xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f891bf8b30a3d5222622687c5c8d58304de20a03)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   const BasicBlock *SrcBB = Src->getBasicBlock();
1281   const BasicBlock *DstBB = Dst->getBasicBlock();
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::
1286 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                        uint32_t Weight /* = 0 */) {
1288   if (!Weight)
1289     Weight = getEdgeWeight(Src, Dst);
1290   Src->addSuccessor(Dst, Weight);
1291 }
1292 
1293 
1294 static bool InBlock(const Value *V, const BasicBlock *BB) {
1295   if (const Instruction *I = dyn_cast<Instruction>(V))
1296     return I->getParent() == BB;
1297   return true;
1298 }
1299 
1300 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301 /// This function emits a branch and is used at the leaves of an OR or an
1302 /// AND operator tree.
1303 ///
1304 void
1305 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                   MachineBasicBlock *TBB,
1307                                                   MachineBasicBlock *FBB,
1308                                                   MachineBasicBlock *CurBB,
1309                                                   MachineBasicBlock *SwitchBB) {
1310   const BasicBlock *BB = CurBB->getBasicBlock();
1311 
1312   // If the leaf of the tree is a comparison, merge the condition into
1313   // the caseblock.
1314   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315     // The operands of the cmp have to be in this block.  We don't know
1316     // how to export them from some other block.  If this is the first block
1317     // of the sequence, no exporting is needed.
1318     if (CurBB == SwitchBB ||
1319         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321       ISD::CondCode Condition;
1322       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323         Condition = getICmpCondCode(IC->getPredicate());
1324       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325         Condition = getFCmpCondCode(FC->getPredicate());
1326       } else {
1327         Condition = ISD::SETEQ; // silence warning.
1328         llvm_unreachable("Unknown compare instruction");
1329       }
1330 
1331       CaseBlock CB(Condition, BOp->getOperand(0),
1332                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333       SwitchCases.push_back(CB);
1334       return;
1335     }
1336   }
1337 
1338   // Create a CaseBlock record representing this branch.
1339   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340                NULL, TBB, FBB, CurBB);
1341   SwitchCases.push_back(CB);
1342 }
1343 
1344 /// FindMergedConditions - If Cond is an expression like
1345 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                                MachineBasicBlock *TBB,
1347                                                MachineBasicBlock *FBB,
1348                                                MachineBasicBlock *CurBB,
1349                                                MachineBasicBlock *SwitchBB,
1350                                                unsigned Opc) {
1351   // If this node is not part of the or/and tree, emit it as a branch.
1352   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355       BOp->getParent() != CurBB->getBasicBlock() ||
1356       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359     return;
1360   }
1361 
1362   //  Create TmpBB after CurBB.
1363   MachineFunction::iterator BBI = CurBB;
1364   MachineFunction &MF = DAG.getMachineFunction();
1365   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366   CurBB->getParent()->insert(++BBI, TmpBB);
1367 
1368   if (Opc == Instruction::Or) {
1369     // Codegen X | Y as:
1370     //   jmp_if_X TBB
1371     //   jmp TmpBB
1372     // TmpBB:
1373     //   jmp_if_Y TBB
1374     //   jmp FBB
1375     //
1376 
1377     // Emit the LHS condition.
1378     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379 
1380     // Emit the RHS condition into TmpBB.
1381     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382   } else {
1383     assert(Opc == Instruction::And && "Unknown merge op!");
1384     // Codegen X & Y as:
1385     //   jmp_if_X TmpBB
1386     //   jmp FBB
1387     // TmpBB:
1388     //   jmp_if_Y TBB
1389     //   jmp FBB
1390     //
1391     //  This requires creation of TmpBB after CurBB.
1392 
1393     // Emit the LHS condition.
1394     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395 
1396     // Emit the RHS condition into TmpBB.
1397     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398   }
1399 }
1400 
1401 /// If the set of cases should be emitted as a series of branches, return true.
1402 /// If we should emit this as a bunch of and/or'd together conditions, return
1403 /// false.
1404 bool
1405 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406   if (Cases.size() != 2) return true;
1407 
1408   // If this is two comparisons of the same values or'd or and'd together, they
1409   // will get folded into a single comparison, so don't emit two blocks.
1410   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414     return false;
1415   }
1416 
1417   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420       Cases[0].CC == Cases[1].CC &&
1421       isa<Constant>(Cases[0].CmpRHS) &&
1422       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424       return false;
1425     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426       return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434 
1435   // Update machine-CFG edges.
1436   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437 
1438   // Figure out which block is immediately after the current one.
1439   MachineBasicBlock *NextBlock = 0;
1440   MachineFunction::iterator BBI = BrMBB;
1441   if (++BBI != FuncInfo.MF->end())
1442     NextBlock = BBI;
1443 
1444   if (I.isUnconditional()) {
1445     // Update machine-CFG edges.
1446     BrMBB->addSuccessor(Succ0MBB);
1447 
1448     // If this is not a fall-through branch, emit the branch.
1449     if (Succ0MBB != NextBlock)
1450       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                               MVT::Other, getControlRoot(),
1452                               DAG.getBasicBlock(Succ0MBB)));
1453 
1454     return;
1455   }
1456 
1457   // If this condition is one of the special cases we handle, do special stuff
1458   // now.
1459   const Value *CondVal = I.getCondition();
1460   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461 
1462   // If this is a series of conditions that are or'd or and'd together, emit
1463   // this as a sequence of branches instead of setcc's with and/or operations.
1464   // As long as jumps are not expensive, this should improve performance.
1465   // For example, instead of something like:
1466   //     cmp A, B
1467   //     C = seteq
1468   //     cmp D, E
1469   //     F = setle
1470   //     or C, F
1471   //     jnz foo
1472   // Emit:
1473   //     cmp A, B
1474   //     je foo
1475   //     cmp D, E
1476   //     jle foo
1477   //
1478   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479     if (!TLI.isJumpExpensive() &&
1480         BOp->hasOneUse() &&
1481         (BOp->getOpcode() == Instruction::And ||
1482          BOp->getOpcode() == Instruction::Or)) {
1483       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                            BOp->getOpcode());
1485       // If the compares in later blocks need to use values not currently
1486       // exported from this block, export them now.  This block should always
1487       // be the first entry.
1488       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489 
1490       // Allow some cases to be rejected.
1491       if (ShouldEmitAsBranches(SwitchCases)) {
1492         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495         }
1496 
1497         // Emit the branch for this block.
1498         visitSwitchCase(SwitchCases[0], BrMBB);
1499         SwitchCases.erase(SwitchCases.begin());
1500         return;
1501       }
1502 
1503       // Okay, we decided not to do this, remove any inserted MBB's and clear
1504       // SwitchCases.
1505       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507 
1508       SwitchCases.clear();
1509     }
1510   }
1511 
1512   // Create a CaseBlock record representing this branch.
1513   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514                NULL, Succ0MBB, Succ1MBB, BrMBB);
1515 
1516   // Use visitSwitchCase to actually insert the fast branch sequence for this
1517   // cond branch.
1518   visitSwitchCase(CB, BrMBB);
1519 }
1520 
1521 /// visitSwitchCase - Emits the necessary code to represent a single node in
1522 /// the binary search tree resulting from lowering a switch instruction.
1523 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                           MachineBasicBlock *SwitchBB) {
1525   SDValue Cond;
1526   SDValue CondLHS = getValue(CB.CmpLHS);
1527   DebugLoc dl = getCurDebugLoc();
1528 
1529   // Build the setcc now.
1530   if (CB.CmpMHS == NULL) {
1531     // Fold "(X == true)" to X and "(X == false)" to !X to
1532     // handle common cases produced by branch lowering.
1533     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534         CB.CC == ISD::SETEQ)
1535       Cond = CondLHS;
1536     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537              CB.CC == ISD::SETEQ) {
1538       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540     } else
1541       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542   } else {
1543     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544 
1545     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547 
1548     SDValue CmpOp = getValue(CB.CmpMHS);
1549     EVT VT = CmpOp.getValueType();
1550 
1551     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                           ISD::SETLE);
1554     } else {
1555       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                 VT, CmpOp, DAG.getConstant(Low, VT));
1557       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1559     }
1560   }
1561 
1562   // Update successor info
1563   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565 
1566   // Set NextBlock to be the MBB immediately after the current one, if any.
1567   // This is used to avoid emitting unnecessary branches to the next block.
1568   MachineBasicBlock *NextBlock = 0;
1569   MachineFunction::iterator BBI = SwitchBB;
1570   if (++BBI != FuncInfo.MF->end())
1571     NextBlock = BBI;
1572 
1573   // If the lhs block is the next block, invert the condition so that we can
1574   // fall through to the lhs instead of the rhs block.
1575   if (CB.TrueBB == NextBlock) {
1576     std::swap(CB.TrueBB, CB.FalseBB);
1577     SDValue True = DAG.getConstant(1, Cond.getValueType());
1578     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579   }
1580 
1581   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                                MVT::Other, getControlRoot(), Cond,
1583                                DAG.getBasicBlock(CB.TrueBB));
1584 
1585   // Insert the false branch. Do this even if it's a fall through branch,
1586   // this makes it easier to do DAG optimizations which require inverting
1587   // the branch condition.
1588   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                        DAG.getBasicBlock(CB.FalseBB));
1590 
1591   DAG.setRoot(BrCond);
1592 }
1593 
1594 /// visitJumpTable - Emit JumpTable node in the current MBB
1595 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596   // Emit the code for the jump table
1597   assert(JT.Reg != -1U && "Should lower JT Header first!");
1598   EVT PTy = TLI.getPointerTy();
1599   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                      JT.Reg, PTy);
1601   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                     MVT::Other, Index.getValue(1),
1604                                     Table, Index);
1605   DAG.setRoot(BrJumpTable);
1606 }
1607 
1608 /// visitJumpTableHeader - This function emits necessary code to produce index
1609 /// in the JumpTable from switch case.
1610 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                                JumpTableHeader &JTH,
1612                                                MachineBasicBlock *SwitchBB) {
1613   // Subtract the lowest switch case value from the value being switched on and
1614   // conditional branch to default mbb if the result is greater than the
1615   // difference between smallest and largest cases.
1616   SDValue SwitchOp = getValue(JTH.SValue);
1617   EVT VT = SwitchOp.getValueType();
1618   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                             DAG.getConstant(JTH.First, VT));
1620 
1621   // The SDNode we just created, which holds the value being switched on minus
1622   // the smallest case value, needs to be copied to a virtual register so it
1623   // can be used as an index into the jump table in a subsequent basic block.
1624   // This value may be smaller or larger than the target's pointer type, and
1625   // therefore require extension or truncating.
1626   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627 
1628   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                     JumpTableReg, SwitchOp);
1631   JT.Reg = JumpTableReg;
1632 
1633   // Emit the range check for the jump table, and branch to the default block
1634   // for the switch statement if the value being switched on exceeds the largest
1635   // case in the switch.
1636   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                              DAG.getConstant(JTH.Last-JTH.First,VT),
1639                              ISD::SETUGT);
1640 
1641   // Set NextBlock to be the MBB immediately after the current one, if any.
1642   // This is used to avoid emitting unnecessary branches to the next block.
1643   MachineBasicBlock *NextBlock = 0;
1644   MachineFunction::iterator BBI = SwitchBB;
1645 
1646   if (++BBI != FuncInfo.MF->end())
1647     NextBlock = BBI;
1648 
1649   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                                MVT::Other, CopyTo, CMP,
1651                                DAG.getBasicBlock(JT.Default));
1652 
1653   if (JT.MBB != NextBlock)
1654     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                          DAG.getBasicBlock(JT.MBB));
1656 
1657   DAG.setRoot(BrCond);
1658 }
1659 
1660 /// visitBitTestHeader - This function emits necessary code to produce value
1661 /// suitable for "bit tests"
1662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                              MachineBasicBlock *SwitchBB) {
1664   // Subtract the minimum value
1665   SDValue SwitchOp = getValue(B.SValue);
1666   EVT VT = SwitchOp.getValueType();
1667   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                             DAG.getConstant(B.First, VT));
1669 
1670   // Check range
1671   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                   TLI.getSetCCResultType(Sub.getValueType()),
1673                                   Sub, DAG.getConstant(B.Range, VT),
1674                                   ISD::SETUGT);
1675 
1676   // Determine the type of the test operands.
1677   bool UsePtrType = false;
1678   if (!TLI.isTypeLegal(VT))
1679     UsePtrType = true;
1680   else {
1681     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683         // Switch table case range are encoded into series of masks.
1684         // Just use pointer type, it's guaranteed to fit.
1685         UsePtrType = true;
1686         break;
1687       }
1688   }
1689   if (UsePtrType) {
1690     VT = TLI.getPointerTy();
1691     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692   }
1693 
1694   B.RegVT = VT;
1695   B.Reg = FuncInfo.CreateReg(VT);
1696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                     B.Reg, Sub);
1698 
1699   // Set NextBlock to be the MBB immediately after the current one, if any.
1700   // This is used to avoid emitting unnecessary branches to the next block.
1701   MachineBasicBlock *NextBlock = 0;
1702   MachineFunction::iterator BBI = SwitchBB;
1703   if (++BBI != FuncInfo.MF->end())
1704     NextBlock = BBI;
1705 
1706   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707 
1708   addSuccessorWithWeight(SwitchBB, B.Default);
1709   addSuccessorWithWeight(SwitchBB, MBB);
1710 
1711   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                 MVT::Other, CopyTo, RangeCmp,
1713                                 DAG.getBasicBlock(B.Default));
1714 
1715   if (MBB != NextBlock)
1716     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                           DAG.getBasicBlock(MBB));
1718 
1719   DAG.setRoot(BrRange);
1720 }
1721 
1722 /// visitBitTestCase - this function produces one "bit test"
1723 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                            MachineBasicBlock* NextMBB,
1725                                            unsigned Reg,
1726                                            BitTestCase &B,
1727                                            MachineBasicBlock *SwitchBB) {
1728   EVT VT = BB.RegVT;
1729   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                        Reg, VT);
1731   SDValue Cmp;
1732   unsigned PopCount = CountPopulation_64(B.Mask);
1733   if (PopCount == 1) {
1734     // Testing for a single bit; just compare the shift count with what it
1735     // would need to be to shift a 1 bit in that position.
1736     Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                        TLI.getSetCCResultType(VT),
1738                        ShiftOp,
1739                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                        ISD::SETEQ);
1741   } else if (PopCount == BB.Range) {
1742     // There is only one zero bit in the range, test for it directly.
1743     Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                        TLI.getSetCCResultType(VT),
1745                        ShiftOp,
1746                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                        ISD::SETNE);
1748   } else {
1749     // Make desired shift
1750     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                     DAG.getConstant(1, VT), ShiftOp);
1752 
1753     // Emit bit tests and jumps
1754     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                        TLI.getSetCCResultType(VT),
1758                        AndOp, DAG.getConstant(0, VT),
1759                        ISD::SETNE);
1760   }
1761 
1762   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763   addSuccessorWithWeight(SwitchBB, NextMBB);
1764 
1765   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                               MVT::Other, getControlRoot(),
1767                               Cmp, DAG.getBasicBlock(B.TargetBB));
1768 
1769   // Set NextBlock to be the MBB immediately after the current one, if any.
1770   // This is used to avoid emitting unnecessary branches to the next block.
1771   MachineBasicBlock *NextBlock = 0;
1772   MachineFunction::iterator BBI = SwitchBB;
1773   if (++BBI != FuncInfo.MF->end())
1774     NextBlock = BBI;
1775 
1776   if (NextMBB != NextBlock)
1777     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                         DAG.getBasicBlock(NextMBB));
1779 
1780   DAG.setRoot(BrAnd);
1781 }
1782 
1783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785 
1786   // Retrieve successors.
1787   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789 
1790   const Value *Callee(I.getCalledValue());
1791   if (isa<InlineAsm>(Callee))
1792     visitInlineAsm(&I);
1793   else
1794     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795 
1796   // If the value of the invoke is used outside of its defining block, make it
1797   // available as a virtual register.
1798   CopyToExportRegsIfNeeded(&I);
1799 
1800   // Update successor info
1801   InvokeMBB->addSuccessor(Return);
1802   InvokeMBB->addSuccessor(LandingPad);
1803 
1804   // Drop into normal successor.
1805   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                           MVT::Other, getControlRoot(),
1807                           DAG.getBasicBlock(Return)));
1808 }
1809 
1810 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811 }
1812 
1813 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815 }
1816 
1817 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1818 /// small case ranges).
1819 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1820                                                  CaseRecVector& WorkList,
1821                                                  const Value* SV,
1822                                                  MachineBasicBlock *Default,
1823                                                  MachineBasicBlock *SwitchBB) {
1824   Case& BackCase  = *(CR.Range.second-1);
1825 
1826   // Size is the number of Cases represented by this range.
1827   size_t Size = CR.Range.second - CR.Range.first;
1828   if (Size > 3)
1829     return false;
1830 
1831   // Get the MachineFunction which holds the current MBB.  This is used when
1832   // inserting any additional MBBs necessary to represent the switch.
1833   MachineFunction *CurMF = FuncInfo.MF;
1834 
1835   // Figure out which block is immediately after the current one.
1836   MachineBasicBlock *NextBlock = 0;
1837   MachineFunction::iterator BBI = CR.CaseBB;
1838 
1839   if (++BBI != FuncInfo.MF->end())
1840     NextBlock = BBI;
1841 
1842   // If any two of the cases has the same destination, and if one value
1843   // is the same as the other, but has one bit unset that the other has set,
1844   // use bit manipulation to do two compares at once.  For example:
1845   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1846   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1847   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1848   if (Size == 2 && CR.CaseBB == SwitchBB) {
1849     Case &Small = *CR.Range.first;
1850     Case &Big = *(CR.Range.second-1);
1851 
1852     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1853       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1854       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1855 
1856       // Check that there is only one bit different.
1857       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1858           (SmallValue | BigValue) == BigValue) {
1859         // Isolate the common bit.
1860         APInt CommonBit = BigValue & ~SmallValue;
1861         assert((SmallValue | CommonBit) == BigValue &&
1862                CommonBit.countPopulation() == 1 && "Not a common bit?");
1863 
1864         SDValue CondLHS = getValue(SV);
1865         EVT VT = CondLHS.getValueType();
1866         DebugLoc DL = getCurDebugLoc();
1867 
1868         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1869                                  DAG.getConstant(CommonBit, VT));
1870         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1871                                     Or, DAG.getConstant(BigValue, VT),
1872                                     ISD::SETEQ);
1873 
1874         // Update successor info.
1875         addSuccessorWithWeight(SwitchBB, Small.BB);
1876         addSuccessorWithWeight(SwitchBB, Default);
1877 
1878         // Insert the true branch.
1879         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1880                                      getControlRoot(), Cond,
1881                                      DAG.getBasicBlock(Small.BB));
1882 
1883         // Insert the false branch.
1884         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1885                              DAG.getBasicBlock(Default));
1886 
1887         DAG.setRoot(BrCond);
1888         return true;
1889       }
1890     }
1891   }
1892 
1893   // Rearrange the case blocks so that the last one falls through if possible.
1894   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1895     // The last case block won't fall through into 'NextBlock' if we emit the
1896     // branches in this order.  See if rearranging a case value would help.
1897     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1898       if (I->BB == NextBlock) {
1899         std::swap(*I, BackCase);
1900         break;
1901       }
1902     }
1903   }
1904 
1905   // Create a CaseBlock record representing a conditional branch to
1906   // the Case's target mbb if the value being switched on SV is equal
1907   // to C.
1908   MachineBasicBlock *CurBlock = CR.CaseBB;
1909   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1910     MachineBasicBlock *FallThrough;
1911     if (I != E-1) {
1912       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1913       CurMF->insert(BBI, FallThrough);
1914 
1915       // Put SV in a virtual register to make it available from the new blocks.
1916       ExportFromCurrentBlock(SV);
1917     } else {
1918       // If the last case doesn't match, go to the default block.
1919       FallThrough = Default;
1920     }
1921 
1922     const Value *RHS, *LHS, *MHS;
1923     ISD::CondCode CC;
1924     if (I->High == I->Low) {
1925       // This is just small small case range :) containing exactly 1 case
1926       CC = ISD::SETEQ;
1927       LHS = SV; RHS = I->High; MHS = NULL;
1928     } else {
1929       CC = ISD::SETLE;
1930       LHS = I->Low; MHS = SV; RHS = I->High;
1931     }
1932 
1933     uint32_t ExtraWeight = I->ExtraWeight;
1934     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1935                  /* me */ CurBlock,
1936                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1937 
1938     // If emitting the first comparison, just call visitSwitchCase to emit the
1939     // code into the current block.  Otherwise, push the CaseBlock onto the
1940     // vector to be later processed by SDISel, and insert the node's MBB
1941     // before the next MBB.
