1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 650 SDValue &Chain, SDValue *Flag, const Value *V) const; 651 652 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 653 /// operand list. This adds the code marker, matching input operand index 654 /// (if applicable), and includes the number of values added into it. 655 void AddInlineAsmOperands(unsigned Kind, 656 bool HasMatching, unsigned MatchingIdx, 657 SelectionDAG &DAG, 658 std::vector<SDValue> &Ops) const; 659 }; 660 } 661 662 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 663 /// this value and returns the result as a ValueVT value. This uses 664 /// Chain/Flag as the input and updates them for the output Chain/Flag. 665 /// If the Flag pointer is NULL, no flag is used. 666 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 667 FunctionLoweringInfo &FuncInfo, 668 SDLoc dl, 669 SDValue &Chain, SDValue *Flag, 670 const Value *V) const { 671 // A Value with type {} or [0 x %t] needs no registers. 672 if (ValueVTs.empty()) 673 return SDValue(); 674 675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 676 677 // Assemble the legal parts into the final values. 678 SmallVector<SDValue, 4> Values(ValueVTs.size()); 679 SmallVector<SDValue, 8> Parts; 680 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 681 // Copy the legal parts from the registers. 682 EVT ValueVT = ValueVTs[Value]; 683 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 684 MVT RegisterVT = RegVTs[Value]; 685 686 Parts.resize(NumRegs); 687 for (unsigned i = 0; i != NumRegs; ++i) { 688 SDValue P; 689 if (!Flag) { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 691 } else { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 693 *Flag = P.getValue(2); 694 } 695 696 Chain = P.getValue(1); 697 Parts[i] = P; 698 699 // If the source register was virtual and if we know something about it, 700 // add an assert node. 701 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 702 !RegisterVT.isInteger() || RegisterVT.isVector()) 703 continue; 704 705 const FunctionLoweringInfo::LiveOutInfo *LOI = 706 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 707 if (!LOI) 708 continue; 709 710 unsigned RegSize = RegisterVT.getSizeInBits(); 711 unsigned NumSignBits = LOI->NumSignBits; 712 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 713 714 if (NumZeroBits == RegSize) { 715 // The current value is a zero. 716 // Explicitly express that as it would be easier for 717 // optimizations to kick in. 718 Parts[i] = DAG.getConstant(0, RegisterVT); 719 continue; 720 } 721 722 // FIXME: We capture more information than the dag can represent. For 723 // now, just use the tightest assertzext/assertsext possible. 724 bool isSExt = true; 725 EVT FromVT(MVT::Other); 726 if (NumSignBits == RegSize) 727 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 728 else if (NumZeroBits >= RegSize-1) 729 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 730 else if (NumSignBits > RegSize-8) 731 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 732 else if (NumZeroBits >= RegSize-8) 733 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 734 else if (NumSignBits > RegSize-16) 735 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 736 else if (NumZeroBits >= RegSize-16) 737 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 738 else if (NumSignBits > RegSize-32) 739 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 740 else if (NumZeroBits >= RegSize-32) 741 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 742 else 743 continue; 744 745 // Add an assertion node. 746 assert(FromVT != MVT::Other); 747 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 748 RegisterVT, P, DAG.getValueType(FromVT)); 749 } 750 751 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 752 NumRegs, RegisterVT, ValueVT, V); 753 Part += NumRegs; 754 Parts.clear(); 755 } 756 757 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 758 } 759 760 static ISD::NodeType getPreferredExtendForValue(const Value *V) { 761 // For the users of the source value being used for compare instruction, if 762 // the number of signed predicate is greater than unsigned predicate, we 763 // prefer to use SIGN_EXTEND. 764 // 765 // With this optimization, we would be able to reduce some redundant sign or 766 // zero extension instruction, and eventually more machine CSE opportunities 767 // can be exposed. 768 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 769 unsigned int NumOfSigned = 0, NumOfUnsigned = 0; 770 for (const User *U : V->users()) { 771 if (const CmpInst *CI = dyn_cast<CmpInst>(U)) { 772 NumOfSigned += CI->isSigned(); 773 NumOfUnsigned += CI->isUnsigned(); 774 } 775 } 776 if (NumOfSigned > NumOfUnsigned) 777 ExtendKind = ISD::SIGN_EXTEND; 778 779 return ExtendKind; 780 } 781 782 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 783 /// specified value into the registers specified by this object. This uses 784 /// Chain/Flag as the input and updates them for the output Chain/Flag. 785 /// If the Flag pointer is NULL, no flag is used. 786 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 787 SDValue &Chain, SDValue *Flag, 788 const Value *V) const { 789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 790 ISD::NodeType ExtendKind = getPreferredExtendForValue(V); 791 792 // Get the list of the values's legal parts. 793 unsigned NumRegs = Regs.size(); 794 SmallVector<SDValue, 8> Parts(NumRegs); 795 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 796 EVT ValueVT = ValueVTs[Value]; 797 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 798 MVT RegisterVT = RegVTs[Value]; 799 800 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 801 ExtendKind = ISD::ZERO_EXTEND; 802 803 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 804 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 805 Part += NumParts; 806 } 807 808 // Copy the parts into the registers. 809 SmallVector<SDValue, 8> Chains(NumRegs); 810 for (unsigned i = 0; i != NumRegs; ++i) { 811 SDValue Part; 812 if (!Flag) { 813 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 814 } else { 815 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 816 *Flag = Part.getValue(1); 817 } 818 819 Chains[i] = Part.getValue(0); 820 } 821 822 if (NumRegs == 1 || Flag) 823 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 824 // flagged to it. That is the CopyToReg nodes and the user are considered 825 // a single scheduling unit. If we create a TokenFactor and return it as 826 // chain, then the TokenFactor is both a predecessor (operand) of the 827 // user as well as a successor (the TF operands are flagged to the user). 828 // c1, f1 = CopyToReg 829 // c2, f2 = CopyToReg 830 // c3 = TokenFactor c1, c2 831 // ... 832 // = op c3, ..., f2 833 Chain = Chains[NumRegs-1]; 834 else 835 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 836 } 837 838 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 839 /// operand list. This adds the code marker and includes the number of 840 /// values added into it. 841 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 842 unsigned MatchingIdx, 843 SelectionDAG &DAG, 844 std::vector<SDValue> &Ops) const { 845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 846 847 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 848 if (HasMatching) 849 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 850 else if (!Regs.empty() && 851 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 852 // Put the register class of the virtual registers in the flag word. That 853 // way, later passes can recompute register class constraints for inline 854 // assembly as well as normal instructions. 855 // Don't do this for tied operands that can use the regclass information 856 // from the def. 857 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 858 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 859 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 860 } 861 862 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 863 Ops.push_back(Res); 864 865 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 866 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 867 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 868 MVT RegisterVT = RegVTs[Value]; 869 for (unsigned i = 0; i != NumRegs; ++i) { 870 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 871 unsigned TheReg = Regs[Reg++]; 872 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 873 874 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 875 // If we clobbered the stack pointer, MFI should know about it. 876 assert(DAG.getMachineFunction().getFrameInfo()-> 877 hasInlineAsmWithSPAdjust()); 878 } 879 } 880 } 881 } 882 883 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 884 const TargetLibraryInfo *li) { 885 AA = &aa; 886 GFI = gfi; 887 LibInfo = li; 888 DL = DAG.getSubtarget().getDataLayout(); 889 Context = DAG.getContext(); 890 LPadToCallSiteMap.clear(); 891 } 892 893 /// clear - Clear out the current SelectionDAG and the associated 894 /// state and prepare this SelectionDAGBuilder object to be used 895 /// for a new block. This doesn't clear out information about 896 /// additional blocks that are needed to complete switch lowering 897 /// or PHI node updating; that information is cleared out as it is 898 /// consumed. 899 void SelectionDAGBuilder::clear() { 900 NodeMap.clear(); 901 UnusedArgNodeMap.clear(); 902 PendingLoads.clear(); 903 PendingExports.clear(); 904 CurInst = nullptr; 905 HasTailCall = false; 906 SDNodeOrder = LowestSDNodeOrder; 907 } 908 909 /// clearDanglingDebugInfo - Clear the dangling debug information 910 /// map. This function is separated from the clear so that debug 911 /// information that is dangling in a basic block can be properly 912 /// resolved in a different basic block. This allows the 913 /// SelectionDAG to resolve dangling debug information attached 914 /// to PHI nodes. 915 void SelectionDAGBuilder::clearDanglingDebugInfo() { 916 DanglingDebugInfoMap.clear(); 917 } 918 919 /// getRoot - Return the current virtual root of the Selection DAG, 920 /// flushing any PendingLoad items. This must be done before emitting 921 /// a store or any other node that may need to be ordered after any 922 /// prior load instructions. 923 /// 924 SDValue SelectionDAGBuilder::getRoot() { 925 if (PendingLoads.empty()) 926 return DAG.getRoot(); 927 928 if (PendingLoads.size() == 1) { 929 SDValue Root = PendingLoads[0]; 930 DAG.setRoot(Root); 931 PendingLoads.clear(); 932 return Root; 933 } 934 935 // Otherwise, we have to make a token factor node. 936 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 937 PendingLoads); 938 PendingLoads.clear(); 939 DAG.setRoot(Root); 940 return Root; 941 } 942 943 /// getControlRoot - Similar to getRoot, but instead of flushing all the 944 /// PendingLoad items, flush all the PendingExports items. It is necessary 945 /// to do this before emitting a terminator instruction. 946 /// 947 SDValue SelectionDAGBuilder::getControlRoot() { 948 SDValue Root = DAG.getRoot(); 949 950 if (PendingExports.empty()) 951 return Root; 952 953 // Turn all of the CopyToReg chains into one factored node. 954 if (Root.getOpcode() != ISD::EntryToken) { 955 unsigned i = 0, e = PendingExports.size(); 956 for (; i != e; ++i) { 957 assert(PendingExports[i].getNode()->getNumOperands() > 1); 958 if (PendingExports[i].getNode()->getOperand(0) == Root) 959 break; // Don't add the root if we already indirectly depend on it. 960 } 961 962 if (i == e) 963 PendingExports.push_back(Root); 964 } 965 966 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 967 PendingExports); 968 PendingExports.clear(); 969 DAG.setRoot(Root); 970 return Root; 971 } 972 973 void SelectionDAGBuilder::visit(const Instruction &I) { 974 // Set up outgoing PHI node register values before emitting the terminator. 975 if (isa<TerminatorInst>(&I)) 976 HandlePHINodesInSuccessorBlocks(I.getParent()); 977 978 ++SDNodeOrder; 979 980 CurInst = &I; 981 982 visit(I.getOpcode(), I); 983 984 if (!isa<TerminatorInst>(&I) && !HasTailCall) 985 CopyToExportRegsIfNeeded(&I); 986 987 CurInst = nullptr; 988 } 989 990 void SelectionDAGBuilder::visitPHI(const PHINode &) { 991 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 992 } 993 994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 995 // Note: this doesn't use InstVisitor, because it has to work with 996 // ConstantExpr's in addition to instructions. 997 switch (Opcode) { 998 default: llvm_unreachable("Unknown instruction type encountered!"); 999 // Build the switch statement using the Instruction.def file. 1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1001 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1002 #include "llvm/IR/Instruction.def" 1003 } 1004 } 1005 1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1007 // generate the debug data structures now that we've seen its definition. 1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1009 SDValue Val) { 1010 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1011 if (DDI.getDI()) { 1012 const DbgValueInst *DI = DDI.getDI(); 1013 DebugLoc dl = DDI.getdl(); 1014 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1015 MDNode *Variable = DI->getVariable(); 1016 uint64_t Offset = DI->getOffset(); 1017 // A dbg.value for an alloca is always indirect. 1018 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1019 SDDbgValue *SDV; 1020 if (Val.getNode()) { 1021 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 1022 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1023 Val.getResNo(), IsIndirect, 1024 Offset, dl, DbgSDNodeOrder); 1025 DAG.AddDbgValue(SDV, Val.getNode(), false); 1026 } 1027 } else 1028 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1029 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1030 } 1031 } 1032 1033 /// getValue - Return an SDValue for the given Value. 1034 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1035 // If we already have an SDValue for this value, use it. It's important 1036 // to do this first, so that we don't create a CopyFromReg if we already 1037 // have a regular SDValue. 1038 SDValue &N = NodeMap[V]; 1039 if (N.getNode()) return N; 1040 1041 // If there's a virtual register allocated and initialized for this 1042 // value, use it. 1043 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1044 if (It != FuncInfo.ValueMap.end()) { 1045 unsigned InReg = It->second; 1046 RegsForValue RFV(*DAG.getContext(), 1047 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1048 V->getType()); 1049 SDValue Chain = DAG.getEntryNode(); 1050 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1051 resolveDanglingDebugInfo(V, N); 1052 return N; 1053 } 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getNonRegisterValue - Return an SDValue for the given Value, but 1063 /// don't look in FuncInfo.ValueMap for a virtual register. 1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1065 // If we already have an SDValue for this value, use it. 1066 SDValue &N = NodeMap[V]; 1067 if (N.getNode()) return N; 1068 1069 // Otherwise create a new SDValue and remember it. 1070 SDValue Val = getValueImpl(V); 1071 NodeMap[V] = Val; 1072 resolveDanglingDebugInfo(V, Val); 1073 return Val; 1074 } 1075 1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1077 /// Create an SDValue for the given value. 1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1079 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1080 1081 if (const Constant *C = dyn_cast<Constant>(V)) { 1082 EVT VT = TLI->getValueType(V->getType(), true); 1083 1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1085 return DAG.getConstant(*CI, VT); 1086 1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1088 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1089 1090 if (isa<ConstantPointerNull>(C)) { 1091 unsigned AS = V->getType()->getPointerAddressSpace(); 1092 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1093 } 1094 1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1096 return DAG.getConstantFP(*CFP, VT); 1097 1098 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1099 return DAG.getUNDEF(VT); 1100 1101 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1102 visit(CE->getOpcode(), *CE); 1103 SDValue N1 = NodeMap[V]; 1104 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1105 return N1; 1106 } 1107 1108 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1109 SmallVector<SDValue, 4> Constants; 1110 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1111 OI != OE; ++OI) { 1112 SDNode *Val = getValue(*OI).getNode(); 1113 // If the operand is an empty aggregate, there are no values. 1114 if (!Val) continue; 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Constants.push_back(SDValue(Val, i)); 1119 } 1120 1121 return DAG.getMergeValues(Constants, getCurSDLoc()); 1122 } 1123 1124 if (const ConstantDataSequential *CDS = 1125 dyn_cast<ConstantDataSequential>(C)) { 1126 SmallVector<SDValue, 4> Ops; 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1128 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1129 // Add each leaf value from the operand to the Constants list 1130 // to form a flattened list of all the values. 1131 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1132 Ops.push_back(SDValue(Val, i)); 1133 } 1134 1135 if (isa<ArrayType>(CDS->getType())) 1136 return DAG.getMergeValues(Ops, getCurSDLoc()); 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1138 VT, Ops); 1139 } 1140 1141 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1142 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1143 "Unknown struct or array constant!"); 1144 1145 SmallVector<EVT, 4> ValueVTs; 1146 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1147 unsigned NumElts = ValueVTs.size(); 1148 if (NumElts == 0) 1149 return SDValue(); // empty struct 1150 SmallVector<SDValue, 4> Constants(NumElts); 1151 for (unsigned i = 0; i != NumElts; ++i) { 1152 EVT EltVT = ValueVTs[i]; 1153 if (isa<UndefValue>(C)) 1154 Constants[i] = DAG.getUNDEF(EltVT); 1155 else if (EltVT.isFloatingPoint()) 1156 Constants[i] = DAG.getConstantFP(0, EltVT); 1157 else 1158 Constants[i] = DAG.getConstant(0, EltVT); 1159 } 1160 1161 return DAG.getMergeValues(Constants, getCurSDLoc()); 1162 } 1163 1164 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1165 return DAG.getBlockAddress(BA, VT); 1166 1167 VectorType *VecTy = cast<VectorType>(V->getType()); 1168 unsigned NumElements = VecTy->getNumElements(); 1169 1170 // Now that we know the number and type of the elements, get that number of 1171 // elements into the Ops array based on what kind of constant it is. 1172 SmallVector<SDValue, 16> Ops; 1173 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1174 for (unsigned i = 0; i != NumElements; ++i) 1175 Ops.push_back(getValue(CV->getOperand(i))); 1176 } else { 1177 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1178 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1179 1180 SDValue Op; 1181 if (EltVT.isFloatingPoint()) 1182 Op = DAG.getConstantFP(0, EltVT); 1183 else 1184 Op = DAG.getConstant(0, EltVT); 1185 Ops.assign(NumElements, Op); 1186 } 1187 1188 // Create a BUILD_VECTOR node. 1189 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1190 } 1191 1192 // If this is a static alloca, generate it as the frameindex instead of 1193 // computation. 1194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1195 DenseMap<const AllocaInst*, int>::iterator SI = 1196 FuncInfo.StaticAllocaMap.find(AI); 1197 if (SI != FuncInfo.StaticAllocaMap.end()) 1198 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1199 } 1200 1201 // If this is an instruction which fast-isel has deferred, select it now. 1202 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1203 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1204 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1205 SDValue Chain = DAG.getEntryNode(); 1206 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1207 } 1208 1209 llvm_unreachable("Can't get register for value!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1214 SDValue Chain = getControlRoot(); 1215 SmallVector<ISD::OutputArg, 8> Outs; 1216 SmallVector<SDValue, 8> OutVals; 1217 1218 if (!FuncInfo.CanLowerReturn) { 1219 unsigned DemoteReg = FuncInfo.DemoteRegister; 1220 const Function *F = I.getParent()->getParent(); 1221 1222 // Emit a store of the return value through the virtual register. 1223 // Leave Outs empty so that LowerReturn won't try to load return 1224 // registers the usual way. 1225 SmallVector<EVT, 1> PtrValueVTs; 1226 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1227 PtrValueVTs); 1228 1229 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 1232 SmallVector<EVT, 4> ValueVTs; 1233 SmallVector<uint64_t, 4> Offsets; 1234 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1235 unsigned NumValues = ValueVTs.size(); 1236 1237 SmallVector<SDValue, 4> Chains(NumValues); 1238 for (unsigned i = 0; i != NumValues; ++i) { 1239 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1240 RetPtr.getValueType(), RetPtr, 1241 DAG.getIntPtrConstant(Offsets[i])); 1242 Chains[i] = 1243 DAG.getStore(Chain, getCurSDLoc(), 1244 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1245 // FIXME: better loc info would be nice. 1246 Add, MachinePointerInfo(), false, false, 0); 1247 } 1248 1249 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1250 MVT::Other, Chains); 1251 } else if (I.getNumOperands() != 0) { 1252 SmallVector<EVT, 4> ValueVTs; 1253 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1254 unsigned NumValues = ValueVTs.size(); 1255 if (NumValues) { 1256 SDValue RetOp = getValue(I.getOperand(0)); 1257 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1258 EVT VT = ValueVTs[j]; 1259 1260 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1261 1262 const Function *F = I.getParent()->getParent(); 1263 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1264 Attribute::SExt)) 1265 ExtendKind = ISD::SIGN_EXTEND; 1266 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::ZExt)) 1268 ExtendKind = ISD::ZERO_EXTEND; 1269 1270 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1271 VT = TLI->getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1272 1273 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1274 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1275 SmallVector<SDValue, 4> Parts(NumParts); 1276 getCopyToParts(DAG, getCurSDLoc(), 1277 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1278 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1279 1280 // 'inreg' on function refers to return value 1281 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1282 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1283 Attribute::InReg)) 1284 Flags.setInReg(); 1285 1286 // Propagate extension type if any 1287 if (ExtendKind == ISD::SIGN_EXTEND) 1288 Flags.setSExt(); 1289 else if (ExtendKind == ISD::ZERO_EXTEND) 1290 Flags.setZExt(); 1291 1292 for (unsigned i = 0; i < NumParts; ++i) { 1293 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1294 VT, /*isfixed=*/true, 0, 0)); 1295 OutVals.push_back(Parts[i]); 1296 } 1297 } 1298 } 1299 } 1300 1301 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1302 CallingConv::ID CallConv = 1303 DAG.getMachineFunction().getFunction()->getCallingConv(); 1304 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1305 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1306 1307 // Verify that the target's LowerReturn behaved as expected. 1308 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1309 "LowerReturn didn't return a valid chain!"); 1310 1311 // Update the DAG with the new chain value resulting from return lowering. 1312 DAG.setRoot(Chain); 1313 } 1314 1315 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1316 /// created for it, emit nodes to copy the value into the virtual 1317 /// registers. 1318 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1319 // Skip empty types 1320 if (V->getType()->isEmptyTy()) 1321 return; 1322 1323 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1324 if (VMI != FuncInfo.ValueMap.end()) { 1325 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1326 CopyValueToVirtualRegister(V, VMI->second); 1327 } 1328 } 1329 1330 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1331 /// the current basic block, add it to ValueMap now so that we'll get a 1332 /// CopyTo/FromReg. 1333 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1334 // No need to export constants. 1335 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1336 1337 // Already exported? 1338 if (FuncInfo.isExportedInst(V)) return; 1339 1340 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1341 CopyValueToVirtualRegister(V, Reg); 1342 } 1343 1344 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1345 const BasicBlock *FromBB) { 1346 // The operands of the setcc have to be in this block. We don't know 1347 // how to export them from some other block. 1348 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1349 // Can export from current BB. 1350 if (VI->getParent() == FromBB) 1351 return true; 1352 1353 // Is already exported, noop. 1354 return FuncInfo.isExportedInst(V); 1355 } 1356 1357 // If this is an argument, we can export it if the BB is the entry block or 1358 // if it is already exported. 1359 if (isa<Argument>(V)) { 1360 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1361 return true; 1362 1363 // Otherwise, can only export this if it is already exported. 1364 return FuncInfo.isExportedInst(V); 1365 } 1366 1367 // Otherwise, constants can always be exported. 1368 return true; 1369 } 1370 1371 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1372 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1373 const MachineBasicBlock *Dst) const { 1374 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1375 if (!BPI) 1376 return 0; 1377 const BasicBlock *SrcBB = Src->getBasicBlock(); 1378 const BasicBlock *DstBB = Dst->getBasicBlock(); 1379 return BPI->getEdgeWeight(SrcBB, DstBB); 1380 } 1381 1382 void SelectionDAGBuilder:: 1383 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1384 uint32_t Weight /* = 0 */) { 1385 if (!Weight) 1386 Weight = getEdgeWeight(Src, Dst); 1387 Src->addSuccessor(Dst, Weight); 1388 } 1389 1390 1391 static bool InBlock(const Value *V, const BasicBlock *BB) { 1392 if (const Instruction *I = dyn_cast<Instruction>(V)) 1393 return I->getParent() == BB; 1394 return true; 1395 } 1396 1397 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1398 /// This function emits a branch and is used at the leaves of an OR or an 1399 /// AND operator tree. 1400 /// 1401 void 1402 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1403 MachineBasicBlock *TBB, 1404 MachineBasicBlock *FBB, 1405 MachineBasicBlock *CurBB, 1406 MachineBasicBlock *SwitchBB, 1407 uint32_t TWeight, 1408 uint32_t FWeight) { 1409 const BasicBlock *BB = CurBB->getBasicBlock(); 1410 1411 // If the leaf of the tree is a comparison, merge the condition into 1412 // the caseblock. 1413 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1414 // The operands of the cmp have to be in this block. We don't know 1415 // how to export them from some other block. If this is the first block 1416 // of the sequence, no exporting is needed. 1417 if (CurBB == SwitchBB || 1418 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1419 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1420 ISD::CondCode Condition; 1421 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1422 Condition = getICmpCondCode(IC->getPredicate()); 1423 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1424 Condition = getFCmpCondCode(FC->getPredicate()); 1425 if (TM.Options.NoNaNsFPMath) 1426 Condition = getFCmpCodeWithoutNaN(Condition); 1427 } else { 1428 Condition = ISD::SETEQ; // silence warning. 1429 llvm_unreachable("Unknown compare instruction"); 1430 } 1431 1432 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1433 TBB, FBB, CurBB, TWeight, FWeight); 1434 SwitchCases.push_back(CB); 1435 return; 1436 } 1437 } 1438 1439 // Create a CaseBlock record representing this branch. 1440 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1441 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1442 SwitchCases.push_back(CB); 1443 } 1444 1445 /// Scale down both weights to fit into uint32_t. 1446 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1447 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1448 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1449 NewTrue = NewTrue / Scale; 1450 NewFalse = NewFalse / Scale; 1451 } 1452 1453 /// FindMergedConditions - If Cond is an expression like 1454 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1455 MachineBasicBlock *TBB, 1456 MachineBasicBlock *FBB, 1457 MachineBasicBlock *CurBB, 1458 MachineBasicBlock *SwitchBB, 1459 unsigned Opc, uint32_t TWeight, 1460 uint32_t FWeight) { 1461 // If this node is not part of the or/and tree, emit it as a branch. 1462 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1463 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1464 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1465 BOp->getParent() != CurBB->getBasicBlock() || 1466 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1467 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1468 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1469 TWeight, FWeight); 1470 return; 1471 } 1472 1473 // Create TmpBB after CurBB. 1474 MachineFunction::iterator BBI = CurBB; 1475 MachineFunction &MF = DAG.getMachineFunction(); 1476 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1477 CurBB->getParent()->insert(++BBI, TmpBB); 1478 1479 if (Opc == Instruction::Or) { 1480 // Codegen X | Y as: 1481 // BB1: 1482 // jmp_if_X TBB 1483 // jmp TmpBB 1484 // TmpBB: 1485 // jmp_if_Y TBB 1486 // jmp FBB 1487 // 1488 1489 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1490 // The requirement is that 1491 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1492 // = TrueProb for orignal BB. 1493 // Assuming the orignal weights are A and B, one choice is to set BB1's 1494 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1495 // assumes that 1496 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1497 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1498 // TmpBB, but the math is more complicated. 1499 1500 uint64_t NewTrueWeight = TWeight; 1501 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1502 ScaleWeights(NewTrueWeight, NewFalseWeight); 1503 // Emit the LHS condition. 1504 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1505 NewTrueWeight, NewFalseWeight); 1506 1507 NewTrueWeight = TWeight; 1508 NewFalseWeight = 2 * (uint64_t)FWeight; 1509 ScaleWeights(NewTrueWeight, NewFalseWeight); 1510 // Emit the RHS condition into TmpBB. 1511 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1512 NewTrueWeight, NewFalseWeight); 1513 } else { 1514 assert(Opc == Instruction::And && "Unknown merge op!"); 1515 // Codegen X & Y as: 1516 // BB1: 1517 // jmp_if_X TmpBB 1518 // jmp FBB 1519 // TmpBB: 1520 // jmp_if_Y TBB 1521 // jmp FBB 1522 // 1523 // This requires creation of TmpBB after CurBB. 1524 1525 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1526 // The requirement is that 1527 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1528 // = FalseProb for orignal BB. 1529 // Assuming the orignal weights are A and B, one choice is to set BB1's 1530 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1531 // assumes that 1532 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1533 1534 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1535 uint64_t NewFalseWeight = FWeight; 1536 ScaleWeights(NewTrueWeight, NewFalseWeight); 1537 // Emit the LHS condition. 1538 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1539 NewTrueWeight, NewFalseWeight); 1540 1541 NewTrueWeight = 2 * (uint64_t)TWeight; 1542 NewFalseWeight = FWeight; 1543 ScaleWeights(NewTrueWeight, NewFalseWeight); 1544 // Emit the RHS condition into TmpBB. 1545 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1546 NewTrueWeight, NewFalseWeight); 1547 } 1548 } 1549 1550 /// If the set of cases should be emitted as a series of branches, return true. 1551 /// If we should emit this as a bunch of and/or'd together conditions, return 1552 /// false. 1553 bool 1554 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1555 if (Cases.size() != 2) return true; 1556 1557 // If this is two comparisons of the same values or'd or and'd together, they 1558 // will get folded into a single comparison, so don't emit two blocks. 