1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Figure out the funclet membership for the catchret's successor. 1172 // This will be used by the FuncletLayout pass to determine how to order the 1173 // BB's. 1174 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1175 WinEHFuncInfo &EHInfo = 1176 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1177 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1178 assert(SuccessorColor && "No parent funclet for catchret!"); 1179 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1180 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1181 1182 // Create the terminator node. 1183 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1184 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1185 DAG.getBasicBlock(SuccessorColorMBB)); 1186 DAG.setRoot(Ret); 1187 } 1188 1189 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1190 llvm_unreachable("should never codegen catchendpads"); 1191 } 1192 1193 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1194 // Don't emit any special code for the cleanuppad instruction. It just marks 1195 // the start of a funclet. 1196 FuncInfo.MBB->setIsEHFuncletEntry(); 1197 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1198 } 1199 1200 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1201 /// many places it could ultimately go. In the IR, we have a single unwind 1202 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1203 /// This function skips over imaginary basic blocks that hold catchpad, 1204 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1205 /// basic block destinations. 1206 static void 1207 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1208 const BasicBlock *EHPadBB, 1209 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1210 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1211 EHPersonality::MSVC_CXX; 1212 while (EHPadBB) { 1213 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1214 if (isa<LandingPadInst>(Pad)) { 1215 // Stop on landingpads. They are not funclets. 1216 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1217 break; 1218 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1219 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1220 // personalities. 1221 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1222 UnwindDests.back()->setIsEHFuncletEntry(); 1223 break; 1224 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1225 // Add the catchpad handler to the possible destinations. 1226 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1227 // In MSVC C++, catchblocks are funclets and need prologues. 1228 if (IsMSVCCXX) 1229 UnwindDests.back()->setIsEHFuncletEntry(); 1230 EHPadBB = CPI->getUnwindDest(); 1231 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1232 EHPadBB = CEPI->getUnwindDest(); 1233 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1234 EHPadBB = CEPI->getUnwindDest(); 1235 } 1236 } 1237 } 1238 1239 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1240 // Update successor info. 1241 // FIXME: The weights for catchpads will be wrong. 1242 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1243 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1244 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1245 UnwindDest->setIsEHPad(); 1246 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1247 } 1248 1249 // Create the terminator node. 1250 SDValue Ret = 1251 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1252 DAG.setRoot(Ret); 1253 } 1254 1255 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1256 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1257 } 1258 1259 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1260 report_fatal_error("visitTerminatePad not yet implemented!"); 1261 } 1262 1263 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1265 auto &DL = DAG.getDataLayout(); 1266 SDValue Chain = getControlRoot(); 1267 SmallVector<ISD::OutputArg, 8> Outs; 1268 SmallVector<SDValue, 8> OutVals; 1269 1270 if (!FuncInfo.CanLowerReturn) { 1271 unsigned DemoteReg = FuncInfo.DemoteRegister; 1272 const Function *F = I.getParent()->getParent(); 1273 1274 // Emit a store of the return value through the virtual register. 1275 // Leave Outs empty so that LowerReturn won't try to load return 1276 // registers the usual way. 1277 SmallVector<EVT, 1> PtrValueVTs; 1278 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1279 PtrValueVTs); 1280 1281 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1282 SDValue RetOp = getValue(I.getOperand(0)); 1283 1284 SmallVector<EVT, 4> ValueVTs; 1285 SmallVector<uint64_t, 4> Offsets; 1286 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1287 unsigned NumValues = ValueVTs.size(); 1288 1289 SmallVector<SDValue, 4> Chains(NumValues); 1290 for (unsigned i = 0; i != NumValues; ++i) { 1291 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1292 RetPtr.getValueType(), RetPtr, 1293 DAG.getIntPtrConstant(Offsets[i], 1294 getCurSDLoc())); 1295 Chains[i] = 1296 DAG.getStore(Chain, getCurSDLoc(), 1297 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1298 // FIXME: better loc info would be nice. 1299 Add, MachinePointerInfo(), false, false, 0); 1300 } 1301 1302 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1303 MVT::Other, Chains); 1304 } else if (I.getNumOperands() != 0) { 1305 SmallVector<EVT, 4> ValueVTs; 1306 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1307 unsigned NumValues = ValueVTs.size(); 1308 if (NumValues) { 1309 SDValue RetOp = getValue(I.getOperand(0)); 1310 1311 const Function *F = I.getParent()->getParent(); 1312 1313 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1314 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1315 Attribute::SExt)) 1316 ExtendKind = ISD::SIGN_EXTEND; 1317 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1318 Attribute::ZExt)) 1319 ExtendKind = ISD::ZERO_EXTEND; 1320 1321 LLVMContext &Context = F->getContext(); 1322 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1323 Attribute::InReg); 1324 1325 for (unsigned j = 0; j != NumValues; ++j) { 1326 EVT VT = ValueVTs[j]; 1327 1328 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1329 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1330 1331 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1332 MVT PartVT = TLI.getRegisterType(Context, VT); 1333 SmallVector<SDValue, 4> Parts(NumParts); 1334 getCopyToParts(DAG, getCurSDLoc(), 1335 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1336 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1337 1338 // 'inreg' on function refers to return value 1339 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1340 if (RetInReg) 1341 Flags.setInReg(); 1342 1343 // Propagate extension type if any 1344 if (ExtendKind == ISD::SIGN_EXTEND) 1345 Flags.setSExt(); 1346 else if (ExtendKind == ISD::ZERO_EXTEND) 1347 Flags.setZExt(); 1348 1349 for (unsigned i = 0; i < NumParts; ++i) { 1350 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1351 VT, /*isfixed=*/true, 0, 0)); 1352 OutVals.push_back(Parts[i]); 1353 } 1354 } 1355 } 1356 } 1357 1358 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1359 CallingConv::ID CallConv = 1360 DAG.getMachineFunction().getFunction()->getCallingConv(); 1361 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1362 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1363 1364 // Verify that the target's LowerReturn behaved as expected. 1365 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1366 "LowerReturn didn't return a valid chain!"); 1367 1368 // Update the DAG with the new chain value resulting from return lowering. 1369 DAG.setRoot(Chain); 1370 } 1371 1372 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1373 /// created for it, emit nodes to copy the value into the virtual 1374 /// registers. 1375 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1376 // Skip empty types 1377 if (V->getType()->isEmptyTy()) 1378 return; 1379 1380 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1381 if (VMI != FuncInfo.ValueMap.end()) { 1382 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1383 CopyValueToVirtualRegister(V, VMI->second); 1384 } 1385 } 1386 1387 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1388 /// the current basic block, add it to ValueMap now so that we'll get a 1389 /// CopyTo/FromReg. 1390 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1391 // No need to export constants. 1392 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1393 1394 // Already exported? 1395 if (FuncInfo.isExportedInst(V)) return; 1396 1397 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1398 CopyValueToVirtualRegister(V, Reg); 1399 } 1400 1401 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1402 const BasicBlock *FromBB) { 1403 // The operands of the setcc have to be in this block. We don't know 1404 // how to export them from some other block. 1405 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1406 // Can export from current BB. 1407 if (VI->getParent() == FromBB) 1408 return true; 1409 1410 // Is already exported, noop. 1411 return FuncInfo.isExportedInst(V); 1412 } 1413 1414 // If this is an argument, we can export it if the BB is the entry block or 1415 // if it is already exported. 1416 if (isa<Argument>(V)) { 1417 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1418 return true; 1419 1420 // Otherwise, can only export this if it is already exported. 1421 return FuncInfo.isExportedInst(V); 1422 } 1423 1424 // Otherwise, constants can always be exported. 1425 return true; 1426 } 1427 1428 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1429 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1430 const MachineBasicBlock *Dst) const { 1431 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1432 if (!BPI) 1433 return 0; 1434 const BasicBlock *SrcBB = Src->getBasicBlock(); 1435 const BasicBlock *DstBB = Dst->getBasicBlock(); 1436 return BPI->getEdgeWeight(SrcBB, DstBB); 1437 } 1438 1439 void SelectionDAGBuilder:: 1440 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1441 uint32_t Weight /* = 0 */) { 1442 if (!Weight) 1443 Weight = getEdgeWeight(Src, Dst); 1444 Src->addSuccessor(Dst, Weight); 1445 } 1446 1447 1448 static bool InBlock(const Value *V, const BasicBlock *BB) { 1449 if (const Instruction *I = dyn_cast<Instruction>(V)) 1450 return I->getParent() == BB; 1451 return true; 1452 } 1453 1454 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1455 /// This function emits a branch and is used at the leaves of an OR or an 1456 /// AND operator tree. 1457 /// 1458 void 1459 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1460 MachineBasicBlock *TBB, 1461 MachineBasicBlock *FBB, 1462 MachineBasicBlock *CurBB, 1463 MachineBasicBlock *SwitchBB, 1464 uint32_t TWeight, 1465 uint32_t FWeight) { 1466 const BasicBlock *BB = CurBB->getBasicBlock(); 1467 1468 // If the leaf of the tree is a comparison, merge the condition into 1469 // the caseblock. 1470 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1471 // The operands of the cmp have to be in this block. We don't know 1472 // how to export them from some other block. If this is the first block 1473 // of the sequence, no exporting is needed. 1474 if (CurBB == SwitchBB || 1475 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1476 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1477 ISD::CondCode Condition; 1478 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1479 Condition = getICmpCondCode(IC->getPredicate()); 1480 } else { 1481 const FCmpInst *FC = cast<FCmpInst>(Cond); 1482 Condition = getFCmpCondCode(FC->getPredicate()); 1483 if (TM.Options.NoNaNsFPMath) 1484 Condition = getFCmpCodeWithoutNaN(Condition); 1485 } 1486 1487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1488 TBB, FBB, CurBB, TWeight, FWeight); 1489 SwitchCases.push_back(CB); 1490 return; 1491 } 1492 } 1493 1494 // Create a CaseBlock record representing this branch. 1495 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1496 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1497 SwitchCases.push_back(CB); 1498 } 1499 1500 /// Scale down both weights to fit into uint32_t. 1501 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1502 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1503 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1504 NewTrue = NewTrue / Scale; 1505 NewFalse = NewFalse / Scale; 1506 } 1507 1508 /// FindMergedConditions - If Cond is an expression like 1509 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1510 MachineBasicBlock *TBB, 1511 MachineBasicBlock *FBB, 1512 MachineBasicBlock *CurBB, 1513 MachineBasicBlock *SwitchBB, 1514 Instruction::BinaryOps Opc, 1515 uint32_t TWeight, 1516 uint32_t FWeight) { 1517 // If this node is not part of the or/and tree, emit it as a branch. 