&
5812         LibInfo->getLibFunc(F->getName(), Func) &&
5813         LibInfo->hasOptimizedCodeGen(Func)) {
5814       switch (Func) {
5815       default: break;
5816       case LibFunc::copysign:
5817       case LibFunc::copysignf:
5818       case LibFunc::copysignl:
5819         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5820             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5821             I.getType() == I.getArgOperand(0)->getType() &&
5822             I.getType() == I.getArgOperand(1)->getType() &&
5823             I.onlyReadsMemory()) {
5824           SDValue LHS = getValue(I.getArgOperand(0));
5825           SDValue RHS = getValue(I.getArgOperand(1));
5826           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5827                                    LHS.getValueType(), LHS, RHS));
5828           return;
5829         }
5830         break;
5831       case LibFunc::fabs:
5832       case LibFunc::fabsf:
5833       case LibFunc::fabsl:
5834         if (visitUnaryFloatCall(I, ISD::FABS))
5835           return;
5836         break;
5837       case LibFunc::fmin:
5838       case LibFunc::fminf:
5839       case LibFunc::fminl:
5840         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5841           return;
5842         break;
5843       case LibFunc::fmax:
5844       case LibFunc::fmaxf:
5845       case LibFunc::fmaxl:
5846         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5847           return;
5848         break;
5849       case LibFunc::sin:
5850       case LibFunc::sinf:
5851       case LibFunc::sinl:
5852         if (visitUnaryFloatCall(I, ISD::FSIN))
5853           return;
5854         break;
5855       case LibFunc::cos:
5856       case LibFunc::cosf:
5857       case LibFunc::cosl:
5858         if (visitUnaryFloatCall(I, ISD::FCOS))
5859           return;
5860         break;
5861       case LibFunc::sqrt:
5862       case LibFunc::sqrtf:
5863       case LibFunc::sqrtl:
5864       case LibFunc::sqrt_finite:
5865       case LibFunc::sqrtf_finite:
5866       case LibFunc::sqrtl_finite:
5867         if (visitUnaryFloatCall(I, ISD::FSQRT))
5868           return;
5869         break;
5870       case LibFunc::floor:
5871       case LibFunc::floorf:
5872       case LibFunc::floorl:
5873         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5874           return;
5875         break;
5876       case LibFunc::nearbyint:
5877       case LibFunc::nearbyintf:
5878       case LibFunc::nearbyintl:
5879         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5880           return;
5881         break;
5882       case LibFunc::ceil:
5883       case LibFunc::ceilf:
5884       case LibFunc::ceill:
5885         if (visitUnaryFloatCall(I, ISD::FCEIL))
5886           return;
5887         break;
5888       case LibFunc::rint:
5889       case LibFunc::rintf:
5890       case LibFunc::rintl:
5891         if (visitUnaryFloatCall(I, ISD::FRINT))
5892           return;
5893         break;
5894       case LibFunc::round:
5895       case LibFunc::roundf:
5896       case LibFunc::roundl:
5897         if (visitUnaryFloatCall(I, ISD::FROUND))
5898           return;
5899         break;
5900       case LibFunc::trunc:
5901       case LibFunc::truncf:
5902       case LibFunc::truncl:
5903         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5904           return;
5905         break;
5906       case LibFunc::log2:
5907       case LibFunc::log2f:
5908       case LibFunc::log2l:
5909         if (visitUnaryFloatCall(I, ISD::FLOG2))
5910           return;
5911         break;
5912       case LibFunc::exp2:
5913       case LibFunc::exp2f:
5914       case LibFunc::exp2l:
5915         if (visitUnaryFloatCall(I, ISD::FEXP2))
5916           return;
5917         break;
5918       case LibFunc::memcmp:
5919         if (visitMemCmpCall(I))
5920           return;
5921         break;
5922       case LibFunc::memchr:
5923         if (visitMemChrCall(I))
5924           return;
5925         break;
5926       case LibFunc::strcpy:
5927         if (visitStrCpyCall(I, false))
5928           return;
5929         break;
5930       case LibFunc::stpcpy:
5931         if (visitStrCpyCall(I, true))
5932           return;
5933         break;
5934       case LibFunc::strcmp:
5935         if (visitStrCmpCall(I))
5936           return;
5937         break;
5938       case LibFunc::strlen:
5939         if (visitStrLenCall(I))
5940           return;
5941         break;
5942       case LibFunc::strnlen:
5943         if (visitStrNLenCall(I))
5944           return;
5945         break;
5946       }
5947     }
5948   }
5949 
5950   SDValue Callee;
5951   if (!RenameFn)
5952     Callee = getValue(I.getCalledValue());
5953   else
5954     Callee = DAG.getExternalSymbol(
5955         RenameFn,
5956         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5957 
5958   // Check if we can potentially perform a tail call. More detailed checking is
5959   // be done within LowerCallTo, after more information about the call is known.
5960   LowerCallTo(&I, Callee, I.isTailCall());
5961 }
5962 
5963 namespace {
5964 
5965 /// AsmOperandInfo - This contains information for each constraint that we are
5966 /// lowering.
5967 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5968 public:
5969   /// CallOperand - If this is the result output operand or a clobber
5970   /// this is null, otherwise it is the incoming operand to the CallInst.
5971   /// This gets modified as the asm is processed.
5972   SDValue CallOperand;
5973 
5974   /// AssignedRegs - If this is a register or register class operand, this
5975   /// contains the set of register corresponding to the operand.
5976   RegsForValue AssignedRegs;
5977 
5978   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5979     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5980   }
5981 
5982   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5983   /// corresponds to.  If there is no Value* for this operand, it returns
5984   /// MVT::Other.
5985   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5986                            const DataLayout &DL) const {
5987     if (!CallOperandVal) return MVT::Other;
5988 
5989     if (isa<BasicBlock>(CallOperandVal))
5990       return TLI.getPointerTy(DL);
5991 
5992     llvm::Type *OpTy = CallOperandVal->getType();
5993 
5994     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5995     // If this is an indirect operand, the operand is a pointer to the
5996     // accessed type.
5997     if (isIndirect) {
5998       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5999       if (!PtrTy)
6000         report_fatal_error("Indirect operand for inline asm not a pointer!");
6001       OpTy = PtrTy->getElementType();
6002     }
6003 
6004     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6005     if (StructType *STy = dyn_cast<StructType>(OpTy))
6006       if (STy->getNumElements() == 1)
6007         OpTy = STy->getElementType(0);
6008 
6009     // If OpTy is not a single value, it may be a struct/union that we
6010     // can tile with integers.
6011     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6012       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6013       switch (BitSize) {
6014       default: break;
6015       case 1:
6016       case 8:
6017       case 16:
6018       case 32:
6019       case 64:
6020       case 128:
6021         OpTy = IntegerType::get(Context, BitSize);
6022         break;
6023       }
6024     }
6025 
6026     return TLI.getValueType(DL, OpTy, true);
6027   }
6028 };
6029 
6030 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6031 
6032 } // end anonymous namespace
6033 
6034 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6035 /// specified operand.  We prefer to assign virtual registers, to allow the
6036 /// register allocator to handle the assignment process.  However, if the asm
6037 /// uses features that we can't model on machineinstrs, we have SDISel do the
6038 /// allocation.  This produces generally horrible, but correct, code.
6039 ///
6040 ///   OpInfo describes the operand.
6041 ///
6042 static void GetRegistersForValue(SelectionDAG &DAG,
6043                                  const TargetLowering &TLI,
6044                                  SDLoc DL,
6045                                  SDISelAsmOperandInfo &OpInfo) {
6046   LLVMContext &Context = *DAG.getContext();
6047 
6048   MachineFunction &MF = DAG.getMachineFunction();
6049   SmallVector<unsigned, 4> Regs;
6050 
6051   // If this is a constraint for a single physreg, or a constraint for a
6052   // register class, find it.
6053   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6054       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6055                                        OpInfo.ConstraintCode,
6056                                        OpInfo.ConstraintVT);
6057 
6058   unsigned NumRegs = 1;
6059   if (OpInfo.ConstraintVT != MVT::Other) {
6060     // If this is a FP input in an integer register (or visa versa) insert a bit
6061     // cast of the input value.  More generally, handle any case where the input
6062     // value disagrees with the register class we plan to stick this in.
6063     if (OpInfo.Type == InlineAsm::isInput &&
6064         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6065       // Try to convert to the first EVT that the reg class contains.  If the
6066       // types are identical size, use a bitcast to convert (e.g. two differing
6067       // vector types).
6068       MVT RegVT = *PhysReg.second->vt_begin();
6069       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6070         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6071                                          RegVT, OpInfo.CallOperand);
6072         OpInfo.ConstraintVT = RegVT;
6073       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6074         // If the input is a FP value and we want it in FP registers, do a
6075         // bitcast to the corresponding integer type.  This turns an f64 value
6076         // into i64, which can be passed with two i32 values on a 32-bit
6077         // machine.
6078         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6079         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6080                                          RegVT, OpInfo.CallOperand);
6081         OpInfo.ConstraintVT = RegVT;
6082       }
6083     }
6084 
6085     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6086   }
6087 
6088   MVT RegVT;
6089   EVT ValueVT = OpInfo.ConstraintVT;
6090 
6091   // If this is a constraint for a specific physical register, like {r17},
6092   // assign it now.
6093   if (unsigned AssignedReg = PhysReg.first) {
6094     const TargetRegisterClass *RC = PhysReg.second;
6095     if (OpInfo.ConstraintVT == MVT::Other)
6096       ValueVT = *RC->vt_begin();
6097 
6098     // Get the actual register value type.  This is important, because the user
6099     // may have asked for (e.g.) the AX register in i32 type.  We need to
6100     // remember that AX is actually i16 to get the right extension.
6101     RegVT = *RC->vt_begin();
6102 
6103     // This is a explicit reference to a physical register.
6104     Regs.push_back(AssignedReg);
6105 
6106     // If this is an expanded reference, add the rest of the regs to Regs.
6107     if (NumRegs != 1) {
6108       TargetRegisterClass::iterator I = RC->begin();
6109       for (; *I != AssignedReg; ++I)
6110         assert(I != RC->end() && "Didn't find reg!");
6111 
6112       // Already added the first reg.
6113       --NumRegs; ++I;
6114       for (; NumRegs; --NumRegs, ++I) {
6115         assert(I != RC->end() && "Ran out of registers to allocate!");
6116         Regs.push_back(*I);
6117       }
6118     }
6119 
6120     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6121     return;
6122   }
6123 
6124   // Otherwise, if this was a reference to an LLVM register class, create vregs
6125   // for this reference.
6126   if (const TargetRegisterClass *RC = PhysReg.second) {
6127     RegVT = *RC->vt_begin();
6128     if (OpInfo.ConstraintVT == MVT::Other)
6129       ValueVT = RegVT;
6130 
6131     // Create the appropriate number of virtual registers.
6132     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6133     for (; NumRegs; --NumRegs)
6134       Regs.push_back(RegInfo.createVirtualRegister(RC));
6135 
6136     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6137     return;
6138   }
6139 
6140   // Otherwise, we couldn't allocate enough registers for this.
6141 }
6142 
6143 /// visitInlineAsm - Handle a call to an InlineAsm object.
6144 ///
6145 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6146   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6147 
6148   /// ConstraintOperands - Information about all of the constraints.
6149   SDISelAsmOperandInfoVector ConstraintOperands;
6150 
6151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6152   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6153       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6154 
6155   bool hasMemory = false;
6156 
6157   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6158   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6159   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6160     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6161     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6162 
6163     MVT OpVT = MVT::Other;
6164 
6165     // Compute the value type for each operand.