1942     if (CurBlock == SwitchBB)
1943       visitSwitchCase(CB, SwitchBB);
1944     else
1945       SwitchCases.push_back(CB);
1946 
1947     CurBlock = FallThrough;
1948   }
1949 
1950   return true;
1951 }
1952 
1953 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1954   return !DisableJumpTables &&
1955           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1956            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1957 }
1958 
1959 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1960   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1961   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1962   return (LastExt - FirstExt + 1ULL);
1963 }
1964 
1965 /// handleJTSwitchCase - Emit jumptable for current switch case range
1966 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1967                                              CaseRecVector& WorkList,
1968                                              const Value* SV,
1969                                              MachineBasicBlock* Default,
1970                                              MachineBasicBlock *SwitchBB) {
1971   Case& FrontCase = *CR.Range.first;
1972   Case& BackCase  = *(CR.Range.second-1);
1973 
1974   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1975   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1976 
1977   APInt TSize(First.getBitWidth(), 0);
1978   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1979        I!=E; ++I)
1980     TSize += I->size();
1981 
1982   if (!areJTsAllowed(TLI) || TSize.ult(4))
1983     return false;
1984 
1985   APInt Range = ComputeRange(First, Last);
1986   double Density = TSize.roundToDouble() / Range.roundToDouble();
1987   if (Density < 0.4)
1988     return false;
1989 
1990   DEBUG(dbgs() << "Lowering jump table\n"
1991                << "First entry: " << First << ". Last entry: " << Last << '\n'
1992                << "Range: " << Range
1993                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1994 
1995   // Get the MachineFunction which holds the current MBB.  This is used when
1996   // inserting any additional MBBs necessary to represent the switch.
1997   MachineFunction *CurMF = FuncInfo.MF;
1998 
1999   // Figure out which block is immediately after the current one.
2000   MachineFunction::iterator BBI = CR.CaseBB;
2001   ++BBI;
2002 
2003   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2004 
2005   // Create a new basic block to hold the code for loading the address
2006   // of the jump table, and jumping to it.  Update successor information;
2007   // we will either branch to the default case for the switch, or the jump
2008   // table.
2009   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2010   CurMF->insert(BBI, JumpTableBB);
2011 
2012   addSuccessorWithWeight(CR.CaseBB, Default);
2013   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2014 
2015   // Build a vector of destination BBs, corresponding to each target
2016   // of the jump table. If the value of the jump table slot corresponds to
2017   // a case statement, push the case's BB onto the vector, otherwise, push
2018   // the default BB.
2019   std::vector<MachineBasicBlock*> DestBBs;
2020   APInt TEI = First;
2021   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2022     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2023     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2024 
2025     if (Low.sle(TEI) && TEI.sle(High)) {
2026       DestBBs.push_back(I->BB);
2027       if (TEI==High)
2028         ++I;
2029     } else {
2030       DestBBs.push_back(Default);
2031     }
2032   }
2033 
2034   // Update successor info. Add one edge to each unique successor.
2035   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2036   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2037          E = DestBBs.end(); I != E; ++I) {
2038     if (!SuccsHandled[(*I)->getNumber()]) {
2039       SuccsHandled[(*I)->getNumber()] = true;
2040       addSuccessorWithWeight(JumpTableBB, *I);
2041     }
2042   }
2043 
2044   // Create a jump table index for this jump table.
2045   unsigned JTEncoding = TLI.getJumpTableEncoding();
2046   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2047                        ->createJumpTableIndex(DestBBs);
2048 
2049   // Set the jump table information so that we can codegen it as a second
2050   // MachineBasicBlock
2051   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2052   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2053   if (CR.CaseBB == SwitchBB)
2054     visitJumpTableHeader(JT, JTH, SwitchBB);
2055 
2056   JTCases.push_back(JumpTableBlock(JTH, JT));
2057 
2058   return true;
2059 }
2060 
2061 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2062 /// 2 subtrees.
2063 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2064                                                   CaseRecVector& WorkList,
2065                                                   const Value* SV,
2066                                                   MachineBasicBlock *Default,
2067                                                   MachineBasicBlock *SwitchBB) {
2068   // Get the MachineFunction which holds the current MBB.  This is used when
2069   // inserting any additional MBBs necessary to represent the switch.
2070   MachineFunction *CurMF = FuncInfo.MF;
2071 
2072   // Figure out which block is immediately after the current one.
2073   MachineFunction::iterator BBI = CR.CaseBB;
2074   ++BBI;
2075 
2076   Case& FrontCase = *CR.Range.first;
2077   Case& BackCase  = *(CR.Range.second-1);
2078   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2079 
2080   // Size is the number of Cases represented by this range.
2081   unsigned Size = CR.Range.second - CR.Range.first;
2082 
2083   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2084   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2085   double FMetric = 0;
2086   CaseItr Pivot = CR.Range.first + Size/2;
2087 
2088   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2089   // (heuristically) allow us to emit JumpTable's later.
2090   APInt TSize(First.getBitWidth(), 0);
2091   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2092        I!=E; ++I)
2093     TSize += I->size();
2094 
2095   APInt LSize = FrontCase.size();
2096   APInt RSize = TSize-LSize;
2097   DEBUG(dbgs() << "Selecting best pivot: \n"
2098                << "First: " << First << ", Last: " << Last <<'\n'
2099                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2100   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2101        J!=E; ++I, ++J) {
2102     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2103     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2104     APInt Range = ComputeRange(LEnd, RBegin);
2105     assert((Range - 2ULL).isNonNegative() &&
2106            "Invalid case distance");
2107     // Use volatile double here to avoid excess precision issues on some hosts,
2108     // e.g. that use 80-bit X87 registers.
2109     volatile double LDensity =
2110        (double)LSize.roundToDouble() /
2111                            (LEnd - First + 1ULL).roundToDouble();
2112     volatile double RDensity =
2113       (double)RSize.roundToDouble() /
2114                            (Last - RBegin + 1ULL).roundToDouble();
2115     double Metric = Range.logBase2()*(LDensity+RDensity);
2116     // Should always split in some non-trivial place
2117     DEBUG(dbgs() <<"=>Step\n"
2118                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2119                  << "LDensity: " << LDensity
2120                  << ", RDensity: " << RDensity << '\n'
2121                  << "Metric: " << Metric << '\n');
2122     if (FMetric < Metric) {
2123       Pivot = J;
2124       FMetric = Metric;
2125       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2126     }
2127 
2128     LSize += J->size();
2129     RSize -= J->size();
2130   }
2131   if (areJTsAllowed(TLI)) {
2132     // If our case is dense we *really* should handle it earlier!
2133     assert((FMetric > 0) && "Should handle dense range earlier!");
2134   } else {
2135     Pivot = CR.Range.first + Size/2;
2136   }
2137 
2138   CaseRange LHSR(CR.Range.first, Pivot);
2139   CaseRange RHSR(Pivot, CR.Range.second);
2140   Constant *C = Pivot->Low;
2141   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2142 
2143   // We know that we branch to the LHS if the Value being switched on is
2144   // less than the Pivot value, C.  We use this to optimize our binary
2145   // tree a bit, by recognizing that if SV is greater than or equal to the
2146   // LHS's Case Value, and that Case Value is exactly one less than the
2147   // Pivot's Value, then we can branch directly to the LHS's Target,
2148   // rather than creating a leaf node for it.
2149   if ((LHSR.second - LHSR.first) == 1 &&
2150       LHSR.first->High == CR.GE &&
2151       cast<ConstantInt>(C)->getValue() ==
2152       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2153     TrueBB = LHSR.first->BB;
2154   } else {
2155     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2156     CurMF->insert(BBI, TrueBB);
2157     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2158 
2159     // Put SV in a virtual register to make it available from the new blocks.
2160     ExportFromCurrentBlock(SV);
2161   }
2162 
2163   // Similar to the optimization above, if the Value being switched on is
2164   // known to be less than the Constant CR.LT, and the current Case Value
2165   // is CR.LT - 1, then we can branch directly to the target block for
2166   // the current Case Value, rather than emitting a RHS leaf node for it.
2167   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2168       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2169       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2170     FalseBB = RHSR.first->BB;
2171   } else {
2172     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2173     CurMF->insert(BBI, FalseBB);
2174     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2175 
2176     // Put SV in a virtual register to make it available from the new blocks.
2177     ExportFromCurrentBlock(SV);
2178   }
2179 
2180   // Create a CaseBlock record representing a conditional branch to
2181   // the LHS node if the value being switched on SV is less than C.
2182   // Otherwise, branch to LHS.
2183   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2184 
2185   if (CR.CaseBB == SwitchBB)
2186     visitSwitchCase(CB, SwitchBB);
2187   else
2188     SwitchCases.push_back(CB);
2189 
2190   return true;
2191 }
2192 
2193 /// handleBitTestsSwitchCase - if current case range has few destination and
2194 /// range span less, than machine word bitwidth, encode case range into series
2195 /// of masks and emit bit tests with these masks.
2196 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2197                                                    CaseRecVector& WorkList,
2198                                                    const Value* SV,
2199                                                    MachineBasicBlock* Default,
2200                                                    MachineBasicBlock *SwitchBB){
2201   EVT PTy = TLI.getPointerTy();
2202   unsigned IntPtrBits = PTy.getSizeInBits();
2203 
2204   Case& FrontCase = *CR.Range.first;
2205   Case& BackCase  = *(CR.Range.second-1);
2206 
2207   // Get the MachineFunction which holds the current MBB.  This is used when
2208   // inserting any additional MBBs necessary to represent the switch.
2209   MachineFunction *CurMF = FuncInfo.MF;
2210 
2211   // If target does not have legal shift left, do not emit bit tests at all.
2212   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2213     return false;
2214 
2215   size_t numCmps = 0;
2216   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2217        I!=E; ++I) {
2218     // Single case counts one, case range - two.
2219     numCmps += (I->Low == I->High ? 1 : 2);
2220   }
2221 
2222   // Count unique destinations
2223   SmallSet<MachineBasicBlock*, 4> Dests;
2224   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2225     Dests.insert(I->BB);
2226     if (Dests.size() > 3)
2227       // Don't bother the code below, if there are too much unique destinations
2228       return false;
2229   }
2230   DEBUG(dbgs() << "Total number of unique destinations: "
2231         << Dests.size() << '\n'
2232         << "Total number of comparisons: " << numCmps << '\n');
2233 
2234   // Compute span of values.
2235   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2236   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2237   APInt cmpRange = maxValue - minValue;
2238 
2239   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2240                << "Low bound: " << minValue << '\n'
2241                << "High bound: " << maxValue << '\n');
2242 
2243   if (cmpRange.uge(IntPtrBits) ||
2244       (!(Dests.size() == 1 && numCmps >= 3) &&
2245        !(Dests.size() == 2 && numCmps >= 5) &&
2246        !(Dests.size() >= 3 && numCmps >= 6)))
2247     return false;
2248 
2249   DEBUG(dbgs() << "Emitting bit tests\n");
2250   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2251 
2252   // Optimize the case where all the case values fit in a
2253   // word without having to subtract minValue. In this case,
2254   // we can optimize away the subtraction.
2255   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2256     cmpRange = maxValue;
2257   } else {
2258     lowBound = minValue;
2259   }
2260 
2261   CaseBitsVector CasesBits;
2262   unsigned i, count = 0;
2263 
2264   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2265     MachineBasicBlock* Dest = I->BB;
2266     for (i = 0; i < count; ++i)
2267       if (Dest == CasesBits[i].BB)
2268         break;
2269 
2270     if (i == count) {
2271       assert((count < 3) && "Too much destinations to test!");
2272       CasesBits.push_back(CaseBits(0, Dest, 0));
2273       count++;
2274     }
2275 
2276     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2277     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2278 
2279     uint64_t lo = (lowValue - lowBound).getZExtValue();
2280     uint64_t hi = (highValue - lowBound).getZExtValue();
2281 
2282     for (uint64_t j = lo; j <= hi; j++) {
2283       CasesBits[i].Mask |=  1ULL << j;
2284       CasesBits[i].Bits++;
2285     }
2286 
2287   }
2288   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2289 
2290   BitTestInfo BTC;
2291 
2292   // Figure out which block is immediately after the current one.
2293   MachineFunction::iterator BBI = CR.CaseBB;
2294   ++BBI;
2295 
2296   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2297 
2298   DEBUG(dbgs() << "Cases:\n");
2299   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2300     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2301                  << ", Bits: " << CasesBits[i].Bits
2302                  << ", BB: " << CasesBits[i].BB << '\n');
2303 
2304     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2305     CurMF->insert(BBI, CaseBB);
2306     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2307                               CaseBB,
2308                               CasesBits[i].BB));
2309 
2310     // Put SV in a virtual register to make it available from the new blocks.
2311     ExportFromCurrentBlock(SV);
2312   }
2313 
2314   BitTestBlock BTB(lowBound, cmpRange, SV,
2315                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2316                    CR.CaseBB, Default, BTC);
2317 
2318   if (CR.CaseBB == SwitchBB)
2319     visitBitTestHeader(BTB, SwitchBB);
2320 
2321   BitTestCases.push_back(BTB);
2322 
2323   return true;
2324 }
2325 
2326 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2327 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2328                                        const SwitchInst& SI) {
2329   size_t numCmps = 0;
2330 
2331   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2332   // Start with "simple" cases
2333   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2334     BasicBlock *SuccBB = SI.getSuccessor(i);
2335     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2336 
2337     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2338 
2339     Cases.push_back(Case(SI.getSuccessorValue(i),
2340                          SI.getSuccessorValue(i),
2341                          SMBB, ExtraWeight));
2342   }
2343   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2344 
2345   // Merge case into clusters
2346   if (Cases.size() >= 2)
2347     // Must recompute end() each iteration because it may be
2348     // invalidated by erase if we hold on to it
2349     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2350          J != Cases.end(); ) {
2351       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2352       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2353       MachineBasicBlock* nextBB = J->BB;
2354       MachineBasicBlock* currentBB = I->BB;
2355 
2356       // If the two neighboring cases go to the same destination, merge them
2357       // into a single case.
2358       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2359         I->High = J->High;
2360         J = Cases.erase(J);
2361 
2362         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2363           uint32_t CurWeight = currentBB->getBasicBlock() ?
2364             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2365           uint32_t NextWeight = nextBB->getBasicBlock() ?
2366             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2367 
2368           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2369                              CurWeight + NextWeight);
2370         }
2371       } else {
2372         I = J++;
2373       }
2374     }
2375 
2376   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2377     if (I->Low != I->High)
2378       // A range counts double, since it requires two compares.
2379       ++numCmps;
2380   }
2381 
2382   return numCmps;
2383 }
2384 
2385 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2386                                            MachineBasicBlock *Last) {
2387   // Update JTCases.
2388   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2389     if (JTCases[i].first.HeaderBB == First)
2390       JTCases[i].first.HeaderBB = Last;
2391 
2392   // Update BitTestCases.
2393   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2394     if (BitTestCases[i].Parent == First)
2395       BitTestCases[i].Parent = Last;
2396 }
2397 
2398 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2399   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2400 
2401   // Figure out which block is immediately after the current one.
2402   MachineBasicBlock *NextBlock = 0;
2403   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2404 
2405   // If there is only the default destination, branch to it if it is not the
2406   // next basic block.  Otherwise, just fall through.
2407   if (SI.getNumOperands() == 2) {
2408     // Update machine-CFG edges.
2409 
2410     // If this is not a fall-through branch, emit the branch.
2411     SwitchMBB->addSuccessor(Default);
2412     if (Default != NextBlock)
2413       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2414                               MVT::Other, getControlRoot(),
2415                               DAG.getBasicBlock(Default)));
2416 
2417     return;
2418   }
2419 
2420   // If there are any non-default case statements, create a vector of Cases
2421   // representing each one, and sort the vector so that we can efficiently
2422   // create a binary search tree from them.
2423   CaseVector Cases;
2424   size_t numCmps = Clusterify(Cases, SI);
2425   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2426                << ". Total compares: " << numCmps << '\n');
2427   numCmps = 0;
2428 
2429   // Get the Value to be switched on and default basic blocks, which will be
2430   // inserted into CaseBlock records, representing basic blocks in the binary
2431   // search tree.
2432   const Value *SV = SI.getOperand(0);
2433 
2434   // Push the initial CaseRec onto the worklist
2435   CaseRecVector WorkList;
2436   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2437                              CaseRange(Cases.begin(),Cases.end())));
2438 
2439   while (!WorkList.empty()) {
2440     // Grab a record representing a case range to process off the worklist
2441     CaseRec CR = WorkList.back();
2442     WorkList.pop_back();
2443 
2444     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2445       continue;
2446 
2447     // If the range has few cases (two or less) emit a series of specific
2448     // tests.
2449     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2450       continue;
2451 
2452     // If the switch has more than 5 blocks, and at least 40% dense, and the
2453     // target supports indirect branches, then emit a jump table rather than
2454     // lowering the switch to a binary tree of conditional branches.
2455     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2456       continue;
2457 
2458     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2459     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2460     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2461   }
2462 }
2463 
2464 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2465   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2466 
2467   // Update machine-CFG edges with unique successors.
2468   SmallVector<BasicBlock*, 32> succs;
2469   succs.reserve(I.getNumSuccessors());
2470   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2471     succs.push_back(I.getSuccessor(i));
2472   array_pod_sort(succs.begin(), succs.end());
2473   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2474   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2475     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2476     addSuccessorWithWeight(IndirectBrMBB, Succ);
2477   }
2478 
2479   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2480                           MVT::Other, getControlRoot(),
2481                           getValue(I.getAddress())));
2482 }
2483 
2484 void SelectionDAGBuilder::visitFSub(const User &I) {
2485   // -0.0 - X --> fneg
2486   Type *Ty = I.getType();
2487   if (isa<Constant>(I.getOperand(0)) &&
2488       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2489     SDValue Op2 = getValue(I.getOperand(1));
2490     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2491                              Op2.getValueType(), Op2));
2492     return;
2493   }
2494 
2495   visitBinary(I, ISD::FSUB);
2496 }
2497 
2498 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2499   SDValue Op1 = getValue(I.getOperand(0));
2500   SDValue Op2 = getValue(I.getOperand(1));
2501   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2502                            Op1.getValueType(), Op1, Op2));
2503 }
2504 
2505 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2506   SDValue Op1 = getValue(I.getOperand(0));
2507   SDValue Op2 = getValue(I.getOperand(1));
2508 
2509   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2510 
2511   // Coerce the shift amount to the right type if we can.
2512   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2513     unsigned ShiftSize = ShiftTy.getSizeInBits();
2514     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2515     DebugLoc DL = getCurDebugLoc();
2516 
2517     // If the operand is smaller than the shift count type, promote it.
2518     if (ShiftSize > Op2Size)
2519       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2520 
2521     // If the operand is larger than the shift count type but the shift
2522     // count type has enough bits to represent any shift value, truncate
2523     // it now. This is a common case and it exposes the truncate to
2524     // optimization early.
2525     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2526       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2527     // Otherwise we'll need to temporarily settle for some other convenient
2528     // type.  Type legalization will make adjustments once the shiftee is split.
2529     else
2530       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2531   }
2532 
2533   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2534                            Op1.getValueType(), Op1, Op2));
2535 }
2536 
2537 void SelectionDAGBuilder::visitSDiv(const User &I) {
2538   SDValue Op1 = getValue(I.getOperand(0));
2539   SDValue Op2 = getValue(I.getOperand(1));
2540 
2541   // Turn exact SDivs into multiplications.
2542   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2543   // exact bit.
2544   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2545       !isa<ConstantSDNode>(Op1) &&
2546       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2547     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2548   else
2549     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2550                              Op1, Op2));
2551 }
2552 
2553 void SelectionDAGBuilder::visitICmp(const User &I) {
2554   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2555   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2556     predicate = IC->getPredicate();
2557   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2558     predicate = ICmpInst::Predicate(IC->getPredicate());
2559   SDValue Op1 = getValue(I.getOperand(0));
2560   SDValue Op2 = getValue(I.getOperand(1));
2561   ISD::CondCode Opcode = getICmpCondCode(predicate);
2562 
2563   EVT DestVT = TLI.getValueType(I.getType());
2564   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2565 }
2566 
2567 void SelectionDAGBuilder::visitFCmp(const User &I) {
2568   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2569   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2570     predicate = FC->getPredicate();
2571   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2572     predicate = FCmpInst::Predicate(FC->getPredicate());
2573   SDValue Op1 = getValue(I.getOperand(0));
2574   SDValue Op2 = getValue(I.getOperand(1));
2575   ISD::CondCode Condition = getFCmpCondCode(predicate);
2576   EVT DestVT = TLI.getValueType(I.getType());
2577   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2578 }
2579 
2580 void SelectionDAGBuilder::visitSelect(const User &I) {
2581   SmallVector<EVT, 4> ValueVTs;
2582   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2583   unsigned NumValues = ValueVTs.size();
2584   if (NumValues == 0) return;
2585 
2586   SmallVector<SDValue, 4> Values(NumValues);
2587   SDValue Cond     = getValue(I.getOperand(0));
2588   SDValue TrueVal  = getValue(I.getOperand(1));
2589   SDValue FalseVal = getValue(I.getOperand(2));
2590 
2591   for (unsigned i = 0; i != NumValues; ++i)
2592     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2593                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2594                             Cond,
2595                             SDValue(TrueVal.getNode(),
2596                                     TrueVal.getResNo() + i),
2597                             SDValue(FalseVal.getNode(),
2598                                     FalseVal.getResNo() + i));
2599 
2600   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2601                            DAG.getVTList(&ValueVTs[0], NumValues),
2602                            &Values[0], NumValues));
2603 }
2604 
2605 void SelectionDAGBuilder::visitTrunc(const User &I) {
2606   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2607   SDValue N = getValue(I.getOperand(0));
2608   EVT DestVT = TLI.getValueType(I.getType());
2609   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2610 }
2611 
2612 void SelectionDAGBuilder::visitZExt(const User &I) {
2613   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2614   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2615   SDValue N = getValue(I.getOperand(0));
2616   EVT DestVT = TLI.getValueType(I.getType());
2617   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2618 }
2619 
2620 void SelectionDAGBuilder::visitSExt(const User &I) {
2621   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2622   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2623   SDValue N = getValue(I.getOperand(0));
2624   EVT DestVT = TLI.getValueType(I.getType());
2625   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2626 }
2627 
2628 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2629   // FPTrunc is never a no-op cast, no need to check
2630   SDValue N = getValue(I.getOperand(0));
2631   EVT DestVT = TLI.getValueType(I.getType());
2632   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2633                            DestVT, N, DAG.getIntPtrConstant(0)));
2634 }
2635 
2636 void SelectionDAGBuilder::visitFPExt(const User &I){
2637   // FPTrunc is never a no-op cast, no need to check
2638   SDValue N = getValue(I.getOperand(0));
2639   EVT DestVT = TLI.getValueType(I.getType());
2640   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2641 }
2642 
2643 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2644   // FPToUI is never a no-op cast, no need to check
2645   SDValue N = getValue(I.getOperand(0));
2646   EVT DestVT = TLI.getValueType(I.getType());
2647   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2648 }
2649 
2650 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2651   // FPToSI is never a no-op cast, no need to check
2652   SDValue N = getValue(I.getOperand(0));
2653   EVT DestVT = TLI.getValueType(I.getType());
2654   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2655 }
2656 
2657 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2658   // UIToFP is never a no-op cast, no need to check
2659   SDValue N = getValue(I.getOperand(0));
2660   EVT DestVT = TLI.getValueType(I.getType());
2661   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2662 }
2663 
2664 void SelectionDAGBuilder::visitSIToFP(const User &I){
2665   // SIToFP is never a no-op cast, no need to check
2666   SDValue N = getValue(I.getOperand(0));
2667   EVT DestVT = TLI.getValueType(I.getType());
2668   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2669 }
2670 
2671 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2672   // What to do depends on the size of the integer and the size of the pointer.