1518 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1519 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1520 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1521 BOp->getParent() != CurBB->getBasicBlock() || 1522 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1523 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1524 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1525 TWeight, FWeight); 1526 return; 1527 } 1528 1529 // Create TmpBB after CurBB. 1530 MachineFunction::iterator BBI = CurBB; 1531 MachineFunction &MF = DAG.getMachineFunction(); 1532 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1533 CurBB->getParent()->insert(++BBI, TmpBB); 1534 1535 if (Opc == Instruction::Or) { 1536 // Codegen X | Y as: 1537 // BB1: 1538 // jmp_if_X TBB 1539 // jmp TmpBB 1540 // TmpBB: 1541 // jmp_if_Y TBB 1542 // jmp FBB 1543 // 1544 1545 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1546 // The requirement is that 1547 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1548 // = TrueProb for original BB. 1549 // Assuming the original weights are A and B, one choice is to set BB1's 1550 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1551 // assumes that 1552 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1553 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1554 // TmpBB, but the math is more complicated. 1555 1556 uint64_t NewTrueWeight = TWeight; 1557 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1558 ScaleWeights(NewTrueWeight, NewFalseWeight); 1559 // Emit the LHS condition. 1560 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1561 NewTrueWeight, NewFalseWeight); 1562 1563 NewTrueWeight = TWeight; 1564 NewFalseWeight = 2 * (uint64_t)FWeight; 1565 ScaleWeights(NewTrueWeight, NewFalseWeight); 1566 // Emit the RHS condition into TmpBB. 1567 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1568 NewTrueWeight, NewFalseWeight); 1569 } else { 1570 assert(Opc == Instruction::And && "Unknown merge op!"); 1571 // Codegen X & Y as: 1572 // BB1: 1573 // jmp_if_X TmpBB 1574 // jmp FBB 1575 // TmpBB: 1576 // jmp_if_Y TBB 1577 // jmp FBB 1578 // 1579 // This requires creation of TmpBB after CurBB. 1580 1581 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1582 // The requirement is that 1583 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1584 // = FalseProb for original BB. 1585 // Assuming the original weights are A and B, one choice is to set BB1's 1586 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1587 // assumes that 1588 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1589 1590 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1591 uint64_t NewFalseWeight = FWeight; 1592 ScaleWeights(NewTrueWeight, NewFalseWeight); 1593 // Emit the LHS condition. 1594 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1595 NewTrueWeight, NewFalseWeight); 1596 1597 NewTrueWeight = 2 * (uint64_t)TWeight; 1598 NewFalseWeight = FWeight; 1599 ScaleWeights(NewTrueWeight, NewFalseWeight); 1600 // Emit the RHS condition into TmpBB. 1601 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1602 NewTrueWeight, NewFalseWeight); 1603 } 1604 } 1605 1606 /// If the set of cases should be emitted as a series of branches, return true. 1607 /// If we should emit this as a bunch of and/or'd together conditions, return 1608 /// false. 1609 bool 1610 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1611 if (Cases.size() != 2) return true; 1612 1613 // If this is two comparisons of the same values or'd or and'd together, they 1614 // will get folded into a single comparison, so don't emit two blocks. 1615 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1616 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1617 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1618 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1619 return false; 1620 } 1621 1622 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1623 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1624 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1625 Cases[0].CC == Cases[1].CC && 1626 isa<Constant>(Cases[0].CmpRHS) && 1627 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1628 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1629 return false; 1630 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1631 return false; 1632 } 1633 1634 return true; 1635 } 1636 1637 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1638 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1639 1640 // Update machine-CFG edges. 1641 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1642 1643 if (I.isUnconditional()) { 1644 // Update machine-CFG edges. 1645 BrMBB->addSuccessor(Succ0MBB); 1646 1647 // If this is not a fall-through branch or optimizations are switched off, 1648 // emit the branch. 1649 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1650 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1651 MVT::Other, getControlRoot(), 1652 DAG.getBasicBlock(Succ0MBB))); 1653 1654 return; 1655 } 1656 1657 // If this condition is one of the special cases we handle, do special stuff 1658 // now. 1659 const Value *CondVal = I.getCondition(); 1660 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1661 1662 // If this is a series of conditions that are or'd or and'd together, emit 1663 // this as a sequence of branches instead of setcc's with and/or operations. 1664 // As long as jumps are not expensive, this should improve performance. 1665 // For example, instead of something like: 1666 // cmp A, B 1667 // C = seteq 1668 // cmp D, E 1669 // F = setle 1670 // or C, F 1671 // jnz foo 1672 // Emit: 1673 // cmp A, B 1674 // je foo 1675 // cmp D, E 1676 // jle foo 1677 // 1678 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1679 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1680 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1681 !I.getMetadata(LLVMContext::MD_unpredictable) && 1682 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1683 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1684 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1685 getEdgeWeight(BrMBB, Succ1MBB)); 1686 // If the compares in later blocks need to use values not currently 1687 // exported from this block, export them now. This block should always 1688 // be the first entry. 1689 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1690 1691 // Allow some cases to be rejected. 1692 if (ShouldEmitAsBranches(SwitchCases)) { 1693 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1694 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1695 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1696 } 1697 1698 // Emit the branch for this block. 1699 visitSwitchCase(SwitchCases[0], BrMBB); 1700 SwitchCases.erase(SwitchCases.begin()); 1701 return; 1702 } 1703 1704 // Okay, we decided not to do this, remove any inserted MBB's and clear 1705 // SwitchCases. 1706 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1707 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1708 1709 SwitchCases.clear(); 1710 } 1711 } 1712 1713 // Create a CaseBlock record representing this branch. 1714 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1715 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1716 1717 // Use visitSwitchCase to actually insert the fast branch sequence for this 1718 // cond branch. 1719 visitSwitchCase(CB, BrMBB); 1720 } 1721 1722 /// visitSwitchCase - Emits the necessary code to represent a single node in 1723 /// the binary search tree resulting from lowering a switch instruction. 1724 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1725 MachineBasicBlock *SwitchBB) { 1726 SDValue Cond; 1727 SDValue CondLHS = getValue(CB.CmpLHS); 1728 SDLoc dl = getCurSDLoc(); 1729 1730 // Build the setcc now. 1731 if (!CB.CmpMHS) { 1732 // Fold "(X == true)" to X and "(X == false)" to !X to 1733 // handle common cases produced by branch lowering. 1734 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1735 CB.CC == ISD::SETEQ) 1736 Cond = CondLHS; 1737 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1738 CB.CC == ISD::SETEQ) { 1739 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1740 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1741 } else 1742 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1743 } else { 1744 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1745 1746 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1747 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1748 1749 SDValue CmpOp = getValue(CB.CmpMHS); 1750 EVT VT = CmpOp.getValueType(); 1751 1752 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1753 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1754 ISD::SETLE); 1755 } else { 1756 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1757 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1758 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1759 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1760 } 1761 } 1762 1763 // Update successor info 1764 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1765 // TrueBB and FalseBB are always different unless the incoming IR is 1766 // degenerate. This only happens when running llc on weird IR. 1767 if (CB.TrueBB != CB.FalseBB) 1768 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1769 1770 // If the lhs block is the next block, invert the condition so that we can 1771 // fall through to the lhs instead of the rhs block. 1772 if (CB.TrueBB == NextBlock(SwitchBB)) { 1773 std::swap(CB.TrueBB, CB.FalseBB); 1774 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1775 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1776 } 1777 1778 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1779 MVT::Other, getControlRoot(), Cond, 1780 DAG.getBasicBlock(CB.TrueBB)); 1781 1782 // Insert the false branch. Do this even if it's a fall through branch, 1783 // this makes it easier to do DAG optimizations which require inverting 1784 // the branch condition. 1785 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1786 DAG.getBasicBlock(CB.FalseBB)); 1787 1788 DAG.setRoot(BrCond); 1789 } 1790 1791 /// visitJumpTable - Emit JumpTable node in the current MBB 1792 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1793 // Emit the code for the jump table 1794 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1795 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1796 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1797 JT.Reg, PTy); 1798 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1799 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1800 MVT::Other, Index.getValue(1), 1801 Table, Index); 1802 DAG.setRoot(BrJumpTable); 1803 } 1804 1805 /// visitJumpTableHeader - This function emits necessary code to produce index 1806 /// in the JumpTable from switch case. 1807 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1808 JumpTableHeader &JTH, 1809 MachineBasicBlock *SwitchBB) { 1810 SDLoc dl = getCurSDLoc(); 1811 1812 // Subtract the lowest switch case value from the value being switched on and 1813 // conditional branch to default mbb if the result is greater than the 1814 // difference between smallest and largest cases. 1815 SDValue SwitchOp = getValue(JTH.SValue); 1816 EVT VT = SwitchOp.getValueType(); 1817 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1818 DAG.getConstant(JTH.First, dl, VT)); 1819 1820 // The SDNode we just created, which holds the value being switched on minus 1821 // the smallest case value, needs to be copied to a virtual register so it 1822 // can be used as an index into the jump table in a subsequent basic block. 1823 // This value may be smaller or larger than the target's pointer type, and 1824 // therefore require extension or truncating. 1825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1826 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1827 1828 unsigned JumpTableReg = 1829 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1830 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1831 JumpTableReg, SwitchOp); 1832 JT.Reg = JumpTableReg; 1833 1834 // Emit the range check for the jump table, and branch to the default block 1835 // for the switch statement if the value being switched on exceeds the largest 1836 // case in the switch. 1837 SDValue CMP = DAG.getSetCC( 1838 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1841 1842 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1843 MVT::Other, CopyTo, CMP, 1844 DAG.getBasicBlock(JT.Default)); 1845 1846 // Avoid emitting unnecessary branches to the next block. 1847 if (JT.MBB != NextBlock(SwitchBB)) 1848 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1849 DAG.getBasicBlock(JT.MBB)); 1850 1851 DAG.setRoot(BrCond); 1852 } 1853 1854 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1855 /// tail spliced into a stack protector check success bb. 1856 /// 1857 /// For a high level explanation of how this fits into the stack protector 1858 /// generation see the comment on the declaration of class 1859 /// StackProtectorDescriptor. 