1559 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1560 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1561 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1562 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1563 return false; 1564 } 1565 1566 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1567 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1568 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1569 Cases[0].CC == Cases[1].CC && 1570 isa<Constant>(Cases[0].CmpRHS) && 1571 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1572 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1573 return false; 1574 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1582 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1583 1584 // Update machine-CFG edges. 1585 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1586 1587 // Figure out which block is immediately after the current one. 1588 MachineBasicBlock *NextBlock = nullptr; 1589 MachineFunction::iterator BBI = BrMBB; 1590 if (++BBI != FuncInfo.MF->end()) 1591 NextBlock = BBI; 1592 1593 if (I.isUnconditional()) { 1594 // Update machine-CFG edges. 1595 BrMBB->addSuccessor(Succ0MBB); 1596 1597 // If this is not a fall-through branch or optimizations are switched off, 1598 // emit the branch. 1599 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1600 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1601 MVT::Other, getControlRoot(), 1602 DAG.getBasicBlock(Succ0MBB))); 1603 1604 return; 1605 } 1606 1607 // If this condition is one of the special cases we handle, do special stuff 1608 // now. 1609 const Value *CondVal = I.getCondition(); 1610 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1611 1612 // If this is a series of conditions that are or'd or and'd together, emit 1613 // this as a sequence of branches instead of setcc's with and/or operations. 1614 // As long as jumps are not expensive, this should improve performance. 1615 // For example, instead of something like: 1616 // cmp A, B 1617 // C = seteq 1618 // cmp D, E 1619 // F = setle 1620 // or C, F 1621 // jnz foo 1622 // Emit: 1623 // cmp A, B 1624 // je foo 1625 // cmp D, E 1626 // jle foo 1627 // 1628 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1629 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1630 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1631 BOp->getOpcode() == Instruction::Or)) { 1632 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1633 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1634 getEdgeWeight(BrMBB, Succ1MBB)); 1635 // If the compares in later blocks need to use values not currently 1636 // exported from this block, export them now. This block should always 1637 // be the first entry. 1638 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1639 1640 // Allow some cases to be rejected. 1641 if (ShouldEmitAsBranches(SwitchCases)) { 1642 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1643 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1644 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1645 } 1646 1647 // Emit the branch for this block. 1648 visitSwitchCase(SwitchCases[0], BrMBB); 1649 SwitchCases.erase(SwitchCases.begin()); 1650 return; 1651 } 1652 1653 // Okay, we decided not to do this, remove any inserted MBB's and clear 1654 // SwitchCases. 1655 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1656 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1657 1658 SwitchCases.clear(); 1659 } 1660 } 1661 1662 // Create a CaseBlock record representing this branch. 1663 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1664 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1665 1666 // Use visitSwitchCase to actually insert the fast branch sequence for this 1667 // cond branch. 1668 visitSwitchCase(CB, BrMBB); 1669 } 1670 1671 /// visitSwitchCase - Emits the necessary code to represent a single node in 1672 /// the binary search tree resulting from lowering a switch instruction. 1673 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1674 MachineBasicBlock *SwitchBB) { 1675 SDValue Cond; 1676 SDValue CondLHS = getValue(CB.CmpLHS); 1677 SDLoc dl = getCurSDLoc(); 1678 1679 // Build the setcc now. 1680 if (!CB.CmpMHS) { 1681 // Fold "(X == true)" to X and "(X == false)" to !X to 1682 // handle common cases produced by branch lowering. 1683 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1684 CB.CC == ISD::SETEQ) 1685 Cond = CondLHS; 1686 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1687 CB.CC == ISD::SETEQ) { 1688 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1689 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1690 } else 1691 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1692 } else { 1693 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1694 1695 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1696 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1697 1698 SDValue CmpOp = getValue(CB.CmpMHS); 1699 EVT VT = CmpOp.getValueType(); 1700 1701 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1702 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1703 ISD::SETLE); 1704 } else { 1705 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1706 VT, CmpOp, DAG.getConstant(Low, VT)); 1707 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1708 DAG.getConstant(High-Low, VT), ISD::SETULE); 1709 } 1710 } 1711 1712 // Update successor info 1713 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1714 // TrueBB and FalseBB are always different unless the incoming IR is 1715 // degenerate. This only happens when running llc on weird IR. 1716 if (CB.TrueBB != CB.FalseBB) 1717 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1718 1719 // Set NextBlock to be the MBB immediately after the current one, if any. 1720 // This is used to avoid emitting unnecessary branches to the next block. 1721 MachineBasicBlock *NextBlock = nullptr; 1722 MachineFunction::iterator BBI = SwitchBB; 1723 if (++BBI != FuncInfo.MF->end()) 1724 NextBlock = BBI; 1725 1726 // If the lhs block is the next block, invert the condition so that we can 1727 // fall through to the lhs instead of the rhs block. 1728 if (CB.TrueBB == NextBlock) { 1729 std::swap(CB.TrueBB, CB.FalseBB); 1730 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1731 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1732 } 1733 1734 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1735 MVT::Other, getControlRoot(), Cond, 1736 DAG.getBasicBlock(CB.TrueBB)); 1737 1738 // Insert the false branch. Do this even if it's a fall through branch, 1739 // this makes it easier to do DAG optimizations which require inverting 1740 // the branch condition. 1741 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1742 DAG.getBasicBlock(CB.FalseBB)); 1743 1744 DAG.setRoot(BrCond); 1745 } 1746 1747 /// visitJumpTable - Emit JumpTable node in the current MBB 1748 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1749 // Emit the code for the jump table 1750 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1751 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1752 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1753 JT.Reg, PTy); 1754 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1755 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1756 MVT::Other, Index.getValue(1), 1757 Table, Index); 1758 DAG.setRoot(BrJumpTable); 1759 } 1760 1761 /// visitJumpTableHeader - This function emits necessary code to produce index 1762 /// in the JumpTable from switch case. 1763 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1764 JumpTableHeader &JTH, 1765 MachineBasicBlock *SwitchBB) { 1766 // Subtract the lowest switch case value from the value being switched on and 1767 // conditional branch to default mbb if the result is greater than the 1768 // difference between smallest and largest cases. 1769 SDValue SwitchOp = getValue(JTH.SValue); 1770 EVT VT = SwitchOp.getValueType(); 1771 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1772 DAG.getConstant(JTH.First, VT)); 1773 1774 // The SDNode we just created, which holds the value being switched on minus 1775 // the smallest case value, needs to be copied to a virtual register so it 1776 // can be used as an index into the jump table in a subsequent basic block. 1777 // This value may be smaller or larger than the target's pointer type, and 1778 // therefore require extension or truncating. 1779 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1780 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1781 1782 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1783 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1784 JumpTableReg, SwitchOp); 1785 JT.Reg = JumpTableReg; 1786 1787 // Emit the range check for the jump table, and branch to the default block 1788 // for the switch statement if the value being switched on exceeds the largest 1789 // case in the switch. 1790 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1791 TLI->getSetCCResultType(*DAG.getContext(), 1792 Sub.getValueType()), 1793 Sub, 1794 DAG.getConstant(JTH.Last - JTH.First,VT), 1795 ISD::SETUGT); 1796 1797 // Set NextBlock to be the MBB immediately after the current one, if any. 1798 // This is used to avoid emitting unnecessary branches to the next block. 1799 MachineBasicBlock *NextBlock = nullptr; 1800 MachineFunction::iterator BBI = SwitchBB; 1801 1802 if (++BBI != FuncInfo.MF->end()) 1803 NextBlock = BBI; 1804 1805 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1806 MVT::Other, CopyTo, CMP, 1807 DAG.getBasicBlock(JT.Default)); 1808 1809 if (JT.MBB != NextBlock) 1810 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1811 DAG.getBasicBlock(JT.MBB)); 1812 1813 DAG.setRoot(BrCond); 1814 } 1815 1816 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1817 /// tail spliced into a stack protector check success bb. 1818 /// 1819 /// For a high level explanation of how this fits into the stack protector 1820 /// generation see the comment on the declaration of class 1821 /// StackProtectorDescriptor. 1822 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1823 MachineBasicBlock *ParentBB) { 1824 1825 // First create the loads to the guard/stack slot for the comparison. 1826 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1827 EVT PtrTy = TLI->getPointerTy(); 1828 1829 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1830 int FI = MFI->getStackProtectorIndex(); 1831 1832 const Value *IRGuard = SPD.getGuard(); 1833 SDValue GuardPtr = getValue(IRGuard); 1834 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1835 1836 unsigned Align = 1837 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1838 1839 SDValue Guard; 1840 1841 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1842 // guard value from the virtual register holding the value. Otherwise, emit a 1843 // volatile load to retrieve the stack guard value. 1844 unsigned GuardReg = SPD.getGuardReg(); 1845 1846 if (GuardReg && TLI->useLoadStackGuardNode()) 1847 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1848 PtrTy); 1849 else 1850 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1851 GuardPtr, MachinePointerInfo(IRGuard, 0), 1852 true, false, false, Align); 1853 1854 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1855 StackSlotPtr, 1856 MachinePointerInfo::getFixedStack(FI), 1857 true, false, false, Align); 1858 1859 // Perform the comparison via a subtract/getsetcc. 1860 EVT VT = Guard.getValueType(); 1861 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1862 1863 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1864 TLI->getSetCCResultType(*DAG.getContext(), 1865 Sub.getValueType()), 1866 Sub, DAG.getConstant(0, VT), 1867 ISD::SETNE); 1868 1869 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1870 // branch to failure MBB. 1871 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1872 MVT::Other, StackSlot.getOperand(0), 1873 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1874 // Otherwise branch to success MBB. 1875 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1876 MVT::Other, BrCond, 1877 DAG.getBasicBlock(SPD.getSuccessMBB())); 1878 1879 DAG.setRoot(Br); 1880 } 1881 1882 /// Codegen the failure basic block for a stack protector check. 1883 /// 1884 /// A failure stack protector machine basic block consists simply of a call to 1885 /// __stack_chk_fail(). 1886 /// 1887 /// For a high level explanation of how this fits into the stack protector 1888 /// generation see the comment on the declaration of class 1889 /// StackProtectorDescriptor. 1890 void 1891 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1892 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1893 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1894 MVT::isVoid, nullptr, 0, false, 1895 getCurSDLoc(), false, false).second; 1896 DAG.setRoot(Chain); 1897 } 1898 1899 /// visitBitTestHeader - This function emits necessary code to produce value 1900 /// suitable for "bit tests" 1901 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1902 MachineBasicBlock *SwitchBB) { 1903 // Subtract the minimum value 1904 SDValue SwitchOp = getValue(B.SValue); 1905 EVT VT = SwitchOp.getValueType(); 1906 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1907 DAG.getConstant(B.First, VT)); 1908 1909 // Check range 1910 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1911 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1912 TLI->getSetCCResultType(*DAG.getContext(), 1913 Sub.getValueType()), 1914 Sub, DAG.getConstant(B.Range, VT), 1915 ISD::SETUGT); 1916 1917 // Determine the type of the test operands. 1918 bool UsePtrType = false; 1919 if (!TLI->isTypeLegal(VT)) 1920 UsePtrType = true; 1921 else { 1922 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1923 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1924 // Switch table case range are encoded into series of masks. 1925 // Just use pointer type, it's guaranteed to fit. 1926 UsePtrType = true; 1927 break; 1928 } 1929 } 1930 if (UsePtrType) { 1931 VT = TLI->getPointerTy(); 1932 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1933 } 1934 1935 B.RegVT = VT.getSimpleVT(); 1936 B.Reg = FuncInfo.CreateReg(B.RegVT); 1937 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1938 B.Reg, Sub); 1939 1940 // Set NextBlock to be the MBB immediately after the current one, if any. 1941 // This is used to avoid emitting unnecessary branches to the next block. 1942 MachineBasicBlock *NextBlock = nullptr; 1943 MachineFunction::iterator BBI = SwitchBB; 1944 if (++BBI != FuncInfo.MF->end()) 1945 NextBlock = BBI; 1946 1947 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1948 1949 addSuccessorWithWeight(SwitchBB, B.Default); 1950 addSuccessorWithWeight(SwitchBB, MBB); 1951 1952 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1953 MVT::Other, CopyTo, RangeCmp, 1954 DAG.getBasicBlock(B.Default)); 1955 1956 if (MBB != NextBlock) 1957 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1958 DAG.getBasicBlock(MBB)); 1959 1960 DAG.setRoot(BrRange); 1961 } 1962 1963 /// visitBitTestCase - this function produces one "bit test" 1964 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1965 MachineBasicBlock* NextMBB, 1966 uint32_t BranchWeightToNext, 1967 unsigned Reg, 1968 BitTestCase &B, 1969 MachineBasicBlock *SwitchBB) { 1970 MVT VT = BB.RegVT; 1971 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1972 Reg, VT); 1973 SDValue Cmp; 1974 unsigned PopCount = CountPopulation_64(B.Mask); 1975 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1976 if (PopCount == 1) { 1977 // Testing for a single bit; just compare the shift count with what it 1978 // would need to be to shift a 1 bit in that position. 1979 Cmp = DAG.getSetCC(getCurSDLoc(), 1980 TLI->getSetCCResultType(*DAG.getContext(), VT), 1981 ShiftOp, 1982 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1983 ISD::SETEQ); 1984 } else if (PopCount == BB.Range) { 1985 // There is only one zero bit in the range, test for it directly. 1986 Cmp = DAG.getSetCC(getCurSDLoc(), 1987 TLI->getSetCCResultType(*DAG.getContext(), VT), 1988 ShiftOp, 1989 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1990 ISD::SETNE); 1991 } else { 1992 // Make desired shift 1993 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1994 DAG.getConstant(1, VT), ShiftOp); 1995 1996 // Emit bit tests and jumps 1997 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1998 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1999 Cmp = DAG.getSetCC(getCurSDLoc(), 2000 TLI->getSetCCResultType(*DAG.getContext(), VT), 2001 AndOp, DAG.getConstant(0, VT), 2002 ISD::SETNE); 2003 } 2004 2005 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2006 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2007 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2008 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2009 2010 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 2011 MVT::Other, getControlRoot(), 2012 Cmp, DAG.getBasicBlock(B.TargetBB)); 2013 2014 // Set NextBlock to be the MBB immediately after the current one, if any. 2015 // This is used to avoid emitting unnecessary branches to the next block. 2016 MachineBasicBlock *NextBlock = nullptr; 2017 MachineFunction::iterator BBI = SwitchBB; 2018 if (++BBI != FuncInfo.MF->end()) 2019 NextBlock = BBI; 2020 2021 if (NextMBB != NextBlock) 2022 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2023 DAG.getBasicBlock(NextMBB)); 2024 2025 DAG.setRoot(BrAnd); 2026 } 2027 2028 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2029 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2030 2031 // Retrieve successors. 2032 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2033 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2034 2035 const Value *Callee(I.getCalledValue()); 2036 const Function *Fn = dyn_cast<Function>(Callee); 2037 if (isa<InlineAsm>(Callee)) 2038 visitInlineAsm(&I); 2039 else if (Fn && Fn->isIntrinsic()) { 2040 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2041 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2042 } else 2043 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2044 2045 // If the value of the invoke is used outside of its defining block, make it 2046 // available as a virtual register. 2047 CopyToExportRegsIfNeeded(&I); 2048 2049 // Update successor info 2050 addSuccessorWithWeight(InvokeMBB, Return); 2051 addSuccessorWithWeight(InvokeMBB, LandingPad); 2052 2053 // Drop into normal successor. 2054 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2055 MVT::Other, getControlRoot(), 2056 DAG.getBasicBlock(Return))); 2057 } 2058 2059 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2060 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2061 } 2062 2063 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2064 assert(FuncInfo.MBB->isLandingPad() && 2065 "Call to landingpad not in landing pad!"); 2066 2067 MachineBasicBlock *MBB = FuncInfo.MBB; 2068 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2069 AddLandingPadInfo(LP, MMI, MBB); 2070 2071 // If there aren't registers to copy the values into (e.g., during SjLj 2072 // exceptions), then don't bother to create these DAG nodes. 2073 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2074 if (TLI->getExceptionPointerRegister() == 0 && 2075 TLI->getExceptionSelectorRegister() == 0) 2076 return; 2077 2078 SmallVector<EVT, 2> ValueVTs; 2079 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2080 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2081 2082 // Get the two live-in registers as SDValues. The physregs have already been 2083 // copied into virtual registers. 2084 SDValue Ops[2]; 2085 Ops[0] = DAG.getZExtOrTrunc( 2086 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2087 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2088 getCurSDLoc(), ValueVTs[0]); 2089 Ops[1] = DAG.getZExtOrTrunc( 2090 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2091 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2092 getCurSDLoc(), ValueVTs[1]); 2093 2094 // Merge into one. 2095 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2096 DAG.getVTList(ValueVTs), Ops); 2097 setValue(&LP, Res); 2098 } 2099 2100 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2101 /// small case ranges). 2102 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2103 CaseRecVector& WorkList, 2104 const Value* SV, 2105 MachineBasicBlock *Default, 2106 MachineBasicBlock *SwitchBB) { 2107 // Size is the number of Cases represented by this range. 2108 size_t Size = CR.Range.second - CR.Range.first; 2109 if (Size > 3) 2110 return false; 2111 2112 // Get the MachineFunction which holds the current MBB. This is used when 2113 // inserting any additional MBBs necessary to represent the switch. 2114 MachineFunction *CurMF = FuncInfo.MF; 2115 2116 // Figure out which block is immediately after the current one. 2117 MachineBasicBlock *NextBlock = nullptr; 2118 MachineFunction::iterator BBI = CR.CaseBB; 2119 2120 if (++BBI != FuncInfo.MF->end()) 2121 NextBlock = BBI; 2122 2123 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2124 // If any two of the cases has the same destination, and if one value 2125 // is the same as the other, but has one bit unset that the other has set, 2126 // use bit manipulation to do two compares at once. For example: 2127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2128 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2129 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2130 if (Size == 2 && CR.CaseBB == SwitchBB) { 2131 Case &Small = *CR.Range.first; 2132 Case &Big = *(CR.Range.second-1); 2133 2134 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2135 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2136 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2137 2138 // Check that there is only one bit different. 2139 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2140 (SmallValue | BigValue) == BigValue) { 2141 // Isolate the common bit. 2142 APInt CommonBit = BigValue & ~SmallValue; 2143 assert((SmallValue | CommonBit) == BigValue && 2144 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2145 2146 SDValue CondLHS = getValue(SV); 2147 EVT VT = CondLHS.getValueType(); 2148 SDLoc DL = getCurSDLoc(); 2149 2150 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2151 DAG.getConstant(CommonBit, VT)); 2152 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2153 Or, DAG.getConstant(BigValue, VT), 2154 ISD::SETEQ); 2155 2156 // Update successor info. 2157 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2158 addSuccessorWithWeight(SwitchBB, Small.BB, 2159 Small.ExtraWeight + Big.ExtraWeight); 2160 addSuccessorWithWeight(SwitchBB, Default, 2161 // The default destination is the first successor in IR. 2162 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2163 2164 // Insert the true branch. 2165 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2166 getControlRoot(), Cond, 2167 DAG.getBasicBlock(Small.BB)); 2168 2169 // Insert the false branch. 2170 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2171 DAG.getBasicBlock(Default)); 2172 2173 DAG.setRoot(BrCond); 2174 return true; 2175 } 2176 } 2177 } 2178 2179 // Order cases by weight so the most likely case will be checked first. 2180 uint32_t UnhandledWeights = 0; 2181 if (BPI) { 2182 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2183 uint32_t IWeight = I->ExtraWeight; 2184 UnhandledWeights += IWeight; 2185 for (CaseItr J = CR.Range.first; J < I; ++J) { 2186 uint32_t JWeight = J->ExtraWeight; 2187 if (IWeight > JWeight) 2188 std::swap(*I, *J); 2189 } 2190 } 2191 } 2192 // Rearrange the case blocks so that the last one falls through if possible. 2193 Case &BackCase = *(CR.Range.second-1); 2194 if (Size > 1 && 2195 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2196 // The last case block won't fall through into 'NextBlock' if we emit the 2197 // branches in this order. See if rearranging a case value would help. 2198 // We start at the bottom as it's the case with the least weight. 2199 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2200 if (I->BB == NextBlock) { 2201 std::swap(*I, BackCase); 2202 break; 2203 } 2204 } 2205 2206 // Create a CaseBlock record representing a conditional branch to 2207 // the Case's target mbb if the value being switched on SV is equal 2208 // to C. 2209 MachineBasicBlock *CurBlock = CR.CaseBB; 2210 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2211 MachineBasicBlock *FallThrough; 2212 if (I != E-1) { 2213 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2214 CurMF->insert(BBI, FallThrough); 2215 2216 // Put SV in a virtual register to make it available from the new blocks. 2217 ExportFromCurrentBlock(SV); 2218 } else { 2219 // If the last case doesn't match, go to the default block. 2220 FallThrough = Default; 2221 } 2222 2223 const Value *RHS, *LHS, *MHS; 2224 ISD::CondCode CC; 2225 if (I->High == I->Low) { 2226 // This is just small small case range :) containing exactly 1 case 2227 CC = ISD::SETEQ; 2228 LHS = SV; RHS = I->High; MHS = nullptr; 2229 } else { 2230 CC = ISD::SETLE; 2231 LHS = I->Low; MHS = SV; RHS = I->High; 2232 } 2233 2234 // The false weight should be sum of all un-handled cases. 2235 UnhandledWeights -= I->ExtraWeight; 2236 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2237 /* me */ CurBlock, 2238 /* trueweight */ I->ExtraWeight, 2239 /* falseweight */ UnhandledWeights); 2240 2241 // If emitting the first comparison, just call visitSwitchCase to emit the 2242 // code into the current block. Otherwise, push the CaseBlock onto the 2243 // vector to be later processed by SDISel, and insert the node's MBB 2244 // before the next MBB. 2245 if (CurBlock == SwitchBB) 2246 visitSwitchCase(CB, SwitchBB); 2247 else 2248 SwitchCases.push_back(CB); 2249 2250 CurBlock = FallThrough; 2251 } 2252 2253 return true; 2254 } 2255 2256 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2257 return TLI.supportJumpTables() && 2258 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2259 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2260 } 2261 2262 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2263 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2264 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2265 return (LastExt - FirstExt + 1ULL); 2266 } 2267 2268 /// handleJTSwitchCase - Emit jumptable for current switch case range 2269 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2270 CaseRecVector &WorkList, 2271 const Value *SV, 2272 MachineBasicBlock *Default, 2273 MachineBasicBlock *SwitchBB) { 2274 Case& FrontCase = *CR.Range.first; 2275 Case& BackCase = *(CR.Range.second-1); 2276 2277 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2278 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2279 2280 APInt TSize(First.getBitWidth(), 0); 2281 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2282 TSize += I->size(); 2283 2284 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2285 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2286 return false; 2287 2288 APInt Range = ComputeRange(First, Last); 2289 // The density is TSize / Range. Require at least 40%. 2290 // It should not be possible for IntTSize to saturate for sane code, but make 2291 // sure we handle Range saturation correctly. 2292 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2293 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2294 if (IntTSize * 10 < IntRange * 4) 2295 return false; 2296 2297 DEBUG(dbgs() << "Lowering jump table\n" 2298 << "First entry: " << First << ". Last entry: " << Last << '\n' 2299 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2300 2301 // Get the MachineFunction which holds the current MBB. This is used when 2302 // inserting any additional MBBs necessary to represent the switch. 2303 MachineFunction *CurMF = FuncInfo.MF; 2304 2305 // Figure out which block is immediately after the current one. 2306 MachineFunction::iterator BBI = CR.CaseBB; 2307 ++BBI; 2308 2309 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2310 2311 // Create a new basic block to hold the code for loading the address 2312 // of the jump table, and jumping to it. Update successor information; 2313 // we will either branch to the default case for the switch, or the jump 2314 // table. 2315 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2316 CurMF->insert(BBI, JumpTableBB); 2317 2318 addSuccessorWithWeight(CR.CaseBB, Default); 2319 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2320 2321 // Build a vector of destination BBs, corresponding to each target 2322 // of the jump table. If the value of the jump table slot corresponds to 2323 // a case statement, push the case's BB onto the vector, otherwise, push 2324 // the default BB. 2325 std::vector<MachineBasicBlock*> DestBBs; 2326 APInt TEI = First; 2327 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2328 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2329 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2330 2331 if (Low.sle(TEI) && TEI.sle(High)) { 2332 DestBBs.push_back(I->BB); 2333 if (TEI==High) 2334 ++I; 2335 } else { 2336 DestBBs.push_back(Default); 2337 } 2338 } 2339 2340 // Calculate weight for each unique destination in CR. 2341 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2342 if (FuncInfo.BPI) 2343 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2344 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2345 DestWeights.find(I->BB); 2346 if (Itr != DestWeights.end()) 2347 Itr->second += I->ExtraWeight; 2348 else 2349 DestWeights[I->BB] = I->ExtraWeight; 2350 } 2351 2352 // Update successor info. Add one edge to each unique successor. 2353 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2354 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2355 E = DestBBs.end(); I != E; ++I) { 2356 if (!SuccsHandled[(*I)->getNumber()]) { 2357 SuccsHandled[(*I)->getNumber()] = true; 2358 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2359 DestWeights.find(*I); 2360 addSuccessorWithWeight(JumpTableBB, *I, 2361 Itr != DestWeights.end() ? Itr->second : 0); 2362 } 2363 } 2364 2365 // Create a jump table index for this jump table. 2366 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2367 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2368 ->createJumpTableIndex(DestBBs); 2369 2370 // Set the jump table information so that we can codegen it as a second 2371 // MachineBasicBlock 2372 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2373 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2374 if (CR.CaseBB == SwitchBB) 2375 visitJumpTableHeader(JT, JTH, SwitchBB); 2376 2377 JTCases.push_back(JumpTableBlock(JTH, JT)); 2378 return true; 2379 } 2380 2381 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2382 /// 2 subtrees. 2383 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2384 CaseRecVector& WorkList, 2385 const Value* SV, 2386 MachineBasicBlock* Default, 2387 MachineBasicBlock* SwitchBB) { 2388 // Get the MachineFunction which holds the current MBB. This is used when 2389 // inserting any additional MBBs necessary to represent the switch. 2390 MachineFunction *CurMF = FuncInfo.MF; 2391 2392 // Figure out which block is immediately after the current one. 2393 MachineFunction::iterator BBI = CR.CaseBB; 2394 ++BBI; 2395 2396 Case& FrontCase = *CR.Range.first; 2397 Case& BackCase = *(CR.Range.second-1); 2398 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2399 2400 // Size is the number of Cases represented by this range. 2401 unsigned Size = CR.Range.second - CR.Range.first; 2402 2403 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2404 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2405 double FMetric = 0; 2406 CaseItr Pivot = CR.Range.first + Size/2; 2407 2408 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2409 // (heuristically) allow us to emit JumpTable's later. 2410 APInt TSize(First.getBitWidth(), 0); 2411 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2412 I!=E; ++I) 2413 TSize += I->size(); 2414 2415 APInt LSize = FrontCase.size(); 2416 APInt RSize = TSize-LSize; 2417 DEBUG(dbgs() << "Selecting best pivot: \n" 2418 << "First: " << First << ", Last: " << Last <<'\n' 2419 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2420 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2421 J!=E; ++I, ++J) { 2422 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2423 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2424 APInt Range = ComputeRange(LEnd, RBegin); 2425 assert((Range - 2ULL).isNonNegative() && 2426 "Invalid case distance"); 2427 // Use volatile double here to avoid excess precision issues on some hosts, 2428 // e.g. that use 80-bit X87 registers. 