6166     switch (OpInfo.Type) {
6167     case InlineAsm::isOutput:
6168       // Indirect outputs just consume an argument.
6169       if (OpInfo.isIndirect) {
6170         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6171         break;
6172       }
6173 
6174       // The return value of the call is this value.  As such, there is no
6175       // corresponding argument.
6176       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6177       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6178         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6179                                       STy->getElementType(ResNo));
6180       } else {
6181         assert(ResNo == 0 && "Asm only has one result!");
6182         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6183       }
6184       ++ResNo;
6185       break;
6186     case InlineAsm::isInput:
6187       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6188       break;
6189     case InlineAsm::isClobber:
6190       // Nothing to do.
6191       break;
6192     }
6193 
6194     // If this is an input or an indirect output, process the call argument.
6195     // BasicBlocks are labels, currently appearing only in asm's.
6196     if (OpInfo.CallOperandVal) {
6197       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6198         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6199       } else {
6200         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6201       }
6202 
6203       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6204                                          DAG.getDataLayout()).getSimpleVT();
6205     }
6206 
6207     OpInfo.ConstraintVT = OpVT;
6208 
6209     // Indirect operand accesses access memory.
6210     if (OpInfo.isIndirect)
6211       hasMemory = true;
6212     else {
6213       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6214         TargetLowering::ConstraintType
6215           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6216         if (CType == TargetLowering::C_Memory) {
6217           hasMemory = true;
6218           break;
6219         }
6220       }
6221     }
6222   }
6223 
6224   SDValue Chain, Flag;
6225 
6226   // We won't need to flush pending loads if this asm doesn't touch
6227   // memory and is nonvolatile.
6228   if (hasMemory || IA->hasSideEffects())
6229     Chain = getRoot();
6230   else
6231     Chain = DAG.getRoot();
6232 
6233   // Second pass over the constraints: compute which constraint option to use
6234   // and assign registers to constraints that want a specific physreg.
6235   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6236     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6237 
6238     // If this is an output operand with a matching input operand, look up the
6239     // matching input. If their types mismatch, e.g. one is an integer, the
6240     // other is floating point, or their sizes are different, flag it as an
6241     // error.
6242     if (OpInfo.hasMatchingInput()) {
6243       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6244 
6245       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6246         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6247         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6248             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6249                                              OpInfo.ConstraintVT);
6250         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6251             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6252                                              Input.ConstraintVT);
6253         if ((OpInfo.ConstraintVT.isInteger() !=
6254              Input.ConstraintVT.isInteger()) ||
6255             (MatchRC.second != InputRC.second)) {
6256           report_fatal_error("Unsupported asm: input constraint"
6257                              " with a matching output constraint of"
6258                              " incompatible type!");
6259         }
6260         Input.ConstraintVT = OpInfo.ConstraintVT;
6261       }
6262     }
6263 
6264     // Compute the constraint code and ConstraintType to use.
6265     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6266 
6267     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6268         OpInfo.Type == InlineAsm::isClobber)
6269       continue;
6270 
6271     // If this is a memory input, and if the operand is not indirect, do what we
6272     // need to to provide an address for the memory input.
6273     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6274         !OpInfo.isIndirect) {
6275       assert((OpInfo.isMultipleAlternative ||
6276               (OpInfo.Type == InlineAsm::isInput)) &&
6277              "Can only indirectify direct input operands!");
6278 
6279       // Memory operands really want the address of the value.  If we don't have
6280       // an indirect input, put it in the constpool if we can, otherwise spill
6281       // it to a stack slot.
6282       // TODO: This isn't quite right. We need to handle these according to
6283       // the addressing mode that the constraint wants. Also, this may take
6284       // an additional register for the computation and we don't want that
6285       // either.
6286 
6287       // If the operand is a float, integer, or vector constant, spill to a
6288       // constant pool entry to get its address.
6289       const Value *OpVal = OpInfo.CallOperandVal;
6290       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6291           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6292         OpInfo.CallOperand = DAG.getConstantPool(
6293             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6294       } else {
6295         // Otherwise, create a stack slot and emit a store to it before the
6296         // asm.
6297         Type *Ty = OpVal->getType();
6298         auto &DL = DAG.getDataLayout();
6299         uint64_t TySize = DL.getTypeAllocSize(Ty);
6300         unsigned Align = DL.getPrefTypeAlignment(Ty);
6301         MachineFunction &MF = DAG.getMachineFunction();
6302         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6303         SDValue StackSlot =
6304             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6305         Chain = DAG.getStore(
6306             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6307             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6308             false, false, 0);
6309         OpInfo.CallOperand = StackSlot;
6310       }
6311 
6312       // There is no longer a Value* corresponding to this operand.
6313       OpInfo.CallOperandVal = nullptr;
6314 
6315       // It is now an indirect operand.
6316       OpInfo.isIndirect = true;
6317     }
6318 
6319     // If this constraint is for a specific register, allocate it before
6320     // anything else.
6321     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6322       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6323   }
6324 
6325   // Second pass - Loop over all of the operands, assigning virtual or physregs
6326   // to register class operands.
6327   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6328     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6329 
6330     // C_Register operands have already been allocated, Other/Memory don't need
6331     // to be.
6332     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6333       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6334   }
6335 
6336   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6337   std::vector<SDValue> AsmNodeOperands;
6338   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6339   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6340       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6341 
6342   // If we have a !srcloc metadata node associated with it, we want to attach
6343   // this to the ultimately generated inline asm machineinstr.  To do this, we
6344   // pass in the third operand as this (potentially null) inline asm MDNode.
6345   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6346   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6347 
6348   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6349   // bits as operand 3.
6350   unsigned ExtraInfo = 0;
6351   if (IA->hasSideEffects())
6352     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6353   if (IA->isAlignStack())
6354     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6355   // Set the asm dialect.
6356   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6357 
6358   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6359   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6360     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6361 
6362     // Compute the constraint code and ConstraintType to use.
6363     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6364 
6365     // Ideally, we would only check against memory constraints.  However, the
6366     // meaning of an other constraint can be target-specific and we can't easily
6367     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6368     // for other constriants as well.
6369     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6370         OpInfo.ConstraintType == TargetLowering::C_Other) {
6371       if (OpInfo.Type == InlineAsm::isInput)
6372         ExtraInfo |= InlineAsm::Extra_MayLoad;
6373       else if (OpInfo.Type == InlineAsm::isOutput)
6374         ExtraInfo |= InlineAsm::Extra_MayStore;
6375       else if (OpInfo.Type == InlineAsm::isClobber)
6376         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6377     }
6378   }
6379 
6380   AsmNodeOperands.push_back(DAG.getTargetConstant(
6381       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6382 
6383   // Loop over all of the inputs, copying the operand values into the
6384   // appropriate registers and processing the output regs.
6385   RegsForValue RetValRegs;
6386 
6387   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6388   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6389 
6390   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6391     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6392 
6393     switch (OpInfo.Type) {
6394     case InlineAsm::isOutput: {
6395       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6396           OpInfo.ConstraintType != TargetLowering::C_Register) {
6397         // Memory output, or 'other' output (e.g. 'X' constraint).
6398         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6399 
6400         unsigned ConstraintID =
6401             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6402         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6403                "Failed to convert memory constraint code to constraint id.");
6404 
6405         // Add information to the INLINEASM node to know about this output.
6406         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6407         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6408         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6409                                                         MVT::i32));
6410         AsmNodeOperands.push_back(OpInfo.CallOperand);
6411         break;
6412       }
6413 
6414       // Otherwise, this is a register or register class output.
6415 
6416       // Copy the output from the appropriate register.  Find a register that
6417       // we can use.
6418       if (OpInfo.AssignedRegs.Regs.empty()) {
6419         LLVMContext &Ctx = *DAG.getContext();
6420         Ctx.emitError(CS.getInstruction(),
6421                       "couldn't allocate output register for constraint '" +
6422                           Twine(OpInfo.ConstraintCode) + "'");
6423         return;
6424       }
6425 
6426       // If this is an indirect operand, store through the pointer after the
6427       // asm.
6428       if (OpInfo.isIndirect) {
6429         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6430                                                       OpInfo.CallOperandVal));
6431       } else {
6432         // This is the result value of the call.
6433         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6434         // Concatenate this output onto the outputs list.
6435         RetValRegs.append(OpInfo.AssignedRegs);
6436       }
6437 
6438       // Add information to the INLINEASM node to know that this register is
6439       // set.
6440       OpInfo.AssignedRegs
6441           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6442                                     ? InlineAsm::Kind_RegDefEarlyClobber
6443                                     : InlineAsm::Kind_RegDef,
6444                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6445       break;
6446     }
6447     case InlineAsm::isInput: {
6448       SDValue InOperandVal = OpInfo.CallOperand;
6449 
6450       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6451         // If this is required to match an output register we have already set,
6452         // just use its register.
6453         unsigned OperandNo = OpInfo.getMatchedOperand();
6454 
6455         // Scan until we find the definition we already emitted of this operand.
6456         // When we find it, create a RegsForValue operand.
6457         unsigned CurOp = InlineAsm::Op_FirstOperand;
6458         for (; OperandNo; --OperandNo) {
6459           // Advance to the next operand.
6460           unsigned OpFlag =
6461             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6462           assert((InlineAsm::isRegDefKind(OpFlag) ||
6463                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6464                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6465           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6466         }
6467 
6468         unsigned OpFlag =
6469           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6470         if (InlineAsm::isRegDefKind(OpFlag) ||
6471             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6472           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6473           if (OpInfo.isIndirect) {
6474             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6475             LLVMContext &Ctx = *DAG.getContext();
6476             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6477                                                " don't know how to handle tied "
6478                                                "indirect register inputs");
6479             return;
6480           }
6481 
6482           RegsForValue MatchedRegs;
6483           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6484           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6485           MatchedRegs.RegVTs.push_back(RegVT);
6486           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6487           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6488                i != e; ++i) {
6489             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6490               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6491             else {
6492               LLVMContext &Ctx = *DAG.getContext();
6493               Ctx.emitError(CS.getInstruction(),
6494                             "inline asm error: This value"
6495                             " type register class is not natively supported!");
6496               return;
6497             }
6498           }
6499           SDLoc dl = getCurSDLoc();
6500           // Use the produced MatchedRegs object to
6501           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6502                                     Chain, &Flag, CS.getInstruction());
6503           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6504                                            true, OpInfo.getMatchedOperand(), dl,
6505                                            DAG, AsmNodeOperands);
6506           break;
6507         }
6508 
6509         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6510         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6511                "Unexpected number of operands");
6512         // Add information to the INLINEASM node to know about this input.
6513         // See InlineAsm.h isUseOperandTiedToDef.
6514         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6515         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6516                                                     OpInfo.getMatchedOperand());
6517         AsmNodeOperands.push_back(DAG.getTargetConstant(
6518             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6519         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6520         break;
6521       }
6522 
6523       // Treat indirect 'X' constraint as memory.
6524       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6525           OpInfo.isIndirect)
6526         OpInfo.ConstraintType = TargetLowering::C_Memory;
6527 
6528       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6529         std::vector<SDValue> Ops;
6530         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6531                                           Ops, DAG);
6532         if (Ops.empty()) {
6533           LLVMContext &Ctx = *DAG.getContext();
6534           Ctx.emitError(CS.getInstruction(),
6535                         "invalid operand for inline asm constraint '" +
6536                             Twine(OpInfo.ConstraintCode) + "'");
6537           return;
6538         }
6539 
6540         // Add information to the INLINEASM node to know about this input.