1860 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1861 MachineBasicBlock *ParentBB) { 1862 1863 // First create the loads to the guard/stack slot for the comparison. 1864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1865 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1866 1867 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1868 int FI = MFI->getStackProtectorIndex(); 1869 1870 const Value *IRGuard = SPD.getGuard(); 1871 SDValue GuardPtr = getValue(IRGuard); 1872 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1873 1874 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1875 1876 SDValue Guard; 1877 SDLoc dl = getCurSDLoc(); 1878 1879 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1880 // guard value from the virtual register holding the value. Otherwise, emit a 1881 // volatile load to retrieve the stack guard value. 1882 unsigned GuardReg = SPD.getGuardReg(); 1883 1884 if (GuardReg && TLI.useLoadStackGuardNode()) 1885 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1886 PtrTy); 1887 else 1888 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1889 GuardPtr, MachinePointerInfo(IRGuard, 0), 1890 true, false, false, Align); 1891 1892 SDValue StackSlot = DAG.getLoad( 1893 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1894 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1895 false, false, Align); 1896 1897 // Perform the comparison via a subtract/getsetcc. 1898 EVT VT = Guard.getValueType(); 1899 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1900 1901 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1902 *DAG.getContext(), 1903 Sub.getValueType()), 1904 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1905 1906 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1907 // branch to failure MBB. 1908 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1909 MVT::Other, StackSlot.getOperand(0), 1910 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1911 // Otherwise branch to success MBB. 1912 SDValue Br = DAG.getNode(ISD::BR, dl, 1913 MVT::Other, BrCond, 1914 DAG.getBasicBlock(SPD.getSuccessMBB())); 1915 1916 DAG.setRoot(Br); 1917 } 1918 1919 /// Codegen the failure basic block for a stack protector check. 1920 /// 1921 /// A failure stack protector machine basic block consists simply of a call to 1922 /// __stack_chk_fail(). 1923 /// 1924 /// For a high level explanation of how this fits into the stack protector 1925 /// generation see the comment on the declaration of class 1926 /// StackProtectorDescriptor. 1927 void 1928 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 SDValue Chain = 1931 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1932 nullptr, 0, false, getCurSDLoc(), false, false).second; 1933 DAG.setRoot(Chain); 1934 } 1935 1936 /// visitBitTestHeader - This function emits necessary code to produce value 1937 /// suitable for "bit tests" 1938 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1939 MachineBasicBlock *SwitchBB) { 1940 SDLoc dl = getCurSDLoc(); 1941 1942 // Subtract the minimum value 1943 SDValue SwitchOp = getValue(B.SValue); 1944 EVT VT = SwitchOp.getValueType(); 1945 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1946 DAG.getConstant(B.First, dl, VT)); 1947 1948 // Check range 1949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1950 SDValue RangeCmp = DAG.getSetCC( 1951 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1952 Sub.getValueType()), 1953 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1954 1955 // Determine the type of the test operands. 1956 bool UsePtrType = false; 1957 if (!TLI.isTypeLegal(VT)) 1958 UsePtrType = true; 1959 else { 1960 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1961 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1962 // Switch table case range are encoded into series of masks. 1963 // Just use pointer type, it's guaranteed to fit. 1964 UsePtrType = true; 1965 break; 1966 } 1967 } 1968 if (UsePtrType) { 1969 VT = TLI.getPointerTy(DAG.getDataLayout()); 1970 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1971 } 1972 1973 B.RegVT = VT.getSimpleVT(); 1974 B.Reg = FuncInfo.CreateReg(B.RegVT); 1975 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1976 1977 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1978 1979 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1980 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1981 1982 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1983 MVT::Other, CopyTo, RangeCmp, 1984 DAG.getBasicBlock(B.Default)); 1985 1986 // Avoid emitting unnecessary branches to the next block. 1987 if (MBB != NextBlock(SwitchBB)) 1988 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1989 DAG.getBasicBlock(MBB)); 1990 1991 DAG.setRoot(BrRange); 1992 } 1993 1994 /// visitBitTestCase - this function produces one "bit test" 1995 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1996 MachineBasicBlock* NextMBB, 1997 uint32_t BranchWeightToNext, 1998 unsigned Reg, 1999 BitTestCase &B, 2000 MachineBasicBlock *SwitchBB) { 2001 SDLoc dl = getCurSDLoc(); 2002 MVT VT = BB.RegVT; 2003 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2004 SDValue Cmp; 2005 unsigned PopCount = countPopulation(B.Mask); 2006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2007 if (PopCount == 1) { 2008 // Testing for a single bit; just compare the shift count with what it 2009 // would need to be to shift a 1 bit in that position. 2010 Cmp = DAG.getSetCC( 2011 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2012 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2013 ISD::SETEQ); 2014 } else if (PopCount == BB.Range) { 2015 // There is only one zero bit in the range, test for it directly. 2016 Cmp = DAG.getSetCC( 2017 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2018 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2019 ISD::SETNE); 2020 } else { 2021 // Make desired shift 2022 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2023 DAG.getConstant(1, dl, VT), ShiftOp); 2024 2025 // Emit bit tests and jumps 2026 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2027 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2028 Cmp = DAG.getSetCC( 2029 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2030 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2031 } 2032 2033 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2034 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2035 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2036 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2037 2038 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2039 MVT::Other, getControlRoot(), 2040 Cmp, DAG.getBasicBlock(B.TargetBB)); 2041 2042 // Avoid emitting unnecessary branches to the next block. 2043 if (NextMBB != NextBlock(SwitchBB)) 2044 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2045 DAG.getBasicBlock(NextMBB)); 2046 2047 DAG.setRoot(BrAnd); 2048 } 2049 2050 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2051 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2052 2053 // Retrieve successors. Look through artificial IR level blocks like catchpads 2054 // and catchendpads for successors. 2055 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2056 const BasicBlock *EHPadBB = I.getSuccessor(1); 2057 2058 const Value *Callee(I.getCalledValue()); 2059 const Function *Fn = dyn_cast<Function>(Callee); 2060 if (isa<InlineAsm>(Callee)) 2061 visitInlineAsm(&I); 2062 else if (Fn && Fn->isIntrinsic()) { 2063 switch (Fn->getIntrinsicID()) { 2064 default: 2065 llvm_unreachable("Cannot invoke this intrinsic"); 2066 case Intrinsic::donothing: 2067 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2068 break; 2069 case Intrinsic::experimental_patchpoint_void: 2070 case Intrinsic::experimental_patchpoint_i64: 2071 visitPatchpoint(&I, EHPadBB); 2072 break; 2073 case Intrinsic::experimental_gc_statepoint: 2074 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2075 break; 2076 } 2077 } else 2078 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2079 2080 // If the value of the invoke is used outside of its defining block, make it 2081 // available as a virtual register. 2082 // We already took care of the exported value for the statepoint instruction 2083 // during call to the LowerStatepoint. 2084 if (!isStatepoint(I)) { 2085 CopyToExportRegsIfNeeded(&I); 2086 } 2087 2088 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2089 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2090 2091 // Update successor info. 2092 // FIXME: The weights for catchpads will be wrong. 2093 addSuccessorWithWeight(InvokeMBB, Return); 2094 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2095 UnwindDest->setIsEHPad(); 2096 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2097 } 2098 2099 // Drop into normal successor. 2100 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2101 MVT::Other, getControlRoot(), 2102 DAG.getBasicBlock(Return))); 2103 } 2104 2105 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2106 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2107 } 2108 2109 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2110 assert(FuncInfo.MBB->isEHPad() && 2111 "Call to landingpad not in landing pad!"); 2112 2113 MachineBasicBlock *MBB = FuncInfo.MBB; 2114 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2115 AddLandingPadInfo(LP, MMI, MBB); 2116 2117 // If there aren't registers to copy the values into (e.g., during SjLj 2118 // exceptions), then don't bother to create these DAG nodes. 2119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2120 if (TLI.getExceptionPointerRegister() == 0 && 2121 TLI.getExceptionSelectorRegister() == 0) 2122 return; 2123 2124 SmallVector<EVT, 2> ValueVTs; 2125 SDLoc dl = getCurSDLoc(); 2126 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2127 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2128 2129 // Get the two live-in registers as SDValues. The physregs have already been 2130 // copied into virtual registers. 2131 SDValue Ops[2]; 2132 if (FuncInfo.ExceptionPointerVirtReg) { 2133 Ops[0] = DAG.getZExtOrTrunc( 2134 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2135 FuncInfo.ExceptionPointerVirtReg, 2136 TLI.getPointerTy(DAG.getDataLayout())), 2137 dl, ValueVTs[0]); 2138 } else { 2139 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2140 } 2141 Ops[1] = DAG.getZExtOrTrunc( 2142 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2143 FuncInfo.ExceptionSelectorVirtReg, 2144 TLI.getPointerTy(DAG.getDataLayout())), 2145 dl, ValueVTs[1]); 2146 2147 // Merge into one. 2148 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2149 DAG.getVTList(ValueVTs), Ops); 2150 setValue(&LP, Res); 2151 } 2152 2153 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2154 #ifndef NDEBUG 2155 for (const CaseCluster &CC : Clusters) 2156 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2157 #endif 2158 2159 std::sort(Clusters.begin(), Clusters.end(), 2160 [](const CaseCluster &a, const CaseCluster &b) { 2161 return a.Low->getValue().slt(b.Low->getValue()); 2162 }); 2163 2164 // Merge adjacent clusters with the same destination. 2165 const unsigned N = Clusters.size(); 2166 unsigned DstIndex = 0; 2167 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2168 CaseCluster &CC = Clusters[SrcIndex]; 2169 const ConstantInt *CaseVal = CC.Low; 2170 MachineBasicBlock *Succ = CC.MBB; 2171 2172 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2173 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2174 // If this case has the same successor and is a neighbour, merge it into 2175 // the previous cluster. 2176 Clusters[DstIndex - 1].High = CaseVal; 2177 Clusters[DstIndex - 1].Weight += CC.Weight; 2178 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2179 } else { 2180 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2181 sizeof(Clusters[SrcIndex])); 2182 } 2183 } 2184 Clusters.resize(DstIndex); 2185 } 2186 2187 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2188 MachineBasicBlock *Last) { 2189 // Update JTCases. 2190 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2191 if (JTCases[i].first.HeaderBB == First) 2192 JTCases[i].first.HeaderBB = Last; 2193 2194 // Update BitTestCases. 2195 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2196 if (BitTestCases[i].Parent == First) 2197 BitTestCases[i].Parent = Last; 2198 } 2199 2200 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2201 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2202 2203 // Update machine-CFG edges with unique successors. 