2429 volatile double LDensity = 2430 (double)LSize.roundToDouble() / 2431 (LEnd - First + 1ULL).roundToDouble(); 2432 volatile double RDensity = 2433 (double)RSize.roundToDouble() / 2434 (Last - RBegin + 1ULL).roundToDouble(); 2435 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2436 // Should always split in some non-trivial place 2437 DEBUG(dbgs() <<"=>Step\n" 2438 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2439 << "LDensity: " << LDensity 2440 << ", RDensity: " << RDensity << '\n' 2441 << "Metric: " << Metric << '\n'); 2442 if (FMetric < Metric) { 2443 Pivot = J; 2444 FMetric = Metric; 2445 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2446 } 2447 2448 LSize += J->size(); 2449 RSize -= J->size(); 2450 } 2451 2452 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2453 if (areJTsAllowed(*TLI)) { 2454 // If our case is dense we *really* should handle it earlier! 2455 assert((FMetric > 0) && "Should handle dense range earlier!"); 2456 } else { 2457 Pivot = CR.Range.first + Size/2; 2458 } 2459 2460 CaseRange LHSR(CR.Range.first, Pivot); 2461 CaseRange RHSR(Pivot, CR.Range.second); 2462 const Constant *C = Pivot->Low; 2463 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2464 2465 // We know that we branch to the LHS if the Value being switched on is 2466 // less than the Pivot value, C. We use this to optimize our binary 2467 // tree a bit, by recognizing that if SV is greater than or equal to the 2468 // LHS's Case Value, and that Case Value is exactly one less than the 2469 // Pivot's Value, then we can branch directly to the LHS's Target, 2470 // rather than creating a leaf node for it. 2471 if ((LHSR.second - LHSR.first) == 1 && 2472 LHSR.first->High == CR.GE && 2473 cast<ConstantInt>(C)->getValue() == 2474 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2475 TrueBB = LHSR.first->BB; 2476 } else { 2477 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2478 CurMF->insert(BBI, TrueBB); 2479 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2480 2481 // Put SV in a virtual register to make it available from the new blocks. 2482 ExportFromCurrentBlock(SV); 2483 } 2484 2485 // Similar to the optimization above, if the Value being switched on is 2486 // known to be less than the Constant CR.LT, and the current Case Value 2487 // is CR.LT - 1, then we can branch directly to the target block for 2488 // the current Case Value, rather than emitting a RHS leaf node for it. 2489 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2490 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2491 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2492 FalseBB = RHSR.first->BB; 2493 } else { 2494 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2495 CurMF->insert(BBI, FalseBB); 2496 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2497 2498 // Put SV in a virtual register to make it available from the new blocks. 2499 ExportFromCurrentBlock(SV); 2500 } 2501 2502 // Create a CaseBlock record representing a conditional branch to 2503 // the LHS node if the value being switched on SV is less than C. 2504 // Otherwise, branch to LHS. 2505 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2506 2507 if (CR.CaseBB == SwitchBB) 2508 visitSwitchCase(CB, SwitchBB); 2509 else 2510 SwitchCases.push_back(CB); 2511 2512 return true; 2513 } 2514 2515 /// handleBitTestsSwitchCase - if current case range has few destination and 2516 /// range span less, than machine word bitwidth, encode case range into series 2517 /// of masks and emit bit tests with these masks. 2518 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2519 CaseRecVector& WorkList, 2520 const Value* SV, 2521 MachineBasicBlock* Default, 2522 MachineBasicBlock* SwitchBB) { 2523 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2524 EVT PTy = TLI->getPointerTy(); 2525 unsigned IntPtrBits = PTy.getSizeInBits(); 2526 2527 Case& FrontCase = *CR.Range.first; 2528 Case& BackCase = *(CR.Range.second-1); 2529 2530 // Get the MachineFunction which holds the current MBB. This is used when 2531 // inserting any additional MBBs necessary to represent the switch. 2532 MachineFunction *CurMF = FuncInfo.MF; 2533 2534 // If target does not have legal shift left, do not emit bit tests at all. 2535 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2536 return false; 2537 2538 size_t numCmps = 0; 2539 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2540 I!=E; ++I) { 2541 // Single case counts one, case range - two. 2542 numCmps += (I->Low == I->High ? 1 : 2); 2543 } 2544 2545 // Count unique destinations 2546 SmallSet<MachineBasicBlock*, 4> Dests; 2547 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2548 Dests.insert(I->BB); 2549 if (Dests.size() > 3) 2550 // Don't bother the code below, if there are too much unique destinations 2551 return false; 2552 } 2553 DEBUG(dbgs() << "Total number of unique destinations: " 2554 << Dests.size() << '\n' 2555 << "Total number of comparisons: " << numCmps << '\n'); 2556 2557 // Compute span of values. 2558 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2559 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2560 APInt cmpRange = maxValue - minValue; 2561 2562 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2563 << "Low bound: " << minValue << '\n' 2564 << "High bound: " << maxValue << '\n'); 2565 2566 if (cmpRange.uge(IntPtrBits) || 2567 (!(Dests.size() == 1 && numCmps >= 3) && 2568 !(Dests.size() == 2 && numCmps >= 5) && 2569 !(Dests.size() >= 3 && numCmps >= 6))) 2570 return false; 2571 2572 DEBUG(dbgs() << "Emitting bit tests\n"); 2573 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2574 2575 // Optimize the case where all the case values fit in a 2576 // word without having to subtract minValue. In this case, 2577 // we can optimize away the subtraction. 2578 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2579 cmpRange = maxValue; 2580 } else { 2581 lowBound = minValue; 2582 } 2583 2584 CaseBitsVector CasesBits; 2585 unsigned i, count = 0; 2586 2587 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2588 MachineBasicBlock* Dest = I->BB; 2589 for (i = 0; i < count; ++i) 2590 if (Dest == CasesBits[i].BB) 2591 break; 2592 2593 if (i == count) { 2594 assert((count < 3) && "Too much destinations to test!"); 2595 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2596 count++; 2597 } 2598 2599 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2600 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2601 2602 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2603 uint64_t hi = (highValue - lowBound).getZExtValue(); 2604 CasesBits[i].ExtraWeight += I->ExtraWeight; 2605 2606 for (uint64_t j = lo; j <= hi; j++) { 2607 CasesBits[i].Mask |= 1ULL << j; 2608 CasesBits[i].Bits++; 2609 } 2610 2611 } 2612 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2613 2614 BitTestInfo BTC; 2615 2616 // Figure out which block is immediately after the current one. 2617 MachineFunction::iterator BBI = CR.CaseBB; 2618 ++BBI; 2619 2620 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2621 2622 DEBUG(dbgs() << "Cases:\n"); 2623 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2624 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2625 << ", Bits: " << CasesBits[i].Bits 2626 << ", BB: " << CasesBits[i].BB << '\n'); 2627 2628 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2629 CurMF->insert(BBI, CaseBB); 2630 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2631 CaseBB, 2632 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2633 2634 // Put SV in a virtual register to make it available from the new blocks. 2635 ExportFromCurrentBlock(SV); 2636 } 2637 2638 BitTestBlock BTB(lowBound, cmpRange, SV, 2639 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2640 CR.CaseBB, Default, BTC); 2641 2642 if (CR.CaseBB == SwitchBB) 2643 visitBitTestHeader(BTB, SwitchBB); 2644 2645 BitTestCases.push_back(BTB); 2646 2647 return true; 2648 } 2649 2650 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2651 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2652 const SwitchInst& SI) { 2653 size_t numCmps = 0; 2654 2655 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2656 // Start with "simple" cases 2657 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2658 i != e; ++i) { 2659 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2660 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2661 2662 uint32_t ExtraWeight = 2663 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2664 2665 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2666 SMBB, ExtraWeight)); 2667 } 2668 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2669 2670 // Merge case into clusters 2671 if (Cases.size() >= 2) 2672 // Must recompute end() each iteration because it may be 2673 // invalidated by erase if we hold on to it 2674 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2675 J != Cases.end(); ) { 2676 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2677 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2678 MachineBasicBlock* nextBB = J->BB; 2679 MachineBasicBlock* currentBB = I->BB; 2680 2681 // If the two neighboring cases go to the same destination, merge them 2682 // into a single case. 2683 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2684 I->High = J->High; 2685 I->ExtraWeight += J->ExtraWeight; 2686 J = Cases.erase(J); 2687 } else { 2688 I = J++; 2689 } 2690 } 2691 2692 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2693 if (I->Low != I->High) 2694 // A range counts double, since it requires two compares. 2695 ++numCmps; 2696 } 2697 2698 return numCmps; 2699 } 2700 2701 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2702 MachineBasicBlock *Last) { 2703 // Update JTCases. 2704 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2705 if (JTCases[i].first.HeaderBB == First) 2706 JTCases[i].first.HeaderBB = Last; 2707 2708 // Update BitTestCases. 2709 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2710 if (BitTestCases[i].Parent == First) 2711 BitTestCases[i].Parent = Last; 2712 } 2713 2714 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2715 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2716 2717 // Figure out which block is immediately after the current one. 2718 MachineBasicBlock *NextBlock = nullptr; 2719 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2720 2721 // If there is only the default destination, branch to it if it is not the 2722 // next basic block. Otherwise, just fall through. 2723 if (!SI.getNumCases()) { 2724 // Update machine-CFG edges. 2725 2726 // If this is not a fall-through branch, emit the branch. 2727 SwitchMBB->addSuccessor(Default); 2728 if (Default != NextBlock) 2729 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2730 MVT::Other, getControlRoot(), 2731 DAG.getBasicBlock(Default))); 2732 2733 return; 2734 } 2735 2736 // If there are any non-default case statements, create a vector of Cases 2737 // representing each one, and sort the vector so that we can efficiently 2738 // create a binary search tree from them. 2739 CaseVector Cases; 2740 size_t numCmps = Clusterify(Cases, SI); 2741 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2742 << ". Total compares: " << numCmps << '\n'); 2743 (void)numCmps; 2744 2745 // Get the Value to be switched on and default basic blocks, which will be 2746 // inserted into CaseBlock records, representing basic blocks in the binary 2747 // search tree. 2748 const Value *SV = SI.getCondition(); 2749 2750 // Push the initial CaseRec onto the worklist 2751 CaseRecVector WorkList; 2752 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2753 CaseRange(Cases.begin(),Cases.end()))); 2754 2755 while (!WorkList.empty()) { 2756 // Grab a record representing a case range to process off the worklist 2757 CaseRec CR = WorkList.back(); 2758 WorkList.pop_back(); 2759 2760 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2761 continue; 2762 2763 // If the range has few cases (two or less) emit a series of specific 2764 // tests. 2765 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2766 continue; 2767 2768 // If the switch has more than N blocks, and is at least 40% dense, and the 2769 // target supports indirect branches, then emit a jump table rather than 2770 // lowering the switch to a binary tree of conditional branches. 2771 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2772 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2773 continue; 2774 2775 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2776 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2777 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2778 } 2779 } 2780 2781 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2782 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2783 2784 // Update machine-CFG edges with unique successors. 2785 SmallSet<BasicBlock*, 32> Done; 2786 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2787 BasicBlock *BB = I.getSuccessor(i); 2788 bool Inserted = Done.insert(BB); 2789 if (!Inserted) 2790 continue; 2791 2792 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2793 addSuccessorWithWeight(IndirectBrMBB, Succ); 2794 } 2795 2796 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2797 MVT::Other, getControlRoot(), 2798 getValue(I.getAddress()))); 2799 } 2800 2801 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2802 if (DAG.getTarget().Options.TrapUnreachable) 2803 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2804 } 2805 2806 void SelectionDAGBuilder::visitFSub(const User &I) { 2807 // -0.0 - X --> fneg 2808 Type *Ty = I.getType(); 2809 if (isa<Constant>(I.getOperand(0)) && 2810 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2811 SDValue Op2 = getValue(I.getOperand(1)); 2812 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2813 Op2.getValueType(), Op2)); 2814 return; 2815 } 2816 2817 visitBinary(I, ISD::FSUB); 2818 } 2819 2820 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2821 SDValue Op1 = getValue(I.getOperand(0)); 2822 SDValue Op2 = getValue(I.getOperand(1)); 2823 2824 bool nuw = false; 2825 bool nsw = false; 2826 bool exact = false; 2827 if (const OverflowingBinaryOperator *OFBinOp = 2828 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2829 nuw = OFBinOp->hasNoUnsignedWrap(); 2830 nsw = OFBinOp->hasNoSignedWrap(); 2831 } 2832 if (const PossiblyExactOperator *ExactOp = 2833 dyn_cast<const PossiblyExactOperator>(&I)) 2834 exact = ExactOp->isExact(); 2835 2836 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2837 Op1, Op2, nuw, nsw, exact); 2838 setValue(&I, BinNodeValue); 2839 } 2840 2841 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2842 SDValue Op1 = getValue(I.getOperand(0)); 2843 SDValue Op2 = getValue(I.getOperand(1)); 2844 2845 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2846 Op2.getValueType()); 2847 2848 // Coerce the shift amount to the right type if we can. 2849 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2850 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2851 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2852 SDLoc DL = getCurSDLoc(); 2853 2854 // If the operand is smaller than the shift count type, promote it. 2855 if (ShiftSize > Op2Size) 2856 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2857 2858 // If the operand is larger than the shift count type but the shift 2859 // count type has enough bits to represent any shift value, truncate 2860 // it now. This is a common case and it exposes the truncate to 2861 // optimization early. 2862 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2863 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2864 // Otherwise we'll need to temporarily settle for some other convenient 2865 // type. Type legalization will make adjustments once the shiftee is split. 2866 else 2867 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2868 } 2869 2870 bool nuw = false; 2871 bool nsw = false; 2872 bool exact = false; 2873 2874 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2875 2876 if (const OverflowingBinaryOperator *OFBinOp = 2877 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2878 nuw = OFBinOp->hasNoUnsignedWrap(); 2879 nsw = OFBinOp->hasNoSignedWrap(); 2880 } 2881 if (const PossiblyExactOperator *ExactOp = 2882 dyn_cast<const PossiblyExactOperator>(&I)) 2883 exact = ExactOp->isExact(); 2884 } 2885 2886 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2887 nuw, nsw, exact); 2888 setValue(&I, Res); 2889 } 2890 2891 void SelectionDAGBuilder::visitSDiv(const User &I) { 2892 SDValue Op1 = getValue(I.getOperand(0)); 2893 SDValue Op2 = getValue(I.getOperand(1)); 2894 2895 // Turn exact SDivs into multiplications. 2896 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2897 // exact bit. 2898 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2899 !isa<ConstantSDNode>(Op1) && 2900 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2901 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2902 Op1, Op2, getCurSDLoc(), DAG)); 2903 else 2904 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2905 Op1, Op2)); 2906 } 2907 2908 void SelectionDAGBuilder::visitICmp(const User &I) { 2909 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2910 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2911 predicate = IC->getPredicate(); 2912 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2913 predicate = ICmpInst::Predicate(IC->getPredicate()); 2914 SDValue Op1 = getValue(I.getOperand(0)); 2915 SDValue Op2 = getValue(I.getOperand(1)); 2916 ISD::CondCode Opcode = getICmpCondCode(predicate); 2917 2918 EVT DestVT = 2919 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2920 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2921 } 2922 2923 void SelectionDAGBuilder::visitFCmp(const User &I) { 2924 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2925 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2926 predicate = FC->getPredicate(); 2927 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2928 predicate = FCmpInst::Predicate(FC->getPredicate()); 2929 SDValue Op1 = getValue(I.getOperand(0)); 2930 SDValue Op2 = getValue(I.getOperand(1)); 2931 ISD::CondCode Condition = getFCmpCondCode(predicate); 2932 if (TM.Options.NoNaNsFPMath) 2933 Condition = getFCmpCodeWithoutNaN(Condition); 2934 EVT DestVT = 2935 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2936 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2937 } 2938 2939 void SelectionDAGBuilder::visitSelect(const User &I) { 2940 SmallVector<EVT, 4> ValueVTs; 2941 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2942 ValueVTs); 2943 unsigned NumValues = ValueVTs.size(); 2944 if (NumValues == 0) return; 2945 2946 SmallVector<SDValue, 4> Values(NumValues); 2947 SDValue Cond = getValue(I.getOperand(0)); 2948 SDValue TrueVal = getValue(I.getOperand(1)); 2949 SDValue FalseVal = getValue(I.getOperand(2)); 2950 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2951 ISD::VSELECT : ISD::SELECT; 2952 2953 for (unsigned i = 0; i != NumValues; ++i) 2954 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2955 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2956 Cond, 2957 SDValue(TrueVal.getNode(), 2958 TrueVal.getResNo() + i), 2959 SDValue(FalseVal.getNode(), 2960 FalseVal.getResNo() + i)); 2961 2962 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2963 DAG.getVTList(ValueVTs), Values)); 2964 } 2965 2966 void SelectionDAGBuilder::visitTrunc(const User &I) { 2967 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = 2970 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2971 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2972 } 2973 2974 void SelectionDAGBuilder::visitZExt(const User &I) { 2975 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2976 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2977 SDValue N = getValue(I.getOperand(0)); 2978 EVT DestVT = 2979 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2980 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2981 } 2982 2983 void SelectionDAGBuilder::visitSExt(const User &I) { 2984 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2985 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2986 SDValue N = getValue(I.getOperand(0)); 2987 EVT DestVT = 2988 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2989 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2990 } 2991 2992 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2993 // FPTrunc is never a no-op cast, no need to check 2994 SDValue N = getValue(I.getOperand(0)); 2995 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2996 EVT DestVT = TLI->getValueType(I.getType()); 2997 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2998 DestVT, N, 2999 DAG.getTargetConstant(0, TLI->getPointerTy()))); 3000 } 3001 3002 void SelectionDAGBuilder::visitFPExt(const User &I) { 3003 // FPExt is never a no-op cast, no need to check 3004 SDValue N = getValue(I.getOperand(0)); 3005 EVT DestVT = 3006 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3007 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3011 // FPToUI is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = 3014 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3015 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3016 } 3017 3018 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3019 // FPToSI is never a no-op cast, no need to check 3020 SDValue N = getValue(I.getOperand(0)); 3021 EVT DestVT = 3022 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3023 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3024 } 3025 3026 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3027 // UIToFP is never a no-op cast, no need to check 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = 3030 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3031 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3032 } 3033 3034 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3035 // SIToFP is never a no-op cast, no need to check 3036 SDValue N = getValue(I.getOperand(0)); 3037 EVT DestVT = 3038 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3039 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3040 } 3041 3042 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3043 // What to do depends on the size of the integer and the size of the pointer. 3044 // We can either truncate, zero extend, or no-op, accordingly. 3045 SDValue N = getValue(I.getOperand(0)); 3046 EVT DestVT = 3047 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3048 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3049 } 3050 3051 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3052 // What to do depends on the size of the integer and the size of the pointer. 3053 // We can either truncate, zero extend, or no-op, accordingly. 3054 SDValue N = getValue(I.getOperand(0)); 3055 EVT DestVT = 3056 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3057 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3058 } 3059 3060 void SelectionDAGBuilder::visitBitCast(const User &I) { 3061 SDValue N = getValue(I.getOperand(0)); 3062 EVT DestVT = 3063 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3064 3065 // BitCast assures us that source and destination are the same size so this is 3066 // either a BITCAST or a no-op. 3067 if (DestVT != N.getValueType()) 3068 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3069 DestVT, N)); // convert types. 3070 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3071 // might fold any kind of constant expression to an integer constant and that 3072 // is not what we are looking for. Only regcognize a bitcast of a genuine 3073 // constant integer as an opaque constant. 3074 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3075 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3076 /*isOpaque*/true)); 3077 else 3078 setValue(&I, N); // noop cast. 3079 } 3080 3081 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 const Value *SV = I.getOperand(0); 3084 SDValue N = getValue(SV); 3085 EVT DestVT = 3086 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3087 3088 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3089 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3090 3091 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3092 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3093 3094 setValue(&I, N); 3095 } 3096 3097 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3099 SDValue InVec = getValue(I.getOperand(0)); 3100 SDValue InVal = getValue(I.getOperand(1)); 3101 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3102 getCurSDLoc(), TLI.getVectorIdxTy()); 3103 setValue(&I, 3104 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3105 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3106 I.getType()), 3107 InVec, InVal, InIdx)); 3108 } 3109 3110 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3112 SDValue InVec = getValue(I.getOperand(0)); 3113 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3114 getCurSDLoc(), TLI.getVectorIdxTy()); 3115 setValue(&I, 3116 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3117 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3118 I.getType()), 3119 InVec, InIdx)); 3120 } 3121 3122 // Utility for visitShuffleVector - Return true if every element in Mask, 3123 // beginning from position Pos and ending in Pos+Size, falls within the 3124 // specified sequential range [L, L+Pos). or is undef. 3125 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3126 unsigned Pos, unsigned Size, int Low) { 3127 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3128 if (Mask[i] >= 0 && Mask[i] != Low) 3129 return false; 3130 return true; 3131 } 3132 3133 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3134 SDValue Src1 = getValue(I.getOperand(0)); 3135 SDValue Src2 = getValue(I.getOperand(1)); 3136 3137 SmallVector<int, 8> Mask; 3138 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3139 unsigned MaskNumElts = Mask.size(); 3140 3141 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3142 EVT VT = TLI->getValueType(I.getType()); 3143 EVT SrcVT = Src1.getValueType(); 3144 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3145 3146 if (SrcNumElts == MaskNumElts) { 3147 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3148 &Mask[0])); 3149 return; 3150 } 3151 3152 // Normalize the shuffle vector since mask and vector length don't match. 3153 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3154 // Mask is longer than the source vectors and is a multiple of the source 3155 // vectors. We can use concatenate vector to make the mask and vectors 3156 // lengths match. 3157 if (SrcNumElts*2 == MaskNumElts) { 3158 // First check for Src1 in low and Src2 in high 3159 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3160 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3161 // The shuffle is concatenating two vectors together. 3162 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3163 VT, Src1, Src2)); 3164 return; 3165 } 3166 // Then check for Src2 in low and Src1 in high 3167 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3168 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3169 // The shuffle is concatenating two vectors together. 3170 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3171 VT, Src2, Src1)); 3172 return; 3173 } 3174 } 3175 3176 // Pad both vectors with undefs to make them the same length as the mask. 3177 unsigned NumConcat = MaskNumElts / SrcNumElts; 3178 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3179 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3180 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3181 3182 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3183 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3184 MOps1[0] = Src1; 3185 MOps2[0] = Src2; 3186 3187 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3188 getCurSDLoc(), VT, MOps1); 3189 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3190 getCurSDLoc(), VT, MOps2); 3191 3192 // Readjust mask for new input vector length. 3193 SmallVector<int, 8> MappedOps; 3194 for (unsigned i = 0; i != MaskNumElts; ++i) { 3195 int Idx = Mask[i]; 3196 if (Idx >= (int)SrcNumElts) 3197 Idx -= SrcNumElts - MaskNumElts; 3198 MappedOps.push_back(Idx); 3199 } 3200 3201 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3202 &MappedOps[0])); 3203 return; 3204 } 3205 3206 if (SrcNumElts > MaskNumElts) { 3207 // Analyze the access pattern of the vector to see if we can extract 3208 // two subvectors and do the shuffle. The analysis is done by calculating 3209 // the range of elements the mask access on both vectors. 3210 int MinRange[2] = { static_cast<int>(SrcNumElts), 3211 static_cast<int>(SrcNumElts)}; 3212 int MaxRange[2] = {-1, -1}; 3213 3214 for (unsigned i = 0; i != MaskNumElts; ++i) { 3215 int Idx = Mask[i]; 3216 unsigned Input = 0; 3217 if (Idx < 0) 3218 continue; 3219 3220 if (Idx >= (int)SrcNumElts) { 3221 Input = 1; 3222 Idx -= SrcNumElts; 3223 } 3224 if (Idx > MaxRange[Input]) 3225 MaxRange[Input] = Idx; 3226 if (Idx < MinRange[Input]) 3227 MinRange[Input] = Idx; 3228 } 3229 3230 // Check if the access is smaller than the vector size and can we find 3231 // a reasonable extract index. 3232 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3233 // Extract. 3234 int StartIdx[2]; // StartIdx to extract from 3235 for (unsigned Input = 0; Input < 2; ++Input) { 3236 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3237 RangeUse[Input] = 0; // Unused 3238 StartIdx[Input] = 0; 3239 continue; 3240 } 3241 3242 // Find a good start index that is a multiple of the mask length. Then 3243 // see if the rest of the elements are in range. 3244 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3245 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3246 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3247 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3248 } 3249 3250 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3251 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3252 return; 3253 } 3254 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3255 // Extract appropriate subvector and generate a vector shuffle 3256 for (unsigned Input = 0; Input < 2; ++Input) { 3257 SDValue &Src = Input == 0 ? Src1 : Src2; 3258 if (RangeUse[Input] == 0) 3259 Src = DAG.getUNDEF(VT); 3260 else 3261 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3262 Src, DAG.getConstant(StartIdx[Input], 3263 TLI->getVectorIdxTy())); 3264 } 3265 3266 // Calculate new mask. 3267 SmallVector<int, 8> MappedOps; 3268 for (unsigned i = 0; i != MaskNumElts; ++i) { 3269 int Idx = Mask[i]; 3270 if (Idx >= 0) { 3271 if (Idx < (int)SrcNumElts) 3272 Idx -= StartIdx[0]; 3273 else 3274 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3275 } 3276 MappedOps.push_back(Idx); 3277 } 3278 3279 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3280 &MappedOps[0])); 3281 return; 3282 } 3283 } 3284 3285 // We can't use either concat vectors or extract subvectors so fall back to 3286 // replacing the shuffle with extract and build vector. 3287 // to insert and build vector. 3288 EVT EltVT = VT.getVectorElementType(); 3289 EVT IdxVT = TLI->getVectorIdxTy(); 3290 SmallVector<SDValue,8> Ops; 3291 for (unsigned i = 0; i != MaskNumElts; ++i) { 3292 int Idx = Mask[i]; 3293 SDValue Res; 3294 3295 if (Idx < 0) { 3296 Res = DAG.getUNDEF(EltVT); 3297 } else { 3298 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3299 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3300 3301 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3302 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3303 } 3304 3305 Ops.push_back(Res); 3306 } 3307 3308 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3309 } 3310 3311 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3312 const Value *Op0 = I.getOperand(0); 3313 const Value *Op1 = I.getOperand(1); 3314 Type *AggTy = I.getType(); 3315 Type *ValTy = Op1->getType(); 3316 bool IntoUndef = isa<UndefValue>(Op0); 3317 bool FromUndef = isa<UndefValue>(Op1); 3318 3319 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3320 3321 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3322 SmallVector<EVT, 4> AggValueVTs; 3323 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3324 SmallVector<EVT, 4> ValValueVTs; 3325 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3326 3327 unsigned NumAggValues = AggValueVTs.size(); 3328 unsigned NumValValues = ValValueVTs.size(); 3329 SmallVector<SDValue, 4> Values(NumAggValues); 3330 3331 SDValue Agg = getValue(Op0); 3332 unsigned i = 0; 3333 // Copy the beginning value(s) from the original aggregate. 3334 for (; i != LinearIndex; ++i) 3335 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3336 SDValue(Agg.getNode(), Agg.getResNo() + i); 3337 // Copy values from the inserted value(s). 3338 if (NumValValues) { 3339 SDValue Val = getValue(Op1); 3340 for (; i != LinearIndex + NumValValues; ++i) 3341 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3342 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3343 } 3344 // Copy remaining value(s) from the original aggregate. 