2673   // We can either truncate, zero extend, or no-op, accordingly.
2674   SDValue N = getValue(I.getOperand(0));
2675   EVT DestVT = TLI.getValueType(I.getType());
2676   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2677 }
2678 
2679 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2680   // What to do depends on the size of the integer and the size of the pointer.
2681   // We can either truncate, zero extend, or no-op, accordingly.
2682   SDValue N = getValue(I.getOperand(0));
2683   EVT DestVT = TLI.getValueType(I.getType());
2684   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2685 }
2686 
2687 void SelectionDAGBuilder::visitBitCast(const User &I) {
2688   SDValue N = getValue(I.getOperand(0));
2689   EVT DestVT = TLI.getValueType(I.getType());
2690 
2691   // BitCast assures us that source and destination are the same size so this is
2692   // either a BITCAST or a no-op.
2693   if (DestVT != N.getValueType())
2694     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2695                              DestVT, N)); // convert types.
2696   else
2697     setValue(&I, N);            // noop cast.
2698 }
2699 
2700 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2701   SDValue InVec = getValue(I.getOperand(0));
2702   SDValue InVal = getValue(I.getOperand(1));
2703   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2704                               TLI.getPointerTy(),
2705                               getValue(I.getOperand(2)));
2706   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2707                            TLI.getValueType(I.getType()),
2708                            InVec, InVal, InIdx));
2709 }
2710 
2711 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2712   SDValue InVec = getValue(I.getOperand(0));
2713   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2714                               TLI.getPointerTy(),
2715                               getValue(I.getOperand(1)));
2716   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2717                            TLI.getValueType(I.getType()), InVec, InIdx));
2718 }
2719 
2720 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2721 // from SIndx and increasing to the element length (undefs are allowed).
2722 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2723   unsigned MaskNumElts = Mask.size();
2724   for (unsigned i = 0; i != MaskNumElts; ++i)
2725     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2726       return false;
2727   return true;
2728 }
2729 
2730 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2731   SmallVector<int, 8> Mask;
2732   SDValue Src1 = getValue(I.getOperand(0));
2733   SDValue Src2 = getValue(I.getOperand(1));
2734 
2735   // Convert the ConstantVector mask operand into an array of ints, with -1
2736   // representing undef values.
2737   SmallVector<Constant*, 8> MaskElts;
2738   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2739   unsigned MaskNumElts = MaskElts.size();
2740   for (unsigned i = 0; i != MaskNumElts; ++i) {
2741     if (isa<UndefValue>(MaskElts[i]))
2742       Mask.push_back(-1);
2743     else
2744       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2745   }
2746 
2747   EVT VT = TLI.getValueType(I.getType());
2748   EVT SrcVT = Src1.getValueType();
2749   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2750 
2751   if (SrcNumElts == MaskNumElts) {
2752     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2753                                       &Mask[0]));
2754     return;
2755   }
2756 
2757   // Normalize the shuffle vector since mask and vector length don't match.
2758   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2759     // Mask is longer than the source vectors and is a multiple of the source
2760     // vectors.  We can use concatenate vector to make the mask and vectors
2761     // lengths match.
2762     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2763       // The shuffle is concatenating two vectors together.
2764       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2765                                VT, Src1, Src2));
2766       return;
2767     }
2768 
2769     // Pad both vectors with undefs to make them the same length as the mask.
2770     unsigned NumConcat = MaskNumElts / SrcNumElts;
2771     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2772     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2773     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2774 
2775     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2776     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2777     MOps1[0] = Src1;
2778     MOps2[0] = Src2;
2779 
2780     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2781                                                   getCurDebugLoc(), VT,
2782                                                   &MOps1[0], NumConcat);
2783     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2784                                                   getCurDebugLoc(), VT,
2785                                                   &MOps2[0], NumConcat);
2786 
2787     // Readjust mask for new input vector length.
2788     SmallVector<int, 8> MappedOps;
2789     for (unsigned i = 0; i != MaskNumElts; ++i) {
2790       int Idx = Mask[i];
2791       if (Idx < (int)SrcNumElts)
2792         MappedOps.push_back(Idx);
2793       else
2794         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2795     }
2796 
2797     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2798                                       &MappedOps[0]));
2799     return;
2800   }
2801 
2802   if (SrcNumElts > MaskNumElts) {
2803     // Analyze the access pattern of the vector to see if we can extract
2804     // two subvectors and do the shuffle. The analysis is done by calculating
2805     // the range of elements the mask access on both vectors.
2806     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2807                         static_cast<int>(SrcNumElts+1)};
2808     int MaxRange[2] = {-1, -1};
2809 
2810     for (unsigned i = 0; i != MaskNumElts; ++i) {
2811       int Idx = Mask[i];
2812       int Input = 0;
2813       if (Idx < 0)
2814         continue;
2815 
2816       if (Idx >= (int)SrcNumElts) {
2817         Input = 1;
2818         Idx -= SrcNumElts;
2819       }
2820       if (Idx > MaxRange[Input])
2821         MaxRange[Input] = Idx;
2822       if (Idx < MinRange[Input])
2823         MinRange[Input] = Idx;
2824     }
2825 
2826     // Check if the access is smaller than the vector size and can we find
2827     // a reasonable extract index.
2828     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2829                                  // Extract.
2830     int StartIdx[2];  // StartIdx to extract from
2831     for (int Input=0; Input < 2; ++Input) {
2832       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2833         RangeUse[Input] = 0; // Unused
2834         StartIdx[Input] = 0;
2835       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2836         // Fits within range but we should see if we can find a good
2837         // start index that is a multiple of the mask length.
2838         if (MaxRange[Input] < (int)MaskNumElts) {
2839           RangeUse[Input] = 1; // Extract from beginning of the vector
2840           StartIdx[Input] = 0;
2841         } else {
2842           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2843           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2844               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2845             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2846         }
2847       }
2848     }
2849 
2850     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2851       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2852       return;
2853     }
2854     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2855       // Extract appropriate subvector and generate a vector shuffle
2856       for (int Input=0; Input < 2; ++Input) {
2857         SDValue &Src = Input == 0 ? Src1 : Src2;
2858         if (RangeUse[Input] == 0)
2859           Src = DAG.getUNDEF(VT);
2860         else
2861           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2862                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2863       }
2864 
2865       // Calculate new mask.
2866       SmallVector<int, 8> MappedOps;
2867       for (unsigned i = 0; i != MaskNumElts; ++i) {
2868         int Idx = Mask[i];
2869         if (Idx < 0)
2870           MappedOps.push_back(Idx);
2871         else if (Idx < (int)SrcNumElts)
2872           MappedOps.push_back(Idx - StartIdx[0]);
2873         else
2874           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2875       }
2876 
2877       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2878                                         &MappedOps[0]));
2879       return;
2880     }
2881   }
2882 
2883   // We can't use either concat vectors or extract subvectors so fall back to
2884   // replacing the shuffle with extract and build vector.
2885   // to insert and build vector.
2886   EVT EltVT = VT.getVectorElementType();
2887   EVT PtrVT = TLI.getPointerTy();
2888   SmallVector<SDValue,8> Ops;
2889   for (unsigned i = 0; i != MaskNumElts; ++i) {
2890     if (Mask[i] < 0) {
2891       Ops.push_back(DAG.getUNDEF(EltVT));
2892     } else {
2893       int Idx = Mask[i];
2894       SDValue Res;
2895 
2896       if (Idx < (int)SrcNumElts)
2897         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2898                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2899       else
2900         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2901                           EltVT, Src2,
2902                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2903 
2904       Ops.push_back(Res);
2905     }
2906   }
2907 
2908   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2909                            VT, &Ops[0], Ops.size()));
2910 }
2911 
2912 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2913   const Value *Op0 = I.getOperand(0);
2914   const Value *Op1 = I.getOperand(1);
2915   Type *AggTy = I.getType();
2916   Type *ValTy = Op1->getType();
2917   bool IntoUndef = isa<UndefValue>(Op0);
2918   bool FromUndef = isa<UndefValue>(Op1);
2919 
2920   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2921 
2922   SmallVector<EVT, 4> AggValueVTs;
2923   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2924   SmallVector<EVT, 4> ValValueVTs;
2925   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2926 
2927   unsigned NumAggValues = AggValueVTs.size();
2928   unsigned NumValValues = ValValueVTs.size();
2929   SmallVector<SDValue, 4> Values(NumAggValues);
2930 
2931   SDValue Agg = getValue(Op0);
2932   unsigned i = 0;
2933   // Copy the beginning value(s) from the original aggregate.
2934   for (; i != LinearIndex; ++i)
2935     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2936                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2937   // Copy values from the inserted value(s).
2938   if (NumValValues) {
2939     SDValue Val = getValue(Op1);
2940     for (; i != LinearIndex + NumValValues; ++i)
2941       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2942                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2943   }
2944   // Copy remaining value(s) from the original aggregate.
2945   for (; i != NumAggValues; ++i)
2946     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2947                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2948 
2949   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2951                            &Values[0], NumAggValues));
2952 }
2953 
2954 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2955   const Value *Op0 = I.getOperand(0);
2956   Type *AggTy = Op0->getType();
2957   Type *ValTy = I.getType();
2958   bool OutOfUndef = isa<UndefValue>(Op0);
2959 
2960   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2961 
2962   SmallVector<EVT, 4> ValValueVTs;
2963   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2964 
2965   unsigned NumValValues = ValValueVTs.size();
2966 
2967   // Ignore a extractvalue that produces an empty object
2968   if (!NumValValues) {
2969     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2970     return;
2971   }
2972 
2973   SmallVector<SDValue, 4> Values(NumValValues);
2974 
2975   SDValue Agg = getValue(Op0);
2976   // Copy out the selected value(s).
2977   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2978     Values[i - LinearIndex] =
2979       OutOfUndef ?
2980         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2981         SDValue(Agg.getNode(), Agg.getResNo() + i);
2982 
2983   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2984                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2985                            &Values[0], NumValValues));
2986 }
2987 
2988 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2989   SDValue N = getValue(I.getOperand(0));
2990   Type *Ty = I.getOperand(0)->getType();
2991 
2992   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2993        OI != E; ++OI) {
2994     const Value *Idx = *OI;
2995     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2996       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2997       if (Field) {
2998         // N = N + Offset
2999         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3000         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3001                         DAG.getIntPtrConstant(Offset));
3002       }
3003 
3004       Ty = StTy->getElementType(Field);
3005     } else {
3006       Ty = cast<SequentialType>(Ty)->getElementType();
3007 
3008       // If this is a constant subscript, handle it quickly.
3009       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3010         if (CI->isZero()) continue;
3011         uint64_t Offs =
3012             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3013         SDValue OffsVal;
3014         EVT PTy = TLI.getPointerTy();
3015         unsigned PtrBits = PTy.getSizeInBits();
3016         if (PtrBits < 64)
3017           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3018                                 TLI.getPointerTy(),
3019                                 DAG.getConstant(Offs, MVT::i64));
3020         else
3021           OffsVal = DAG.getIntPtrConstant(Offs);
3022 
3023         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3024                         OffsVal);
3025         continue;
3026       }
3027 
3028       // N = N + Idx * ElementSize;
3029       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3030                                 TD->getTypeAllocSize(Ty));
3031       SDValue IdxN = getValue(Idx);
3032 
3033       // If the index is smaller or larger than intptr_t, truncate or extend
3034       // it.
3035       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3036 
3037       // If this is a multiply by a power of two, turn it into a shl
3038       // immediately.  This is a very common case.
3039       if (ElementSize != 1) {
3040         if (ElementSize.isPowerOf2()) {
3041           unsigned Amt = ElementSize.logBase2();
3042           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3043                              N.getValueType(), IdxN,
3044                              DAG.getConstant(Amt, TLI.getPointerTy()));
3045         } else {
3046           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3047           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3048                              N.getValueType(), IdxN, Scale);
3049         }
3050       }
3051 
3052       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3053                       N.getValueType(), N, IdxN);
3054     }
3055   }
3056 
3057   setValue(&I, N);
3058 }
3059 
3060 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3061   // If this is a fixed sized alloca in the entry block of the function,
3062   // allocate it statically on the stack.
3063   if (FuncInfo.StaticAllocaMap.count(&I))
3064     return;   // getValue will auto-populate this.
3065 
3066   Type *Ty = I.getAllocatedType();
3067   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3068   unsigned Align =
3069     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3070              I.getAlignment());
3071 
3072   SDValue AllocSize = getValue(I.getArraySize());
3073 
3074   EVT IntPtr = TLI.getPointerTy();
3075   if (AllocSize.getValueType() != IntPtr)
3076     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3077 
3078   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3079                           AllocSize,
3080                           DAG.getConstant(TySize, IntPtr));
3081 
3082   // Handle alignment.  If the requested alignment is less than or equal to
3083   // the stack alignment, ignore it.  If the size is greater than or equal to
3084   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3085   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3086   if (Align <= StackAlign)
3087     Align = 0;
3088 
3089   // Round the size of the allocation up to the stack alignment size
3090   // by add SA-1 to the size.
3091   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3092                           AllocSize.getValueType(), AllocSize,
3093                           DAG.getIntPtrConstant(StackAlign-1));
3094 
3095   // Mask out the low bits for alignment purposes.
3096   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3097                           AllocSize.getValueType(), AllocSize,
3098                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3099 
3100   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3101   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3102   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3103                             VTs, Ops, 3);
3104   setValue(&I, DSA);
3105   DAG.setRoot(DSA.getValue(1));
3106 
3107   // Inform the Frame Information that we have just allocated a variable-sized
3108   // object.
3109   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3110 }
3111 
3112 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3113   const Value *SV = I.getOperand(0);
3114   SDValue Ptr = getValue(SV);
3115 
3116   Type *Ty = I.getType();
3117 
3118   bool isVolatile = I.isVolatile();
3119   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3120   unsigned Alignment = I.getAlignment();
3121   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3122 
3123   SmallVector<EVT, 4> ValueVTs;
3124   SmallVector<uint64_t, 4> Offsets;
3125   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3126   unsigned NumValues = ValueVTs.size();
3127   if (NumValues == 0)
3128     return;
3129 
3130   SDValue Root;
3131   bool ConstantMemory = false;
3132   if (I.isVolatile() || NumValues > MaxParallelChains)
3133     // Serialize volatile loads with other side effects.
3134     Root = getRoot();
3135   else if (AA->pointsToConstantMemory(
3136              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3137     // Do not serialize (non-volatile) loads of constant memory with anything.
3138     Root = DAG.getEntryNode();
3139     ConstantMemory = true;
3140   } else {
3141     // Do not serialize non-volatile loads against each other.
3142     Root = DAG.getRoot();
3143   }
3144 
3145   SmallVector<SDValue, 4> Values(NumValues);
3146   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3147                                           NumValues));
3148   EVT PtrVT = Ptr.getValueType();
3149   unsigned ChainI = 0;
3150   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3151     // Serializing loads here may result in excessive register pressure, and
3152     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3153     // could recover a bit by hoisting nodes upward in the chain by recognizing
3154     // they are side-effect free or do not alias. The optimizer should really
3155     // avoid this case by converting large object/array copies to llvm.memcpy
3156     // (MaxParallelChains should always remain as failsafe).
3157     if (ChainI == MaxParallelChains) {
3158       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3159       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3160                                   MVT::Other, &Chains[0], ChainI);
3161       Root = Chain;
3162       ChainI = 0;
3163     }
3164     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3165                             PtrVT, Ptr,
3166                             DAG.getConstant(Offsets[i], PtrVT));
3167     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3168                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3169                             isNonTemporal, Alignment, TBAAInfo);
3170 
3171     Values[i] = L;
3172     Chains[ChainI] = L.getValue(1);
3173   }
3174 
3175   if (!ConstantMemory) {
3176     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3177                                 MVT::Other, &Chains[0], ChainI);
3178     if (isVolatile)
3179       DAG.setRoot(Chain);
3180     else
3181       PendingLoads.push_back(Chain);
3182   }
3183 
3184   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3185                            DAG.getVTList(&ValueVTs[0], NumValues),
3186                            &Values[0], NumValues));
3187 }
3188 
3189 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3190   const Value *SrcV = I.getOperand(0);
3191   const Value *PtrV = I.getOperand(1);
3192 
3193   SmallVector<EVT, 4> ValueVTs;
3194   SmallVector<uint64_t, 4> Offsets;
3195   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3196   unsigned NumValues = ValueVTs.size();
3197   if (NumValues == 0)
3198     return;
3199 
3200   // Get the lowered operands. Note that we do this after
3201   // checking if NumResults is zero, because with zero results
3202   // the operands won't have values in the map.
3203   SDValue Src = getValue(SrcV);
3204   SDValue Ptr = getValue(PtrV);
3205 
3206   SDValue Root = getRoot();
3207   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3208                                           NumValues));
3209   EVT PtrVT = Ptr.getValueType();
3210   bool isVolatile = I.isVolatile();
3211   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3212   unsigned Alignment = I.getAlignment();
3213   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3214 
3215   unsigned ChainI = 0;
3216   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3217     // See visitLoad comments.
3218     if (ChainI == MaxParallelChains) {
3219       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3220                                   MVT::Other, &Chains[0], ChainI);
3221       Root = Chain;
3222       ChainI = 0;
3223     }
3224     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3225                               DAG.getConstant(Offsets[i], PtrVT));
3226     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3227                               SDValue(Src.getNode(), Src.getResNo() + i),
3228                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3229                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3230     Chains[ChainI] = St;
3231   }
3232 
3233   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3234                                   MVT::Other, &Chains[0], ChainI);
3235   ++SDNodeOrder;
3236   AssignOrderingToNode(StoreNode.getNode());
3237   DAG.setRoot(StoreNode);
3238 }
3239 
3240 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3241   SDValue Root = getRoot();
3242   SDValue L =
3243     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
3244                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3245                   Root,
3246                   getValue(I.getPointerOperand()),
3247                   getValue(I.getCompareOperand()),
3248                   getValue(I.getNewValOperand()),
3249                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3250                   I.getOrdering(), I.getSynchScope());
3251   setValue(&I, L);
3252   DAG.setRoot(L.getValue(1));
3253 }
3254 
3255 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3256   ISD::NodeType NT;
3257   switch (I.getOperation()) {
3258   default: llvm_unreachable("Unknown atomicrmw operation"); return;
3259   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3260   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3261   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3262   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3263   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3264   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3265   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3266   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3267   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3268   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3269   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3270   }
3271   SDValue L =
3272     DAG.getAtomic(NT, getCurDebugLoc(),
3273                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3274                   getRoot(),
3275                   getValue(I.getPointerOperand()),
3276                   getValue(I.getValOperand()),
3277                   I.getPointerOperand(), 0 /* Alignment */,
3278                   I.getOrdering(), I.getSynchScope());
3279   setValue(&I, L);
3280   DAG.setRoot(L.getValue(1));
3281 }
3282 
3283 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3284   DebugLoc dl = getCurDebugLoc();
3285   SDValue Ops[3];
3286   Ops[0] = getRoot();
3287   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3288   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3289   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3290 }
3291 
3292 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3293 /// node.
3294 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3295                                                unsigned Intrinsic) {
3296   bool HasChain = !I.doesNotAccessMemory();
3297   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3298 
3299   // Build the operand list.
3300   SmallVector<SDValue, 8> Ops;
3301   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3302     if (OnlyLoad) {
3303       // We don't need to serialize loads against other loads.
3304       Ops.push_back(DAG.getRoot());
3305     } else {
3306       Ops.push_back(getRoot());
3307     }
3308   }
3309 
3310   // Info is set by getTgtMemInstrinsic
3311   TargetLowering::IntrinsicInfo Info;
3312   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3313 
3314   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3315   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3316       Info.opc == ISD::INTRINSIC_W_CHAIN)
3317     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3318 
3319   // Add all operands of the call to the operand list.