6541         unsigned ResOpType =
6542           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6543         AsmNodeOperands.push_back(DAG.getTargetConstant(
6544             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6545         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6546         break;
6547       }
6548 
6549       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6550         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6551         assert(InOperandVal.getValueType() ==
6552                    TLI.getPointerTy(DAG.getDataLayout()) &&
6553                "Memory operands expect pointer values");
6554 
6555         unsigned ConstraintID =
6556             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6557         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6558                "Failed to convert memory constraint code to constraint id.");
6559 
6560         // Add information to the INLINEASM node to know about this input.
6561         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6562         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6563         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6564                                                         getCurSDLoc(),
6565                                                         MVT::i32));
6566         AsmNodeOperands.push_back(InOperandVal);
6567         break;
6568       }
6569 
6570       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6571               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6572              "Unknown constraint type!");
6573 
6574       // TODO: Support this.
6575       if (OpInfo.isIndirect) {
6576         LLVMContext &Ctx = *DAG.getContext();
6577         Ctx.emitError(CS.getInstruction(),
6578                       "Don't know how to handle indirect register inputs yet "
6579                       "for constraint '" +
6580                           Twine(OpInfo.ConstraintCode) + "'");
6581         return;
6582       }
6583 
6584       // Copy the input into the appropriate registers.
6585       if (OpInfo.AssignedRegs.Regs.empty()) {
6586         LLVMContext &Ctx = *DAG.getContext();
6587         Ctx.emitError(CS.getInstruction(),
6588                       "couldn't allocate input reg for constraint '" +
6589                           Twine(OpInfo.ConstraintCode) + "'");
6590         return;
6591       }
6592 
6593       SDLoc dl = getCurSDLoc();
6594 
6595       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6596                                         Chain, &Flag, CS.getInstruction());
6597 
6598       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6599                                                dl, DAG, AsmNodeOperands);
6600       break;
6601     }
6602     case InlineAsm::isClobber: {
6603       // Add the clobbered value to the operand list, so that the register
6604       // allocator is aware that the physreg got clobbered.
6605       if (!OpInfo.AssignedRegs.Regs.empty())
6606         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6607                                                  false, 0, getCurSDLoc(), DAG,
6608                                                  AsmNodeOperands);
6609       break;
6610     }
6611     }
6612   }
6613 
6614   // Finish up input operands.  Set the input chain and add the flag last.
6615   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6616   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6617 
6618   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6619                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6620   Flag = Chain.getValue(1);
6621 
6622   // If this asm returns a register value, copy the result from that register
6623   // and set it as the value of the call.
6624   if (!RetValRegs.Regs.empty()) {
6625     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6626                                              Chain, &Flag, CS.getInstruction());
6627 
6628     // FIXME: Why don't we do this for inline asms with MRVs?
6629     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6630       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6631 
6632       // If any of the results of the inline asm is a vector, it may have the
6633       // wrong width/num elts.  This can happen for register classes that can
6634       // contain multiple different value types.  The preg or vreg allocated may
6635       // not have the same VT as was expected.  Convert it to the right type
6636       // with bit_convert.
6637       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6638         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6639                           ResultType, Val);
6640 
6641       } else if (ResultType != Val.getValueType() &&
6642                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6643         // If a result value was tied to an input value, the computed result may
6644         // have a wider width than the expected result.  Extract the relevant
6645         // portion.
6646         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6647       }
6648 
6649       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6650     }
6651 
6652     setValue(CS.getInstruction(), Val);
6653     // Don't need to use this as a chain in this case.
6654     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6655       return;
6656   }
6657 
6658   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6659 
6660   // Process indirect outputs, first output all of the flagged copies out of
6661   // physregs.
6662   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6663     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6664     const Value *Ptr = IndirectStoresToEmit[i].second;
6665     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6666                                              Chain, &Flag, IA);
6667     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6668   }
6669 
6670   // Emit the non-flagged stores from the physregs.
6671   SmallVector<SDValue, 8> OutChains;
6672   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6673     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6674                                StoresToEmit[i].first,
6675                                getValue(StoresToEmit[i].second),
6676                                MachinePointerInfo(StoresToEmit[i].second),
6677                                false, false, 0);
6678     OutChains.push_back(Val);
6679   }
6680 
6681   if (!OutChains.empty())
6682     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6683 
6684   DAG.setRoot(Chain);
6685 }
6686 
6687 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6688   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6689                           MVT::Other, getRoot(),
6690                           getValue(I.getArgOperand(0)),
6691                           DAG.getSrcValue(I.getArgOperand(0))));
6692 }
6693 
6694 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6696   const DataLayout &DL = DAG.getDataLayout();
6697   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6698                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6699                            DAG.getSrcValue(I.getOperand(0)),
6700                            DL.getABITypeAlignment(I.getType()));
6701   setValue(&I, V);
6702   DAG.setRoot(V.getValue(1));
6703 }
6704 
6705 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6706   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6707                           MVT::Other, getRoot(),
6708                           getValue(I.getArgOperand(0)),
6709                           DAG.getSrcValue(I.getArgOperand(0))));
6710 }
6711 
6712 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6713   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6714                           MVT::Other, getRoot(),
6715                           getValue(I.getArgOperand(0)),
6716                           getValue(I.getArgOperand(1)),
6717                           DAG.getSrcValue(I.getArgOperand(0)),
6718                           DAG.getSrcValue(I.getArgOperand(1))));
6719 }
6720 
6721 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
6722                                                     const Instruction &I,
6723                                                     SDValue Op) {
6724   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
6725   if (!Range)
6726     return Op;
6727 
6728   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
6729   if (!Lo->isNullValue())
6730     return Op;
6731 
6732   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
6733   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
6734 
6735   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
6736 
6737   SDLoc SL = getCurSDLoc();
6738 
6739   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
6740                              Op, DAG.getValueType(SmallVT));
6741   unsigned NumVals = Op.getNode()->getNumValues();
6742   if (NumVals == 1)
6743     return ZExt;
6744 
6745   SmallVector<SDValue, 4> Ops;
6746 
6747   Ops.push_back(ZExt);
6748   for (unsigned I = 1; I != NumVals; ++I)
6749     Ops.push_back(Op.getValue(I));
6750 
6751   return DAG.getMergeValues(Ops, SL);
6752 }
6753 
6754 /// \brief Lower an argument list according to the target calling convention.
6755 ///
6756 /// \return A tuple of <return-value, token-chain>
6757 ///
6758 /// This is a helper for lowering intrinsics that follow a target calling
6759 /// convention or require stack pointer adjustment. Only a subset of the
6760 /// intrinsic's operands need to participate in the calling convention.
6761 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6762     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6763     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6764   TargetLowering::ArgListTy Args;
6765   Args.reserve(NumArgs);
6766 
6767   // Populate the argument list.
6768   // Attributes for args start at offset 1, after the return attribute.
6769   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6770        ArgI != ArgE; ++ArgI) {
6771     const Value *V = CS->getOperand(ArgI);
6772 
6773     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6774 
6775     TargetLowering::ArgListEntry Entry;
6776     Entry.Node = getValue(V);
6777     Entry.Ty = V->getType();
6778     Entry.setAttributes(&CS, AttrI);
6779     Args.push_back(Entry);
6780   }
6781 
6782   TargetLowering::CallLoweringInfo CLI(DAG);
6783   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6784     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6785     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6786 
6787   return lowerInvokable(CLI, EHPadBB);
6788 }
6789 
6790 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6791 /// or patchpoint target node's operand list.
6792 ///
6793 /// Constants are converted to TargetConstants purely as an optimization to
6794 /// avoid constant materialization and register allocation.
6795 ///
6796 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6797 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6798 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6799 /// address materialization and register allocation, but may also be required
6800 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6801 /// alloca in the entry block, then the runtime may assume that the alloca's
6802 /// StackMap location can be read immediately after compilation and that the
6803 /// location is valid at any point during execution (this is similar to the
6804 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6805 /// only available in a register, then the runtime would need to trap when
6806 /// execution reaches the StackMap in order to read the alloca's location.
6807 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6808                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6809                                 SelectionDAGBuilder &Builder) {
6810   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6811     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6812     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6813       Ops.push_back(
6814         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6815       Ops.push_back(
6816         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6817     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6818       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6819       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6820           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6821     } else
6822       Ops.push_back(OpVal);
6823   }
6824 }
6825 
6826 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6827 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6828   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6829   //                                  [live variables...])
6830 
6831   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6832 
6833   SDValue Chain, InFlag, Callee, NullPtr;
6834   SmallVector<SDValue, 32> Ops;
6835 
6836   SDLoc DL = getCurSDLoc();
6837   Callee = getValue(CI.getCalledValue());
6838   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6839 
6840   // The stackmap intrinsic only records the live variables (the arguemnts
6841   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6842   // intrinsic, this won't be lowered to a function call. This means we don't
6843   // have to worry about calling conventions and target specific lowering code.
6844   // Instead we perform the call lowering right here.
6845   //
6846   // chain, flag = CALLSEQ_START(chain, 0)
6847   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6848   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6849   //
6850   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6851   InFlag = Chain.getValue(1);
6852 
6853   // Add the <id> and <numBytes> constants.
6854   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6855   Ops.push_back(DAG.getTargetConstant(
6856                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6857   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6858   Ops.push_back(DAG.getTargetConstant(
6859                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6860                   MVT::i32));
6861 
6862   // Push live variables for the stack map.
6863   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6864 
6865   // We are not pushing any register mask info here on the operands list,
6866   // because the stackmap doesn't clobber anything.
6867 
6868   // Push the chain and the glue flag.
6869   Ops.push_back(Chain);
6870   Ops.push_back(InFlag);
6871 
6872   // Create the STACKMAP node.
6873   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6874   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6875   Chain = SDValue(SM, 0);
6876   InFlag = Chain.getValue(1);
6877 
6878   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6879 
6880   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6881 
6882   // Set the root to the target-lowered call chain.
6883   DAG.setRoot(Chain);
6884 
6885   // Inform the Frame Information that we have a stackmap in this function.
6886   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6887 }
6888 
6889 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6890 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6891                                           const BasicBlock *EHPadBB) {
6892   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6893   //                                                 i32 <numBytes>,
6894   //                                                 i8* <target>,
6895   //                                                 i32 <numArgs>,
6896   //                                                 [Args...],
6897   //                                                 [live variables...])
6898 
6899   CallingConv::ID CC = CS.getCallingConv();
6900   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6901   bool HasDef = !CS->getType()->isVoidTy();
6902   SDLoc dl = getCurSDLoc();
6903   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6904 
6905   // Handle immediate and symbolic callees.
6906   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6907     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6908                                    /*isTarget=*/true);
6909   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6910     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6911                                          SDLoc(SymbolicCallee),
6912                                          SymbolicCallee->getValueType(0));
6913 
6914   // Get the real number of arguments participating in the call <numArgs>
6915   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6916   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6917 
6918   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6919   // Intrinsics include all meta-operands up to but not including CC.
6920   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6921   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6922          "Not enough arguments provided to the patchpoint intrinsic");
6923 
6924   // For AnyRegCC the arguments are lowered later on manually.
6925   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6926   Type *ReturnTy =
6927     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6928   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6929       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6930 
6931   SDNode *CallEnd = Result.second.getNode();
6932   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6933     CallEnd = CallEnd->getOperand(0).getNode();
6934 
6935   /// Get a call instruction from the call sequence chain.
6936   /// Tail calls are not allowed.