3345 for (; i != NumAggValues; ++i) 3346 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3347 SDValue(Agg.getNode(), Agg.getResNo() + i); 3348 3349 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3350 DAG.getVTList(AggValueVTs), Values)); 3351 } 3352 3353 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3354 const Value *Op0 = I.getOperand(0); 3355 Type *AggTy = Op0->getType(); 3356 Type *ValTy = I.getType(); 3357 bool OutOfUndef = isa<UndefValue>(Op0); 3358 3359 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3360 3361 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3362 SmallVector<EVT, 4> ValValueVTs; 3363 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3364 3365 unsigned NumValValues = ValValueVTs.size(); 3366 3367 // Ignore a extractvalue that produces an empty object 3368 if (!NumValValues) { 3369 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3370 return; 3371 } 3372 3373 SmallVector<SDValue, 4> Values(NumValValues); 3374 3375 SDValue Agg = getValue(Op0); 3376 // Copy out the selected value(s). 3377 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3378 Values[i - LinearIndex] = 3379 OutOfUndef ? 3380 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3381 SDValue(Agg.getNode(), Agg.getResNo() + i); 3382 3383 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3384 DAG.getVTList(ValValueVTs), Values)); 3385 } 3386 3387 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3388 Value *Op0 = I.getOperand(0); 3389 // Note that the pointer operand may be a vector of pointers. Take the scalar 3390 // element which holds a pointer. 3391 Type *Ty = Op0->getType()->getScalarType(); 3392 unsigned AS = Ty->getPointerAddressSpace(); 3393 SDValue N = getValue(Op0); 3394 3395 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3396 OI != E; ++OI) { 3397 const Value *Idx = *OI; 3398 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3399 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3400 if (Field) { 3401 // N = N + Offset 3402 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3403 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3404 DAG.getConstant(Offset, N.getValueType())); 3405 } 3406 3407 Ty = StTy->getElementType(Field); 3408 } else { 3409 Ty = cast<SequentialType>(Ty)->getElementType(); 3410 3411 // If this is a constant subscript, handle it quickly. 3412 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3413 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3414 if (CI->isZero()) continue; 3415 uint64_t Offs = 3416 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3417 SDValue OffsVal; 3418 EVT PTy = TLI->getPointerTy(AS); 3419 unsigned PtrBits = PTy.getSizeInBits(); 3420 if (PtrBits < 64) 3421 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3422 DAG.getConstant(Offs, MVT::i64)); 3423 else 3424 OffsVal = DAG.getConstant(Offs, PTy); 3425 3426 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3427 OffsVal); 3428 continue; 3429 } 3430 3431 // N = N + Idx * ElementSize; 3432 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3433 DL->getTypeAllocSize(Ty)); 3434 SDValue IdxN = getValue(Idx); 3435 3436 // If the index is smaller or larger than intptr_t, truncate or extend 3437 // it. 3438 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3439 3440 // If this is a multiply by a power of two, turn it into a shl 3441 // immediately. This is a very common case. 3442 if (ElementSize != 1) { 3443 if (ElementSize.isPowerOf2()) { 3444 unsigned Amt = ElementSize.logBase2(); 3445 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3446 N.getValueType(), IdxN, 3447 DAG.getConstant(Amt, IdxN.getValueType())); 3448 } else { 3449 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3450 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3451 N.getValueType(), IdxN, Scale); 3452 } 3453 } 3454 3455 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3456 N.getValueType(), N, IdxN); 3457 } 3458 } 3459 3460 setValue(&I, N); 3461 } 3462 3463 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3464 // If this is a fixed sized alloca in the entry block of the function, 3465 // allocate it statically on the stack. 3466 if (FuncInfo.StaticAllocaMap.count(&I)) 3467 return; // getValue will auto-populate this. 3468 3469 Type *Ty = I.getAllocatedType(); 3470 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3471 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3472 unsigned Align = 3473 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3474 I.getAlignment()); 3475 3476 SDValue AllocSize = getValue(I.getArraySize()); 3477 3478 EVT IntPtr = TLI->getPointerTy(); 3479 if (AllocSize.getValueType() != IntPtr) 3480 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3481 3482 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3483 AllocSize, 3484 DAG.getConstant(TySize, IntPtr)); 3485 3486 // Handle alignment. If the requested alignment is less than or equal to 3487 // the stack alignment, ignore it. If the size is greater than or equal to 3488 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3489 unsigned StackAlign = 3490 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3491 if (Align <= StackAlign) 3492 Align = 0; 3493 3494 // Round the size of the allocation up to the stack alignment size 3495 // by add SA-1 to the size. 3496 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3497 AllocSize.getValueType(), AllocSize, 3498 DAG.getIntPtrConstant(StackAlign-1)); 3499 3500 // Mask out the low bits for alignment purposes. 3501 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3502 AllocSize.getValueType(), AllocSize, 3503 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3504 3505 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3506 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3507 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3508 setValue(&I, DSA); 3509 DAG.setRoot(DSA.getValue(1)); 3510 3511 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3512 } 3513 3514 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3515 if (I.isAtomic()) 3516 return visitAtomicLoad(I); 3517 3518 const Value *SV = I.getOperand(0); 3519 SDValue Ptr = getValue(SV); 3520 3521 Type *Ty = I.getType(); 3522 3523 bool isVolatile = I.isVolatile(); 3524 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3525 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3526 unsigned Alignment = I.getAlignment(); 3527 3528 AAMDNodes AAInfo; 3529 I.getAAMetadata(AAInfo); 3530 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3531 3532 SmallVector<EVT, 4> ValueVTs; 3533 SmallVector<uint64_t, 4> Offsets; 3534 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3535 &Offsets); 3536 unsigned NumValues = ValueVTs.size(); 3537 if (NumValues == 0) 3538 return; 3539 3540 SDValue Root; 3541 bool ConstantMemory = false; 3542 if (isVolatile || NumValues > MaxParallelChains) 3543 // Serialize volatile loads with other side effects. 3544 Root = getRoot(); 3545 else if (AA->pointsToConstantMemory( 3546 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3547 // Do not serialize (non-volatile) loads of constant memory with anything. 3548 Root = DAG.getEntryNode(); 3549 ConstantMemory = true; 3550 } else { 3551 // Do not serialize non-volatile loads against each other. 3552 Root = DAG.getRoot(); 3553 } 3554 3555 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3556 if (isVolatile) 3557 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3558 3559 SmallVector<SDValue, 4> Values(NumValues); 3560 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3561 NumValues)); 3562 EVT PtrVT = Ptr.getValueType(); 3563 unsigned ChainI = 0; 3564 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3565 // Serializing loads here may result in excessive register pressure, and 3566 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3567 // could recover a bit by hoisting nodes upward in the chain by recognizing 3568 // they are side-effect free or do not alias. The optimizer should really 3569 // avoid this case by converting large object/array copies to llvm.memcpy 3570 // (MaxParallelChains should always remain as failsafe). 3571 if (ChainI == MaxParallelChains) { 3572 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3573 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3574 makeArrayRef(Chains.data(), ChainI)); 3575 Root = Chain; 3576 ChainI = 0; 3577 } 3578 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3579 PtrVT, Ptr, 3580 DAG.getConstant(Offsets[i], PtrVT)); 3581 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3582 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3583 isNonTemporal, isInvariant, Alignment, AAInfo, 3584 Ranges); 3585 3586 Values[i] = L; 3587 Chains[ChainI] = L.getValue(1); 3588 } 3589 3590 if (!ConstantMemory) { 3591 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3592 makeArrayRef(Chains.data(), ChainI)); 3593 if (isVolatile) 3594 DAG.setRoot(Chain); 3595 else 3596 PendingLoads.push_back(Chain); 3597 } 3598 3599 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3600 DAG.getVTList(ValueVTs), Values)); 3601 } 3602 3603 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3604 if (I.isAtomic()) 3605 return visitAtomicStore(I); 3606 3607 const Value *SrcV = I.getOperand(0); 3608 const Value *PtrV = I.getOperand(1); 3609 3610 SmallVector<EVT, 4> ValueVTs; 3611 SmallVector<uint64_t, 4> Offsets; 3612 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3613 ValueVTs, &Offsets); 3614 unsigned NumValues = ValueVTs.size(); 3615 if (NumValues == 0) 3616 return; 3617 3618 // Get the lowered operands. Note that we do this after 3619 // checking if NumResults is zero, because with zero results 3620 // the operands won't have values in the map. 3621 SDValue Src = getValue(SrcV); 3622 SDValue Ptr = getValue(PtrV); 3623 3624 SDValue Root = getRoot(); 3625 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3626 NumValues)); 3627 EVT PtrVT = Ptr.getValueType(); 3628 bool isVolatile = I.isVolatile(); 3629 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3630 unsigned Alignment = I.getAlignment(); 3631 3632 AAMDNodes AAInfo; 3633 I.getAAMetadata(AAInfo); 3634 3635 unsigned ChainI = 0; 3636 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3637 // See visitLoad comments. 3638 if (ChainI == MaxParallelChains) { 3639 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3640 makeArrayRef(Chains.data(), ChainI)); 3641 Root = Chain; 3642 ChainI = 0; 3643 } 3644 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3645 DAG.getConstant(Offsets[i], PtrVT)); 3646 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3647 SDValue(Src.getNode(), Src.getResNo() + i), 3648 Add, MachinePointerInfo(PtrV, Offsets[i]), 3649 isVolatile, isNonTemporal, Alignment, AAInfo); 3650 Chains[ChainI] = St; 3651 } 3652 3653 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3654 makeArrayRef(Chains.data(), ChainI)); 3655 DAG.setRoot(StoreNode); 3656 } 3657 3658 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3659 SynchronizationScope Scope, 3660 bool Before, SDLoc dl, 3661 SelectionDAG &DAG, 3662 const TargetLowering &TLI) { 3663 // Fence, if necessary 3664 if (Before) { 3665 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3666 Order = Release; 3667 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3668 return Chain; 3669 } else { 3670 if (Order == AcquireRelease) 3671 Order = Acquire; 3672 else if (Order == Release || Order == Monotonic || Order == Unordered) 3673 return Chain; 3674 } 3675 SDValue Ops[3]; 3676 Ops[0] = Chain; 3677 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3678 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3679 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3680 } 3681 3682 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3683 SDLoc dl = getCurSDLoc(); 3684 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3685 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3686 SynchronizationScope Scope = I.getSynchScope(); 3687 3688 SDValue InChain = getRoot(); 3689 3690 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3691 if (TLI->getInsertFencesForAtomic()) 3692 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3693 DAG, *TLI); 3694 3695 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3696 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3697 SDValue L = DAG.getAtomicCmpSwap( 3698 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3699 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3700 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3701 0 /* Alignment */, 3702 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3703 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3704 3705 SDValue OutChain = L.getValue(2); 3706 3707 if (TLI->getInsertFencesForAtomic()) 3708 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3709 DAG, *TLI); 3710 3711 setValue(&I, L); 3712 DAG.setRoot(OutChain); 3713 } 3714 3715 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3716 SDLoc dl = getCurSDLoc(); 3717 ISD::NodeType NT; 3718 switch (I.getOperation()) { 3719 default: llvm_unreachable("Unknown atomicrmw operation"); 3720 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3721 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3722 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3723 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3724 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3725 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3726 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3727 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3728 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3729 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3730 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3731 } 3732 AtomicOrdering Order = I.getOrdering(); 3733 SynchronizationScope Scope = I.getSynchScope(); 3734 3735 SDValue InChain = getRoot(); 3736 3737 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3738 if (TLI->getInsertFencesForAtomic()) 3739 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3740 DAG, *TLI); 3741 3742 SDValue L = 3743 DAG.getAtomic(NT, dl, 3744 getValue(I.getValOperand()).getSimpleValueType(), 3745 InChain, 3746 getValue(I.getPointerOperand()), 3747 getValue(I.getValOperand()), 3748 I.getPointerOperand(), 0 /* Alignment */, 3749 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3750 Scope); 3751 3752 SDValue OutChain = L.getValue(1); 3753 3754 if (TLI->getInsertFencesForAtomic()) 3755 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3756 DAG, *TLI); 3757 3758 setValue(&I, L); 3759 DAG.setRoot(OutChain); 3760 } 3761 3762 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3763 SDLoc dl = getCurSDLoc(); 3764 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3765 SDValue Ops[3]; 3766 Ops[0] = getRoot(); 3767 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3768 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3769 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3770 } 3771 3772 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3773 SDLoc dl = getCurSDLoc(); 3774 AtomicOrdering Order = I.getOrdering(); 3775 SynchronizationScope Scope = I.getSynchScope(); 3776 3777 SDValue InChain = getRoot(); 3778 3779 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3780 EVT VT = TLI->getValueType(I.getType()); 3781 3782 if (I.getAlignment() < VT.getSizeInBits() / 8) 3783 report_fatal_error("Cannot generate unaligned atomic load"); 3784 3785 MachineMemOperand *MMO = 3786 DAG.getMachineFunction(). 3787 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3788 MachineMemOperand::MOVolatile | 3789 MachineMemOperand::MOLoad, 3790 VT.getStoreSize(), 3791 I.getAlignment() ? I.getAlignment() : 3792 DAG.getEVTAlignment(VT)); 3793 3794 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3795 SDValue L = 3796 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3797 getValue(I.getPointerOperand()), MMO, 3798 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3799 Scope); 3800 3801 SDValue OutChain = L.getValue(1); 3802 3803 if (TLI->getInsertFencesForAtomic()) 3804 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3805 DAG, *TLI); 3806 3807 setValue(&I, L); 3808 DAG.setRoot(OutChain); 3809 } 3810 3811 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3812 SDLoc dl = getCurSDLoc(); 3813 3814 AtomicOrdering Order = I.getOrdering(); 3815 SynchronizationScope Scope = I.getSynchScope(); 3816 3817 SDValue InChain = getRoot(); 3818 3819 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3820 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3821 3822 if (I.getAlignment() < VT.getSizeInBits() / 8) 3823 report_fatal_error("Cannot generate unaligned atomic store"); 3824 3825 if (TLI->getInsertFencesForAtomic()) 3826 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3827 DAG, *TLI); 3828 3829 SDValue OutChain = 3830 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3831 InChain, 3832 getValue(I.getPointerOperand()), 3833 getValue(I.getValueOperand()), 3834 I.getPointerOperand(), I.getAlignment(), 3835 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3836 Scope); 3837 3838 if (TLI->getInsertFencesForAtomic()) 3839 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3840 DAG, *TLI); 3841 3842 DAG.setRoot(OutChain); 3843 } 3844 3845 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3846 /// node. 3847 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3848 unsigned Intrinsic) { 3849 bool HasChain = !I.doesNotAccessMemory(); 3850 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3851 3852 // Build the operand list. 3853 SmallVector<SDValue, 8> Ops; 3854 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3855 if (OnlyLoad) { 3856 // We don't need to serialize loads against other loads. 3857 Ops.push_back(DAG.getRoot()); 3858 } else { 3859 Ops.push_back(getRoot()); 3860 } 3861 } 3862 3863 // Info is set by getTgtMemInstrinsic 3864 TargetLowering::IntrinsicInfo Info; 3865 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3866 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3867 3868 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3869 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3870 Info.opc == ISD::INTRINSIC_W_CHAIN) 3871 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3872 3873 // Add all operands of the call to the operand list. 3874 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3875 SDValue Op = getValue(I.getArgOperand(i)); 3876 Ops.push_back(Op); 3877 } 3878 3879 SmallVector<EVT, 4> ValueVTs; 3880 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3881 3882 if (HasChain) 3883 ValueVTs.push_back(MVT::Other); 3884 3885 SDVTList VTs = DAG.getVTList(ValueVTs); 3886 3887 // Create the node. 3888 SDValue Result; 3889 if (IsTgtIntrinsic) { 3890 // This is target intrinsic that touches memory 3891 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3892 VTs, Ops, Info.memVT, 3893 MachinePointerInfo(Info.ptrVal, Info.offset), 3894 Info.align, Info.vol, 3895 Info.readMem, Info.writeMem, Info.size); 3896 } else if (!HasChain) { 3897 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3898 } else if (!I.getType()->isVoidTy()) { 3899 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3900 } else { 3901 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3902 } 3903 3904 if (HasChain) { 3905 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3906 if (OnlyLoad) 3907 PendingLoads.push_back(Chain); 3908 else 3909 DAG.setRoot(Chain); 3910 } 3911 3912 if (!I.getType()->isVoidTy()) { 3913 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3914 EVT VT = TLI->getValueType(PTy); 3915 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3916 } 3917 3918 setValue(&I, Result); 3919 } 3920 } 3921 3922 /// GetSignificand - Get the significand and build it into a floating-point 3923 /// number with exponent of 1: 3924 /// 3925 /// Op = (Op & 0x007fffff) | 0x3f800000; 3926 /// 3927 /// where Op is the hexadecimal representation of floating point value. 3928 static SDValue 3929 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3930 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3931 DAG.getConstant(0x007fffff, MVT::i32)); 3932 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3933 DAG.getConstant(0x3f800000, MVT::i32)); 3934 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3935 } 3936 3937 /// GetExponent - Get the exponent: 3938 /// 3939 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3940 /// 3941 /// where Op is the hexadecimal representation of floating point value. 3942 static SDValue 3943 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3944 SDLoc dl) { 3945 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3946 DAG.getConstant(0x7f800000, MVT::i32)); 3947 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3948 DAG.getConstant(23, TLI.getPointerTy())); 3949 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3950 DAG.getConstant(127, MVT::i32)); 3951 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3952 } 3953 3954 /// getF32Constant - Get 32-bit floating point constant. 3955 static SDValue 3956 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3957 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3958 MVT::f32); 3959 } 3960 3961 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3962 /// limited-precision mode. 3963 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3964 const TargetLowering &TLI) { 3965 if (Op.getValueType() == MVT::f32 && 3966 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3967 3968 // Put the exponent in the right bit position for later addition to the 3969 // final result: 3970 // 3971 // #define LOG2OFe 1.4426950f 3972 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3973 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3974 getF32Constant(DAG, 0x3fb8aa3b)); 3975 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3976 3977 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3978 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3979 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3980 3981 // IntegerPartOfX <<= 23; 3982 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3983 DAG.getConstant(23, TLI.getPointerTy())); 3984 3985 SDValue TwoToFracPartOfX; 3986 if (LimitFloatPrecision <= 6) { 3987 // For floating-point precision of 6: 3988 // 3989 // TwoToFractionalPartOfX = 3990 // 0.997535578f + 3991 // (0.735607626f + 0.252464424f * x) * x; 3992 // 3993 // error 0.0144103317, which is 6 bits 3994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3995 getF32Constant(DAG, 0x3e814304)); 3996 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3997 getF32Constant(DAG, 0x3f3c50c8)); 3998 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3999 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4000 getF32Constant(DAG, 0x3f7f5e7e)); 4001 } else if (LimitFloatPrecision <= 12) { 4002 // For floating-point precision of 12: 4003 // 4004 // TwoToFractionalPartOfX = 4005 // 0.999892986f + 4006 // (0.696457318f + 4007 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4008 // 4009 // 0.000107046256 error, which is 13 to 14 bits 4010 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4011 getF32Constant(DAG, 0x3da235e3)); 4012 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4013 getF32Constant(DAG, 0x3e65b8f3)); 4014 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4015 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4016 getF32Constant(DAG, 0x3f324b07)); 4017 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4018 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4019 getF32Constant(DAG, 0x3f7ff8fd)); 4020 } else { // LimitFloatPrecision <= 18 4021 // For floating-point precision of 18: 4022 // 4023 // TwoToFractionalPartOfX = 4024 // 0.999999982f + 4025 // (0.693148872f + 4026 // (0.240227044f + 4027 // (0.554906021e-1f + 4028 // (0.961591928e-2f + 4029 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4030 // 4031 // error 2.47208000*10^(-7), which is better than 18 bits 4032 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4033 getF32Constant(DAG, 0x3924b03e)); 4034 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4035 getF32Constant(DAG, 0x3ab24b87)); 4036 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4037 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4038 getF32Constant(DAG, 0x3c1d8c17)); 4039 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4040 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4041 getF32Constant(DAG, 0x3d634a1d)); 4042 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4043 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4044 getF32Constant(DAG, 0x3e75fe14)); 4045 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4046 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4047 getF32Constant(DAG, 0x3f317234)); 4048 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4049 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4050 getF32Constant(DAG, 0x3f800000)); 4051 } 4052 4053 // Add the exponent into the result in integer domain. 4054 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4055 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4056 DAG.getNode(ISD::ADD, dl, MVT::i32, 4057 t13, IntegerPartOfX)); 4058 } 4059 4060 // No special expansion. 4061 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4062 } 4063 4064 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4065 /// limited-precision mode. 4066 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4067 const TargetLowering &TLI) { 4068 if (Op.getValueType() == MVT::f32 && 4069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4070 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4071 4072 // Scale the exponent by log(2) [0.69314718f]. 4073 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4074 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4075 getF32Constant(DAG, 0x3f317218)); 4076 4077 // Get the significand and build it into a floating-point number with 4078 // exponent of 1. 4079 SDValue X = GetSignificand(DAG, Op1, dl); 4080 4081 SDValue LogOfMantissa; 4082 if (LimitFloatPrecision <= 6) { 4083 // For floating-point precision of 6: 4084 // 4085 // LogofMantissa = 4086 // -1.1609546f + 4087 // (1.4034025f - 0.23903021f * x) * x; 4088 // 4089 // error 0.0034276066, which is better than 8 bits 4090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4091 getF32Constant(DAG, 0xbe74c456)); 4092 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4093 getF32Constant(DAG, 0x3fb3a2b1)); 4094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4095 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4096 getF32Constant(DAG, 0x3f949a29)); 4097 } else if (LimitFloatPrecision <= 12) { 4098 // For floating-point precision of 12: 4099 // 4100 // LogOfMantissa = 4101 // -1.7417939f + 4102 // (2.8212026f + 4103 // (-1.4699568f + 4104 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4105 // 4106 // error 0.000061011436, which is 14 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0xbd67b6d6)); 4109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x3ee4f4b8)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3fbc278b)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x40348e95)); 4117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4118 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4119 getF32Constant(DAG, 0x3fdef31a)); 4120 } else { // LimitFloatPrecision <= 18 4121 // For floating-point precision of 18: 4122 // 4123 // LogOfMantissa = 4124 // -2.1072184f + 4125 // (4.2372794f + 4126 // (-3.7029485f + 4127 // (2.2781945f + 4128 // (-0.87823314f + 4129 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4130 // 4131 // error 0.0000023660568, which is better than 18 bits 4132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4133 getF32Constant(DAG, 0xbc91e5ac)); 4134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4135 getF32Constant(DAG, 0x3e4350aa)); 4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4137 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4138 getF32Constant(DAG, 0x3f60d3e3)); 4139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4141 getF32Constant(DAG, 0x4011cdf0)); 4142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4143 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4144 getF32Constant(DAG, 0x406cfd1c)); 4145 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4146 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4147 getF32Constant(DAG, 0x408797cb)); 4148 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4149 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4150 getF32Constant(DAG, 0x4006dcab)); 4151 } 4152 4153 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4154 } 4155 4156 // No special expansion. 4157 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4158 } 4159 4160 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4161 /// limited-precision mode. 4162 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4163 const TargetLowering &TLI) { 4164 if (Op.getValueType() == MVT::f32 && 4165 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4166 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4167 4168 // Get the exponent. 4169 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4170 4171 // Get the significand and build it into a floating-point number with 4172 // exponent of 1. 4173 SDValue X = GetSignificand(DAG, Op1, dl); 4174 4175 // Different possible minimax approximations of significand in 4176 // floating-point for various degrees of accuracy over [1,2]. 4177 SDValue Log2ofMantissa; 4178 if (LimitFloatPrecision <= 6) { 4179 // For floating-point precision of 6: 4180 // 4181 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4182 // 4183 // error 0.0049451742, which is more than 7 bits 4184 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4185 getF32Constant(DAG, 0xbeb08fe0)); 4186 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4187 getF32Constant(DAG, 0x40019463)); 4188 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4189 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4190 getF32Constant(DAG, 0x3fd6633d)); 4191 } else if (LimitFloatPrecision <= 12) { 4192 // For floating-point precision of 12: 4193 // 4194 // Log2ofMantissa = 4195 // -2.51285454f + 4196 // (4.07009056f + 4197 // (-2.12067489f + 4198 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4199 // 4200 // error 0.0000876136000, which is better than 13 bits 4201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4202 getF32Constant(DAG, 0xbda7262e)); 4203 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4204 getF32Constant(DAG, 0x3f25280b)); 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4206 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4207 getF32Constant(DAG, 0x4007b923)); 4208 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4209 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4210 getF32Constant(DAG, 0x40823e2f)); 4211 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4212 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4213 getF32Constant(DAG, 0x4020d29c)); 4214 } else { // LimitFloatPrecision <= 18 4215 // For floating-point precision of 18: 4216 // 4217 // Log2ofMantissa = 4218 // -3.0400495f + 4219 // (6.1129976f + 4220 // (-5.3420409f + 4221 // (3.2865683f + 4222 // (-1.2669343f + 4223 // (0.27515199f - 4224 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4225 // 4226 // error 0.0000018516, which is better than 18 bits 4227 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4228 getF32Constant(DAG, 0xbcd2769e)); 4229 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4230 getF32Constant(DAG, 0x3e8ce0b9)); 4231 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4232 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4233 getF32Constant(DAG, 0x3fa22ae7)); 4234 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4235 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4236 getF32Constant(DAG, 0x40525723)); 4237 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4238 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4239 getF32Constant(DAG, 0x40aaf200)); 4240 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4241 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4242 getF32Constant(DAG, 0x40c39dad)); 4243 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4244 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4245 getF32Constant(DAG, 0x4042902c)); 4246 } 4247 4248 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4249 } 4250 4251 // No special expansion. 4252 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4253 } 4254 4255 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4256 /// limited-precision mode. 4257 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4258 const TargetLowering &TLI) { 4259 if (Op.getValueType() == MVT::f32 && 4260 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4261 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4262 4263 // Scale the exponent by log10(2) [0.30102999f]. 