1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 650 SDValue &Chain, SDValue *Flag, const Value *V) const; 651 652 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 653 /// operand list. This adds the code marker, matching input operand index 654 /// (if applicable), and includes the number of values added into it. 655 void AddInlineAsmOperands(unsigned Kind, 656 bool HasMatching, unsigned MatchingIdx, 657 SelectionDAG &DAG, 658 std::vector<SDValue> &Ops) const; 659 }; 660 } 661 662 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 663 /// this value and returns the result as a ValueVT value. This uses 664 /// Chain/Flag as the input and updates them for the output Chain/Flag. 665 /// If the Flag pointer is NULL, no flag is used. 666 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 667 FunctionLoweringInfo &FuncInfo, 668 SDLoc dl, 669 SDValue &Chain, SDValue *Flag, 670 const Value *V) const { 671 // A Value with type {} or [0 x %t] needs no registers. 672 if (ValueVTs.empty()) 673 return SDValue(); 674 675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 676 677 // Assemble the legal parts into the final values. 678 SmallVector<SDValue, 4> Values(ValueVTs.size()); 679 SmallVector<SDValue, 8> Parts; 680 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 681 // Copy the legal parts from the registers. 682 EVT ValueVT = ValueVTs[Value]; 683 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 684 MVT RegisterVT = RegVTs[Value]; 685 686 Parts.resize(NumRegs); 687 for (unsigned i = 0; i != NumRegs; ++i) { 688 SDValue P; 689 if (!Flag) { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 691 } else { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 693 *Flag = P.getValue(2); 694 } 695 696 Chain = P.getValue(1); 697 Parts[i] = P; 698 699 // If the source register was virtual and if we know something about it, 700 // add an assert node. 701 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 702 !RegisterVT.isInteger() || RegisterVT.isVector()) 703 continue; 704 705 const FunctionLoweringInfo::LiveOutInfo *LOI = 706 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 707 if (!LOI) 708 continue; 709 710 unsigned RegSize = RegisterVT.getSizeInBits(); 711 unsigned NumSignBits = LOI->NumSignBits; 712 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 713 714 if (NumZeroBits == RegSize) { 715 // The current value is a zero. 716 // Explicitly express that as it would be easier for 717 // optimizations to kick in. 718 Parts[i] = DAG.getConstant(0, RegisterVT); 719 continue; 720 } 721 722 // FIXME: We capture more information than the dag can represent. For 723 // now, just use the tightest assertzext/assertsext possible. 724 bool isSExt = true; 725 EVT FromVT(MVT::Other); 726 if (NumSignBits == RegSize) 727 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 728 else if (NumZeroBits >= RegSize-1) 729 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 730 else if (NumSignBits > RegSize-8) 731 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 732 else if (NumZeroBits >= RegSize-8) 733 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 734 else if (NumSignBits > RegSize-16) 735 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 736 else if (NumZeroBits >= RegSize-16) 737 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 738 else if (NumSignBits > RegSize-32) 739 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 740 else if (NumZeroBits >= RegSize-32) 741 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 742 else 743 continue; 744 745 // Add an assertion node. 746 assert(FromVT != MVT::Other); 747 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 748 RegisterVT, P, DAG.getValueType(FromVT)); 749 } 750 751 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 752 NumRegs, RegisterVT, ValueVT, V); 753 Part += NumRegs; 754 Parts.clear(); 755 } 756 757 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (!Flag) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getSubtarget().getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = nullptr; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingLoads); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 PendingExports); 944 PendingExports.clear(); 945 DAG.setRoot(Root); 946 return Root; 947 } 948 949 void SelectionDAGBuilder::visit(const Instruction &I) { 950 // Set up outgoing PHI node register values before emitting the terminator. 951 if (isa<TerminatorInst>(&I)) 952 HandlePHINodesInSuccessorBlocks(I.getParent()); 953 954 ++SDNodeOrder; 955 956 CurInst = &I; 957 958 visit(I.getOpcode(), I); 959 960 if (!isa<TerminatorInst>(&I) && !HasTailCall) 961 CopyToExportRegsIfNeeded(&I); 962 963 CurInst = nullptr; 964 } 965 966 void SelectionDAGBuilder::visitPHI(const PHINode &) { 967 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 968 } 969 970 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 971 // Note: this doesn't use InstVisitor, because it has to work with 972 // ConstantExpr's in addition to instructions. 973 switch (Opcode) { 974 default: llvm_unreachable("Unknown instruction type encountered!"); 975 // Build the switch statement using the Instruction.def file. 976 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 977 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 978 #include "llvm/IR/Instruction.def" 979 } 980 } 981 982 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 983 // generate the debug data structures now that we've seen its definition. 984 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 985 SDValue Val) { 986 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 987 if (DDI.getDI()) { 988 const DbgValueInst *DI = DDI.getDI(); 989 DebugLoc dl = DDI.getdl(); 990 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 991 MDNode *Variable = DI->getVariable(); 992 uint64_t Offset = DI->getOffset(); 993 // A dbg.value for an alloca is always indirect. 994 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 995 SDDbgValue *SDV; 996 if (Val.getNode()) { 997 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 998 SDV = DAG.getDbgValue(Variable, Val.getNode(), 999 Val.getResNo(), IsIndirect, 1000 Offset, dl, DbgSDNodeOrder); 1001 DAG.AddDbgValue(SDV, Val.getNode(), false); 1002 } 1003 } else 1004 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1005 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1006 } 1007 } 1008 1009 /// getValue - Return an SDValue for the given Value. 1010 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. It's important 1012 // to do this first, so that we don't create a CopyFromReg if we already 1013 // have a regular SDValue. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) return N; 1016 1017 // If there's a virtual register allocated and initialized for this 1018 // value, use it. 1019 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1020 if (It != FuncInfo.ValueMap.end()) { 1021 unsigned InReg = It->second; 1022 RegsForValue RFV(*DAG.getContext(), 1023 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1024 V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) { 1067 unsigned AS = V->getType()->getPointerAddressSpace(); 1068 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1069 } 1070 1071 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1072 return DAG.getConstantFP(*CFP, VT); 1073 1074 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1075 return DAG.getUNDEF(VT); 1076 1077 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1078 visit(CE->getOpcode(), *CE); 1079 SDValue N1 = NodeMap[V]; 1080 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1081 return N1; 1082 } 1083 1084 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1085 SmallVector<SDValue, 4> Constants; 1086 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1087 OI != OE; ++OI) { 1088 SDNode *Val = getValue(*OI).getNode(); 1089 // If the operand is an empty aggregate, there are no values. 1090 if (!Val) continue; 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Constants.push_back(SDValue(Val, i)); 1095 } 1096 1097 return DAG.getMergeValues(Constants, getCurSDLoc()); 1098 } 1099 1100 if (const ConstantDataSequential *CDS = 1101 dyn_cast<ConstantDataSequential>(C)) { 1102 SmallVector<SDValue, 4> Ops; 1103 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1104 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Ops.push_back(SDValue(Val, i)); 1109 } 1110 1111 if (isa<ArrayType>(CDS->getType())) 1112 return DAG.getMergeValues(Ops, getCurSDLoc()); 1113 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1114 VT, Ops); 1115 } 1116 1117 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1118 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1119 "Unknown struct or array constant!"); 1120 1121 SmallVector<EVT, 4> ValueVTs; 1122 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1123 unsigned NumElts = ValueVTs.size(); 1124 if (NumElts == 0) 1125 return SDValue(); // empty struct 1126 SmallVector<SDValue, 4> Constants(NumElts); 1127 for (unsigned i = 0; i != NumElts; ++i) { 1128 EVT EltVT = ValueVTs[i]; 1129 if (isa<UndefValue>(C)) 1130 Constants[i] = DAG.getUNDEF(EltVT); 1131 else if (EltVT.isFloatingPoint()) 1132 Constants[i] = DAG.getConstantFP(0, EltVT); 1133 else 1134 Constants[i] = DAG.getConstant(0, EltVT); 1135 } 1136 1137 return DAG.getMergeValues(Constants, getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1281 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1282 1283 // Verify that the target's LowerReturn behaved as expected. 1284 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1285 "LowerReturn didn't return a valid chain!"); 1286 1287 // Update the DAG with the new chain value resulting from return lowering. 1288 DAG.setRoot(Chain); 1289 } 1290 1291 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1292 /// created for it, emit nodes to copy the value into the virtual 1293 /// registers. 1294 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1295 // Skip empty types 1296 if (V->getType()->isEmptyTy()) 1297 return; 1298 1299 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1300 if (VMI != FuncInfo.ValueMap.end()) { 1301 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1302 CopyValueToVirtualRegister(V, VMI->second); 1303 } 1304 } 1305 1306 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1307 /// the current basic block, add it to ValueMap now so that we'll get a 1308 /// CopyTo/FromReg. 1309 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1310 // No need to export constants. 1311 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1312 1313 // Already exported? 1314 if (FuncInfo.isExportedInst(V)) return; 1315 1316 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1317 CopyValueToVirtualRegister(V, Reg); 1318 } 1319 1320 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1321 const BasicBlock *FromBB) { 1322 // The operands of the setcc have to be in this block. We don't know 1323 // how to export them from some other block. 1324 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1325 // Can export from current BB. 1326 if (VI->getParent() == FromBB) 1327 return true; 1328 1329 // Is already exported, noop. 1330 return FuncInfo.isExportedInst(V); 1331 } 1332 1333 // If this is an argument, we can export it if the BB is the entry block or 1334 // if it is already exported. 1335 if (isa<Argument>(V)) { 1336 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1337 return true; 1338 1339 // Otherwise, can only export this if it is already exported. 1340 return FuncInfo.isExportedInst(V); 1341 } 1342 1343 // Otherwise, constants can always be exported. 1344 return true; 1345 } 1346 1347 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1348 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1349 const MachineBasicBlock *Dst) const { 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 if (!BPI) 1352 return 0; 1353 const BasicBlock *SrcBB = Src->getBasicBlock(); 1354 const BasicBlock *DstBB = Dst->getBasicBlock(); 1355 return BPI->getEdgeWeight(SrcBB, DstBB); 1356 } 1357 1358 void SelectionDAGBuilder:: 1359 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1360 uint32_t Weight /* = 0 */) { 1361 if (!Weight) 1362 Weight = getEdgeWeight(Src, Dst); 1363 Src->addSuccessor(Dst, Weight); 1364 } 1365 1366 1367 static bool InBlock(const Value *V, const BasicBlock *BB) { 1368 if (const Instruction *I = dyn_cast<Instruction>(V)) 1369 return I->getParent() == BB; 1370 return true; 1371 } 1372 1373 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1374 /// This function emits a branch and is used at the leaves of an OR or an 1375 /// AND operator tree. 1376 /// 1377 void 1378 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1379 MachineBasicBlock *TBB, 1380 MachineBasicBlock *FBB, 1381 MachineBasicBlock *CurBB, 1382 MachineBasicBlock *SwitchBB, 1383 uint32_t TWeight, 1384 uint32_t FWeight) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1409 TBB, FBB, CurBB, TWeight, FWeight); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// Scale down both weights to fit into uint32_t. 1422 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1423 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1424 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1425 NewTrue = NewTrue / Scale; 1426 NewFalse = NewFalse / Scale; 1427 } 1428 1429 /// FindMergedConditions - If Cond is an expression like 1430 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1431 MachineBasicBlock *TBB, 1432 MachineBasicBlock *FBB, 1433 MachineBasicBlock *CurBB, 1434 MachineBasicBlock *SwitchBB, 1435 unsigned Opc, uint32_t TWeight, 1436 uint32_t FWeight) { 1437 // If this node is not part of the or/and tree, emit it as a branch. 1438 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1439 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1440 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1441 BOp->getParent() != CurBB->getBasicBlock() || 1442 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1443 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1444 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1445 TWeight, FWeight); 1446 return; 1447 } 1448 1449 // Create TmpBB after CurBB. 1450 MachineFunction::iterator BBI = CurBB; 1451 MachineFunction &MF = DAG.getMachineFunction(); 1452 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1453 CurBB->getParent()->insert(++BBI, TmpBB); 1454 1455 if (Opc == Instruction::Or) { 1456 // Codegen X | Y as: 1457 // BB1: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1466 // The requirement is that 1467 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1468 // = TrueProb for orignal BB. 1469 // Assuming the orignal weights are A and B, one choice is to set BB1's 1470 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1471 // assumes that 1472 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1473 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1474 // TmpBB, but the math is more complicated. 1475 1476 uint64_t NewTrueWeight = TWeight; 1477 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1478 ScaleWeights(NewTrueWeight, NewFalseWeight); 1479 // Emit the LHS condition. 1480 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1481 NewTrueWeight, NewFalseWeight); 1482 1483 NewTrueWeight = TWeight; 1484 NewFalseWeight = 2 * (uint64_t)FWeight; 1485 ScaleWeights(NewTrueWeight, NewFalseWeight); 1486 // Emit the RHS condition into TmpBB. 1487 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1488 NewTrueWeight, NewFalseWeight); 1489 } else { 1490 assert(Opc == Instruction::And && "Unknown merge op!"); 1491 // Codegen X & Y as: 1492 // BB1: 1493 // jmp_if_X TmpBB 1494 // jmp FBB 1495 // TmpBB: 1496 // jmp_if_Y TBB 1497 // jmp FBB 1498 // 1499 // This requires creation of TmpBB after CurBB. 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1504 // = FalseProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1507 // assumes that 1508 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1509 1510 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1511 uint64_t NewFalseWeight = FWeight; 1512 ScaleWeights(NewTrueWeight, NewFalseWeight); 1513 // Emit the LHS condition. 1514 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1515 NewTrueWeight, NewFalseWeight); 1516 1517 NewTrueWeight = 2 * (uint64_t)TWeight; 1518 NewFalseWeight = FWeight; 1519 ScaleWeights(NewTrueWeight, NewFalseWeight); 1520 // Emit the RHS condition into TmpBB. 1521 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1522 NewTrueWeight, NewFalseWeight); 1523 } 1524 } 1525 1526 /// If the set of cases should be emitted as a series of branches, return true. 1527 /// If we should emit this as a bunch of and/or'd together conditions, return 1528 /// false. 1529 bool 1530 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1531 if (Cases.size() != 2) return true; 1532 1533 // If this is two comparisons of the same values or'd or and'd together, they 1534 // will get folded into a single comparison, so don't emit two blocks. 1535 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1536 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1537 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1538 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1539 return false; 1540 } 1541 1542 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1543 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1544 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1545 Cases[0].CC == Cases[1].CC && 1546 isa<Constant>(Cases[0].CmpRHS) && 1547 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1548 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1549 return false; 1550 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1558 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1559 1560 // Update machine-CFG edges. 1561 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1562 1563 // Figure out which block is immediately after the current one. 1564 MachineBasicBlock *NextBlock = nullptr; 1565 MachineFunction::iterator BBI = BrMBB; 1566 if (++BBI != FuncInfo.MF->end()) 1567 NextBlock = BBI; 1568 1569 if (I.isUnconditional()) { 1570 // Update machine-CFG edges. 1571 BrMBB->addSuccessor(Succ0MBB); 1572 1573 // If this is not a fall-through branch or optimizations are switched off, 1574 // emit the branch. 1575 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1576 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1577 MVT::Other, getControlRoot(), 1578 DAG.getBasicBlock(Succ0MBB))); 1579 1580 return; 1581 } 1582 1583 // If this condition is one of the special cases we handle, do special stuff 1584 // now. 1585 const Value *CondVal = I.getCondition(); 1586 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1587 1588 // If this is a series of conditions that are or'd or and'd together, emit 1589 // this as a sequence of branches instead of setcc's with and/or operations. 1590 // As long as jumps are not expensive, this should improve performance. 1591 // For example, instead of something like: 1592 // cmp A, B 1593 // C = seteq 1594 // cmp D, E 1595 // F = setle 1596 // or C, F 1597 // jnz foo 1598 // Emit: 1599 // cmp A, B 1600 // je foo 1601 // cmp D, E 1602 // jle foo 1603 // 1604 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1605 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1606 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 1815 SDValue Guard; 1816 1817 // If useLoadStackGuardNode returns true, retrieve the guard value from 1818 // the virtual register holding the value. Otherwise, emit a volatile load 1819 // to retrieve the stack guard value. 1820 if (TLI->useLoadStackGuardNode()) 1821 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1822 SPD.getGuardReg(), PtrTy); 1823 else 1824 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1825 GuardPtr, MachinePointerInfo(IRGuard, 0), 1826 true, false, false, Align); 1827 1828 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 StackSlotPtr, 1830 MachinePointerInfo::getFixedStack(FI), 1831 true, false, false, Align); 1832 1833 // Perform the comparison via a subtract/getsetcc. 1834 EVT VT = Guard.getValueType(); 1835 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1836 1837 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1838 TLI->getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(0, VT), 1841 ISD::SETNE); 1842 1843 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1844 // branch to failure MBB. 1845 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1846 MVT::Other, StackSlot.getOperand(0), 1847 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1848 // Otherwise branch to success MBB. 1849 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1850 MVT::Other, BrCond, 1851 DAG.getBasicBlock(SPD.getSuccessMBB())); 1852 1853 DAG.setRoot(Br); 1854 } 1855 1856 /// Codegen the failure basic block for a stack protector check. 1857 /// 1858 /// A failure stack protector machine basic block consists simply of a call to 1859 /// __stack_chk_fail(). 1860 /// 1861 /// For a high level explanation of how this fits into the stack protector 1862 /// generation see the comment on the declaration of class 1863 /// StackProtectorDescriptor. 1864 void 1865 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1866 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1867 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1868 MVT::isVoid, nullptr, 0, false, 1869 getCurSDLoc(), false, false).second; 1870 DAG.setRoot(Chain); 1871 } 1872 1873 /// visitBitTestHeader - This function emits necessary code to produce value 1874 /// suitable for "bit tests" 1875 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1876 MachineBasicBlock *SwitchBB) { 1877 // Subtract the minimum value 1878 SDValue SwitchOp = getValue(B.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1881 DAG.getConstant(B.First, VT)); 1882 1883 // Check range 1884 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1885 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1886 TLI->getSetCCResultType(*DAG.getContext(), 1887 Sub.getValueType()), 1888 Sub, DAG.getConstant(B.Range, VT), 1889 ISD::SETUGT); 1890 1891 // Determine the type of the test operands. 1892 bool UsePtrType = false; 1893 if (!TLI->isTypeLegal(VT)) 1894 UsePtrType = true; 1895 else { 1896 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1897 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1898 // Switch table case range are encoded into series of masks. 1899 // Just use pointer type, it's guaranteed to fit. 1900 UsePtrType = true; 1901 break; 1902 } 1903 } 1904 if (UsePtrType) { 1905 VT = TLI->getPointerTy(); 1906 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1907 } 1908 1909 B.RegVT = VT.getSimpleVT(); 1910 B.Reg = FuncInfo.CreateReg(B.RegVT); 1911 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1912 B.Reg, Sub); 1913 1914 // Set NextBlock to be the MBB immediately after the current one, if any. 1915 // This is used to avoid emitting unnecessary branches to the next block. 1916 MachineBasicBlock *NextBlock = nullptr; 1917 MachineFunction::iterator BBI = SwitchBB; 1918 if (++BBI != FuncInfo.MF->end()) 1919 NextBlock = BBI; 1920 1921 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1922 1923 addSuccessorWithWeight(SwitchBB, B.Default); 1924 addSuccessorWithWeight(SwitchBB, MBB); 1925 1926 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1927 MVT::Other, CopyTo, RangeCmp, 1928 DAG.getBasicBlock(B.Default)); 1929 1930 if (MBB != NextBlock) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = CountPopulation_64(B.Mask); 1949 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC(getCurSDLoc(), 1954 TLI->getSetCCResultType(*DAG.getContext(), VT), 1955 ShiftOp, 1956 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1957 ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC(getCurSDLoc(), 1961 TLI->getSetCCResultType(*DAG.getContext(), VT), 1962 ShiftOp, 1963 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1964 ISD::SETNE); 1965 } else { 1966 // Make desired shift 1967 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1968 DAG.getConstant(1, VT), ShiftOp); 1969 1970 // Emit bit tests and jumps 1971 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1972 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1973 Cmp = DAG.getSetCC(getCurSDLoc(), 1974 TLI->getSetCCResultType(*DAG.getContext(), VT), 1975 AndOp, DAG.getConstant(0, VT), 1976 ISD::SETNE); 1977 } 1978 1979 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1980 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1981 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1982 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1983 1984 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1985 MVT::Other, getControlRoot(), 1986 Cmp, DAG.getBasicBlock(B.TargetBB)); 1987 1988 // Set NextBlock to be the MBB immediately after the current one, if any. 1989 // This is used to avoid emitting unnecessary branches to the next block. 1990 MachineBasicBlock *NextBlock = nullptr; 1991 MachineFunction::iterator BBI = SwitchBB; 1992 if (++BBI != FuncInfo.MF->end()) 1993 NextBlock = BBI; 1994 1995 if (NextMBB != NextBlock) 1996 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1997 DAG.getBasicBlock(NextMBB)); 1998 1999 DAG.setRoot(BrAnd); 2000 } 2001 2002 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2004 2005 // Retrieve successors. 2006 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2007 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2008 2009 const Value *Callee(I.getCalledValue()); 2010 const Function *Fn = dyn_cast<Function>(Callee); 2011 if (isa<InlineAsm>(Callee)) 2012 visitInlineAsm(&I); 2013 else if (Fn && Fn->isIntrinsic()) { 2014 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 } else 2017 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2018 2019 // If the value of the invoke is used outside of its defining block, make it 2020 // available as a virtual register. 2021 CopyToExportRegsIfNeeded(&I); 2022 2023 // Update successor info 2024 addSuccessorWithWeight(InvokeMBB, Return); 2025 addSuccessorWithWeight(InvokeMBB, LandingPad); 2026 2027 // Drop into normal successor. 2028 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2029 MVT::Other, getControlRoot(), 2030 DAG.getBasicBlock(Return))); 2031 } 2032 2033 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2034 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2035 } 2036 2037 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2038 assert(FuncInfo.MBB->isLandingPad() && 2039 "Call to landingpad not in landing pad!"); 2040 2041 MachineBasicBlock *MBB = FuncInfo.MBB; 2042 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2043 AddLandingPadInfo(LP, MMI, MBB); 2044 2045 // If there aren't registers to copy the values into (e.g., during SjLj 2046 // exceptions), then don't bother to create these DAG nodes. 2047 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2048 if (TLI->getExceptionPointerRegister() == 0 && 2049 TLI->getExceptionSelectorRegister() == 0) 2050 return; 2051 2052 SmallVector<EVT, 2> ValueVTs; 2053 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2054 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2055 2056 // Get the two live-in registers as SDValues. The physregs have already been 2057 // copied into virtual registers. 2058 SDValue Ops[2]; 2059 Ops[0] = DAG.getZExtOrTrunc( 2060 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2061 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2062 getCurSDLoc(), ValueVTs[0]); 2063 Ops[1] = DAG.getZExtOrTrunc( 2064 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2065 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2066 getCurSDLoc(), ValueVTs[1]); 2067 2068 // Merge into one. 2069 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2070 DAG.getVTList(ValueVTs), Ops); 2071 setValue(&LP, Res); 2072 } 2073 2074 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2075 /// small case ranges). 2076 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2077 CaseRecVector& WorkList, 2078 const Value* SV, 2079 MachineBasicBlock *Default, 2080 MachineBasicBlock *SwitchBB) { 2081 // Size is the number of Cases represented by this range. 2082 size_t Size = CR.Range.second - CR.Range.first; 2083 if (Size > 3) 2084 return false; 2085 2086 // Get the MachineFunction which holds the current MBB. This is used when 2087 // inserting any additional MBBs necessary to represent the switch. 2088 MachineFunction *CurMF = FuncInfo.MF; 2089 2090 // Figure out which block is immediately after the current one. 2091 MachineBasicBlock *NextBlock = nullptr; 2092 MachineFunction::iterator BBI = CR.CaseBB; 2093 2094 if (++BBI != FuncInfo.MF->end()) 2095 NextBlock = BBI; 2096 2097 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2098 // If any two of the cases has the same destination, and if one value 2099 // is the same as the other, but has one bit unset that the other has set, 2100 // use bit manipulation to do two compares at once. For example: 2101 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2102 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2103 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2104 if (Size == 2 && CR.CaseBB == SwitchBB) { 2105 Case &Small = *CR.Range.first; 2106 Case &Big = *(CR.Range.second-1); 2107 2108 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2109 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2110 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2111 2112 // Check that there is only one bit different. 