6937   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6938          "Expected a callseq node.");
6939   SDNode *Call = CallEnd->getOperand(0).getNode();
6940   bool HasGlue = Call->getGluedNode();
6941 
6942   // Replace the target specific call node with the patchable intrinsic.
6943   SmallVector<SDValue, 8> Ops;
6944 
6945   // Add the <id> and <numBytes> constants.
6946   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6947   Ops.push_back(DAG.getTargetConstant(
6948                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6949   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6950   Ops.push_back(DAG.getTargetConstant(
6951                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6952                   MVT::i32));
6953 
6954   // Add the callee.
6955   Ops.push_back(Callee);
6956 
6957   // Adjust <numArgs> to account for any arguments that have been passed on the
6958   // stack instead.
6959   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6960   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6961   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6962   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6963 
6964   // Add the calling convention
6965   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6966 
6967   // Add the arguments we omitted previously. The register allocator should
6968   // place these in any free register.
6969   if (IsAnyRegCC)
6970     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6971       Ops.push_back(getValue(CS.getArgument(i)));
6972 
6973   // Push the arguments from the call instruction up to the register mask.
6974   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6975   Ops.append(Call->op_begin() + 2, e);
6976 
6977   // Push live variables for the stack map.
6978   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6979 
6980   // Push the register mask info.
6981   if (HasGlue)
6982     Ops.push_back(*(Call->op_end()-2));
6983   else
6984     Ops.push_back(*(Call->op_end()-1));
6985 
6986   // Push the chain (this is originally the first operand of the call, but
6987   // becomes now the last or second to last operand).
6988   Ops.push_back(*(Call->op_begin()));
6989 
6990   // Push the glue flag (last operand).
6991   if (HasGlue)
6992     Ops.push_back(*(Call->op_end()-1));
6993 
6994   SDVTList NodeTys;
6995   if (IsAnyRegCC && HasDef) {
6996     // Create the return types based on the intrinsic definition
6997     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6998     SmallVector<EVT, 3> ValueVTs;
6999     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7000     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7001 
7002     // There is always a chain and a glue type at the end
7003     ValueVTs.push_back(MVT::Other);
7004     ValueVTs.push_back(MVT::Glue);
7005     NodeTys = DAG.getVTList(ValueVTs);
7006   } else
7007     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7008 
7009   // Replace the target specific call node with a PATCHPOINT node.
7010   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7011                                          dl, NodeTys, Ops);
7012 
7013   // Update the NodeMap.
7014   if (HasDef) {
7015     if (IsAnyRegCC)
7016       setValue(CS.getInstruction(), SDValue(MN, 0));
7017     else
7018       setValue(CS.getInstruction(), Result.first);
7019   }
7020 
7021   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7022   // call sequence. Furthermore the location of the chain and glue can change
7023   // when the AnyReg calling convention is used and the intrinsic returns a
7024   // value.
7025   if (IsAnyRegCC && HasDef) {
7026     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7027     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7028     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7029   } else
7030     DAG.ReplaceAllUsesWith(Call, MN);
7031   DAG.DeleteNode(Call);
7032 
7033   // Inform the Frame Information that we have a patchpoint in this function.
7034   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7035 }
7036 
7037 /// Returns an AttributeSet representing the attributes applied to the return
7038 /// value of the given call.
7039 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7040   SmallVector<Attribute::AttrKind, 2> Attrs;
7041   if (CLI.RetSExt)
7042     Attrs.push_back(Attribute::SExt);
7043   if (CLI.RetZExt)
7044     Attrs.push_back(Attribute::ZExt);
7045   if (CLI.IsInReg)
7046     Attrs.push_back(Attribute::InReg);
7047 
7048   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7049                            Attrs);
7050 }
7051 
7052 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7053 /// implementation, which just calls LowerCall.
7054 /// FIXME: When all targets are
7055 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7056 std::pair<SDValue, SDValue>
7057 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7058   // Handle the incoming return values from the call.
7059   CLI.Ins.clear();
7060   Type *OrigRetTy = CLI.RetTy;
7061   SmallVector<EVT, 4> RetTys;
7062   SmallVector<uint64_t, 4> Offsets;
7063   auto &DL = CLI.DAG.getDataLayout();
7064   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7065 
7066   SmallVector<ISD::OutputArg, 4> Outs;
7067   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7068 
7069   bool CanLowerReturn =
7070       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7071                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7072 
7073   SDValue DemoteStackSlot;
7074   int DemoteStackIdx = -100;
7075   if (!CanLowerReturn) {
7076     // FIXME: equivalent assert?
7077     // assert(!CS.hasInAllocaArgument() &&
7078     //        "sret demotion is incompatible with inalloca");
7079     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7080     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7081     MachineFunction &MF = CLI.DAG.getMachineFunction();
7082     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7083     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7084 
7085     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7086     ArgListEntry Entry;
7087     Entry.Node = DemoteStackSlot;
7088     Entry.Ty = StackSlotPtrType;
7089     Entry.isSExt = false;
7090     Entry.isZExt = false;
7091     Entry.isInReg = false;
7092     Entry.isSRet = true;
7093     Entry.isNest = false;
7094     Entry.isByVal = false;
7095     Entry.isReturned = false;
7096     Entry.Alignment = Align;
7097     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7098     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7099 
7100     // sret demotion isn't compatible with tail-calls, since the sret argument
7101     // points into the callers stack frame.
7102     CLI.IsTailCall = false;
7103   } else {
7104     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7105       EVT VT = RetTys[I];
7106       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7107       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7108       for (unsigned i = 0; i != NumRegs; ++i) {
7109         ISD::InputArg MyFlags;
7110         MyFlags.VT = RegisterVT;
7111         MyFlags.ArgVT = VT;
7112         MyFlags.Used = CLI.IsReturnValueUsed;
7113         if (CLI.RetSExt)
7114           MyFlags.Flags.setSExt();
7115         if (CLI.RetZExt)
7116           MyFlags.Flags.setZExt();
7117         if (CLI.IsInReg)
7118           MyFlags.Flags.setInReg();
7119         CLI.Ins.push_back(MyFlags);
7120       }
7121     }
7122   }
7123 
7124   // Handle all of the outgoing arguments.
7125   CLI.Outs.clear();
7126   CLI.OutVals.clear();
7127   ArgListTy &Args = CLI.getArgs();
7128   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7129     SmallVector<EVT, 4> ValueVTs;
7130     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7131     Type *FinalType = Args[i].Ty;
7132     if (Args[i].isByVal)
7133       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7134     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7135         FinalType, CLI.CallConv, CLI.IsVarArg);
7136     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7137          ++Value) {
7138       EVT VT = ValueVTs[Value];
7139       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7140       SDValue Op = SDValue(Args[i].Node.getNode(),
7141                            Args[i].Node.getResNo() + Value);
7142       ISD::ArgFlagsTy Flags;
7143       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7144 
7145       if (Args[i].isZExt)
7146         Flags.setZExt();
7147       if (Args[i].isSExt)
7148         Flags.setSExt();
7149       if (Args[i].isInReg)
7150         Flags.setInReg();
7151       if (Args[i].isSRet)
7152         Flags.setSRet();
7153       if (Args[i].isByVal)
7154         Flags.setByVal();
7155       if (Args[i].isInAlloca) {
7156         Flags.setInAlloca();
7157         // Set the byval flag for CCAssignFn callbacks that don't know about
7158         // inalloca.  This way we can know how many bytes we should've allocated
7159         // and how many bytes a callee cleanup function will pop.  If we port
7160         // inalloca to more targets, we'll have to add custom inalloca handling
7161         // in the various CC lowering callbacks.
7162         Flags.setByVal();
7163       }
7164       if (Args[i].isByVal || Args[i].isInAlloca) {
7165         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7166         Type *ElementTy = Ty->getElementType();
7167         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7168         // For ByVal, alignment should come from FE.  BE will guess if this
7169         // info is not there but there are cases it cannot get right.
7170         unsigned FrameAlign;
7171         if (Args[i].Alignment)
7172           FrameAlign = Args[i].Alignment;
7173         else
7174           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7175         Flags.setByValAlign(FrameAlign);
7176       }
7177       if (Args[i].isNest)
7178         Flags.setNest();
7179       if (NeedsRegBlock)
7180         Flags.setInConsecutiveRegs();
7181       Flags.setOrigAlign(OriginalAlignment);
7182 
7183       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7184       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7185       SmallVector<SDValue, 4> Parts(NumParts);
7186       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7187 
7188       if (Args[i].isSExt)
7189         ExtendKind = ISD::SIGN_EXTEND;
7190       else if (Args[i].isZExt)
7191         ExtendKind = ISD::ZERO_EXTEND;
7192 
7193       // Conservatively only handle 'returned' on non-vectors for now
7194       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7195         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7196                "unexpected use of 'returned'");
7197         // Before passing 'returned' to the target lowering code, ensure that
7198         // either the register MVT and the actual EVT are the same size or that
7199         // the return value and argument are extended in the same way; in these
7200         // cases it's safe to pass the argument register value unchanged as the
7201         // return register value (although it's at the target's option whether
7202         // to do so)
7203         // TODO: allow code generation to take advantage of partially preserved
7204         // registers rather than clobbering the entire register when the
7205         // parameter extension method is not compatible with the return
7206         // extension method
7207         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7208             (ExtendKind != ISD::ANY_EXTEND &&
7209              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7210         Flags.setReturned();
7211       }
7212 
7213       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7214                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7215 
7216       for (unsigned j = 0; j != NumParts; ++j) {
7217         // if it isn't first piece, alignment must be 1
7218         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7219                                i < CLI.NumFixedArgs,
7220                                i, j*Parts[j].getValueType().getStoreSize());
7221         if (NumParts > 1 && j == 0)
7222           MyFlags.Flags.setSplit();
7223         else if (j != 0) {
7224           MyFlags.Flags.setOrigAlign(1);
7225           if (j == NumParts - 1)
7226             MyFlags.Flags.setSplitEnd();
7227         }
7228 
7229         CLI.Outs.push_back(MyFlags);
7230         CLI.OutVals.push_back(Parts[j]);
7231       }
7232 
7233       if (NeedsRegBlock && Value == NumValues - 1)
7234         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7235     }
7236   }
7237 
7238   SmallVector<SDValue, 4> InVals;
7239   CLI.Chain = LowerCall(CLI, InVals);
7240 
7241   // Verify that the target's LowerCall behaved as expected.
7242   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7243          "LowerCall didn't return a valid chain!");
7244   assert((!CLI.IsTailCall || InVals.empty()) &&
7245          "LowerCall emitted a return value for a tail call!");
7246   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7247          "LowerCall didn't emit the correct number of values!");
7248 
7249   // For a tail call, the return value is merely live-out and there aren't
7250   // any nodes in the DAG representing it. Return a special value to
7251   // indicate that a tail call has been emitted and no more Instructions
7252   // should be processed in the current block.
7253   if (CLI.IsTailCall) {
7254     CLI.DAG.setRoot(CLI.Chain);
7255     return std::make_pair(SDValue(), SDValue());
7256   }
7257 
7258   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7259           assert(InVals[i].getNode() &&
7260                  "LowerCall emitted a null value!");
7261           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7262                  "LowerCall emitted a value with the wrong type!");
7263         });
7264 
7265   SmallVector<SDValue, 4> ReturnValues;
7266   if (!CanLowerReturn) {
7267     // The instruction result is the result of loading from the
7268     // hidden sret parameter.