3320   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3321     SDValue Op = getValue(I.getArgOperand(i));
3322     assert(TLI.isTypeLegal(Op.getValueType()) &&
3323            "Intrinsic uses a non-legal type?");
3324     Ops.push_back(Op);
3325   }
3326 
3327   SmallVector<EVT, 4> ValueVTs;
3328   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3329 #ifndef NDEBUG
3330   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3331     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3332            "Intrinsic uses a non-legal type?");
3333   }
3334 #endif // NDEBUG
3335 
3336   if (HasChain)
3337     ValueVTs.push_back(MVT::Other);
3338 
3339   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3340 
3341   // Create the node.
3342   SDValue Result;
3343   if (IsTgtIntrinsic) {
3344     // This is target intrinsic that touches memory
3345     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3346                                      VTs, &Ops[0], Ops.size(),
3347                                      Info.memVT,
3348                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3349                                      Info.align, Info.vol,
3350                                      Info.readMem, Info.writeMem);
3351   } else if (!HasChain) {
3352     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3353                          VTs, &Ops[0], Ops.size());
3354   } else if (!I.getType()->isVoidTy()) {
3355     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3356                          VTs, &Ops[0], Ops.size());
3357   } else {
3358     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3359                          VTs, &Ops[0], Ops.size());
3360   }
3361 
3362   if (HasChain) {
3363     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3364     if (OnlyLoad)
3365       PendingLoads.push_back(Chain);
3366     else
3367       DAG.setRoot(Chain);
3368   }
3369 
3370   if (!I.getType()->isVoidTy()) {
3371     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3372       EVT VT = TLI.getValueType(PTy);
3373       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3374     }
3375 
3376     setValue(&I, Result);
3377   }
3378 }
3379 
3380 /// GetSignificand - Get the significand and build it into a floating-point
3381 /// number with exponent of 1:
3382 ///
3383 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3384 ///
3385 /// where Op is the hexidecimal representation of floating point value.
3386 static SDValue
3387 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3388   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3389                            DAG.getConstant(0x007fffff, MVT::i32));
3390   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3391                            DAG.getConstant(0x3f800000, MVT::i32));
3392   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3393 }
3394 
3395 /// GetExponent - Get the exponent:
3396 ///
3397 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3398 ///
3399 /// where Op is the hexidecimal representation of floating point value.
3400 static SDValue
3401 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3402             DebugLoc dl) {
3403   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3404                            DAG.getConstant(0x7f800000, MVT::i32));
3405   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3406                            DAG.getConstant(23, TLI.getPointerTy()));
3407   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3408                            DAG.getConstant(127, MVT::i32));
3409   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3410 }
3411 
3412 /// getF32Constant - Get 32-bit floating point constant.
3413 static SDValue
3414 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3415   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3416 }
3417 
3418 /// Inlined utility function to implement binary input atomic intrinsics for
3419 /// visitIntrinsicCall: I is a call instruction
3420 ///                     Op is the associated NodeType for I
3421 const char *
3422 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3423                                            ISD::NodeType Op) {
3424   SDValue Root = getRoot();
3425   SDValue L =
3426     DAG.getAtomic(Op, getCurDebugLoc(),
3427                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3428                   Root,
3429                   getValue(I.getArgOperand(0)),
3430                   getValue(I.getArgOperand(1)),
3431                   I.getArgOperand(0), 0 /* Alignment */,
3432                   Monotonic, CrossThread);
3433   setValue(&I, L);
3434   DAG.setRoot(L.getValue(1));
3435   return 0;
3436 }
3437 
3438 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3439 const char *
3440 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3441   SDValue Op1 = getValue(I.getArgOperand(0));
3442   SDValue Op2 = getValue(I.getArgOperand(1));
3443 
3444   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3445   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3446   return 0;
3447 }
3448 
3449 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3450 /// limited-precision mode.
3451 void
3452 SelectionDAGBuilder::visitExp(const CallInst &I) {
3453   SDValue result;
3454   DebugLoc dl = getCurDebugLoc();
3455 
3456   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3457       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3458     SDValue Op = getValue(I.getArgOperand(0));
3459 
3460     // Put the exponent in the right bit position for later addition to the
3461     // final result:
3462     //
3463     //   #define LOG2OFe 1.4426950f
3464     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3465     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3466                              getF32Constant(DAG, 0x3fb8aa3b));
3467     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3468 
3469     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3470     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3471     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3472 
3473     //   IntegerPartOfX <<= 23;
3474     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3475                                  DAG.getConstant(23, TLI.getPointerTy()));
3476 
3477     if (LimitFloatPrecision <= 6) {
3478       // For floating-point precision of 6:
3479       //
3480       //   TwoToFractionalPartOfX =
3481       //     0.997535578f +
3482       //       (0.735607626f + 0.252464424f * x) * x;
3483       //
3484       // error 0.0144103317, which is 6 bits
3485       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3486                                getF32Constant(DAG, 0x3e814304));
3487       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3488                                getF32Constant(DAG, 0x3f3c50c8));
3489       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3490       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3491                                getF32Constant(DAG, 0x3f7f5e7e));
3492       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3493 
3494       // Add the exponent into the result in integer domain.
3495       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3496                                TwoToFracPartOfX, IntegerPartOfX);
3497 
3498       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3499     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3500       // For floating-point precision of 12:
3501       //
3502       //   TwoToFractionalPartOfX =
3503       //     0.999892986f +
3504       //       (0.696457318f +
3505       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3506       //
3507       // 0.000107046256 error, which is 13 to 14 bits
3508       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3509                                getF32Constant(DAG, 0x3da235e3));
3510       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3511                                getF32Constant(DAG, 0x3e65b8f3));
3512       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3513       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3514                                getF32Constant(DAG, 0x3f324b07));
3515       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3516       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3517                                getF32Constant(DAG, 0x3f7ff8fd));
3518       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3519 
3520       // Add the exponent into the result in integer domain.
3521       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3522                                TwoToFracPartOfX, IntegerPartOfX);
3523 
3524       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3525     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3526       // For floating-point precision of 18:
3527       //
3528       //   TwoToFractionalPartOfX =
3529       //     0.999999982f +
3530       //       (0.693148872f +
3531       //         (0.240227044f +
3532       //           (0.554906021e-1f +
3533       //             (0.961591928e-2f +
3534       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3535       //
3536       // error 2.47208000*10^(-7), which is better than 18 bits
3537       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3538                                getF32Constant(DAG, 0x3924b03e));
3539       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3540                                getF32Constant(DAG, 0x3ab24b87));
3541       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3542       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3543                                getF32Constant(DAG, 0x3c1d8c17));
3544       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3545       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3546                                getF32Constant(DAG, 0x3d634a1d));
3547       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3548       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3549                                getF32Constant(DAG, 0x3e75fe14));
3550       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3551       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3552                                 getF32Constant(DAG, 0x3f317234));
3553       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3554       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3555                                 getF32Constant(DAG, 0x3f800000));
3556       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3557                                              MVT::i32, t13);
3558 
3559       // Add the exponent into the result in integer domain.
3560       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3561                                 TwoToFracPartOfX, IntegerPartOfX);
3562 
3563       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3564     }
3565   } else {
3566     // No special expansion.
3567     result = DAG.getNode(ISD::FEXP, dl,
3568                          getValue(I.getArgOperand(0)).getValueType(),
3569                          getValue(I.getArgOperand(0)));
3570   }
3571 
3572   setValue(&I, result);
3573 }
3574 
3575 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3576 /// limited-precision mode.
3577 void
3578 SelectionDAGBuilder::visitLog(const CallInst &I) {
3579   SDValue result;
3580   DebugLoc dl = getCurDebugLoc();
3581 
3582   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3583       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3584     SDValue Op = getValue(I.getArgOperand(0));
3585     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3586 
3587     // Scale the exponent by log(2) [0.69314718f].
3588     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3589     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3590                                         getF32Constant(DAG, 0x3f317218));
3591 
3592     // Get the significand and build it into a floating-point number with
3593     // exponent of 1.
3594     SDValue X = GetSignificand(DAG, Op1, dl);
3595 
3596     if (LimitFloatPrecision <= 6) {
3597       // For floating-point precision of 6:
3598       //
3599       //   LogofMantissa =
3600       //     -1.1609546f +
3601       //       (1.4034025f - 0.23903021f * x) * x;
3602       //
3603       // error 0.0034276066, which is better than 8 bits
3604       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3605                                getF32Constant(DAG, 0xbe74c456));
3606       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3607                                getF32Constant(DAG, 0x3fb3a2b1));
3608       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3609       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3610                                           getF32Constant(DAG, 0x3f949a29));
3611 
3612       result = DAG.getNode(ISD::FADD, dl,
3613                            MVT::f32, LogOfExponent, LogOfMantissa);
3614     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3615       // For floating-point precision of 12:
3616       //
3617       //   LogOfMantissa =
3618       //     -1.7417939f +
3619       //       (2.8212026f +
3620       //         (-1.4699568f +
3621       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3622       //
3623       // error 0.000061011436, which is 14 bits
3624       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3625                                getF32Constant(DAG, 0xbd67b6d6));
3626       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3627                                getF32Constant(DAG, 0x3ee4f4b8));
3628       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3629       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3630                                getF32Constant(DAG, 0x3fbc278b));
3631       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3632       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3633                                getF32Constant(DAG, 0x40348e95));
3634       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3635       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3636                                           getF32Constant(DAG, 0x3fdef31a));
3637 
3638       result = DAG.getNode(ISD::FADD, dl,
3639                            MVT::f32, LogOfExponent, LogOfMantissa);
3640     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3641       // For floating-point precision of 18:
3642       //
3643       //   LogOfMantissa =
3644       //     -2.1072184f +
3645       //       (4.2372794f +
3646       //         (-3.7029485f +
3647       //           (2.2781945f +
3648       //             (-0.87823314f +
3649       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3650       //
3651       // error 0.0000023660568, which is better than 18 bits
3652       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3653                                getF32Constant(DAG, 0xbc91e5ac));
3654       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3655                                getF32Constant(DAG, 0x3e4350aa));
3656       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3657       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3658                                getF32Constant(DAG, 0x3f60d3e3));
3659       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3660       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3661                                getF32Constant(DAG, 0x4011cdf0));
3662       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3663       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3664                                getF32Constant(DAG, 0x406cfd1c));
3665       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3666       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3667                                getF32Constant(DAG, 0x408797cb));
3668       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3669       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3670                                           getF32Constant(DAG, 0x4006dcab));
3671 
3672       result = DAG.getNode(ISD::FADD, dl,
3673                            MVT::f32, LogOfExponent, LogOfMantissa);
3674     }
3675   } else {
3676     // No special expansion.
3677     result = DAG.getNode(ISD::FLOG, dl,
3678                          getValue(I.getArgOperand(0)).getValueType(),
3679                          getValue(I.getArgOperand(0)));
3680   }
3681 
3682   setValue(&I, result);
3683 }
3684 
3685 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3686 /// limited-precision mode.
3687 void
3688 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3689   SDValue result;
3690   DebugLoc dl = getCurDebugLoc();
3691 
3692   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3693       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3694     SDValue Op = getValue(I.getArgOperand(0));
3695     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3696 
3697     // Get the exponent.
3698     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3699 
3700     // Get the significand and build it into a floating-point number with
3701     // exponent of 1.
3702     SDValue X = GetSignificand(DAG, Op1, dl);
3703 
3704     // Different possible minimax approximations of significand in
3705     // floating-point for various degrees of accuracy over [1,2].
3706     if (LimitFloatPrecision <= 6) {
3707       // For floating-point precision of 6:
3708       //
3709       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3710       //
3711       // error 0.0049451742, which is more than 7 bits
3712       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3713                                getF32Constant(DAG, 0xbeb08fe0));
3714       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3715                                getF32Constant(DAG, 0x40019463));
3716       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3717       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3718                                            getF32Constant(DAG, 0x3fd6633d));
3719 
3720       result = DAG.getNode(ISD::FADD, dl,
3721                            MVT::f32, LogOfExponent, Log2ofMantissa);
3722     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3723       // For floating-point precision of 12:
3724       //
3725       //   Log2ofMantissa =
3726       //     -2.51285454f +
3727       //       (4.07009056f +
3728       //         (-2.12067489f +
3729       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3730       //
3731       // error 0.0000876136000, which is better than 13 bits
3732       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3733                                getF32Constant(DAG, 0xbda7262e));
3734       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3735                                getF32Constant(DAG, 0x3f25280b));
3736       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3737       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3738                                getF32Constant(DAG, 0x4007b923));
3739       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3740       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3741                                getF32Constant(DAG, 0x40823e2f));
3742       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3743       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3744                                            getF32Constant(DAG, 0x4020d29c));
3745 
3746       result = DAG.getNode(ISD::FADD, dl,
3747                            MVT::f32, LogOfExponent, Log2ofMantissa);
3748     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3749       // For floating-point precision of 18:
3750       //
3751       //   Log2ofMantissa =
3752       //     -3.0400495f +
3753       //       (6.1129976f +
3754       //         (-5.3420409f +
3755       //           (3.2865683f +
3756       //             (-1.2669343f +
3757       //               (0.27515199f -
3758       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3759       //
3760       // error 0.0000018516, which is better than 18 bits
3761       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3762                                getF32Constant(DAG, 0xbcd2769e));
3763       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3764                                getF32Constant(DAG, 0x3e8ce0b9));
3765       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3766       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3767                                getF32Constant(DAG, 0x3fa22ae7));
3768       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3769       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3770                                getF32Constant(DAG, 0x40525723));
3771       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3772       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3773                                getF32Constant(DAG, 0x40aaf200));
3774       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3775       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3776                                getF32Constant(DAG, 0x40c39dad));
3777       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3778       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3779                                            getF32Constant(DAG, 0x4042902c));
3780 
3781       result = DAG.getNode(ISD::FADD, dl,
3782                            MVT::f32, LogOfExponent, Log2ofMantissa);
3783     }
3784   } else {
3785     // No special expansion.
3786     result = DAG.getNode(ISD::FLOG2, dl,
3787                          getValue(I.getArgOperand(0)).getValueType(),
3788                          getValue(I.getArgOperand(0)));
3789   }
3790 
3791   setValue(&I, result);
3792 }
3793 
3794 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3795 /// limited-precision mode.
3796 void
3797 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3798   SDValue result;
3799   DebugLoc dl = getCurDebugLoc();
3800 
3801   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3802       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3803     SDValue Op = getValue(I.getArgOperand(0));
3804     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3805 
3806     // Scale the exponent by log10(2) [0.30102999f].
3807     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3808     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3809                                         getF32Constant(DAG, 0x3e9a209a));
3810 
3811     // Get the significand and build it into a floating-point number with
3812     // exponent of 1.
3813     SDValue X = GetSignificand(DAG, Op1, dl);
3814 
3815     if (LimitFloatPrecision <= 6) {
3816       // For floating-point precision of 6:
3817       //
3818       //   Log10ofMantissa =
3819       //     -0.50419619f +
3820       //       (0.60948995f - 0.10380950f * x) * x;
3821       //
3822       // error 0.0014886165, which is 6 bits
3823       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3824                                getF32Constant(DAG, 0xbdd49a13));
3825       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3826                                getF32Constant(DAG, 0x3f1c0789));
3827       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3828       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3829                                             getF32Constant(DAG, 0x3f011300));
3830 
3831       result = DAG.getNode(ISD::FADD, dl,
3832                            MVT::f32, LogOfExponent, Log10ofMantissa);
3833     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3834       // For floating-point precision of 12:
3835       //
3836       //   Log10ofMantissa =
3837       //     -0.64831180f +
3838       //       (0.91751397f +
3839       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3840       //
3841       // error 0.00019228036, which is better than 12 bits
3842       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                                getF32Constant(DAG, 0x3d431f31));
3844       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3845                                getF32Constant(DAG, 0x3ea21fb2));
3846       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3847       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3848                                getF32Constant(DAG, 0x3f6ae232));
3849       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3850       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3851                                             getF32Constant(DAG, 0x3f25f7c3));
3852 
3853       result = DAG.getNode(ISD::FADD, dl,
3854                            MVT::f32, LogOfExponent, Log10ofMantissa);
3855     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3856       // For floating-point precision of 18:
3857       //
3858       //   Log10ofMantissa =
3859       //     -0.84299375f +
3860       //       (1.5327582f +
3861       //         (-1.0688956f +
3862       //           (0.49102474f +
3863       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3864       //
3865       // error 0.0000037995730, which is better than 18 bits
3866       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3867                                getF32Constant(DAG, 0x3c5d51ce));
3868       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3869                                getF32Constant(DAG, 0x3e00685a));
3870       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3871       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3872                                getF32Constant(DAG, 0x3efb6798));
3873       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3874       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3875                                getF32Constant(DAG, 0x3f88d192));
3876       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3877       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3878                                getF32Constant(DAG, 0x3fc4316c));
3879       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3880       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3881                                             getF32Constant(DAG, 0x3f57ce70));
3882 
3883       result = DAG.getNode(ISD::FADD, dl,
3884                            MVT::f32, LogOfExponent, Log10ofMantissa);
3885     }
3886   } else {
3887     // No special expansion.
3888     result = DAG.getNode(ISD::FLOG10, dl,
3889                          getValue(I.getArgOperand(0)).getValueType(),
3890                          getValue(I.getArgOperand(0)));
3891   }
3892 
3893   setValue(&I, result);
3894 }
3895 
3896 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3897 /// limited-precision mode.
3898 void
3899 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3900   SDValue result;
3901   DebugLoc dl = getCurDebugLoc();
3902 
3903   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3904       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3905     SDValue Op = getValue(I.getArgOperand(0));
3906 
3907     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3908 
3909     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3910     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3911     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3912 
3913     //   IntegerPartOfX <<= 23;
3914     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3915                                  DAG.getConstant(23, TLI.getPointerTy()));
3916 
3917     if (LimitFloatPrecision <= 6) {
3918       // For floating-point precision of 6:
3919       //
3920       //   TwoToFractionalPartOfX =
3921       //     0.997535578f +
3922       //       (0.735607626f + 0.252464424f * x) * x;
3923       //
3924       // error 0.0144103317, which is 6 bits
3925       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3926                                getF32Constant(DAG, 0x3e814304));
3927       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3928                                getF32Constant(DAG, 0x3f3c50c8));
3929       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3930       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3931                                getF32Constant(DAG, 0x3f7f5e7e));
3932       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3933       SDValue TwoToFractionalPartOfX =
3934         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3935 
3936       result = DAG.getNode(ISD::BITCAST, dl,
3937                            MVT::f32, TwoToFractionalPartOfX);
3938     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3939       // For floating-point precision of 12:
3940       //
3941       //   TwoToFractionalPartOfX =
3942       //     0.999892986f +
3943       //       (0.696457318f +
3944       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3945       //
3946       // error 0.000107046256, which is 13 to 14 bits
3947       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3948                                getF32Constant(DAG, 0x3da235e3));
3949       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3950                                getF32Constant(DAG, 0x3e65b8f3));
3951       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3952       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3953                                getF32Constant(DAG, 0x3f324b07));
3954       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3955       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3956                                getF32Constant(DAG, 0x3f7ff8fd));
3957       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3958       SDValue TwoToFractionalPartOfX =
3959         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3960 
3961       result = DAG.getNode(ISD::BITCAST, dl,
3962                            MVT::f32, TwoToFractionalPartOfX);
3963     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3964       // For floating-point precision of 18:
3965       //
3966       //   TwoToFractionalPartOfX =
3967       //     0.999999982f +
3968       //       (0.693148872f +
3969       //         (0.240227044f +
3970       //           (0.554906021e-1f +
3971       //             (0.961591928e-2f +
3972       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3973       // error 2.47208000*10^(-7), which is better than 18 bits
3974       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3975                                getF32Constant(DAG, 0x3924b03e));
3976       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3977                                getF32Constant(DAG, 0x3ab24b87));
3978       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3979       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3980                                getF32Constant(DAG, 0x3c1d8c17));
3981       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3982       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3983                                getF32Constant(DAG, 0x3d634a1d));
3984       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3985       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3986                                getF32Constant(DAG, 0x3e75fe14));
3987       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3988       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3989                                 getF32Constant(DAG, 0x3f317234));
3990       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3991       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3992                                 getF32Constant(DAG, 0x3f800000));
3993       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3994       SDValue TwoToFractionalPartOfX =
3995         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3996 
3997       result = DAG.getNode(ISD::BITCAST, dl,
3998                            MVT::f32, TwoToFractionalPartOfX);
3999     }
4000   } else {
4001     // No special expansion.
4002     result = DAG.getNode(ISD::FEXP2, dl,
4003                          getValue(I.getArgOperand(0)).getValueType(),
4004                          getValue(I.getArgOperand(0)));
4005   }
4006 
4007   setValue(&I, result);
4008 }
4009 
4010 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4011 /// limited-precision mode with x == 10.0f.