2204 SmallSet<BasicBlock*, 32> Done; 2205 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2206 BasicBlock *BB = I.getSuccessor(i); 2207 bool Inserted = Done.insert(BB).second; 2208 if (!Inserted) 2209 continue; 2210 2211 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2212 addSuccessorWithWeight(IndirectBrMBB, Succ); 2213 } 2214 2215 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2216 MVT::Other, getControlRoot(), 2217 getValue(I.getAddress()))); 2218 } 2219 2220 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2221 if (DAG.getTarget().Options.TrapUnreachable) 2222 DAG.setRoot( 2223 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2224 } 2225 2226 void SelectionDAGBuilder::visitFSub(const User &I) { 2227 // -0.0 - X --> fneg 2228 Type *Ty = I.getType(); 2229 if (isa<Constant>(I.getOperand(0)) && 2230 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2231 SDValue Op2 = getValue(I.getOperand(1)); 2232 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2233 Op2.getValueType(), Op2)); 2234 return; 2235 } 2236 2237 visitBinary(I, ISD::FSUB); 2238 } 2239 2240 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2241 SDValue Op1 = getValue(I.getOperand(0)); 2242 SDValue Op2 = getValue(I.getOperand(1)); 2243 2244 bool nuw = false; 2245 bool nsw = false; 2246 bool exact = false; 2247 FastMathFlags FMF; 2248 2249 if (const OverflowingBinaryOperator *OFBinOp = 2250 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2251 nuw = OFBinOp->hasNoUnsignedWrap(); 2252 nsw = OFBinOp->hasNoSignedWrap(); 2253 } 2254 if (const PossiblyExactOperator *ExactOp = 2255 dyn_cast<const PossiblyExactOperator>(&I)) 2256 exact = ExactOp->isExact(); 2257 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2258 FMF = FPOp->getFastMathFlags(); 2259 2260 SDNodeFlags Flags; 2261 Flags.setExact(exact); 2262 Flags.setNoSignedWrap(nsw); 2263 Flags.setNoUnsignedWrap(nuw); 2264 if (EnableFMFInDAG) { 2265 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2266 Flags.setNoInfs(FMF.noInfs()); 2267 Flags.setNoNaNs(FMF.noNaNs()); 2268 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2269 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2270 } 2271 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2272 Op1, Op2, &Flags); 2273 setValue(&I, BinNodeValue); 2274 } 2275 2276 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2277 SDValue Op1 = getValue(I.getOperand(0)); 2278 SDValue Op2 = getValue(I.getOperand(1)); 2279 2280 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2281 Op2.getValueType(), DAG.getDataLayout()); 2282 2283 // Coerce the shift amount to the right type if we can. 2284 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2285 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2286 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2287 SDLoc DL = getCurSDLoc(); 2288 2289 // If the operand is smaller than the shift count type, promote it. 2290 if (ShiftSize > Op2Size) 2291 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2292 2293 // If the operand is larger than the shift count type but the shift 2294 // count type has enough bits to represent any shift value, truncate 2295 // it now. This is a common case and it exposes the truncate to 2296 // optimization early. 2297 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2298 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2299 // Otherwise we'll need to temporarily settle for some other convenient 2300 // type. Type legalization will make adjustments once the shiftee is split. 2301 else 2302 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2303 } 2304 2305 bool nuw = false; 2306 bool nsw = false; 2307 bool exact = false; 2308 2309 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2310 2311 if (const OverflowingBinaryOperator *OFBinOp = 2312 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2313 nuw = OFBinOp->hasNoUnsignedWrap(); 2314 nsw = OFBinOp->hasNoSignedWrap(); 2315 } 2316 if (const PossiblyExactOperator *ExactOp = 2317 dyn_cast<const PossiblyExactOperator>(&I)) 2318 exact = ExactOp->isExact(); 2319 } 2320 SDNodeFlags Flags; 2321 Flags.setExact(exact); 2322 Flags.setNoSignedWrap(nsw); 2323 Flags.setNoUnsignedWrap(nuw); 2324 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2325 &Flags); 2326 setValue(&I, Res); 2327 } 2328 2329 void SelectionDAGBuilder::visitSDiv(const User &I) { 2330 SDValue Op1 = getValue(I.getOperand(0)); 2331 SDValue Op2 = getValue(I.getOperand(1)); 2332 2333 SDNodeFlags Flags; 2334 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2335 cast<PossiblyExactOperator>(&I)->isExact()); 2336 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2337 Op2, &Flags)); 2338 } 2339 2340 void SelectionDAGBuilder::visitICmp(const User &I) { 2341 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2342 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2343 predicate = IC->getPredicate(); 2344 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2345 predicate = ICmpInst::Predicate(IC->getPredicate()); 2346 SDValue Op1 = getValue(I.getOperand(0)); 2347 SDValue Op2 = getValue(I.getOperand(1)); 2348 ISD::CondCode Opcode = getICmpCondCode(predicate); 2349 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2351 I.getType()); 2352 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2353 } 2354 2355 void SelectionDAGBuilder::visitFCmp(const User &I) { 2356 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2357 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2358 predicate = FC->getPredicate(); 2359 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2360 predicate = FCmpInst::Predicate(FC->getPredicate()); 2361 SDValue Op1 = getValue(I.getOperand(0)); 2362 SDValue Op2 = getValue(I.getOperand(1)); 2363 ISD::CondCode Condition = getFCmpCondCode(predicate); 2364 2365 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2366 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2367 // further optimization, but currently FMF is only applicable to binary nodes. 2368 if (TM.Options.NoNaNsFPMath) 2369 Condition = getFCmpCodeWithoutNaN(Condition); 2370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2371 I.getType()); 2372 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2373 } 2374 2375 void SelectionDAGBuilder::visitSelect(const User &I) { 2376 SmallVector<EVT, 4> ValueVTs; 2377 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2378 ValueVTs); 2379 unsigned NumValues = ValueVTs.size(); 2380 if (NumValues == 0) return; 2381 2382 SmallVector<SDValue, 4> Values(NumValues); 2383 SDValue Cond = getValue(I.getOperand(0)); 2384 SDValue LHSVal = getValue(I.getOperand(1)); 2385 SDValue RHSVal = getValue(I.getOperand(2)); 2386 auto BaseOps = {Cond}; 2387 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2388 ISD::VSELECT : ISD::SELECT; 2389 2390 // Min/max matching is only viable if all output VTs are the same. 2391 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2392 EVT VT = ValueVTs[0]; 2393 LLVMContext &Ctx = *DAG.getContext(); 2394 auto &TLI = DAG.getTargetLoweringInfo(); 2395 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2396 VT = TLI.getTypeToTransformTo(Ctx, VT); 2397 2398 Value *LHS, *RHS; 2399 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2400 ISD::NodeType Opc = ISD::DELETED_NODE; 2401 switch (SPR.Flavor) { 2402 case SPF_UMAX: Opc = ISD::UMAX; break; 2403 case SPF_UMIN: Opc = ISD::UMIN; break; 2404 case SPF_SMAX: Opc = ISD::SMAX; break; 2405 case SPF_SMIN: Opc = ISD::SMIN; break; 2406 case SPF_FMINNUM: 2407 switch (SPR.NaNBehavior) { 2408 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2409 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2410 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2411 case SPNB_RETURNS_ANY: 2412 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2413 : ISD::FMINNAN; 2414 break; 2415 } 2416 break; 2417 case SPF_FMAXNUM: 2418 switch (SPR.NaNBehavior) { 2419 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2420 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2421 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2422 case SPNB_RETURNS_ANY: 2423 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2424 : ISD::FMAXNAN; 2425 break; 2426 } 2427 break; 2428 default: break; 2429 } 2430 2431 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2432 // If the underlying comparison instruction is used by any other instruction, 2433 // the consumed instructions won't be destroyed, so it is not profitable 2434 // to convert to a min/max. 2435 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2436 OpCode = Opc; 2437 LHSVal = getValue(LHS); 2438 RHSVal = getValue(RHS); 2439 BaseOps = {}; 2440 } 2441 } 2442 2443 for (unsigned i = 0; i != NumValues; ++i) { 2444 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2445 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2446 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2447 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2448 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2449 Ops); 2450 } 2451 2452 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2453 DAG.getVTList(ValueVTs), Values)); 2454 } 2455 2456 void SelectionDAGBuilder::visitTrunc(const User &I) { 2457 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2458 SDValue N = getValue(I.getOperand(0)); 2459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2460 I.getType()); 2461 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2462 } 2463 2464 void SelectionDAGBuilder::visitZExt(const User &I) { 2465 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2466 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2467 SDValue N = getValue(I.getOperand(0)); 2468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2469 I.getType()); 2470 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2471 } 2472 2473 void SelectionDAGBuilder::visitSExt(const User &I) { 2474 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2475 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2476 SDValue N = getValue(I.getOperand(0)); 2477 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2478 I.getType()); 2479 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2480 } 2481 2482 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2483 // FPTrunc is never a no-op cast, no need to check 2484 SDValue N = getValue(I.getOperand(0)); 2485 SDLoc dl = getCurSDLoc(); 2486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2487 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2488 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2489 DAG.getTargetConstant( 2490 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2491 } 2492 2493 void SelectionDAGBuilder::visitFPExt(const User &I) { 2494 // FPExt is never a no-op cast, no need to check 2495 SDValue N = getValue(I.getOperand(0)); 2496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2497 I.getType()); 2498 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2499 } 2500 2501 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2502 // FPToUI is never a no-op cast, no need to check 2503 SDValue N = getValue(I.getOperand(0)); 2504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2505 I.getType()); 2506 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2507 } 2508 2509 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2510 // FPToSI is never a no-op cast, no need to check 2511 SDValue N = getValue(I.getOperand(0)); 2512 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2513 I.getType()); 2514 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2515 } 2516 2517 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2518 // UIToFP is never a no-op cast, no need to check 2519 SDValue N = getValue(I.getOperand(0)); 2520 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2521 I.getType()); 2522 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2523 } 2524 2525 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2526 // SIToFP is never a no-op cast, no need to check 2527 SDValue N = getValue(I.getOperand(0)); 2528 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2529 I.getType()); 2530 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2531 } 2532 2533 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2534 // What to do depends on the size of the integer and the size of the pointer. 2535 // We can either truncate, zero extend, or no-op, accordingly. 2536 SDValue N = getValue(I.getOperand(0)); 2537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2538 I.getType()); 2539 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2540 } 2541 2542 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2543 // What to do depends on the size of the integer and the size of the pointer. 2544 // We can either truncate, zero extend, or no-op, accordingly. 2545 SDValue N = getValue(I.getOperand(0)); 2546 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2547 I.getType()); 2548 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2549 } 2550 2551 void SelectionDAGBuilder::visitBitCast(const User &I) { 2552 SDValue N = getValue(I.getOperand(0)); 2553 SDLoc dl = getCurSDLoc(); 2554 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2555 I.getType()); 2556 2557 // BitCast assures us that source and destination are the same size so this is 2558 // either a BITCAST or a no-op. 2559 if (DestVT != N.getValueType()) 2560 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2561 DestVT, N)); // convert types. 