7269     SmallVector<EVT, 1> PVTs;
7270     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7271 
7272     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7273     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7274     EVT PtrVT = PVTs[0];
7275 
7276     unsigned NumValues = RetTys.size();
7277     ReturnValues.resize(NumValues);
7278     SmallVector<SDValue, 4> Chains(NumValues);
7279 
7280     // An aggregate return value cannot wrap around the address space, so
7281     // offsets to its parts don't wrap either.
7282     SDNodeFlags Flags;
7283     Flags.setNoUnsignedWrap(true);
7284 
7285     for (unsigned i = 0; i < NumValues; ++i) {
7286       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7287                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7288                                                         PtrVT), &Flags);
7289       SDValue L = CLI.DAG.getLoad(
7290           RetTys[i], CLI.DL, CLI.Chain, Add,
7291           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7292                                             DemoteStackIdx, Offsets[i]),
7293           false, false, false, 1);
7294       ReturnValues[i] = L;
7295       Chains[i] = L.getValue(1);
7296     }
7297 
7298     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7299   } else {
7300     // Collect the legal value parts into potentially illegal values
7301     // that correspond to the original function's return values.
7302     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7303     if (CLI.RetSExt)
7304       AssertOp = ISD::AssertSext;
7305     else if (CLI.RetZExt)
7306       AssertOp = ISD::AssertZext;
7307     unsigned CurReg = 0;
7308     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7309       EVT VT = RetTys[I];
7310       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7311       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7312 
7313       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7314                                               NumRegs, RegisterVT, VT, nullptr,
7315                                               AssertOp));
7316       CurReg += NumRegs;
7317     }
7318 
7319     // For a function returning void, there is no return value. We can't create
7320     // such a node, so we just return a null return value in that case. In
7321     // that case, nothing will actually look at the value.
7322     if (ReturnValues.empty())
7323       return std::make_pair(SDValue(), CLI.Chain);
7324   }
7325 
7326   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7327                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7328   return std::make_pair(Res, CLI.Chain);
7329 }
7330 
7331 void TargetLowering::LowerOperationWrapper(SDNode *N,
7332                                            SmallVectorImpl<SDValue> &Results,
7333                                            SelectionDAG &DAG) const {
7334   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7335     Results.push_back(Res);
7336 }
7337 
7338 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7339   llvm_unreachable("LowerOperation not implemented for this target!");
7340 }
7341 
7342 void
7343 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7344   SDValue Op = getNonRegisterValue(V);
7345   assert((Op.getOpcode() != ISD::CopyFromReg ||
7346           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7347          "Copy from a reg to the same reg!");
7348   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7349 
7350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7351   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7352                    V->getType());
7353   SDValue Chain = DAG.getEntryNode();
7354 
7355   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7356                               FuncInfo.PreferredExtendType.end())
7357                                  ? ISD::ANY_EXTEND
7358                                  : FuncInfo.PreferredExtendType[V];
7359   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7360   PendingExports.push_back(Chain);
7361 }
7362 
7363 #include "llvm/CodeGen/SelectionDAGISel.h"
7364 
7365 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7366 /// entry block, return true.  This includes arguments used by switches, since
7367 /// the switch may expand into multiple basic blocks.
7368 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7369   // With FastISel active, we may be splitting blocks, so force creation
7370   // of virtual registers for all non-dead arguments.
7371   if (FastISel)
7372     return A->use_empty();
7373 
7374   const BasicBlock &Entry = A->getParent()->front();
7375   for (const User *U : A->users())
7376     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7377       return false;  // Use not in entry block.
7378 
7379   return true;
7380 }
7381 
7382 void SelectionDAGISel::LowerArguments(const Function &F) {
7383   SelectionDAG &DAG = SDB->DAG;
7384   SDLoc dl = SDB->getCurSDLoc();
7385   const DataLayout &DL = DAG.getDataLayout();
7386   SmallVector<ISD::InputArg, 16> Ins;
7387 
7388   if (!FuncInfo->CanLowerReturn) {
7389     // Put in an sret pointer parameter before all the other parameters.
7390     SmallVector<EVT, 1> ValueVTs;
7391     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7392                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7393 
7394     // NOTE: Assuming that a pointer will never break down to more than one VT
7395     // or one register.
7396     ISD::ArgFlagsTy Flags;
7397     Flags.setSRet();
7398     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7399     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7400                          ISD::InputArg::NoArgIndex, 0);
7401     Ins.push_back(RetArg);
7402   }
7403 
7404   // Set up the incoming argument description vector.
7405   unsigned Idx = 1;
7406   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7407        I != E; ++I, ++Idx) {
7408     SmallVector<EVT, 4> ValueVTs;
7409     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7410     bool isArgValueUsed = !I->use_empty();
7411     unsigned PartBase = 0;
7412     Type *FinalType = I->getType();
7413     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7414       FinalType = cast<PointerType>(FinalType)->getElementType();
7415     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7416         FinalType, F.getCallingConv(), F.isVarArg());
7417     for (unsigned Value = 0, NumValues = ValueVTs.size();
7418          Value != NumValues; ++Value) {
7419       EVT VT = ValueVTs[Value];
7420       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7421       ISD::ArgFlagsTy Flags;
7422       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7423 
7424       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7425         Flags.setZExt();
7426       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7427         Flags.setSExt();
7428       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7429         Flags.setInReg();
7430       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7431         Flags.setSRet();
7432       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7433         Flags.setByVal();
7434       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7435         Flags.setInAlloca();
7436         // Set the byval flag for CCAssignFn callbacks that don't know about
7437         // inalloca.  This way we can know how many bytes we should've allocated
7438         // and how many bytes a callee cleanup function will pop.  If we port
7439         // inalloca to more targets, we'll have to add custom inalloca handling
7440         // in the various CC lowering callbacks.
7441         Flags.setByVal();
7442       }
7443       if (F.getCallingConv() == CallingConv::X86_INTR) {
7444         // IA Interrupt passes frame (1st parameter) by value in the stack.
7445         if (Idx == 1)
7446           Flags.setByVal();
7447       }
7448       if (Flags.isByVal() || Flags.isInAlloca()) {
7449         PointerType *Ty = cast<PointerType>(I->getType());
7450         Type *ElementTy = Ty->getElementType();
7451         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7452         // For ByVal, alignment should be passed from FE.  BE will guess if
7453         // this info is not there but there are cases it cannot get right.
7454         unsigned FrameAlign;
7455         if (F.getParamAlignment(Idx))
7456           FrameAlign = F.getParamAlignment(Idx);
7457         else
7458           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7459         Flags.setByValAlign(FrameAlign);
7460       }
7461       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7462         Flags.setNest();
7463       if (NeedsRegBlock)
7464         Flags.setInConsecutiveRegs();
7465       Flags.setOrigAlign(OriginalAlignment);
7466 
7467       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7468       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7469       for (unsigned i = 0; i != NumRegs; ++i) {
7470         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7471                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7472         if (NumRegs > 1 && i == 0)
7473           MyFlags.Flags.setSplit();
7474         // if it isn't first piece, alignment must be 1
7475         else if (i > 0) {
7476           MyFlags.Flags.setOrigAlign(1);
7477           if (i == NumRegs - 1)
7478             MyFlags.Flags.setSplitEnd();
7479         }
7480         Ins.push_back(MyFlags);
7481       }
7482       if (NeedsRegBlock && Value == NumValues - 1)
7483         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7484       PartBase += VT.getStoreSize();
7485     }
7486   }
7487 
7488   // Call the target to set up the argument values.
7489   SmallVector<SDValue, 8> InVals;
7490   SDValue NewRoot = TLI->LowerFormalArguments(
7491       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7492 
7493   // Verify that the target's LowerFormalArguments behaved as expected.
7494   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7495          "LowerFormalArguments didn't return a valid chain!");
7496   assert(InVals.size() == Ins.size() &&
7497          "LowerFormalArguments didn't emit the correct number of values!");
7498   DEBUG({
7499       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7500         assert(InVals[i].getNode() &&
7501                "LowerFormalArguments emitted a null value!");
7502         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7503                "LowerFormalArguments emitted a value with the wrong type!");
7504       }
7505     });
7506 
7507   // Update the DAG with the new chain value resulting from argument lowering.
7508   DAG.setRoot(NewRoot);
7509 
7510   // Set up the argument values.
7511   unsigned i = 0;
7512   Idx = 1;
7513   if (!FuncInfo->CanLowerReturn) {
7514     // Create a virtual register for the sret pointer, and put in a copy
7515     // from the sret argument into it.
7516     SmallVector<EVT, 1> ValueVTs;
7517     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7518                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7519     MVT VT = ValueVTs[0].getSimpleVT();
7520     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7521     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7522     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7523                                         RegVT, VT, nullptr, AssertOp);
7524 
7525     MachineFunction& MF = SDB->DAG.getMachineFunction();
7526     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7527     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7528     FuncInfo->DemoteRegister = SRetReg;
7529     NewRoot =
7530         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7531     DAG.setRoot(NewRoot);
7532 
7533     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7534     // Idx indexes LLVM arguments.  Don't touch it.
7535     ++i;
7536   }
7537 
7538   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7539       ++I, ++Idx) {
7540     SmallVector<SDValue, 4> ArgValues;
7541     SmallVector<EVT, 4> ValueVTs;
7542     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7543     unsigned NumValues = ValueVTs.size();
7544 
7545     // If this argument is unused then remember its value. It is used to generate
7546     // debugging information.
7547     if (I->use_empty() && NumValues) {
7548       SDB->setUnusedArgValue(&*I, InVals[i]);
7549 
7550       // Also remember any frame index for use in FastISel.
7551       if (FrameIndexSDNode *FI =
7552           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7553         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7554     }
7555 
7556     for (unsigned Val = 0; Val != NumValues; ++Val) {
7557       EVT VT = ValueVTs[Val];
7558       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7559       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7560 
7561       if (!I->use_empty()) {
7562         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7563         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7564           AssertOp = ISD::AssertSext;
7565         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7566           AssertOp = ISD::AssertZext;
7567 
7568         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7569                                              NumParts, PartVT, VT,
7570                                              nullptr, AssertOp));
7571       }
7572 
7573       i += NumParts;
7574     }
7575 
7576     // We don't need to do anything else for unused arguments.
7577     if (ArgValues.empty())
7578       continue;
7579 
7580     // Note down frame index.
7581     if (FrameIndexSDNode *FI =
7582         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7583       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7584 
7585     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7586                                      SDB->getCurSDLoc());
7587 
7588     SDB->setValue(&*I, Res);
7589     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7590       if (LoadSDNode *LNode =
7591           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7592         if (FrameIndexSDNode *FI =
7593             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7594         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7595     }
7596 
7597     // If this argument is live outside of the entry block, insert a copy from
7598     // wherever we got it to the vreg that other BB's will reference it as.
7599     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7600       // If we can, though, try to skip creating an unnecessary vreg.
7601       // FIXME: This isn't very clean... it would be nice to make this more
7602       // general.  It's also subtly incompatible with the hacks FastISel
7603       // uses with vregs.
7604       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7605       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7606         FuncInfo->ValueMap[&*I] = Reg;
7607         continue;
7608       }
7609     }
7610     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7611       FuncInfo->InitializeRegForValue(&*I);
7612       SDB->CopyToExportRegsIfNeeded(&*I);
7613     }
7614   }
7615 
7616   assert(i == InVals.size() && "Argument register count mismatch!");
7617 
7618   // Finally, if the target has anything special to do, allow it to do so.
7619   EmitFunctionEntryCode();
7620 }
7621 
7622 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7623 /// ensure constants are generated when needed.  Remember the virtual registers
7624 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7625 /// directly add them, because expansion might result in multiple MBB's for one
7626 /// BB.  As such, the start of the BB might correspond to a different MBB than
7627 /// the end.