4012 void
4013 SelectionDAGBuilder::visitPow(const CallInst &I) {
4014   SDValue result;
4015   const Value *Val = I.getArgOperand(0);
4016   DebugLoc dl = getCurDebugLoc();
4017   bool IsExp10 = false;
4018 
4019   if (getValue(Val).getValueType() == MVT::f32 &&
4020       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4021       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4022     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4023       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4024         APFloat Ten(10.0f);
4025         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4026       }
4027     }
4028   }
4029 
4030   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4031     SDValue Op = getValue(I.getArgOperand(1));
4032 
4033     // Put the exponent in the right bit position for later addition to the
4034     // final result:
4035     //
4036     //   #define LOG2OF10 3.3219281f
4037     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4038     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4039                              getF32Constant(DAG, 0x40549a78));
4040     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4041 
4042     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4043     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4044     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4045 
4046     //   IntegerPartOfX <<= 23;
4047     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4048                                  DAG.getConstant(23, TLI.getPointerTy()));
4049 
4050     if (LimitFloatPrecision <= 6) {
4051       // For floating-point precision of 6:
4052       //
4053       //   twoToFractionalPartOfX =
4054       //     0.997535578f +
4055       //       (0.735607626f + 0.252464424f * x) * x;
4056       //
4057       // error 0.0144103317, which is 6 bits
4058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4059                                getF32Constant(DAG, 0x3e814304));
4060       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4061                                getF32Constant(DAG, 0x3f3c50c8));
4062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4064                                getF32Constant(DAG, 0x3f7f5e7e));
4065       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4066       SDValue TwoToFractionalPartOfX =
4067         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4068 
4069       result = DAG.getNode(ISD::BITCAST, dl,
4070                            MVT::f32, TwoToFractionalPartOfX);
4071     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4072       // For floating-point precision of 12:
4073       //
4074       //   TwoToFractionalPartOfX =
4075       //     0.999892986f +
4076       //       (0.696457318f +
4077       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4078       //
4079       // error 0.000107046256, which is 13 to 14 bits
4080       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4081                                getF32Constant(DAG, 0x3da235e3));
4082       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4083                                getF32Constant(DAG, 0x3e65b8f3));
4084       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4085       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4086                                getF32Constant(DAG, 0x3f324b07));
4087       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4088       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4089                                getF32Constant(DAG, 0x3f7ff8fd));
4090       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4091       SDValue TwoToFractionalPartOfX =
4092         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4093 
4094       result = DAG.getNode(ISD::BITCAST, dl,
4095                            MVT::f32, TwoToFractionalPartOfX);
4096     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4097       // For floating-point precision of 18:
4098       //
4099       //   TwoToFractionalPartOfX =
4100       //     0.999999982f +
4101       //       (0.693148872f +
4102       //         (0.240227044f +
4103       //           (0.554906021e-1f +
4104       //             (0.961591928e-2f +
4105       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4106       // error 2.47208000*10^(-7), which is better than 18 bits
4107       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4108                                getF32Constant(DAG, 0x3924b03e));
4109       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4110                                getF32Constant(DAG, 0x3ab24b87));
4111       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4112       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4113                                getF32Constant(DAG, 0x3c1d8c17));
4114       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4115       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4116                                getF32Constant(DAG, 0x3d634a1d));
4117       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4118       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4119                                getF32Constant(DAG, 0x3e75fe14));
4120       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4121       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4122                                 getF32Constant(DAG, 0x3f317234));
4123       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4124       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4125                                 getF32Constant(DAG, 0x3f800000));
4126       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4127       SDValue TwoToFractionalPartOfX =
4128         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4129 
4130       result = DAG.getNode(ISD::BITCAST, dl,
4131                            MVT::f32, TwoToFractionalPartOfX);
4132     }
4133   } else {
4134     // No special expansion.
4135     result = DAG.getNode(ISD::FPOW, dl,
4136                          getValue(I.getArgOperand(0)).getValueType(),
4137                          getValue(I.getArgOperand(0)),
4138                          getValue(I.getArgOperand(1)));
4139   }
4140 
4141   setValue(&I, result);
4142 }
4143 
4144 
4145 /// ExpandPowI - Expand a llvm.powi intrinsic.
4146 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4147                           SelectionDAG &DAG) {
4148   // If RHS is a constant, we can expand this out to a multiplication tree,
4149   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4150   // optimizing for size, we only want to do this if the expansion would produce
4151   // a small number of multiplies, otherwise we do the full expansion.
4152   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4153     // Get the exponent as a positive value.
4154     unsigned Val = RHSC->getSExtValue();
4155     if ((int)Val < 0) Val = -Val;
4156 
4157     // powi(x, 0) -> 1.0
4158     if (Val == 0)
4159       return DAG.getConstantFP(1.0, LHS.getValueType());
4160 
4161     const Function *F = DAG.getMachineFunction().getFunction();
4162     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4163         // If optimizing for size, don't insert too many multiplies.  This
4164         // inserts up to 5 multiplies.
4165         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4166       // We use the simple binary decomposition method to generate the multiply
4167       // sequence.  There are more optimal ways to do this (for example,
4168       // powi(x,15) generates one more multiply than it should), but this has
4169       // the benefit of being both really simple and much better than a libcall.
4170       SDValue Res;  // Logically starts equal to 1.0
4171       SDValue CurSquare = LHS;
4172       while (Val) {
4173         if (Val & 1) {
4174           if (Res.getNode())
4175             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4176           else
4177             Res = CurSquare;  // 1.0*CurSquare.
4178         }
4179 
4180         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4181                                 CurSquare, CurSquare);
4182         Val >>= 1;
4183       }
4184 
4185       // If the original was negative, invert the result, producing 1/(x*x*x).
4186       if (RHSC->getSExtValue() < 0)
4187         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4188                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4189       return Res;
4190     }
4191   }
4192 
4193   // Otherwise, expand to a libcall.
4194   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4195 }
4196 
4197 // getTruncatedArgReg - Find underlying register used for an truncated
4198 // argument.
4199 static unsigned getTruncatedArgReg(const SDValue &N) {
4200   if (N.getOpcode() != ISD::TRUNCATE)
4201     return 0;
4202 
4203   const SDValue &Ext = N.getOperand(0);
4204   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4205     const SDValue &CFR = Ext.getOperand(0);
4206     if (CFR.getOpcode() == ISD::CopyFromReg)
4207       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4208     else
4209       if (CFR.getOpcode() == ISD::TRUNCATE)
4210         return getTruncatedArgReg(CFR);
4211   }
4212   return 0;
4213 }
4214 
4215 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4216 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4217 /// At the end of instruction selection, they will be inserted to the entry BB.
4218 bool
4219 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4220                                               int64_t Offset,
4221                                               const SDValue &N) {
4222   const Argument *Arg = dyn_cast<Argument>(V);
4223   if (!Arg)
4224     return false;
4225 
4226   MachineFunction &MF = DAG.getMachineFunction();
4227   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4228   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4229 
4230   // Ignore inlined function arguments here.
4231   DIVariable DV(Variable);
4232   if (DV.isInlinedFnArgument(MF.getFunction()))
4233     return false;
4234 
4235   unsigned Reg = 0;
4236   if (Arg->hasByValAttr()) {
4237     // Byval arguments' frame index is recorded during argument lowering.
4238     // Use this info directly.
4239     Reg = TRI->getFrameRegister(MF);
4240     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4241     // If byval argument ofset is not recorded then ignore this.
4242     if (!Offset)
4243       Reg = 0;
4244   }
4245 
4246   if (N.getNode()) {
4247     if (N.getOpcode() == ISD::CopyFromReg)
4248       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4249     else
4250       Reg = getTruncatedArgReg(N);
4251     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4252       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4253       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4254       if (PR)
4255         Reg = PR;
4256     }
4257   }
4258 
4259   if (!Reg) {
4260     // Check if ValueMap has reg number.
4261     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4262     if (VMI != FuncInfo.ValueMap.end())
4263       Reg = VMI->second;
4264   }
4265 
4266   if (!Reg && N.getNode()) {
4267     // Check if frame index is available.
4268     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4269       if (FrameIndexSDNode *FINode =
4270           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4271         Reg = TRI->getFrameRegister(MF);
4272         Offset = FINode->getIndex();
4273       }
4274   }
4275 
4276   if (!Reg)
4277     return false;
4278 
4279   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4280                                     TII->get(TargetOpcode::DBG_VALUE))
4281     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4282   FuncInfo.ArgDbgValues.push_back(&*MIB);
4283   return true;
4284 }
4285 
4286 // VisualStudio defines setjmp as _setjmp
4287 #if defined(_MSC_VER) && defined(setjmp) && \
4288                          !defined(setjmp_undefined_for_msvc)
4289 #  pragma push_macro("setjmp")
4290 #  undef setjmp
4291 #  define setjmp_undefined_for_msvc
4292 #endif
4293 
4294 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4295 /// we want to emit this as a call to a named external function, return the name
4296 /// otherwise lower it and return null.
4297 const char *
4298 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4299   DebugLoc dl = getCurDebugLoc();
4300   SDValue Res;
4301 
4302   switch (Intrinsic) {
4303   default:
4304     // By default, turn this into a target intrinsic node.
4305     visitTargetIntrinsic(I, Intrinsic);
4306     return 0;
4307   case Intrinsic::vastart:  visitVAStart(I); return 0;
4308   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4309   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4310   case Intrinsic::returnaddress:
4311     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4312                              getValue(I.getArgOperand(0))));
4313     return 0;
4314   case Intrinsic::frameaddress:
4315     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4316                              getValue(I.getArgOperand(0))));
4317     return 0;
4318   case Intrinsic::setjmp:
4319     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4320   case Intrinsic::longjmp:
4321     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4322   case Intrinsic::memcpy: {
4323     // Assert for address < 256 since we support only user defined address
4324     // spaces.
4325     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4326            < 256 &&
4327            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4328            < 256 &&
4329            "Unknown address space");
4330     SDValue Op1 = getValue(I.getArgOperand(0));
4331     SDValue Op2 = getValue(I.getArgOperand(1));
4332     SDValue Op3 = getValue(I.getArgOperand(2));
4333     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4334     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4335     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4336                               MachinePointerInfo(I.getArgOperand(0)),
4337                               MachinePointerInfo(I.getArgOperand(1))));
4338     return 0;
4339   }
4340   case Intrinsic::memset: {
4341     // Assert for address < 256 since we support only user defined address
4342     // spaces.
4343     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4344            < 256 &&
4345            "Unknown address space");
4346     SDValue Op1 = getValue(I.getArgOperand(0));
4347     SDValue Op2 = getValue(I.getArgOperand(1));
4348     SDValue Op3 = getValue(I.getArgOperand(2));
4349     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4350     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4351     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4352                               MachinePointerInfo(I.getArgOperand(0))));
4353     return 0;
4354   }
4355   case Intrinsic::memmove: {
4356     // Assert for address < 256 since we support only user defined address
4357     // spaces.
4358     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4359            < 256 &&
4360            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4361            < 256 &&
4362            "Unknown address space");
4363     SDValue Op1 = getValue(I.getArgOperand(0));
4364     SDValue Op2 = getValue(I.getArgOperand(1));
4365     SDValue Op3 = getValue(I.getArgOperand(2));
4366     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4367     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4368     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4369                                MachinePointerInfo(I.getArgOperand(0)),
4370                                MachinePointerInfo(I.getArgOperand(1))));
4371     return 0;
4372   }
4373   case Intrinsic::dbg_declare: {
4374     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4375     MDNode *Variable = DI.getVariable();
4376     const Value *Address = DI.getAddress();
4377     if (!Address || !DIVariable(DI.getVariable()).Verify())
4378       return 0;
4379 
4380     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4381     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4382     // absolute, but not relative, values are different depending on whether
4383     // debug info exists.
4384     ++SDNodeOrder;
4385 
4386     // Check if address has undef value.
4387     if (isa<UndefValue>(Address) ||
4388         (Address->use_empty() && !isa<Argument>(Address))) {
4389       DEBUG(dbgs() << "Dropping debug info for " << DI);
4390       return 0;
4391     }
4392 
4393     SDValue &N = NodeMap[Address];
4394     if (!N.getNode() && isa<Argument>(Address))
4395       // Check unused arguments map.
4396       N = UnusedArgNodeMap[Address];
4397     SDDbgValue *SDV;
4398     if (N.getNode()) {
4399       // Parameters are handled specially.
4400       bool isParameter =
4401         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4402       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4403         Address = BCI->getOperand(0);
4404       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4405 
4406       if (isParameter && !AI) {
4407         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4408         if (FINode)
4409           // Byval parameter.  We have a frame index at this point.
4410           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4411                                 0, dl, SDNodeOrder);
4412         else {
4413           // Address is an argument, so try to emit its dbg value using
4414           // virtual register info from the FuncInfo.ValueMap.
4415           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4416           return 0;
4417         }
4418       } else if (AI)
4419         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4420                               0, dl, SDNodeOrder);
4421       else {
4422         // Can't do anything with other non-AI cases yet.
4423         DEBUG(dbgs() << "Dropping debug info for " << DI);
4424         return 0;
4425       }
4426       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4427     } else {
4428       // If Address is an argument then try to emit its dbg value using
4429       // virtual register info from the FuncInfo.ValueMap.
4430       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4431         // If variable is pinned by a alloca in dominating bb then
4432         // use StaticAllocaMap.
4433         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4434           if (AI->getParent() != DI.getParent()) {
4435             DenseMap<const AllocaInst*, int>::iterator SI =
4436               FuncInfo.StaticAllocaMap.find(AI);
4437             if (SI != FuncInfo.StaticAllocaMap.end()) {
4438               SDV = DAG.getDbgValue(Variable, SI->second,
4439                                     0, dl, SDNodeOrder);
4440               DAG.AddDbgValue(SDV, 0, false);
4441               return 0;
4442             }
4443           }
4444         }
4445         DEBUG(dbgs() << "Dropping debug info for " << DI);
4446       }
4447     }
4448     return 0;
4449   }
4450   case Intrinsic::dbg_value: {
4451     const DbgValueInst &DI = cast<DbgValueInst>(I);
4452     if (!DIVariable(DI.getVariable()).Verify())
4453       return 0;
4454 
4455     MDNode *Variable = DI.getVariable();
4456     uint64_t Offset = DI.getOffset();
4457     const Value *V = DI.getValue();
4458     if (!V)
4459       return 0;
4460 
4461     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4462     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4463     // absolute, but not relative, values are different depending on whether
4464     // debug info exists.
4465     ++SDNodeOrder;
4466     SDDbgValue *SDV;
4467     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4468       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4469       DAG.AddDbgValue(SDV, 0, false);
4470     } else {
4471       // Do not use getValue() in here; we don't want to generate code at
4472       // this point if it hasn't been done yet.
4473       SDValue N = NodeMap[V];
4474       if (!N.getNode() && isa<Argument>(V))
4475         // Check unused arguments map.
4476         N = UnusedArgNodeMap[V];
4477       if (N.getNode()) {
4478         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4479           SDV = DAG.getDbgValue(Variable, N.getNode(),
4480                                 N.getResNo(), Offset, dl, SDNodeOrder);
4481           DAG.AddDbgValue(SDV, N.getNode(), false);
4482         }
4483       } else if (!V->use_empty() ) {
4484         // Do not call getValue(V) yet, as we don't want to generate code.
4485         // Remember it for later.
4486         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4487         DanglingDebugInfoMap[V] = DDI;
4488       } else {
4489         // We may expand this to cover more cases.  One case where we have no
4490         // data available is an unreferenced parameter.
4491         DEBUG(dbgs() << "Dropping debug info for " << DI);
4492       }
4493     }
4494 
4495     // Build a debug info table entry.
4496     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4497       V = BCI->getOperand(0);
4498     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4499     // Don't handle byval struct arguments or VLAs, for example.
4500     if (!AI)
4501       return 0;
4502     DenseMap<const AllocaInst*, int>::iterator SI =
4503       FuncInfo.StaticAllocaMap.find(AI);
4504     if (SI == FuncInfo.StaticAllocaMap.end())
4505       return 0; // VLAs.
4506     int FI = SI->second;
4507 
4508     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4509     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4510       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4511     return 0;
4512   }
4513   case Intrinsic::eh_exception: {
4514     // Insert the EXCEPTIONADDR instruction.
4515     assert(FuncInfo.MBB->isLandingPad() &&
4516            "Call to eh.exception not in landing pad!");
4517     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4518     SDValue Ops[1];
4519     Ops[0] = DAG.getRoot();
4520     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4521     setValue(&I, Op);
4522     DAG.setRoot(Op.getValue(1));
4523     return 0;
4524   }
4525 
4526   case Intrinsic::eh_selector: {
4527     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4528     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4529     if (CallMBB->isLandingPad())
4530       AddCatchInfo(I, &MMI, CallMBB);
4531     else {
4532 #ifndef NDEBUG
4533       FuncInfo.CatchInfoLost.insert(&I);
4534 #endif
4535       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4536       unsigned Reg = TLI.getExceptionSelectorRegister();
4537       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4538     }
4539 
4540     // Insert the EHSELECTION instruction.
4541     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4542     SDValue Ops[2];
4543     Ops[0] = getValue(I.getArgOperand(0));
4544     Ops[1] = getRoot();
4545     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4546     DAG.setRoot(Op.getValue(1));
4547     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4548     return 0;
4549   }
4550 
4551   case Intrinsic::eh_typeid_for: {
4552     // Find the type id for the given typeinfo.
4553     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4554     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4555     Res = DAG.getConstant(TypeID, MVT::i32);
4556     setValue(&I, Res);
4557     return 0;
4558   }
4559 
4560   case Intrinsic::eh_return_i32:
4561   case Intrinsic::eh_return_i64:
4562     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4563     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4564                             MVT::Other,
4565                             getControlRoot(),
4566                             getValue(I.getArgOperand(0)),
4567                             getValue(I.getArgOperand(1))));
4568     return 0;
4569   case Intrinsic::eh_unwind_init:
4570     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4571     return 0;
4572   case Intrinsic::eh_dwarf_cfa: {
4573     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4574                                         TLI.getPointerTy());
4575     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4576                                  TLI.getPointerTy(),
4577                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4578                                              TLI.getPointerTy()),
4579                                  CfaArg);
4580     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4581                              TLI.getPointerTy(),
4582                              DAG.getConstant(0, TLI.getPointerTy()));
4583     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4584                              FA, Offset));
4585     return 0;
4586   }
4587   case Intrinsic::eh_sjlj_callsite: {
4588     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4589     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4590     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4591     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4592 
4593     MMI.setCurrentCallSite(CI->getZExtValue());
4594     return 0;
4595   }
4596   case Intrinsic::eh_sjlj_setjmp: {
4597     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4598                              getValue(I.getArgOperand(0))));
4599     return 0;
4600   }
4601   case Intrinsic::eh_sjlj_longjmp: {
4602     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4603                             getRoot(), getValue(I.getArgOperand(0))));
4604     return 0;
4605   }
4606   case Intrinsic::eh_sjlj_dispatch_setup: {
4607     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4608                             getRoot(), getValue(I.getArgOperand(0))));
4609     return 0;
4610   }
4611 
4612   case Intrinsic::x86_mmx_pslli_w:
4613   case Intrinsic::x86_mmx_pslli_d:
4614   case Intrinsic::x86_mmx_pslli_q:
4615   case Intrinsic::x86_mmx_psrli_w:
4616   case Intrinsic::x86_mmx_psrli_d:
4617   case Intrinsic::x86_mmx_psrli_q:
4618   case Intrinsic::x86_mmx_psrai_w:
4619   case Intrinsic::x86_mmx_psrai_d: {
4620     SDValue ShAmt = getValue(I.getArgOperand(1));
4621     if (isa<ConstantSDNode>(ShAmt)) {
4622       visitTargetIntrinsic(I, Intrinsic);
4623       return 0;
4624     }
4625     unsigned NewIntrinsic = 0;
4626     EVT ShAmtVT = MVT::v2i32;
4627     switch (Intrinsic) {
4628     case Intrinsic::x86_mmx_pslli_w:
4629       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4630       break;
4631     case Intrinsic::x86_mmx_pslli_d:
4632       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4633       break;
4634     case Intrinsic::x86_mmx_pslli_q:
4635       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4636       break;
4637     case Intrinsic::x86_mmx_psrli_w:
4638       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4639       break;
4640     case Intrinsic::x86_mmx_psrli_d:
4641       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4642       break;
4643     case Intrinsic::x86_mmx_psrli_q:
4644       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4645       break;
4646     case Intrinsic::x86_mmx_psrai_w:
4647       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4648       break;
4649     case Intrinsic::x86_mmx_psrai_d:
4650       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4651       break;
4652     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4653     }
4654 
4655     // The vector shift intrinsics with scalars uses 32b shift amounts but
4656     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4657     // to be zero.
4658     // We must do this early because v2i32 is not a legal type.