4264 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4265 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4266 getF32Constant(DAG, 0x3e9a209a)); 4267 4268 // Get the significand and build it into a floating-point number with 4269 // exponent of 1. 4270 SDValue X = GetSignificand(DAG, Op1, dl); 4271 4272 SDValue Log10ofMantissa; 4273 if (LimitFloatPrecision <= 6) { 4274 // For floating-point precision of 6: 4275 // 4276 // Log10ofMantissa = 4277 // -0.50419619f + 4278 // (0.60948995f - 0.10380950f * x) * x; 4279 // 4280 // error 0.0014886165, which is 6 bits 4281 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4282 getF32Constant(DAG, 0xbdd49a13)); 4283 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4284 getF32Constant(DAG, 0x3f1c0789)); 4285 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4286 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4287 getF32Constant(DAG, 0x3f011300)); 4288 } else if (LimitFloatPrecision <= 12) { 4289 // For floating-point precision of 12: 4290 // 4291 // Log10ofMantissa = 4292 // -0.64831180f + 4293 // (0.91751397f + 4294 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4295 // 4296 // error 0.00019228036, which is better than 12 bits 4297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4298 getF32Constant(DAG, 0x3d431f31)); 4299 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4300 getF32Constant(DAG, 0x3ea21fb2)); 4301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4302 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4303 getF32Constant(DAG, 0x3f6ae232)); 4304 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4305 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4306 getF32Constant(DAG, 0x3f25f7c3)); 4307 } else { // LimitFloatPrecision <= 18 4308 // For floating-point precision of 18: 4309 // 4310 // Log10ofMantissa = 4311 // -0.84299375f + 4312 // (1.5327582f + 4313 // (-1.0688956f + 4314 // (0.49102474f + 4315 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4316 // 4317 // error 0.0000037995730, which is better than 18 bits 4318 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4319 getF32Constant(DAG, 0x3c5d51ce)); 4320 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4321 getF32Constant(DAG, 0x3e00685a)); 4322 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4323 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4324 getF32Constant(DAG, 0x3efb6798)); 4325 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4326 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4327 getF32Constant(DAG, 0x3f88d192)); 4328 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4329 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4330 getF32Constant(DAG, 0x3fc4316c)); 4331 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4332 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4333 getF32Constant(DAG, 0x3f57ce70)); 4334 } 4335 4336 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4337 } 4338 4339 // No special expansion. 4340 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4341 } 4342 4343 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4344 /// limited-precision mode. 4345 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4346 const TargetLowering &TLI) { 4347 if (Op.getValueType() == MVT::f32 && 4348 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4349 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4350 4351 // FractionalPartOfX = x - (float)IntegerPartOfX; 4352 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4353 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4354 4355 // IntegerPartOfX <<= 23; 4356 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4357 DAG.getConstant(23, TLI.getPointerTy())); 4358 4359 SDValue TwoToFractionalPartOfX; 4360 if (LimitFloatPrecision <= 6) { 4361 // For floating-point precision of 6: 4362 // 4363 // TwoToFractionalPartOfX = 4364 // 0.997535578f + 4365 // (0.735607626f + 0.252464424f * x) * x; 4366 // 4367 // error 0.0144103317, which is 6 bits 4368 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4369 getF32Constant(DAG, 0x3e814304)); 4370 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4371 getF32Constant(DAG, 0x3f3c50c8)); 4372 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4373 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4374 getF32Constant(DAG, 0x3f7f5e7e)); 4375 } else if (LimitFloatPrecision <= 12) { 4376 // For floating-point precision of 12: 4377 // 4378 // TwoToFractionalPartOfX = 4379 // 0.999892986f + 4380 // (0.696457318f + 4381 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4382 // 4383 // error 0.000107046256, which is 13 to 14 bits 4384 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4385 getF32Constant(DAG, 0x3da235e3)); 4386 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4387 getF32Constant(DAG, 0x3e65b8f3)); 4388 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4389 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4390 getF32Constant(DAG, 0x3f324b07)); 4391 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4392 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4393 getF32Constant(DAG, 0x3f7ff8fd)); 4394 } else { // LimitFloatPrecision <= 18 4395 // For floating-point precision of 18: 4396 // 4397 // TwoToFractionalPartOfX = 4398 // 0.999999982f + 4399 // (0.693148872f + 4400 // (0.240227044f + 4401 // (0.554906021e-1f + 4402 // (0.961591928e-2f + 4403 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4404 // error 2.47208000*10^(-7), which is better than 18 bits 4405 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4406 getF32Constant(DAG, 0x3924b03e)); 4407 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3ab24b87)); 4409 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4410 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4411 getF32Constant(DAG, 0x3c1d8c17)); 4412 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4413 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4414 getF32Constant(DAG, 0x3d634a1d)); 4415 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4416 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4417 getF32Constant(DAG, 0x3e75fe14)); 4418 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4419 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4420 getF32Constant(DAG, 0x3f317234)); 4421 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4422 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4423 getF32Constant(DAG, 0x3f800000)); 4424 } 4425 4426 // Add the exponent into the result in integer domain. 4427 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4428 TwoToFractionalPartOfX); 4429 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4430 DAG.getNode(ISD::ADD, dl, MVT::i32, 4431 t13, IntegerPartOfX)); 4432 } 4433 4434 // No special expansion. 4435 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4436 } 4437 4438 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4439 /// limited-precision mode with x == 10.0f. 4440 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4441 SelectionDAG &DAG, const TargetLowering &TLI) { 4442 bool IsExp10 = false; 4443 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4444 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4445 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4446 APFloat Ten(10.0f); 4447 IsExp10 = LHSC->isExactlyValue(Ten); 4448 } 4449 } 4450 4451 if (IsExp10) { 4452 // Put the exponent in the right bit position for later addition to the 4453 // final result: 4454 // 4455 // #define LOG2OF10 3.3219281f 4456 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4457 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4458 getF32Constant(DAG, 0x40549a78)); 4459 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4460 4461 // FractionalPartOfX = x - (float)IntegerPartOfX; 4462 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4463 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4464 4465 // IntegerPartOfX <<= 23; 4466 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4467 DAG.getConstant(23, TLI.getPointerTy())); 4468 4469 SDValue TwoToFractionalPartOfX; 4470 if (LimitFloatPrecision <= 6) { 4471 // For floating-point precision of 6: 4472 // 4473 // twoToFractionalPartOfX = 4474 // 0.997535578f + 4475 // (0.735607626f + 0.252464424f * x) * x; 4476 // 4477 // error 0.0144103317, which is 6 bits 4478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4479 getF32Constant(DAG, 0x3e814304)); 4480 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4481 getF32Constant(DAG, 0x3f3c50c8)); 4482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4483 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4484 getF32Constant(DAG, 0x3f7f5e7e)); 4485 } else if (LimitFloatPrecision <= 12) { 4486 // For floating-point precision of 12: 4487 // 4488 // TwoToFractionalPartOfX = 4489 // 0.999892986f + 4490 // (0.696457318f + 4491 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4492 // 4493 // error 0.000107046256, which is 13 to 14 bits 4494 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4495 getF32Constant(DAG, 0x3da235e3)); 4496 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4497 getF32Constant(DAG, 0x3e65b8f3)); 4498 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4499 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4500 getF32Constant(DAG, 0x3f324b07)); 4501 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4502 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4503 getF32Constant(DAG, 0x3f7ff8fd)); 4504 } else { // LimitFloatPrecision <= 18 4505 // For floating-point precision of 18: 4506 // 4507 // TwoToFractionalPartOfX = 4508 // 0.999999982f + 4509 // (0.693148872f + 4510 // (0.240227044f + 4511 // (0.554906021e-1f + 4512 // (0.961591928e-2f + 4513 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4514 // error 2.47208000*10^(-7), which is better than 18 bits 4515 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4516 getF32Constant(DAG, 0x3924b03e)); 4517 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4518 getF32Constant(DAG, 0x3ab24b87)); 4519 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4520 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4521 getF32Constant(DAG, 0x3c1d8c17)); 4522 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4523 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4524 getF32Constant(DAG, 0x3d634a1d)); 4525 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4526 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4527 getF32Constant(DAG, 0x3e75fe14)); 4528 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4529 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4530 getF32Constant(DAG, 0x3f317234)); 4531 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4532 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4533 getF32Constant(DAG, 0x3f800000)); 4534 } 4535 4536 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4537 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4538 DAG.getNode(ISD::ADD, dl, MVT::i32, 4539 t13, IntegerPartOfX)); 4540 } 4541 4542 // No special expansion. 4543 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4544 } 4545 4546 4547 /// ExpandPowI - Expand a llvm.powi intrinsic. 4548 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4549 SelectionDAG &DAG) { 4550 // If RHS is a constant, we can expand this out to a multiplication tree, 4551 // otherwise we end up lowering to a call to __powidf2 (for example). When 4552 // optimizing for size, we only want to do this if the expansion would produce 4553 // a small number of multiplies, otherwise we do the full expansion. 4554 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4555 // Get the exponent as a positive value. 4556 unsigned Val = RHSC->getSExtValue(); 4557 if ((int)Val < 0) Val = -Val; 4558 4559 // powi(x, 0) -> 1.0 4560 if (Val == 0) 4561 return DAG.getConstantFP(1.0, LHS.getValueType()); 4562 4563 const Function *F = DAG.getMachineFunction().getFunction(); 4564 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4565 Attribute::OptimizeForSize) || 4566 // If optimizing for size, don't insert too many multiplies. This 4567 // inserts up to 5 multiplies. 4568 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4569 // We use the simple binary decomposition method to generate the multiply 4570 // sequence. There are more optimal ways to do this (for example, 4571 // powi(x,15) generates one more multiply than it should), but this has 4572 // the benefit of being both really simple and much better than a libcall. 4573 SDValue Res; // Logically starts equal to 1.0 4574 SDValue CurSquare = LHS; 4575 while (Val) { 4576 if (Val & 1) { 4577 if (Res.getNode()) 4578 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4579 else 4580 Res = CurSquare; // 1.0*CurSquare. 4581 } 4582 4583 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4584 CurSquare, CurSquare); 4585 Val >>= 1; 4586 } 4587 4588 // If the original was negative, invert the result, producing 1/(x*x*x). 4589 if (RHSC->getSExtValue() < 0) 4590 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4591 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4592 return Res; 4593 } 4594 } 4595 4596 // Otherwise, expand to a libcall. 4597 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4598 } 4599 4600 // getTruncatedArgReg - Find underlying register used for an truncated 4601 // argument. 4602 static unsigned getTruncatedArgReg(const SDValue &N) { 4603 if (N.getOpcode() != ISD::TRUNCATE) 4604 return 0; 4605 4606 const SDValue &Ext = N.getOperand(0); 4607 if (Ext.getOpcode() == ISD::AssertZext || 4608 Ext.getOpcode() == ISD::AssertSext) { 4609 const SDValue &CFR = Ext.getOperand(0); 4610 if (CFR.getOpcode() == ISD::CopyFromReg) 4611 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4612 if (CFR.getOpcode() == ISD::TRUNCATE) 4613 return getTruncatedArgReg(CFR); 4614 } 4615 return 0; 4616 } 4617 4618 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4619 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4620 /// At the end of instruction selection, they will be inserted to the entry BB. 4621 bool 4622 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4623 int64_t Offset, bool IsIndirect, 4624 const SDValue &N) { 4625 const Argument *Arg = dyn_cast<Argument>(V); 4626 if (!Arg) 4627 return false; 4628 4629 MachineFunction &MF = DAG.getMachineFunction(); 4630 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4631 4632 // Ignore inlined function arguments here. 4633 DIVariable DV(Variable); 4634 if (DV.isInlinedFnArgument(MF.getFunction())) 4635 return false; 4636 4637 Optional<MachineOperand> Op; 4638 // Some arguments' frame index is recorded during argument lowering. 4639 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4640 Op = MachineOperand::CreateFI(FI); 4641 4642 if (!Op && N.getNode()) { 4643 unsigned Reg; 4644 if (N.getOpcode() == ISD::CopyFromReg) 4645 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4646 else 4647 Reg = getTruncatedArgReg(N); 4648 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4649 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4650 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4651 if (PR) 4652 Reg = PR; 4653 } 4654 if (Reg) 4655 Op = MachineOperand::CreateReg(Reg, false); 4656 } 4657 4658 if (!Op) { 4659 // Check if ValueMap has reg number. 4660 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4661 if (VMI != FuncInfo.ValueMap.end()) 4662 Op = MachineOperand::CreateReg(VMI->second, false); 4663 } 4664 4665 if (!Op && N.getNode()) 4666 // Check if frame index is available. 4667 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4668 if (FrameIndexSDNode *FINode = 4669 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4670 Op = MachineOperand::CreateFI(FINode->getIndex()); 4671 4672 if (!Op) 4673 return false; 4674 4675 if (Op->isReg()) 4676 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4677 TII->get(TargetOpcode::DBG_VALUE), 4678 IsIndirect, 4679 Op->getReg(), Offset, Variable)); 4680 else 4681 FuncInfo.ArgDbgValues.push_back( 4682 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4683 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4684 4685 return true; 4686 } 4687 4688 // VisualStudio defines setjmp as _setjmp 4689 #if defined(_MSC_VER) && defined(setjmp) && \ 4690 !defined(setjmp_undefined_for_msvc) 4691 # pragma push_macro("setjmp") 4692 # undef setjmp 4693 # define setjmp_undefined_for_msvc 4694 #endif 4695 4696 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4697 /// we want to emit this as a call to a named external function, return the name 4698 /// otherwise lower it and return null. 4699 const char * 4700 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4701 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4702 SDLoc sdl = getCurSDLoc(); 4703 DebugLoc dl = getCurDebugLoc(); 4704 SDValue Res; 4705 4706 switch (Intrinsic) { 4707 default: 4708 // By default, turn this into a target intrinsic node. 4709 visitTargetIntrinsic(I, Intrinsic); 4710 return nullptr; 4711 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4712 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4713 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4714 case Intrinsic::returnaddress: 4715 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4716 getValue(I.getArgOperand(0)))); 4717 return nullptr; 4718 case Intrinsic::frameaddress: 4719 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4720 getValue(I.getArgOperand(0)))); 4721 return nullptr; 4722 case Intrinsic::read_register: { 4723 Value *Reg = I.getArgOperand(0); 4724 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4725 EVT VT = 4726 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4727 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4728 return nullptr; 4729 } 4730 case Intrinsic::write_register: { 4731 Value *Reg = I.getArgOperand(0); 4732 Value *RegValue = I.getArgOperand(1); 4733 SDValue Chain = getValue(RegValue).getOperand(0); 4734 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4735 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4736 RegName, getValue(RegValue))); 4737 return nullptr; 4738 } 4739 case Intrinsic::setjmp: 4740 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4741 case Intrinsic::longjmp: 4742 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4743 case Intrinsic::memcpy: { 4744 // Assert for address < 256 since we support only user defined address 4745 // spaces. 4746 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4747 < 256 && 4748 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4749 < 256 && 4750 "Unknown address space"); 4751 SDValue Op1 = getValue(I.getArgOperand(0)); 4752 SDValue Op2 = getValue(I.getArgOperand(1)); 4753 SDValue Op3 = getValue(I.getArgOperand(2)); 4754 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4755 if (!Align) 4756 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4757 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4758 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4759 MachinePointerInfo(I.getArgOperand(0)), 4760 MachinePointerInfo(I.getArgOperand(1)))); 4761 return nullptr; 4762 } 4763 case Intrinsic::memset: { 4764 // Assert for address < 256 since we support only user defined address 4765 // spaces. 4766 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4767 < 256 && 4768 "Unknown address space"); 4769 SDValue Op1 = getValue(I.getArgOperand(0)); 4770 SDValue Op2 = getValue(I.getArgOperand(1)); 4771 SDValue Op3 = getValue(I.getArgOperand(2)); 4772 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4773 if (!Align) 4774 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4775 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4776 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4777 MachinePointerInfo(I.getArgOperand(0)))); 4778 return nullptr; 4779 } 4780 case Intrinsic::memmove: { 4781 // Assert for address < 256 since we support only user defined address 4782 // spaces. 4783 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4784 < 256 && 4785 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4786 < 256 && 4787 "Unknown address space"); 4788 SDValue Op1 = getValue(I.getArgOperand(0)); 4789 SDValue Op2 = getValue(I.getArgOperand(1)); 4790 SDValue Op3 = getValue(I.getArgOperand(2)); 4791 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4792 if (!Align) 4793 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4794 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4795 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4796 MachinePointerInfo(I.getArgOperand(0)), 4797 MachinePointerInfo(I.getArgOperand(1)))); 4798 return nullptr; 4799 } 4800 case Intrinsic::dbg_declare: { 4801 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4802 MDNode *Variable = DI.getVariable(); 4803 const Value *Address = DI.getAddress(); 4804 DIVariable DIVar(Variable); 4805 assert((!DIVar || DIVar.isVariable()) && 4806 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4807 if (!Address || !DIVar) { 4808 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4809 return nullptr; 4810 } 4811 4812 // Check if address has undef value. 4813 if (isa<UndefValue>(Address) || 4814 (Address->use_empty() && !isa<Argument>(Address))) { 4815 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4816 return nullptr; 4817 } 4818 4819 SDValue &N = NodeMap[Address]; 4820 if (!N.getNode() && isa<Argument>(Address)) 4821 // Check unused arguments map. 4822 N = UnusedArgNodeMap[Address]; 4823 SDDbgValue *SDV; 4824 if (N.getNode()) { 4825 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4826 Address = BCI->getOperand(0); 4827 // Parameters are handled specially. 4828 bool isParameter = 4829 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4830 isa<Argument>(Address)); 4831 4832 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4833 4834 if (isParameter && !AI) { 4835 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4836 if (FINode) 4837 // Byval parameter. We have a frame index at this point. 4838 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4839 0, dl, SDNodeOrder); 4840 else { 4841 // Address is an argument, so try to emit its dbg value using 4842 // virtual register info from the FuncInfo.ValueMap. 4843 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4844 return nullptr; 4845 } 4846 } else if (AI) 4847 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4848 true, 0, dl, SDNodeOrder); 4849 else { 4850 // Can't do anything with other non-AI cases yet. 4851 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4852 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4853 DEBUG(Address->dump()); 4854 return nullptr; 4855 } 4856 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4857 } else { 4858 // If Address is an argument then try to emit its dbg value using 4859 // virtual register info from the FuncInfo.ValueMap. 4860 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4861 // If variable is pinned by a alloca in dominating bb then 4862 // use StaticAllocaMap. 4863 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4864 if (AI->getParent() != DI.getParent()) { 4865 DenseMap<const AllocaInst*, int>::iterator SI = 4866 FuncInfo.StaticAllocaMap.find(AI); 4867 if (SI != FuncInfo.StaticAllocaMap.end()) { 4868 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4869 0, dl, SDNodeOrder); 4870 DAG.AddDbgValue(SDV, nullptr, false); 4871 return nullptr; 4872 } 4873 } 4874 } 4875 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4876 } 4877 } 4878 return nullptr; 4879 } 4880 case Intrinsic::dbg_value: { 4881 const DbgValueInst &DI = cast<DbgValueInst>(I); 4882 DIVariable DIVar(DI.getVariable()); 4883 assert((!DIVar || DIVar.isVariable()) && 4884 "Variable in DbgValueInst should be either null or a DIVariable."); 4885 if (!DIVar) 4886 return nullptr; 4887 4888 MDNode *Variable = DI.getVariable(); 4889 uint64_t Offset = DI.getOffset(); 4890 const Value *V = DI.getValue(); 4891 if (!V) 4892 return nullptr; 4893 4894 SDDbgValue *SDV; 4895 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4896 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4897 DAG.AddDbgValue(SDV, nullptr, false); 4898 } else { 4899 // Do not use getValue() in here; we don't want to generate code at 4900 // this point if it hasn't been done yet. 4901 SDValue N = NodeMap[V]; 4902 if (!N.getNode() && isa<Argument>(V)) 4903 // Check unused arguments map. 4904 N = UnusedArgNodeMap[V]; 4905 if (N.getNode()) { 4906 // A dbg.value for an alloca is always indirect. 4907 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4908 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4909 SDV = DAG.getDbgValue(Variable, N.getNode(), 4910 N.getResNo(), IsIndirect, 4911 Offset, dl, SDNodeOrder); 4912 DAG.AddDbgValue(SDV, N.getNode(), false); 4913 } 4914 } else if (!V->use_empty() ) { 4915 // Do not call getValue(V) yet, as we don't want to generate code. 4916 // Remember it for later. 4917 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4918 DanglingDebugInfoMap[V] = DDI; 4919 } else { 4920 // We may expand this to cover more cases. One case where we have no 4921 // data available is an unreferenced parameter. 4922 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4923 } 4924 } 4925 4926 // Build a debug info table entry. 4927 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4928 V = BCI->getOperand(0); 4929 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4930 // Don't handle byval struct arguments or VLAs, for example. 4931 if (!AI) { 4932 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4933 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4934 return nullptr; 4935 } 4936 DenseMap<const AllocaInst*, int>::iterator SI = 4937 FuncInfo.StaticAllocaMap.find(AI); 4938 if (SI == FuncInfo.StaticAllocaMap.end()) 4939 return nullptr; // VLAs. 4940 return nullptr; 4941 } 4942 4943 case Intrinsic::eh_typeid_for: { 4944 // Find the type id for the given typeinfo. 4945 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4946 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4947 Res = DAG.getConstant(TypeID, MVT::i32); 4948 setValue(&I, Res); 4949 return nullptr; 4950 } 4951 4952 case Intrinsic::eh_return_i32: 4953 case Intrinsic::eh_return_i64: 4954 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4955 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4956 MVT::Other, 4957 getControlRoot(), 4958 getValue(I.getArgOperand(0)), 4959 getValue(I.getArgOperand(1)))); 4960 return nullptr; 4961 case Intrinsic::eh_unwind_init: 4962 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4963 return nullptr; 4964 case Intrinsic::eh_dwarf_cfa: { 4965 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4966 TLI->getPointerTy()); 4967 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4968 CfaArg.getValueType(), 4969 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4970 CfaArg.getValueType()), 4971 CfaArg); 4972 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4973 TLI->getPointerTy(), 4974 DAG.getConstant(0, TLI->getPointerTy())); 4975 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4976 FA, Offset)); 4977 return nullptr; 4978 } 4979 case Intrinsic::eh_sjlj_callsite: { 4980 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4981 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4982 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4983 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4984 4985 MMI.setCurrentCallSite(CI->getZExtValue()); 4986 return nullptr; 4987 } 4988 case Intrinsic::eh_sjlj_functioncontext: { 4989 // Get and store the index of the function context. 4990 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4991 AllocaInst *FnCtx = 4992 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4993 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4994 MFI->setFunctionContextIndex(FI); 4995 return nullptr; 4996 } 4997 case Intrinsic::eh_sjlj_setjmp: { 4998 SDValue Ops[2]; 4999 Ops[0] = getRoot(); 5000 Ops[1] = getValue(I.getArgOperand(0)); 5001 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5002 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5003 setValue(&I, Op.getValue(0)); 5004 DAG.setRoot(Op.getValue(1)); 5005 return nullptr; 5006 } 5007 case Intrinsic::eh_sjlj_longjmp: { 5008 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5009 getRoot(), getValue(I.getArgOperand(0)))); 5010 return nullptr; 5011 } 5012 5013 case Intrinsic::x86_mmx_pslli_w: 5014 case Intrinsic::x86_mmx_pslli_d: 5015 case Intrinsic::x86_mmx_pslli_q: 5016 case Intrinsic::x86_mmx_psrli_w: 5017 case Intrinsic::x86_mmx_psrli_d: 5018 case Intrinsic::x86_mmx_psrli_q: 5019 case Intrinsic::x86_mmx_psrai_w: 5020 case Intrinsic::x86_mmx_psrai_d: { 5021 SDValue ShAmt = getValue(I.getArgOperand(1)); 5022 if (isa<ConstantSDNode>(ShAmt)) { 5023 visitTargetIntrinsic(I, Intrinsic); 5024 return nullptr; 5025 } 5026 unsigned NewIntrinsic = 0; 5027 EVT ShAmtVT = MVT::v2i32; 5028 switch (Intrinsic) { 5029 case Intrinsic::x86_mmx_pslli_w: 5030 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5031 break; 5032 case Intrinsic::x86_mmx_pslli_d: 5033 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5034 break; 5035 case Intrinsic::x86_mmx_pslli_q: 5036 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5037 break; 5038 case Intrinsic::x86_mmx_psrli_w: 5039 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5040 break; 5041 case Intrinsic::x86_mmx_psrli_d: 5042 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5043 break; 5044 case Intrinsic::x86_mmx_psrli_q: 5045 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5046 break; 5047 case Intrinsic::x86_mmx_psrai_w: 5048 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5049 break; 5050 case Intrinsic::x86_mmx_psrai_d: 5051 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5052 break; 5053 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5054 } 5055 5056 // The vector shift intrinsics with scalars uses 32b shift amounts but 5057 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5058 // to be zero. 5059 // We must do this early because v2i32 is not a legal type. 5060 SDValue ShOps[2]; 5061 ShOps[0] = ShAmt; 5062 ShOps[1] = DAG.getConstant(0, MVT::i32); 5063 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5064 EVT DestVT = TLI->getValueType(I.getType()); 5065 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5066 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5067 DAG.getConstant(NewIntrinsic, MVT::i32), 5068 getValue(I.getArgOperand(0)), ShAmt); 5069 setValue(&I, Res); 5070 return nullptr; 5071 } 5072 case Intrinsic::x86_avx_vinsertf128_pd_256: 5073 case Intrinsic::x86_avx_vinsertf128_ps_256: 5074 case Intrinsic::x86_avx_vinsertf128_si_256: 5075 case Intrinsic::x86_avx2_vinserti128: { 5076 EVT DestVT = TLI->getValueType(I.getType()); 5077 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5078 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5079 ElVT.getVectorNumElements(); 5080 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5081 getValue(I.getArgOperand(0)), 5082 getValue(I.getArgOperand(1)), 5083 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5084 setValue(&I, Res); 5085 return nullptr; 5086 } 5087 case Intrinsic::x86_avx_vextractf128_pd_256: 5088 case Intrinsic::x86_avx_vextractf128_ps_256: 5089 case Intrinsic::x86_avx_vextractf128_si_256: 5090 case Intrinsic::x86_avx2_vextracti128: { 5091 EVT DestVT = TLI->getValueType(I.getType()); 5092 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5093 DestVT.getVectorNumElements(); 5094 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5095 getValue(I.getArgOperand(0)), 5096 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5097 setValue(&I, Res); 5098 return nullptr; 5099 } 5100 case Intrinsic::convertff: 5101 case Intrinsic::convertfsi: 5102 case Intrinsic::convertfui: 5103 case Intrinsic::convertsif: 5104 case Intrinsic::convertuif: 5105 case Intrinsic::convertss: 5106 case Intrinsic::convertsu: 5107 case Intrinsic::convertus: 5108 case Intrinsic::convertuu: { 5109 ISD::CvtCode Code = ISD::CVT_INVALID; 5110 switch (Intrinsic) { 5111 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5112 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5113 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5114 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5115 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5116 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5117 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5118 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5119 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5120 