7628 ///
7629 void
7630 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7631   const TerminatorInst *TI = LLVMBB->getTerminator();
7632 
7633   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7634 
7635   // Check PHI nodes in successors that expect a value to be available from this
7636   // block.
7637   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7638     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7639     if (!isa<PHINode>(SuccBB->begin())) continue;
7640     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7641 
7642     // If this terminator has multiple identical successors (common for
7643     // switches), only handle each succ once.
7644     if (!SuccsHandled.insert(SuccMBB).second)
7645       continue;
7646 
7647     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7648 
7649     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7650     // nodes and Machine PHI nodes, but the incoming operands have not been
7651     // emitted yet.
7652     for (BasicBlock::const_iterator I = SuccBB->begin();
7653          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7654       // Ignore dead phi's.
7655       if (PN->use_empty()) continue;
7656 
7657       // Skip empty types
7658       if (PN->getType()->isEmptyTy())
7659         continue;
7660 
7661       unsigned Reg;
7662       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7663 
7664       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7665         unsigned &RegOut = ConstantsOut[C];
7666         if (RegOut == 0) {
7667           RegOut = FuncInfo.CreateRegs(C->getType());
7668           CopyValueToVirtualRegister(C, RegOut);
7669         }
7670         Reg = RegOut;
7671       } else {
7672         DenseMap<const Value *, unsigned>::iterator I =
7673           FuncInfo.ValueMap.find(PHIOp);
7674         if (I != FuncInfo.ValueMap.end())
7675           Reg = I->second;
7676         else {
7677           assert(isa<AllocaInst>(PHIOp) &&
7678                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7679                  "Didn't codegen value into a register!??");
7680           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7681           CopyValueToVirtualRegister(PHIOp, Reg);
7682         }
7683       }
7684 
7685       // Remember that this register needs to added to the machine PHI node as
7686       // the input for this MBB.
7687       SmallVector<EVT, 4> ValueVTs;
7688       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7689       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7690       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7691         EVT VT = ValueVTs[vti];
7692         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7693         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7694           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7695         Reg += NumRegisters;
7696       }
7697     }
7698   }
7699 
7700   ConstantsOut.clear();
7701 }
7702 
7703 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7704 /// is 0.
7705 MachineBasicBlock *
7706 SelectionDAGBuilder::StackProtectorDescriptor::
7707 AddSuccessorMBB(const BasicBlock *BB,
7708                 MachineBasicBlock *ParentMBB,
7709                 bool IsLikely,
7710                 MachineBasicBlock *SuccMBB) {
7711   // If SuccBB has not been created yet, create it.
7712   if (!SuccMBB) {
7713     MachineFunction *MF = ParentMBB->getParent();
7714     MachineFunction::iterator BBI(ParentMBB);
7715     SuccMBB = MF->CreateMachineBasicBlock(BB);
7716     MF->insert(++BBI, SuccMBB);
7717   }
7718   // Add it as a successor of ParentMBB.
7719   ParentMBB->addSuccessor(
7720       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7721   return SuccMBB;
7722 }
7723 
7724 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7725   MachineFunction::iterator I(MBB);
7726   if (++I == FuncInfo.MF->end())
7727     return nullptr;
7728   return &*I;
7729 }
7730 
7731 /// During lowering new call nodes can be created (such as memset, etc.).
7732 /// Those will become new roots of the current DAG, but complications arise
7733 /// when they are tail calls. In such cases, the call lowering will update
7734 /// the root, but the builder still needs to know that a tail call has been
7735 /// lowered in order to avoid generating an additional return.
7736 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7737   // If the node is null, we do have a tail call.
7738   if (MaybeTC.getNode() != nullptr)
7739     DAG.setRoot(MaybeTC);
7740   else
7741     HasTailCall = true;
7742 }
7743 
7744 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7745                                   unsigned *TotalCases, unsigned First,
7746                                   unsigned Last) {
7747   assert(Last >= First);
7748   assert(TotalCases[Last] >= TotalCases[First]);
7749 
7750   APInt LowCase = Clusters[First].Low->getValue();
7751   APInt HighCase = Clusters[Last].High->getValue();
7752   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7753 
7754   // FIXME: A range of consecutive cases has 100% density, but only requires one
7755   // comparison to lower. We should discriminate against such consecutive ranges
7756   // in jump tables.
7757 
7758   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7759   uint64_t Range = Diff + 1;
7760 
7761   uint64_t NumCases =
7762       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7763 
7764   assert(NumCases < UINT64_MAX / 100);
7765   assert(Range >= NumCases);
7766 
7767   return NumCases * 100 >= Range * MinJumpTableDensity;
7768 }
7769 
7770 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7771   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7772          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7773 }
7774 
7775 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7776                                          unsigned First, unsigned Last,
7777                                          const SwitchInst *SI,
7778                                          MachineBasicBlock *DefaultMBB,
7779                                          CaseCluster &JTCluster) {
7780   assert(First <= Last);
7781 
7782   auto Prob = BranchProbability::getZero();
7783   unsigned NumCmps = 0;
7784   std::vector<MachineBasicBlock*> Table;
7785   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7786 
7787   // Initialize probabilities in JTProbs.
7788   for (unsigned I = First; I <= Last; ++I)
7789     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7790 
7791   for (unsigned I = First; I <= Last; ++I) {
7792     assert(Clusters[I].Kind == CC_Range);
7793     Prob += Clusters[I].Prob;
7794     APInt Low = Clusters[I].Low->getValue();
7795     APInt High = Clusters[I].High->getValue();
7796     NumCmps += (Low == High) ? 1 : 2;
7797     if (I != First) {
7798       // Fill the gap between this and the previous cluster.
7799       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7800       assert(PreviousHigh.slt(Low));
7801       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7802       for (uint64_t J = 0; J < Gap; J++)
7803         Table.push_back(DefaultMBB);
7804     }
7805     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7806     for (uint64_t J = 0; J < ClusterSize; ++J)
7807       Table.push_back(Clusters[I].MBB);
7808     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7809   }
7810 
7811   unsigned NumDests = JTProbs.size();
7812   if (isSuitableForBitTests(NumDests, NumCmps,
7813                             Clusters[First].Low->getValue(),
7814                             Clusters[Last].High->getValue())) {
7815     // Clusters[First..Last] should be lowered as bit tests instead.
7816     return false;
7817   }
7818 
7819   // Create the MBB that will load from and jump through the table.
7820   // Note: We create it here, but it's not inserted into the function yet.
7821   MachineFunction *CurMF = FuncInfo.MF;
7822   MachineBasicBlock *JumpTableMBB =
7823       CurMF->CreateMachineBasicBlock(SI->getParent());
7824 
7825   // Add successors. Note: use table order for determinism.
7826   SmallPtrSet<MachineBasicBlock *, 8> Done;
7827   for (MachineBasicBlock *Succ : Table) {
7828     if (Done.count(Succ))
7829       continue;
7830     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7831     Done.insert(Succ);
7832   }
7833   JumpTableMBB->normalizeSuccProbs();
7834 
7835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7836   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7837                      ->createJumpTableIndex(Table);
7838 
7839   // Set up the jump table info.
7840   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7841   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7842                       Clusters[Last].High->getValue(), SI->getCondition(),
7843                       nullptr, false);
7844   JTCases.emplace_back(std::move(JTH), std::move(JT));
7845 
7846   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7847                                      JTCases.size() - 1, Prob);
7848   return true;
7849 }
7850 
7851 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7852                                          const SwitchInst *SI,
7853                                          MachineBasicBlock *DefaultMBB) {
7854 #ifndef NDEBUG
7855   // Clusters must be non-empty, sorted, and only contain Range clusters.
7856   assert(!Clusters.empty());
7857   for (CaseCluster &C : Clusters)
7858     assert(C.Kind == CC_Range);
7859   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7860     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7861 #endif
7862 
7863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7864   if (!areJTsAllowed(TLI))
7865     return;
7866 
7867   const int64_t N = Clusters.size();
7868   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7869 
7870   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7871   SmallVector<unsigned, 8> TotalCases(N);
7872 
7873   for (unsigned i = 0; i < N; ++i) {
7874     APInt Hi = Clusters[i].High->getValue();
7875     APInt Lo = Clusters[i].Low->getValue();
7876     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7877     if (i != 0)
7878       TotalCases[i] += TotalCases[i - 1];
7879   }
7880 
7881   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7882     // Cheap case: the whole range might be suitable for jump table.
7883     CaseCluster JTCluster;
7884     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7885       Clusters[0] = JTCluster;
7886       Clusters.resize(1);
7887       return;
7888     }
7889   }
7890 
7891   // The algorithm below is not suitable for -O0.
7892   if (TM.getOptLevel() == CodeGenOpt::None)
7893     return;
7894 
7895   // Split Clusters into minimum number of dense partitions. The algorithm uses
7896   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7897   // for the Case Statement'" (1994), but builds the MinPartitions array in
7898   // reverse order to make it easier to reconstruct the partitions in ascending
7899   // order. In the choice between two optimal partitionings, it picks the one
7900   // which yields more jump tables.
7901 
7902   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7903   SmallVector<unsigned, 8> MinPartitions(N);
7904   // LastElement[i] is the last element of the partition starting at i.
7905   SmallVector<unsigned, 8> LastElement(N);
7906   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7907   SmallVector<unsigned, 8> NumTables(N);
7908 
7909   // Base case: There is only one way to partition Clusters[N-1].
7910   MinPartitions[N - 1] = 1;
7911   LastElement[N - 1] = N - 1;
7912   assert(MinJumpTableSize > 1);
7913   NumTables[N - 1] = 0;
7914 
7915   // Note: loop indexes are signed to avoid underflow.
7916   for (int64_t i = N - 2; i >= 0; i--) {
7917     // Find optimal partitioning of Clusters[i..N-1].
7918     // Baseline: Put Clusters[i] into a partition on its own.
7919     MinPartitions[i] = MinPartitions[i + 1] + 1;
7920     LastElement[i] = i;
7921     NumTables[i] = NumTables[i + 1];
7922 
7923     // Search for a solution that results in fewer partitions.
7924     for (int64_t j = N - 1; j > i; j--) {
7925       // Try building a partition from Clusters[i..j].
7926       if (isDense(Clusters, &TotalCases[0], i, j)) {
7927         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7928         bool IsTable = j - i + 1 >= MinJumpTableSize;
7929         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7930 
7931         // If this j leads to fewer partitions, or same number of partitions
7932         // with more lookup tables, it is a better partitioning.
7933         if (NumPartitions < MinPartitions[i] ||
7934             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7935           MinPartitions[i] = NumPartitions;
7936           LastElement[i] = j;
7937           NumTables[i] = Tables;
7938         }
7939       }
7940     }
7941   }
7942 
7943   // Iterate over the partitions, replacing some with jump tables in-place.
7944   unsigned DstIndex = 0;
7945   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7946     Last = LastElement[First];
7947     assert(Last >= First);
7948     assert(DstIndex <= First);
7949     unsigned NumClusters = Last - First + 1;
7950 
7951     CaseCluster JTCluster;
7952     if (NumClusters >= MinJumpTableSize &&
7953         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7954       Clusters[DstIndex++] = JTCluster;
7955     } else {
7956       for (unsigned I = First; I <= Last; ++I)
7957         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7958     }
7959   }
7960   Clusters.resize(DstIndex);
7961 }
7962 
7963 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7964   // FIXME: Using the pointer type doesn't seem ideal.