2113 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2114 (SmallValue | BigValue) == BigValue) { 2115 // Isolate the common bit. 2116 APInt CommonBit = BigValue & ~SmallValue; 2117 assert((SmallValue | CommonBit) == BigValue && 2118 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2119 2120 SDValue CondLHS = getValue(SV); 2121 EVT VT = CondLHS.getValueType(); 2122 SDLoc DL = getCurSDLoc(); 2123 2124 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2125 DAG.getConstant(CommonBit, VT)); 2126 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2127 Or, DAG.getConstant(BigValue, VT), 2128 ISD::SETEQ); 2129 2130 // Update successor info. 2131 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2132 addSuccessorWithWeight(SwitchBB, Small.BB, 2133 Small.ExtraWeight + Big.ExtraWeight); 2134 addSuccessorWithWeight(SwitchBB, Default, 2135 // The default destination is the first successor in IR. 2136 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2137 2138 // Insert the true branch. 2139 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2140 getControlRoot(), Cond, 2141 DAG.getBasicBlock(Small.BB)); 2142 2143 // Insert the false branch. 2144 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2145 DAG.getBasicBlock(Default)); 2146 2147 DAG.setRoot(BrCond); 2148 return true; 2149 } 2150 } 2151 } 2152 2153 // Order cases by weight so the most likely case will be checked first. 2154 uint32_t UnhandledWeights = 0; 2155 if (BPI) { 2156 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2157 uint32_t IWeight = I->ExtraWeight; 2158 UnhandledWeights += IWeight; 2159 for (CaseItr J = CR.Range.first; J < I; ++J) { 2160 uint32_t JWeight = J->ExtraWeight; 2161 if (IWeight > JWeight) 2162 std::swap(*I, *J); 2163 } 2164 } 2165 } 2166 // Rearrange the case blocks so that the last one falls through if possible. 2167 Case &BackCase = *(CR.Range.second-1); 2168 if (Size > 1 && 2169 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2170 // The last case block won't fall through into 'NextBlock' if we emit the 2171 // branches in this order. See if rearranging a case value would help. 2172 // We start at the bottom as it's the case with the least weight. 2173 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2174 if (I->BB == NextBlock) { 2175 std::swap(*I, BackCase); 2176 break; 2177 } 2178 } 2179 2180 // Create a CaseBlock record representing a conditional branch to 2181 // the Case's target mbb if the value being switched on SV is equal 2182 // to C. 2183 MachineBasicBlock *CurBlock = CR.CaseBB; 2184 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2185 MachineBasicBlock *FallThrough; 2186 if (I != E-1) { 2187 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2188 CurMF->insert(BBI, FallThrough); 2189 2190 // Put SV in a virtual register to make it available from the new blocks. 2191 ExportFromCurrentBlock(SV); 2192 } else { 2193 // If the last case doesn't match, go to the default block. 2194 FallThrough = Default; 2195 } 2196 2197 const Value *RHS, *LHS, *MHS; 2198 ISD::CondCode CC; 2199 if (I->High == I->Low) { 2200 // This is just small small case range :) containing exactly 1 case 2201 CC = ISD::SETEQ; 2202 LHS = SV; RHS = I->High; MHS = nullptr; 2203 } else { 2204 CC = ISD::SETLE; 2205 LHS = I->Low; MHS = SV; RHS = I->High; 2206 } 2207 2208 // The false weight should be sum of all un-handled cases. 2209 UnhandledWeights -= I->ExtraWeight; 2210 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2211 /* me */ CurBlock, 2212 /* trueweight */ I->ExtraWeight, 2213 /* falseweight */ UnhandledWeights); 2214 2215 // If emitting the first comparison, just call visitSwitchCase to emit the 2216 // code into the current block. Otherwise, push the CaseBlock onto the 2217 // vector to be later processed by SDISel, and insert the node's MBB 2218 // before the next MBB. 2219 if (CurBlock == SwitchBB) 2220 visitSwitchCase(CB, SwitchBB); 2221 else 2222 SwitchCases.push_back(CB); 2223 2224 CurBlock = FallThrough; 2225 } 2226 2227 return true; 2228 } 2229 2230 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2231 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2232 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2233 } 2234 2235 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2236 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2237 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2238 return (LastExt - FirstExt + 1ULL); 2239 } 2240 2241 /// handleJTSwitchCase - Emit jumptable for current switch case range 2242 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2243 CaseRecVector &WorkList, 2244 const Value *SV, 2245 MachineBasicBlock *Default, 2246 MachineBasicBlock *SwitchBB) { 2247 Case& FrontCase = *CR.Range.first; 2248 Case& BackCase = *(CR.Range.second-1); 2249 2250 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2251 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2252 2253 APInt TSize(First.getBitWidth(), 0); 2254 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2255 TSize += I->size(); 2256 2257 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2258 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2259 return false; 2260 2261 APInt Range = ComputeRange(First, Last); 2262 // The density is TSize / Range. Require at least 40%. 2263 // It should not be possible for IntTSize to saturate for sane code, but make 2264 // sure we handle Range saturation correctly. 2265 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2266 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2267 if (IntTSize * 10 < IntRange * 4) 2268 return false; 2269 2270 DEBUG(dbgs() << "Lowering jump table\n" 2271 << "First entry: " << First << ". Last entry: " << Last << '\n' 2272 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2273 2274 // Get the MachineFunction which holds the current MBB. This is used when 2275 // inserting any additional MBBs necessary to represent the switch. 2276 MachineFunction *CurMF = FuncInfo.MF; 2277 2278 // Figure out which block is immediately after the current one. 2279 MachineFunction::iterator BBI = CR.CaseBB; 2280 ++BBI; 2281 2282 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2283 2284 // Create a new basic block to hold the code for loading the address 2285 // of the jump table, and jumping to it. Update successor information; 2286 // we will either branch to the default case for the switch, or the jump 2287 // table. 2288 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2289 CurMF->insert(BBI, JumpTableBB); 2290 2291 addSuccessorWithWeight(CR.CaseBB, Default); 2292 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2293 2294 // Build a vector of destination BBs, corresponding to each target 2295 // of the jump table. If the value of the jump table slot corresponds to 2296 // a case statement, push the case's BB onto the vector, otherwise, push 2297 // the default BB. 2298 std::vector<MachineBasicBlock*> DestBBs; 2299 APInt TEI = First; 2300 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2301 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2302 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2303 2304 if (Low.sle(TEI) && TEI.sle(High)) { 2305 DestBBs.push_back(I->BB); 2306 if (TEI==High) 2307 ++I; 2308 } else { 2309 DestBBs.push_back(Default); 2310 } 2311 } 2312 2313 // Calculate weight for each unique destination in CR. 2314 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2315 if (FuncInfo.BPI) 2316 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2317 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2318 DestWeights.find(I->BB); 2319 if (Itr != DestWeights.end()) 2320 Itr->second += I->ExtraWeight; 2321 else 2322 DestWeights[I->BB] = I->ExtraWeight; 2323 } 2324 2325 // Update successor info. Add one edge to each unique successor. 2326 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2327 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2328 E = DestBBs.end(); I != E; ++I) { 2329 if (!SuccsHandled[(*I)->getNumber()]) { 2330 SuccsHandled[(*I)->getNumber()] = true; 2331 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2332 DestWeights.find(*I); 2333 addSuccessorWithWeight(JumpTableBB, *I, 2334 Itr != DestWeights.end() ? Itr->second : 0); 2335 } 2336 } 2337 2338 // Create a jump table index for this jump table. 2339 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2340 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2341 ->createJumpTableIndex(DestBBs); 2342 2343 // Set the jump table information so that we can codegen it as a second 2344 // MachineBasicBlock 2345 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2346 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2347 if (CR.CaseBB == SwitchBB) 2348 visitJumpTableHeader(JT, JTH, SwitchBB); 2349 2350 JTCases.push_back(JumpTableBlock(JTH, JT)); 2351 return true; 2352 } 2353 2354 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2355 /// 2 subtrees. 2356 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2357 CaseRecVector& WorkList, 2358 const Value* SV, 2359 MachineBasicBlock* Default, 2360 MachineBasicBlock* SwitchBB) { 2361 // Get the MachineFunction which holds the current MBB. This is used when 2362 // inserting any additional MBBs necessary to represent the switch. 2363 MachineFunction *CurMF = FuncInfo.MF; 2364 2365 // Figure out which block is immediately after the current one. 2366 MachineFunction::iterator BBI = CR.CaseBB; 2367 ++BBI; 2368 2369 Case& FrontCase = *CR.Range.first; 2370 Case& BackCase = *(CR.Range.second-1); 2371 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2372 2373 // Size is the number of Cases represented by this range. 2374 unsigned Size = CR.Range.second - CR.Range.first; 2375 2376 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2377 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2378 double FMetric = 0; 2379 CaseItr Pivot = CR.Range.first + Size/2; 2380 2381 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2382 // (heuristically) allow us to emit JumpTable's later. 2383 APInt TSize(First.getBitWidth(), 0); 2384 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2385 I!=E; ++I) 2386 TSize += I->size(); 2387 2388 APInt LSize = FrontCase.size(); 2389 APInt RSize = TSize-LSize; 2390 DEBUG(dbgs() << "Selecting best pivot: \n" 2391 << "First: " << First << ", Last: " << Last <<'\n' 2392 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2393 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2394 J!=E; ++I, ++J) { 2395 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2396 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2397 APInt Range = ComputeRange(LEnd, RBegin); 2398 assert((Range - 2ULL).isNonNegative() && 2399 "Invalid case distance"); 2400 // Use volatile double here to avoid excess precision issues on some hosts, 2401 // e.g. that use 80-bit X87 registers. 2402 volatile double LDensity = 2403 (double)LSize.roundToDouble() / 2404 (LEnd - First + 1ULL).roundToDouble(); 2405 volatile double RDensity = 2406 (double)RSize.roundToDouble() / 2407 (Last - RBegin + 1ULL).roundToDouble(); 2408 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2409 // Should always split in some non-trivial place 2410 DEBUG(dbgs() <<"=>Step\n" 2411 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2412 << "LDensity: " << LDensity 2413 << ", RDensity: " << RDensity << '\n' 2414 << "Metric: " << Metric << '\n'); 2415 if (FMetric < Metric) { 2416 Pivot = J; 2417 FMetric = Metric; 2418 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2419 } 2420 2421 LSize += J->size(); 2422 RSize -= J->size(); 2423 } 2424 2425 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2426 if (areJTsAllowed(*TLI)) { 2427 // If our case is dense we *really* should handle it earlier! 2428 assert((FMetric > 0) && "Should handle dense range earlier!"); 2429 } else { 2430 Pivot = CR.Range.first + Size/2; 2431 } 2432 2433 CaseRange LHSR(CR.Range.first, Pivot); 2434 CaseRange RHSR(Pivot, CR.Range.second); 2435 const Constant *C = Pivot->Low; 2436 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2437 2438 // We know that we branch to the LHS if the Value being switched on is 2439 // less than the Pivot value, C. We use this to optimize our binary 2440 // tree a bit, by recognizing that if SV is greater than or equal to the 2441 // LHS's Case Value, and that Case Value is exactly one less than the 2442 // Pivot's Value, then we can branch directly to the LHS's Target, 2443 // rather than creating a leaf node for it. 2444 if ((LHSR.second - LHSR.first) == 1 && 2445 LHSR.first->High == CR.GE && 2446 cast<ConstantInt>(C)->getValue() == 2447 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2448 TrueBB = LHSR.first->BB; 2449 } else { 2450 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2451 CurMF->insert(BBI, TrueBB); 2452 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2453 2454 // Put SV in a virtual register to make it available from the new blocks. 2455 ExportFromCurrentBlock(SV); 2456 } 2457 2458 // Similar to the optimization above, if the Value being switched on is 2459 // known to be less than the Constant CR.LT, and the current Case Value 2460 // is CR.LT - 1, then we can branch directly to the target block for 2461 // the current Case Value, rather than emitting a RHS leaf node for it. 2462 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2463 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2464 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2465 FalseBB = RHSR.first->BB; 2466 } else { 2467 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2468 CurMF->insert(BBI, FalseBB); 2469 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2470 2471 // Put SV in a virtual register to make it available from the new blocks. 2472 ExportFromCurrentBlock(SV); 2473 } 2474 2475 // Create a CaseBlock record representing a conditional branch to 2476 // the LHS node if the value being switched on SV is less than C. 2477 // Otherwise, branch to LHS. 2478 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2479 2480 if (CR.CaseBB == SwitchBB) 2481 visitSwitchCase(CB, SwitchBB); 2482 else 2483 SwitchCases.push_back(CB); 2484 2485 return true; 2486 } 2487 2488 /// handleBitTestsSwitchCase - if current case range has few destination and 2489 /// range span less, than machine word bitwidth, encode case range into series 2490 /// of masks and emit bit tests with these masks. 2491 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2492 CaseRecVector& WorkList, 2493 const Value* SV, 2494 MachineBasicBlock* Default, 2495 MachineBasicBlock* SwitchBB) { 2496 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2497 EVT PTy = TLI->getPointerTy(); 2498 unsigned IntPtrBits = PTy.getSizeInBits(); 2499 2500 Case& FrontCase = *CR.Range.first; 2501 Case& BackCase = *(CR.Range.second-1); 2502 2503 // Get the MachineFunction which holds the current MBB. This is used when 2504 // inserting any additional MBBs necessary to represent the switch. 2505 MachineFunction *CurMF = FuncInfo.MF; 2506 2507 // If target does not have legal shift left, do not emit bit tests at all. 2508 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2509 return false; 2510 2511 size_t numCmps = 0; 2512 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2513 I!=E; ++I) { 2514 // Single case counts one, case range - two. 2515 numCmps += (I->Low == I->High ? 1 : 2); 2516 } 2517 2518 // Count unique destinations 2519 SmallSet<MachineBasicBlock*, 4> Dests; 2520 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2521 Dests.insert(I->BB); 2522 if (Dests.size() > 3) 2523 // Don't bother the code below, if there are too much unique destinations 2524 return false; 2525 } 2526 DEBUG(dbgs() << "Total number of unique destinations: " 2527 << Dests.size() << '\n' 2528 << "Total number of comparisons: " << numCmps << '\n'); 2529 2530 // Compute span of values. 2531 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2532 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2533 APInt cmpRange = maxValue - minValue; 2534 2535 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2536 << "Low bound: " << minValue << '\n' 2537 << "High bound: " << maxValue << '\n'); 2538 2539 if (cmpRange.uge(IntPtrBits) || 2540 (!(Dests.size() == 1 && numCmps >= 3) && 2541 !(Dests.size() == 2 && numCmps >= 5) && 2542 !(Dests.size() >= 3 && numCmps >= 6))) 2543 return false; 2544 2545 DEBUG(dbgs() << "Emitting bit tests\n"); 2546 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2547 2548 // Optimize the case where all the case values fit in a 2549 // word without having to subtract minValue. In this case, 2550 // we can optimize away the subtraction. 2551 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2552 cmpRange = maxValue; 2553 } else { 2554 lowBound = minValue; 2555 } 2556 2557 CaseBitsVector CasesBits; 2558 unsigned i, count = 0; 2559 2560 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2561 MachineBasicBlock* Dest = I->BB; 2562 for (i = 0; i < count; ++i) 2563 if (Dest == CasesBits[i].BB) 2564 break; 2565 2566 if (i == count) { 2567 assert((count < 3) && "Too much destinations to test!"); 2568 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2569 count++; 2570 } 2571 2572 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2573 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2574 2575 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2576 uint64_t hi = (highValue - lowBound).getZExtValue(); 2577 CasesBits[i].ExtraWeight += I->ExtraWeight; 2578 2579 for (uint64_t j = lo; j <= hi; j++) { 2580 CasesBits[i].Mask |= 1ULL << j; 2581 CasesBits[i].Bits++; 2582 } 2583 2584 } 2585 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2586 2587 BitTestInfo BTC; 2588 2589 // Figure out which block is immediately after the current one. 2590 MachineFunction::iterator BBI = CR.CaseBB; 2591 ++BBI; 2592 2593 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2594 2595 DEBUG(dbgs() << "Cases:\n"); 2596 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2597 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2598 << ", Bits: " << CasesBits[i].Bits 2599 << ", BB: " << CasesBits[i].BB << '\n'); 2600 2601 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2602 CurMF->insert(BBI, CaseBB); 2603 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2604 CaseBB, 2605 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2606 2607 // Put SV in a virtual register to make it available from the new blocks. 2608 ExportFromCurrentBlock(SV); 2609 } 2610 2611 BitTestBlock BTB(lowBound, cmpRange, SV, 2612 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2613 CR.CaseBB, Default, BTC); 2614 2615 if (CR.CaseBB == SwitchBB) 2616 visitBitTestHeader(BTB, SwitchBB); 2617 2618 BitTestCases.push_back(BTB); 2619 2620 return true; 2621 } 2622 2623 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2624 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2625 const SwitchInst& SI) { 2626 size_t numCmps = 0; 2627 2628 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2629 // Start with "simple" cases 2630 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2631 i != e; ++i) { 2632 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2633 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2634 2635 uint32_t ExtraWeight = 2636 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2637 2638 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2639 SMBB, ExtraWeight)); 2640 } 2641 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2642 2643 // Merge case into clusters 2644 if (Cases.size() >= 2) 2645 // Must recompute end() each iteration because it may be 2646 // invalidated by erase if we hold on to it 2647 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2648 J != Cases.end(); ) { 2649 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2650 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2651 MachineBasicBlock* nextBB = J->BB; 2652 MachineBasicBlock* currentBB = I->BB; 2653 2654 // If the two neighboring cases go to the same destination, merge them 2655 // into a single case. 2656 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2657 I->High = J->High; 2658 I->ExtraWeight += J->ExtraWeight; 2659 J = Cases.erase(J); 2660 } else { 2661 I = J++; 2662 } 2663 } 2664 2665 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2666 if (I->Low != I->High) 2667 // A range counts double, since it requires two compares. 2668 ++numCmps; 2669 } 2670 2671 return numCmps; 2672 } 2673 2674 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2675 MachineBasicBlock *Last) { 2676 // Update JTCases. 2677 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2678 if (JTCases[i].first.HeaderBB == First) 2679 JTCases[i].first.HeaderBB = Last; 2680 2681 // Update BitTestCases. 2682 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2683 if (BitTestCases[i].Parent == First) 2684 BitTestCases[i].Parent = Last; 2685 } 2686 2687 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2688 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2689 2690 // Figure out which block is immediately after the current one. 2691 MachineBasicBlock *NextBlock = nullptr; 2692 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2693 2694 // If there is only the default destination, branch to it if it is not the 2695 // next basic block. Otherwise, just fall through. 2696 if (!SI.getNumCases()) { 2697 // Update machine-CFG edges. 2698 2699 // If this is not a fall-through branch, emit the branch. 2700 SwitchMBB->addSuccessor(Default); 2701 if (Default != NextBlock) 2702 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2703 MVT::Other, getControlRoot(), 2704 DAG.getBasicBlock(Default))); 2705 2706 return; 2707 } 2708 2709 // If there are any non-default case statements, create a vector of Cases 2710 // representing each one, and sort the vector so that we can efficiently 2711 // create a binary search tree from them. 2712 CaseVector Cases; 2713 size_t numCmps = Clusterify(Cases, SI); 2714 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2715 << ". Total compares: " << numCmps << '\n'); 2716 (void)numCmps; 2717 2718 // Get the Value to be switched on and default basic blocks, which will be 2719 // inserted into CaseBlock records, representing basic blocks in the binary 2720 // search tree. 2721 const Value *SV = SI.getCondition(); 2722 2723 // Push the initial CaseRec onto the worklist 2724 CaseRecVector WorkList; 2725 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2726 CaseRange(Cases.begin(),Cases.end()))); 2727 2728 while (!WorkList.empty()) { 2729 // Grab a record representing a case range to process off the worklist 2730 CaseRec CR = WorkList.back(); 2731 WorkList.pop_back(); 2732 2733 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2734 continue; 2735 2736 // If the range has few cases (two or less) emit a series of specific 2737 // tests. 2738 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // If the switch has more than N blocks, and is at least 40% dense, and the 2742 // target supports indirect branches, then emit a jump table rather than 2743 // lowering the switch to a binary tree of conditional branches. 2744 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2745 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2746 continue; 2747 2748 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2749 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2750 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2751 } 2752 } 2753 2754 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2755 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2756 2757 // Update machine-CFG edges with unique successors. 2758 SmallSet<BasicBlock*, 32> Done; 2759 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2760 BasicBlock *BB = I.getSuccessor(i); 2761 bool Inserted = Done.insert(BB); 2762 if (!Inserted) 2763 continue; 2764 2765 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2766 addSuccessorWithWeight(IndirectBrMBB, Succ); 2767 } 2768 2769 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2770 MVT::Other, getControlRoot(), 2771 getValue(I.getAddress()))); 2772 } 2773 2774 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2775 if (DAG.getTarget().Options.TrapUnreachable) 2776 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2777 } 2778 2779 void SelectionDAGBuilder::visitFSub(const User &I) { 2780 // -0.0 - X --> fneg 2781 Type *Ty = I.getType(); 2782 if (isa<Constant>(I.getOperand(0)) && 2783 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2784 SDValue Op2 = getValue(I.getOperand(1)); 2785 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2786 Op2.getValueType(), Op2)); 2787 return; 2788 } 2789 2790 visitBinary(I, ISD::FSUB); 2791 } 2792 2793 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2794 SDValue Op1 = getValue(I.getOperand(0)); 2795 SDValue Op2 = getValue(I.getOperand(1)); 2796 2797 bool nuw = false; 2798 bool nsw = false; 2799 bool exact = false; 2800 if (const OverflowingBinaryOperator *OFBinOp = 2801 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2802 nuw = OFBinOp->hasNoUnsignedWrap(); 2803 nsw = OFBinOp->hasNoSignedWrap(); 2804 } 2805 if (const PossiblyExactOperator *ExactOp = 2806 dyn_cast<const PossiblyExactOperator>(&I)) 2807 exact = ExactOp->isExact(); 2808 2809 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2810 Op1, Op2, nuw, nsw, exact); 2811 setValue(&I, BinNodeValue); 2812 } 2813 2814 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2815 SDValue Op1 = getValue(I.getOperand(0)); 2816 SDValue Op2 = getValue(I.getOperand(1)); 2817 2818 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2819 Op2.getValueType()); 2820 2821 // Coerce the shift amount to the right type if we can. 2822 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2823 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2824 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2825 SDLoc DL = getCurSDLoc(); 2826 2827 // If the operand is smaller than the shift count type, promote it. 2828 if (ShiftSize > Op2Size) 2829 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2830 2831 // If the operand is larger than the shift count type but the shift 2832 // count type has enough bits to represent any shift value, truncate 2833 // it now. This is a common case and it exposes the truncate to 2834 // optimization early. 2835 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2836 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2837 // Otherwise we'll need to temporarily settle for some other convenient 2838 // type. Type legalization will make adjustments once the shiftee is split. 2839 else 2840 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2841 } 2842 2843 bool nuw = false; 2844 bool nsw = false; 2845 bool exact = false; 2846 2847 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2848 2849 if (const OverflowingBinaryOperator *OFBinOp = 2850 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2851 nuw = OFBinOp->hasNoUnsignedWrap(); 2852 nsw = OFBinOp->hasNoSignedWrap(); 2853 } 2854 if (const PossiblyExactOperator *ExactOp = 2855 dyn_cast<const PossiblyExactOperator>(&I)) 2856 exact = ExactOp->isExact(); 2857 } 2858 2859 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2860 nuw, nsw, exact); 2861 setValue(&I, Res); 2862 } 2863 2864 void SelectionDAGBuilder::visitSDiv(const User &I) { 2865 SDValue Op1 = getValue(I.getOperand(0)); 2866 SDValue Op2 = getValue(I.getOperand(1)); 2867 2868 // Turn exact SDivs into multiplications. 