4659     DebugLoc dl = getCurDebugLoc();
4660     SDValue ShOps[2];
4661     ShOps[0] = ShAmt;
4662     ShOps[1] = DAG.getConstant(0, MVT::i32);
4663     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4664     EVT DestVT = TLI.getValueType(I.getType());
4665     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4666     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4667                        DAG.getConstant(NewIntrinsic, MVT::i32),
4668                        getValue(I.getArgOperand(0)), ShAmt);
4669     setValue(&I, Res);
4670     return 0;
4671   }
4672   case Intrinsic::convertff:
4673   case Intrinsic::convertfsi:
4674   case Intrinsic::convertfui:
4675   case Intrinsic::convertsif:
4676   case Intrinsic::convertuif:
4677   case Intrinsic::convertss:
4678   case Intrinsic::convertsu:
4679   case Intrinsic::convertus:
4680   case Intrinsic::convertuu: {
4681     ISD::CvtCode Code = ISD::CVT_INVALID;
4682     switch (Intrinsic) {
4683     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4684     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4685     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4686     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4687     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4688     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4689     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4690     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4691     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4692     }
4693     EVT DestVT = TLI.getValueType(I.getType());
4694     const Value *Op1 = I.getArgOperand(0);
4695     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4696                                DAG.getValueType(DestVT),
4697                                DAG.getValueType(getValue(Op1).getValueType()),
4698                                getValue(I.getArgOperand(1)),
4699                                getValue(I.getArgOperand(2)),
4700                                Code);
4701     setValue(&I, Res);
4702     return 0;
4703   }
4704   case Intrinsic::sqrt:
4705     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4706                              getValue(I.getArgOperand(0)).getValueType(),
4707                              getValue(I.getArgOperand(0))));
4708     return 0;
4709   case Intrinsic::powi:
4710     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4711                             getValue(I.getArgOperand(1)), DAG));
4712     return 0;
4713   case Intrinsic::sin:
4714     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4715                              getValue(I.getArgOperand(0)).getValueType(),
4716                              getValue(I.getArgOperand(0))));
4717     return 0;
4718   case Intrinsic::cos:
4719     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4720                              getValue(I.getArgOperand(0)).getValueType(),
4721                              getValue(I.getArgOperand(0))));
4722     return 0;
4723   case Intrinsic::log:
4724     visitLog(I);
4725     return 0;
4726   case Intrinsic::log2:
4727     visitLog2(I);
4728     return 0;
4729   case Intrinsic::log10:
4730     visitLog10(I);
4731     return 0;
4732   case Intrinsic::exp:
4733     visitExp(I);
4734     return 0;
4735   case Intrinsic::exp2:
4736     visitExp2(I);
4737     return 0;
4738   case Intrinsic::pow:
4739     visitPow(I);
4740     return 0;
4741   case Intrinsic::fma:
4742     setValue(&I, DAG.getNode(ISD::FMA, dl,
4743                              getValue(I.getArgOperand(0)).getValueType(),
4744                              getValue(I.getArgOperand(0)),
4745                              getValue(I.getArgOperand(1)),
4746                              getValue(I.getArgOperand(2))));
4747     return 0;
4748   case Intrinsic::convert_to_fp16:
4749     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4750                              MVT::i16, getValue(I.getArgOperand(0))));
4751     return 0;
4752   case Intrinsic::convert_from_fp16:
4753     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4754                              MVT::f32, getValue(I.getArgOperand(0))));
4755     return 0;
4756   case Intrinsic::pcmarker: {
4757     SDValue Tmp = getValue(I.getArgOperand(0));
4758     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4759     return 0;
4760   }
4761   case Intrinsic::readcyclecounter: {
4762     SDValue Op = getRoot();
4763     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4764                       DAG.getVTList(MVT::i64, MVT::Other),
4765                       &Op, 1);
4766     setValue(&I, Res);
4767     DAG.setRoot(Res.getValue(1));
4768     return 0;
4769   }
4770   case Intrinsic::bswap:
4771     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4772                              getValue(I.getArgOperand(0)).getValueType(),
4773                              getValue(I.getArgOperand(0))));
4774     return 0;
4775   case Intrinsic::cttz: {
4776     SDValue Arg = getValue(I.getArgOperand(0));
4777     EVT Ty = Arg.getValueType();
4778     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4779     return 0;
4780   }
4781   case Intrinsic::ctlz: {
4782     SDValue Arg = getValue(I.getArgOperand(0));
4783     EVT Ty = Arg.getValueType();
4784     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4785     return 0;
4786   }
4787   case Intrinsic::ctpop: {
4788     SDValue Arg = getValue(I.getArgOperand(0));
4789     EVT Ty = Arg.getValueType();
4790     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4791     return 0;
4792   }
4793   case Intrinsic::stacksave: {
4794     SDValue Op = getRoot();
4795     Res = DAG.getNode(ISD::STACKSAVE, dl,
4796                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4797     setValue(&I, Res);
4798     DAG.setRoot(Res.getValue(1));
4799     return 0;
4800   }
4801   case Intrinsic::stackrestore: {
4802     Res = getValue(I.getArgOperand(0));
4803     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4804     return 0;
4805   }
4806   case Intrinsic::stackprotector: {
4807     // Emit code into the DAG to store the stack guard onto the stack.
4808     MachineFunction &MF = DAG.getMachineFunction();
4809     MachineFrameInfo *MFI = MF.getFrameInfo();
4810     EVT PtrTy = TLI.getPointerTy();
4811 
4812     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4813     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4814 
4815     int FI = FuncInfo.StaticAllocaMap[Slot];
4816     MFI->setStackProtectorIndex(FI);
4817 
4818     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4819 
4820     // Store the stack protector onto the stack.
4821     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4822                        MachinePointerInfo::getFixedStack(FI),
4823                        true, false, 0);
4824     setValue(&I, Res);
4825     DAG.setRoot(Res);
4826     return 0;
4827   }
4828   case Intrinsic::objectsize: {
4829     // If we don't know by now, we're never going to know.
4830     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4831 
4832     assert(CI && "Non-constant type in __builtin_object_size?");
4833 
4834     SDValue Arg = getValue(I.getCalledValue());
4835     EVT Ty = Arg.getValueType();
4836 
4837     if (CI->isZero())
4838       Res = DAG.getConstant(-1ULL, Ty);
4839     else
4840       Res = DAG.getConstant(0, Ty);
4841 
4842     setValue(&I, Res);
4843     return 0;
4844   }
4845   case Intrinsic::var_annotation:
4846     // Discard annotate attributes
4847     return 0;
4848 
4849   case Intrinsic::init_trampoline: {
4850     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4851 
4852     SDValue Ops[6];
4853     Ops[0] = getRoot();
4854     Ops[1] = getValue(I.getArgOperand(0));
4855     Ops[2] = getValue(I.getArgOperand(1));
4856     Ops[3] = getValue(I.getArgOperand(2));
4857     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4858     Ops[5] = DAG.getSrcValue(F);
4859 
4860     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4861                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4862                       Ops, 6);
4863 
4864     setValue(&I, Res);
4865     DAG.setRoot(Res.getValue(1));
4866     return 0;
4867   }
4868   case Intrinsic::gcroot:
4869     if (GFI) {
4870       const Value *Alloca = I.getArgOperand(0);
4871       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4872 
4873       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4874       GFI->addStackRoot(FI->getIndex(), TypeMap);
4875     }
4876     return 0;
4877   case Intrinsic::gcread:
4878   case Intrinsic::gcwrite:
4879     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4880     return 0;
4881   case Intrinsic::flt_rounds:
4882     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4883     return 0;
4884 
4885   case Intrinsic::expect: {
4886     // Just replace __builtin_expect(exp, c) with EXP.
4887     setValue(&I, getValue(I.getArgOperand(0)));
4888     return 0;
4889   }
4890 
4891   case Intrinsic::trap: {
4892     StringRef TrapFuncName = getTrapFunctionName();
4893     if (TrapFuncName.empty()) {
4894       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4895       return 0;
4896     }
4897     TargetLowering::ArgListTy Args;
4898     std::pair<SDValue, SDValue> Result =
4899       TLI.LowerCallTo(getRoot(), I.getType(),
4900                  false, false, false, false, 0, CallingConv::C,
4901                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4902                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4903                  Args, DAG, getCurDebugLoc());
4904     DAG.setRoot(Result.second);
4905     return 0;
4906   }
4907   case Intrinsic::uadd_with_overflow:
4908     return implVisitAluOverflow(I, ISD::UADDO);
4909   case Intrinsic::sadd_with_overflow:
4910     return implVisitAluOverflow(I, ISD::SADDO);
4911   case Intrinsic::usub_with_overflow:
4912     return implVisitAluOverflow(I, ISD::USUBO);
4913   case Intrinsic::ssub_with_overflow:
4914     return implVisitAluOverflow(I, ISD::SSUBO);
4915   case Intrinsic::umul_with_overflow:
4916     return implVisitAluOverflow(I, ISD::UMULO);
4917   case Intrinsic::smul_with_overflow:
4918     return implVisitAluOverflow(I, ISD::SMULO);
4919 
4920   case Intrinsic::prefetch: {
4921     SDValue Ops[5];
4922     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4923     Ops[0] = getRoot();
4924     Ops[1] = getValue(I.getArgOperand(0));
4925     Ops[2] = getValue(I.getArgOperand(1));
4926     Ops[3] = getValue(I.getArgOperand(2));
4927     Ops[4] = getValue(I.getArgOperand(3));
4928     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4929                                         DAG.getVTList(MVT::Other),
4930                                         &Ops[0], 5,
4931                                         EVT::getIntegerVT(*Context, 8),
4932                                         MachinePointerInfo(I.getArgOperand(0)),
4933                                         0, /* align */
4934                                         false, /* volatile */
4935                                         rw==0, /* read */
4936                                         rw==1)); /* write */
4937     return 0;
4938   }
4939   case Intrinsic::memory_barrier: {
4940     SDValue Ops[6];
4941     Ops[0] = getRoot();
4942     for (int x = 1; x < 6; ++x)
4943       Ops[x] = getValue(I.getArgOperand(x - 1));
4944 
4945     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4946     return 0;
4947   }
4948   case Intrinsic::atomic_cmp_swap: {
4949     SDValue Root = getRoot();
4950     SDValue L =
4951       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4952                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4953                     Root,
4954                     getValue(I.getArgOperand(0)),
4955                     getValue(I.getArgOperand(1)),
4956                     getValue(I.getArgOperand(2)),
4957                     MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
4958                     Monotonic, CrossThread);
4959     setValue(&I, L);
4960     DAG.setRoot(L.getValue(1));
4961     return 0;
4962   }
4963   case Intrinsic::atomic_load_add:
4964     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4965   case Intrinsic::atomic_load_sub:
4966     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4967   case Intrinsic::atomic_load_or:
4968     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4969   case Intrinsic::atomic_load_xor:
4970     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4971   case Intrinsic::atomic_load_and:
4972     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4973   case Intrinsic::atomic_load_nand:
4974     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4975   case Intrinsic::atomic_load_max:
4976     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4977   case Intrinsic::atomic_load_min:
4978     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4979   case Intrinsic::atomic_load_umin:
4980     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4981   case Intrinsic::atomic_load_umax:
4982     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4983   case Intrinsic::atomic_swap:
4984     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4985 
4986   case Intrinsic::invariant_start:
4987   case Intrinsic::lifetime_start:
4988     // Discard region information.
4989     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4990     return 0;
4991   case Intrinsic::invariant_end:
4992   case Intrinsic::lifetime_end:
4993     // Discard region information.
4994     return 0;
4995   }
4996 }
4997 
4998 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4999                                       bool isTailCall,
5000                                       MachineBasicBlock *LandingPad) {
5001   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5002   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5003   Type *RetTy = FTy->getReturnType();
5004   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5005   MCSymbol *BeginLabel = 0;
5006 
5007   TargetLowering::ArgListTy Args;
5008   TargetLowering::ArgListEntry Entry;
5009   Args.reserve(CS.arg_size());
5010 
5011   // Check whether the function can return without sret-demotion.
5012   SmallVector<ISD::OutputArg, 4> Outs;
5013   SmallVector<uint64_t, 4> Offsets;
5014   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5015                 Outs, TLI, &Offsets);
5016 
5017   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5018 					   DAG.getMachineFunction(),
5019 					   FTy->isVarArg(), Outs,
5020 					   FTy->getContext());
5021 
5022   SDValue DemoteStackSlot;
5023   int DemoteStackIdx = -100;
5024 
5025   if (!CanLowerReturn) {
5026     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5027                       FTy->getReturnType());
5028     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5029                       FTy->getReturnType());
5030     MachineFunction &MF = DAG.getMachineFunction();
5031     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5032     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5033 
5034     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5035     Entry.Node = DemoteStackSlot;
5036     Entry.Ty = StackSlotPtrType;
5037     Entry.isSExt = false;
5038     Entry.isZExt = false;
5039     Entry.isInReg = false;
5040     Entry.isSRet = true;
5041     Entry.isNest = false;
5042     Entry.isByVal = false;
5043     Entry.Alignment = Align;
5044     Args.push_back(Entry);
5045     RetTy = Type::getVoidTy(FTy->getContext());
5046   }
5047 
5048   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5049        i != e; ++i) {
5050     const Value *V = *i;
5051 
5052     // Skip empty types
5053     if (V->getType()->isEmptyTy())
5054       continue;
5055 
5056     SDValue ArgNode = getValue(V);
5057     Entry.Node = ArgNode; Entry.Ty = V->getType();
5058 
5059     unsigned attrInd = i - CS.arg_begin() + 1;
5060     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5061     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5062     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5063     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5064     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5065     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5066     Entry.Alignment = CS.getParamAlignment(attrInd);
5067     Args.push_back(Entry);
5068   }
5069 
5070   if (LandingPad) {
5071     // Insert a label before the invoke call to mark the try range.  This can be
5072     // used to detect deletion of the invoke via the MachineModuleInfo.
5073     BeginLabel = MMI.getContext().CreateTempSymbol();
5074 
5075     // For SjLj, keep track of which landing pads go with which invokes
5076     // so as to maintain the ordering of pads in the LSDA.
5077     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5078     if (CallSiteIndex) {
5079       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5080       // Now that the call site is handled, stop tracking it.
5081       MMI.setCurrentCallSite(0);
5082     }
5083 
5084     // Both PendingLoads and PendingExports must be flushed here;
5085     // this call might not return.
5086     (void)getRoot();
5087     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5088   }
5089 
5090   // Check if target-independent constraints permit a tail call here.
5091   // Target-dependent constraints are checked within TLI.LowerCallTo.
5092   if (isTailCall &&
5093       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5094     isTailCall = false;
5095 
5096   // If there's a possibility that fast-isel has already selected some amount
5097   // of the current basic block, don't emit a tail call.
5098   if (isTailCall && EnableFastISel)
5099     isTailCall = false;
5100 
5101   std::pair<SDValue,SDValue> Result =
5102     TLI.LowerCallTo(getRoot(), RetTy,
5103                     CS.paramHasAttr(0, Attribute::SExt),
5104                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5105                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5106                     CS.getCallingConv(),
5107                     isTailCall,
5108                     !CS.getInstruction()->use_empty(),
5109                     Callee, Args, DAG, getCurDebugLoc());
5110   assert((isTailCall || Result.second.getNode()) &&
5111          "Non-null chain expected with non-tail call!");
5112   assert((Result.second.getNode() || !Result.first.getNode()) &&
5113          "Null value expected with tail call!");
5114   if (Result.first.getNode()) {
5115     setValue(CS.getInstruction(), Result.first);
5116   } else if (!CanLowerReturn && Result.second.getNode()) {
5117     // The instruction result is the result of loading from the
5118     // hidden sret parameter.
5119     SmallVector<EVT, 1> PVTs;
5120     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5121 
5122     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5123     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5124     EVT PtrVT = PVTs[0];
5125     unsigned NumValues = Outs.size();
5126     SmallVector<SDValue, 4> Values(NumValues);
5127     SmallVector<SDValue, 4> Chains(NumValues);
5128 
5129     for (unsigned i = 0; i < NumValues; ++i) {
5130       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5131                                 DemoteStackSlot,
5132                                 DAG.getConstant(Offsets[i], PtrVT));
5133       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5134                               Add,
5135                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5136                               false, false, 1);
5137       Values[i] = L;
5138       Chains[i] = L.getValue(1);
5139     }
5140 
5141     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5142                                 MVT::Other, &Chains[0], NumValues);
5143     PendingLoads.push_back(Chain);
5144 
5145     // Collect the legal value parts into potentially illegal values
5146     // that correspond to the original function's return values.
5147     SmallVector<EVT, 4> RetTys;
5148     RetTy = FTy->getReturnType();
5149     ComputeValueVTs(TLI, RetTy, RetTys);
5150     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5151     SmallVector<SDValue, 4> ReturnValues;
5152     unsigned CurReg = 0;
5153     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5154       EVT VT = RetTys[I];
5155       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5156       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5157 
5158       SDValue ReturnValue =
5159         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5160                          RegisterVT, VT, AssertOp);
5161       ReturnValues.push_back(ReturnValue);
5162       CurReg += NumRegs;
5163     }
5164 
5165     setValue(CS.getInstruction(),
5166              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5167                          DAG.getVTList(&RetTys[0], RetTys.size()),
5168                          &ReturnValues[0], ReturnValues.size()));
5169   }
5170 
5171   // Assign order to nodes here. If the call does not produce a result, it won't
5172   // be mapped to a SDNode and visit() will not assign it an order number.
5173   if (!Result.second.getNode()) {
5174     // As a special case, a null chain means that a tail call has been emitted and
5175     // the DAG root is already updated.
5176     HasTailCall = true;
5177     ++SDNodeOrder;
5178     AssignOrderingToNode(DAG.getRoot().getNode());
5179   } else {
5180     DAG.setRoot(Result.second);
5181     ++SDNodeOrder;
5182     AssignOrderingToNode(Result.second.getNode());
5183   }
5184 
5185   if (LandingPad) {
5186     // Insert a label at the end of the invoke call to mark the try range.  This
5187     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5188     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5189     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5190 
5191     // Inform MachineModuleInfo of range.
5192     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5193   }
5194 }
5195 
5196 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5197 /// value is equal or not-equal to zero.
5198 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5199   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5200        UI != E; ++UI) {
5201     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5202       if (IC->isEquality())
5203         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5204           if (C->isNullValue())
5205             continue;
5206     // Unknown instruction.
5207     return false;
5208   }
5209   return true;
5210 }
5211 
5212 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5213                              Type *LoadTy,
5214                              SelectionDAGBuilder &Builder) {
5215 
5216   // Check to see if this load can be trivially constant folded, e.g. if the
5217   // input is from a string literal.
5218   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5219     // Cast pointer to the type we really want to load.
5220     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5221                                          PointerType::getUnqual(LoadTy));
5222 
5223     if (const Constant *LoadCst =
5224           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5225                                        Builder.TD))
5226       return Builder.getValue(LoadCst);
5227   }
5228 
5229   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5230   // still constant memory, the input chain can be the entry node.
5231   SDValue Root;
5232   bool ConstantMemory = false;
5233 
5234   // Do not serialize (non-volatile) loads of constant memory with anything.
5235   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5236     Root = Builder.DAG.getEntryNode();
5237     ConstantMemory = true;
5238   } else {
5239     // Do not serialize non-volatile loads against each other.
5240     Root = Builder.DAG.getRoot();
5241   }
5242 
5243   SDValue Ptr = Builder.getValue(PtrVal);
5244   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5245                                         Ptr, MachinePointerInfo(PtrVal),
5246                                         false /*volatile*/,
5247                                         false /*nontemporal*/, 1 /* align=1 */);
5248 
5249   if (!ConstantMemory)
5250     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5251   return LoadVal;
5252 }
5253 
5254 
5255 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5256 /// If so, return true and lower it, otherwise return false and it will be
5257 /// lowered like a normal call.
5258 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5259   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5260   if (I.getNumArgOperands() != 3)
5261     return false;
5262 
5263   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5264   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5265       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5266       !I.getType()->isIntegerTy())
5267     return false;
5268 
5269   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5270 
5271   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5272   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5273   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5274     bool ActuallyDoIt = true;
5275     MVT LoadVT;
5276     Type *LoadTy;
5277     switch (Size->getZExtValue()) {
5278     default:
5279       LoadVT = MVT::Other;
5280       LoadTy = 0;
5281       ActuallyDoIt = false;
5282       break;
5283     case 2:
5284       LoadVT = MVT::i16;
5285       LoadTy = Type::getInt16Ty(Size->getContext());
5286       break;
5287     case 4:
5288       LoadVT = MVT::i32;
5289       LoadTy = Type::getInt32Ty(Size->getContext());
5290       break;
5291     case 8:
5292       LoadVT = MVT::i64;
5293       LoadTy = Type::getInt64Ty(Size->getContext());
5294       break;
5295         /*
5296     case 16:
5297       LoadVT = MVT::v4i32;
5298       LoadTy = Type::getInt32Ty(Size->getContext());
5299       LoadTy = VectorType::get(LoadTy, 4);
5300       break;
5301          */
5302     }
5303 
5304     // This turns into unaligned loads.  We only do this if the target natively
5305     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5306     // we'll only produce a small number of byte loads.
5307 
5308     // Require that we can find a legal MVT, and only do this if the target
5309     // supports unaligned loads of that type.  Expanding into byte loads would
5310     // bloat the code.
5311     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5312       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5313       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5314       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5315         ActuallyDoIt = false;
5316     }
5317 
5318     if (ActuallyDoIt) {
5319       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5320       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5321 
5322       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5323                                  ISD::SETNE);
5324       EVT CallVT = TLI.getValueType(I.getType(), true);
5325       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5326       return true;
5327     }
5328   }
5329 
5330 
5331   return false;
5332 }
5333 
5334 
5335 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5336   // Handle inline assembly differently.
5337   if (isa<InlineAsm>(I.getCalledValue())) {
5338     visitInlineAsm(&I);
5339     return;
5340   }
5341 
5342   // See if any floating point values are being passed to this function. This is
5343   // used to emit an undefined reference to fltused on Windows.