7965   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7966   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7967   return Range <= BW;
7968 }
7969 
7970 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7971                                                 unsigned NumCmps,
7972                                                 const APInt &Low,
7973                                                 const APInt &High) {
7974   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7975   // range of cases both require only one branch to lower. Just looking at the
7976   // number of clusters and destinations should be enough to decide whether to
7977   // build bit tests.
7978 
7979   // To lower a range with bit tests, the range must fit the bitwidth of a
7980   // machine word.
7981   if (!rangeFitsInWord(Low, High))
7982     return false;
7983 
7984   // Decide whether it's profitable to lower this range with bit tests. Each
7985   // destination requires a bit test and branch, and there is an overall range
7986   // check branch. For a small number of clusters, separate comparisons might be
7987   // cheaper, and for many destinations, splitting the range might be better.
7988   return (NumDests == 1 && NumCmps >= 3) ||
7989          (NumDests == 2 && NumCmps >= 5) ||
7990          (NumDests == 3 && NumCmps >= 6);
7991 }
7992 
7993 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7994                                         unsigned First, unsigned Last,
7995                                         const SwitchInst *SI,
7996                                         CaseCluster &BTCluster) {
7997   assert(First <= Last);
7998   if (First == Last)
7999     return false;
8000 
8001   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8002   unsigned NumCmps = 0;
8003   for (int64_t I = First; I <= Last; ++I) {
8004     assert(Clusters[I].Kind == CC_Range);
8005     Dests.set(Clusters[I].MBB->getNumber());
8006     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8007   }
8008   unsigned NumDests = Dests.count();
8009 
8010   APInt Low = Clusters[First].Low->getValue();
8011   APInt High = Clusters[Last].High->getValue();
8012   assert(Low.slt(High));
8013 
8014   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8015     return false;
8016 
8017   APInt LowBound;
8018   APInt CmpRange;
8019 
8020   const int BitWidth = DAG.getTargetLoweringInfo()
8021                            .getPointerTy(DAG.getDataLayout())
8022                            .getSizeInBits();
8023   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8024 
8025   // Check if the clusters cover a contiguous range such that no value in the
8026   // range will jump to the default statement.
8027   bool ContiguousRange = true;
8028   for (int64_t I = First + 1; I <= Last; ++I) {
8029     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8030       ContiguousRange = false;
8031       break;
8032     }
8033   }
8034 
8035   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8036     // Optimize the case where all the case values fit in a word without having
8037     // to subtract minValue. In this case, we can optimize away the subtraction.
8038     LowBound = APInt::getNullValue(Low.getBitWidth());
8039     CmpRange = High;
8040     ContiguousRange = false;
8041   } else {
8042     LowBound = Low;
8043     CmpRange = High - Low;
8044   }
8045 
8046   CaseBitsVector CBV;
8047   auto TotalProb = BranchProbability::getZero();
8048   for (unsigned i = First; i <= Last; ++i) {
8049     // Find the CaseBits for this destination.
8050     unsigned j;
8051     for (j = 0; j < CBV.size(); ++j)
8052       if (CBV[j].BB == Clusters[i].MBB)
8053         break;
8054     if (j == CBV.size())
8055       CBV.push_back(
8056           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8057     CaseBits *CB = &CBV[j];
8058 
8059     // Update Mask, Bits and ExtraProb.
8060     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8061     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8062     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8063     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8064     CB->Bits += Hi - Lo + 1;
8065     CB->ExtraProb += Clusters[i].Prob;
8066     TotalProb += Clusters[i].Prob;
8067   }
8068 
8069   BitTestInfo BTI;
8070   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8071     // Sort by probability first, number of bits second.
8072     if (a.ExtraProb != b.ExtraProb)
8073       return a.ExtraProb > b.ExtraProb;
8074     return a.Bits > b.Bits;
8075   });
8076 
8077   for (auto &CB : CBV) {
8078     MachineBasicBlock *BitTestBB =
8079         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8080     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8081   }
8082   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8083                             SI->getCondition(), -1U, MVT::Other, false,
8084                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8085                             TotalProb);
8086 
8087   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8088                                     BitTestCases.size() - 1, TotalProb);
8089   return true;
8090 }
8091 
8092 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8093                                               const SwitchInst *SI) {
8094 // Partition Clusters into as few subsets as possible, where each subset has a
8095 // range that fits in a machine word and has <= 3 unique destinations.
8096 
8097 #ifndef NDEBUG
8098   // Clusters must be sorted and contain Range or JumpTable clusters.
8099   assert(!Clusters.empty());
8100   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8101   for (const CaseCluster &C : Clusters)
8102     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8103   for (unsigned i = 1; i < Clusters.size(); ++i)
8104     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8105 #endif
8106 
8107   // The algorithm below is not suitable for -O0.
8108   if (TM.getOptLevel() == CodeGenOpt::None)
8109     return;
8110 
8111   // If target does not have legal shift left, do not emit bit tests at all.
8112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8113   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8114   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8115     return;
8116 
8117   int BitWidth = PTy.getSizeInBits();
8118   const int64_t N = Clusters.size();
8119 
8120   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8121   SmallVector<unsigned, 8> MinPartitions(N);
8122   // LastElement[i] is the last element of the partition starting at i.
8123   SmallVector<unsigned, 8> LastElement(N);
8124 
8125   // FIXME: This might not be the best algorithm for finding bit test clusters.
8126 
8127   // Base case: There is only one way to partition Clusters[N-1].
8128   MinPartitions[N - 1] = 1;
8129   LastElement[N - 1] = N - 1;
8130 
8131   // Note: loop indexes are signed to avoid underflow.
8132   for (int64_t i = N - 2; i >= 0; --i) {
8133     // Find optimal partitioning of Clusters[i..N-1].
8134     // Baseline: Put Clusters[i] into a partition on its own.
8135     MinPartitions[i] = MinPartitions[i + 1] + 1;
8136     LastElement[i] = i;
8137 
8138     // Search for a solution that results in fewer partitions.
8139     // Note: the search is limited by BitWidth, reducing time complexity.
8140     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8141       // Try building a partition from Clusters[i..j].
8142 
8143       // Check the range.
8144       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8145                            Clusters[j].High->getValue()))
8146         continue;
8147 
8148       // Check nbr of destinations and cluster types.
8149       // FIXME: This works, but doesn't seem very efficient.
8150       bool RangesOnly = true;
8151       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8152       for (int64_t k = i; k <= j; k++) {
8153         if (Clusters[k].Kind != CC_Range) {
8154           RangesOnly = false;
8155           break;
8156         }
8157         Dests.set(Clusters[k].MBB->getNumber());
8158       }
8159       if (!RangesOnly || Dests.count() > 3)
8160         break;
8161 
8162       // Check if it's a better partition.
8163       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8164       if (NumPartitions < MinPartitions[i]) {
8165         // Found a better partition.
8166         MinPartitions[i] = NumPartitions;
8167         LastElement[i] = j;
8168       }
8169     }
8170   }
8171 
8172   // Iterate over the partitions, replacing with bit-test clusters in-place.
8173   unsigned DstIndex = 0;
8174   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8175     Last = LastElement[First];
8176     assert(First <= Last);
8177     assert(DstIndex <= First);
8178 
8179     CaseCluster BitTestCluster;
8180     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8181       Clusters[DstIndex++] = BitTestCluster;
8182     } else {
8183       size_t NumClusters = Last - First + 1;
8184       std::memmove(&Clusters[DstIndex], &Clusters[First],
8185                    sizeof(Clusters[0]) * NumClusters);
8186       DstIndex += NumClusters;
8187     }
8188   }
8189   Clusters.resize(DstIndex);
8190 }
8191 
8192 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8193                                         MachineBasicBlock *SwitchMBB,
8194                                         MachineBasicBlock *DefaultMBB) {
8195   MachineFunction *CurMF = FuncInfo.MF;
8196   MachineBasicBlock *NextMBB = nullptr;
8197   MachineFunction::iterator BBI(W.MBB);
8198   if (++BBI != FuncInfo.MF->end())
8199     NextMBB = &*BBI;
8200 
8201   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8202 
8203   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8204 
8205   if (Size == 2 && W.MBB == SwitchMBB) {
8206     // If any two of the cases has the same destination, and if one value
8207     // is the same as the other, but has one bit unset that the other has set,
8208     // use bit manipulation to do two compares at once.  For example:
8209     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8210     // TODO: This could be extended to merge any 2 cases in switches with 3
8211     // cases.
8212     // TODO: Handle cases where W.CaseBB != SwitchBB.
8213     CaseCluster &Small = *W.FirstCluster;
8214     CaseCluster &Big = *W.LastCluster;
8215 
8216     if (Small.Low == Small.High && Big.Low == Big.High &&
8217         Small.MBB == Big.MBB) {
8218       const APInt &SmallValue = Small.Low->getValue();
8219       const APInt &BigValue = Big.Low->getValue();
8220 
8221       // Check that there is only one bit different.
8222       APInt CommonBit = BigValue ^ SmallValue;
8223       if (CommonBit.isPowerOf2()) {
8224         SDValue CondLHS = getValue(Cond);
8225         EVT VT = CondLHS.getValueType();
8226         SDLoc DL = getCurSDLoc();
8227 
8228         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8229                                  DAG.getConstant(CommonBit, DL, VT));
8230         SDValue Cond = DAG.getSetCC(
8231             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8232             ISD::SETEQ);
8233 
8234         // Update successor info.
8235         // Both Small and Big will jump to Small.BB, so we sum up the
8236         // probabilities.
8237         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8238         if (BPI)
8239           addSuccessorWithProb(
8240               SwitchMBB, DefaultMBB,
8241               // The default destination is the first successor in IR.
8242               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8243         else
8244           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8245 
8246         // Insert the true branch.
8247         SDValue BrCond =
8248             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8249                         DAG.getBasicBlock(Small.MBB));
8250         // Insert the false branch.
8251         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8252                              DAG.getBasicBlock(DefaultMBB));
8253 
8254         DAG.setRoot(BrCond);
8255         return;
8256       }
8257     }
8258   }
8259 
8260   if (TM.getOptLevel() != CodeGenOpt::None) {
8261     // Order cases by probability so the most likely case will be checked first.
8262     std::sort(W.FirstCluster, W.LastCluster + 1,
8263               [](const CaseCluster &a, const CaseCluster &b) {
8264       return a.Prob > b.Prob;
8265     });
8266 
8267     // Rearrange the case blocks so that the last one falls through if possible
8268     // without without changing the order of probabilities.
8269     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8270       --I;
8271       if (I->Prob > W.LastCluster->Prob)
8272         break;
8273       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8274         std::swap(*I, *W.LastCluster);
8275         break;
8276       }
8277     }
8278   }
8279 
8280   // Compute total probability.
8281   BranchProbability DefaultProb = W.DefaultProb;
8282   BranchProbability UnhandledProbs = DefaultProb;
8283   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8284     UnhandledProbs += I->Prob;
8285 
8286   MachineBasicBlock *CurMBB = W.MBB;
8287   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8288     MachineBasicBlock *Fallthrough;
8289     if (I == W.LastCluster) {
8290       // For the last cluster, fall through to the default destination.
8291       Fallthrough = DefaultMBB;
8292     } else {
8293       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8294       CurMF->insert(BBI, Fallthrough);
8295       // Put Cond in a virtual register to make it available from the new blocks.
8296       ExportFromCurrentBlock(Cond);
8297     }
8298     UnhandledProbs -= I->Prob;
8299 
8300     switch (I->Kind) {
8301       case CC_JumpTable: {
8302         // FIXME: Optimize away range check based on pivot comparisons.