2562 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2563 // might fold any kind of constant expression to an integer constant and that 2564 // is not what we are looking for. Only regcognize a bitcast of a genuine 2565 // constant integer as an opaque constant. 2566 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2567 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2568 /*isOpaque*/true)); 2569 else 2570 setValue(&I, N); // noop cast. 2571 } 2572 2573 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2575 const Value *SV = I.getOperand(0); 2576 SDValue N = getValue(SV); 2577 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2578 2579 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2580 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2581 2582 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2583 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2584 2585 setValue(&I, N); 2586 } 2587 2588 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2590 SDValue InVec = getValue(I.getOperand(0)); 2591 SDValue InVal = getValue(I.getOperand(1)); 2592 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2593 TLI.getVectorIdxTy(DAG.getDataLayout())); 2594 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2595 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2596 InVec, InVal, InIdx)); 2597 } 2598 2599 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2601 SDValue InVec = getValue(I.getOperand(0)); 2602 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2603 TLI.getVectorIdxTy(DAG.getDataLayout())); 2604 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2605 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2606 InVec, InIdx)); 2607 } 2608 2609 // Utility for visitShuffleVector - Return true if every element in Mask, 2610 // beginning from position Pos and ending in Pos+Size, falls within the 2611 // specified sequential range [L, L+Pos). or is undef. 2612 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2613 unsigned Pos, unsigned Size, int Low) { 2614 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2615 if (Mask[i] >= 0 && Mask[i] != Low) 2616 return false; 2617 return true; 2618 } 2619 2620 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2621 SDValue Src1 = getValue(I.getOperand(0)); 2622 SDValue Src2 = getValue(I.getOperand(1)); 2623 2624 SmallVector<int, 8> Mask; 2625 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2626 unsigned MaskNumElts = Mask.size(); 2627 2628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2629 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2630 EVT SrcVT = Src1.getValueType(); 2631 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2632 2633 if (SrcNumElts == MaskNumElts) { 2634 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2635 &Mask[0])); 2636 return; 2637 } 2638 2639 // Normalize the shuffle vector since mask and vector length don't match. 2640 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2641 // Mask is longer than the source vectors and is a multiple of the source 2642 // vectors. We can use concatenate vector to make the mask and vectors 2643 // lengths match. 2644 if (SrcNumElts*2 == MaskNumElts) { 2645 // First check for Src1 in low and Src2 in high 2646 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2647 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2648 // The shuffle is concatenating two vectors together. 2649 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2650 VT, Src1, Src2)); 2651 return; 2652 } 2653 // Then check for Src2 in low and Src1 in high 2654 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2655 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2656 // The shuffle is concatenating two vectors together. 2657 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2658 VT, Src2, Src1)); 2659 return; 2660 } 2661 } 2662 2663 // Pad both vectors with undefs to make them the same length as the mask. 2664 unsigned NumConcat = MaskNumElts / SrcNumElts; 2665 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2666 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2667 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2668 2669 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2670 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2671 MOps1[0] = Src1; 2672 MOps2[0] = Src2; 2673 2674 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2675 getCurSDLoc(), VT, MOps1); 2676 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2677 getCurSDLoc(), VT, MOps2); 2678 2679 // Readjust mask for new input vector length. 2680 SmallVector<int, 8> MappedOps; 2681 for (unsigned i = 0; i != MaskNumElts; ++i) { 2682 int Idx = Mask[i]; 2683 if (Idx >= (int)SrcNumElts) 2684 Idx -= SrcNumElts - MaskNumElts; 2685 MappedOps.push_back(Idx); 2686 } 2687 2688 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2689 &MappedOps[0])); 2690 return; 2691 } 2692 2693 if (SrcNumElts > MaskNumElts) { 2694 // Analyze the access pattern of the vector to see if we can extract 2695 // two subvectors and do the shuffle. The analysis is done by calculating 2696 // the range of elements the mask access on both vectors. 2697 int MinRange[2] = { static_cast<int>(SrcNumElts), 2698 static_cast<int>(SrcNumElts)}; 2699 int MaxRange[2] = {-1, -1}; 2700 2701 for (unsigned i = 0; i != MaskNumElts; ++i) { 2702 int Idx = Mask[i]; 2703 unsigned Input = 0; 2704 if (Idx < 0) 2705 continue; 2706 2707 if (Idx >= (int)SrcNumElts) { 2708 Input = 1; 2709 Idx -= SrcNumElts; 2710 } 2711 if (Idx > MaxRange[Input]) 2712 MaxRange[Input] = Idx; 2713 if (Idx < MinRange[Input]) 2714 MinRange[Input] = Idx; 2715 } 2716 2717 // Check if the access is smaller than the vector size and can we find 2718 // a reasonable extract index. 2719 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2720 // Extract. 2721 int StartIdx[2]; // StartIdx to extract from 2722 for (unsigned Input = 0; Input < 2; ++Input) { 2723 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2724 RangeUse[Input] = 0; // Unused 2725 StartIdx[Input] = 0; 2726 continue; 2727 } 2728 2729 // Find a good start index that is a multiple of the mask length. Then 2730 // see if the rest of the elements are in range. 2731 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2732 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2733 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2734 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2735 } 2736 2737 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2738 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2739 return; 2740 } 2741 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2742 // Extract appropriate subvector and generate a vector shuffle 2743 for (unsigned Input = 0; Input < 2; ++Input) { 2744 SDValue &Src = Input == 0 ? Src1 : Src2; 2745 if (RangeUse[Input] == 0) 2746 Src = DAG.getUNDEF(VT); 2747 else { 2748 SDLoc dl = getCurSDLoc(); 2749 Src = DAG.getNode( 2750 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2751 DAG.getConstant(StartIdx[Input], dl, 2752 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2753 } 2754 } 2755 2756 // Calculate new mask. 2757 SmallVector<int, 8> MappedOps; 2758 for (unsigned i = 0; i != MaskNumElts; ++i) { 2759 int Idx = Mask[i]; 2760 if (Idx >= 0) { 2761 if (Idx < (int)SrcNumElts) 2762 Idx -= StartIdx[0]; 2763 else 2764 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2765 } 2766 MappedOps.push_back(Idx); 2767 } 2768 2769 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2770 &MappedOps[0])); 2771 return; 2772 } 2773 } 2774 2775 // We can't use either concat vectors or extract subvectors so fall back to 2776 // replacing the shuffle with extract and build vector. 2777 // to insert and build vector. 2778 EVT EltVT = VT.getVectorElementType(); 2779 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2780 SDLoc dl = getCurSDLoc(); 2781 SmallVector<SDValue,8> Ops; 2782 for (unsigned i = 0; i != MaskNumElts; ++i) { 2783 int Idx = Mask[i]; 2784 SDValue Res; 2785 2786 if (Idx < 0) { 2787 Res = DAG.getUNDEF(EltVT); 2788 } else { 2789 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2790 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2791 2792 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2793 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2794 } 2795 2796 Ops.push_back(Res); 2797 } 2798 2799 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2800 } 2801 2802 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2803 const Value *Op0 = I.getOperand(0); 2804 const Value *Op1 = I.getOperand(1); 2805 Type *AggTy = I.getType(); 2806 Type *ValTy = Op1->getType(); 2807 bool IntoUndef = isa<UndefValue>(Op0); 2808 bool FromUndef = isa<UndefValue>(Op1); 2809 2810 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2811 2812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2813 SmallVector<EVT, 4> AggValueVTs; 2814 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2815 SmallVector<EVT, 4> ValValueVTs; 2816 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2817 2818 unsigned NumAggValues = AggValueVTs.size(); 2819 unsigned NumValValues = ValValueVTs.size(); 2820 SmallVector<SDValue, 4> Values(NumAggValues); 2821 2822 // Ignore an insertvalue that produces an empty object 2823 if (!NumAggValues) { 2824 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2825 return; 2826 } 2827 2828 SDValue Agg = getValue(Op0); 2829 unsigned i = 0; 2830 // Copy the beginning value(s) from the original aggregate. 2831 for (; i != LinearIndex; ++i) 2832 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2833 SDValue(Agg.getNode(), Agg.getResNo() + i); 2834 // Copy values from the inserted value(s). 2835 if (NumValValues) { 2836 SDValue Val = getValue(Op1); 2837 for (; i != LinearIndex + NumValValues; ++i) 2838 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2839 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2840 } 2841 // Copy remaining value(s) from the original aggregate. 2842 for (; i != NumAggValues; ++i) 2843 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2844 SDValue(Agg.getNode(), Agg.getResNo() + i); 2845 2846 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2847 DAG.getVTList(AggValueVTs), Values)); 2848 } 2849 2850 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2851 const Value *Op0 = I.getOperand(0); 2852 Type *AggTy = Op0->getType(); 2853 Type *ValTy = I.getType(); 2854 bool OutOfUndef = isa<UndefValue>(Op0); 2855 2856 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2857 2858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2859 SmallVector<EVT, 4> ValValueVTs; 2860 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2861 2862 unsigned NumValValues = ValValueVTs.size(); 2863 2864 // Ignore a extractvalue that produces an empty object 2865 if (!NumValValues) { 2866 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2867 return; 2868 } 2869 2870 SmallVector<SDValue, 4> Values(NumValValues); 2871 2872 SDValue Agg = getValue(Op0); 2873 // Copy out the selected value(s). 2874 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2875 Values[i - LinearIndex] = 2876 OutOfUndef ? 2877 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2878 SDValue(Agg.getNode(), Agg.getResNo() + i); 2879 2880 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2881 DAG.getVTList(ValValueVTs), Values)); 2882 } 2883 2884 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2885 Value *Op0 = I.getOperand(0); 2886 // Note that the pointer operand may be a vector of pointers. Take the scalar 2887 // element which holds a pointer. 2888 Type *Ty = Op0->getType()->getScalarType(); 2889 unsigned AS = Ty->getPointerAddressSpace(); 2890 SDValue N = getValue(Op0); 2891 SDLoc dl = getCurSDLoc(); 2892 2893 // Normalize Vector GEP - all scalar operands should be converted to the 2894 // splat vector. 2895 unsigned VectorWidth = I.getType()->isVectorTy() ? 2896 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2897 2898 if (VectorWidth && !N.getValueType().isVector()) { 2899 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2900 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2901 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2902 } 2903 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2904 OI != E; ++OI) { 2905 const Value *Idx = *OI; 2906 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2907 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2908 if (Field) { 2909 // N = N + Offset 2910 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2911 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2912 DAG.getConstant(Offset, dl, N.getValueType())); 2913 } 2914 2915 Ty = StTy->getElementType(Field); 2916 } else { 2917 Ty = cast<SequentialType>(Ty)->getElementType(); 2918 MVT PtrTy = 2919 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2920 unsigned PtrSize = PtrTy.getSizeInBits(); 2921 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2922 2923 // If this is a scalar constant or a splat vector of constants, 2924 // handle it quickly. 