2869 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2870 // exact bit. 2871 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2872 !isa<ConstantSDNode>(Op1) && 2873 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2874 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2875 Op1, Op2, getCurSDLoc(), DAG)); 2876 else 2877 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2878 Op1, Op2)); 2879 } 2880 2881 void SelectionDAGBuilder::visitICmp(const User &I) { 2882 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2883 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2884 predicate = IC->getPredicate(); 2885 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2886 predicate = ICmpInst::Predicate(IC->getPredicate()); 2887 SDValue Op1 = getValue(I.getOperand(0)); 2888 SDValue Op2 = getValue(I.getOperand(1)); 2889 ISD::CondCode Opcode = getICmpCondCode(predicate); 2890 2891 EVT DestVT = 2892 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2893 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2894 } 2895 2896 void SelectionDAGBuilder::visitFCmp(const User &I) { 2897 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2898 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2899 predicate = FC->getPredicate(); 2900 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2901 predicate = FCmpInst::Predicate(FC->getPredicate()); 2902 SDValue Op1 = getValue(I.getOperand(0)); 2903 SDValue Op2 = getValue(I.getOperand(1)); 2904 ISD::CondCode Condition = getFCmpCondCode(predicate); 2905 if (TM.Options.NoNaNsFPMath) 2906 Condition = getFCmpCodeWithoutNaN(Condition); 2907 EVT DestVT = 2908 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2909 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSelect(const User &I) { 2913 SmallVector<EVT, 4> ValueVTs; 2914 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2915 ValueVTs); 2916 unsigned NumValues = ValueVTs.size(); 2917 if (NumValues == 0) return; 2918 2919 SmallVector<SDValue, 4> Values(NumValues); 2920 SDValue Cond = getValue(I.getOperand(0)); 2921 SDValue TrueVal = getValue(I.getOperand(1)); 2922 SDValue FalseVal = getValue(I.getOperand(2)); 2923 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2924 ISD::VSELECT : ISD::SELECT; 2925 2926 for (unsigned i = 0; i != NumValues; ++i) 2927 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2928 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2929 Cond, 2930 SDValue(TrueVal.getNode(), 2931 TrueVal.getResNo() + i), 2932 SDValue(FalseVal.getNode(), 2933 FalseVal.getResNo() + i)); 2934 2935 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2936 DAG.getVTList(ValueVTs), Values)); 2937 } 2938 2939 void SelectionDAGBuilder::visitTrunc(const User &I) { 2940 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2941 SDValue N = getValue(I.getOperand(0)); 2942 EVT DestVT = 2943 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2944 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2945 } 2946 2947 void SelectionDAGBuilder::visitZExt(const User &I) { 2948 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2949 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2950 SDValue N = getValue(I.getOperand(0)); 2951 EVT DestVT = 2952 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2953 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitSExt(const User &I) { 2957 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2958 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = 2961 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2962 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2963 } 2964 2965 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2966 // FPTrunc is never a no-op cast, no need to check 2967 SDValue N = getValue(I.getOperand(0)); 2968 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2969 EVT DestVT = TLI->getValueType(I.getType()); 2970 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2971 DestVT, N, 2972 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2973 } 2974 2975 void SelectionDAGBuilder::visitFPExt(const User &I) { 2976 // FPExt is never a no-op cast, no need to check 2977 SDValue N = getValue(I.getOperand(0)); 2978 EVT DestVT = 2979 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2980 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2981 } 2982 2983 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2984 // FPToUI is never a no-op cast, no need to check 2985 SDValue N = getValue(I.getOperand(0)); 2986 EVT DestVT = 2987 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2988 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2989 } 2990 2991 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2992 // FPToSI is never a no-op cast, no need to check 2993 SDValue N = getValue(I.getOperand(0)); 2994 EVT DestVT = 2995 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2996 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2997 } 2998 2999 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3000 // UIToFP is never a no-op cast, no need to check 3001 SDValue N = getValue(I.getOperand(0)); 3002 EVT DestVT = 3003 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3004 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3005 } 3006 3007 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3008 // SIToFP is never a no-op cast, no need to check 3009 SDValue N = getValue(I.getOperand(0)); 3010 EVT DestVT = 3011 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3012 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3013 } 3014 3015 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3016 // What to do depends on the size of the integer and the size of the pointer. 3017 // We can either truncate, zero extend, or no-op, accordingly. 3018 SDValue N = getValue(I.getOperand(0)); 3019 EVT DestVT = 3020 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3021 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3022 } 3023 3024 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3025 // What to do depends on the size of the integer and the size of the pointer. 3026 // We can either truncate, zero extend, or no-op, accordingly. 3027 SDValue N = getValue(I.getOperand(0)); 3028 EVT DestVT = 3029 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3030 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3031 } 3032 3033 void SelectionDAGBuilder::visitBitCast(const User &I) { 3034 SDValue N = getValue(I.getOperand(0)); 3035 EVT DestVT = 3036 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3037 3038 // BitCast assures us that source and destination are the same size so this is 3039 // either a BITCAST or a no-op. 3040 if (DestVT != N.getValueType()) 3041 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3042 DestVT, N)); // convert types. 3043 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3044 // might fold any kind of constant expression to an integer constant and that 3045 // is not what we are looking for. Only regcognize a bitcast of a genuine 3046 // constant integer as an opaque constant. 3047 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3048 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3049 /*isOpaque*/true)); 3050 else 3051 setValue(&I, N); // noop cast. 3052 } 3053 3054 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3056 const Value *SV = I.getOperand(0); 3057 SDValue N = getValue(SV); 3058 EVT DestVT = 3059 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3060 3061 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3062 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3063 3064 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3065 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3066 3067 setValue(&I, N); 3068 } 3069 3070 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3072 SDValue InVec = getValue(I.getOperand(0)); 3073 SDValue InVal = getValue(I.getOperand(1)); 3074 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3075 getCurSDLoc(), TLI.getVectorIdxTy()); 3076 setValue(&I, 3077 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3078 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3079 I.getType()), 3080 InVec, InVal, InIdx)); 3081 } 3082 3083 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3085 SDValue InVec = getValue(I.getOperand(0)); 3086 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3087 getCurSDLoc(), TLI.getVectorIdxTy()); 3088 setValue(&I, 3089 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3090 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3091 I.getType()), 3092 InVec, InIdx)); 3093 } 3094 3095 // Utility for visitShuffleVector - Return true if every element in Mask, 3096 // beginning from position Pos and ending in Pos+Size, falls within the 3097 // specified sequential range [L, L+Pos). or is undef. 3098 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3099 unsigned Pos, unsigned Size, int Low) { 3100 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3101 if (Mask[i] >= 0 && Mask[i] != Low) 3102 return false; 3103 return true; 3104 } 3105 3106 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3107 SDValue Src1 = getValue(I.getOperand(0)); 3108 SDValue Src2 = getValue(I.getOperand(1)); 3109 3110 SmallVector<int, 8> Mask; 3111 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3112 unsigned MaskNumElts = Mask.size(); 3113 3114 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3115 EVT VT = TLI->getValueType(I.getType()); 3116 EVT SrcVT = Src1.getValueType(); 3117 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3118 3119 if (SrcNumElts == MaskNumElts) { 3120 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3121 &Mask[0])); 3122 return; 3123 } 3124 3125 // Normalize the shuffle vector since mask and vector length don't match. 3126 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3127 // Mask is longer than the source vectors and is a multiple of the source 3128 // vectors. We can use concatenate vector to make the mask and vectors 3129 // lengths match. 3130 if (SrcNumElts*2 == MaskNumElts) { 3131 // First check for Src1 in low and Src2 in high 3132 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3133 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3134 // The shuffle is concatenating two vectors together. 3135 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3136 VT, Src1, Src2)); 3137 return; 3138 } 3139 // Then check for Src2 in low and Src1 in high 3140 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3141 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3142 // The shuffle is concatenating two vectors together. 3143 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3144 VT, Src2, Src1)); 3145 return; 3146 } 3147 } 3148 3149 // Pad both vectors with undefs to make them the same length as the mask. 3150 unsigned NumConcat = MaskNumElts / SrcNumElts; 3151 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3152 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3153 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3154 3155 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3156 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3157 MOps1[0] = Src1; 3158 MOps2[0] = Src2; 3159 3160 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3161 getCurSDLoc(), VT, MOps1); 3162 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3163 getCurSDLoc(), VT, MOps2); 3164 3165 // Readjust mask for new input vector length. 3166 SmallVector<int, 8> MappedOps; 3167 for (unsigned i = 0; i != MaskNumElts; ++i) { 3168 int Idx = Mask[i]; 3169 if (Idx >= (int)SrcNumElts) 3170 Idx -= SrcNumElts - MaskNumElts; 3171 MappedOps.push_back(Idx); 3172 } 3173 3174 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3175 &MappedOps[0])); 3176 return; 3177 } 3178 3179 if (SrcNumElts > MaskNumElts) { 3180 // Analyze the access pattern of the vector to see if we can extract 3181 // two subvectors and do the shuffle. The analysis is done by calculating 3182 // the range of elements the mask access on both vectors. 3183 int MinRange[2] = { static_cast<int>(SrcNumElts), 3184 static_cast<int>(SrcNumElts)}; 3185 int MaxRange[2] = {-1, -1}; 3186 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 unsigned Input = 0; 3190 if (Idx < 0) 3191 continue; 3192 3193 if (Idx >= (int)SrcNumElts) { 3194 Input = 1; 3195 Idx -= SrcNumElts; 3196 } 3197 if (Idx > MaxRange[Input]) 3198 MaxRange[Input] = Idx; 3199 if (Idx < MinRange[Input]) 3200 MinRange[Input] = Idx; 3201 } 3202 3203 // Check if the access is smaller than the vector size and can we find 3204 // a reasonable extract index. 3205 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3206 // Extract. 3207 int StartIdx[2]; // StartIdx to extract from 3208 for (unsigned Input = 0; Input < 2; ++Input) { 3209 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3210 RangeUse[Input] = 0; // Unused 3211 StartIdx[Input] = 0; 3212 continue; 3213 } 3214 3215 // Find a good start index that is a multiple of the mask length. Then 3216 // see if the rest of the elements are in range. 3217 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3218 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3219 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3220 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3221 } 3222 3223 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3224 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3225 return; 3226 } 3227 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3228 // Extract appropriate subvector and generate a vector shuffle 3229 for (unsigned Input = 0; Input < 2; ++Input) { 3230 SDValue &Src = Input == 0 ? Src1 : Src2; 3231 if (RangeUse[Input] == 0) 3232 Src = DAG.getUNDEF(VT); 3233 else 3234 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3235 Src, DAG.getConstant(StartIdx[Input], 3236 TLI->getVectorIdxTy())); 3237 } 3238 3239 // Calculate new mask. 3240 SmallVector<int, 8> MappedOps; 3241 for (unsigned i = 0; i != MaskNumElts; ++i) { 3242 int Idx = Mask[i]; 3243 if (Idx >= 0) { 3244 if (Idx < (int)SrcNumElts) 3245 Idx -= StartIdx[0]; 3246 else 3247 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3248 } 3249 MappedOps.push_back(Idx); 3250 } 3251 3252 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3253 &MappedOps[0])); 3254 return; 3255 } 3256 } 3257 3258 // We can't use either concat vectors or extract subvectors so fall back to 3259 // replacing the shuffle with extract and build vector. 3260 // to insert and build vector. 3261 EVT EltVT = VT.getVectorElementType(); 3262 EVT IdxVT = TLI->getVectorIdxTy(); 3263 SmallVector<SDValue,8> Ops; 3264 for (unsigned i = 0; i != MaskNumElts; ++i) { 3265 int Idx = Mask[i]; 3266 SDValue Res; 3267 3268 if (Idx < 0) { 3269 Res = DAG.getUNDEF(EltVT); 3270 } else { 3271 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3272 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3273 3274 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3275 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3276 } 3277 3278 Ops.push_back(Res); 3279 } 3280 3281 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3282 } 3283 3284 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3285 const Value *Op0 = I.getOperand(0); 3286 const Value *Op1 = I.getOperand(1); 3287 Type *AggTy = I.getType(); 3288 Type *ValTy = Op1->getType(); 3289 bool IntoUndef = isa<UndefValue>(Op0); 3290 bool FromUndef = isa<UndefValue>(Op1); 3291 3292 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3293 3294 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3295 SmallVector<EVT, 4> AggValueVTs; 3296 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3297 SmallVector<EVT, 4> ValValueVTs; 3298 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3299 3300 unsigned NumAggValues = AggValueVTs.size(); 3301 unsigned NumValValues = ValValueVTs.size(); 3302 SmallVector<SDValue, 4> Values(NumAggValues); 3303 3304 SDValue Agg = getValue(Op0); 3305 unsigned i = 0; 3306 // Copy the beginning value(s) from the original aggregate. 3307 for (; i != LinearIndex; ++i) 3308 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3309 SDValue(Agg.getNode(), Agg.getResNo() + i); 3310 // Copy values from the inserted value(s). 3311 if (NumValValues) { 3312 SDValue Val = getValue(Op1); 3313 for (; i != LinearIndex + NumValValues; ++i) 3314 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3315 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3316 } 3317 // Copy remaining value(s) from the original aggregate. 3318 for (; i != NumAggValues; ++i) 3319 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3320 SDValue(Agg.getNode(), Agg.getResNo() + i); 3321 3322 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3323 DAG.getVTList(AggValueVTs), Values)); 3324 } 3325 3326 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3327 const Value *Op0 = I.getOperand(0); 3328 Type *AggTy = Op0->getType(); 3329 Type *ValTy = I.getType(); 3330 bool OutOfUndef = isa<UndefValue>(Op0); 3331 3332 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3333 3334 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3335 SmallVector<EVT, 4> ValValueVTs; 3336 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3337 3338 unsigned NumValValues = ValValueVTs.size(); 3339 3340 // Ignore a extractvalue that produces an empty object 3341 if (!NumValValues) { 3342 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3343 return; 3344 } 3345 3346 SmallVector<SDValue, 4> Values(NumValValues); 3347 3348 SDValue Agg = getValue(Op0); 3349 // Copy out the selected value(s). 3350 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3351 Values[i - LinearIndex] = 3352 OutOfUndef ? 3353 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3354 SDValue(Agg.getNode(), Agg.getResNo() + i); 3355 3356 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3357 DAG.getVTList(ValValueVTs), Values)); 3358 } 3359 3360 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3361 Value *Op0 = I.getOperand(0); 3362 // Note that the pointer operand may be a vector of pointers. Take the scalar 3363 // element which holds a pointer. 3364 Type *Ty = Op0->getType()->getScalarType(); 3365 unsigned AS = Ty->getPointerAddressSpace(); 3366 SDValue N = getValue(Op0); 3367 3368 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3369 OI != E; ++OI) { 3370 const Value *Idx = *OI; 3371 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3372 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3373 if (Field) { 3374 // N = N + Offset 3375 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3376 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3377 DAG.getConstant(Offset, N.getValueType())); 3378 } 3379 3380 Ty = StTy->getElementType(Field); 3381 } else { 3382 Ty = cast<SequentialType>(Ty)->getElementType(); 3383 3384 // If this is a constant subscript, handle it quickly. 3385 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3386 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3387 if (CI->isZero()) continue; 3388 uint64_t Offs = 3389 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3390 SDValue OffsVal; 3391 EVT PTy = TLI->getPointerTy(AS); 3392 unsigned PtrBits = PTy.getSizeInBits(); 3393 if (PtrBits < 64) 3394 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3395 DAG.getConstant(Offs, MVT::i64)); 3396 else 3397 OffsVal = DAG.getConstant(Offs, PTy); 3398 3399 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3400 OffsVal); 3401 continue; 3402 } 3403 3404 // N = N + Idx * ElementSize; 3405 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3406 DL->getTypeAllocSize(Ty)); 3407 SDValue IdxN = getValue(Idx); 3408 3409 // If the index is smaller or larger than intptr_t, truncate or extend 3410 // it. 3411 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3412 3413 // If this is a multiply by a power of two, turn it into a shl 3414 // immediately. This is a very common case. 3415 if (ElementSize != 1) { 3416 if (ElementSize.isPowerOf2()) { 3417 unsigned Amt = ElementSize.logBase2(); 3418 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3419 N.getValueType(), IdxN, 3420 DAG.getConstant(Amt, IdxN.getValueType())); 3421 } else { 3422 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3423 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3424 N.getValueType(), IdxN, Scale); 3425 } 3426 } 3427 3428 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3429 N.getValueType(), N, IdxN); 3430 } 3431 } 3432 3433 setValue(&I, N); 3434 } 3435 3436 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3437 // If this is a fixed sized alloca in the entry block of the function, 3438 // allocate it statically on the stack. 3439 if (FuncInfo.StaticAllocaMap.count(&I)) 3440 return; // getValue will auto-populate this. 3441 3442 Type *Ty = I.getAllocatedType(); 3443 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3444 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3445 unsigned Align = 3446 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3447 I.getAlignment()); 3448 3449 SDValue AllocSize = getValue(I.getArraySize()); 3450 3451 EVT IntPtr = TLI->getPointerTy(); 3452 if (AllocSize.getValueType() != IntPtr) 3453 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3454 3455 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3456 AllocSize, 3457 DAG.getConstant(TySize, IntPtr)); 3458 3459 // Handle alignment. If the requested alignment is less than or equal to 3460 // the stack alignment, ignore it. If the size is greater than or equal to 3461 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3462 unsigned StackAlign = 3463 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3464 if (Align <= StackAlign) 3465 Align = 0; 3466 3467 // Round the size of the allocation up to the stack alignment size 3468 // by add SA-1 to the size. 3469 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3470 AllocSize.getValueType(), AllocSize, 3471 DAG.getIntPtrConstant(StackAlign-1)); 3472 3473 // Mask out the low bits for alignment purposes. 3474 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3475 AllocSize.getValueType(), AllocSize, 3476 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3477 3478 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3479 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3480 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3481 setValue(&I, DSA); 3482 DAG.setRoot(DSA.getValue(1)); 3483 3484 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3485 } 3486 3487 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3488 if (I.isAtomic()) 3489 return visitAtomicLoad(I); 3490 3491 const Value *SV = I.getOperand(0); 3492 SDValue Ptr = getValue(SV); 3493 3494 Type *Ty = I.getType(); 3495 3496 bool isVolatile = I.isVolatile(); 3497 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3498 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3499 unsigned Alignment = I.getAlignment(); 3500 3501 AAMDNodes AAInfo; 3502 I.getAAMetadata(AAInfo); 3503 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3504 3505 SmallVector<EVT, 4> ValueVTs; 3506 SmallVector<uint64_t, 4> Offsets; 3507 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3508 &Offsets); 3509 unsigned NumValues = ValueVTs.size(); 3510 if (NumValues == 0) 3511 return; 3512 3513 SDValue Root; 3514 bool ConstantMemory = false; 3515 if (isVolatile || NumValues > MaxParallelChains) 3516 // Serialize volatile loads with other side effects. 3517 Root = getRoot(); 3518 else if (AA->pointsToConstantMemory( 3519 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3520 // Do not serialize (non-volatile) loads of constant memory with anything. 3521 Root = DAG.getEntryNode(); 3522 ConstantMemory = true; 3523 } else { 3524 // Do not serialize non-volatile loads against each other. 3525 Root = DAG.getRoot(); 3526 } 3527 3528 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3529 if (isVolatile) 3530 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3531 3532 SmallVector<SDValue, 4> Values(NumValues); 3533 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3534 NumValues)); 3535 EVT PtrVT = Ptr.getValueType(); 3536 unsigned ChainI = 0; 3537 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3538 // Serializing loads here may result in excessive register pressure, and 3539 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3540 // could recover a bit by hoisting nodes upward in the chain by recognizing 3541 // they are side-effect free or do not alias. The optimizer should really 3542 // avoid this case by converting large object/array copies to llvm.memcpy 3543 // (MaxParallelChains should always remain as failsafe). 3544 if (ChainI == MaxParallelChains) { 3545 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3546 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3547 makeArrayRef(Chains.data(), ChainI)); 3548 Root = Chain; 3549 ChainI = 0; 3550 } 3551 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3552 PtrVT, Ptr, 3553 DAG.getConstant(Offsets[i], PtrVT)); 3554 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3555 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3556 isNonTemporal, isInvariant, Alignment, AAInfo, 3557 Ranges); 3558 3559 Values[i] = L; 3560 Chains[ChainI] = L.getValue(1); 3561 } 3562 3563 if (!ConstantMemory) { 3564 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3565 makeArrayRef(Chains.data(), ChainI)); 3566 if (isVolatile) 3567 DAG.setRoot(Chain); 3568 else 3569 PendingLoads.push_back(Chain); 3570 } 3571 3572 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3573 DAG.getVTList(ValueVTs), Values)); 3574 } 3575 3576 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3577 if (I.isAtomic()) 3578 return visitAtomicStore(I); 3579 3580 const Value *SrcV = I.getOperand(0); 3581 const Value *PtrV = I.getOperand(1); 3582 3583 SmallVector<EVT, 4> ValueVTs; 3584 SmallVector<uint64_t, 4> Offsets; 3585 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3586 ValueVTs, &Offsets); 3587 unsigned NumValues = ValueVTs.size(); 3588 if (NumValues == 0) 3589 return; 3590 3591 // Get the lowered operands. Note that we do this after 3592 // checking if NumResults is zero, because with zero results 3593 // the operands won't have values in the map. 3594 SDValue Src = getValue(SrcV); 3595 SDValue Ptr = getValue(PtrV); 3596 3597 SDValue Root = getRoot(); 3598 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3599 NumValues)); 3600 EVT PtrVT = Ptr.getValueType(); 3601 bool isVolatile = I.isVolatile(); 3602 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3603 unsigned Alignment = I.getAlignment(); 3604 3605 AAMDNodes AAInfo; 3606 I.getAAMetadata(AAInfo); 3607 3608 unsigned ChainI = 0; 3609 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3610 // See visitLoad comments. 3611 if (ChainI == MaxParallelChains) { 3612 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3613 makeArrayRef(Chains.data(), ChainI)); 3614 Root = Chain; 3615 ChainI = 0; 3616 } 3617 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3618 DAG.getConstant(Offsets[i], PtrVT)); 3619 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3620 SDValue(Src.getNode(), Src.getResNo() + i), 3621 Add, MachinePointerInfo(PtrV, Offsets[i]), 3622 isVolatile, isNonTemporal, Alignment, AAInfo); 3623 Chains[ChainI] = St; 3624 } 3625 3626 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3627 makeArrayRef(Chains.data(), ChainI)); 3628 DAG.setRoot(StoreNode); 3629 } 3630 3631 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3632 SynchronizationScope Scope, 3633 bool Before, SDLoc dl, 3634 SelectionDAG &DAG, 3635 const TargetLowering &TLI) { 3636 // Fence, if necessary 3637 if (Before) { 3638 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3639 Order = Release; 3640 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3641 return Chain; 3642 } else { 3643 if (Order == AcquireRelease) 3644 Order = Acquire; 3645 else if (Order == Release || Order == Monotonic || Order == Unordered) 3646 return Chain; 3647 } 3648 SDValue Ops[3]; 3649 Ops[0] = Chain; 3650 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3651 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3652 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3653 } 3654 3655 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3656 SDLoc dl = getCurSDLoc(); 3657 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3658 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3659 SynchronizationScope Scope = I.getSynchScope(); 3660 3661 SDValue InChain = getRoot(); 3662 3663 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3664 if (TLI->getInsertFencesForAtomic()) 3665 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3666 DAG, *TLI); 3667 3668 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3669 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3670 SDValue L = DAG.getAtomicCmpSwap( 3671 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3672 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3673 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3674 0 /* Alignment */, 3675 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3676 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3677 3678 SDValue OutChain = L.getValue(2); 3679 3680 if (TLI->getInsertFencesForAtomic()) 3681 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3682 DAG, *TLI); 3683 3684 setValue(&I, L); 3685 DAG.setRoot(OutChain); 3686 } 3687 3688 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3689 SDLoc dl = getCurSDLoc(); 3690 ISD::NodeType NT; 3691 switch (I.getOperation()) { 3692 default: llvm_unreachable("Unknown atomicrmw operation"); 3693 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3694 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3695 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3696 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3697 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3698 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3699 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3700 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3701 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3702 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3703 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3704 } 3705 AtomicOrdering Order = I.getOrdering(); 3706 SynchronizationScope Scope = I.getSynchScope(); 3707 3708 SDValue InChain = getRoot(); 3709 3710 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3711 if (TLI->getInsertFencesForAtomic()) 3712 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3713 DAG, *TLI); 3714 3715 SDValue L = 3716 DAG.getAtomic(NT, dl, 3717 getValue(I.getValOperand()).getSimpleValueType(), 3718 InChain, 3719 getValue(I.getPointerOperand()), 3720 getValue(I.getValOperand()), 3721 I.getPointerOperand(), 0 /* Alignment */, 3722 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3723 Scope); 3724 3725 SDValue OutChain = L.getValue(1); 3726 3727 if (TLI->getInsertFencesForAtomic()) 3728 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3729 DAG, *TLI); 3730 3731 setValue(&I, L); 3732 DAG.setRoot(OutChain); 3733 } 3734 3735 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3736 SDLoc dl = getCurSDLoc(); 3737 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3738 SDValue Ops[3]; 3739 Ops[0] = getRoot(); 3740 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3741 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3742 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3743 } 3744 3745 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3746 SDLoc dl = getCurSDLoc(); 3747 AtomicOrdering Order = I.getOrdering(); 3748 SynchronizationScope Scope = I.getSynchScope(); 3749 3750 SDValue InChain = getRoot(); 3751 3752 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3753 EVT VT = TLI->getValueType(I.getType()); 3754 3755 if (I.getAlignment() < VT.getSizeInBits() / 8) 3756 report_fatal_error("Cannot generate unaligned atomic load"); 3757 3758 MachineMemOperand *MMO = 3759 DAG.getMachineFunction(). 