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5121 } 5122 EVT DestVT = TLI->getValueType(I.getType()); 5123 const Value *Op1 = I.getArgOperand(0); 5124 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5125 DAG.getValueType(DestVT), 5126 DAG.getValueType(getValue(Op1).getValueType()), 5127 getValue(I.getArgOperand(1)), 5128 getValue(I.getArgOperand(2)), 5129 Code); 5130 setValue(&I, Res); 5131 return nullptr; 5132 } 5133 case Intrinsic::powi: 5134 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5135 getValue(I.getArgOperand(1)), DAG)); 5136 return nullptr; 5137 case Intrinsic::log: 5138 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5139 return nullptr; 5140 case Intrinsic::log2: 5141 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5142 return nullptr; 5143 case Intrinsic::log10: 5144 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5145 return nullptr; 5146 case Intrinsic::exp: 5147 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5148 return nullptr; 5149 case Intrinsic::exp2: 5150 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5151 return nullptr; 5152 case Intrinsic::pow: 5153 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5154 getValue(I.getArgOperand(1)), DAG, *TLI)); 5155 return nullptr; 5156 case Intrinsic::sqrt: 5157 case Intrinsic::fabs: 5158 case Intrinsic::sin: 5159 case Intrinsic::cos: 5160 case Intrinsic::floor: 5161 case Intrinsic::ceil: 5162 case Intrinsic::trunc: 5163 case Intrinsic::rint: 5164 case Intrinsic::nearbyint: 5165 case Intrinsic::round: { 5166 unsigned Opcode; 5167 switch (Intrinsic) { 5168 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5169 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5170 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5171 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5172 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5173 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5174 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5175 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5176 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5177 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5178 case Intrinsic::round: Opcode = ISD::FROUND; break; 5179 } 5180 5181 setValue(&I, DAG.getNode(Opcode, sdl, 5182 getValue(I.getArgOperand(0)).getValueType(), 5183 getValue(I.getArgOperand(0)))); 5184 return nullptr; 5185 } 5186 case Intrinsic::copysign: 5187 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5188 getValue(I.getArgOperand(0)).getValueType(), 5189 getValue(I.getArgOperand(0)), 5190 getValue(I.getArgOperand(1)))); 5191 return nullptr; 5192 case Intrinsic::fma: 5193 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5194 getValue(I.getArgOperand(0)).getValueType(), 5195 getValue(I.getArgOperand(0)), 5196 getValue(I.getArgOperand(1)), 5197 getValue(I.getArgOperand(2)))); 5198 return nullptr; 5199 case Intrinsic::fmuladd: { 5200 EVT VT = TLI->getValueType(I.getType()); 5201 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5202 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5203 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5204 getValue(I.getArgOperand(0)).getValueType(), 5205 getValue(I.getArgOperand(0)), 5206 getValue(I.getArgOperand(1)), 5207 getValue(I.getArgOperand(2)))); 5208 } else { 5209 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5210 getValue(I.getArgOperand(0)).getValueType(), 5211 getValue(I.getArgOperand(0)), 5212 getValue(I.getArgOperand(1))); 5213 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5214 getValue(I.getArgOperand(0)).getValueType(), 5215 Mul, 5216 getValue(I.getArgOperand(2))); 5217 setValue(&I, Add); 5218 } 5219 return nullptr; 5220 } 5221 case Intrinsic::convert_to_fp16: 5222 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5223 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5224 getValue(I.getArgOperand(0)), 5225 DAG.getTargetConstant(0, MVT::i32)))); 5226 return nullptr; 5227 case Intrinsic::convert_from_fp16: 5228 setValue(&I, 5229 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5230 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5231 getValue(I.getArgOperand(0))))); 5232 return nullptr; 5233 case Intrinsic::pcmarker: { 5234 SDValue Tmp = getValue(I.getArgOperand(0)); 5235 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5236 return nullptr; 5237 } 5238 case Intrinsic::readcyclecounter: { 5239 SDValue Op = getRoot(); 5240 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5241 DAG.getVTList(MVT::i64, MVT::Other), Op); 5242 setValue(&I, Res); 5243 DAG.setRoot(Res.getValue(1)); 5244 return nullptr; 5245 } 5246 case Intrinsic::bswap: 5247 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5248 getValue(I.getArgOperand(0)).getValueType(), 5249 getValue(I.getArgOperand(0)))); 5250 return nullptr; 5251 case Intrinsic::cttz: { 5252 SDValue Arg = getValue(I.getArgOperand(0)); 5253 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5254 EVT Ty = Arg.getValueType(); 5255 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5256 sdl, Ty, Arg)); 5257 return nullptr; 5258 } 5259 case Intrinsic::ctlz: { 5260 SDValue Arg = getValue(I.getArgOperand(0)); 5261 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5262 EVT Ty = Arg.getValueType(); 5263 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5264 sdl, Ty, Arg)); 5265 return nullptr; 5266 } 5267 case Intrinsic::ctpop: { 5268 SDValue Arg = getValue(I.getArgOperand(0)); 5269 EVT Ty = Arg.getValueType(); 5270 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5271 return nullptr; 5272 } 5273 case Intrinsic::stacksave: { 5274 SDValue Op = getRoot(); 5275 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5276 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5277 setValue(&I, Res); 5278 DAG.setRoot(Res.getValue(1)); 5279 return nullptr; 5280 } 5281 case Intrinsic::stackrestore: { 5282 Res = getValue(I.getArgOperand(0)); 5283 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5284 return nullptr; 5285 } 5286 case Intrinsic::stackprotector: { 5287 // Emit code into the DAG to store the stack guard onto the stack. 5288 MachineFunction &MF = DAG.getMachineFunction(); 5289 MachineFrameInfo *MFI = MF.getFrameInfo(); 5290 EVT PtrTy = TLI->getPointerTy(); 5291 SDValue Src, Chain = getRoot(); 5292 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5293 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5294 5295 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5296 // global variable __stack_chk_guard. 5297 if (!GV) 5298 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5299 if (BC->getOpcode() == Instruction::BitCast) 5300 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5301 5302 if (GV && TLI->useLoadStackGuardNode()) { 5303 // Emit a LOAD_STACK_GUARD node. 5304 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5305 sdl, PtrTy, Chain); 5306 MachinePointerInfo MPInfo(GV); 5307 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5308 unsigned Flags = MachineMemOperand::MOLoad | 5309 MachineMemOperand::MOInvariant; 5310 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5311 PtrTy.getSizeInBits() / 8, 5312 DAG.getEVTAlignment(PtrTy)); 5313 Node->setMemRefs(MemRefs, MemRefs + 1); 5314 5315 // Copy the guard value to a virtual register so that it can be 5316 // retrieved in the epilogue. 5317 Src = SDValue(Node, 0); 5318 const TargetRegisterClass *RC = 5319 TLI->getRegClassFor(Src.getSimpleValueType()); 5320 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5321 5322 SPDescriptor.setGuardReg(Reg); 5323 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5324 } else { 5325 Src = getValue(I.getArgOperand(0)); // The guard's value. 5326 } 5327 5328 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5329 5330 int FI = FuncInfo.StaticAllocaMap[Slot]; 5331 MFI->setStackProtectorIndex(FI); 5332 5333 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5334 5335 // Store the stack protector onto the stack. 5336 Res = DAG.getStore(Chain, sdl, Src, FIN, 5337 MachinePointerInfo::getFixedStack(FI), 5338 true, false, 0); 5339 setValue(&I, Res); 5340 DAG.setRoot(Res); 5341 return nullptr; 5342 } 5343 case Intrinsic::objectsize: { 5344 // If we don't know by now, we're never going to know. 5345 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5346 5347 assert(CI && "Non-constant type in __builtin_object_size?"); 5348 5349 SDValue Arg = getValue(I.getCalledValue()); 5350 EVT Ty = Arg.getValueType(); 5351 5352 if (CI->isZero()) 5353 Res = DAG.getConstant(-1ULL, Ty); 5354 else 5355 Res = DAG.getConstant(0, Ty); 5356 5357 setValue(&I, Res); 5358 return nullptr; 5359 } 5360 case Intrinsic::annotation: 5361 case Intrinsic::ptr_annotation: 5362 // Drop the intrinsic, but forward the value 5363 setValue(&I, getValue(I.getOperand(0))); 5364 return nullptr; 5365 case Intrinsic::assume: 5366 case Intrinsic::var_annotation: 5367 // Discard annotate attributes and assumptions 5368 return nullptr; 5369 5370 case Intrinsic::init_trampoline: { 5371 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5372 5373 SDValue Ops[6]; 5374 Ops[0] = getRoot(); 5375 Ops[1] = getValue(I.getArgOperand(0)); 5376 Ops[2] = getValue(I.getArgOperand(1)); 5377 Ops[3] = getValue(I.getArgOperand(2)); 5378 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5379 Ops[5] = DAG.getSrcValue(F); 5380 5381 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5382 5383 DAG.setRoot(Res); 5384 return nullptr; 5385 } 5386 case Intrinsic::adjust_trampoline: { 5387 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5388 TLI->getPointerTy(), 5389 getValue(I.getArgOperand(0)))); 5390 return nullptr; 5391 } 5392 case Intrinsic::gcroot: 5393 if (GFI) { 5394 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5395 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5396 5397 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5398 GFI->addStackRoot(FI->getIndex(), TypeMap); 5399 } 5400 return nullptr; 5401 case Intrinsic::gcread: 5402 case Intrinsic::gcwrite: 5403 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5404 case Intrinsic::flt_rounds: 5405 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5406 return nullptr; 5407 5408 case Intrinsic::expect: { 5409 // Just replace __builtin_expect(exp, c) with EXP. 5410 setValue(&I, getValue(I.getArgOperand(0))); 5411 return nullptr; 5412 } 5413 5414 case Intrinsic::debugtrap: 5415 case Intrinsic::trap: { 5416 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5417 if (TrapFuncName.empty()) { 5418 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5419 ISD::TRAP : ISD::DEBUGTRAP; 5420 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5421 return nullptr; 5422 } 5423 TargetLowering::ArgListTy Args; 5424 5425 TargetLowering::CallLoweringInfo CLI(DAG); 5426 CLI.setDebugLoc(sdl).setChain(getRoot()) 5427 .setCallee(CallingConv::C, I.getType(), 5428 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5429 std::move(Args), 0); 5430 5431 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5432 DAG.setRoot(Result.second); 5433 return nullptr; 5434 } 5435 5436 case Intrinsic::uadd_with_overflow: 5437 case Intrinsic::sadd_with_overflow: 5438 case Intrinsic::usub_with_overflow: 5439 case Intrinsic::ssub_with_overflow: 5440 case Intrinsic::umul_with_overflow: 5441 case Intrinsic::smul_with_overflow: { 5442 ISD::NodeType Op; 5443 switch (Intrinsic) { 5444 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5445 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5446 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5447 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5448 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5449 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5450 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5451 } 5452 SDValue Op1 = getValue(I.getArgOperand(0)); 5453 SDValue Op2 = getValue(I.getArgOperand(1)); 5454 5455 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5456 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5457 return nullptr; 5458 } 5459 case Intrinsic::prefetch: { 5460 SDValue Ops[5]; 5461 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5462 Ops[0] = getRoot(); 5463 Ops[1] = getValue(I.getArgOperand(0)); 5464 Ops[2] = getValue(I.getArgOperand(1)); 5465 Ops[3] = getValue(I.getArgOperand(2)); 5466 Ops[4] = getValue(I.getArgOperand(3)); 5467 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5468 DAG.getVTList(MVT::Other), Ops, 5469 EVT::getIntegerVT(*Context, 8), 5470 MachinePointerInfo(I.getArgOperand(0)), 5471 0, /* align */ 5472 false, /* volatile */ 5473 rw==0, /* read */ 5474 rw==1)); /* write */ 5475 return nullptr; 5476 } 5477 case Intrinsic::lifetime_start: 5478 case Intrinsic::lifetime_end: { 5479 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5480 // Stack coloring is not enabled in O0, discard region information. 5481 if (TM.getOptLevel() == CodeGenOpt::None) 5482 return nullptr; 5483 5484 SmallVector<Value *, 4> Allocas; 5485 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5486 5487 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5488 E = Allocas.end(); Object != E; ++Object) { 5489 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5490 5491 // Could not find an Alloca. 5492 if (!LifetimeObject) 5493 continue; 5494 5495 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5496 5497 SDValue Ops[2]; 5498 Ops[0] = getRoot(); 5499 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5500 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5501 5502 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5503 DAG.setRoot(Res); 5504 } 5505 return nullptr; 5506 } 5507 case Intrinsic::invariant_start: 5508 // Discard region information. 5509 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5510 return nullptr; 5511 case Intrinsic::invariant_end: 5512 // Discard region information. 5513 return nullptr; 5514 case Intrinsic::stackprotectorcheck: { 5515 // Do not actually emit anything for this basic block. Instead we initialize 5516 // the stack protector descriptor and export the guard variable so we can 5517 // access it in FinishBasicBlock. 5518 const BasicBlock *BB = I.getParent(); 5519 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5520 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5521 5522 // Flush our exports since we are going to process a terminator. 5523 (void)getControlRoot(); 5524 return nullptr; 5525 } 5526 case Intrinsic::clear_cache: 5527 return TLI->getClearCacheBuiltinName(); 5528 case Intrinsic::donothing: 5529 // ignore 5530 return nullptr; 5531 case Intrinsic::experimental_stackmap: { 5532 visitStackmap(I); 5533 return nullptr; 5534 } 5535 case Intrinsic::experimental_patchpoint_void: 5536 case Intrinsic::experimental_patchpoint_i64: { 5537 visitPatchpoint(I); 5538 return nullptr; 5539 } 5540 } 5541 } 5542 5543 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5544 bool isTailCall, 5545 MachineBasicBlock *LandingPad) { 5546 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5547 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5548 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5549 Type *RetTy = FTy->getReturnType(); 5550 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5551 MCSymbol *BeginLabel = nullptr; 5552 5553 TargetLowering::ArgListTy Args; 5554 TargetLowering::ArgListEntry Entry; 5555 Args.reserve(CS.arg_size()); 5556 5557 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5558 i != e; ++i) { 5559 const Value *V = *i; 5560 5561 // Skip empty types 5562 if (V->getType()->isEmptyTy()) 5563 continue; 5564 5565 SDValue ArgNode = getValue(V); 5566 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5567 5568 // Skip the first return-type Attribute to get to params. 5569 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5570 Args.push_back(Entry); 5571 } 5572 5573 if (LandingPad) { 5574 // Insert a label before the invoke call to mark the try range. This can be 5575 // used to detect deletion of the invoke via the MachineModuleInfo. 5576 BeginLabel = MMI.getContext().CreateTempSymbol(); 5577 5578 // For SjLj, keep track of which landing pads go with which invokes 5579 // so as to maintain the ordering of pads in the LSDA. 5580 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5581 if (CallSiteIndex) { 5582 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5583 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5584 5585 // Now that the call site is handled, stop tracking it. 5586 MMI.setCurrentCallSite(0); 5587 } 5588 5589 // Both PendingLoads and PendingExports must be flushed here; 5590 // this call might not return. 5591 (void)getRoot(); 5592 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5593 } 5594 5595 // Check if target-independent constraints permit a tail call here. 5596 // Target-dependent constraints are checked within TLI->LowerCallTo. 5597 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5598 isTailCall = false; 5599 5600 TargetLowering::CallLoweringInfo CLI(DAG); 5601 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5602 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5603 5604 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5605 assert((isTailCall || Result.second.getNode()) && 5606 "Non-null chain expected with non-tail call!"); 5607 assert((Result.second.getNode() || !Result.first.getNode()) && 5608 "Null value expected with tail call!"); 5609 if (Result.first.getNode()) 5610 setValue(CS.getInstruction(), Result.first); 5611 5612 if (!Result.second.getNode()) { 5613 // As a special case, a null chain means that a tail call has been emitted 5614 // and the DAG root is already updated. 5615 HasTailCall = true; 5616 5617 // Since there's no actual continuation from this block, nothing can be 5618 // relying on us setting vregs for them. 5619 PendingExports.clear(); 5620 } else { 5621 DAG.setRoot(Result.second); 5622 } 5623 5624 if (LandingPad) { 5625 // Insert a label at the end of the invoke call to mark the try range. This 5626 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5627 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5628 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5629 5630 // Inform MachineModuleInfo of range. 5631 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5632 } 5633 } 5634 5635 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5636 /// value is equal or not-equal to zero. 5637 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5638 for (const User *U : V->users()) { 5639 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5640 if (IC->isEquality()) 5641 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5642 if (C->isNullValue()) 5643 continue; 5644 // Unknown instruction. 5645 return false; 5646 } 5647 return true; 5648 } 5649 5650 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5651 Type *LoadTy, 5652 SelectionDAGBuilder &Builder) { 5653 5654 // Check to see if this load can be trivially constant folded, e.g. if the 5655 // input is from a string literal. 5656 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5657 // Cast pointer to the type we really want to load. 5658 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5659 PointerType::getUnqual(LoadTy)); 5660 5661 if (const Constant *LoadCst = 5662 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5663 Builder.DL)) 5664 return Builder.getValue(LoadCst); 5665 } 5666 5667 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5668 // still constant memory, the input chain can be the entry node. 5669 SDValue Root; 5670 bool ConstantMemory = false; 5671 5672 // Do not serialize (non-volatile) loads of constant memory with anything. 5673 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5674 Root = Builder.DAG.getEntryNode(); 5675 ConstantMemory = true; 5676 } else { 5677 // Do not serialize non-volatile loads against each other. 5678 Root = Builder.DAG.getRoot(); 5679 } 5680 5681 SDValue Ptr = Builder.getValue(PtrVal); 5682 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5683 Ptr, MachinePointerInfo(PtrVal), 5684 false /*volatile*/, 5685 false /*nontemporal*/, 5686 false /*isinvariant*/, 1 /* align=1 */); 5687 5688 if (!ConstantMemory) 5689 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5690 return LoadVal; 5691 } 5692 5693 /// processIntegerCallValue - Record the value for an instruction that 5694 /// produces an integer result, converting the type where necessary. 5695 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5696 SDValue Value, 5697 bool IsSigned) { 5698 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5699 true); 5700 if (IsSigned) 5701 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5702 else 5703 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5704 setValue(&I, Value); 5705 } 5706 5707 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5708 /// If so, return true and lower it, otherwise return false and it will be 5709 /// lowered like a normal call. 5710 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5711 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5712 if (I.getNumArgOperands() != 3) 5713 return false; 5714 5715 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5716 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5717 !I.getArgOperand(2)->getType()->isIntegerTy() || 5718 !I.getType()->isIntegerTy()) 5719 return false; 5720 5721 const Value *Size = I.getArgOperand(2); 5722 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5723 if (CSize && CSize->getZExtValue() == 0) { 5724 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5725 I.getType(), true); 5726 setValue(&I, DAG.getConstant(0, CallVT)); 5727 return true; 5728 } 5729 5730 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5731 std::pair<SDValue, SDValue> Res = 5732 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5733 getValue(LHS), getValue(RHS), getValue(Size), 5734 MachinePointerInfo(LHS), 5735 MachinePointerInfo(RHS)); 5736 if (Res.first.getNode()) { 5737 processIntegerCallValue(I, Res.first, true); 5738 PendingLoads.push_back(Res.second); 5739 return true; 5740 } 5741 5742 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5743 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5744 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5745 bool ActuallyDoIt = true; 5746 MVT LoadVT; 5747 Type *LoadTy; 5748 switch (CSize->getZExtValue()) { 5749 default: 5750 LoadVT = MVT::Other; 5751 LoadTy = nullptr; 5752 ActuallyDoIt = false; 5753 break; 5754 case 2: 5755 LoadVT = MVT::i16; 5756 LoadTy = Type::getInt16Ty(CSize->getContext()); 5757 break; 5758 case 4: 5759 LoadVT = MVT::i32; 5760 LoadTy = Type::getInt32Ty(CSize->getContext()); 5761 break; 5762 case 8: 5763 LoadVT = MVT::i64; 5764 LoadTy = Type::getInt64Ty(CSize->getContext()); 5765 break; 5766 /* 5767 case 16: 5768 LoadVT = MVT::v4i32; 5769 LoadTy = Type::getInt32Ty(CSize->getContext()); 5770 LoadTy = VectorType::get(LoadTy, 4); 5771 break; 5772 */ 5773 } 5774 5775 // This turns into unaligned loads. We only do this if the target natively 5776 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5777 // we'll only produce a small number of byte loads. 5778 5779 // Require that we can find a legal MVT, and only do this if the target 5780 // supports unaligned loads of that type. Expanding into byte loads would 5781 // bloat the code. 5782 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5783 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5784 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5785 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5786 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5787 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5788 // TODO: Check alignment of src and dest ptrs. 5789 if (!TLI->isTypeLegal(LoadVT) || 5790 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5791 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5792 ActuallyDoIt = false; 5793 } 5794 5795 if (ActuallyDoIt) { 5796 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5797 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5798 5799 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5800 ISD::SETNE); 5801 processIntegerCallValue(I, Res, false); 5802 return true; 5803 } 5804 } 5805 5806 5807 return false; 5808 } 5809 5810 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5811 /// form. If so, return true and lower it, otherwise return false and it 5812 /// will be lowered like a normal call. 5813 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5814 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5815 if (I.getNumArgOperands() != 3) 5816 return false; 5817 5818 const Value *Src = I.getArgOperand(0); 5819 const Value *Char = I.getArgOperand(1); 5820 const Value *Length = I.getArgOperand(2); 5821 if (!Src->getType()->isPointerTy() || 5822 !Char->getType()->isIntegerTy() || 5823 !Length->getType()->isIntegerTy() || 5824 !I.getType()->isPointerTy()) 5825 return false; 5826 5827 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5828 std::pair<SDValue, SDValue> Res = 5829 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5830 getValue(Src), getValue(Char), getValue(Length), 5831 MachinePointerInfo(Src)); 5832 if (Res.first.getNode()) { 5833 setValue(&I, Res.first); 5834 PendingLoads.push_back(Res.second); 5835 return true; 5836 } 5837 5838 return false; 5839 } 5840 5841 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5842 /// optimized form. If so, return true and lower it, otherwise return false 5843 /// and it will be lowered like a normal call. 5844 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5845 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5846 if (I.getNumArgOperands() != 2) 5847 return false; 5848 5849 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5850 if (!Arg0->getType()->isPointerTy() || 5851 !Arg1->getType()->isPointerTy() || 5852 !I.getType()->isPointerTy()) 5853 return false; 5854 5855 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5856 std::pair<SDValue, SDValue> Res = 5857 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5858 getValue(Arg0), getValue(Arg1), 5859 MachinePointerInfo(Arg0), 5860 MachinePointerInfo(Arg1), isStpcpy); 5861 if (Res.first.getNode()) { 5862 setValue(&I, Res.first); 5863 DAG.setRoot(Res.second); 5864 return true; 5865 } 5866 5867 return false; 5868 } 5869 5870 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5871 /// If so, return true and lower it, otherwise return false and it will be 5872 /// lowered like a normal call. 5873 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5874 // Verify that the prototype makes sense. int strcmp(void*,void*) 5875 if (I.getNumArgOperands() != 2) 5876 return false; 5877 5878 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5879 if (!Arg0->getType()->isPointerTy() || 5880 !Arg1->getType()->isPointerTy() || 5881 !I.getType()->isIntegerTy()) 5882 return false; 5883 5884 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5885 std::pair<SDValue, SDValue> Res = 5886 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5887 getValue(Arg0), getValue(Arg1), 5888 MachinePointerInfo(Arg0), 5889 MachinePointerInfo(Arg1)); 5890 if (Res.first.getNode()) { 5891 processIntegerCallValue(I, Res.first, true); 5892 PendingLoads.push_back(Res.second); 5893 return true; 5894 } 5895 5896 return false; 5897 } 5898 5899 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5900 /// form. If so, return true and lower it, otherwise return false and it 5901 /// will be lowered like a normal call. 5902 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5903 // Verify that the prototype makes sense. size_t strlen(char *) 5904 if (I.getNumArgOperands() != 1) 5905 return false; 5906 5907 const Value *Arg0 = I.getArgOperand(0); 5908 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5909 return false; 5910 5911 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5912 std::pair<SDValue, SDValue> Res = 5913 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5914 getValue(Arg0), MachinePointerInfo(Arg0)); 5915 if (Res.first.getNode()) { 5916 processIntegerCallValue(I, Res.first, false); 5917 PendingLoads.push_back(Res.second); 5918 return true; 5919 } 5920 5921 return false; 5922 } 5923 5924 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5925 /// form. If so, return true and lower it, otherwise return false and it 5926 /// will be lowered like a normal call. 5927 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5928 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5929 if (I.getNumArgOperands() != 2) 5930 return false; 5931 5932 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5933 if (!Arg0->getType()->isPointerTy() || 5934 !Arg1->getType()->isIntegerTy() || 5935 !I.getType()->isIntegerTy()) 5936 return false; 5937 5938 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5939 std::pair<SDValue, SDValue> Res = 5940 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5941 getValue(Arg0), getValue(Arg1), 5942 MachinePointerInfo(Arg0)); 5943 if (Res.first.getNode()) { 5944 processIntegerCallValue(I, Res.first, false); 5945 PendingLoads.push_back(Res.second); 5946 return true; 5947 } 5948 5949 return false; 5950 } 5951 5952 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5953 /// operation (as expected), translate it to an SDNode with the specified opcode 5954 /// and return true. 5955 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5956 unsigned Opcode) { 5957 // Sanity check that it really is a unary floating-point call. 5958 if (I.getNumArgOperands() != 1 || 5959 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5960 I.getType() != I.getArgOperand(0)->getType() || 5961 !I.onlyReadsMemory()) 5962 return false; 5963 5964 SDValue Tmp = getValue(I.getArgOperand(0)); 5965 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5966 return true; 5967 } 5968 5969 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5970 // Handle inline assembly differently. 5971 if (isa<InlineAsm>(I.getCalledValue())) { 5972 visitInlineAsm(&I); 5973 return; 5974 } 5975 5976 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5977 ComputeUsesVAFloatArgument(I, &MMI); 5978 5979 const char *RenameFn = nullptr; 5980 if (Function *F = I.getCalledFunction()) { 5981 if (F->isDeclaration()) { 5982 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5983 if (unsigned IID = II->getIntrinsicID(F)) { 5984 RenameFn = visitIntrinsicCall(I, IID); 5985 if (!RenameFn) 5986 return; 5987 } 5988 } 5989 if (unsigned IID = F->getIntrinsicID()) { 5990 RenameFn = visitIntrinsicCall(I, IID); 5991 if (!RenameFn) 5992 return; 5993 } 5994 } 5995 5996 // Check for well-known libc/libm calls. If the function is internal, it 5997 // can't be a library call. 5998 LibFunc::Func Func; 5999 if (!F->hasLocalLinkage() && F->hasName() && 6000 LibInfo->getLibFunc(F->getName(), Func) && 6001 LibInfo->hasOptimizedCodeGen(Func)) { 6002 switch (Func) { 6003 default: break; 6004 case LibFunc::copysign: 6005 case LibFunc::copysignf: 6006 case LibFunc::copysignl: 6007 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6008 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6009 I.getType() == I.getArgOperand(0)->getType() && 6010 I.getType() == I.getArgOperand(1)->getType() && 6011 I.onlyReadsMemory()) { 6012 SDValue LHS = getValue(I.getArgOperand(0)); 6013 SDValue RHS = getValue(I.getArgOperand(1)); 6014 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6015 LHS.getValueType(), LHS, RHS)); 6016 return; 6017 } 6018 break; 6019 case LibFunc::fabs: 6020 case LibFunc::fabsf: 6021 case LibFunc::fabsl: 6022 if (visitUnaryFloatCall(I, ISD::FABS)) 6023 return; 6024 break; 6025 case LibFunc::sin: 6026 case LibFunc::sinf: 6027 case LibFunc::sinl: 6028 if (visitUnaryFloatCall(I, ISD::FSIN)) 6029 return; 6030 break; 6031 case LibFunc::cos: 6032 case LibFunc::cosf: 6033 case LibFunc::cosl: 6034 if (visitUnaryFloatCall(I, ISD::FCOS)) 6035 return; 6036 break; 6037 case LibFunc::sqrt: 6038 case LibFunc::sqrtf: 6039 case LibFunc::sqrtl: 6040 case LibFunc::sqrt_finite: 6041 case LibFunc::sqrtf_finite: 6042 case LibFunc::sqrtl_finite: 6043 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6044 return; 6045 break; 6046 case LibFunc::floor: 6047 case LibFunc::floorf: 6048 case LibFunc::floorl: 6049 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6050 return; 6051 break; 6052 case LibFunc::nearbyint: 6053 case LibFunc::nearbyintf: 6054 case LibFunc::nearbyintl: 6055 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6056 return; 6057 break; 6058 case LibFunc::ceil: 6059 case LibFunc::ceilf: 6060 case LibFunc::ceill: 6061 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6062 return; 6063 break; 6064 case LibFunc::rint: 6065 case LibFunc::rintf: 6066 case LibFunc::rintl: 6067 if (visitUnaryFloatCall(I, ISD::FRINT)) 6068 return; 6069 break; 6070 case LibFunc::round: 6071 case LibFunc::roundf: 6072 case LibFunc::roundl: 6073 if (visitUnaryFloatCall(I, ISD::FROUND)) 6074 return; 6075 break; 6076 case LibFunc::trunc: 6077 case LibFunc::truncf: 6078 case LibFunc::truncl: 6079 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6080 return; 6081 break; 6082 case LibFunc::log2: 6083 case LibFunc::log2f: 6084 case LibFunc::log2l: 6085 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6086 return; 6087 break; 6088 case LibFunc::exp2: 6089 case LibFunc::exp2f: 6090 case LibFunc::exp2l: 6091 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6092 return; 6093 break; 6094 case LibFunc::memcmp: 6095 if (visitMemCmpCall(I)) 6096 return; 6097 break; 6098 case LibFunc::memchr: 6099 if (visitMemChrCall(I)) 6100 return; 6101 break; 6102 case LibFunc::strcpy: 6103 if (visitStrCpyCall(I, false)) 6104 return; 6105 break; 6106 case LibFunc::stpcpy: 6107 if (visitStrCpyCall(I, true)) 6108 return; 6109 break; 6110 case LibFunc::strcmp: 6111 if (visitStrCmpCall(I)) 6112 return; 6113 break; 6114 case LibFunc::strlen: 6115 if (visitStrLenCall(I)) 6116 return; 6117 break; 6118 case LibFunc::strnlen: 6119 if (visitStrNLenCall(I)) 6120 return; 6121 break; 6122 } 6123 } 6124 } 6125 6126 SDValue Callee; 6127 if (!RenameFn) 6128 Callee = getValue(I.getCalledValue()); 6129 else 6130 Callee = DAG.getExternalSymbol( 6131 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6132 6133 // Check if we can potentially perform a tail call. More detailed checking is 6134 // be done within LowerCallTo, after more information about the call is known. 