2925 const auto *CI = dyn_cast<ConstantInt>(Idx); 2926 if (!CI && isa<ConstantDataVector>(Idx) && 2927 cast<ConstantDataVector>(Idx)->getSplatValue()) 2928 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2929 2930 if (CI) { 2931 if (CI->isZero()) 2932 continue; 2933 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2934 SDValue OffsVal = VectorWidth ? 2935 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2936 DAG.getConstant(Offs, dl, PtrTy); 2937 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2938 continue; 2939 } 2940 2941 // N = N + Idx * ElementSize; 2942 SDValue IdxN = getValue(Idx); 2943 2944 if (!IdxN.getValueType().isVector() && VectorWidth) { 2945 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2946 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2947 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2948 } 2949 // If the index is smaller or larger than intptr_t, truncate or extend 2950 // it. 2951 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2952 2953 // If this is a multiply by a power of two, turn it into a shl 2954 // immediately. This is a very common case. 2955 if (ElementSize != 1) { 2956 if (ElementSize.isPowerOf2()) { 2957 unsigned Amt = ElementSize.logBase2(); 2958 IdxN = DAG.getNode(ISD::SHL, dl, 2959 N.getValueType(), IdxN, 2960 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2961 } else { 2962 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2963 IdxN = DAG.getNode(ISD::MUL, dl, 2964 N.getValueType(), IdxN, Scale); 2965 } 2966 } 2967 2968 N = DAG.getNode(ISD::ADD, dl, 2969 N.getValueType(), N, IdxN); 2970 } 2971 } 2972 2973 setValue(&I, N); 2974 } 2975 2976 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2977 // If this is a fixed sized alloca in the entry block of the function, 2978 // allocate it statically on the stack. 2979 if (FuncInfo.StaticAllocaMap.count(&I)) 2980 return; // getValue will auto-populate this. 2981 2982 SDLoc dl = getCurSDLoc(); 2983 Type *Ty = I.getAllocatedType(); 2984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2985 auto &DL = DAG.getDataLayout(); 2986 uint64_t TySize = DL.getTypeAllocSize(Ty); 2987 unsigned Align = 2988 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2989 2990 SDValue AllocSize = getValue(I.getArraySize()); 2991 2992 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2993 if (AllocSize.getValueType() != IntPtr) 2994 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2995 2996 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2997 AllocSize, 2998 DAG.getConstant(TySize, dl, IntPtr)); 2999 3000 // Handle alignment. If the requested alignment is less than or equal to 3001 // the stack alignment, ignore it. If the size is greater than or equal to 3002 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3003 unsigned StackAlign = 3004 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3005 if (Align <= StackAlign) 3006 Align = 0; 3007 3008 // Round the size of the allocation up to the stack alignment size 3009 // by add SA-1 to the size. 3010 AllocSize = DAG.getNode(ISD::ADD, dl, 3011 AllocSize.getValueType(), AllocSize, 3012 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3013 3014 // Mask out the low bits for alignment purposes. 3015 AllocSize = DAG.getNode(ISD::AND, dl, 3016 AllocSize.getValueType(), AllocSize, 3017 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3018 dl)); 3019 3020 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3021 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3022 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3023 setValue(&I, DSA); 3024 DAG.setRoot(DSA.getValue(1)); 3025 3026 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3027 } 3028 3029 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3030 if (I.isAtomic()) 3031 return visitAtomicLoad(I); 3032 3033 const Value *SV = I.getOperand(0); 3034 SDValue Ptr = getValue(SV); 3035 3036 Type *Ty = I.getType(); 3037 3038 bool isVolatile = I.isVolatile(); 3039 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3040 3041 // The IR notion of invariant_load only guarantees that all *non-faulting* 3042 // invariant loads result in the same value. The MI notion of invariant load 3043 // guarantees that the load can be legally moved to any location within its 3044 // containing function. The MI notion of invariant_load is stronger than the 3045 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3046 // with a guarantee that the location being loaded from is dereferenceable 3047 // throughout the function's lifetime. 3048 3049 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3050 isDereferenceablePointer(SV, DAG.getDataLayout()); 3051 unsigned Alignment = I.getAlignment(); 3052 3053 AAMDNodes AAInfo; 3054 I.getAAMetadata(AAInfo); 3055 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3056 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 SmallVector<EVT, 4> ValueVTs; 3059 SmallVector<uint64_t, 4> Offsets; 3060 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3061 unsigned NumValues = ValueVTs.size(); 3062 if (NumValues == 0) 3063 return; 3064 3065 SDValue Root; 3066 bool ConstantMemory = false; 3067 if (isVolatile || NumValues > MaxParallelChains) 3068 // Serialize volatile loads with other side effects. 3069 Root = getRoot(); 3070 else if (AA->pointsToConstantMemory(MemoryLocation( 3071 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3072 // Do not serialize (non-volatile) loads of constant memory with anything. 3073 Root = DAG.getEntryNode(); 3074 ConstantMemory = true; 3075 } else { 3076 // Do not serialize non-volatile loads against each other. 3077 Root = DAG.getRoot(); 3078 } 3079 3080 SDLoc dl = getCurSDLoc(); 3081 3082 if (isVolatile) 3083 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3084 3085 SmallVector<SDValue, 4> Values(NumValues); 3086 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3087 EVT PtrVT = Ptr.getValueType(); 3088 unsigned ChainI = 0; 3089 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3090 // Serializing loads here may result in excessive register pressure, and 3091 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3092 // could recover a bit by hoisting nodes upward in the chain by recognizing 3093 // they are side-effect free or do not alias. The optimizer should really 3094 // avoid this case by converting large object/array copies to llvm.memcpy 3095 // (MaxParallelChains should always remain as failsafe). 3096 if (ChainI == MaxParallelChains) { 3097 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3098 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3099 makeArrayRef(Chains.data(), ChainI)); 3100 Root = Chain; 3101 ChainI = 0; 3102 } 3103 SDValue A = DAG.getNode(ISD::ADD, dl, 3104 PtrVT, Ptr, 3105 DAG.getConstant(Offsets[i], dl, PtrVT)); 3106 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3107 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3108 isNonTemporal, isInvariant, Alignment, AAInfo, 3109 Ranges); 3110 3111 Values[i] = L; 3112 Chains[ChainI] = L.getValue(1); 3113 } 3114 3115 if (!ConstantMemory) { 3116 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3117 makeArrayRef(Chains.data(), ChainI)); 3118 if (isVolatile) 3119 DAG.setRoot(Chain); 3120 else 3121 PendingLoads.push_back(Chain); 3122 } 3123 3124 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3125 DAG.getVTList(ValueVTs), Values)); 3126 } 3127 3128 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3129 if (I.isAtomic()) 3130 return visitAtomicStore(I); 3131 3132 const Value *SrcV = I.getOperand(0); 3133 const Value *PtrV = I.getOperand(1); 3134 3135 SmallVector<EVT, 4> ValueVTs; 3136 SmallVector<uint64_t, 4> Offsets; 3137 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3138 SrcV->getType(), ValueVTs, &Offsets); 3139 unsigned NumValues = ValueVTs.size(); 3140 if (NumValues == 0) 3141 return; 3142 3143 // Get the lowered operands. Note that we do this after 3144 // checking if NumResults is zero, because with zero results 3145 // the operands won't have values in the map. 3146 SDValue Src = getValue(SrcV); 3147 SDValue Ptr = getValue(PtrV); 3148 3149 SDValue Root = getRoot(); 3150 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3151 EVT PtrVT = Ptr.getValueType(); 3152 bool isVolatile = I.isVolatile(); 3153 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3154 unsigned Alignment = I.getAlignment(); 3155 SDLoc dl = getCurSDLoc(); 3156 3157 AAMDNodes AAInfo; 3158 I.getAAMetadata(AAInfo); 3159 3160 unsigned ChainI = 0; 3161 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3162 // See visitLoad comments. 3163 if (ChainI == MaxParallelChains) { 3164 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3165 makeArrayRef(Chains.data(), ChainI)); 3166 Root = Chain; 3167 ChainI = 0; 3168 } 3169 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3170 DAG.getConstant(Offsets[i], dl, PtrVT)); 3171 SDValue St = DAG.getStore(Root, dl, 3172 SDValue(Src.getNode(), Src.getResNo() + i), 3173 Add, MachinePointerInfo(PtrV, Offsets[i]), 3174 isVolatile, isNonTemporal, Alignment, AAInfo); 3175 Chains[ChainI] = St; 3176 } 3177 3178 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3179 makeArrayRef(Chains.data(), ChainI)); 3180 DAG.setRoot(StoreNode); 3181 } 3182 3183 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3184 SDLoc sdl = getCurSDLoc(); 3185 3186 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3187 Value *PtrOperand = I.getArgOperand(1); 3188 SDValue Ptr = getValue(PtrOperand); 3189 SDValue Src0 = getValue(I.getArgOperand(0)); 3190 SDValue Mask = getValue(I.getArgOperand(3)); 3191 EVT VT = Src0.getValueType(); 3192 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3193 if (!Alignment) 3194 Alignment = DAG.getEVTAlignment(VT); 3195 3196 AAMDNodes AAInfo; 3197 I.getAAMetadata(AAInfo); 3198 3199 MachineMemOperand *MMO = 3200 DAG.getMachineFunction(). 3201 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3202 MachineMemOperand::MOStore, VT.getStoreSize(), 3203 Alignment, AAInfo); 3204 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3205 MMO, false); 3206 DAG.setRoot(StoreNode); 3207 setValue(&I, StoreNode); 3208 } 3209 3210 // Get a uniform base for the Gather/Scatter intrinsic. 3211 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3212 // We try to represent it as a base pointer + vector of indices. 3213 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3214 // The first operand of the GEP may be a single pointer or a vector of pointers 3215 // Example: 3216 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3217 // or 3218 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3219 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3220 // 3221 // When the first GEP operand is a single pointer - it is the uniform base we 3222 // are looking for. If first operand of the GEP is a splat vector - we 3223 // extract the spalt value and use it as a uniform base. 3224 // In all other cases the function returns 'false'. 3225 // 3226 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3227 SelectionDAGBuilder* SDB) { 3228 3229 SelectionDAG& DAG = SDB->DAG; 3230 LLVMContext &Context = *DAG.getContext(); 3231 3232 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3233 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3234 if (!GEP || GEP->getNumOperands() > 2) 3235 return false; 3236 3237 Value *GEPPtr = GEP->getPointerOperand(); 3238 if (!GEPPtr->getType()->isVectorTy()) 3239 Ptr = GEPPtr; 3240 else if (!(Ptr = getSplatValue(GEPPtr))) 3241 return false; 3242 3243 Value *IndexVal = GEP->getOperand(1); 3244 3245 // The operands of the GEP may be defined in another basic block. 3246 // In this case we'll not find nodes for the operands. 3247 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3248 return false; 3249 3250 Base = SDB->getValue(Ptr); 3251 Index = SDB->getValue(IndexVal); 3252 3253 // Suppress sign extension. 