3760 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3761 MachineMemOperand::MOVolatile | 3762 MachineMemOperand::MOLoad, 3763 VT.getStoreSize(), 3764 I.getAlignment() ? I.getAlignment() : 3765 DAG.getEVTAlignment(VT)); 3766 3767 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3768 SDValue L = 3769 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3770 getValue(I.getPointerOperand()), MMO, 3771 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3772 Scope); 3773 3774 SDValue OutChain = L.getValue(1); 3775 3776 if (TLI->getInsertFencesForAtomic()) 3777 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3778 DAG, *TLI); 3779 3780 setValue(&I, L); 3781 DAG.setRoot(OutChain); 3782 } 3783 3784 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3785 SDLoc dl = getCurSDLoc(); 3786 3787 AtomicOrdering Order = I.getOrdering(); 3788 SynchronizationScope Scope = I.getSynchScope(); 3789 3790 SDValue InChain = getRoot(); 3791 3792 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3793 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3794 3795 if (I.getAlignment() < VT.getSizeInBits() / 8) 3796 report_fatal_error("Cannot generate unaligned atomic store"); 3797 3798 if (TLI->getInsertFencesForAtomic()) 3799 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3800 DAG, *TLI); 3801 3802 SDValue OutChain = 3803 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3804 InChain, 3805 getValue(I.getPointerOperand()), 3806 getValue(I.getValueOperand()), 3807 I.getPointerOperand(), I.getAlignment(), 3808 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3809 Scope); 3810 3811 if (TLI->getInsertFencesForAtomic()) 3812 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3813 DAG, *TLI); 3814 3815 DAG.setRoot(OutChain); 3816 } 3817 3818 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3819 /// node. 3820 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3821 unsigned Intrinsic) { 3822 bool HasChain = !I.doesNotAccessMemory(); 3823 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3824 3825 // Build the operand list. 3826 SmallVector<SDValue, 8> Ops; 3827 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3828 if (OnlyLoad) { 3829 // We don't need to serialize loads against other loads. 3830 Ops.push_back(DAG.getRoot()); 3831 } else { 3832 Ops.push_back(getRoot()); 3833 } 3834 } 3835 3836 // Info is set by getTgtMemInstrinsic 3837 TargetLowering::IntrinsicInfo Info; 3838 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3839 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3840 3841 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3842 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3843 Info.opc == ISD::INTRINSIC_W_CHAIN) 3844 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3845 3846 // Add all operands of the call to the operand list. 3847 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3848 SDValue Op = getValue(I.getArgOperand(i)); 3849 Ops.push_back(Op); 3850 } 3851 3852 SmallVector<EVT, 4> ValueVTs; 3853 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3854 3855 if (HasChain) 3856 ValueVTs.push_back(MVT::Other); 3857 3858 SDVTList VTs = DAG.getVTList(ValueVTs); 3859 3860 // Create the node. 3861 SDValue Result; 3862 if (IsTgtIntrinsic) { 3863 // This is target intrinsic that touches memory 3864 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3865 VTs, Ops, Info.memVT, 3866 MachinePointerInfo(Info.ptrVal, Info.offset), 3867 Info.align, Info.vol, 3868 Info.readMem, Info.writeMem); 3869 } else if (!HasChain) { 3870 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3871 } else if (!I.getType()->isVoidTy()) { 3872 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3873 } else { 3874 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3875 } 3876 3877 if (HasChain) { 3878 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3879 if (OnlyLoad) 3880 PendingLoads.push_back(Chain); 3881 else 3882 DAG.setRoot(Chain); 3883 } 3884 3885 if (!I.getType()->isVoidTy()) { 3886 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3887 EVT VT = TLI->getValueType(PTy); 3888 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3889 } 3890 3891 setValue(&I, Result); 3892 } 3893 } 3894 3895 /// GetSignificand - Get the significand and build it into a floating-point 3896 /// number with exponent of 1: 3897 /// 3898 /// Op = (Op & 0x007fffff) | 0x3f800000; 3899 /// 3900 /// where Op is the hexadecimal representation of floating point value. 3901 static SDValue 3902 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3903 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3904 DAG.getConstant(0x007fffff, MVT::i32)); 3905 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3906 DAG.getConstant(0x3f800000, MVT::i32)); 3907 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3908 } 3909 3910 /// GetExponent - Get the exponent: 3911 /// 3912 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3913 /// 3914 /// where Op is the hexadecimal representation of floating point value. 3915 static SDValue 3916 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3917 SDLoc dl) { 3918 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3919 DAG.getConstant(0x7f800000, MVT::i32)); 3920 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3921 DAG.getConstant(23, TLI.getPointerTy())); 3922 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3923 DAG.getConstant(127, MVT::i32)); 3924 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3925 } 3926 3927 /// getF32Constant - Get 32-bit floating point constant. 3928 static SDValue 3929 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3930 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3931 MVT::f32); 3932 } 3933 3934 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3935 /// limited-precision mode. 3936 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3937 const TargetLowering &TLI) { 3938 if (Op.getValueType() == MVT::f32 && 3939 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3940 3941 // Put the exponent in the right bit position for later addition to the 3942 // final result: 3943 // 3944 // #define LOG2OFe 1.4426950f 3945 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3947 getF32Constant(DAG, 0x3fb8aa3b)); 3948 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3949 3950 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3951 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3952 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3953 3954 // IntegerPartOfX <<= 23; 3955 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3956 DAG.getConstant(23, TLI.getPointerTy())); 3957 3958 SDValue TwoToFracPartOfX; 3959 if (LimitFloatPrecision <= 6) { 3960 // For floating-point precision of 6: 3961 // 3962 // TwoToFractionalPartOfX = 3963 // 0.997535578f + 3964 // (0.735607626f + 0.252464424f * x) * x; 3965 // 3966 // error 0.0144103317, which is 6 bits 3967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3968 getF32Constant(DAG, 0x3e814304)); 3969 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3970 getF32Constant(DAG, 0x3f3c50c8)); 3971 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3972 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3973 getF32Constant(DAG, 0x3f7f5e7e)); 3974 } else if (LimitFloatPrecision <= 12) { 3975 // For floating-point precision of 12: 3976 // 3977 // TwoToFractionalPartOfX = 3978 // 0.999892986f + 3979 // (0.696457318f + 3980 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3981 // 3982 // 0.000107046256 error, which is 13 to 14 bits 3983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3984 getF32Constant(DAG, 0x3da235e3)); 3985 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3986 getF32Constant(DAG, 0x3e65b8f3)); 3987 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3988 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3989 getF32Constant(DAG, 0x3f324b07)); 3990 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3991 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3992 getF32Constant(DAG, 0x3f7ff8fd)); 3993 } else { // LimitFloatPrecision <= 18 3994 // For floating-point precision of 18: 3995 // 3996 // TwoToFractionalPartOfX = 3997 // 0.999999982f + 3998 // (0.693148872f + 3999 // (0.240227044f + 4000 // (0.554906021e-1f + 4001 // (0.961591928e-2f + 4002 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4003 // 4004 // error 2.47208000*10^(-7), which is better than 18 bits 4005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0x3924b03e)); 4007 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4008 getF32Constant(DAG, 0x3ab24b87)); 4009 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4010 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4011 getF32Constant(DAG, 0x3c1d8c17)); 4012 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4013 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4014 getF32Constant(DAG, 0x3d634a1d)); 4015 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4016 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4017 getF32Constant(DAG, 0x3e75fe14)); 4018 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4019 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4020 getF32Constant(DAG, 0x3f317234)); 4021 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4022 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4023 getF32Constant(DAG, 0x3f800000)); 4024 } 4025 4026 // Add the exponent into the result in integer domain. 4027 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4028 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4029 DAG.getNode(ISD::ADD, dl, MVT::i32, 4030 t13, IntegerPartOfX)); 4031 } 4032 4033 // No special expansion. 4034 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4035 } 4036 4037 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4038 /// limited-precision mode. 4039 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4040 const TargetLowering &TLI) { 4041 if (Op.getValueType() == MVT::f32 && 4042 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4043 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4044 4045 // Scale the exponent by log(2) [0.69314718f]. 4046 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4047 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4048 getF32Constant(DAG, 0x3f317218)); 4049 4050 // Get the significand and build it into a floating-point number with 4051 // exponent of 1. 4052 SDValue X = GetSignificand(DAG, Op1, dl); 4053 4054 SDValue LogOfMantissa; 4055 if (LimitFloatPrecision <= 6) { 4056 // For floating-point precision of 6: 4057 // 4058 // LogofMantissa = 4059 // -1.1609546f + 4060 // (1.4034025f - 0.23903021f * x) * x; 4061 // 4062 // error 0.0034276066, which is better than 8 bits 4063 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4064 getF32Constant(DAG, 0xbe74c456)); 4065 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4066 getF32Constant(DAG, 0x3fb3a2b1)); 4067 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4068 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4069 getF32Constant(DAG, 0x3f949a29)); 4070 } else if (LimitFloatPrecision <= 12) { 4071 // For floating-point precision of 12: 4072 // 4073 // LogOfMantissa = 4074 // -1.7417939f + 4075 // (2.8212026f + 4076 // (-1.4699568f + 4077 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4078 // 4079 // error 0.000061011436, which is 14 bits 4080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4081 getF32Constant(DAG, 0xbd67b6d6)); 4082 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4083 getF32Constant(DAG, 0x3ee4f4b8)); 4084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4085 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4086 getF32Constant(DAG, 0x3fbc278b)); 4087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4088 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4089 getF32Constant(DAG, 0x40348e95)); 4090 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4091 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4092 getF32Constant(DAG, 0x3fdef31a)); 4093 } else { // LimitFloatPrecision <= 18 4094 // For floating-point precision of 18: 4095 // 4096 // LogOfMantissa = 4097 // -2.1072184f + 4098 // (4.2372794f + 4099 // (-3.7029485f + 4100 // (2.2781945f + 4101 // (-0.87823314f + 4102 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4103 // 4104 // error 0.0000023660568, which is better than 18 bits 4105 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4106 getF32Constant(DAG, 0xbc91e5ac)); 4107 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4108 getF32Constant(DAG, 0x3e4350aa)); 4109 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4110 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4111 getF32Constant(DAG, 0x3f60d3e3)); 4112 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4113 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4114 getF32Constant(DAG, 0x4011cdf0)); 4115 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4116 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4117 getF32Constant(DAG, 0x406cfd1c)); 4118 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4119 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4120 getF32Constant(DAG, 0x408797cb)); 4121 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4122 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4123 getF32Constant(DAG, 0x4006dcab)); 4124 } 4125 4126 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4127 } 4128 4129 // No special expansion. 4130 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4131 } 4132 4133 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4134 /// limited-precision mode. 4135 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4136 const TargetLowering &TLI) { 4137 if (Op.getValueType() == MVT::f32 && 4138 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4139 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4140 4141 // Get the exponent. 4142 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4143 4144 // Get the significand and build it into a floating-point number with 4145 // exponent of 1. 4146 SDValue X = GetSignificand(DAG, Op1, dl); 4147 4148 // Different possible minimax approximations of significand in 4149 // floating-point for various degrees of accuracy over [1,2]. 4150 SDValue Log2ofMantissa; 4151 if (LimitFloatPrecision <= 6) { 4152 // For floating-point precision of 6: 4153 // 4154 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4155 // 4156 // error 0.0049451742, which is more than 7 bits 4157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4158 getF32Constant(DAG, 0xbeb08fe0)); 4159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4160 getF32Constant(DAG, 0x40019463)); 4161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4162 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4163 getF32Constant(DAG, 0x3fd6633d)); 4164 } else if (LimitFloatPrecision <= 12) { 4165 // For floating-point precision of 12: 4166 // 4167 // Log2ofMantissa = 4168 // -2.51285454f + 4169 // (4.07009056f + 4170 // (-2.12067489f + 4171 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4172 // 4173 // error 0.0000876136000, which is better than 13 bits 4174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4175 getF32Constant(DAG, 0xbda7262e)); 4176 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4177 getF32Constant(DAG, 0x3f25280b)); 4178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4179 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4180 getF32Constant(DAG, 0x4007b923)); 4181 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4182 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4183 getF32Constant(DAG, 0x40823e2f)); 4184 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4185 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4186 getF32Constant(DAG, 0x4020d29c)); 4187 } else { // LimitFloatPrecision <= 18 4188 // For floating-point precision of 18: 4189 // 4190 // Log2ofMantissa = 4191 // -3.0400495f + 4192 // (6.1129976f + 4193 // (-5.3420409f + 4194 // (3.2865683f + 4195 // (-1.2669343f + 4196 // (0.27515199f - 4197 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4198 // 4199 // error 0.0000018516, which is better than 18 bits 4200 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4201 getF32Constant(DAG, 0xbcd2769e)); 4202 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4203 getF32Constant(DAG, 0x3e8ce0b9)); 4204 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4205 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4206 getF32Constant(DAG, 0x3fa22ae7)); 4207 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4208 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4209 getF32Constant(DAG, 0x40525723)); 4210 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4211 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4212 getF32Constant(DAG, 0x40aaf200)); 4213 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4214 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4215 getF32Constant(DAG, 0x40c39dad)); 4216 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4217 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4218 getF32Constant(DAG, 0x4042902c)); 4219 } 4220 4221 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4222 } 4223 4224 // No special expansion. 4225 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4226 } 4227 4228 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4229 /// limited-precision mode. 4230 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4231 const TargetLowering &TLI) { 4232 if (Op.getValueType() == MVT::f32 && 4233 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4234 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4235 4236 // Scale the exponent by log10(2) [0.30102999f]. 4237 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4238 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4239 getF32Constant(DAG, 0x3e9a209a)); 4240 4241 // Get the significand and build it into a floating-point number with 4242 // exponent of 1. 4243 SDValue X = GetSignificand(DAG, Op1, dl); 4244 4245 SDValue Log10ofMantissa; 4246 if (LimitFloatPrecision <= 6) { 4247 // For floating-point precision of 6: 4248 // 4249 // Log10ofMantissa = 4250 // -0.50419619f + 4251 // (0.60948995f - 0.10380950f * x) * x; 4252 // 4253 // error 0.0014886165, which is 6 bits 4254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0xbdd49a13)); 4256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4257 getF32Constant(DAG, 0x3f1c0789)); 4258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4259 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4260 getF32Constant(DAG, 0x3f011300)); 4261 } else if (LimitFloatPrecision <= 12) { 4262 // For floating-point precision of 12: 4263 // 4264 // Log10ofMantissa = 4265 // -0.64831180f + 4266 // (0.91751397f + 4267 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4268 // 4269 // error 0.00019228036, which is better than 12 bits 4270 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4271 getF32Constant(DAG, 0x3d431f31)); 4272 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4273 getF32Constant(DAG, 0x3ea21fb2)); 4274 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4275 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4276 getF32Constant(DAG, 0x3f6ae232)); 4277 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4278 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4279 getF32Constant(DAG, 0x3f25f7c3)); 4280 } else { // LimitFloatPrecision <= 18 4281 // For floating-point precision of 18: 4282 // 4283 // Log10ofMantissa = 4284 // -0.84299375f + 4285 // (1.5327582f + 4286 // (-1.0688956f + 4287 // (0.49102474f + 4288 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4289 // 4290 // error 0.0000037995730, which is better than 18 bits 4291 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4292 getF32Constant(DAG, 0x3c5d51ce)); 4293 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4294 getF32Constant(DAG, 0x3e00685a)); 4295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4296 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4297 getF32Constant(DAG, 0x3efb6798)); 4298 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4299 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4300 getF32Constant(DAG, 0x3f88d192)); 4301 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4302 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4303 getF32Constant(DAG, 0x3fc4316c)); 4304 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4305 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4306 getF32Constant(DAG, 0x3f57ce70)); 4307 } 4308 4309 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4310 } 4311 4312 // No special expansion. 4313 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4314 } 4315 4316 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4317 /// limited-precision mode. 4318 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4319 const TargetLowering &TLI) { 4320 if (Op.getValueType() == MVT::f32 && 4321 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4322 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4323 4324 // FractionalPartOfX = x - (float)IntegerPartOfX; 4325 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4326 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4327 4328 // IntegerPartOfX <<= 23; 4329 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4330 DAG.getConstant(23, TLI.getPointerTy())); 4331 4332 SDValue TwoToFractionalPartOfX; 4333 if (LimitFloatPrecision <= 6) { 4334 // For floating-point precision of 6: 4335 // 4336 // TwoToFractionalPartOfX = 4337 // 0.997535578f + 4338 // (0.735607626f + 0.252464424f * x) * x; 4339 // 4340 // error 0.0144103317, which is 6 bits 4341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4342 getF32Constant(DAG, 0x3e814304)); 4343 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4344 getF32Constant(DAG, 0x3f3c50c8)); 4345 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4346 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4347 getF32Constant(DAG, 0x3f7f5e7e)); 4348 } else if (LimitFloatPrecision <= 12) { 4349 // For floating-point precision of 12: 4350 // 4351 // TwoToFractionalPartOfX = 4352 // 0.999892986f + 4353 // (0.696457318f + 4354 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4355 // 4356 // error 0.000107046256, which is 13 to 14 bits 4357 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4358 getF32Constant(DAG, 0x3da235e3)); 4359 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4360 getF32Constant(DAG, 0x3e65b8f3)); 4361 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4362 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4363 getF32Constant(DAG, 0x3f324b07)); 4364 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4365 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4366 getF32Constant(DAG, 0x3f7ff8fd)); 4367 } else { // LimitFloatPrecision <= 18 4368 // For floating-point precision of 18: 4369 // 4370 // TwoToFractionalPartOfX = 4371 // 0.999999982f + 4372 // (0.693148872f + 4373 // (0.240227044f + 4374 // (0.554906021e-1f + 4375 // (0.961591928e-2f + 4376 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4377 // error 2.47208000*10^(-7), which is better than 18 bits 4378 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4379 getF32Constant(DAG, 0x3924b03e)); 4380 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4381 getF32Constant(DAG, 0x3ab24b87)); 4382 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4383 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4384 getF32Constant(DAG, 0x3c1d8c17)); 4385 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4386 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4387 getF32Constant(DAG, 0x3d634a1d)); 4388 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4389 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4390 getF32Constant(DAG, 0x3e75fe14)); 4391 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4392 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4393 getF32Constant(DAG, 0x3f317234)); 4394 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4395 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4396 getF32Constant(DAG, 0x3f800000)); 4397 } 4398 4399 // Add the exponent into the result in integer domain. 4400 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4401 TwoToFractionalPartOfX); 4402 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4403 DAG.getNode(ISD::ADD, dl, MVT::i32, 4404 t13, IntegerPartOfX)); 4405 } 4406 4407 // No special expansion. 4408 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4409 } 4410 4411 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4412 /// limited-precision mode with x == 10.0f. 4413 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4414 SelectionDAG &DAG, const TargetLowering &TLI) { 4415 bool IsExp10 = false; 4416 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4417 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4418 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4419 APFloat Ten(10.0f); 4420 IsExp10 = LHSC->isExactlyValue(Ten); 4421 } 4422 } 4423 4424 if (IsExp10) { 4425 // Put the exponent in the right bit position for later addition to the 4426 // final result: 4427 // 4428 // #define LOG2OF10 3.3219281f 4429 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4430 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4431 getF32Constant(DAG, 0x40549a78)); 4432 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4433 4434 // FractionalPartOfX = x - (float)IntegerPartOfX; 4435 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4436 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4437 4438 // IntegerPartOfX <<= 23; 4439 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4440 DAG.getConstant(23, TLI.getPointerTy())); 4441 4442 SDValue TwoToFractionalPartOfX; 4443 if (LimitFloatPrecision <= 6) { 4444 // For floating-point precision of 6: 4445 // 4446 // twoToFractionalPartOfX = 4447 // 0.997535578f + 4448 // (0.735607626f + 0.252464424f * x) * x; 4449 // 4450 // error 0.0144103317, which is 6 bits 4451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4452 getF32Constant(DAG, 0x3e814304)); 4453 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4454 getF32Constant(DAG, 0x3f3c50c8)); 4455 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4456 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4457 getF32Constant(DAG, 0x3f7f5e7e)); 4458 } else if (LimitFloatPrecision <= 12) { 4459 // For floating-point precision of 12: 4460 // 4461 // TwoToFractionalPartOfX = 4462 // 0.999892986f + 4463 // (0.696457318f + 4464 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4465 // 4466 // error 0.000107046256, which is 13 to 14 bits 4467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4468 getF32Constant(DAG, 0x3da235e3)); 4469 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4470 getF32Constant(DAG, 0x3e65b8f3)); 4471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4473 getF32Constant(DAG, 0x3f324b07)); 4474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4475 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4476 getF32Constant(DAG, 0x3f7ff8fd)); 4477 } else { // LimitFloatPrecision <= 18 4478 // For floating-point precision of 18: 4479 // 4480 // TwoToFractionalPartOfX = 4481 // 0.999999982f + 4482 // (0.693148872f + 4483 // (0.240227044f + 4484 // (0.554906021e-1f + 4485 // (0.961591928e-2f + 4486 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4487 // error 2.47208000*10^(-7), which is better than 18 bits 4488 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4489 getF32Constant(DAG, 0x3924b03e)); 4490 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4491 getF32Constant(DAG, 0x3ab24b87)); 4492 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4493 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4494 getF32Constant(DAG, 0x3c1d8c17)); 4495 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4496 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4497 getF32Constant(DAG, 0x3d634a1d)); 4498 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4499 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4500 getF32Constant(DAG, 0x3e75fe14)); 4501 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4502 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4503 getF32Constant(DAG, 0x3f317234)); 4504 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4505 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4506 getF32Constant(DAG, 0x3f800000)); 4507 } 4508 4509 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4510 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4511 DAG.getNode(ISD::ADD, dl, MVT::i32, 4512 t13, IntegerPartOfX)); 4513 } 4514 4515 // No special expansion. 4516 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4517 } 4518 4519 4520 /// ExpandPowI - Expand a llvm.powi intrinsic. 4521 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4522 SelectionDAG &DAG) { 4523 // If RHS is a constant, we can expand this out to a multiplication tree, 4524 // otherwise we end up lowering to a call to __powidf2 (for example). When 4525 // optimizing for size, we only want to do this if the expansion would produce 4526 // a small number of multiplies, otherwise we do the full expansion. 4527 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4528 // Get the exponent as a positive value. 4529 unsigned Val = RHSC->getSExtValue(); 4530 if ((int)Val < 0) Val = -Val; 4531 4532 // powi(x, 0) -> 1.0 4533 if (Val == 0) 4534 return DAG.getConstantFP(1.0, LHS.getValueType()); 4535 4536 const Function *F = DAG.getMachineFunction().getFunction(); 4537 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4538 Attribute::OptimizeForSize) || 4539 // If optimizing for size, don't insert too many multiplies. This 4540 // inserts up to 5 multiplies. 