8303         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8304         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8305 
8306         // The jump block hasn't been inserted yet; insert it here.
8307         MachineBasicBlock *JumpMBB = JT->MBB;
8308         CurMF->insert(BBI, JumpMBB);
8309 
8310         auto JumpProb = I->Prob;
8311         auto FallthroughProb = UnhandledProbs;
8312 
8313         // If the default statement is a target of the jump table, we evenly
8314         // distribute the default probability to successors of CurMBB. Also
8315         // update the probability on the edge from JumpMBB to Fallthrough.
8316         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8317                                               SE = JumpMBB->succ_end();
8318              SI != SE; ++SI) {
8319           if (*SI == DefaultMBB) {
8320             JumpProb += DefaultProb / 2;
8321             FallthroughProb -= DefaultProb / 2;
8322             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8323             JumpMBB->normalizeSuccProbs();
8324             break;
8325           }
8326         }
8327 
8328         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8329         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8330         CurMBB->normalizeSuccProbs();
8331 
8332         // The jump table header will be inserted in our current block, do the
8333         // range check, and fall through to our fallthrough block.
8334         JTH->HeaderBB = CurMBB;
8335         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8336 
8337         // If we're in the right place, emit the jump table header right now.
8338         if (CurMBB == SwitchMBB) {
8339           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8340           JTH->Emitted = true;
8341         }
8342         break;
8343       }
8344       case CC_BitTests: {
8345         // FIXME: Optimize away range check based on pivot comparisons.
8346         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8347 
8348         // The bit test blocks haven't been inserted yet; insert them here.
8349         for (BitTestCase &BTC : BTB->Cases)
8350           CurMF->insert(BBI, BTC.ThisBB);
8351 
8352         // Fill in fields of the BitTestBlock.
8353         BTB->Parent = CurMBB;
8354         BTB->Default = Fallthrough;
8355 
8356         BTB->DefaultProb = UnhandledProbs;
8357         // If the cases in bit test don't form a contiguous range, we evenly
8358         // distribute the probability on the edge to Fallthrough to two
8359         // successors of CurMBB.
8360         if (!BTB->ContiguousRange) {
8361           BTB->Prob += DefaultProb / 2;
8362           BTB->DefaultProb -= DefaultProb / 2;
8363         }
8364 
8365         // If we're in the right place, emit the bit test header right now.
8366         if (CurMBB == SwitchMBB) {
8367           visitBitTestHeader(*BTB, SwitchMBB);
8368           BTB->Emitted = true;
8369         }
8370         break;
8371       }
8372       case CC_Range: {
8373         const Value *RHS, *LHS, *MHS;
8374         ISD::CondCode CC;
8375         if (I->Low == I->High) {
8376           // Check Cond == I->Low.
8377           CC = ISD::SETEQ;
8378           LHS = Cond;
8379           RHS=I->Low;
8380           MHS = nullptr;
8381         } else {
8382           // Check I->Low <= Cond <= I->High.
8383           CC = ISD::SETLE;
8384           LHS = I->Low;
8385           MHS = Cond;
8386           RHS = I->High;
8387         }
8388 
8389         // The false probability is the sum of all unhandled cases.
8390         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8391                      UnhandledProbs);
8392 
8393         if (CurMBB == SwitchMBB)
8394           visitSwitchCase(CB, SwitchMBB);
8395         else
8396           SwitchCases.push_back(CB);
8397 
8398         break;
8399       }
8400     }
8401     CurMBB = Fallthrough;
8402   }
8403 }
8404 
8405 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8406                                               CaseClusterIt First,
8407                                               CaseClusterIt Last) {
8408   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8409     if (X.Prob != CC.Prob)
8410       return X.Prob > CC.Prob;
8411 
8412     // Ties are broken by comparing the case value.
8413     return X.Low->getValue().slt(CC.Low->getValue());
8414   });
8415 }
8416 
8417 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8418                                         const SwitchWorkListItem &W,
8419                                         Value *Cond,
8420                                         MachineBasicBlock *SwitchMBB) {
8421   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8422          "Clusters not sorted?");
8423 
8424   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8425 
8426   // Balance the tree based on branch probabilities to create a near-optimal (in
8427   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8428   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8429   CaseClusterIt LastLeft = W.FirstCluster;
8430   CaseClusterIt FirstRight = W.LastCluster;
8431   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8432   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8433 
8434   // Move LastLeft and FirstRight towards each other from opposite directions to
8435   // find a partitioning of the clusters which balances the probability on both
8436   // sides. If LeftProb and RightProb are equal, alternate which side is
8437   // taken to ensure 0-probability nodes are distributed evenly.
8438   unsigned I = 0;
8439   while (LastLeft + 1 < FirstRight) {
8440     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8441       LeftProb += (++LastLeft)->Prob;
8442     else
8443       RightProb += (--FirstRight)->Prob;
8444     I++;
8445   }
8446 
8447   for (;;) {
8448     // Our binary search tree differs from a typical BST in that ours can have up
8449     // to three values in each leaf. The pivot selection above doesn't take that
8450     // into account, which means the tree might require more nodes and be less
8451     // efficient. We compensate for this here.
8452 
8453     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8454     unsigned NumRight = W.LastCluster - FirstRight + 1;
8455 
8456     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8457       // If one side has less than 3 clusters, and the other has more than 3,
8458       // consider taking a cluster from the other side.
8459 
8460       if (NumLeft < NumRight) {
8461         // Consider moving the first cluster on the right to the left side.
8462         CaseCluster &CC = *FirstRight;
8463         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8464         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8465         if (LeftSideRank <= RightSideRank) {
8466           // Moving the cluster to the left does not demote it.
8467           ++LastLeft;
8468           ++FirstRight;
8469           continue;
8470         }
8471       } else {
8472         assert(NumRight < NumLeft);
8473         // Consider moving the last element on the left to the right side.
8474         CaseCluster &CC = *LastLeft;
8475         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8476         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8477         if (RightSideRank <= LeftSideRank) {
8478           // Moving the cluster to the right does not demot it.
8479           --LastLeft;
8480           --FirstRight;
8481           continue;
8482         }
8483       }
8484     }
8485     break;
8486   }
8487 
8488   assert(LastLeft + 1 == FirstRight);
8489   assert(LastLeft >= W.FirstCluster);
8490   assert(FirstRight <= W.LastCluster);
8491 
8492   // Use the first element on the right as pivot since we will make less-than
8493   // comparisons against it.
8494   CaseClusterIt PivotCluster = FirstRight;
8495   assert(PivotCluster > W.FirstCluster);
8496   assert(PivotCluster <= W.LastCluster);
8497 
8498   CaseClusterIt FirstLeft = W.FirstCluster;
8499   CaseClusterIt LastRight = W.LastCluster;
8500 
8501   const ConstantInt *Pivot = PivotCluster->Low;
8502 
8503   // New blocks will be inserted immediately after the current one.
8504   MachineFunction::iterator BBI(W.MBB);
8505   ++BBI;
8506 
8507   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8508   // we can branch to its destination directly if it's squeezed exactly in
8509   // between the known lower bound and Pivot - 1.
8510   MachineBasicBlock *LeftMBB;
8511   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8512       FirstLeft->Low == W.GE &&
8513       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8514     LeftMBB = FirstLeft->MBB;
8515   } else {
8516     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8517     FuncInfo.MF->insert(BBI, LeftMBB);
8518     WorkList.push_back(
8519         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8520     // Put Cond in a virtual register to make it available from the new blocks.
8521     ExportFromCurrentBlock(Cond);
8522   }
8523 
8524   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8525   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8526   // directly if RHS.High equals the current upper bound.
8527   MachineBasicBlock *RightMBB;
8528   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8529       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8530     RightMBB = FirstRight->MBB;
8531   } else {
8532     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8533     FuncInfo.MF->insert(BBI, RightMBB);
8534     WorkList.push_back(
8535         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8536     // Put Cond in a virtual register to make it available from the new blocks.
8537     ExportFromCurrentBlock(Cond);
8538   }
8539 
8540   // Create the CaseBlock record that will be used to lower the branch.
8541   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8542                LeftProb, RightProb);
8543 
8544   if (W.MBB == SwitchMBB)
8545     visitSwitchCase(CB, SwitchMBB);
8546   else
8547     SwitchCases.push_back(CB);
8548 }
8549 
8550 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8551   // Extract cases from the switch.
8552   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8553   CaseClusterVector Clusters;
8554   Clusters.reserve(SI.getNumCases());
8555   for (auto I : SI.cases()) {
8556     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8557     const ConstantInt *CaseVal = I.getCaseValue();
8558     BranchProbability Prob =
8559         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8560             : BranchProbability(1, SI.getNumCases() + 1);
8561     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8562   }
8563 
8564   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8565 
8566   // Cluster adjacent cases with the same destination. We do this at all
8567   // optimization levels because it's cheap to do and will make codegen faster
8568   // if there are many clusters.
8569   sortAndRangeify(Clusters);
8570 
8571   if (TM.getOptLevel() != CodeGenOpt::None) {
8572     // Replace an unreachable default with the most popular destination.
8573     // FIXME: Exploit unreachable default more aggressively.
8574     bool UnreachableDefault =
8575         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8576     if (UnreachableDefault && !Clusters.empty()) {
8577       DenseMap<const BasicBlock *, unsigned> Popularity;
8578       unsigned MaxPop = 0;
8579       const BasicBlock *MaxBB = nullptr;
8580       for (auto I : SI.cases()) {
8581         const BasicBlock *BB = I.getCaseSuccessor();
8582         if (++Popularity[BB] > MaxPop) {
8583           MaxPop = Popularity[BB];
8584           MaxBB = BB;
8585         }
8586       }
8587       // Set new default.
8588       assert(MaxPop > 0 && MaxBB);
8589       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8590 
8591       // Remove cases that were pointing to the destination that is now the
8592       // default.
8593       CaseClusterVector New;
8594       New.reserve(Clusters.size());
8595       for (CaseCluster &CC : Clusters) {
8596         if (CC.MBB != DefaultMBB)
8597           New.push_back(CC);
8598       }
8599       Clusters = std::move(New);
8600     }
8601   }
8602 
8603   // If there is only the default destination, jump there directly.
8604   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8605   if (Clusters.empty()) {
8606     SwitchMBB->addSuccessor(DefaultMBB);
8607     if (DefaultMBB != NextBlock(SwitchMBB)) {
8608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8609                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8610     }
8611     return;
8612   }
8613 
8614   findJumpTables(Clusters, &SI, DefaultMBB);
8615   findBitTestClusters(Clusters, &SI);
8616 
8617   DEBUG({
8618     dbgs() << "Case clusters: ";
8619     for (const CaseCluster &C : Clusters) {
8620       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8621       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8622 
8623       C.Low->getValue().print(dbgs(), true);
8624       if (C.Low != C.High) {
8625         dbgs() << '-';
8626         C.High->getValue().print(dbgs(), true);
8627       }
8628       dbgs() << ' ';
8629     }
8630     dbgs() << '\n';
8631   });
8632 
8633   assert(!Clusters.empty());
8634   SwitchWorkList WorkList;
8635   CaseClusterIt First = Clusters.begin();
8636   CaseClusterIt Last = Clusters.end() - 1;
8637   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8638   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8639 
8640   while (!WorkList.empty()) {
8641     SwitchWorkListItem W = WorkList.back();
8642     WorkList.pop_back();
8643     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8644 
8645     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8646       // For optimized builds, lower large range as a balanced binary tree.
8647       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8648       continue;
8649     }
8650 
8651     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8652   }
8653 }
8654