3254 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3255 if (SDB->findValue(Sext->getOperand(0))) { 3256 IndexVal = Sext->getOperand(0); 3257 Index = SDB->getValue(IndexVal); 3258 } 3259 } 3260 if (!Index.getValueType().isVector()) { 3261 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3262 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3263 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3264 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3265 } 3266 return true; 3267 } 3268 3269 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3270 SDLoc sdl = getCurSDLoc(); 3271 3272 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3273 Value *Ptr = I.getArgOperand(1); 3274 SDValue Src0 = getValue(I.getArgOperand(0)); 3275 SDValue Mask = getValue(I.getArgOperand(3)); 3276 EVT VT = Src0.getValueType(); 3277 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3278 if (!Alignment) 3279 Alignment = DAG.getEVTAlignment(VT); 3280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3281 3282 AAMDNodes AAInfo; 3283 I.getAAMetadata(AAInfo); 3284 3285 SDValue Base; 3286 SDValue Index; 3287 Value *BasePtr = Ptr; 3288 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3289 3290 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3291 MachineMemOperand *MMO = DAG.getMachineFunction(). 3292 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3293 MachineMemOperand::MOStore, VT.getStoreSize(), 3294 Alignment, AAInfo); 3295 if (!UniformBase) { 3296 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3297 Index = getValue(Ptr); 3298 } 3299 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3300 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3301 Ops, MMO); 3302 DAG.setRoot(Scatter); 3303 setValue(&I, Scatter); 3304 } 3305 3306 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3307 SDLoc sdl = getCurSDLoc(); 3308 3309 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3310 Value *PtrOperand = I.getArgOperand(0); 3311 SDValue Ptr = getValue(PtrOperand); 3312 SDValue Src0 = getValue(I.getArgOperand(3)); 3313 SDValue Mask = getValue(I.getArgOperand(2)); 3314 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3317 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3318 if (!Alignment) 3319 Alignment = DAG.getEVTAlignment(VT); 3320 3321 AAMDNodes AAInfo; 3322 I.getAAMetadata(AAInfo); 3323 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3324 3325 SDValue InChain = DAG.getRoot(); 3326 if (AA->pointsToConstantMemory(MemoryLocation( 3327 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3328 AAInfo))) { 3329 // Do not serialize (non-volatile) loads of constant memory with anything. 3330 InChain = DAG.getEntryNode(); 3331 } 3332 3333 MachineMemOperand *MMO = 3334 DAG.getMachineFunction(). 3335 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3336 MachineMemOperand::MOLoad, VT.getStoreSize(), 3337 Alignment, AAInfo, Ranges); 3338 3339 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3340 ISD::NON_EXTLOAD); 3341 SDValue OutChain = Load.getValue(1); 3342 DAG.setRoot(OutChain); 3343 setValue(&I, Load); 3344 } 3345 3346 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3347 SDLoc sdl = getCurSDLoc(); 3348 3349 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3350 Value *Ptr = I.getArgOperand(0); 3351 SDValue Src0 = getValue(I.getArgOperand(3)); 3352 SDValue Mask = getValue(I.getArgOperand(2)); 3353 3354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3356 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3357 if (!Alignment) 3358 Alignment = DAG.getEVTAlignment(VT); 3359 3360 AAMDNodes AAInfo; 3361 I.getAAMetadata(AAInfo); 3362 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3363 3364 SDValue Root = DAG.getRoot(); 3365 SDValue Base; 3366 SDValue Index; 3367 Value *BasePtr = Ptr; 3368 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3369 bool ConstantMemory = false; 3370 if (UniformBase && 3371 AA->pointsToConstantMemory(MemoryLocation( 3372 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3373 AAInfo))) { 3374 // Do not serialize (non-volatile) loads of constant memory with anything. 3375 Root = DAG.getEntryNode(); 3376 ConstantMemory = true; 3377 } 3378 3379 MachineMemOperand *MMO = 3380 DAG.getMachineFunction(). 3381 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3382 MachineMemOperand::MOLoad, VT.getStoreSize(), 3383 Alignment, AAInfo, Ranges); 3384 3385 if (!UniformBase) { 3386 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3387 Index = getValue(Ptr); 3388 } 3389 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3390 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3391 Ops, MMO); 3392 3393 SDValue OutChain = Gather.getValue(1); 3394 if (!ConstantMemory) 3395 PendingLoads.push_back(OutChain); 3396 setValue(&I, Gather); 3397 } 3398 3399 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3400 SDLoc dl = getCurSDLoc(); 3401 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3402 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3403 SynchronizationScope Scope = I.getSynchScope(); 3404 3405 SDValue InChain = getRoot(); 3406 3407 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3408 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3409 SDValue L = DAG.getAtomicCmpSwap( 3410 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3411 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3412 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3413 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3414 3415 SDValue OutChain = L.getValue(2); 3416 3417 setValue(&I, L); 3418 DAG.setRoot(OutChain); 3419 } 3420 3421 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3422 SDLoc dl = getCurSDLoc(); 3423 ISD::NodeType NT; 3424 switch (I.getOperation()) { 3425 default: llvm_unreachable("Unknown atomicrmw operation"); 3426 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3427 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3428 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3429 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3430 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3431 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3432 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3433 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3434 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3435 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3436 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3437 } 3438 AtomicOrdering Order = I.getOrdering(); 3439 SynchronizationScope Scope = I.getSynchScope(); 3440 3441 SDValue InChain = getRoot(); 3442 3443 SDValue L = 3444 DAG.getAtomic(NT, dl, 3445 getValue(I.getValOperand()).getSimpleValueType(), 3446 InChain, 3447 getValue(I.getPointerOperand()), 3448 getValue(I.getValOperand()), 3449 I.getPointerOperand(), 3450 /* Alignment=*/ 0, Order, Scope); 3451 3452 SDValue OutChain = L.getValue(1); 3453 3454 setValue(&I, L); 3455 DAG.setRoot(OutChain); 3456 } 3457 3458 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3459 SDLoc dl = getCurSDLoc(); 3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3461 SDValue Ops[3]; 3462 Ops[0] = getRoot(); 3463 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3464 TLI.getPointerTy(DAG.getDataLayout())); 3465 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3466 TLI.getPointerTy(DAG.getDataLayout())); 3467 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3468 } 3469 3470 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3471 SDLoc dl = getCurSDLoc(); 3472 AtomicOrdering Order = I.getOrdering(); 3473 SynchronizationScope Scope = I.getSynchScope(); 3474 3475 SDValue InChain = getRoot(); 3476 3477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3478 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3479 3480 if (I.getAlignment() < VT.getSizeInBits() / 8) 3481 report_fatal_error("Cannot generate unaligned atomic load"); 3482 3483 MachineMemOperand *MMO = 3484 DAG.getMachineFunction(). 3485 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3486 MachineMemOperand::MOVolatile | 3487 MachineMemOperand::MOLoad, 3488 VT.getStoreSize(), 3489 I.getAlignment() ? I.getAlignment() : 3490 DAG.getEVTAlignment(VT)); 3491 3492 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3493 SDValue L = 3494 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3495 getValue(I.getPointerOperand()), MMO, 3496 Order, Scope); 3497 3498 SDValue OutChain = L.getValue(1); 3499 3500 setValue(&I, L); 3501 DAG.setRoot(OutChain); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3505 SDLoc dl = getCurSDLoc(); 3506 3507 AtomicOrdering Order = I.getOrdering(); 3508 SynchronizationScope Scope = I.getSynchScope(); 3509 3510 SDValue InChain = getRoot(); 3511 3512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3513 EVT VT = 3514 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3515 3516 if (I.getAlignment() < VT.getSizeInBits() / 8) 3517 report_fatal_error("Cannot generate unaligned atomic store"); 3518 3519 SDValue OutChain = 3520 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3521 InChain, 3522 getValue(I.getPointerOperand()), 3523 getValue(I.getValueOperand()), 3524 I.getPointerOperand(), I.getAlignment(), 3525 Order, Scope); 3526 3527 DAG.setRoot(OutChain); 3528 } 3529 3530 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3531 /// node. 3532 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3533 unsigned Intrinsic) { 3534 bool HasChain = !I.doesNotAccessMemory(); 3535 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3536 3537 // Build the operand list. 3538 SmallVector<SDValue, 8> Ops; 3539 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3540 if (OnlyLoad) { 3541 // We don't need to serialize loads against other loads. 3542 Ops.push_back(DAG.getRoot()); 3543 } else { 3544 Ops.push_back(getRoot()); 3545 } 3546 } 3547 3548 // Info is set by getTgtMemInstrinsic 3549 TargetLowering::IntrinsicInfo Info; 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3552 3553 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3554 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3555 Info.opc == ISD::INTRINSIC_W_CHAIN) 3556 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3557 TLI.getPointerTy(DAG.getDataLayout()))); 3558 3559 // Add all operands of the call to the operand list. 3560 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3561 SDValue Op = getValue(I.getArgOperand(i)); 3562 Ops.push_back(Op); 3563 } 3564 3565 SmallVector<EVT, 4> ValueVTs; 3566 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3567 3568 if (HasChain) 3569 ValueVTs.push_back(MVT::Other); 3570 3571 SDVTList VTs = DAG.getVTList(ValueVTs); 3572 3573 // Create the node. 3574 SDValue Result; 3575 if (IsTgtIntrinsic) { 3576 // This is target intrinsic that touches memory 3577 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3578 VTs, Ops, Info.memVT, 3579 MachinePointerInfo(Info.ptrVal, Info.offset), 3580 Info.align, Info.vol, 3581 Info.readMem, Info.writeMem, Info.size); 3582 } else if (!HasChain) { 3583 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3584 } else if (!I.getType()->isVoidTy()) { 3585 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3586 } else { 3587 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3588 } 3589 3590 if (HasChain) { 3591 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3592 if (OnlyLoad) 3593 PendingLoads.push_back(Chain); 3594 else 3595 DAG.setRoot(Chain); 3596 } 3597 3598 if (!I.getType()->isVoidTy()) { 3599 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3600 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3601 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3602 } 3603 3604 setValue(&I, Result); 3605 } 3606 } 3607 3608 /// GetSignificand - Get the significand and build it into a floating-point 3609 /// number with exponent of 1: 3610 /// 3611 /// Op = (Op & 0x007fffff) | 0x3f800000; 3612 /// 3613 /// where Op is the hexadecimal representation of floating point value. 3614 static SDValue 3615 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3616 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3617 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3618 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3619 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3620 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3621 } 3622 3623 /// GetExponent - Get the exponent: 3624 /// 3625 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3626 /// 3627 /// where Op is the hexadecimal representation of floating point value. 3628 static SDValue 3629 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3630 SDLoc dl) { 3631 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3632 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3633 SDValue t1 = DAG.getNode( 3634 ISD::SRL, dl, MVT::i32, t0, 3635 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3636 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3637 DAG.getConstant(127, dl, MVT::i32)); 3638 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3639 } 3640 3641 /// getF32Constant - Get 32-bit floating point constant. 3642 static SDValue 3643 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3644 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3645 MVT::f32); 3646 } 3647 3648 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3649 SelectionDAG &DAG) { 3650 // TODO: What fast-math-flags should be set on the floating-point nodes? 