4541 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4542 // We use the simple binary decomposition method to generate the multiply 4543 // sequence. There are more optimal ways to do this (for example, 4544 // powi(x,15) generates one more multiply than it should), but this has 4545 // the benefit of being both really simple and much better than a libcall. 4546 SDValue Res; // Logically starts equal to 1.0 4547 SDValue CurSquare = LHS; 4548 while (Val) { 4549 if (Val & 1) { 4550 if (Res.getNode()) 4551 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4552 else 4553 Res = CurSquare; // 1.0*CurSquare. 4554 } 4555 4556 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4557 CurSquare, CurSquare); 4558 Val >>= 1; 4559 } 4560 4561 // If the original was negative, invert the result, producing 1/(x*x*x). 4562 if (RHSC->getSExtValue() < 0) 4563 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4564 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4565 return Res; 4566 } 4567 } 4568 4569 // Otherwise, expand to a libcall. 4570 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4571 } 4572 4573 // getTruncatedArgReg - Find underlying register used for an truncated 4574 // argument. 4575 static unsigned getTruncatedArgReg(const SDValue &N) { 4576 if (N.getOpcode() != ISD::TRUNCATE) 4577 return 0; 4578 4579 const SDValue &Ext = N.getOperand(0); 4580 if (Ext.getOpcode() == ISD::AssertZext || 4581 Ext.getOpcode() == ISD::AssertSext) { 4582 const SDValue &CFR = Ext.getOperand(0); 4583 if (CFR.getOpcode() == ISD::CopyFromReg) 4584 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4585 if (CFR.getOpcode() == ISD::TRUNCATE) 4586 return getTruncatedArgReg(CFR); 4587 } 4588 return 0; 4589 } 4590 4591 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4592 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4593 /// At the end of instruction selection, they will be inserted to the entry BB. 4594 bool 4595 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4596 int64_t Offset, bool IsIndirect, 4597 const SDValue &N) { 4598 const Argument *Arg = dyn_cast<Argument>(V); 4599 if (!Arg) 4600 return false; 4601 4602 MachineFunction &MF = DAG.getMachineFunction(); 4603 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4604 4605 // Ignore inlined function arguments here. 4606 DIVariable DV(Variable); 4607 if (DV.isInlinedFnArgument(MF.getFunction())) 4608 return false; 4609 4610 Optional<MachineOperand> Op; 4611 // Some arguments' frame index is recorded during argument lowering. 4612 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4613 Op = MachineOperand::CreateFI(FI); 4614 4615 if (!Op && N.getNode()) { 4616 unsigned Reg; 4617 if (N.getOpcode() == ISD::CopyFromReg) 4618 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4619 else 4620 Reg = getTruncatedArgReg(N); 4621 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4622 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4623 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4624 if (PR) 4625 Reg = PR; 4626 } 4627 if (Reg) 4628 Op = MachineOperand::CreateReg(Reg, false); 4629 } 4630 4631 if (!Op) { 4632 // Check if ValueMap has reg number. 4633 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4634 if (VMI != FuncInfo.ValueMap.end()) 4635 Op = MachineOperand::CreateReg(VMI->second, false); 4636 } 4637 4638 if (!Op && N.getNode()) 4639 // Check if frame index is available. 4640 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4641 if (FrameIndexSDNode *FINode = 4642 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4643 Op = MachineOperand::CreateFI(FINode->getIndex()); 4644 4645 if (!Op) 4646 return false; 4647 4648 if (Op->isReg()) 4649 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4650 TII->get(TargetOpcode::DBG_VALUE), 4651 IsIndirect, 4652 Op->getReg(), Offset, Variable)); 4653 else 4654 FuncInfo.ArgDbgValues.push_back( 4655 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4656 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4657 4658 return true; 4659 } 4660 4661 // VisualStudio defines setjmp as _setjmp 4662 #if defined(_MSC_VER) && defined(setjmp) && \ 4663 !defined(setjmp_undefined_for_msvc) 4664 # pragma push_macro("setjmp") 4665 # undef setjmp 4666 # define setjmp_undefined_for_msvc 4667 #endif 4668 4669 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4670 /// we want to emit this as a call to a named external function, return the name 4671 /// otherwise lower it and return null. 4672 const char * 4673 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4674 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4675 SDLoc sdl = getCurSDLoc(); 4676 DebugLoc dl = getCurDebugLoc(); 4677 SDValue Res; 4678 4679 switch (Intrinsic) { 4680 default: 4681 // By default, turn this into a target intrinsic node. 4682 visitTargetIntrinsic(I, Intrinsic); 4683 return nullptr; 4684 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4685 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4686 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4687 case Intrinsic::returnaddress: 4688 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4689 getValue(I.getArgOperand(0)))); 4690 return nullptr; 4691 case Intrinsic::frameaddress: 4692 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4693 getValue(I.getArgOperand(0)))); 4694 return nullptr; 4695 case Intrinsic::read_register: { 4696 Value *Reg = I.getArgOperand(0); 4697 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4698 EVT VT = 4699 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4700 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4701 return nullptr; 4702 } 4703 case Intrinsic::write_register: { 4704 Value *Reg = I.getArgOperand(0); 4705 Value *RegValue = I.getArgOperand(1); 4706 SDValue Chain = getValue(RegValue).getOperand(0); 4707 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4708 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4709 RegName, getValue(RegValue))); 4710 return nullptr; 4711 } 4712 case Intrinsic::setjmp: 4713 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4714 case Intrinsic::longjmp: 4715 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4716 case Intrinsic::memcpy: { 4717 // Assert for address < 256 since we support only user defined address 4718 // spaces. 4719 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4720 < 256 && 4721 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4722 < 256 && 4723 "Unknown address space"); 4724 SDValue Op1 = getValue(I.getArgOperand(0)); 4725 SDValue Op2 = getValue(I.getArgOperand(1)); 4726 SDValue Op3 = getValue(I.getArgOperand(2)); 4727 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4728 if (!Align) 4729 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4730 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4731 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4732 MachinePointerInfo(I.getArgOperand(0)), 4733 MachinePointerInfo(I.getArgOperand(1)))); 4734 return nullptr; 4735 } 4736 case Intrinsic::memset: { 4737 // Assert for address < 256 since we support only user defined address 4738 // spaces. 4739 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4740 < 256 && 4741 "Unknown address space"); 4742 SDValue Op1 = getValue(I.getArgOperand(0)); 4743 SDValue Op2 = getValue(I.getArgOperand(1)); 4744 SDValue Op3 = getValue(I.getArgOperand(2)); 4745 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4746 if (!Align) 4747 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4748 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4749 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4750 MachinePointerInfo(I.getArgOperand(0)))); 4751 return nullptr; 4752 } 4753 case Intrinsic::memmove: { 4754 // Assert for address < 256 since we support only user defined address 4755 // spaces. 4756 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4757 < 256 && 4758 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4759 < 256 && 4760 "Unknown address space"); 4761 SDValue Op1 = getValue(I.getArgOperand(0)); 4762 SDValue Op2 = getValue(I.getArgOperand(1)); 4763 SDValue Op3 = getValue(I.getArgOperand(2)); 4764 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4765 if (!Align) 4766 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4767 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4768 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4769 MachinePointerInfo(I.getArgOperand(0)), 4770 MachinePointerInfo(I.getArgOperand(1)))); 4771 return nullptr; 4772 } 4773 case Intrinsic::dbg_declare: { 4774 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4775 MDNode *Variable = DI.getVariable(); 4776 const Value *Address = DI.getAddress(); 4777 DIVariable DIVar(Variable); 4778 assert((!DIVar || DIVar.isVariable()) && 4779 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4780 if (!Address || !DIVar) { 4781 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4782 return nullptr; 4783 } 4784 4785 // Check if address has undef value. 4786 if (isa<UndefValue>(Address) || 4787 (Address->use_empty() && !isa<Argument>(Address))) { 4788 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4789 return nullptr; 4790 } 4791 4792 SDValue &N = NodeMap[Address]; 4793 if (!N.getNode() && isa<Argument>(Address)) 4794 // Check unused arguments map. 4795 N = UnusedArgNodeMap[Address]; 4796 SDDbgValue *SDV; 4797 if (N.getNode()) { 4798 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4799 Address = BCI->getOperand(0); 4800 // Parameters are handled specially. 4801 bool isParameter = 4802 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4803 isa<Argument>(Address)); 4804 4805 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4806 4807 if (isParameter && !AI) { 4808 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4809 if (FINode) 4810 // Byval parameter. We have a frame index at this point. 4811 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4812 0, dl, SDNodeOrder); 4813 else { 4814 // Address is an argument, so try to emit its dbg value using 4815 // virtual register info from the FuncInfo.ValueMap. 4816 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4817 return nullptr; 4818 } 4819 } else if (AI) 4820 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4821 true, 0, dl, SDNodeOrder); 4822 else { 4823 // Can't do anything with other non-AI cases yet. 4824 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4825 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4826 DEBUG(Address->dump()); 4827 return nullptr; 4828 } 4829 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4830 } else { 4831 // If Address is an argument then try to emit its dbg value using 4832 // virtual register info from the FuncInfo.ValueMap. 4833 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4834 // If variable is pinned by a alloca in dominating bb then 4835 // use StaticAllocaMap. 4836 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4837 if (AI->getParent() != DI.getParent()) { 4838 DenseMap<const AllocaInst*, int>::iterator SI = 4839 FuncInfo.StaticAllocaMap.find(AI); 4840 if (SI != FuncInfo.StaticAllocaMap.end()) { 4841 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4842 0, dl, SDNodeOrder); 4843 DAG.AddDbgValue(SDV, nullptr, false); 4844 return nullptr; 4845 } 4846 } 4847 } 4848 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4849 } 4850 } 4851 return nullptr; 4852 } 4853 case Intrinsic::dbg_value: { 4854 const DbgValueInst &DI = cast<DbgValueInst>(I); 4855 DIVariable DIVar(DI.getVariable()); 4856 assert((!DIVar || DIVar.isVariable()) && 4857 "Variable in DbgValueInst should be either null or a DIVariable."); 4858 if (!DIVar) 4859 return nullptr; 4860 4861 MDNode *Variable = DI.getVariable(); 4862 uint64_t Offset = DI.getOffset(); 4863 const Value *V = DI.getValue(); 4864 if (!V) 4865 return nullptr; 4866 4867 SDDbgValue *SDV; 4868 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4869 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4870 DAG.AddDbgValue(SDV, nullptr, false); 4871 } else { 4872 // Do not use getValue() in here; we don't want to generate code at 4873 // this point if it hasn't been done yet. 4874 SDValue N = NodeMap[V]; 4875 if (!N.getNode() && isa<Argument>(V)) 4876 // Check unused arguments map. 4877 N = UnusedArgNodeMap[V]; 4878 if (N.getNode()) { 4879 // A dbg.value for an alloca is always indirect. 4880 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4881 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4882 SDV = DAG.getDbgValue(Variable, N.getNode(), 4883 N.getResNo(), IsIndirect, 4884 Offset, dl, SDNodeOrder); 4885 DAG.AddDbgValue(SDV, N.getNode(), false); 4886 } 4887 } else if (!V->use_empty() ) { 4888 // Do not call getValue(V) yet, as we don't want to generate code. 4889 // Remember it for later. 4890 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4891 DanglingDebugInfoMap[V] = DDI; 4892 } else { 4893 // We may expand this to cover more cases. One case where we have no 4894 // data available is an unreferenced parameter. 4895 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4896 } 4897 } 4898 4899 // Build a debug info table entry. 4900 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4901 V = BCI->getOperand(0); 4902 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4903 // Don't handle byval struct arguments or VLAs, for example. 4904 if (!AI) { 4905 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4906 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4907 return nullptr; 4908 } 4909 DenseMap<const AllocaInst*, int>::iterator SI = 4910 FuncInfo.StaticAllocaMap.find(AI); 4911 if (SI == FuncInfo.StaticAllocaMap.end()) 4912 return nullptr; // VLAs. 4913 return nullptr; 4914 } 4915 4916 case Intrinsic::eh_typeid_for: { 4917 // Find the type id for the given typeinfo. 4918 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4919 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4920 Res = DAG.getConstant(TypeID, MVT::i32); 4921 setValue(&I, Res); 4922 return nullptr; 4923 } 4924 4925 case Intrinsic::eh_return_i32: 4926 case Intrinsic::eh_return_i64: 4927 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4928 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4929 MVT::Other, 4930 getControlRoot(), 4931 getValue(I.getArgOperand(0)), 4932 getValue(I.getArgOperand(1)))); 4933 return nullptr; 4934 case Intrinsic::eh_unwind_init: 4935 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4936 return nullptr; 4937 case Intrinsic::eh_dwarf_cfa: { 4938 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4939 TLI->getPointerTy()); 4940 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4941 CfaArg.getValueType(), 4942 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4943 CfaArg.getValueType()), 4944 CfaArg); 4945 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4946 TLI->getPointerTy(), 4947 DAG.getConstant(0, TLI->getPointerTy())); 4948 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4949 FA, Offset)); 4950 return nullptr; 4951 } 4952 case Intrinsic::eh_sjlj_callsite: { 4953 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4954 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4955 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4956 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4957 4958 MMI.setCurrentCallSite(CI->getZExtValue()); 4959 return nullptr; 4960 } 4961 case Intrinsic::eh_sjlj_functioncontext: { 4962 // Get and store the index of the function context. 4963 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4964 AllocaInst *FnCtx = 4965 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4966 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4967 MFI->setFunctionContextIndex(FI); 4968 return nullptr; 4969 } 4970 case Intrinsic::eh_sjlj_setjmp: { 4971 SDValue Ops[2]; 4972 Ops[0] = getRoot(); 4973 Ops[1] = getValue(I.getArgOperand(0)); 4974 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4975 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4976 setValue(&I, Op.getValue(0)); 4977 DAG.setRoot(Op.getValue(1)); 4978 return nullptr; 4979 } 4980 case Intrinsic::eh_sjlj_longjmp: { 4981 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4982 getRoot(), getValue(I.getArgOperand(0)))); 4983 return nullptr; 4984 } 4985 4986 case Intrinsic::x86_mmx_pslli_w: 4987 case Intrinsic::x86_mmx_pslli_d: 4988 case Intrinsic::x86_mmx_pslli_q: 4989 case Intrinsic::x86_mmx_psrli_w: 4990 case Intrinsic::x86_mmx_psrli_d: 4991 case Intrinsic::x86_mmx_psrli_q: 4992 case Intrinsic::x86_mmx_psrai_w: 4993 case Intrinsic::x86_mmx_psrai_d: { 4994 SDValue ShAmt = getValue(I.getArgOperand(1)); 4995 if (isa<ConstantSDNode>(ShAmt)) { 4996 visitTargetIntrinsic(I, Intrinsic); 4997 return nullptr; 4998 } 4999 unsigned NewIntrinsic = 0; 5000 EVT ShAmtVT = MVT::v2i32; 5001 switch (Intrinsic) { 5002 case Intrinsic::x86_mmx_pslli_w: 5003 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5004 break; 5005 case Intrinsic::x86_mmx_pslli_d: 5006 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5007 break; 5008 case Intrinsic::x86_mmx_pslli_q: 5009 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5010 break; 5011 case Intrinsic::x86_mmx_psrli_w: 5012 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5013 break; 5014 case Intrinsic::x86_mmx_psrli_d: 5015 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5016 break; 5017 case Intrinsic::x86_mmx_psrli_q: 5018 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5019 break; 5020 case Intrinsic::x86_mmx_psrai_w: 5021 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5022 break; 5023 case Intrinsic::x86_mmx_psrai_d: 5024 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5025 break; 5026 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5027 } 5028 5029 // The vector shift intrinsics with scalars uses 32b shift amounts but 5030 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5031 // to be zero. 5032 // We must do this early because v2i32 is not a legal type. 5033 SDValue ShOps[2]; 5034 ShOps[0] = ShAmt; 5035 ShOps[1] = DAG.getConstant(0, MVT::i32); 5036 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5037 EVT DestVT = TLI->getValueType(I.getType()); 5038 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5039 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5040 DAG.getConstant(NewIntrinsic, MVT::i32), 5041 getValue(I.getArgOperand(0)), ShAmt); 5042 setValue(&I, Res); 5043 return nullptr; 5044 } 5045 case Intrinsic::x86_avx_vinsertf128_pd_256: 5046 case Intrinsic::x86_avx_vinsertf128_ps_256: 5047 case Intrinsic::x86_avx_vinsertf128_si_256: 5048 case Intrinsic::x86_avx2_vinserti128: { 5049 EVT DestVT = TLI->getValueType(I.getType()); 5050 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5051 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5052 ElVT.getVectorNumElements(); 5053 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5054 getValue(I.getArgOperand(0)), 5055 getValue(I.getArgOperand(1)), 5056 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5057 setValue(&I, Res); 5058 return nullptr; 5059 } 5060 case Intrinsic::x86_avx_vextractf128_pd_256: 5061 case Intrinsic::x86_avx_vextractf128_ps_256: 5062 case Intrinsic::x86_avx_vextractf128_si_256: 5063 case Intrinsic::x86_avx2_vextracti128: { 5064 EVT DestVT = TLI->getValueType(I.getType()); 5065 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5066 DestVT.getVectorNumElements(); 5067 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5068 getValue(I.getArgOperand(0)), 5069 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5070 setValue(&I, Res); 5071 return nullptr; 5072 } 5073 case Intrinsic::convertff: 5074 case Intrinsic::convertfsi: 5075 case Intrinsic::convertfui: 5076 case Intrinsic::convertsif: 5077 case Intrinsic::convertuif: 5078 case Intrinsic::convertss: 5079 case Intrinsic::convertsu: 5080 case Intrinsic::convertus: 5081 case Intrinsic::convertuu: { 5082 ISD::CvtCode Code = ISD::CVT_INVALID; 5083 switch (Intrinsic) { 5084 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5085 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5086 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5087 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5088 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5089 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5090 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5091 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5092 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5093 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5094 } 5095 EVT DestVT = TLI->getValueType(I.getType()); 5096 const Value *Op1 = I.getArgOperand(0); 5097 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5098 DAG.getValueType(DestVT), 5099 DAG.getValueType(getValue(Op1).getValueType()), 5100 getValue(I.getArgOperand(1)), 5101 getValue(I.getArgOperand(2)), 5102 Code); 5103 setValue(&I, Res); 5104 return nullptr; 5105 } 5106 case Intrinsic::powi: 5107 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5108 getValue(I.getArgOperand(1)), DAG)); 5109 return nullptr; 5110 case Intrinsic::log: 5111 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5112 return nullptr; 5113 case Intrinsic::log2: 5114 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5115 return nullptr; 5116 case Intrinsic::log10: 5117 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5118 return nullptr; 5119 case Intrinsic::exp: 5120 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5121 return nullptr; 5122 case Intrinsic::exp2: 5123 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5124 return nullptr; 5125 case Intrinsic::pow: 5126 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5127 getValue(I.getArgOperand(1)), DAG, *TLI)); 5128 return nullptr; 5129 case Intrinsic::sqrt: 5130 case Intrinsic::fabs: 5131 case Intrinsic::sin: 5132 case Intrinsic::cos: 5133 case Intrinsic::floor: 5134 case Intrinsic::ceil: 5135 case Intrinsic::trunc: 5136 case Intrinsic::rint: 5137 case Intrinsic::nearbyint: 5138 case Intrinsic::round: { 5139 unsigned Opcode; 5140 switch (Intrinsic) { 5141 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5142 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5143 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5144 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5145 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5146 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5147 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5148 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5149 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5150 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5151 case Intrinsic::round: Opcode = ISD::FROUND; break; 5152 } 5153 5154 setValue(&I, DAG.getNode(Opcode, sdl, 5155 getValue(I.getArgOperand(0)).getValueType(), 5156 getValue(I.getArgOperand(0)))); 5157 return nullptr; 5158 } 5159 case Intrinsic::copysign: 5160 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5161 getValue(I.getArgOperand(0)).getValueType(), 5162 getValue(I.getArgOperand(0)), 5163 getValue(I.getArgOperand(1)))); 5164 return nullptr; 5165 case Intrinsic::fma: 5166 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5167 getValue(I.getArgOperand(0)).getValueType(), 5168 getValue(I.getArgOperand(0)), 5169 getValue(I.getArgOperand(1)), 5170 getValue(I.getArgOperand(2)))); 5171 return nullptr; 5172 case Intrinsic::fmuladd: { 5173 EVT VT = TLI->getValueType(I.getType()); 5174 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5175 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5176 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5177 getValue(I.getArgOperand(0)).getValueType(), 5178 getValue(I.getArgOperand(0)), 5179 getValue(I.getArgOperand(1)), 5180 getValue(I.getArgOperand(2)))); 5181 } else { 5182 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5183 getValue(I.getArgOperand(0)).getValueType(), 5184 getValue(I.getArgOperand(0)), 5185 getValue(I.getArgOperand(1))); 5186 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5187 getValue(I.getArgOperand(0)).getValueType(), 5188 Mul, 5189 getValue(I.getArgOperand(2))); 5190 setValue(&I, Add); 5191 } 5192 return nullptr; 5193 } 5194 case Intrinsic::convert_to_fp16: 5195 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5196 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5197 getValue(I.getArgOperand(0)), 5198 DAG.getTargetConstant(0, MVT::i32)))); 5199 return nullptr; 5200 case Intrinsic::convert_from_fp16: 5201 setValue(&I, 5202 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5203 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5204 getValue(I.getArgOperand(0))))); 5205 return nullptr; 5206 case Intrinsic::pcmarker: { 5207 SDValue Tmp = getValue(I.getArgOperand(0)); 5208 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5209 return nullptr; 5210 } 5211 case Intrinsic::readcyclecounter: { 5212 SDValue Op = getRoot(); 5213 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5214 DAG.getVTList(MVT::i64, MVT::Other), Op); 5215 setValue(&I, Res); 5216 DAG.setRoot(Res.getValue(1)); 5217 return nullptr; 5218 } 5219 case Intrinsic::bswap: 5220 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5221 getValue(I.getArgOperand(0)).getValueType(), 5222 getValue(I.getArgOperand(0)))); 5223 return nullptr; 5224 case Intrinsic::cttz: { 5225 SDValue Arg = getValue(I.getArgOperand(0)); 5226 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5227 EVT Ty = Arg.getValueType(); 5228 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5229 sdl, Ty, Arg)); 5230 return nullptr; 5231 } 5232 case Intrinsic::ctlz: { 5233 SDValue Arg = getValue(I.getArgOperand(0)); 5234 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5235 EVT Ty = Arg.getValueType(); 5236 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5237 sdl, Ty, Arg)); 5238 return nullptr; 5239 } 5240 case Intrinsic::ctpop: { 5241 SDValue Arg = getValue(I.getArgOperand(0)); 5242 EVT Ty = Arg.getValueType(); 5243 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5244 return nullptr; 5245 } 5246 case Intrinsic::stacksave: { 5247 SDValue Op = getRoot(); 5248 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5249 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5250 setValue(&I, Res); 5251 DAG.setRoot(Res.getValue(1)); 5252 return nullptr; 5253 } 5254 case Intrinsic::stackrestore: { 5255 Res = getValue(I.getArgOperand(0)); 5256 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5257 return nullptr; 5258 } 5259 case Intrinsic::stackprotector: { 5260 // Emit code into the DAG to store the stack guard onto the stack. 5261 MachineFunction &MF = DAG.getMachineFunction(); 5262 MachineFrameInfo *MFI = MF.getFrameInfo(); 5263 EVT PtrTy = TLI->getPointerTy(); 5264 SDValue Src, Chain = getRoot(); 5265 5266 if (TLI->useLoadStackGuardNode()) { 5267 // Emit a LOAD_STACK_GUARD node. 5268 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5269 sdl, PtrTy, Chain); 5270 LoadInst *LI = cast<LoadInst>(I.getArgOperand(0)); 5271 MachinePointerInfo MPInfo(LI->getPointerOperand()); 5272 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5273 unsigned Flags = MachineMemOperand::MOLoad | 5274 MachineMemOperand::MOInvariant; 5275 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5276 PtrTy.getSizeInBits() / 8, 5277 DAG.getEVTAlignment(PtrTy)); 5278 Node->setMemRefs(MemRefs, MemRefs + 1); 5279 5280 // Copy the guard value to a virtual register so that it can be 5281 // retrieved in the epilogue. 5282 Src = SDValue(Node, 0); 5283 const TargetRegisterClass *RC = 5284 TLI->getRegClassFor(Src.getSimpleValueType()); 5285 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5286 5287 SPDescriptor.setGuardReg(Reg); 5288 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5289 } else { 5290 Src = getValue(I.getArgOperand(0)); // The guard's value. 5291 } 5292 5293 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5294 5295 int FI = FuncInfo.StaticAllocaMap[Slot]; 5296 MFI->setStackProtectorIndex(FI); 5297 5298 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5299 5300 // Store the stack protector onto the stack. 