5344   FunctionType *FT =
5345     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5346   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5347   if (FT->isVarArg() &&
5348       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5349     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5350       Type* T = I.getArgOperand(i)->getType();
5351       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5352            i != e; ++i) {
5353         if (!i->isFloatingPointTy()) continue;
5354         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5355         break;
5356       }
5357     }
5358   }
5359 
5360   const char *RenameFn = 0;
5361   if (Function *F = I.getCalledFunction()) {
5362     if (F->isDeclaration()) {
5363       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5364         if (unsigned IID = II->getIntrinsicID(F)) {
5365           RenameFn = visitIntrinsicCall(I, IID);
5366           if (!RenameFn)
5367             return;
5368         }
5369       }
5370       if (unsigned IID = F->getIntrinsicID()) {
5371         RenameFn = visitIntrinsicCall(I, IID);
5372         if (!RenameFn)
5373           return;
5374       }
5375     }
5376 
5377     // Check for well-known libc/libm calls.  If the function is internal, it
5378     // can't be a library call.
5379     if (!F->hasLocalLinkage() && F->hasName()) {
5380       StringRef Name = F->getName();
5381       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5382         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5383             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5384             I.getType() == I.getArgOperand(0)->getType() &&
5385             I.getType() == I.getArgOperand(1)->getType()) {
5386           SDValue LHS = getValue(I.getArgOperand(0));
5387           SDValue RHS = getValue(I.getArgOperand(1));
5388           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5389                                    LHS.getValueType(), LHS, RHS));
5390           return;
5391         }
5392       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5393         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5394             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5395             I.getType() == I.getArgOperand(0)->getType()) {
5396           SDValue Tmp = getValue(I.getArgOperand(0));
5397           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5398                                    Tmp.getValueType(), Tmp));
5399           return;
5400         }
5401       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5402         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5403             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5404             I.getType() == I.getArgOperand(0)->getType() &&
5405             I.onlyReadsMemory()) {
5406           SDValue Tmp = getValue(I.getArgOperand(0));
5407           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5408                                    Tmp.getValueType(), Tmp));
5409           return;
5410         }
5411       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5412         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5413             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5414             I.getType() == I.getArgOperand(0)->getType() &&
5415             I.onlyReadsMemory()) {
5416           SDValue Tmp = getValue(I.getArgOperand(0));
5417           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5418                                    Tmp.getValueType(), Tmp));
5419           return;
5420         }
5421       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5422         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5423             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5424             I.getType() == I.getArgOperand(0)->getType() &&
5425             I.onlyReadsMemory()) {
5426           SDValue Tmp = getValue(I.getArgOperand(0));
5427           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5428                                    Tmp.getValueType(), Tmp));
5429           return;
5430         }
5431       } else if (Name == "memcmp") {
5432         if (visitMemCmpCall(I))
5433           return;
5434       }
5435     }
5436   }
5437 
5438   SDValue Callee;
5439   if (!RenameFn)
5440     Callee = getValue(I.getCalledValue());
5441   else
5442     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5443 
5444   // Check if we can potentially perform a tail call. More detailed checking is
5445   // be done within LowerCallTo, after more information about the call is known.
5446   LowerCallTo(&I, Callee, I.isTailCall());
5447 }
5448 
5449 namespace {
5450 
5451 /// AsmOperandInfo - This contains information for each constraint that we are
5452 /// lowering.
5453 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5454 public:
5455   /// CallOperand - If this is the result output operand or a clobber
5456   /// this is null, otherwise it is the incoming operand to the CallInst.
5457   /// This gets modified as the asm is processed.
5458   SDValue CallOperand;
5459 
5460   /// AssignedRegs - If this is a register or register class operand, this
5461   /// contains the set of register corresponding to the operand.
5462   RegsForValue AssignedRegs;
5463 
5464   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5465     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5466   }
5467 
5468   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5469   /// busy in OutputRegs/InputRegs.
5470   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5471                          std::set<unsigned> &OutputRegs,
5472                          std::set<unsigned> &InputRegs,
5473                          const TargetRegisterInfo &TRI) const {
5474     if (isOutReg) {
5475       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5476         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5477     }
5478     if (isInReg) {
5479       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5480         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5481     }
5482   }
5483 
5484   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5485   /// corresponds to.  If there is no Value* for this operand, it returns
5486   /// MVT::Other.
5487   EVT getCallOperandValEVT(LLVMContext &Context,
5488                            const TargetLowering &TLI,
5489                            const TargetData *TD) const {
5490     if (CallOperandVal == 0) return MVT::Other;
5491 
5492     if (isa<BasicBlock>(CallOperandVal))
5493       return TLI.getPointerTy();
5494 
5495     llvm::Type *OpTy = CallOperandVal->getType();
5496 
5497     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5498     // If this is an indirect operand, the operand is a pointer to the
5499     // accessed type.
5500     if (isIndirect) {
5501       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5502       if (!PtrTy)
5503         report_fatal_error("Indirect operand for inline asm not a pointer!");
5504       OpTy = PtrTy->getElementType();
5505     }
5506 
5507     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5508     if (StructType *STy = dyn_cast<StructType>(OpTy))
5509       if (STy->getNumElements() == 1)
5510         OpTy = STy->getElementType(0);
5511 
5512     // If OpTy is not a single value, it may be a struct/union that we
5513     // can tile with integers.
5514     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5515       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5516       switch (BitSize) {
5517       default: break;
5518       case 1:
5519       case 8:
5520       case 16:
5521       case 32:
5522       case 64:
5523       case 128:
5524         OpTy = IntegerType::get(Context, BitSize);
5525         break;
5526       }
5527     }
5528 
5529     return TLI.getValueType(OpTy, true);
5530   }
5531 
5532 private:
5533   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5534   /// specified set.
5535   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5536                                 const TargetRegisterInfo &TRI) {
5537     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5538     Regs.insert(Reg);
5539     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5540       for (; *Aliases; ++Aliases)
5541         Regs.insert(*Aliases);
5542   }
5543 };
5544 
5545 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5546 
5547 } // end anonymous namespace
5548 
5549 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5550 /// specified operand.  We prefer to assign virtual registers, to allow the
5551 /// register allocator to handle the assignment process.  However, if the asm
5552 /// uses features that we can't model on machineinstrs, we have SDISel do the
5553 /// allocation.  This produces generally horrible, but correct, code.
5554 ///
5555 ///   OpInfo describes the operand.
5556 ///   Input and OutputRegs are the set of already allocated physical registers.
5557 ///
5558 static void GetRegistersForValue(SelectionDAG &DAG,
5559                                  const TargetLowering &TLI,
5560                                  DebugLoc DL,
5561                                  SDISelAsmOperandInfo &OpInfo,
5562                                  std::set<unsigned> &OutputRegs,
5563                                  std::set<unsigned> &InputRegs) {
5564   LLVMContext &Context = *DAG.getContext();
5565 
5566   // Compute whether this value requires an input register, an output register,
5567   // or both.
5568   bool isOutReg = false;
5569   bool isInReg = false;
5570   switch (OpInfo.Type) {
5571   case InlineAsm::isOutput:
5572     isOutReg = true;
5573 
5574     // If there is an input constraint that matches this, we need to reserve
5575     // the input register so no other inputs allocate to it.
5576     isInReg = OpInfo.hasMatchingInput();
5577     break;
5578   case InlineAsm::isInput:
5579     isInReg = true;
5580     isOutReg = false;
5581     break;
5582   case InlineAsm::isClobber:
5583     isOutReg = true;
5584     isInReg = true;
5585     break;
5586   }
5587 
5588 
5589   MachineFunction &MF = DAG.getMachineFunction();
5590   SmallVector<unsigned, 4> Regs;
5591 
5592   // If this is a constraint for a single physreg, or a constraint for a
5593   // register class, find it.
5594   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5595     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5596                                      OpInfo.ConstraintVT);
5597 
5598   unsigned NumRegs = 1;
5599   if (OpInfo.ConstraintVT != MVT::Other) {
5600     // If this is a FP input in an integer register (or visa versa) insert a bit
5601     // cast of the input value.  More generally, handle any case where the input
5602     // value disagrees with the register class we plan to stick this in.
5603     if (OpInfo.Type == InlineAsm::isInput &&
5604         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5605       // Try to convert to the first EVT that the reg class contains.  If the
5606       // types are identical size, use a bitcast to convert (e.g. two differing
5607       // vector types).
5608       EVT RegVT = *PhysReg.second->vt_begin();
5609       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5610         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5611                                          RegVT, OpInfo.CallOperand);
5612         OpInfo.ConstraintVT = RegVT;
5613       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5614         // If the input is a FP value and we want it in FP registers, do a
5615         // bitcast to the corresponding integer type.  This turns an f64 value
5616         // into i64, which can be passed with two i32 values on a 32-bit
5617         // machine.
5618         RegVT = EVT::getIntegerVT(Context,
5619                                   OpInfo.ConstraintVT.getSizeInBits());
5620         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5621                                          RegVT, OpInfo.CallOperand);
5622         OpInfo.ConstraintVT = RegVT;
5623       }
5624     }
5625 
5626     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5627   }
5628 
5629   EVT RegVT;
5630   EVT ValueVT = OpInfo.ConstraintVT;
5631 
5632   // If this is a constraint for a specific physical register, like {r17},
5633   // assign it now.
5634   if (unsigned AssignedReg = PhysReg.first) {
5635     const TargetRegisterClass *RC = PhysReg.second;
5636     if (OpInfo.ConstraintVT == MVT::Other)
5637       ValueVT = *RC->vt_begin();
5638 
5639     // Get the actual register value type.  This is important, because the user
5640     // may have asked for (e.g.) the AX register in i32 type.  We need to
5641     // remember that AX is actually i16 to get the right extension.
5642     RegVT = *RC->vt_begin();
5643 
5644     // This is a explicit reference to a physical register.
5645     Regs.push_back(AssignedReg);
5646 
5647     // If this is an expanded reference, add the rest of the regs to Regs.
5648     if (NumRegs != 1) {
5649       TargetRegisterClass::iterator I = RC->begin();
5650       for (; *I != AssignedReg; ++I)
5651         assert(I != RC->end() && "Didn't find reg!");
5652 
5653       // Already added the first reg.
5654       --NumRegs; ++I;
5655       for (; NumRegs; --NumRegs, ++I) {
5656         assert(I != RC->end() && "Ran out of registers to allocate!");
5657         Regs.push_back(*I);
5658       }
5659     }
5660 
5661     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5662     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5663     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5664     return;
5665   }
5666 
5667   // Otherwise, if this was a reference to an LLVM register class, create vregs
5668   // for this reference.
5669   if (const TargetRegisterClass *RC = PhysReg.second) {
5670     RegVT = *RC->vt_begin();
5671     if (OpInfo.ConstraintVT == MVT::Other)
5672       ValueVT = RegVT;
5673 
5674     // Create the appropriate number of virtual registers.
5675     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5676     for (; NumRegs; --NumRegs)
5677       Regs.push_back(RegInfo.createVirtualRegister(RC));
5678 
5679     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5680     return;
5681   }
5682 
5683   // Otherwise, we couldn't allocate enough registers for this.
5684 }
5685 
5686 /// visitInlineAsm - Handle a call to an InlineAsm object.
5687 ///
5688 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5689   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5690 
5691   /// ConstraintOperands - Information about all of the constraints.
5692   SDISelAsmOperandInfoVector ConstraintOperands;
5693 
5694   std::set<unsigned> OutputRegs, InputRegs;
5695 
5696   TargetLowering::AsmOperandInfoVector
5697     TargetConstraints = TLI.ParseConstraints(CS);
5698 
5699   bool hasMemory = false;
5700 
5701   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5702   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5703   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5704     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5705     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5706 
5707     EVT OpVT = MVT::Other;
5708 
5709     // Compute the value type for each operand.
5710     switch (OpInfo.Type) {
5711     case InlineAsm::isOutput:
5712       // Indirect outputs just consume an argument.
5713       if (OpInfo.isIndirect) {
5714         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5715         break;
5716       }
5717 
5718       // The return value of the call is this value.  As such, there is no
5719       // corresponding argument.
5720       assert(!CS.getType()->isVoidTy() &&
5721              "Bad inline asm!");
5722       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5723         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5724       } else {
5725         assert(ResNo == 0 && "Asm only has one result!");
5726         OpVT = TLI.getValueType(CS.getType());
5727       }
5728       ++ResNo;
5729       break;
5730     case InlineAsm::isInput:
5731       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5732       break;
5733     case InlineAsm::isClobber:
5734       // Nothing to do.
5735       break;
5736     }
5737 
5738     // If this is an input or an indirect output, process the call argument.
5739     // BasicBlocks are labels, currently appearing only in asm's.
5740     if (OpInfo.CallOperandVal) {
5741       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5742         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5743       } else {
5744         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5745       }
5746 
5747       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5748     }
5749 
5750     OpInfo.ConstraintVT = OpVT;
5751 
5752     // Indirect operand accesses access memory.
5753     if (OpInfo.isIndirect)
5754       hasMemory = true;
5755     else {
5756       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5757         TargetLowering::ConstraintType
5758           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5759         if (CType == TargetLowering::C_Memory) {
5760           hasMemory = true;
5761           break;
5762         }
5763       }
5764     }
5765   }
5766 
5767   SDValue Chain, Flag;
5768 
5769   // We won't need to flush pending loads if this asm doesn't touch
5770   // memory and is nonvolatile.
5771   if (hasMemory || IA->hasSideEffects())
5772     Chain = getRoot();
5773   else
5774     Chain = DAG.getRoot();
5775 
5776   // Second pass over the constraints: compute which constraint option to use
5777   // and assign registers to constraints that want a specific physreg.
5778   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5779     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5780 
5781     // If this is an output operand with a matching input operand, look up the
5782     // matching input. If their types mismatch, e.g. one is an integer, the
5783     // other is floating point, or their sizes are different, flag it as an
5784     // error.
5785     if (OpInfo.hasMatchingInput()) {
5786       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5787 
5788       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5789 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5790 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5791 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5792 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5793         if ((OpInfo.ConstraintVT.isInteger() !=
5794              Input.ConstraintVT.isInteger()) ||
5795             (MatchRC.second != InputRC.second)) {
5796           report_fatal_error("Unsupported asm: input constraint"
5797                              " with a matching output constraint of"
5798                              " incompatible type!");
5799         }
5800         Input.ConstraintVT = OpInfo.ConstraintVT;
5801       }
5802     }
5803 
5804     // Compute the constraint code and ConstraintType to use.
5805     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5806 
5807     // If this is a memory input, and if the operand is not indirect, do what we
5808     // need to to provide an address for the memory input.
5809     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5810         !OpInfo.isIndirect) {
5811       assert((OpInfo.isMultipleAlternative ||
5812               (OpInfo.Type == InlineAsm::isInput)) &&
5813              "Can only indirectify direct input operands!");
5814 
5815       // Memory operands really want the address of the value.  If we don't have
5816       // an indirect input, put it in the constpool if we can, otherwise spill
5817       // it to a stack slot.
5818       // TODO: This isn't quite right. We need to handle these according to
5819       // the addressing mode that the constraint wants. Also, this may take
5820       // an additional register for the computation and we don't want that
5821       // either.
5822 
5823       // If the operand is a float, integer, or vector constant, spill to a
5824       // constant pool entry to get its address.
5825       const Value *OpVal = OpInfo.CallOperandVal;
5826       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5827           isa<ConstantVector>(OpVal)) {
5828         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5829                                                  TLI.getPointerTy());
5830       } else {
5831         // Otherwise, create a stack slot and emit a store to it before the
5832         // asm.
5833         Type *Ty = OpVal->getType();
5834         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5835         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5836         MachineFunction &MF = DAG.getMachineFunction();
5837         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5838         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5839         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5840                              OpInfo.CallOperand, StackSlot,
5841                              MachinePointerInfo::getFixedStack(SSFI),
5842                              false, false, 0);
5843         OpInfo.CallOperand = StackSlot;
5844       }
5845 
5846       // There is no longer a Value* corresponding to this operand.
5847       OpInfo.CallOperandVal = 0;
5848 
5849       // It is now an indirect operand.
5850       OpInfo.isIndirect = true;
5851     }
5852 
5853     // If this constraint is for a specific register, allocate it before
5854     // anything else.
5855     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5856       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5857                            InputRegs);
5858   }
5859 
5860   // Second pass - Loop over all of the operands, assigning virtual or physregs
5861   // to register class operands.
5862   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5863     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5864 
5865     // C_Register operands have already been allocated, Other/Memory don't need
5866     // to be.
5867     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5868       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5869                            InputRegs);
5870   }
5871 
5872   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5873   std::vector<SDValue> AsmNodeOperands;
5874   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5875   AsmNodeOperands.push_back(
5876           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5877                                       TLI.getPointerTy()));
5878 
5879   // If we have a !srcloc metadata node associated with it, we want to attach
5880   // this to the ultimately generated inline asm machineinstr.  To do this, we
5881   // pass in the third operand as this (potentially null) inline asm MDNode.
5882   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5883   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5884 
5885   // Remember the HasSideEffect and AlignStack bits as operand 3.
5886   unsigned ExtraInfo = 0;
5887   if (IA->hasSideEffects())
5888     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5889   if (IA->isAlignStack())
5890     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5891   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5892                                                   TLI.getPointerTy()));
5893 
5894   // Loop over all of the inputs, copying the operand values into the
5895   // appropriate registers and processing the output regs.
5896   RegsForValue RetValRegs;
5897 
5898   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5899   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5900 
5901   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5902     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5903 
5904     switch (OpInfo.Type) {
5905     case InlineAsm::isOutput: {
5906       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5907           OpInfo.ConstraintType != TargetLowering::C_Register) {
5908         // Memory output, or 'other' output (e.g. 'X' constraint).
5909         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5910 
5911         // Add information to the INLINEASM node to know about this output.
5912         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5913         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5914                                                         TLI.getPointerTy()));
5915         AsmNodeOperands.push_back(OpInfo.CallOperand);
5916         break;
5917       }
5918 
5919       // Otherwise, this is a register or register class output.
5920 
5921       // Copy the output from the appropriate register.  Find a register that
5922       // we can use.
5923       if (OpInfo.AssignedRegs.Regs.empty())
5924         report_fatal_error("Couldn't allocate output reg for constraint '" +
5925                            Twine(OpInfo.ConstraintCode) + "'!");
5926 
5927       // If this is an indirect operand, store through the pointer after the
5928       // asm.
5929       if (OpInfo.isIndirect) {
5930         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5931                                                       OpInfo.CallOperandVal));
5932       } else {
5933         // This is the result value of the call.
5934         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5935         // Concatenate this output onto the outputs list.
5936         RetValRegs.append(OpInfo.AssignedRegs);
5937       }
5938 
5939       // Add information to the INLINEASM node to know that this register is
5940       // set.
5941       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5942                                            InlineAsm::Kind_RegDefEarlyClobber :
5943                                                InlineAsm::Kind_RegDef,
5944                                                false,
5945                                                0,
5946                                                DAG,
5947                                                AsmNodeOperands);
5948       break;
5949     }
5950     case InlineAsm::isInput: {
5951       SDValue InOperandVal = OpInfo.CallOperand;
5952 
5953       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5954         // If this is required to match an output register we have already set,
5955         // just use its register.
5956         unsigned OperandNo = OpInfo.getMatchedOperand();
5957 
5958         // Scan until we find the definition we already emitted of this operand.
5959         // When we find it, create a RegsForValue operand.
5960         unsigned CurOp = InlineAsm::Op_FirstOperand;
5961         for (; OperandNo; --OperandNo) {
5962           // Advance to the next operand.
5963           unsigned OpFlag =
5964             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5965           assert((InlineAsm::isRegDefKind(OpFlag) ||
5966                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5967                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5968           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5969         }
5970 
5971         unsigned OpFlag =
5972           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5973         if (InlineAsm::isRegDefKind(OpFlag) ||
5974             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5975           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5976           if (OpInfo.isIndirect) {
5977             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5978             LLVMContext &Ctx = *DAG.getContext();
5979             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5980                           " don't know how to handle tied "
5981                           "indirect register inputs");
5982           }
5983 
5984           RegsForValue MatchedRegs;
5985           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5986           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5987           MatchedRegs.RegVTs.push_back(RegVT);
5988           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5989           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5990                i != e; ++i)
5991             MatchedRegs.Regs.push_back
5992               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5993 
5994           // Use the produced MatchedRegs object to
5995           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5996                                     Chain, &Flag);
5997           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5998                                            true, OpInfo.getMatchedOperand(),
5999                                            DAG, AsmNodeOperands);
6000           break;
6001         }
6002 
6003         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6004         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6005                "Unexpected number of operands");
6006         // Add information to the INLINEASM node to know about this input.
6007         // See InlineAsm.h isUseOperandTiedToDef.
6008         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6009                                                     OpInfo.getMatchedOperand());
6010         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6011                                                         TLI.getPointerTy()));
6012         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6013         break;
6014       }
6015 
6016       // Treat indirect 'X' constraint as memory.
6017       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6018           OpInfo.isIndirect)
6019         OpInfo.ConstraintType = TargetLowering::C_Memory;
6020 
6021       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6022         std::vector<SDValue> Ops;
6023         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6024                                          Ops, DAG);
6025         if (Ops.empty())
6026           report_fatal_error("Invalid operand for inline asm constraint '" +
6027                              Twine(OpInfo.ConstraintCode) + "'!");
6028 
6029         // Add information to the INLINEASM node to know about this input.
6030         unsigned ResOpType =
6031           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6032         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6033                                                         TLI.getPointerTy()));
6034         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6035         break;
6036       }
6037 
6038       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6039         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6040         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6041                "Memory operands expect pointer values");
6042 
6043         // Add information to the INLINEASM node to know about this input.