6135 LowerCallTo(&I, Callee, I.isTailCall()); 6136 } 6137 6138 namespace { 6139 6140 /// AsmOperandInfo - This contains information for each constraint that we are 6141 /// lowering. 6142 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6143 public: 6144 /// CallOperand - If this is the result output operand or a clobber 6145 /// this is null, otherwise it is the incoming operand to the CallInst. 6146 /// This gets modified as the asm is processed. 6147 SDValue CallOperand; 6148 6149 /// AssignedRegs - If this is a register or register class operand, this 6150 /// contains the set of register corresponding to the operand. 6151 RegsForValue AssignedRegs; 6152 6153 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6154 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6155 } 6156 6157 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6158 /// corresponds to. If there is no Value* for this operand, it returns 6159 /// MVT::Other. 6160 EVT getCallOperandValEVT(LLVMContext &Context, 6161 const TargetLowering &TLI, 6162 const DataLayout *DL) const { 6163 if (!CallOperandVal) return MVT::Other; 6164 6165 if (isa<BasicBlock>(CallOperandVal)) 6166 return TLI.getPointerTy(); 6167 6168 llvm::Type *OpTy = CallOperandVal->getType(); 6169 6170 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6171 // If this is an indirect operand, the operand is a pointer to the 6172 // accessed type. 6173 if (isIndirect) { 6174 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6175 if (!PtrTy) 6176 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6177 OpTy = PtrTy->getElementType(); 6178 } 6179 6180 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6181 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6182 if (STy->getNumElements() == 1) 6183 OpTy = STy->getElementType(0); 6184 6185 // If OpTy is not a single value, it may be a struct/union that we 6186 // can tile with integers. 6187 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6188 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6189 switch (BitSize) { 6190 default: break; 6191 case 1: 6192 case 8: 6193 case 16: 6194 case 32: 6195 case 64: 6196 case 128: 6197 OpTy = IntegerType::get(Context, BitSize); 6198 break; 6199 } 6200 } 6201 6202 return TLI.getValueType(OpTy, true); 6203 } 6204 }; 6205 6206 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6207 6208 } // end anonymous namespace 6209 6210 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6211 /// specified operand. We prefer to assign virtual registers, to allow the 6212 /// register allocator to handle the assignment process. However, if the asm 6213 /// uses features that we can't model on machineinstrs, we have SDISel do the 6214 /// allocation. This produces generally horrible, but correct, code. 6215 /// 6216 /// OpInfo describes the operand. 6217 /// 6218 static void GetRegistersForValue(SelectionDAG &DAG, 6219 const TargetLowering &TLI, 6220 SDLoc DL, 6221 SDISelAsmOperandInfo &OpInfo) { 6222 LLVMContext &Context = *DAG.getContext(); 6223 6224 MachineFunction &MF = DAG.getMachineFunction(); 6225 SmallVector<unsigned, 4> Regs; 6226 6227 // If this is a constraint for a single physreg, or a constraint for a 6228 // register class, find it. 6229 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6230 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6231 OpInfo.ConstraintVT); 6232 6233 unsigned NumRegs = 1; 6234 if (OpInfo.ConstraintVT != MVT::Other) { 6235 // If this is a FP input in an integer register (or visa versa) insert a bit 6236 // cast of the input value. More generally, handle any case where the input 6237 // value disagrees with the register class we plan to stick this in. 6238 if (OpInfo.Type == InlineAsm::isInput && 6239 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6240 // Try to convert to the first EVT that the reg class contains. If the 6241 // types are identical size, use a bitcast to convert (e.g. two differing 6242 // vector types). 6243 MVT RegVT = *PhysReg.second->vt_begin(); 6244 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6245 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6246 RegVT, OpInfo.CallOperand); 6247 OpInfo.ConstraintVT = RegVT; 6248 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6249 // If the input is a FP value and we want it in FP registers, do a 6250 // bitcast to the corresponding integer type. This turns an f64 value 6251 // into i64, which can be passed with two i32 values on a 32-bit 6252 // machine. 6253 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6254 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6255 RegVT, OpInfo.CallOperand); 6256 OpInfo.ConstraintVT = RegVT; 6257 } 6258 } 6259 6260 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6261 } 6262 6263 MVT RegVT; 6264 EVT ValueVT = OpInfo.ConstraintVT; 6265 6266 // If this is a constraint for a specific physical register, like {r17}, 6267 // assign it now. 6268 if (unsigned AssignedReg = PhysReg.first) { 6269 const TargetRegisterClass *RC = PhysReg.second; 6270 if (OpInfo.ConstraintVT == MVT::Other) 6271 ValueVT = *RC->vt_begin(); 6272 6273 // Get the actual register value type. This is important, because the user 6274 // may have asked for (e.g.) the AX register in i32 type. We need to 6275 // remember that AX is actually i16 to get the right extension. 6276 RegVT = *RC->vt_begin(); 6277 6278 // This is a explicit reference to a physical register. 6279 Regs.push_back(AssignedReg); 6280 6281 // If this is an expanded reference, add the rest of the regs to Regs. 6282 if (NumRegs != 1) { 6283 TargetRegisterClass::iterator I = RC->begin(); 6284 for (; *I != AssignedReg; ++I) 6285 assert(I != RC->end() && "Didn't find reg!"); 6286 6287 // Already added the first reg. 6288 --NumRegs; ++I; 6289 for (; NumRegs; --NumRegs, ++I) { 6290 assert(I != RC->end() && "Ran out of registers to allocate!"); 6291 Regs.push_back(*I); 6292 } 6293 } 6294 6295 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6296 return; 6297 } 6298 6299 // Otherwise, if this was a reference to an LLVM register class, create vregs 6300 // for this reference. 6301 if (const TargetRegisterClass *RC = PhysReg.second) { 6302 RegVT = *RC->vt_begin(); 6303 if (OpInfo.ConstraintVT == MVT::Other) 6304 ValueVT = RegVT; 6305 6306 // Create the appropriate number of virtual registers. 6307 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6308 for (; NumRegs; --NumRegs) 6309 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6310 6311 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6312 return; 6313 } 6314 6315 // Otherwise, we couldn't allocate enough registers for this. 6316 } 6317 6318 /// visitInlineAsm - Handle a call to an InlineAsm object. 6319 /// 6320 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6321 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6322 6323 /// ConstraintOperands - Information about all of the constraints. 6324 SDISelAsmOperandInfoVector ConstraintOperands; 6325 6326 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6327 TargetLowering::AsmOperandInfoVector 6328 TargetConstraints = TLI->ParseConstraints(CS); 6329 6330 bool hasMemory = false; 6331 6332 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6333 unsigned ResNo = 0; // ResNo - The result number of the next output. 6334 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6335 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6336 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6337 6338 MVT OpVT = MVT::Other; 6339 6340 // Compute the value type for each operand. 6341 switch (OpInfo.Type) { 6342 case InlineAsm::isOutput: 6343 // Indirect outputs just consume an argument. 6344 if (OpInfo.isIndirect) { 6345 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6346 break; 6347 } 6348 6349 // The return value of the call is this value. As such, there is no 6350 // corresponding argument. 6351 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6352 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6353 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6354 } else { 6355 assert(ResNo == 0 && "Asm only has one result!"); 6356 OpVT = TLI->getSimpleValueType(CS.getType()); 6357 } 6358 ++ResNo; 6359 break; 6360 case InlineAsm::isInput: 6361 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6362 break; 6363 case InlineAsm::isClobber: 6364 // Nothing to do. 6365 break; 6366 } 6367 6368 // If this is an input or an indirect output, process the call argument. 6369 // BasicBlocks are labels, currently appearing only in asm's. 6370 if (OpInfo.CallOperandVal) { 6371 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6372 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6373 } else { 6374 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6375 } 6376 6377 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6378 getSimpleVT(); 6379 } 6380 6381 OpInfo.ConstraintVT = OpVT; 6382 6383 // Indirect operand accesses access memory. 6384 if (OpInfo.isIndirect) 6385 hasMemory = true; 6386 else { 6387 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6388 TargetLowering::ConstraintType 6389 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6390 if (CType == TargetLowering::C_Memory) { 6391 hasMemory = true; 6392 break; 6393 } 6394 } 6395 } 6396 } 6397 6398 SDValue Chain, Flag; 6399 6400 // We won't need to flush pending loads if this asm doesn't touch 6401 // memory and is nonvolatile. 6402 if (hasMemory || IA->hasSideEffects()) 6403 Chain = getRoot(); 6404 else 6405 Chain = DAG.getRoot(); 6406 6407 // Second pass over the constraints: compute which constraint option to use 6408 // and assign registers to constraints that want a specific physreg. 6409 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6410 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6411 6412 // If this is an output operand with a matching input operand, look up the 6413 // matching input. If their types mismatch, e.g. one is an integer, the 6414 // other is floating point, or their sizes are different, flag it as an 6415 // error. 6416 if (OpInfo.hasMatchingInput()) { 6417 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6418 6419 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6420 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6421 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6422 OpInfo.ConstraintVT); 6423 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6424 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6425 Input.ConstraintVT); 6426 if ((OpInfo.ConstraintVT.isInteger() != 6427 Input.ConstraintVT.isInteger()) || 6428 (MatchRC.second != InputRC.second)) { 6429 report_fatal_error("Unsupported asm: input constraint" 6430 " with a matching output constraint of" 6431 " incompatible type!"); 6432 } 6433 Input.ConstraintVT = OpInfo.ConstraintVT; 6434 } 6435 } 6436 6437 // Compute the constraint code and ConstraintType to use. 6438 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6439 6440 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6441 OpInfo.Type == InlineAsm::isClobber) 6442 continue; 6443 6444 // If this is a memory input, and if the operand is not indirect, do what we 6445 // need to to provide an address for the memory input. 6446 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6447 !OpInfo.isIndirect) { 6448 assert((OpInfo.isMultipleAlternative || 6449 (OpInfo.Type == InlineAsm::isInput)) && 6450 "Can only indirectify direct input operands!"); 6451 6452 // Memory operands really want the address of the value. If we don't have 6453 // an indirect input, put it in the constpool if we can, otherwise spill 6454 // it to a stack slot. 6455 // TODO: This isn't quite right. We need to handle these according to 6456 // the addressing mode that the constraint wants. Also, this may take 6457 // an additional register for the computation and we don't want that 6458 // either. 6459 6460 // If the operand is a float, integer, or vector constant, spill to a 6461 // constant pool entry to get its address. 6462 const Value *OpVal = OpInfo.CallOperandVal; 6463 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6464 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6465 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6466 TLI->getPointerTy()); 6467 } else { 6468 // Otherwise, create a stack slot and emit a store to it before the 6469 // asm. 6470 Type *Ty = OpVal->getType(); 6471 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6472 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6473 MachineFunction &MF = DAG.getMachineFunction(); 6474 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6475 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6476 Chain = DAG.getStore(Chain, getCurSDLoc(), 6477 OpInfo.CallOperand, StackSlot, 6478 MachinePointerInfo::getFixedStack(SSFI), 6479 false, false, 0); 6480 OpInfo.CallOperand = StackSlot; 6481 } 6482 6483 // There is no longer a Value* corresponding to this operand. 6484 OpInfo.CallOperandVal = nullptr; 6485 6486 // It is now an indirect operand. 6487 OpInfo.isIndirect = true; 6488 } 6489 6490 // If this constraint is for a specific register, allocate it before 6491 // anything else. 6492 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6493 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6494 } 6495 6496 // Second pass - Loop over all of the operands, assigning virtual or physregs 6497 // to register class operands. 6498 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6499 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6500 6501 // C_Register operands have already been allocated, Other/Memory don't need 6502 // to be. 6503 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6504 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6505 } 6506 6507 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6508 std::vector<SDValue> AsmNodeOperands; 6509 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6510 AsmNodeOperands.push_back( 6511 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6512 TLI->getPointerTy())); 6513 6514 // If we have a !srcloc metadata node associated with it, we want to attach 6515 // this to the ultimately generated inline asm machineinstr. To do this, we 6516 // pass in the third operand as this (potentially null) inline asm MDNode. 6517 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6518 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6519 6520 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6521 // bits as operand 3. 6522 unsigned ExtraInfo = 0; 6523 if (IA->hasSideEffects()) 6524 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6525 if (IA->isAlignStack()) 6526 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6527 // Set the asm dialect. 6528 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6529 6530 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6531 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6532 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6533 6534 // Compute the constraint code and ConstraintType to use. 6535 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6536 6537 // Ideally, we would only check against memory constraints. However, the 6538 // meaning of an other constraint can be target-specific and we can't easily 6539 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6540 // for other constriants as well. 6541 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6542 OpInfo.ConstraintType == TargetLowering::C_Other) { 6543 if (OpInfo.Type == InlineAsm::isInput) 6544 ExtraInfo |= InlineAsm::Extra_MayLoad; 6545 else if (OpInfo.Type == InlineAsm::isOutput) 6546 ExtraInfo |= InlineAsm::Extra_MayStore; 6547 else if (OpInfo.Type == InlineAsm::isClobber) 6548 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6549 } 6550 } 6551 6552 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6553 TLI->getPointerTy())); 6554 6555 // Loop over all of the inputs, copying the operand values into the 6556 // appropriate registers and processing the output regs. 6557 RegsForValue RetValRegs; 6558 6559 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6560 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6561 6562 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6563 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6564 6565 switch (OpInfo.Type) { 6566 case InlineAsm::isOutput: { 6567 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6568 OpInfo.ConstraintType != TargetLowering::C_Register) { 6569 // Memory output, or 'other' output (e.g. 'X' constraint). 6570 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6571 6572 // Add information to the INLINEASM node to know about this output. 6573 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6574 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6575 TLI->getPointerTy())); 6576 AsmNodeOperands.push_back(OpInfo.CallOperand); 6577 break; 6578 } 6579 6580 // Otherwise, this is a register or register class output. 6581 6582 // Copy the output from the appropriate register. Find a register that 6583 // we can use. 6584 if (OpInfo.AssignedRegs.Regs.empty()) { 6585 LLVMContext &Ctx = *DAG.getContext(); 6586 Ctx.emitError(CS.getInstruction(), 6587 "couldn't allocate output register for constraint '" + 6588 Twine(OpInfo.ConstraintCode) + "'"); 6589 return; 6590 } 6591 6592 // If this is an indirect operand, store through the pointer after the 6593 // asm. 6594 if (OpInfo.isIndirect) { 6595 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6596 OpInfo.CallOperandVal)); 6597 } else { 6598 // This is the result value of the call. 6599 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6600 // Concatenate this output onto the outputs list. 6601 RetValRegs.append(OpInfo.AssignedRegs); 6602 } 6603 6604 // Add information to the INLINEASM node to know that this register is 6605 // set. 6606 OpInfo.AssignedRegs 6607 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6608 ? InlineAsm::Kind_RegDefEarlyClobber 6609 : InlineAsm::Kind_RegDef, 6610 false, 0, DAG, AsmNodeOperands); 6611 break; 6612 } 6613 case InlineAsm::isInput: { 6614 SDValue InOperandVal = OpInfo.CallOperand; 6615 6616 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6617 // If this is required to match an output register we have already set, 6618 // just use its register. 6619 unsigned OperandNo = OpInfo.getMatchedOperand(); 6620 6621 // Scan until we find the definition we already emitted of this operand. 6622 // When we find it, create a RegsForValue operand. 6623 unsigned CurOp = InlineAsm::Op_FirstOperand; 6624 for (; OperandNo; --OperandNo) { 6625 // Advance to the next operand. 6626 unsigned OpFlag = 6627 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6628 assert((InlineAsm::isRegDefKind(OpFlag) || 6629 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6630 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6631 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6632 } 6633 6634 unsigned OpFlag = 6635 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6636 if (InlineAsm::isRegDefKind(OpFlag) || 6637 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6638 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6639 if (OpInfo.isIndirect) { 6640 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6641 LLVMContext &Ctx = *DAG.getContext(); 6642 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6643 " don't know how to handle tied " 6644 "indirect register inputs"); 6645 return; 6646 } 6647 6648 RegsForValue MatchedRegs; 6649 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6650 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6651 MatchedRegs.RegVTs.push_back(RegVT); 6652 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6653 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6654 i != e; ++i) { 6655 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6656 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6657 else { 6658 LLVMContext &Ctx = *DAG.getContext(); 6659 Ctx.emitError(CS.getInstruction(), 6660 "inline asm error: This value" 6661 " type register class is not natively supported!"); 6662 return; 6663 } 6664 } 6665 // Use the produced MatchedRegs object to 6666 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6667 Chain, &Flag, CS.getInstruction()); 6668 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6669 true, OpInfo.getMatchedOperand(), 6670 DAG, AsmNodeOperands); 6671 break; 6672 } 6673 6674 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6675 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6676 "Unexpected number of operands"); 6677 // Add information to the INLINEASM node to know about this input. 6678 // See InlineAsm.h isUseOperandTiedToDef. 6679 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6680 OpInfo.getMatchedOperand()); 6681 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6682 TLI->getPointerTy())); 6683 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6684 break; 6685 } 6686 6687 // Treat indirect 'X' constraint as memory. 6688 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6689 OpInfo.isIndirect) 6690 OpInfo.ConstraintType = TargetLowering::C_Memory; 6691 6692 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6693 std::vector<SDValue> Ops; 6694 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6695 Ops, DAG); 6696 if (Ops.empty()) { 6697 LLVMContext &Ctx = *DAG.getContext(); 6698 Ctx.emitError(CS.getInstruction(), 6699 "invalid operand for inline asm constraint '" + 6700 Twine(OpInfo.ConstraintCode) + "'"); 6701 return; 6702 } 6703 6704 // Add information to the INLINEASM node to know about this input. 6705 unsigned ResOpType = 6706 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6707 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6708 TLI->getPointerTy())); 6709 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6710 break; 6711 } 6712 6713 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6714 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6715 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6716 "Memory operands expect pointer values"); 6717 6718 // Add information to the INLINEASM node to know about this input. 6719 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6720 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6721 TLI->getPointerTy())); 6722 AsmNodeOperands.push_back(InOperandVal); 6723 break; 6724 } 6725 6726 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6727 OpInfo.ConstraintType == TargetLowering::C_Register) && 6728 "Unknown constraint type!"); 6729 6730 // TODO: Support this. 6731 if (OpInfo.isIndirect) { 6732 LLVMContext &Ctx = *DAG.getContext(); 6733 Ctx.emitError(CS.getInstruction(), 6734 "Don't know how to handle indirect register inputs yet " 6735 "for constraint '" + 6736 Twine(OpInfo.ConstraintCode) + "'"); 6737 return; 6738 } 6739 6740 // Copy the input into the appropriate registers. 6741 if (OpInfo.AssignedRegs.Regs.empty()) { 6742 LLVMContext &Ctx = *DAG.getContext(); 6743 Ctx.emitError(CS.getInstruction(), 6744 "couldn't allocate input reg for constraint '" + 6745 Twine(OpInfo.ConstraintCode) + "'"); 6746 return; 6747 } 6748 6749 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6750 Chain, &Flag, CS.getInstruction()); 6751 6752 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6753 DAG, AsmNodeOperands); 6754 break; 6755 } 6756 case InlineAsm::isClobber: { 6757 // Add the clobbered value to the operand list, so that the register 6758 // allocator is aware that the physreg got clobbered. 6759 if (!OpInfo.AssignedRegs.Regs.empty()) 6760 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6761 false, 0, DAG, 6762 AsmNodeOperands); 6763 break; 6764 } 6765 } 6766 } 6767 6768 // Finish up input operands. Set the input chain and add the flag last. 6769 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6770 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6771 6772 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6773 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6774 Flag = Chain.getValue(1); 6775 6776 // If this asm returns a register value, copy the result from that register 6777 // and set it as the value of the call. 6778 if (!RetValRegs.Regs.empty()) { 6779 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6780 Chain, &Flag, CS.getInstruction()); 6781 6782 // FIXME: Why don't we do this for inline asms with MRVs? 6783 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6784 EVT ResultType = TLI->getValueType(CS.getType()); 6785 6786 // If any of the results of the inline asm is a vector, it may have the 6787 // wrong width/num elts. This can happen for register classes that can 6788 // contain multiple different value types. The preg or vreg allocated may 6789 // not have the same VT as was expected. Convert it to the right type 6790 // with bit_convert. 6791 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6792 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6793 ResultType, Val); 6794 6795 } else if (ResultType != Val.getValueType() && 6796 ResultType.isInteger() && Val.getValueType().isInteger()) { 6797 // If a result value was tied to an input value, the computed result may 6798 // have a wider width than the expected result. Extract the relevant 6799 // portion. 6800 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6801 } 6802 6803 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6804 } 6805 6806 setValue(CS.getInstruction(), Val); 6807 // Don't need to use this as a chain in this case. 6808 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6809 return; 6810 } 6811 6812 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6813 6814 // Process indirect outputs, first output all of the flagged copies out of 6815 // physregs. 6816 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6817 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6818 const Value *Ptr = IndirectStoresToEmit[i].second; 6819 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6820 Chain, &Flag, IA); 6821 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6822 } 6823 6824 // Emit the non-flagged stores from the physregs. 6825 SmallVector<SDValue, 8> OutChains; 6826 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6827 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6828 StoresToEmit[i].first, 6829 getValue(StoresToEmit[i].second), 6830 MachinePointerInfo(StoresToEmit[i].second), 6831 false, false, 0); 6832 OutChains.push_back(Val); 6833 } 6834 6835 if (!OutChains.empty()) 6836 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6837 6838 DAG.setRoot(Chain); 6839 } 6840 6841 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6842 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6843 MVT::Other, getRoot(), 6844 getValue(I.getArgOperand(0)), 6845 DAG.getSrcValue(I.getArgOperand(0)))); 6846 } 6847 6848 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6849 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6850 const DataLayout &DL = *TLI->getDataLayout(); 6851 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6852 getRoot(), getValue(I.getOperand(0)), 6853 DAG.getSrcValue(I.getOperand(0)), 6854 DL.getABITypeAlignment(I.getType())); 6855 setValue(&I, V); 6856 DAG.setRoot(V.getValue(1)); 6857 } 6858 6859 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6860 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6861 MVT::Other, getRoot(), 6862 getValue(I.getArgOperand(0)), 6863 DAG.getSrcValue(I.getArgOperand(0)))); 6864 } 6865 6866 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6867 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6868 MVT::Other, getRoot(), 6869 getValue(I.getArgOperand(0)), 6870 getValue(I.getArgOperand(1)), 6871 DAG.getSrcValue(I.getArgOperand(0)), 6872 DAG.getSrcValue(I.getArgOperand(1)))); 6873 } 6874 6875 /// \brief Lower an argument list according to the target calling convention. 6876 /// 6877 /// \return A tuple of <return-value, token-chain> 6878 /// 6879 /// This is a helper for lowering intrinsics that follow a target calling 6880 /// convention or require stack pointer adjustment. Only a subset of the 6881 /// intrinsic's operands need to participate in the calling convention. 6882 std::pair<SDValue, SDValue> 6883 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6884 unsigned NumArgs, SDValue Callee, 6885 bool useVoidTy) { 6886 TargetLowering::ArgListTy Args; 6887 Args.reserve(NumArgs); 6888 6889 // Populate the argument list. 6890 // Attributes for args start at offset 1, after the return attribute. 6891 ImmutableCallSite CS(&CI); 6892 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6893 ArgI != ArgE; ++ArgI) { 6894 const Value *V = CI.getOperand(ArgI); 6895 6896 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6897 6898 TargetLowering::ArgListEntry Entry; 6899 Entry.Node = getValue(V); 6900 Entry.Ty = V->getType(); 6901 Entry.setAttributes(&CS, AttrI); 6902 Args.push_back(Entry); 6903 } 6904 6905 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6906 TargetLowering::CallLoweringInfo CLI(DAG); 6907 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6908 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6909 .setDiscardResult(!CI.use_empty()); 6910 6911 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6912 return TLI->LowerCallTo(CLI); 6913 } 6914 6915 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6916 /// or patchpoint target node's operand list. 6917 /// 6918 /// Constants are converted to TargetConstants purely as an optimization to 6919 /// avoid constant materialization and register allocation. 6920 /// 6921 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6922 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6923 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6924 /// address materialization and register allocation, but may also be required 6925 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6926 /// alloca in the entry block, then the runtime may assume that the alloca's 6927 /// StackMap location can be read immediately after compilation and that the 6928 /// location is valid at any point during execution (this is similar to the 6929 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6930 /// only available in a register, then the runtime would need to trap when 6931 /// execution reaches the StackMap in order to read the alloca's location. 6932 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6933 SmallVectorImpl<SDValue> &Ops, 6934 SelectionDAGBuilder &Builder) { 6935 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6936 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6937 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6938 Ops.push_back( 6939 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6940 Ops.push_back( 6941 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6942 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6943 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6944 Ops.push_back( 6945 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6946 } else 6947 Ops.push_back(OpVal); 6948 } 6949 } 6950 6951 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6952 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6953 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6954 // [live variables...]) 