5301 Res = DAG.getStore(Chain, sdl, Src, FIN, 5302 MachinePointerInfo::getFixedStack(FI), 5303 true, false, 0); 5304 setValue(&I, Res); 5305 DAG.setRoot(Res); 5306 return nullptr; 5307 } 5308 case Intrinsic::objectsize: { 5309 // If we don't know by now, we're never going to know. 5310 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5311 5312 assert(CI && "Non-constant type in __builtin_object_size?"); 5313 5314 SDValue Arg = getValue(I.getCalledValue()); 5315 EVT Ty = Arg.getValueType(); 5316 5317 if (CI->isZero()) 5318 Res = DAG.getConstant(-1ULL, Ty); 5319 else 5320 Res = DAG.getConstant(0, Ty); 5321 5322 setValue(&I, Res); 5323 return nullptr; 5324 } 5325 case Intrinsic::annotation: 5326 case Intrinsic::ptr_annotation: 5327 // Drop the intrinsic, but forward the value 5328 setValue(&I, getValue(I.getOperand(0))); 5329 return nullptr; 5330 case Intrinsic::assume: 5331 case Intrinsic::var_annotation: 5332 // Discard annotate attributes and assumptions 5333 return nullptr; 5334 5335 case Intrinsic::init_trampoline: { 5336 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5337 5338 SDValue Ops[6]; 5339 Ops[0] = getRoot(); 5340 Ops[1] = getValue(I.getArgOperand(0)); 5341 Ops[2] = getValue(I.getArgOperand(1)); 5342 Ops[3] = getValue(I.getArgOperand(2)); 5343 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5344 Ops[5] = DAG.getSrcValue(F); 5345 5346 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5347 5348 DAG.setRoot(Res); 5349 return nullptr; 5350 } 5351 case Intrinsic::adjust_trampoline: { 5352 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5353 TLI->getPointerTy(), 5354 getValue(I.getArgOperand(0)))); 5355 return nullptr; 5356 } 5357 case Intrinsic::gcroot: 5358 if (GFI) { 5359 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5360 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5361 5362 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5363 GFI->addStackRoot(FI->getIndex(), TypeMap); 5364 } 5365 return nullptr; 5366 case Intrinsic::gcread: 5367 case Intrinsic::gcwrite: 5368 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5369 case Intrinsic::flt_rounds: 5370 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5371 return nullptr; 5372 5373 case Intrinsic::expect: { 5374 // Just replace __builtin_expect(exp, c) with EXP. 5375 setValue(&I, getValue(I.getArgOperand(0))); 5376 return nullptr; 5377 } 5378 5379 case Intrinsic::debugtrap: 5380 case Intrinsic::trap: { 5381 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5382 if (TrapFuncName.empty()) { 5383 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5384 ISD::TRAP : ISD::DEBUGTRAP; 5385 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5386 return nullptr; 5387 } 5388 TargetLowering::ArgListTy Args; 5389 5390 TargetLowering::CallLoweringInfo CLI(DAG); 5391 CLI.setDebugLoc(sdl).setChain(getRoot()) 5392 .setCallee(CallingConv::C, I.getType(), 5393 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5394 std::move(Args), 0); 5395 5396 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5397 DAG.setRoot(Result.second); 5398 return nullptr; 5399 } 5400 5401 case Intrinsic::uadd_with_overflow: 5402 case Intrinsic::sadd_with_overflow: 5403 case Intrinsic::usub_with_overflow: 5404 case Intrinsic::ssub_with_overflow: 5405 case Intrinsic::umul_with_overflow: 5406 case Intrinsic::smul_with_overflow: { 5407 ISD::NodeType Op; 5408 switch (Intrinsic) { 5409 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5410 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5411 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5412 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5413 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5414 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5415 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5416 } 5417 SDValue Op1 = getValue(I.getArgOperand(0)); 5418 SDValue Op2 = getValue(I.getArgOperand(1)); 5419 5420 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5421 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5422 return nullptr; 5423 } 5424 case Intrinsic::prefetch: { 5425 SDValue Ops[5]; 5426 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5427 Ops[0] = getRoot(); 5428 Ops[1] = getValue(I.getArgOperand(0)); 5429 Ops[2] = getValue(I.getArgOperand(1)); 5430 Ops[3] = getValue(I.getArgOperand(2)); 5431 Ops[4] = getValue(I.getArgOperand(3)); 5432 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5433 DAG.getVTList(MVT::Other), Ops, 5434 EVT::getIntegerVT(*Context, 8), 5435 MachinePointerInfo(I.getArgOperand(0)), 5436 0, /* align */ 5437 false, /* volatile */ 5438 rw==0, /* read */ 5439 rw==1)); /* write */ 5440 return nullptr; 5441 } 5442 case Intrinsic::lifetime_start: 5443 case Intrinsic::lifetime_end: { 5444 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5445 // Stack coloring is not enabled in O0, discard region information. 5446 if (TM.getOptLevel() == CodeGenOpt::None) 5447 return nullptr; 5448 5449 SmallVector<Value *, 4> Allocas; 5450 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5451 5452 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5453 E = Allocas.end(); Object != E; ++Object) { 5454 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5455 5456 // Could not find an Alloca. 5457 if (!LifetimeObject) 5458 continue; 5459 5460 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5461 5462 SDValue Ops[2]; 5463 Ops[0] = getRoot(); 5464 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5465 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5466 5467 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5468 DAG.setRoot(Res); 5469 } 5470 return nullptr; 5471 } 5472 case Intrinsic::invariant_start: 5473 // Discard region information. 5474 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5475 return nullptr; 5476 case Intrinsic::invariant_end: 5477 // Discard region information. 5478 return nullptr; 5479 case Intrinsic::stackprotectorcheck: { 5480 // Do not actually emit anything for this basic block. Instead we initialize 5481 // the stack protector descriptor and export the guard variable so we can 5482 // access it in FinishBasicBlock. 5483 const BasicBlock *BB = I.getParent(); 5484 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5485 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5486 5487 // Flush our exports since we are going to process a terminator. 5488 (void)getControlRoot(); 5489 return nullptr; 5490 } 5491 case Intrinsic::clear_cache: 5492 return TLI->getClearCacheBuiltinName(); 5493 case Intrinsic::donothing: 5494 // ignore 5495 return nullptr; 5496 case Intrinsic::experimental_stackmap: { 5497 visitStackmap(I); 5498 return nullptr; 5499 } 5500 case Intrinsic::experimental_patchpoint_void: 5501 case Intrinsic::experimental_patchpoint_i64: { 5502 visitPatchpoint(I); 5503 return nullptr; 5504 } 5505 } 5506 } 5507 5508 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5509 bool isTailCall, 5510 MachineBasicBlock *LandingPad) { 5511 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5512 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5513 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5514 Type *RetTy = FTy->getReturnType(); 5515 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5516 MCSymbol *BeginLabel = nullptr; 5517 5518 TargetLowering::ArgListTy Args; 5519 TargetLowering::ArgListEntry Entry; 5520 Args.reserve(CS.arg_size()); 5521 5522 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5523 i != e; ++i) { 5524 const Value *V = *i; 5525 5526 // Skip empty types 5527 if (V->getType()->isEmptyTy()) 5528 continue; 5529 5530 SDValue ArgNode = getValue(V); 5531 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5532 5533 // Skip the first return-type Attribute to get to params. 5534 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5535 Args.push_back(Entry); 5536 } 5537 5538 if (LandingPad) { 5539 // Insert a label before the invoke call to mark the try range. This can be 5540 // used to detect deletion of the invoke via the MachineModuleInfo. 5541 BeginLabel = MMI.getContext().CreateTempSymbol(); 5542 5543 // For SjLj, keep track of which landing pads go with which invokes 5544 // so as to maintain the ordering of pads in the LSDA. 5545 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5546 if (CallSiteIndex) { 5547 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5548 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5549 5550 // Now that the call site is handled, stop tracking it. 5551 MMI.setCurrentCallSite(0); 5552 } 5553 5554 // Both PendingLoads and PendingExports must be flushed here; 5555 // this call might not return. 5556 (void)getRoot(); 5557 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5558 } 5559 5560 // Check if target-independent constraints permit a tail call here. 5561 // Target-dependent constraints are checked within TLI->LowerCallTo. 5562 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5563 isTailCall = false; 5564 5565 TargetLowering::CallLoweringInfo CLI(DAG); 5566 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5567 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5568 5569 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5570 assert((isTailCall || Result.second.getNode()) && 5571 "Non-null chain expected with non-tail call!"); 5572 assert((Result.second.getNode() || !Result.first.getNode()) && 5573 "Null value expected with tail call!"); 5574 if (Result.first.getNode()) 5575 setValue(CS.getInstruction(), Result.first); 5576 5577 if (!Result.second.getNode()) { 5578 // As a special case, a null chain means that a tail call has been emitted 5579 // and the DAG root is already updated. 5580 HasTailCall = true; 5581 5582 // Since there's no actual continuation from this block, nothing can be 5583 // relying on us setting vregs for them. 5584 PendingExports.clear(); 5585 } else { 5586 DAG.setRoot(Result.second); 5587 } 5588 5589 if (LandingPad) { 5590 // Insert a label at the end of the invoke call to mark the try range. This 5591 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5592 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5593 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5594 5595 // Inform MachineModuleInfo of range. 5596 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5597 } 5598 } 5599 5600 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5601 /// value is equal or not-equal to zero. 5602 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5603 for (const User *U : V->users()) { 5604 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5605 if (IC->isEquality()) 5606 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5607 if (C->isNullValue()) 5608 continue; 5609 // Unknown instruction. 5610 return false; 5611 } 5612 return true; 5613 } 5614 5615 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5616 Type *LoadTy, 5617 SelectionDAGBuilder &Builder) { 5618 5619 // Check to see if this load can be trivially constant folded, e.g. if the 5620 // input is from a string literal. 5621 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5622 // Cast pointer to the type we really want to load. 5623 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5624 PointerType::getUnqual(LoadTy)); 5625 5626 if (const Constant *LoadCst = 5627 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5628 Builder.DL)) 5629 return Builder.getValue(LoadCst); 5630 } 5631 5632 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5633 // still constant memory, the input chain can be the entry node. 5634 SDValue Root; 5635 bool ConstantMemory = false; 5636 5637 // Do not serialize (non-volatile) loads of constant memory with anything. 5638 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5639 Root = Builder.DAG.getEntryNode(); 5640 ConstantMemory = true; 5641 } else { 5642 // Do not serialize non-volatile loads against each other. 5643 Root = Builder.DAG.getRoot(); 5644 } 5645 5646 SDValue Ptr = Builder.getValue(PtrVal); 5647 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5648 Ptr, MachinePointerInfo(PtrVal), 5649 false /*volatile*/, 5650 false /*nontemporal*/, 5651 false /*isinvariant*/, 1 /* align=1 */); 5652 5653 if (!ConstantMemory) 5654 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5655 return LoadVal; 5656 } 5657 5658 /// processIntegerCallValue - Record the value for an instruction that 5659 /// produces an integer result, converting the type where necessary. 5660 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5661 SDValue Value, 5662 bool IsSigned) { 5663 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5664 true); 5665 if (IsSigned) 5666 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5667 else 5668 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5669 setValue(&I, Value); 5670 } 5671 5672 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5673 /// If so, return true and lower it, otherwise return false and it will be 5674 /// lowered like a normal call. 5675 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5676 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5677 if (I.getNumArgOperands() != 3) 5678 return false; 5679 5680 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5681 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5682 !I.getArgOperand(2)->getType()->isIntegerTy() || 5683 !I.getType()->isIntegerTy()) 5684 return false; 5685 5686 const Value *Size = I.getArgOperand(2); 5687 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5688 if (CSize && CSize->getZExtValue() == 0) { 5689 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5690 I.getType(), true); 5691 setValue(&I, DAG.getConstant(0, CallVT)); 5692 return true; 5693 } 5694 5695 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5696 std::pair<SDValue, SDValue> Res = 5697 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5698 getValue(LHS), getValue(RHS), getValue(Size), 5699 MachinePointerInfo(LHS), 5700 MachinePointerInfo(RHS)); 5701 if (Res.first.getNode()) { 5702 processIntegerCallValue(I, Res.first, true); 5703 PendingLoads.push_back(Res.second); 5704 return true; 5705 } 5706 5707 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5708 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5709 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5710 bool ActuallyDoIt = true; 5711 MVT LoadVT; 5712 Type *LoadTy; 5713 switch (CSize->getZExtValue()) { 5714 default: 5715 LoadVT = MVT::Other; 5716 LoadTy = nullptr; 5717 ActuallyDoIt = false; 5718 break; 5719 case 2: 5720 LoadVT = MVT::i16; 5721 LoadTy = Type::getInt16Ty(CSize->getContext()); 5722 break; 5723 case 4: 5724 LoadVT = MVT::i32; 5725 LoadTy = Type::getInt32Ty(CSize->getContext()); 5726 break; 5727 case 8: 5728 LoadVT = MVT::i64; 5729 LoadTy = Type::getInt64Ty(CSize->getContext()); 5730 break; 5731 /* 5732 case 16: 5733 LoadVT = MVT::v4i32; 5734 LoadTy = Type::getInt32Ty(CSize->getContext()); 5735 LoadTy = VectorType::get(LoadTy, 4); 5736 break; 5737 */ 5738 } 5739 5740 // This turns into unaligned loads. We only do this if the target natively 5741 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5742 // we'll only produce a small number of byte loads. 5743 5744 // Require that we can find a legal MVT, and only do this if the target 5745 // supports unaligned loads of that type. Expanding into byte loads would 5746 // bloat the code. 5747 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5748 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5749 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5750 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5751 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5752 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5753 // TODO: Check alignment of src and dest ptrs. 5754 if (!TLI->isTypeLegal(LoadVT) || 5755 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5756 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5757 ActuallyDoIt = false; 5758 } 5759 5760 if (ActuallyDoIt) { 5761 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5762 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5763 5764 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5765 ISD::SETNE); 5766 processIntegerCallValue(I, Res, false); 5767 return true; 5768 } 5769 } 5770 5771 5772 return false; 5773 } 5774 5775 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5776 /// form. If so, return true and lower it, otherwise return false and it 5777 /// will be lowered like a normal call. 5778 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5779 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5780 if (I.getNumArgOperands() != 3) 5781 return false; 5782 5783 const Value *Src = I.getArgOperand(0); 5784 const Value *Char = I.getArgOperand(1); 5785 const Value *Length = I.getArgOperand(2); 5786 if (!Src->getType()->isPointerTy() || 5787 !Char->getType()->isIntegerTy() || 5788 !Length->getType()->isIntegerTy() || 5789 !I.getType()->isPointerTy()) 5790 return false; 5791 5792 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5793 std::pair<SDValue, SDValue> Res = 5794 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5795 getValue(Src), getValue(Char), getValue(Length), 5796 MachinePointerInfo(Src)); 5797 if (Res.first.getNode()) { 5798 setValue(&I, Res.first); 5799 PendingLoads.push_back(Res.second); 5800 return true; 5801 } 5802 5803 return false; 5804 } 5805 5806 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5807 /// optimized form. If so, return true and lower it, otherwise return false 5808 /// and it will be lowered like a normal call. 5809 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5810 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5811 if (I.getNumArgOperands() != 2) 5812 return false; 5813 5814 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5815 if (!Arg0->getType()->isPointerTy() || 5816 !Arg1->getType()->isPointerTy() || 5817 !I.getType()->isPointerTy()) 5818 return false; 5819 5820 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5821 std::pair<SDValue, SDValue> Res = 5822 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5823 getValue(Arg0), getValue(Arg1), 5824 MachinePointerInfo(Arg0), 5825 MachinePointerInfo(Arg1), isStpcpy); 5826 if (Res.first.getNode()) { 5827 setValue(&I, Res.first); 5828 DAG.setRoot(Res.second); 5829 return true; 5830 } 5831 5832 return false; 5833 } 5834 5835 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5836 /// If so, return true and lower it, otherwise return false and it will be 5837 /// lowered like a normal call. 5838 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5839 // Verify that the prototype makes sense. int strcmp(void*,void*) 5840 if (I.getNumArgOperands() != 2) 5841 return false; 5842 5843 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5844 if (!Arg0->getType()->isPointerTy() || 5845 !Arg1->getType()->isPointerTy() || 5846 !I.getType()->isIntegerTy()) 5847 return false; 5848 5849 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5850 std::pair<SDValue, SDValue> Res = 5851 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5852 getValue(Arg0), getValue(Arg1), 5853 MachinePointerInfo(Arg0), 5854 MachinePointerInfo(Arg1)); 5855 if (Res.first.getNode()) { 5856 processIntegerCallValue(I, Res.first, true); 5857 PendingLoads.push_back(Res.second); 5858 return true; 5859 } 5860 5861 return false; 5862 } 5863 5864 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5865 /// form. If so, return true and lower it, otherwise return false and it 5866 /// will be lowered like a normal call. 5867 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5868 // Verify that the prototype makes sense. size_t strlen(char *) 5869 if (I.getNumArgOperands() != 1) 5870 return false; 5871 5872 const Value *Arg0 = I.getArgOperand(0); 5873 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5874 return false; 5875 5876 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5877 std::pair<SDValue, SDValue> Res = 5878 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5879 getValue(Arg0), MachinePointerInfo(Arg0)); 5880 if (Res.first.getNode()) { 5881 processIntegerCallValue(I, Res.first, false); 5882 PendingLoads.push_back(Res.second); 5883 return true; 5884 } 5885 5886 return false; 5887 } 5888 5889 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5890 /// form. If so, return true and lower it, otherwise return false and it 5891 /// will be lowered like a normal call. 5892 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5893 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5894 if (I.getNumArgOperands() != 2) 5895 return false; 5896 5897 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5898 if (!Arg0->getType()->isPointerTy() || 5899 !Arg1->getType()->isIntegerTy() || 5900 !I.getType()->isIntegerTy()) 5901 return false; 5902 5903 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5904 std::pair<SDValue, SDValue> Res = 5905 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5906 getValue(Arg0), getValue(Arg1), 5907 MachinePointerInfo(Arg0)); 5908 if (Res.first.getNode()) { 5909 processIntegerCallValue(I, Res.first, false); 5910 PendingLoads.push_back(Res.second); 5911 return true; 5912 } 5913 5914 return false; 5915 } 5916 5917 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5918 /// operation (as expected), translate it to an SDNode with the specified opcode 5919 /// and return true. 5920 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5921 unsigned Opcode) { 5922 // Sanity check that it really is a unary floating-point call. 5923 if (I.getNumArgOperands() != 1 || 5924 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5925 I.getType() != I.getArgOperand(0)->getType() || 5926 !I.onlyReadsMemory()) 5927 return false; 5928 5929 SDValue Tmp = getValue(I.getArgOperand(0)); 5930 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5931 return true; 5932 } 5933 5934 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5935 // Handle inline assembly differently. 5936 if (isa<InlineAsm>(I.getCalledValue())) { 5937 visitInlineAsm(&I); 5938 return; 5939 } 5940 5941 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5942 ComputeUsesVAFloatArgument(I, &MMI); 5943 5944 const char *RenameFn = nullptr; 5945 if (Function *F = I.getCalledFunction()) { 5946 if (F->isDeclaration()) { 5947 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5948 if (unsigned IID = II->getIntrinsicID(F)) { 5949 RenameFn = visitIntrinsicCall(I, IID); 5950 if (!RenameFn) 5951 return; 5952 } 5953 } 5954 if (unsigned IID = F->getIntrinsicID()) { 5955 RenameFn = visitIntrinsicCall(I, IID); 5956 if (!RenameFn) 5957 return; 5958 } 5959 } 5960 5961 // Check for well-known libc/libm calls. If the function is internal, it 5962 // can't be a library call. 5963 LibFunc::Func Func; 5964 if (!F->hasLocalLinkage() && F->hasName() && 5965 LibInfo->getLibFunc(F->getName(), Func) && 5966 LibInfo->hasOptimizedCodeGen(Func)) { 5967 switch (Func) { 5968 default: break; 5969 case LibFunc::copysign: 5970 case LibFunc::copysignf: 5971 case LibFunc::copysignl: 5972 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5973 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5974 I.getType() == I.getArgOperand(0)->getType() && 5975 I.getType() == I.getArgOperand(1)->getType() && 5976 I.onlyReadsMemory()) { 5977 SDValue LHS = getValue(I.getArgOperand(0)); 5978 SDValue RHS = getValue(I.getArgOperand(1)); 5979 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5980 LHS.getValueType(), LHS, RHS)); 5981 return; 5982 } 5983 break; 5984 case LibFunc::fabs: 5985 case LibFunc::fabsf: 5986 case LibFunc::fabsl: 5987 if (visitUnaryFloatCall(I, ISD::FABS)) 5988 return; 5989 break; 5990 case LibFunc::sin: 5991 case LibFunc::sinf: 5992 case LibFunc::sinl: 5993 if (visitUnaryFloatCall(I, ISD::FSIN)) 5994 return; 5995 break; 5996 case LibFunc::cos: 5997 case LibFunc::cosf: 5998 case LibFunc::cosl: 5999 if (visitUnaryFloatCall(I, ISD::FCOS)) 6000 return; 6001 break; 6002 case LibFunc::sqrt: 6003 case LibFunc::sqrtf: 6004 case LibFunc::sqrtl: 6005 case LibFunc::sqrt_finite: 6006 case LibFunc::sqrtf_finite: 6007 case LibFunc::sqrtl_finite: 6008 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6009 return; 6010 break; 6011 case LibFunc::floor: 6012 case LibFunc::floorf: 6013 case LibFunc::floorl: 6014 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6015 return; 6016 break; 6017 case LibFunc::nearbyint: 6018 case LibFunc::nearbyintf: 6019 case LibFunc::nearbyintl: 6020 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6021 return; 6022 break; 6023 case LibFunc::ceil: 6024 case LibFunc::ceilf: 6025 case LibFunc::ceill: 6026 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6027 return; 6028 break; 6029 case LibFunc::rint: 6030 case LibFunc::rintf: 6031 case LibFunc::rintl: 6032 if (visitUnaryFloatCall(I, ISD::FRINT)) 6033 return; 6034 break; 6035 case LibFunc::round: 6036 case LibFunc::roundf: 6037 case LibFunc::roundl: 6038 if (visitUnaryFloatCall(I, ISD::FROUND)) 6039 return; 6040 break; 6041 case LibFunc::trunc: 6042 case LibFunc::truncf: 6043 case LibFunc::truncl: 6044 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6045 return; 6046 break; 6047 case LibFunc::log2: 6048 case LibFunc::log2f: 6049 case LibFunc::log2l: 6050 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6051 return; 6052 break; 6053 case LibFunc::exp2: 6054 case LibFunc::exp2f: 6055 case LibFunc::exp2l: 6056 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6057 return; 6058 break; 6059 case LibFunc::memcmp: 6060 if (visitMemCmpCall(I)) 6061 return; 6062 break; 6063 case LibFunc::memchr: 6064 if (visitMemChrCall(I)) 6065 return; 6066 break; 6067 case LibFunc::strcpy: 6068 if (visitStrCpyCall(I, false)) 6069 return; 6070 break; 6071 case LibFunc::stpcpy: 6072 if (visitStrCpyCall(I, true)) 6073 return; 6074 break; 6075 case LibFunc::strcmp: 6076 if (visitStrCmpCall(I)) 6077 return; 6078 break; 6079 case LibFunc::strlen: 6080 if (visitStrLenCall(I)) 6081 return; 6082 break; 6083 case LibFunc::strnlen: 6084 if (visitStrNLenCall(I)) 6085 return; 6086 break; 6087 } 6088 } 6089 } 6090 6091 SDValue Callee; 6092 if (!RenameFn) 6093 Callee = getValue(I.getCalledValue()); 6094 else 6095 Callee = DAG.getExternalSymbol( 6096 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6097 6098 // Check if we can potentially perform a tail call. More detailed checking is 6099 // be done within LowerCallTo, after more information about the call is known. 6100 LowerCallTo(&I, Callee, I.isTailCall()); 6101 } 6102 6103 namespace { 6104 6105 /// AsmOperandInfo - This contains information for each constraint that we are 6106 /// lowering. 6107 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6108 public: 6109 /// CallOperand - If this is the result output operand or a clobber 6110 /// this is null, otherwise it is the incoming operand to the CallInst. 6111 /// This gets modified as the asm is processed. 6112 SDValue CallOperand; 6113 6114 /// AssignedRegs - If this is a register or register class operand, this 6115 /// contains the set of register corresponding to the operand. 6116 RegsForValue AssignedRegs; 6117 6118 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6119 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6120 } 6121 6122 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6123 /// corresponds to. If there is no Value* for this operand, it returns 6124 /// MVT::Other. 6125 EVT getCallOperandValEVT(LLVMContext &Context, 6126 const TargetLowering &TLI, 6127 const DataLayout *DL) const { 6128 if (!CallOperandVal) return MVT::Other; 6129 6130 if (isa<BasicBlock>(CallOperandVal)) 6131 return TLI.getPointerTy(); 6132 6133 llvm::Type *OpTy = CallOperandVal->getType(); 6134 6135 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6136 // If this is an indirect operand, the operand is a pointer to the 6137 // accessed type. 6138 if (isIndirect) { 6139 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6140 if (!PtrTy) 6141 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6142 OpTy = PtrTy->getElementType(); 6143 } 6144 6145 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6146 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6147 if (STy->getNumElements() == 1) 6148 OpTy = STy->getElementType(0); 6149 6150 // If OpTy is not a single value, it may be a struct/union that we 6151 // can tile with integers. 6152 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6153 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6154 switch (BitSize) { 6155 default: break; 6156 case 1: 6157 case 8: 6158 case 16: 6159 case 32: 6160 case 64: 6161 case 128: 6162 OpTy = IntegerType::get(Context, BitSize); 6163 break; 6164 } 6165 } 6166 6167 return TLI.getValueType(OpTy, true); 6168 } 6169 }; 6170 6171 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6172 6173 } // end anonymous namespace 6174 6175 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6176 /// specified operand. We prefer to assign virtual registers, to allow the 6177 /// register allocator to handle the assignment process. However, if the asm 6178 /// uses features that we can't model on machineinstrs, we have SDISel do the 6179 /// allocation. This produces generally horrible, but correct, code. 6180 /// 6181 /// OpInfo describes the operand. 6182 /// 6183 static void GetRegistersForValue(SelectionDAG &DAG, 6184 const TargetLowering &TLI, 6185 SDLoc DL, 6186 SDISelAsmOperandInfo &OpInfo) { 6187 LLVMContext &Context = *DAG.getContext(); 6188 6189 MachineFunction &MF = DAG.getMachineFunction(); 6190 SmallVector<unsigned, 4> Regs; 6191 6192 // If this is a constraint for a single physreg, or a constraint for a 6193 // register class, find it. 6194 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6195 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6196 OpInfo.ConstraintVT); 6197 6198 unsigned NumRegs = 1; 6199 if (OpInfo.ConstraintVT != MVT::Other) { 6200 // If this is a FP input in an integer register (or visa versa) insert a bit 6201 // cast of the input value. More generally, handle any case where the input 6202 // value disagrees with the register class we plan to stick this in. 6203 if (OpInfo.Type == InlineAsm::isInput && 6204 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6205 // Try to convert to the first EVT that the reg class contains. If the 6206 // types are identical size, use a bitcast to convert (e.g. two differing 6207 // vector types). 6208 MVT RegVT = *PhysReg.second->vt_begin(); 6209 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6210 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6211 RegVT, OpInfo.CallOperand); 6212 OpInfo.ConstraintVT = RegVT; 6213 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6214 // If the input is a FP value and we want it in FP registers, do a 6215 // bitcast to the corresponding integer type. This turns an f64 value 6216 // into i64, which can be passed with two i32 values on a 32-bit 6217 // machine. 