6044         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6045         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6046                                                         TLI.getPointerTy()));
6047         AsmNodeOperands.push_back(InOperandVal);
6048         break;
6049       }
6050 
6051       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6052               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6053              "Unknown constraint type!");
6054       assert(!OpInfo.isIndirect &&
6055              "Don't know how to handle indirect register inputs yet!");
6056 
6057       // Copy the input into the appropriate registers.
6058       if (OpInfo.AssignedRegs.Regs.empty())
6059         report_fatal_error("Couldn't allocate input reg for constraint '" +
6060                            Twine(OpInfo.ConstraintCode) + "'!");
6061 
6062       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6063                                         Chain, &Flag);
6064 
6065       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6066                                                DAG, AsmNodeOperands);
6067       break;
6068     }
6069     case InlineAsm::isClobber: {
6070       // Add the clobbered value to the operand list, so that the register
6071       // allocator is aware that the physreg got clobbered.
6072       if (!OpInfo.AssignedRegs.Regs.empty())
6073         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6074                                                  false, 0, DAG,
6075                                                  AsmNodeOperands);
6076       break;
6077     }
6078     }
6079   }
6080 
6081   // Finish up input operands.  Set the input chain and add the flag last.
6082   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6083   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6084 
6085   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6086                       DAG.getVTList(MVT::Other, MVT::Glue),
6087                       &AsmNodeOperands[0], AsmNodeOperands.size());
6088   Flag = Chain.getValue(1);
6089 
6090   // If this asm returns a register value, copy the result from that register
6091   // and set it as the value of the call.
6092   if (!RetValRegs.Regs.empty()) {
6093     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6094                                              Chain, &Flag);
6095 
6096     // FIXME: Why don't we do this for inline asms with MRVs?
6097     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6098       EVT ResultType = TLI.getValueType(CS.getType());
6099 
6100       // If any of the results of the inline asm is a vector, it may have the
6101       // wrong width/num elts.  This can happen for register classes that can
6102       // contain multiple different value types.  The preg or vreg allocated may
6103       // not have the same VT as was expected.  Convert it to the right type
6104       // with bit_convert.
6105       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6106         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6107                           ResultType, Val);
6108 
6109       } else if (ResultType != Val.getValueType() &&
6110                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6111         // If a result value was tied to an input value, the computed result may
6112         // have a wider width than the expected result.  Extract the relevant
6113         // portion.
6114         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6115       }
6116 
6117       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6118     }
6119 
6120     setValue(CS.getInstruction(), Val);
6121     // Don't need to use this as a chain in this case.
6122     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6123       return;
6124   }
6125 
6126   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6127 
6128   // Process indirect outputs, first output all of the flagged copies out of
6129   // physregs.
6130   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6131     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6132     const Value *Ptr = IndirectStoresToEmit[i].second;
6133     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6134                                              Chain, &Flag);
6135     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6136   }
6137 
6138   // Emit the non-flagged stores from the physregs.
6139   SmallVector<SDValue, 8> OutChains;
6140   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6141     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6142                                StoresToEmit[i].first,
6143                                getValue(StoresToEmit[i].second),
6144                                MachinePointerInfo(StoresToEmit[i].second),
6145                                false, false, 0);
6146     OutChains.push_back(Val);
6147   }
6148 
6149   if (!OutChains.empty())
6150     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6151                         &OutChains[0], OutChains.size());
6152 
6153   DAG.setRoot(Chain);
6154 }
6155 
6156 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6157   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6158                           MVT::Other, getRoot(),
6159                           getValue(I.getArgOperand(0)),
6160                           DAG.getSrcValue(I.getArgOperand(0))));
6161 }
6162 
6163 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6164   const TargetData &TD = *TLI.getTargetData();
6165   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6166                            getRoot(), getValue(I.getOperand(0)),
6167                            DAG.getSrcValue(I.getOperand(0)),
6168                            TD.getABITypeAlignment(I.getType()));
6169   setValue(&I, V);
6170   DAG.setRoot(V.getValue(1));
6171 }
6172 
6173 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6174   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6175                           MVT::Other, getRoot(),
6176                           getValue(I.getArgOperand(0)),
6177                           DAG.getSrcValue(I.getArgOperand(0))));
6178 }
6179 
6180 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6181   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6182                           MVT::Other, getRoot(),
6183                           getValue(I.getArgOperand(0)),
6184                           getValue(I.getArgOperand(1)),
6185                           DAG.getSrcValue(I.getArgOperand(0)),
6186                           DAG.getSrcValue(I.getArgOperand(1))));
6187 }
6188 
6189 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6190 /// implementation, which just calls LowerCall.
6191 /// FIXME: When all targets are
6192 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6193 std::pair<SDValue, SDValue>
6194 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6195                             bool RetSExt, bool RetZExt, bool isVarArg,
6196                             bool isInreg, unsigned NumFixedArgs,
6197                             CallingConv::ID CallConv, bool isTailCall,
6198                             bool isReturnValueUsed,
6199                             SDValue Callee,
6200                             ArgListTy &Args, SelectionDAG &DAG,
6201                             DebugLoc dl) const {
6202   // Handle all of the outgoing arguments.
6203   SmallVector<ISD::OutputArg, 32> Outs;
6204   SmallVector<SDValue, 32> OutVals;
6205   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6206     SmallVector<EVT, 4> ValueVTs;
6207     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6208     for (unsigned Value = 0, NumValues = ValueVTs.size();
6209          Value != NumValues; ++Value) {
6210       EVT VT = ValueVTs[Value];
6211       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6212       SDValue Op = SDValue(Args[i].Node.getNode(),
6213                            Args[i].Node.getResNo() + Value);
6214       ISD::ArgFlagsTy Flags;
6215       unsigned OriginalAlignment =
6216         getTargetData()->getABITypeAlignment(ArgTy);
6217 
6218       if (Args[i].isZExt)
6219         Flags.setZExt();
6220       if (Args[i].isSExt)
6221         Flags.setSExt();
6222       if (Args[i].isInReg)
6223         Flags.setInReg();
6224       if (Args[i].isSRet)
6225         Flags.setSRet();
6226       if (Args[i].isByVal) {
6227         Flags.setByVal();
6228         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6229         Type *ElementTy = Ty->getElementType();
6230         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6231         // For ByVal, alignment should come from FE.  BE will guess if this
6232         // info is not there but there are cases it cannot get right.
6233         unsigned FrameAlign;
6234         if (Args[i].Alignment)
6235           FrameAlign = Args[i].Alignment;
6236         else
6237           FrameAlign = getByValTypeAlignment(ElementTy);
6238         Flags.setByValAlign(FrameAlign);
6239       }
6240       if (Args[i].isNest)
6241         Flags.setNest();
6242       Flags.setOrigAlign(OriginalAlignment);
6243 
6244       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6245       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6246       SmallVector<SDValue, 4> Parts(NumParts);
6247       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6248 
6249       if (Args[i].isSExt)
6250         ExtendKind = ISD::SIGN_EXTEND;
6251       else if (Args[i].isZExt)
6252         ExtendKind = ISD::ZERO_EXTEND;
6253 
6254       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6255                      PartVT, ExtendKind);
6256 
6257       for (unsigned j = 0; j != NumParts; ++j) {
6258         // if it isn't first piece, alignment must be 1
6259         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6260                                i < NumFixedArgs);
6261         if (NumParts > 1 && j == 0)
6262           MyFlags.Flags.setSplit();
6263         else if (j != 0)
6264           MyFlags.Flags.setOrigAlign(1);
6265 
6266         Outs.push_back(MyFlags);
6267         OutVals.push_back(Parts[j]);
6268       }
6269     }
6270   }
6271 
6272   // Handle the incoming return values from the call.
6273   SmallVector<ISD::InputArg, 32> Ins;
6274   SmallVector<EVT, 4> RetTys;
6275   ComputeValueVTs(*this, RetTy, RetTys);
6276   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6277     EVT VT = RetTys[I];
6278     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6279     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6280     for (unsigned i = 0; i != NumRegs; ++i) {
6281       ISD::InputArg MyFlags;
6282       MyFlags.VT = RegisterVT.getSimpleVT();
6283       MyFlags.Used = isReturnValueUsed;
6284       if (RetSExt)
6285         MyFlags.Flags.setSExt();
6286       if (RetZExt)
6287         MyFlags.Flags.setZExt();
6288       if (isInreg)
6289         MyFlags.Flags.setInReg();
6290       Ins.push_back(MyFlags);
6291     }
6292   }
6293 
6294   SmallVector<SDValue, 4> InVals;
6295   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6296                     Outs, OutVals, Ins, dl, DAG, InVals);
6297 
6298   // Verify that the target's LowerCall behaved as expected.
6299   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6300          "LowerCall didn't return a valid chain!");
6301   assert((!isTailCall || InVals.empty()) &&
6302          "LowerCall emitted a return value for a tail call!");
6303   assert((isTailCall || InVals.size() == Ins.size()) &&
6304          "LowerCall didn't emit the correct number of values!");
6305 
6306   // For a tail call, the return value is merely live-out and there aren't
6307   // any nodes in the DAG representing it. Return a special value to
6308   // indicate that a tail call has been emitted and no more Instructions
6309   // should be processed in the current block.
6310   if (isTailCall) {
6311     DAG.setRoot(Chain);
6312     return std::make_pair(SDValue(), SDValue());
6313   }
6314 
6315   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6316           assert(InVals[i].getNode() &&
6317                  "LowerCall emitted a null value!");
6318           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6319                  "LowerCall emitted a value with the wrong type!");
6320         });
6321 
6322   // Collect the legal value parts into potentially illegal values
6323   // that correspond to the original function's return values.
6324   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6325   if (RetSExt)
6326     AssertOp = ISD::AssertSext;
6327   else if (RetZExt)
6328     AssertOp = ISD::AssertZext;
6329   SmallVector<SDValue, 4> ReturnValues;
6330   unsigned CurReg = 0;
6331   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6332     EVT VT = RetTys[I];
6333     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6334     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6335 
6336     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6337                                             NumRegs, RegisterVT, VT,
6338                                             AssertOp));
6339     CurReg += NumRegs;
6340   }
6341 
6342   // For a function returning void, there is no return value. We can't create
6343   // such a node, so we just return a null return value in that case. In
6344   // that case, nothing will actually look at the value.
6345   if (ReturnValues.empty())
6346     return std::make_pair(SDValue(), Chain);
6347 
6348   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6349                             DAG.getVTList(&RetTys[0], RetTys.size()),
6350                             &ReturnValues[0], ReturnValues.size());
6351   return std::make_pair(Res, Chain);
6352 }
6353 
6354 void TargetLowering::LowerOperationWrapper(SDNode *N,
6355                                            SmallVectorImpl<SDValue> &Results,
6356                                            SelectionDAG &DAG) const {
6357   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6358   if (Res.getNode())
6359     Results.push_back(Res);
6360 }
6361 
6362 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6363   llvm_unreachable("LowerOperation not implemented for this target!");
6364   return SDValue();
6365 }
6366 
6367 void
6368 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6369   SDValue Op = getNonRegisterValue(V);
6370   assert((Op.getOpcode() != ISD::CopyFromReg ||
6371           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6372          "Copy from a reg to the same reg!");
6373   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6374 
6375   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6376   SDValue Chain = DAG.getEntryNode();
6377   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6378   PendingExports.push_back(Chain);
6379 }
6380 
6381 #include "llvm/CodeGen/SelectionDAGISel.h"
6382 
6383 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6384 /// entry block, return true.  This includes arguments used by switches, since
6385 /// the switch may expand into multiple basic blocks.
6386 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6387   // With FastISel active, we may be splitting blocks, so force creation
6388   // of virtual registers for all non-dead arguments.
6389   if (EnableFastISel)
6390     return A->use_empty();
6391 
6392   const BasicBlock *Entry = A->getParent()->begin();
6393   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6394        UI != E; ++UI) {
6395     const User *U = *UI;
6396     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6397       return false;  // Use not in entry block.
6398   }
6399   return true;
6400 }
6401 
6402 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6403   // If this is the entry block, emit arguments.
6404   const Function &F = *LLVMBB->getParent();
6405   SelectionDAG &DAG = SDB->DAG;
6406   DebugLoc dl = SDB->getCurDebugLoc();
6407   const TargetData *TD = TLI.getTargetData();
6408   SmallVector<ISD::InputArg, 16> Ins;
6409 
6410   // Check whether the function can return without sret-demotion.
6411   SmallVector<ISD::OutputArg, 4> Outs;
6412   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6413                 Outs, TLI);
6414 
6415   if (!FuncInfo->CanLowerReturn) {
6416     // Put in an sret pointer parameter before all the other parameters.
6417     SmallVector<EVT, 1> ValueVTs;
6418     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6419 
6420     // NOTE: Assuming that a pointer will never break down to more than one VT
6421     // or one register.
6422     ISD::ArgFlagsTy Flags;
6423     Flags.setSRet();
6424     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6425     ISD::InputArg RetArg(Flags, RegisterVT, true);
6426     Ins.push_back(RetArg);
6427   }
6428 
6429   // Set up the incoming argument description vector.
6430   unsigned Idx = 1;
6431   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6432        I != E; ++I, ++Idx) {
6433     SmallVector<EVT, 4> ValueVTs;
6434     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6435     bool isArgValueUsed = !I->use_empty();
6436     for (unsigned Value = 0, NumValues = ValueVTs.size();
6437          Value != NumValues; ++Value) {
6438       EVT VT = ValueVTs[Value];
6439       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6440       ISD::ArgFlagsTy Flags;
6441       unsigned OriginalAlignment =
6442         TD->getABITypeAlignment(ArgTy);
6443 
6444       if (F.paramHasAttr(Idx, Attribute::ZExt))
6445         Flags.setZExt();
6446       if (F.paramHasAttr(Idx, Attribute::SExt))
6447         Flags.setSExt();
6448       if (F.paramHasAttr(Idx, Attribute::InReg))
6449         Flags.setInReg();
6450       if (F.paramHasAttr(Idx, Attribute::StructRet))
6451         Flags.setSRet();
6452       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6453         Flags.setByVal();
6454         PointerType *Ty = cast<PointerType>(I->getType());
6455         Type *ElementTy = Ty->getElementType();
6456         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6457         // For ByVal, alignment should be passed from FE.  BE will guess if
6458         // this info is not there but there are cases it cannot get right.
6459         unsigned FrameAlign;
6460         if (F.getParamAlignment(Idx))
6461           FrameAlign = F.getParamAlignment(Idx);
6462         else
6463           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6464         Flags.setByValAlign(FrameAlign);
6465       }
6466       if (F.paramHasAttr(Idx, Attribute::Nest))
6467         Flags.setNest();
6468       Flags.setOrigAlign(OriginalAlignment);
6469 
6470       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6471       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6472       for (unsigned i = 0; i != NumRegs; ++i) {
6473         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6474         if (NumRegs > 1 && i == 0)
6475           MyFlags.Flags.setSplit();
6476         // if it isn't first piece, alignment must be 1
6477         else if (i > 0)
6478           MyFlags.Flags.setOrigAlign(1);
6479         Ins.push_back(MyFlags);
6480       }
6481     }
6482   }
6483 
6484   // Call the target to set up the argument values.
6485   SmallVector<SDValue, 8> InVals;
6486   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6487                                              F.isVarArg(), Ins,
6488                                              dl, DAG, InVals);
6489 
6490   // Verify that the target's LowerFormalArguments behaved as expected.
6491   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6492          "LowerFormalArguments didn't return a valid chain!");
6493   assert(InVals.size() == Ins.size() &&
6494          "LowerFormalArguments didn't emit the correct number of values!");
6495   DEBUG({
6496       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6497         assert(InVals[i].getNode() &&
6498                "LowerFormalArguments emitted a null value!");
6499         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6500                "LowerFormalArguments emitted a value with the wrong type!");
6501       }
6502     });
6503 
6504   // Update the DAG with the new chain value resulting from argument lowering.
6505   DAG.setRoot(NewRoot);
6506 
6507   // Set up the argument values.
6508   unsigned i = 0;
6509   Idx = 1;
6510   if (!FuncInfo->CanLowerReturn) {
6511     // Create a virtual register for the sret pointer, and put in a copy
6512     // from the sret argument into it.
6513     SmallVector<EVT, 1> ValueVTs;
6514     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6515     EVT VT = ValueVTs[0];
6516     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6517     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6518     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6519                                         RegVT, VT, AssertOp);
6520 
6521     MachineFunction& MF = SDB->DAG.getMachineFunction();
6522     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6523     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6524     FuncInfo->DemoteRegister = SRetReg;
6525     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6526                                     SRetReg, ArgValue);
6527     DAG.setRoot(NewRoot);
6528 
6529     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6530     // Idx indexes LLVM arguments.  Don't touch it.
6531     ++i;
6532   }
6533 
6534   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6535       ++I, ++Idx) {
6536     SmallVector<SDValue, 4> ArgValues;
6537     SmallVector<EVT, 4> ValueVTs;
6538     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6539     unsigned NumValues = ValueVTs.size();
6540 
6541     // If this argument is unused then remember its value. It is used to generate
6542     // debugging information.
6543     if (I->use_empty() && NumValues)
6544       SDB->setUnusedArgValue(I, InVals[i]);
6545 
6546     for (unsigned Val = 0; Val != NumValues; ++Val) {
6547       EVT VT = ValueVTs[Val];
6548       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6549       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6550 
6551       if (!I->use_empty()) {
6552         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6553         if (F.paramHasAttr(Idx, Attribute::SExt))
6554           AssertOp = ISD::AssertSext;
6555         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6556           AssertOp = ISD::AssertZext;
6557 
6558         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6559                                              NumParts, PartVT, VT,
6560                                              AssertOp));
6561       }
6562 
6563       i += NumParts;
6564     }
6565 
6566     // We don't need to do anything else for unused arguments.
6567     if (ArgValues.empty())
6568       continue;
6569 
6570     // Note down frame index for byval arguments.
6571     if (I->hasByValAttr())
6572       if (FrameIndexSDNode *FI =
6573           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6574         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6575 
6576     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6577                                      SDB->getCurDebugLoc());
6578     SDB->setValue(I, Res);
6579 
6580     // If this argument is live outside of the entry block, insert a copy from
6581     // wherever we got it to the vreg that other BB's will reference it as.
6582     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6583       // If we can, though, try to skip creating an unnecessary vreg.
6584       // FIXME: This isn't very clean... it would be nice to make this more
6585       // general.  It's also subtly incompatible with the hacks FastISel
6586       // uses with vregs.
6587       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6588       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6589         FuncInfo->ValueMap[I] = Reg;
6590         continue;
6591       }
6592     }
6593     if (!isOnlyUsedInEntryBlock(I)) {
6594       FuncInfo->InitializeRegForValue(I);
6595       SDB->CopyToExportRegsIfNeeded(I);
6596     }
6597   }
6598 
6599   assert(i == InVals.size() && "Argument register count mismatch!");
6600 
6601   // Finally, if the target has anything special to do, allow it to do so.
6602   // FIXME: this should insert code into the DAG!
6603   EmitFunctionEntryCode();
6604 }
6605 
6606 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6607 /// ensure constants are generated when needed.  Remember the virtual registers
6608 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6609 /// directly add them, because expansion might result in multiple MBB's for one
6610 /// BB.  As such, the start of the BB might correspond to a different MBB than
6611 /// the end.
6612 ///
6613 void
6614 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6615   const TerminatorInst *TI = LLVMBB->getTerminator();
6616 
6617   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6618 
6619   // Check successor nodes' PHI nodes that expect a constant to be available
6620   // from this block.
6621   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6622     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6623     if (!isa<PHINode>(SuccBB->begin())) continue;
6624     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6625 
6626     // If this terminator has multiple identical successors (common for
6627     // switches), only handle each succ once.
6628     if (!SuccsHandled.insert(SuccMBB)) continue;
6629 
6630     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6631 
6632     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6633     // nodes and Machine PHI nodes, but the incoming operands have not been
6634     // emitted yet.
6635     for (BasicBlock::const_iterator I = SuccBB->begin();
6636          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6637       // Ignore dead phi's.
6638       if (PN->use_empty()) continue;
6639 
6640       // Skip empty types
6641       if (PN->getType()->isEmptyTy())
6642         continue;
6643 
6644       unsigned Reg;
6645       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6646 
6647       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6648         unsigned &RegOut = ConstantsOut[C];
6649         if (RegOut == 0) {
6650           RegOut = FuncInfo.CreateRegs(C->getType());
6651           CopyValueToVirtualRegister(C, RegOut);
6652         }
6653         Reg = RegOut;
6654       } else {
6655         DenseMap<const Value *, unsigned>::iterator I =
6656           FuncInfo.ValueMap.find(PHIOp);
6657         if (I != FuncInfo.ValueMap.end())
6658           Reg = I->second;
6659         else {
6660           assert(isa<AllocaInst>(PHIOp) &&
6661                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6662                  "Didn't codegen value into a register!??");
6663           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6664           CopyValueToVirtualRegister(PHIOp, Reg);
6665         }
6666       }
6667 
6668       // Remember that this register needs to added to the machine PHI node as
6669       // the input for this MBB.
6670       SmallVector<EVT, 4> ValueVTs;
6671       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6672       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6673         EVT VT = ValueVTs[vti];
6674         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6675         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6676           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6677         Reg += NumRegisters;
6678       }
6679     }
6680   }
6681   ConstantsOut.clear();
6682 }
6683