6955 6956 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6957 6958 SDValue Chain, InFlag, Callee, NullPtr; 6959 SmallVector<SDValue, 32> Ops; 6960 6961 SDLoc DL = getCurSDLoc(); 6962 Callee = getValue(CI.getCalledValue()); 6963 NullPtr = DAG.getIntPtrConstant(0, true); 6964 6965 // The stackmap intrinsic only records the live variables (the arguemnts 6966 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6967 // intrinsic, this won't be lowered to a function call. This means we don't 6968 // have to worry about calling conventions and target specific lowering code. 6969 // Instead we perform the call lowering right here. 6970 // 6971 // chain, flag = CALLSEQ_START(chain, 0) 6972 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6973 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6974 // 6975 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6976 InFlag = Chain.getValue(1); 6977 6978 // Add the <id> and <numBytes> constants. 6979 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6980 Ops.push_back(DAG.getTargetConstant( 6981 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6982 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6983 Ops.push_back(DAG.getTargetConstant( 6984 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6985 6986 // Push live variables for the stack map. 6987 addStackMapLiveVars(CI, 2, Ops, *this); 6988 6989 // We are not pushing any register mask info here on the operands list, 6990 // because the stackmap doesn't clobber anything. 6991 6992 // Push the chain and the glue flag. 6993 Ops.push_back(Chain); 6994 Ops.push_back(InFlag); 6995 6996 // Create the STACKMAP node. 6997 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6998 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6999 Chain = SDValue(SM, 0); 7000 InFlag = Chain.getValue(1); 7001 7002 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7003 7004 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7005 7006 // Set the root to the target-lowered call chain. 7007 DAG.setRoot(Chain); 7008 7009 // Inform the Frame Information that we have a stackmap in this function. 7010 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7011 } 7012 7013 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7014 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 7015 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7016 // i32 <numBytes>, 7017 // i8* <target>, 7018 // i32 <numArgs>, 7019 // [Args...], 7020 // [live variables...]) 7021 7022 CallingConv::ID CC = CI.getCallingConv(); 7023 bool isAnyRegCC = CC == CallingConv::AnyReg; 7024 bool hasDef = !CI.getType()->isVoidTy(); 7025 SDValue Callee = getValue(CI.getOperand(2)); // <target> 7026 7027 // Get the real number of arguments participating in the call <numArgs> 7028 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 7029 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7030 7031 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7032 // Intrinsics include all meta-operands up to but not including CC. 7033 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7034 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7035 "Not enough arguments provided to the patchpoint intrinsic"); 7036 7037 // For AnyRegCC the arguments are lowered later on manually. 7038 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7039 std::pair<SDValue, SDValue> Result = 7040 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7041 7042 // Set the root to the target-lowered call chain. 7043 SDValue Chain = Result.second; 7044 DAG.setRoot(Chain); 7045 7046 SDNode *CallEnd = Chain.getNode(); 7047 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7048 CallEnd = CallEnd->getOperand(0).getNode(); 7049 7050 /// Get a call instruction from the call sequence chain. 7051 /// Tail calls are not allowed. 7052 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7053 "Expected a callseq node."); 7054 SDNode *Call = CallEnd->getOperand(0).getNode(); 7055 bool hasGlue = Call->getGluedNode(); 7056 7057 // Replace the target specific call node with the patchable intrinsic. 7058 SmallVector<SDValue, 8> Ops; 7059 7060 // Add the <id> and <numBytes> constants. 7061 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7062 Ops.push_back(DAG.getTargetConstant( 7063 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7064 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7065 Ops.push_back(DAG.getTargetConstant( 7066 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7067 7068 // Assume that the Callee is a constant address. 7069 // FIXME: handle function symbols in the future. 7070 Ops.push_back( 7071 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7072 /*isTarget=*/true)); 7073 7074 // Adjust <numArgs> to account for any arguments that have been passed on the 7075 // stack instead. 7076 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7077 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7078 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7079 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7080 7081 // Add the calling convention 7082 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7083 7084 // Add the arguments we omitted previously. The register allocator should 7085 // place these in any free register. 7086 if (isAnyRegCC) 7087 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7088 Ops.push_back(getValue(CI.getArgOperand(i))); 7089 7090 // Push the arguments from the call instruction up to the register mask. 7091 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7092 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7093 Ops.push_back(*i); 7094 7095 // Push live variables for the stack map. 7096 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7097 7098 // Push the register mask info. 7099 if (hasGlue) 7100 Ops.push_back(*(Call->op_end()-2)); 7101 else 7102 Ops.push_back(*(Call->op_end()-1)); 7103 7104 // Push the chain (this is originally the first operand of the call, but 7105 // becomes now the last or second to last operand). 7106 Ops.push_back(*(Call->op_begin())); 7107 7108 // Push the glue flag (last operand). 7109 if (hasGlue) 7110 Ops.push_back(*(Call->op_end()-1)); 7111 7112 SDVTList NodeTys; 7113 if (isAnyRegCC && hasDef) { 7114 // Create the return types based on the intrinsic definition 7115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7116 SmallVector<EVT, 3> ValueVTs; 7117 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7118 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7119 7120 // There is always a chain and a glue type at the end 7121 ValueVTs.push_back(MVT::Other); 7122 ValueVTs.push_back(MVT::Glue); 7123 NodeTys = DAG.getVTList(ValueVTs); 7124 } else 7125 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7126 7127 // Replace the target specific call node with a PATCHPOINT node. 7128 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7129 getCurSDLoc(), NodeTys, Ops); 7130 7131 // Update the NodeMap. 7132 if (hasDef) { 7133 if (isAnyRegCC) 7134 setValue(&CI, SDValue(MN, 0)); 7135 else 7136 setValue(&CI, Result.first); 7137 } 7138 7139 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7140 // call sequence. Furthermore the location of the chain and glue can change 7141 // when the AnyReg calling convention is used and the intrinsic returns a 7142 // value. 7143 if (isAnyRegCC && hasDef) { 7144 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7145 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7146 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7147 } else 7148 DAG.ReplaceAllUsesWith(Call, MN); 7149 DAG.DeleteNode(Call); 7150 7151 // Inform the Frame Information that we have a patchpoint in this function. 7152 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7153 } 7154 7155 /// Returns an AttributeSet representing the attributes applied to the return 7156 /// value of the given call. 7157 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7158 SmallVector<Attribute::AttrKind, 2> Attrs; 7159 if (CLI.RetSExt) 7160 Attrs.push_back(Attribute::SExt); 7161 if (CLI.RetZExt) 7162 Attrs.push_back(Attribute::ZExt); 7163 if (CLI.IsInReg) 7164 Attrs.push_back(Attribute::InReg); 7165 7166 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7167 Attrs); 7168 } 7169 7170 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7171 /// implementation, which just calls LowerCall. 7172 /// FIXME: When all targets are 7173 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7174 std::pair<SDValue, SDValue> 7175 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7176 // Handle the incoming return values from the call. 7177 CLI.Ins.clear(); 7178 Type *OrigRetTy = CLI.RetTy; 7179 SmallVector<EVT, 4> RetTys; 7180 SmallVector<uint64_t, 4> Offsets; 7181 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7182 7183 SmallVector<ISD::OutputArg, 4> Outs; 7184 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7185 7186 bool CanLowerReturn = 7187 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7188 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7189 7190 SDValue DemoteStackSlot; 7191 int DemoteStackIdx = -100; 7192 if (!CanLowerReturn) { 7193 // FIXME: equivalent assert? 7194 // assert(!CS.hasInAllocaArgument() && 7195 // "sret demotion is incompatible with inalloca"); 7196 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7197 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7198 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7199 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7200 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7201 7202 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7203 ArgListEntry Entry; 7204 Entry.Node = DemoteStackSlot; 7205 Entry.Ty = StackSlotPtrType; 7206 Entry.isSExt = false; 7207 Entry.isZExt = false; 7208 Entry.isInReg = false; 7209 Entry.isSRet = true; 7210 Entry.isNest = false; 7211 Entry.isByVal = false; 7212 Entry.isReturned = false; 7213 Entry.Alignment = Align; 7214 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7215 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7216 } else { 7217 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7218 EVT VT = RetTys[I]; 7219 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7220 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7221 for (unsigned i = 0; i != NumRegs; ++i) { 7222 ISD::InputArg MyFlags; 7223 MyFlags.VT = RegisterVT; 7224 MyFlags.ArgVT = VT; 7225 MyFlags.Used = CLI.IsReturnValueUsed; 7226 if (CLI.RetSExt) 7227 MyFlags.Flags.setSExt(); 7228 if (CLI.RetZExt) 7229 MyFlags.Flags.setZExt(); 7230 if (CLI.IsInReg) 7231 MyFlags.Flags.setInReg(); 7232 CLI.Ins.push_back(MyFlags); 7233 } 7234 } 7235 } 7236 7237 // Handle all of the outgoing arguments. 7238 CLI.Outs.clear(); 7239 CLI.OutVals.clear(); 7240 ArgListTy &Args = CLI.getArgs(); 7241 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7242 SmallVector<EVT, 4> ValueVTs; 7243 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7244 Type *FinalType = Args[i].Ty; 7245 if (Args[i].isByVal) 7246 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7247 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7248 FinalType, CLI.CallConv, CLI.IsVarArg); 7249 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7250 ++Value) { 7251 EVT VT = ValueVTs[Value]; 7252 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7253 SDValue Op = SDValue(Args[i].Node.getNode(), 7254 Args[i].Node.getResNo() + Value); 7255 ISD::ArgFlagsTy Flags; 7256 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7257 7258 if (Args[i].isZExt) 7259 Flags.setZExt(); 7260 if (Args[i].isSExt) 7261 Flags.setSExt(); 7262 if (Args[i].isInReg) 7263 Flags.setInReg(); 7264 if (Args[i].isSRet) 7265 Flags.setSRet(); 7266 if (Args[i].isByVal) 7267 Flags.setByVal(); 7268 if (Args[i].isInAlloca) { 7269 Flags.setInAlloca(); 7270 // Set the byval flag for CCAssignFn callbacks that don't know about 7271 // inalloca. This way we can know how many bytes we should've allocated 7272 // and how many bytes a callee cleanup function will pop. If we port 7273 // inalloca to more targets, we'll have to add custom inalloca handling 7274 // in the various CC lowering callbacks. 7275 Flags.setByVal(); 7276 } 7277 if (Args[i].isByVal || Args[i].isInAlloca) { 7278 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7279 Type *ElementTy = Ty->getElementType(); 7280 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7281 // For ByVal, alignment should come from FE. BE will guess if this 7282 // info is not there but there are cases it cannot get right. 7283 unsigned FrameAlign; 7284 if (Args[i].Alignment) 7285 FrameAlign = Args[i].Alignment; 7286 else 7287 FrameAlign = getByValTypeAlignment(ElementTy); 7288 Flags.setByValAlign(FrameAlign); 7289 } 7290 if (Args[i].isNest) 7291 Flags.setNest(); 7292 if (NeedsRegBlock) 7293 Flags.setInConsecutiveRegs(); 7294 Flags.setOrigAlign(OriginalAlignment); 7295 7296 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7297 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7298 SmallVector<SDValue, 4> Parts(NumParts); 7299 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7300 7301 if (Args[i].isSExt) 7302 ExtendKind = ISD::SIGN_EXTEND; 7303 else if (Args[i].isZExt) 7304 ExtendKind = ISD::ZERO_EXTEND; 7305 7306 // Conservatively only handle 'returned' on non-vectors for now 7307 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7308 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7309 "unexpected use of 'returned'"); 7310 // Before passing 'returned' to the target lowering code, ensure that 7311 // either the register MVT and the actual EVT are the same size or that 7312 // the return value and argument are extended in the same way; in these 7313 // cases it's safe to pass the argument register value unchanged as the 7314 // return register value (although it's at the target's option whether 7315 // to do so) 7316 // TODO: allow code generation to take advantage of partially preserved 7317 // registers rather than clobbering the entire register when the 7318 // parameter extension method is not compatible with the return 7319 // extension method 7320 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7321 (ExtendKind != ISD::ANY_EXTEND && 7322 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7323 Flags.setReturned(); 7324 } 7325 7326 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7327 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7328 7329 for (unsigned j = 0; j != NumParts; ++j) { 7330 // if it isn't first piece, alignment must be 1 7331 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7332 i < CLI.NumFixedArgs, 7333 i, j*Parts[j].getValueType().getStoreSize()); 7334 if (NumParts > 1 && j == 0) 7335 MyFlags.Flags.setSplit(); 7336 else if (j != 0) 7337 MyFlags.Flags.setOrigAlign(1); 7338 7339 // Only mark the end at the last register of the last value. 7340 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7341 MyFlags.Flags.setInConsecutiveRegsLast(); 7342 7343 CLI.Outs.push_back(MyFlags); 7344 CLI.OutVals.push_back(Parts[j]); 7345 } 7346 } 7347 } 7348 7349 SmallVector<SDValue, 4> InVals; 7350 CLI.Chain = LowerCall(CLI, InVals); 7351 7352 // Verify that the target's LowerCall behaved as expected. 7353 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7354 "LowerCall didn't return a valid chain!"); 7355 assert((!CLI.IsTailCall || InVals.empty()) && 7356 "LowerCall emitted a return value for a tail call!"); 7357 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7358 "LowerCall didn't emit the correct number of values!"); 7359 7360 // For a tail call, the return value is merely live-out and there aren't 7361 // any nodes in the DAG representing it. Return a special value to 7362 // indicate that a tail call has been emitted and no more Instructions 7363 // should be processed in the current block. 7364 if (CLI.IsTailCall) { 7365 CLI.DAG.setRoot(CLI.Chain); 7366 return std::make_pair(SDValue(), SDValue()); 7367 } 7368 7369 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7370 assert(InVals[i].getNode() && 7371 "LowerCall emitted a null value!"); 7372 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7373 "LowerCall emitted a value with the wrong type!"); 7374 }); 7375 7376 SmallVector<SDValue, 4> ReturnValues; 7377 if (!CanLowerReturn) { 7378 // The instruction result is the result of loading from the 7379 // hidden sret parameter. 7380 SmallVector<EVT, 1> PVTs; 7381 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7382 7383 ComputeValueVTs(*this, PtrRetTy, PVTs); 7384 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7385 EVT PtrVT = PVTs[0]; 7386 7387 unsigned NumValues = RetTys.size(); 7388 ReturnValues.resize(NumValues); 7389 SmallVector<SDValue, 4> Chains(NumValues); 7390 7391 for (unsigned i = 0; i < NumValues; ++i) { 7392 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7393 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7394 SDValue L = CLI.DAG.getLoad( 7395 RetTys[i], CLI.DL, CLI.Chain, Add, 7396 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7397 false, false, 1); 7398 ReturnValues[i] = L; 7399 Chains[i] = L.getValue(1); 7400 } 7401 7402 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7403 } else { 7404 // Collect the legal value parts into potentially illegal values 7405 // that correspond to the original function's return values. 7406 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7407 if (CLI.RetSExt) 7408 AssertOp = ISD::AssertSext; 7409 else if (CLI.RetZExt) 7410 AssertOp = ISD::AssertZext; 7411 unsigned CurReg = 0; 7412 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7413 EVT VT = RetTys[I]; 7414 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7415 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7416 7417 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7418 NumRegs, RegisterVT, VT, nullptr, 7419 AssertOp)); 7420 CurReg += NumRegs; 7421 } 7422 7423 // For a function returning void, there is no return value. We can't create 7424 // such a node, so we just return a null return value in that case. In 7425 // that case, nothing will actually look at the value. 7426 if (ReturnValues.empty()) 7427 return std::make_pair(SDValue(), CLI.Chain); 7428 } 7429 7430 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7431 CLI.DAG.getVTList(RetTys), ReturnValues); 7432 return std::make_pair(Res, CLI.Chain); 7433 } 7434 7435 void TargetLowering::LowerOperationWrapper(SDNode *N, 7436 SmallVectorImpl<SDValue> &Results, 7437 SelectionDAG &DAG) const { 7438 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7439 if (Res.getNode()) 7440 Results.push_back(Res); 7441 } 7442 7443 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7444 llvm_unreachable("LowerOperation not implemented for this target!"); 7445 } 7446 7447 void 7448 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7449 SDValue Op = getNonRegisterValue(V); 7450 assert((Op.getOpcode() != ISD::CopyFromReg || 7451 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7452 "Copy from a reg to the same reg!"); 7453 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7454 7455 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7456 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7457 SDValue Chain = DAG.getEntryNode(); 7458 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7459 PendingExports.push_back(Chain); 7460 } 7461 7462 #include "llvm/CodeGen/SelectionDAGISel.h" 7463 7464 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7465 /// entry block, return true. This includes arguments used by switches, since 7466 /// the switch may expand into multiple basic blocks. 7467 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7468 // With FastISel active, we may be splitting blocks, so force creation 7469 // of virtual registers for all non-dead arguments. 7470 if (FastISel) 7471 return A->use_empty(); 7472 7473 const BasicBlock *Entry = A->getParent()->begin(); 7474 for (const User *U : A->users()) 7475 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7476 return false; // Use not in entry block. 7477 7478 return true; 7479 } 7480 7481 void SelectionDAGISel::LowerArguments(const Function &F) { 7482 SelectionDAG &DAG = SDB->DAG; 7483 SDLoc dl = SDB->getCurSDLoc(); 7484 const TargetLowering *TLI = getTargetLowering(); 7485 const DataLayout *DL = TLI->getDataLayout(); 7486 SmallVector<ISD::InputArg, 16> Ins; 7487 7488 if (!FuncInfo->CanLowerReturn) { 7489 // Put in an sret pointer parameter before all the other parameters. 7490 SmallVector<EVT, 1> ValueVTs; 7491 ComputeValueVTs(*getTargetLowering(), 7492 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7493 7494 // NOTE: Assuming that a pointer will never break down to more than one VT 7495 // or one register. 7496 ISD::ArgFlagsTy Flags; 7497 Flags.setSRet(); 7498 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7499 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7500 Ins.push_back(RetArg); 7501 } 7502 7503 // Set up the incoming argument description vector. 7504 unsigned Idx = 1; 7505 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7506 I != E; ++I, ++Idx) { 7507 SmallVector<EVT, 4> ValueVTs; 7508 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7509 bool isArgValueUsed = !I->use_empty(); 7510 unsigned PartBase = 0; 7511 Type *FinalType = I->getType(); 7512 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7513 FinalType = cast<PointerType>(FinalType)->getElementType(); 7514 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7515 FinalType, F.getCallingConv(), F.isVarArg()); 7516 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7517 Value != NumValues; ++Value) { 7518 EVT VT = ValueVTs[Value]; 7519 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7520 ISD::ArgFlagsTy Flags; 7521 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7522 7523 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7524 Flags.setZExt(); 7525 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7526 Flags.setSExt(); 7527 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7528 Flags.setInReg(); 7529 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7530 Flags.setSRet(); 7531 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7532 Flags.setByVal(); 7533 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7534 Flags.setInAlloca(); 7535 // Set the byval flag for CCAssignFn callbacks that don't know about 7536 // inalloca. This way we can know how many bytes we should've allocated 7537 // and how many bytes a callee cleanup function will pop. If we port 7538 // inalloca to more targets, we'll have to add custom inalloca handling 7539 // in the various CC lowering callbacks. 7540 Flags.setByVal(); 7541 } 7542 if (Flags.isByVal() || Flags.isInAlloca()) { 7543 PointerType *Ty = cast<PointerType>(I->getType()); 7544 Type *ElementTy = Ty->getElementType(); 7545 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7546 // For ByVal, alignment should be passed from FE. BE will guess if 7547 // this info is not there but there are cases it cannot get right. 7548 unsigned FrameAlign; 7549 if (F.getParamAlignment(Idx)) 7550 FrameAlign = F.getParamAlignment(Idx); 7551 else 7552 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7553 Flags.setByValAlign(FrameAlign); 7554 } 7555 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7556 Flags.setNest(); 7557 if (NeedsRegBlock) 7558 Flags.setInConsecutiveRegs(); 7559 Flags.setOrigAlign(OriginalAlignment); 7560 7561 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7562 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7563 for (unsigned i = 0; i != NumRegs; ++i) { 7564 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7565 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7566 if (NumRegs > 1 && i == 0) 7567 MyFlags.Flags.setSplit(); 7568 // if it isn't first piece, alignment must be 1 7569 else if (i > 0) 7570 MyFlags.Flags.setOrigAlign(1); 7571 7572 // Only mark the end at the last register of the last value. 7573 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7574 MyFlags.Flags.setInConsecutiveRegsLast(); 7575 7576 Ins.push_back(MyFlags); 7577 } 7578 PartBase += VT.getStoreSize(); 7579 } 7580 } 7581 7582 // Call the target to set up the argument values. 7583 SmallVector<SDValue, 8> InVals; 7584 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7585 F.isVarArg(), Ins, 7586 dl, DAG, InVals); 7587 7588 // Verify that the target's LowerFormalArguments behaved as expected. 7589 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7590 "LowerFormalArguments didn't return a valid chain!"); 7591 assert(InVals.size() == Ins.size() && 7592 "LowerFormalArguments didn't emit the correct number of values!"); 7593 DEBUG({ 7594 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7595 assert(InVals[i].getNode() && 7596 "LowerFormalArguments emitted a null value!"); 7597 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7598 "LowerFormalArguments emitted a value with the wrong type!"); 7599 } 7600 }); 7601 7602 // Update the DAG with the new chain value resulting from argument lowering. 7603 DAG.setRoot(NewRoot); 7604 7605 // Set up the argument values. 7606 unsigned i = 0; 7607 Idx = 1; 7608 if (!FuncInfo->CanLowerReturn) { 7609 // Create a virtual register for the sret pointer, and put in a copy 7610 // from the sret argument into it. 7611 SmallVector<EVT, 1> ValueVTs; 7612 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7613 MVT VT = ValueVTs[0].getSimpleVT(); 7614 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7615 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7616 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7617 RegVT, VT, nullptr, AssertOp); 7618 7619 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7620 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7621 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7622 FuncInfo->DemoteRegister = SRetReg; 7623 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7624 SRetReg, ArgValue); 7625 DAG.setRoot(NewRoot); 7626 7627 // i indexes lowered arguments. Bump it past the hidden sret argument. 7628 // Idx indexes LLVM arguments. Don't touch it. 7629 ++i; 7630 } 7631 7632 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7633 ++I, ++Idx) { 7634 SmallVector<SDValue, 4> ArgValues; 7635 SmallVector<EVT, 4> ValueVTs; 7636 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7637 unsigned NumValues = ValueVTs.size(); 7638 7639 // If this argument is unused then remember its value. It is used to generate 7640 // debugging information. 7641 if (I->use_empty() && NumValues) { 7642 SDB->setUnusedArgValue(I, InVals[i]); 7643 7644 // Also remember any frame index for use in FastISel. 7645 if (FrameIndexSDNode *FI = 7646 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7647 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7648 } 7649 7650 for (unsigned Val = 0; Val != NumValues; ++Val) { 7651 EVT VT = ValueVTs[Val]; 7652 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7653 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7654 7655 if (!I->use_empty()) { 7656 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7657 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7658 AssertOp = ISD::AssertSext; 7659 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7660 AssertOp = ISD::AssertZext; 7661 7662 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7663 NumParts, PartVT, VT, 7664 nullptr, AssertOp)); 7665 } 7666 7667 i += NumParts; 7668 } 7669 7670 // We don't need to do anything else for unused arguments. 7671 if (ArgValues.empty()) 7672 continue; 7673 7674 // Note down frame index. 7675 if (FrameIndexSDNode *FI = 7676 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7677 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7678 7679 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7680 SDB->getCurSDLoc()); 7681 7682 SDB->setValue(I, Res); 7683 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7684 if (LoadSDNode *LNode = 7685 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7686 if (FrameIndexSDNode *FI = 7687 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7688 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7689 } 7690 7691 // If this argument is live outside of the entry block, insert a copy from 7692 // wherever we got it to the vreg that other BB's will reference it as. 7693 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7694 // If we can, though, try to skip creating an unnecessary vreg. 7695 // FIXME: This isn't very clean... it would be nice to make this more 7696 // general. It's also subtly incompatible with the hacks FastISel 7697 // uses with vregs. 7698 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7699 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7700 FuncInfo->ValueMap[I] = Reg; 7701 continue; 7702 } 7703 } 7704 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7705 FuncInfo->InitializeRegForValue(I); 7706 SDB->CopyToExportRegsIfNeeded(I); 7707 } 7708 } 7709 7710 assert(i == InVals.size() && "Argument register count mismatch!"); 7711 7712 // Finally, if the target has anything special to do, allow it to do so. 7713 // FIXME: this should insert code into the DAG! 7714 EmitFunctionEntryCode(); 7715 } 7716 7717 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7718 /// ensure constants are generated when needed. Remember the virtual registers 7719 /// that need to be added to the Machine PHI nodes as input. We cannot just 7720 /// directly add them, because expansion might result in multiple MBB's for one 7721 /// BB. As such, the start of the BB might correspond to a different MBB than 7722 /// the end. 7723 /// 7724 void 7725 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7726 const TerminatorInst *TI = LLVMBB->getTerminator(); 7727 7728 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7729 7730 // Check successor nodes' PHI nodes that expect a constant to be available 7731 // from this block. 7732 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7733 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7734 if (!isa<PHINode>(SuccBB->begin())) continue; 7735 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7736 7737 // If this terminator has multiple identical successors (common for 7738 // switches), only handle each succ once. 7739 if (!SuccsHandled.insert(SuccMBB)) continue; 7740 7741 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7742 7743 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7744 // nodes and Machine PHI nodes, but the incoming operands have not been 7745 // emitted yet. 7746 for (BasicBlock::const_iterator I = SuccBB->begin(); 7747 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7748 // Ignore dead phi's. 7749 if (PN->use_empty()) continue; 7750 7751 // Skip empty types 7752 if (PN->getType()->isEmptyTy()) 7753 continue; 7754 7755 unsigned Reg; 7756 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7757 7758 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7759 unsigned &RegOut = ConstantsOut[C]; 7760 if (RegOut == 0) { 7761 RegOut = FuncInfo.CreateRegs(C->getType()); 7762 CopyValueToVirtualRegister(C, RegOut); 7763 } 7764 Reg = RegOut; 7765 } else { 7766 DenseMap<const Value *, unsigned>::iterator I = 7767 FuncInfo.ValueMap.find(PHIOp); 7768 if (I != FuncInfo.ValueMap.end()) 7769 Reg = I->second; 7770 else { 7771 assert(isa<AllocaInst>(PHIOp) && 7772 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7773 "Didn't codegen value into a register!??"); 7774 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7775 CopyValueToVirtualRegister(PHIOp, Reg); 7776 } 7777 } 7778 7779 // Remember that this register needs to added to the machine PHI node as 7780 // the input for this MBB. 7781 SmallVector<EVT, 4> ValueVTs; 7782 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7783 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7784 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7785 EVT VT = ValueVTs[vti]; 7786 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7787 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7788 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7789 Reg += NumRegisters; 7790 } 7791 } 7792 } 7793 7794 ConstantsOut.clear(); 7795 } 7796 7797 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7798 /// is 0. 7799 MachineBasicBlock * 7800 SelectionDAGBuilder::StackProtectorDescriptor:: 7801 AddSuccessorMBB(const BasicBlock *BB, 7802 MachineBasicBlock *ParentMBB, 7803 MachineBasicBlock *SuccMBB) { 7804 // If SuccBB has not been created yet, create it. 7805 if (!SuccMBB) { 7806 MachineFunction *MF = ParentMBB->getParent(); 7807 MachineFunction::iterator BBI = ParentMBB; 7808 SuccMBB = MF->CreateMachineBasicBlock(BB); 7809 MF->insert(++BBI, SuccMBB); 7810 } 7811 // Add it as a successor of ParentMBB. 7812 ParentMBB->addSuccessor(SuccMBB); 7813 return SuccMBB; 7814 } 7815