6218 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6219 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6220 RegVT, OpInfo.CallOperand); 6221 OpInfo.ConstraintVT = RegVT; 6222 } 6223 } 6224 6225 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6226 } 6227 6228 MVT RegVT; 6229 EVT ValueVT = OpInfo.ConstraintVT; 6230 6231 // If this is a constraint for a specific physical register, like {r17}, 6232 // assign it now. 6233 if (unsigned AssignedReg = PhysReg.first) { 6234 const TargetRegisterClass *RC = PhysReg.second; 6235 if (OpInfo.ConstraintVT == MVT::Other) 6236 ValueVT = *RC->vt_begin(); 6237 6238 // Get the actual register value type. This is important, because the user 6239 // may have asked for (e.g.) the AX register in i32 type. We need to 6240 // remember that AX is actually i16 to get the right extension. 6241 RegVT = *RC->vt_begin(); 6242 6243 // This is a explicit reference to a physical register. 6244 Regs.push_back(AssignedReg); 6245 6246 // If this is an expanded reference, add the rest of the regs to Regs. 6247 if (NumRegs != 1) { 6248 TargetRegisterClass::iterator I = RC->begin(); 6249 for (; *I != AssignedReg; ++I) 6250 assert(I != RC->end() && "Didn't find reg!"); 6251 6252 // Already added the first reg. 6253 --NumRegs; ++I; 6254 for (; NumRegs; --NumRegs, ++I) { 6255 assert(I != RC->end() && "Ran out of registers to allocate!"); 6256 Regs.push_back(*I); 6257 } 6258 } 6259 6260 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6261 return; 6262 } 6263 6264 // Otherwise, if this was a reference to an LLVM register class, create vregs 6265 // for this reference. 6266 if (const TargetRegisterClass *RC = PhysReg.second) { 6267 RegVT = *RC->vt_begin(); 6268 if (OpInfo.ConstraintVT == MVT::Other) 6269 ValueVT = RegVT; 6270 6271 // Create the appropriate number of virtual registers. 6272 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6273 for (; NumRegs; --NumRegs) 6274 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6275 6276 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6277 return; 6278 } 6279 6280 // Otherwise, we couldn't allocate enough registers for this. 6281 } 6282 6283 /// visitInlineAsm - Handle a call to an InlineAsm object. 6284 /// 6285 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6286 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6287 6288 /// ConstraintOperands - Information about all of the constraints. 6289 SDISelAsmOperandInfoVector ConstraintOperands; 6290 6291 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6292 TargetLowering::AsmOperandInfoVector 6293 TargetConstraints = TLI->ParseConstraints(CS); 6294 6295 bool hasMemory = false; 6296 6297 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6298 unsigned ResNo = 0; // ResNo - The result number of the next output. 6299 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6300 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6301 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6302 6303 MVT OpVT = MVT::Other; 6304 6305 // Compute the value type for each operand. 6306 switch (OpInfo.Type) { 6307 case InlineAsm::isOutput: 6308 // Indirect outputs just consume an argument. 6309 if (OpInfo.isIndirect) { 6310 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6311 break; 6312 } 6313 6314 // The return value of the call is this value. As such, there is no 6315 // corresponding argument. 6316 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6317 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6318 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6319 } else { 6320 assert(ResNo == 0 && "Asm only has one result!"); 6321 OpVT = TLI->getSimpleValueType(CS.getType()); 6322 } 6323 ++ResNo; 6324 break; 6325 case InlineAsm::isInput: 6326 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6327 break; 6328 case InlineAsm::isClobber: 6329 // Nothing to do. 6330 break; 6331 } 6332 6333 // If this is an input or an indirect output, process the call argument. 6334 // BasicBlocks are labels, currently appearing only in asm's. 6335 if (OpInfo.CallOperandVal) { 6336 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6337 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6338 } else { 6339 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6340 } 6341 6342 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6343 getSimpleVT(); 6344 } 6345 6346 OpInfo.ConstraintVT = OpVT; 6347 6348 // Indirect operand accesses access memory. 6349 if (OpInfo.isIndirect) 6350 hasMemory = true; 6351 else { 6352 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6353 TargetLowering::ConstraintType 6354 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6355 if (CType == TargetLowering::C_Memory) { 6356 hasMemory = true; 6357 break; 6358 } 6359 } 6360 } 6361 } 6362 6363 SDValue Chain, Flag; 6364 6365 // We won't need to flush pending loads if this asm doesn't touch 6366 // memory and is nonvolatile. 6367 if (hasMemory || IA->hasSideEffects()) 6368 Chain = getRoot(); 6369 else 6370 Chain = DAG.getRoot(); 6371 6372 // Second pass over the constraints: compute which constraint option to use 6373 // and assign registers to constraints that want a specific physreg. 6374 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6375 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6376 6377 // If this is an output operand with a matching input operand, look up the 6378 // matching input. If their types mismatch, e.g. one is an integer, the 6379 // other is floating point, or their sizes are different, flag it as an 6380 // error. 6381 if (OpInfo.hasMatchingInput()) { 6382 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6383 6384 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6385 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6386 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6387 OpInfo.ConstraintVT); 6388 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6389 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6390 Input.ConstraintVT); 6391 if ((OpInfo.ConstraintVT.isInteger() != 6392 Input.ConstraintVT.isInteger()) || 6393 (MatchRC.second != InputRC.second)) { 6394 report_fatal_error("Unsupported asm: input constraint" 6395 " with a matching output constraint of" 6396 " incompatible type!"); 6397 } 6398 Input.ConstraintVT = OpInfo.ConstraintVT; 6399 } 6400 } 6401 6402 // Compute the constraint code and ConstraintType to use. 6403 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6404 6405 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6406 OpInfo.Type == InlineAsm::isClobber) 6407 continue; 6408 6409 // If this is a memory input, and if the operand is not indirect, do what we 6410 // need to to provide an address for the memory input. 6411 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6412 !OpInfo.isIndirect) { 6413 assert((OpInfo.isMultipleAlternative || 6414 (OpInfo.Type == InlineAsm::isInput)) && 6415 "Can only indirectify direct input operands!"); 6416 6417 // Memory operands really want the address of the value. If we don't have 6418 // an indirect input, put it in the constpool if we can, otherwise spill 6419 // it to a stack slot. 6420 // TODO: This isn't quite right. We need to handle these according to 6421 // the addressing mode that the constraint wants. Also, this may take 6422 // an additional register for the computation and we don't want that 6423 // either. 6424 6425 // If the operand is a float, integer, or vector constant, spill to a 6426 // constant pool entry to get its address. 6427 const Value *OpVal = OpInfo.CallOperandVal; 6428 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6429 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6430 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6431 TLI->getPointerTy()); 6432 } else { 6433 // Otherwise, create a stack slot and emit a store to it before the 6434 // asm. 6435 Type *Ty = OpVal->getType(); 6436 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6437 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6438 MachineFunction &MF = DAG.getMachineFunction(); 6439 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6440 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6441 Chain = DAG.getStore(Chain, getCurSDLoc(), 6442 OpInfo.CallOperand, StackSlot, 6443 MachinePointerInfo::getFixedStack(SSFI), 6444 false, false, 0); 6445 OpInfo.CallOperand = StackSlot; 6446 } 6447 6448 // There is no longer a Value* corresponding to this operand. 6449 OpInfo.CallOperandVal = nullptr; 6450 6451 // It is now an indirect operand. 6452 OpInfo.isIndirect = true; 6453 } 6454 6455 // If this constraint is for a specific register, allocate it before 6456 // anything else. 6457 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6458 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6459 } 6460 6461 // Second pass - Loop over all of the operands, assigning virtual or physregs 6462 // to register class operands. 6463 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6464 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6465 6466 // C_Register operands have already been allocated, Other/Memory don't need 6467 // to be. 6468 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6469 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6470 } 6471 6472 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6473 std::vector<SDValue> AsmNodeOperands; 6474 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6475 AsmNodeOperands.push_back( 6476 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6477 TLI->getPointerTy())); 6478 6479 // If we have a !srcloc metadata node associated with it, we want to attach 6480 // this to the ultimately generated inline asm machineinstr. To do this, we 6481 // pass in the third operand as this (potentially null) inline asm MDNode. 6482 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6483 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6484 6485 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6486 // bits as operand 3. 6487 unsigned ExtraInfo = 0; 6488 if (IA->hasSideEffects()) 6489 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6490 if (IA->isAlignStack()) 6491 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6492 // Set the asm dialect. 6493 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6494 6495 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6496 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6497 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6498 6499 // Compute the constraint code and ConstraintType to use. 6500 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6501 6502 // Ideally, we would only check against memory constraints. However, the 6503 // meaning of an other constraint can be target-specific and we can't easily 6504 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6505 // for other constriants as well. 6506 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6507 OpInfo.ConstraintType == TargetLowering::C_Other) { 6508 if (OpInfo.Type == InlineAsm::isInput) 6509 ExtraInfo |= InlineAsm::Extra_MayLoad; 6510 else if (OpInfo.Type == InlineAsm::isOutput) 6511 ExtraInfo |= InlineAsm::Extra_MayStore; 6512 else if (OpInfo.Type == InlineAsm::isClobber) 6513 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6514 } 6515 } 6516 6517 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6518 TLI->getPointerTy())); 6519 6520 // Loop over all of the inputs, copying the operand values into the 6521 // appropriate registers and processing the output regs. 6522 RegsForValue RetValRegs; 6523 6524 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6525 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6526 6527 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6528 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6529 6530 switch (OpInfo.Type) { 6531 case InlineAsm::isOutput: { 6532 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6533 OpInfo.ConstraintType != TargetLowering::C_Register) { 6534 // Memory output, or 'other' output (e.g. 'X' constraint). 6535 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6536 6537 // Add information to the INLINEASM node to know about this output. 6538 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6539 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6540 TLI->getPointerTy())); 6541 AsmNodeOperands.push_back(OpInfo.CallOperand); 6542 break; 6543 } 6544 6545 // Otherwise, this is a register or register class output. 6546 6547 // Copy the output from the appropriate register. Find a register that 6548 // we can use. 6549 if (OpInfo.AssignedRegs.Regs.empty()) { 6550 LLVMContext &Ctx = *DAG.getContext(); 6551 Ctx.emitError(CS.getInstruction(), 6552 "couldn't allocate output register for constraint '" + 6553 Twine(OpInfo.ConstraintCode) + "'"); 6554 return; 6555 } 6556 6557 // If this is an indirect operand, store through the pointer after the 6558 // asm. 6559 if (OpInfo.isIndirect) { 6560 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6561 OpInfo.CallOperandVal)); 6562 } else { 6563 // This is the result value of the call. 6564 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6565 // Concatenate this output onto the outputs list. 6566 RetValRegs.append(OpInfo.AssignedRegs); 6567 } 6568 6569 // Add information to the INLINEASM node to know that this register is 6570 // set. 6571 OpInfo.AssignedRegs 6572 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6573 ? InlineAsm::Kind_RegDefEarlyClobber 6574 : InlineAsm::Kind_RegDef, 6575 false, 0, DAG, AsmNodeOperands); 6576 break; 6577 } 6578 case InlineAsm::isInput: { 6579 SDValue InOperandVal = OpInfo.CallOperand; 6580 6581 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6582 // If this is required to match an output register we have already set, 6583 // just use its register. 6584 unsigned OperandNo = OpInfo.getMatchedOperand(); 6585 6586 // Scan until we find the definition we already emitted of this operand. 6587 // When we find it, create a RegsForValue operand. 6588 unsigned CurOp = InlineAsm::Op_FirstOperand; 6589 for (; OperandNo; --OperandNo) { 6590 // Advance to the next operand. 6591 unsigned OpFlag = 6592 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6593 assert((InlineAsm::isRegDefKind(OpFlag) || 6594 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6595 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6596 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6597 } 6598 6599 unsigned OpFlag = 6600 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6601 if (InlineAsm::isRegDefKind(OpFlag) || 6602 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6603 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6604 if (OpInfo.isIndirect) { 6605 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6606 LLVMContext &Ctx = *DAG.getContext(); 6607 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6608 " don't know how to handle tied " 6609 "indirect register inputs"); 6610 return; 6611 } 6612 6613 RegsForValue MatchedRegs; 6614 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6615 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6616 MatchedRegs.RegVTs.push_back(RegVT); 6617 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6618 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6619 i != e; ++i) { 6620 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6621 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6622 else { 6623 LLVMContext &Ctx = *DAG.getContext(); 6624 Ctx.emitError(CS.getInstruction(), 6625 "inline asm error: This value" 6626 " type register class is not natively supported!"); 6627 return; 6628 } 6629 } 6630 // Use the produced MatchedRegs object to 6631 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6632 Chain, &Flag, CS.getInstruction()); 6633 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6634 true, OpInfo.getMatchedOperand(), 6635 DAG, AsmNodeOperands); 6636 break; 6637 } 6638 6639 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6640 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6641 "Unexpected number of operands"); 6642 // Add information to the INLINEASM node to know about this input. 6643 // See InlineAsm.h isUseOperandTiedToDef. 6644 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6645 OpInfo.getMatchedOperand()); 6646 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6647 TLI->getPointerTy())); 6648 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6649 break; 6650 } 6651 6652 // Treat indirect 'X' constraint as memory. 6653 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6654 OpInfo.isIndirect) 6655 OpInfo.ConstraintType = TargetLowering::C_Memory; 6656 6657 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6658 std::vector<SDValue> Ops; 6659 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6660 Ops, DAG); 6661 if (Ops.empty()) { 6662 LLVMContext &Ctx = *DAG.getContext(); 6663 Ctx.emitError(CS.getInstruction(), 6664 "invalid operand for inline asm constraint '" + 6665 Twine(OpInfo.ConstraintCode) + "'"); 6666 return; 6667 } 6668 6669 // Add information to the INLINEASM node to know about this input. 6670 unsigned ResOpType = 6671 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6672 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6673 TLI->getPointerTy())); 6674 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6675 break; 6676 } 6677 6678 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6679 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6680 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6681 "Memory operands expect pointer values"); 6682 6683 // Add information to the INLINEASM node to know about this input. 6684 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6685 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6686 TLI->getPointerTy())); 6687 AsmNodeOperands.push_back(InOperandVal); 6688 break; 6689 } 6690 6691 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6692 OpInfo.ConstraintType == TargetLowering::C_Register) && 6693 "Unknown constraint type!"); 6694 6695 // TODO: Support this. 6696 if (OpInfo.isIndirect) { 6697 LLVMContext &Ctx = *DAG.getContext(); 6698 Ctx.emitError(CS.getInstruction(), 6699 "Don't know how to handle indirect register inputs yet " 6700 "for constraint '" + 6701 Twine(OpInfo.ConstraintCode) + "'"); 6702 return; 6703 } 6704 6705 // Copy the input into the appropriate registers. 6706 if (OpInfo.AssignedRegs.Regs.empty()) { 6707 LLVMContext &Ctx = *DAG.getContext(); 6708 Ctx.emitError(CS.getInstruction(), 6709 "couldn't allocate input reg for constraint '" + 6710 Twine(OpInfo.ConstraintCode) + "'"); 6711 return; 6712 } 6713 6714 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6715 Chain, &Flag, CS.getInstruction()); 6716 6717 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6718 DAG, AsmNodeOperands); 6719 break; 6720 } 6721 case InlineAsm::isClobber: { 6722 // Add the clobbered value to the operand list, so that the register 6723 // allocator is aware that the physreg got clobbered. 6724 if (!OpInfo.AssignedRegs.Regs.empty()) 6725 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6726 false, 0, DAG, 6727 AsmNodeOperands); 6728 break; 6729 } 6730 } 6731 } 6732 6733 // Finish up input operands. Set the input chain and add the flag last. 6734 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6735 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6736 6737 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6738 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6739 Flag = Chain.getValue(1); 6740 6741 // If this asm returns a register value, copy the result from that register 6742 // and set it as the value of the call. 6743 if (!RetValRegs.Regs.empty()) { 6744 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6745 Chain, &Flag, CS.getInstruction()); 6746 6747 // FIXME: Why don't we do this for inline asms with MRVs? 6748 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6749 EVT ResultType = TLI->getValueType(CS.getType()); 6750 6751 // If any of the results of the inline asm is a vector, it may have the 6752 // wrong width/num elts. This can happen for register classes that can 6753 // contain multiple different value types. The preg or vreg allocated may 6754 // not have the same VT as was expected. Convert it to the right type 6755 // with bit_convert. 6756 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6757 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6758 ResultType, Val); 6759 6760 } else if (ResultType != Val.getValueType() && 6761 ResultType.isInteger() && Val.getValueType().isInteger()) { 6762 // If a result value was tied to an input value, the computed result may 6763 // have a wider width than the expected result. Extract the relevant 6764 // portion. 6765 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6766 } 6767 6768 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6769 } 6770 6771 setValue(CS.getInstruction(), Val); 6772 // Don't need to use this as a chain in this case. 6773 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6774 return; 6775 } 6776 6777 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6778 6779 // Process indirect outputs, first output all of the flagged copies out of 6780 // physregs. 6781 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6782 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6783 const Value *Ptr = IndirectStoresToEmit[i].second; 6784 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6785 Chain, &Flag, IA); 6786 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6787 } 6788 6789 // Emit the non-flagged stores from the physregs. 6790 SmallVector<SDValue, 8> OutChains; 6791 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6792 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6793 StoresToEmit[i].first, 6794 getValue(StoresToEmit[i].second), 6795 MachinePointerInfo(StoresToEmit[i].second), 6796 false, false, 0); 6797 OutChains.push_back(Val); 6798 } 6799 6800 if (!OutChains.empty()) 6801 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6802 6803 DAG.setRoot(Chain); 6804 } 6805 6806 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6807 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6808 MVT::Other, getRoot(), 6809 getValue(I.getArgOperand(0)), 6810 DAG.getSrcValue(I.getArgOperand(0)))); 6811 } 6812 6813 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6814 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6815 const DataLayout &DL = *TLI->getDataLayout(); 6816 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6817 getRoot(), getValue(I.getOperand(0)), 6818 DAG.getSrcValue(I.getOperand(0)), 6819 DL.getABITypeAlignment(I.getType())); 6820 setValue(&I, V); 6821 DAG.setRoot(V.getValue(1)); 6822 } 6823 6824 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6825 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6826 MVT::Other, getRoot(), 6827 getValue(I.getArgOperand(0)), 6828 DAG.getSrcValue(I.getArgOperand(0)))); 6829 } 6830 6831 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6832 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6833 MVT::Other, getRoot(), 6834 getValue(I.getArgOperand(0)), 6835 getValue(I.getArgOperand(1)), 6836 DAG.getSrcValue(I.getArgOperand(0)), 6837 DAG.getSrcValue(I.getArgOperand(1)))); 6838 } 6839 6840 /// \brief Lower an argument list according to the target calling convention. 6841 /// 6842 /// \return A tuple of <return-value, token-chain> 6843 /// 6844 /// This is a helper for lowering intrinsics that follow a target calling 6845 /// convention or require stack pointer adjustment. Only a subset of the 6846 /// intrinsic's operands need to participate in the calling convention. 6847 std::pair<SDValue, SDValue> 6848 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6849 unsigned NumArgs, SDValue Callee, 6850 bool useVoidTy) { 6851 TargetLowering::ArgListTy Args; 6852 Args.reserve(NumArgs); 6853 6854 // Populate the argument list. 6855 // Attributes for args start at offset 1, after the return attribute. 6856 ImmutableCallSite CS(&CI); 6857 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6858 ArgI != ArgE; ++ArgI) { 6859 const Value *V = CI.getOperand(ArgI); 6860 6861 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6862 6863 TargetLowering::ArgListEntry Entry; 6864 Entry.Node = getValue(V); 6865 Entry.Ty = V->getType(); 6866 Entry.setAttributes(&CS, AttrI); 6867 Args.push_back(Entry); 6868 } 6869 6870 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6871 TargetLowering::CallLoweringInfo CLI(DAG); 6872 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6873 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6874 .setDiscardResult(!CI.use_empty()); 6875 6876 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6877 return TLI->LowerCallTo(CLI); 6878 } 6879 6880 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6881 /// or patchpoint target node's operand list. 6882 /// 6883 /// Constants are converted to TargetConstants purely as an optimization to 6884 /// avoid constant materialization and register allocation. 6885 /// 6886 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6887 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6888 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6889 /// address materialization and register allocation, but may also be required 6890 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6891 /// alloca in the entry block, then the runtime may assume that the alloca's 6892 /// StackMap location can be read immediately after compilation and that the 6893 /// location is valid at any point during execution (this is similar to the 6894 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6895 /// only available in a register, then the runtime would need to trap when 6896 /// execution reaches the StackMap in order to read the alloca's location. 6897 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6898 SmallVectorImpl<SDValue> &Ops, 6899 SelectionDAGBuilder &Builder) { 6900 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6901 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6902 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6903 Ops.push_back( 6904 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6905 Ops.push_back( 6906 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6907 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6908 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6909 Ops.push_back( 6910 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6911 } else 6912 Ops.push_back(OpVal); 6913 } 6914 } 6915 6916 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6917 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6918 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6919 // [live variables...]) 6920 6921 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6922 6923 SDValue Chain, InFlag, Callee, NullPtr; 6924 SmallVector<SDValue, 32> Ops; 6925 6926 SDLoc DL = getCurSDLoc(); 6927 Callee = getValue(CI.getCalledValue()); 6928 NullPtr = DAG.getIntPtrConstant(0, true); 6929 6930 // The stackmap intrinsic only records the live variables (the arguemnts 6931 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6932 // intrinsic, this won't be lowered to a function call. This means we don't 6933 // have to worry about calling conventions and target specific lowering code. 6934 // Instead we perform the call lowering right here. 6935 // 6936 // chain, flag = CALLSEQ_START(chain, 0) 6937 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6938 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6939 // 6940 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6941 InFlag = Chain.getValue(1); 6942 6943 // Add the <id> and <numBytes> constants. 6944 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6945 Ops.push_back(DAG.getTargetConstant( 6946 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6947 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6948 Ops.push_back(DAG.getTargetConstant( 6949 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6950 6951 // Push live variables for the stack map. 6952 addStackMapLiveVars(CI, 2, Ops, *this); 6953 6954 // We are not pushing any register mask info here on the operands list, 6955 // because the stackmap doesn't clobber anything. 6956 6957 // Push the chain and the glue flag. 6958 Ops.push_back(Chain); 6959 Ops.push_back(InFlag); 6960 6961 // Create the STACKMAP node. 6962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6963 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6964 Chain = SDValue(SM, 0); 6965 InFlag = Chain.getValue(1); 6966 6967 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6968 6969 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6970 6971 // Set the root to the target-lowered call chain. 6972 DAG.setRoot(Chain); 6973 6974 // Inform the Frame Information that we have a stackmap in this function. 6975 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6976 } 6977 6978 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6979 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6980 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6981 // i32 <numBytes>, 6982 // i8* <target>, 6983 // i32 <numArgs>, 6984 // [Args...], 6985 // [live variables...]) 6986 6987 CallingConv::ID CC = CI.getCallingConv(); 6988 bool isAnyRegCC = CC == CallingConv::AnyReg; 6989 bool hasDef = !CI.getType()->isVoidTy(); 6990 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6991 6992 // Get the real number of arguments participating in the call <numArgs> 6993 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6994 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6995 6996 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6997 // Intrinsics include all meta-operands up to but not including CC. 6998 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6999 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7000 "Not enough arguments provided to the patchpoint intrinsic"); 7001 7002 // For AnyRegCC the arguments are lowered later on manually. 7003 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7004 std::pair<SDValue, SDValue> Result = 7005 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7006 7007 // Set the root to the target-lowered call chain. 7008 SDValue Chain = Result.second; 7009 DAG.setRoot(Chain); 7010 7011 SDNode *CallEnd = Chain.getNode(); 7012 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7013 CallEnd = CallEnd->getOperand(0).getNode(); 7014 7015 /// Get a call instruction from the call sequence chain. 7016 /// Tail calls are not allowed. 7017 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7018 "Expected a callseq node."); 7019 SDNode *Call = CallEnd->getOperand(0).getNode(); 7020 bool hasGlue = Call->getGluedNode(); 7021 7022 // Replace the target specific call node with the patchable intrinsic. 7023 SmallVector<SDValue, 8> Ops; 7024 7025 // Add the <id> and <numBytes> constants. 7026 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7027 Ops.push_back(DAG.getTargetConstant( 7028 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7029 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7030 Ops.push_back(DAG.getTargetConstant( 7031 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7032 7033 // Assume that the Callee is a constant address. 7034 // FIXME: handle function symbols in the future. 7035 Ops.push_back( 7036 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7037 /*isTarget=*/true)); 7038 7039 // Adjust <numArgs> to account for any arguments that have been passed on the 7040 // stack instead. 7041 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7042 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7043 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7044 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7045 7046 // Add the calling convention 7047 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7048 7049 // Add the arguments we omitted previously. The register allocator should 7050 // place these in any free register. 7051 if (isAnyRegCC) 7052 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7053 Ops.push_back(getValue(CI.getArgOperand(i))); 7054 7055 // Push the arguments from the call instruction up to the register mask. 7056 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7057 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7058 Ops.push_back(*i); 7059 7060 // Push live variables for the stack map. 7061 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7062 7063 // Push the register mask info. 7064 if (hasGlue) 7065 Ops.push_back(*(Call->op_end()-2)); 7066 else 7067 Ops.push_back(*(Call->op_end()-1)); 7068 7069 // Push the chain (this is originally the first operand of the call, but 7070 // becomes now the last or second to last operand). 7071 Ops.push_back(*(Call->op_begin())); 7072 7073 // Push the glue flag (last operand). 7074 if (hasGlue) 7075 Ops.push_back(*(Call->op_end()-1)); 7076 7077 SDVTList NodeTys; 7078 if (isAnyRegCC && hasDef) { 7079 // Create the return types based on the intrinsic definition 7080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7081 SmallVector<EVT, 3> ValueVTs; 7082 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7083 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7084 7085 // There is always a chain and a glue type at the end 7086 ValueVTs.push_back(MVT::Other); 7087 ValueVTs.push_back(MVT::Glue); 7088 NodeTys = DAG.getVTList(ValueVTs); 7089 } else 7090 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7091 7092 // Replace the target specific call node with a PATCHPOINT node. 7093 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7094 getCurSDLoc(), NodeTys, Ops); 7095 7096 // Update the NodeMap. 7097 if (hasDef) { 7098 if (isAnyRegCC) 7099 setValue(&CI, SDValue(MN, 0)); 7100 else 7101 setValue(&CI, Result.first); 7102 } 7103 7104 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7105 // call sequence. Furthermore the location of the chain and glue can change 7106 // when the AnyReg calling convention is used and the intrinsic returns a 7107 // value. 7108 if (isAnyRegCC && hasDef) { 7109 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7110 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7111 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7112 } else 7113 DAG.ReplaceAllUsesWith(Call, MN); 7114 DAG.DeleteNode(Call); 7115 7116 // Inform the Frame Information that we have a patchpoint in this function. 7117 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7118 } 7119 7120 /// Returns an AttributeSet representing the attributes applied to the return 7121 /// value of the given call. 7122 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7123 SmallVector<Attribute::AttrKind, 2> Attrs; 7124 if (CLI.RetSExt) 7125 Attrs.push_back(Attribute::SExt); 7126 if (CLI.RetZExt) 7127 Attrs.push_back(Attribute::ZExt); 7128 if (CLI.IsInReg) 7129 Attrs.push_back(Attribute::InReg); 7130 7131 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7132 Attrs); 7133 } 7134 7135 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7136 /// implementation, which just calls LowerCall. 7137 /// FIXME: When all targets are 7138 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7139 std::pair<SDValue, SDValue> 7140 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7141 // Handle the incoming return values from the call. 7142 CLI.Ins.clear(); 7143 Type *OrigRetTy = CLI.RetTy; 7144 SmallVector<EVT, 4> RetTys; 7145 SmallVector<uint64_t, 4> Offsets; 7146 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7147 7148 SmallVector<ISD::OutputArg, 4> Outs; 7149 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7150 7151 bool CanLowerReturn = 7152 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7153 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7154 7155 SDValue DemoteStackSlot; 7156 int DemoteStackIdx = -100; 7157 if (!CanLowerReturn) { 7158 // FIXME: equivalent assert? 7159 // assert(!CS.hasInAllocaArgument() && 7160 // "sret demotion is incompatible with inalloca"); 7161 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7162 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7163 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7164 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7165 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7166 7167 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7168 ArgListEntry Entry; 7169 Entry.Node = DemoteStackSlot; 7170 Entry.Ty = StackSlotPtrType; 7171 Entry.isSExt = false; 7172 Entry.isZExt = false; 7173 Entry.isInReg = false; 7174 Entry.isSRet = true; 7175 Entry.isNest = false; 7176 Entry.isByVal = false; 7177 Entry.isReturned = false; 7178 Entry.Alignment = Align; 7179 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7180 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7181 } else { 7182 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7183 EVT VT = RetTys[I]; 7184 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7185 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7186 for (unsigned i = 0; i != NumRegs; ++i) { 7187 ISD::InputArg MyFlags; 7188 MyFlags.VT = RegisterVT; 7189 MyFlags.ArgVT = VT; 7190 MyFlags.Used = CLI.IsReturnValueUsed; 7191 if (CLI.RetSExt) 7192 MyFlags.Flags.setSExt(); 7193 if (CLI.RetZExt) 7194 MyFlags.Flags.setZExt(); 7195 if (CLI.IsInReg) 7196 MyFlags.Flags.setInReg(); 7197 CLI.Ins.push_back(MyFlags); 7198 } 7199 } 7200 } 7201 7202 // Handle all of the outgoing arguments. 7203 CLI.Outs.clear(); 7204 CLI.OutVals.clear(); 7205 ArgListTy &Args = CLI.getArgs(); 7206 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7207 SmallVector<EVT, 4> ValueVTs; 7208 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7209 Type *FinalType = Args[i].Ty; 7210 if (Args[i].isByVal) 7211 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7212 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7213 FinalType, CLI.CallConv, CLI.IsVarArg); 7214 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7215 ++Value) { 7216 EVT VT = ValueVTs[Value]; 7217 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7218 SDValue Op = SDValue(Args[i].Node.getNode(), 7219 Args[i].Node.getResNo() + Value); 7220 ISD::ArgFlagsTy Flags; 7221 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7222 7223 if (Args[i].isZExt) 7224 Flags.setZExt(); 7225 if (Args[i].isSExt) 7226 Flags.setSExt(); 7227 if (Args[i].isInReg) 7228 Flags.setInReg(); 7229 if (Args[i].isSRet) 7230 Flags.setSRet(); 7231 if (Args[i].isByVal) 7232 Flags.setByVal(); 7233 if (Args[i].isInAlloca) { 7234 Flags.setInAlloca(); 7235 // Set the byval flag for CCAssignFn callbacks that don't know about 7236 // inalloca. This way we can know how many bytes we should've allocated 7237 // and how many bytes a callee cleanup function will pop. If we port 7238 // inalloca to more targets, we'll have to add custom inalloca handling 7239 // in the various CC lowering callbacks. 7240 Flags.setByVal(); 7241 } 7242 if (Args[i].isByVal || Args[i].isInAlloca) { 7243 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7244 Type *ElementTy = Ty->getElementType(); 7245 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7246 // For ByVal, alignment should come from FE. BE will guess if this 7247 // info is not there but there are cases it cannot get right. 7248 unsigned FrameAlign; 7249 if (Args[i].Alignment) 7250 FrameAlign = Args[i].Alignment; 7251 else 7252 FrameAlign = getByValTypeAlignment(ElementTy); 7253 Flags.setByValAlign(FrameAlign); 7254 } 7255 if (Args[i].isNest) 7256 Flags.setNest(); 7257 if (NeedsRegBlock) 7258 Flags.setInConsecutiveRegs(); 7259 Flags.setOrigAlign(OriginalAlignment); 7260 7261 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7262 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7263 SmallVector<SDValue, 4> Parts(NumParts); 7264 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7265 7266 if (Args[i].isSExt) 7267 ExtendKind = ISD::SIGN_EXTEND; 7268 else if (Args[i].isZExt) 7269 ExtendKind = ISD::ZERO_EXTEND; 7270 7271 // Conservatively only handle 'returned' on non-vectors for now 7272 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7273 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7274 "unexpected use of 'returned'"); 7275 // Before passing 'returned' to the target lowering code, ensure that 7276 // either the register MVT and the actual EVT are the same size or that 7277 // the return value and argument are extended in the same way; in these 7278 // cases it's safe to pass the argument register value unchanged as the 7279 // return register value (although it's at the target's option whether 7280 // to do so) 7281 // TODO: allow code generation to take advantage of partially preserved 7282 // registers rather than clobbering the entire register when the 7283 // parameter extension method is not compatible with the return 7284 // extension method 7285 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7286 (ExtendKind != ISD::ANY_EXTEND && 7287 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7288 Flags.setReturned(); 7289 } 7290 7291 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7292 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7293 7294 for (unsigned j = 0; j != NumParts; ++j) { 7295 // if it isn't first piece, alignment must be 1 7296 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7297 i < CLI.NumFixedArgs, 7298 i, j*Parts[j].getValueType().getStoreSize()); 7299 if (NumParts > 1 && j == 0) 7300 MyFlags.Flags.setSplit(); 7301 else if (j != 0) 7302 MyFlags.Flags.setOrigAlign(1); 7303 7304 // Only mark the end at the last register of the last value. 7305 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7306 MyFlags.Flags.setInConsecutiveRegsLast(); 7307 7308 CLI.Outs.push_back(MyFlags); 7309 CLI.OutVals.push_back(Parts[j]); 7310 } 7311 } 7312 } 7313 7314 SmallVector<SDValue, 4> InVals; 7315 CLI.Chain = LowerCall(CLI, InVals); 7316 7317 // Verify that the target's LowerCall behaved as expected. 7318 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7319 "LowerCall didn't return a valid chain!"); 7320 assert((!CLI.IsTailCall || InVals.empty()) && 7321 "LowerCall emitted a return value for a tail call!"); 7322 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7323 "LowerCall didn't emit the correct number of values!"); 7324 7325 // For a tail call, the return value is merely live-out and there aren't 7326 // any nodes in the DAG representing it. Return a special value to 7327 // indicate that a tail call has been emitted and no more Instructions 7328 // should be processed in the current block. 7329 if (CLI.IsTailCall) { 7330 CLI.DAG.setRoot(CLI.Chain); 7331 return std::make_pair(SDValue(), SDValue()); 7332 } 7333 7334 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7335 assert(InVals[i].getNode() && 7336 "LowerCall emitted a null value!"); 7337 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7338 "LowerCall emitted a value with the wrong type!"); 7339 }); 7340 7341 SmallVector<SDValue, 4> ReturnValues; 7342 if (!CanLowerReturn) { 7343 // The instruction result is the result of loading from the 7344 // hidden sret parameter. 7345 SmallVector<EVT, 1> PVTs; 7346 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7347 7348 ComputeValueVTs(*this, PtrRetTy, PVTs); 7349 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7350 EVT PtrVT = PVTs[0]; 7351 7352 unsigned NumValues = RetTys.size(); 7353 ReturnValues.resize(NumValues); 7354 SmallVector<SDValue, 4> Chains(NumValues); 7355 7356 for (unsigned i = 0; i < NumValues; ++i) { 7357 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7358 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7359 SDValue L = CLI.DAG.getLoad( 7360 RetTys[i], CLI.DL, CLI.Chain, Add, 7361 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7362 false, false, 1); 7363 ReturnValues[i] = L; 7364 Chains[i] = L.getValue(1); 7365 } 7366 7367 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7368 } else { 7369 // Collect the legal value parts into potentially illegal values 7370 // that correspond to the original function's return values. 7371 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7372 if (CLI.RetSExt) 7373 AssertOp = ISD::AssertSext; 7374 else if (CLI.RetZExt) 7375 AssertOp = ISD::AssertZext; 7376 unsigned CurReg = 0; 7377 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7378 EVT VT = RetTys[I]; 7379 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7380 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7381 7382 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7383 NumRegs, RegisterVT, VT, nullptr, 7384 AssertOp)); 7385 CurReg += NumRegs; 7386 } 7387 7388 // For a function returning void, there is no return value. We can't create 7389 // such a node, so we just return a null return value in that case. In 7390 // that case, nothing will actually look at the value. 7391 if (ReturnValues.empty()) 7392 return std::make_pair(SDValue(), CLI.Chain); 7393 } 7394 7395 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7396 CLI.DAG.getVTList(RetTys), ReturnValues); 7397 return std::make_pair(Res, CLI.Chain); 7398 } 7399 7400 void TargetLowering::LowerOperationWrapper(SDNode *N, 7401 SmallVectorImpl<SDValue> &Results, 7402 SelectionDAG &DAG) const { 7403 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7404 if (Res.getNode()) 7405 Results.push_back(Res); 7406 } 7407 7408 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7409 llvm_unreachable("LowerOperation not implemented for this target!"); 7410 } 7411 7412 void 7413 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7414 SDValue Op = getNonRegisterValue(V); 7415 assert((Op.getOpcode() != ISD::CopyFromReg || 7416 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7417 "Copy from a reg to the same reg!"); 7418 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7419 7420 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7421 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7422 SDValue Chain = DAG.getEntryNode(); 7423 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7424 PendingExports.push_back(Chain); 7425 } 7426 7427 #include "llvm/CodeGen/SelectionDAGISel.h" 7428 7429 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7430 /// entry block, return true. This includes arguments used by switches, since 7431 /// the switch may expand into multiple basic blocks. 7432 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7433 // With FastISel active, we may be splitting blocks, so force creation 7434 // of virtual registers for all non-dead arguments. 7435 if (FastISel) 7436 return A->use_empty(); 7437 7438 const BasicBlock *Entry = A->getParent()->begin(); 7439 for (const User *U : A->users()) 7440 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7441 return false; // Use not in entry block. 7442 7443 return true; 7444 } 7445 7446 void SelectionDAGISel::LowerArguments(const Function &F) { 7447 SelectionDAG &DAG = SDB->DAG; 7448 SDLoc dl = SDB->getCurSDLoc(); 7449 const TargetLowering *TLI = getTargetLowering(); 7450 const DataLayout *DL = TLI->getDataLayout(); 7451 SmallVector<ISD::InputArg, 16> Ins; 7452 7453 if (!FuncInfo->CanLowerReturn) { 7454 // Put in an sret pointer parameter before all the other parameters. 7455 SmallVector<EVT, 1> ValueVTs; 7456 ComputeValueVTs(*getTargetLowering(), 7457 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7458 7459 // NOTE: Assuming that a pointer will never break down to more than one VT 7460 // or one register. 7461 ISD::ArgFlagsTy Flags; 7462 Flags.setSRet(); 7463 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7464 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7465 Ins.push_back(RetArg); 7466 } 7467 7468 // Set up the incoming argument description vector. 7469 unsigned Idx = 1; 7470 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7471 I != E; ++I, ++Idx) { 7472 SmallVector<EVT, 4> ValueVTs; 7473 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7474 bool isArgValueUsed = !I->use_empty(); 7475 unsigned PartBase = 0; 7476 Type *FinalType = I->getType(); 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7478 FinalType = cast<PointerType>(FinalType)->getElementType(); 7479 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7480 FinalType, F.getCallingConv(), F.isVarArg()); 7481 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7482 Value != NumValues; ++Value) { 7483 EVT VT = ValueVTs[Value]; 7484 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7485 ISD::ArgFlagsTy Flags; 7486 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7487 7488 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7489 Flags.setZExt(); 7490 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7491 Flags.setSExt(); 7492 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7493 Flags.setInReg(); 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7495 Flags.setSRet(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7497 Flags.setByVal(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7499 Flags.setInAlloca(); 7500 // Set the byval flag for CCAssignFn callbacks that don't know about 7501 // inalloca. This way we can know how many bytes we should've allocated 7502 // and how many bytes a callee cleanup function will pop. If we port 7503 // inalloca to more targets, we'll have to add custom inalloca handling 7504 // in the various CC lowering callbacks. 7505 Flags.setByVal(); 7506 } 7507 if (Flags.isByVal() || Flags.isInAlloca()) { 7508 PointerType *Ty = cast<PointerType>(I->getType()); 7509 Type *ElementTy = Ty->getElementType(); 7510 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7511 // For ByVal, alignment should be passed from FE. BE will guess if 7512 // this info is not there but there are cases it cannot get right. 7513 unsigned FrameAlign; 7514 if (F.getParamAlignment(Idx)) 7515 FrameAlign = F.getParamAlignment(Idx); 7516 else 7517 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7518 Flags.setByValAlign(FrameAlign); 7519 } 7520 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7521 Flags.setNest(); 7522 if (NeedsRegBlock) 7523 Flags.setInConsecutiveRegs(); 7524 Flags.setOrigAlign(OriginalAlignment); 7525 7526 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7527 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7528 for (unsigned i = 0; i != NumRegs; ++i) { 7529 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7530 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7531 if (NumRegs > 1 && i == 0) 7532 MyFlags.Flags.setSplit(); 7533 // if it isn't first piece, alignment must be 1 7534 else if (i > 0) 7535 MyFlags.Flags.setOrigAlign(1); 7536 7537 // Only mark the end at the last register of the last value. 7538 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7539 MyFlags.Flags.setInConsecutiveRegsLast(); 7540 7541 Ins.push_back(MyFlags); 7542 } 7543 PartBase += VT.getStoreSize(); 7544 } 7545 } 7546 7547 // Call the target to set up the argument values. 7548 SmallVector<SDValue, 8> InVals; 7549 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7550 F.isVarArg(), Ins, 7551 dl, DAG, InVals); 7552 7553 // Verify that the target's LowerFormalArguments behaved as expected. 7554 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7555 "LowerFormalArguments didn't return a valid chain!"); 7556 assert(InVals.size() == Ins.size() && 7557 "LowerFormalArguments didn't emit the correct number of values!"); 7558 DEBUG({ 7559 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7560 assert(InVals[i].getNode() && 7561 "LowerFormalArguments emitted a null value!"); 7562 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7563 "LowerFormalArguments emitted a value with the wrong type!"); 7564 } 7565 }); 7566 7567 // Update the DAG with the new chain value resulting from argument lowering. 7568 DAG.setRoot(NewRoot); 7569 7570 // Set up the argument values. 7571 unsigned i = 0; 7572 Idx = 1; 7573 if (!FuncInfo->CanLowerReturn) { 7574 // Create a virtual register for the sret pointer, and put in a copy 7575 // from the sret argument into it. 7576 SmallVector<EVT, 1> ValueVTs; 7577 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7578 MVT VT = ValueVTs[0].getSimpleVT(); 7579 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7580 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7581 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7582 RegVT, VT, nullptr, AssertOp); 7583 7584 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7585 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7586 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7587 FuncInfo->DemoteRegister = SRetReg; 7588 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7589 SRetReg, ArgValue); 7590 DAG.setRoot(NewRoot); 7591 7592 // i indexes lowered arguments. Bump it past the hidden sret argument. 7593 // Idx indexes LLVM arguments. Don't touch it. 7594 ++i; 7595 } 7596 7597 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7598 ++I, ++Idx) { 7599 SmallVector<SDValue, 4> ArgValues; 7600 SmallVector<EVT, 4> ValueVTs; 7601 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7602 unsigned NumValues = ValueVTs.size(); 7603 7604 // If this argument is unused then remember its value. It is used to generate 7605 // debugging information. 7606 if (I->use_empty() && NumValues) { 7607 SDB->setUnusedArgValue(I, InVals[i]); 7608 7609 // Also remember any frame index for use in FastISel. 7610 if (FrameIndexSDNode *FI = 7611 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7612 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7613 } 7614 7615 for (unsigned Val = 0; Val != NumValues; ++Val) { 7616 EVT VT = ValueVTs[Val]; 7617 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7618 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7619 7620 if (!I->use_empty()) { 7621 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7622 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7623 AssertOp = ISD::AssertSext; 7624 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7625 AssertOp = ISD::AssertZext; 7626 7627 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7628 NumParts, PartVT, VT, 7629 nullptr, AssertOp)); 7630 } 7631 7632 i += NumParts; 7633 } 7634 7635 // We don't need to do anything else for unused arguments. 7636 if (ArgValues.empty()) 7637 continue; 7638 7639 // Note down frame index. 7640 if (FrameIndexSDNode *FI = 7641 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7642 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7643 7644 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7645 SDB->getCurSDLoc()); 7646 7647 SDB->setValue(I, Res); 7648 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7649 if (LoadSDNode *LNode = 7650 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7651 if (FrameIndexSDNode *FI = 7652 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7653 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7654 } 7655 7656 // If this argument is live outside of the entry block, insert a copy from 7657 // wherever we got it to the vreg that other BB's will reference it as. 7658 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7659 // If we can, though, try to skip creating an unnecessary vreg. 7660 // FIXME: This isn't very clean... it would be nice to make this more 7661 // general. It's also subtly incompatible with the hacks FastISel 7662 // uses with vregs. 7663 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7664 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7665 FuncInfo->ValueMap[I] = Reg; 7666 continue; 7667 } 7668 } 7669 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7670 FuncInfo->InitializeRegForValue(I); 7671 SDB->CopyToExportRegsIfNeeded(I); 7672 } 7673 } 7674 7675 assert(i == InVals.size() && "Argument register count mismatch!"); 7676 7677 // Finally, if the target has anything special to do, allow it to do so. 7678 // FIXME: this should insert code into the DAG! 7679 EmitFunctionEntryCode(); 7680 } 7681 7682 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7683 /// ensure constants are generated when needed. Remember the virtual registers 7684 /// that need to be added to the Machine PHI nodes as input. We cannot just 7685 /// directly add them, because expansion might result in multiple MBB's for one 7686 /// BB. As such, the start of the BB might correspond to a different MBB than 7687 /// the end. 7688 /// 7689 void 7690 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7691 const TerminatorInst *TI = LLVMBB->getTerminator(); 7692 7693 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7694 7695 // Check successor nodes' PHI nodes that expect a constant to be available 7696 // from this block. 7697 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7698 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7699 if (!isa<PHINode>(SuccBB->begin())) continue; 7700 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7701 7702 // If this terminator has multiple identical successors (common for 7703 // switches), only handle each succ once. 7704 if (!SuccsHandled.insert(SuccMBB)) continue; 7705 7706 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7707 7708 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7709 // nodes and Machine PHI nodes, but the incoming operands have not been 7710 // emitted yet. 7711 for (BasicBlock::const_iterator I = SuccBB->begin(); 7712 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7713 // Ignore dead phi's. 7714 if (PN->use_empty()) continue; 7715 7716 // Skip empty types 7717 if (PN->getType()->isEmptyTy()) 7718 continue; 7719 7720 unsigned Reg; 7721 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7722 7723 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7724 unsigned &RegOut = ConstantsOut[C]; 7725 if (RegOut == 0) { 7726 RegOut = FuncInfo.CreateRegs(C->getType()); 7727 CopyValueToVirtualRegister(C, RegOut); 7728 } 7729 Reg = RegOut; 7730 } else { 7731 DenseMap<const Value *, unsigned>::iterator I = 7732 FuncInfo.ValueMap.find(PHIOp); 7733 if (I != FuncInfo.ValueMap.end()) 7734 Reg = I->second; 7735 else { 7736 assert(isa<AllocaInst>(PHIOp) && 7737 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7738 "Didn't codegen value into a register!??"); 7739 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7740 CopyValueToVirtualRegister(PHIOp, Reg); 7741 } 7742 } 7743 7744 // Remember that this register needs to added to the machine PHI node as 7745 // the input for this MBB. 7746 SmallVector<EVT, 4> ValueVTs; 7747 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7748 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7749 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7750 EVT VT = ValueVTs[vti]; 7751 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7752 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7753 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7754 Reg += NumRegisters; 7755 } 7756 } 7757 } 7758 7759 ConstantsOut.clear(); 7760 } 7761 7762 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7763 /// is 0. 7764 MachineBasicBlock * 7765 SelectionDAGBuilder::StackProtectorDescriptor:: 7766 AddSuccessorMBB(const BasicBlock *BB, 7767 MachineBasicBlock *ParentMBB, 7768 MachineBasicBlock *SuccMBB) { 7769 // If SuccBB has not been created yet, create it. 7770 if (!SuccMBB) { 7771 MachineFunction *MF = ParentMBB->getParent(); 7772 MachineFunction::iterator BBI = ParentMBB; 7773 SuccMBB = MF->CreateMachineBasicBlock(BB); 7774 MF->insert(++BBI, SuccMBB); 7775 } 7776 // Add it as a successor of ParentMBB. 7777 ParentMBB->addSuccessor(SuccMBB); 7778 return SuccMBB; 7779 } 7780