3651 3652 // IntegerPartOfX = ((int32_t)(t0); 3653 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3654 3655 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3656 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3657 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3658 3659 // IntegerPartOfX <<= 23; 3660 IntegerPartOfX = DAG.getNode( 3661 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3662 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3663 DAG.getDataLayout()))); 3664 3665 SDValue TwoToFractionalPartOfX; 3666 if (LimitFloatPrecision <= 6) { 3667 // For floating-point precision of 6: 3668 // 3669 // TwoToFractionalPartOfX = 3670 // 0.997535578f + 3671 // (0.735607626f + 0.252464424f * x) * x; 3672 // 3673 // error 0.0144103317, which is 6 bits 3674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3675 getF32Constant(DAG, 0x3e814304, dl)); 3676 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3677 getF32Constant(DAG, 0x3f3c50c8, dl)); 3678 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3679 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3680 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3681 } else if (LimitFloatPrecision <= 12) { 3682 // For floating-point precision of 12: 3683 // 3684 // TwoToFractionalPartOfX = 3685 // 0.999892986f + 3686 // (0.696457318f + 3687 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3688 // 3689 // error 0.000107046256, which is 13 to 14 bits 3690 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3691 getF32Constant(DAG, 0x3da235e3, dl)); 3692 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3693 getF32Constant(DAG, 0x3e65b8f3, dl)); 3694 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3695 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3696 getF32Constant(DAG, 0x3f324b07, dl)); 3697 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3698 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3699 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3700 } else { // LimitFloatPrecision <= 18 3701 // For floating-point precision of 18: 3702 // 3703 // TwoToFractionalPartOfX = 3704 // 0.999999982f + 3705 // (0.693148872f + 3706 // (0.240227044f + 3707 // (0.554906021e-1f + 3708 // (0.961591928e-2f + 3709 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3710 // error 2.47208000*10^(-7), which is better than 18 bits 3711 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3712 getF32Constant(DAG, 0x3924b03e, dl)); 3713 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3714 getF32Constant(DAG, 0x3ab24b87, dl)); 3715 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3716 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3717 getF32Constant(DAG, 0x3c1d8c17, dl)); 3718 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3719 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3720 getF32Constant(DAG, 0x3d634a1d, dl)); 3721 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3722 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3723 getF32Constant(DAG, 0x3e75fe14, dl)); 3724 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3725 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3726 getF32Constant(DAG, 0x3f317234, dl)); 3727 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3728 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3729 getF32Constant(DAG, 0x3f800000, dl)); 3730 } 3731 3732 // Add the exponent into the result in integer domain. 3733 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3734 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3735 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3736 } 3737 3738 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3739 /// limited-precision mode. 3740 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3741 const TargetLowering &TLI) { 3742 if (Op.getValueType() == MVT::f32 && 3743 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3744 3745 // Put the exponent in the right bit position for later addition to the 3746 // final result: 3747 // 3748 // #define LOG2OFe 1.4426950f 3749 // t0 = Op * LOG2OFe 3750 3751 // TODO: What fast-math-flags should be set here? 3752 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3753 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3754 return getLimitedPrecisionExp2(t0, dl, DAG); 3755 } 3756 3757 // No special expansion. 3758 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3759 } 3760 3761 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3762 /// limited-precision mode. 3763 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3764 const TargetLowering &TLI) { 3765 3766 // TODO: What fast-math-flags should be set on the floating-point nodes? 3767 3768 if (Op.getValueType() == MVT::f32 && 3769 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3770 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3771 3772 // Scale the exponent by log(2) [0.69314718f]. 3773 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3774 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3775 getF32Constant(DAG, 0x3f317218, dl)); 3776 3777 // Get the significand and build it into a floating-point number with 3778 // exponent of 1. 3779 SDValue X = GetSignificand(DAG, Op1, dl); 3780 3781 SDValue LogOfMantissa; 3782 if (LimitFloatPrecision <= 6) { 3783 // For floating-point precision of 6: 3784 // 3785 // LogofMantissa = 3786 // -1.1609546f + 3787 // (1.4034025f - 0.23903021f * x) * x; 3788 // 3789 // error 0.0034276066, which is better than 8 bits 3790 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0xbe74c456, dl)); 3792 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3793 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3795 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3796 getF32Constant(DAG, 0x3f949a29, dl)); 3797 } else if (LimitFloatPrecision <= 12) { 3798 // For floating-point precision of 12: 3799 // 3800 // LogOfMantissa = 3801 // -1.7417939f + 3802 // (2.8212026f + 3803 // (-1.4699568f + 3804 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3805 // 3806 // error 0.000061011436, which is 14 bits 3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3808 getF32Constant(DAG, 0xbd67b6d6, dl)); 3809 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3810 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3812 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3813 getF32Constant(DAG, 0x3fbc278b, dl)); 3814 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3815 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3816 getF32Constant(DAG, 0x40348e95, dl)); 3817 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3818 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3819 getF32Constant(DAG, 0x3fdef31a, dl)); 3820 } else { // LimitFloatPrecision <= 18 3821 // For floating-point precision of 18: 3822 // 3823 // LogOfMantissa = 3824 // -2.1072184f + 3825 // (4.2372794f + 3826 // (-3.7029485f + 3827 // (2.2781945f + 3828 // (-0.87823314f + 3829 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3830 // 3831 // error 0.0000023660568, which is better than 18 bits 3832 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3833 getF32Constant(DAG, 0xbc91e5ac, dl)); 3834 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3835 getF32Constant(DAG, 0x3e4350aa, dl)); 3836 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3837 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3838 getF32Constant(DAG, 0x3f60d3e3, dl)); 3839 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3840 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3841 getF32Constant(DAG, 0x4011cdf0, dl)); 3842 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3843 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3844 getF32Constant(DAG, 0x406cfd1c, dl)); 3845 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3846 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3847 getF32Constant(DAG, 0x408797cb, dl)); 3848 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3849 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3850 getF32Constant(DAG, 0x4006dcab, dl)); 3851 } 3852 3853 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3854 } 3855 3856 // No special expansion. 3857 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3858 } 3859 3860 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3861 /// limited-precision mode. 3862 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3863 const TargetLowering &TLI) { 3864 3865 // TODO: What fast-math-flags should be set on the floating-point nodes? 3866 3867 if (Op.getValueType() == MVT::f32 && 3868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3869 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3870 3871 // Get the exponent. 3872 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3873 3874 // Get the significand and build it into a floating-point number with 3875 // exponent of 1. 3876 SDValue X = GetSignificand(DAG, Op1, dl); 3877 3878 // Different possible minimax approximations of significand in 3879 // floating-point for various degrees of accuracy over [1,2]. 3880 SDValue Log2ofMantissa; 3881 if (LimitFloatPrecision <= 6) { 3882 // For floating-point precision of 6: 3883 // 3884 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3885 // 3886 // error 0.0049451742, which is more than 7 bits 3887 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3888 getF32Constant(DAG, 0xbeb08fe0, dl)); 3889 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3890 getF32Constant(DAG, 0x40019463, dl)); 3891 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3892 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3893 getF32Constant(DAG, 0x3fd6633d, dl)); 3894 } else if (LimitFloatPrecision <= 12) { 3895 // For floating-point precision of 12: 3896 // 3897 // Log2ofMantissa = 3898 // -2.51285454f + 3899 // (4.07009056f + 3900 // (-2.12067489f + 3901 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3902 // 3903 // error 0.0000876136000, which is better than 13 bits 3904 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3905 getF32Constant(DAG, 0xbda7262e, dl)); 3906 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3907 getF32Constant(DAG, 0x3f25280b, dl)); 3908 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3909 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3910 getF32Constant(DAG, 0x4007b923, dl)); 3911 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3912 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3913 getF32Constant(DAG, 0x40823e2f, dl)); 3914 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3915 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3916 getF32Constant(DAG, 0x4020d29c, dl)); 3917 } else { // LimitFloatPrecision <= 18 3918 // For floating-point precision of 18: 3919 // 3920 // Log2ofMantissa = 3921 // -3.0400495f + 3922 // (6.1129976f + 3923 // (-5.3420409f + 3924 // (3.2865683f + 3925 // (-1.2669343f + 3926 // (0.27515199f - 3927 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3928 // 3929 // error 0.0000018516, which is better than 18 bits 3930 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0xbcd2769e, dl)); 3932 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3933 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3935 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x3fa22ae7, dl)); 3937 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3938 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3939 getF32Constant(DAG, 0x40525723, dl)); 3940 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3941 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3942 getF32Constant(DAG, 0x40aaf200, dl)); 3943 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3944 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3945 getF32Constant(DAG, 0x40c39dad, dl)); 3946 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3947 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3948 getF32Constant(DAG, 0x4042902c, dl)); 3949 } 3950 3951 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3952 } 3953 3954 // No special expansion. 3955 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3956 } 3957 3958 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3959 /// limited-precision mode. 3960 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3961 const TargetLowering &TLI) { 3962 3963 // TODO: What fast-math-flags should be set on the floating-point nodes? 3964 3965 if (Op.getValueType() == MVT::f32 && 3966 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3967 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3968 3969 // Scale the exponent by log10(2) [0.30102999f]. 3970 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3971 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3972 getF32Constant(DAG, 0x3e9a209a, dl)); 3973 3974 // Get the significand and build it into a floating-point number with 3975 // exponent of 1. 3976 SDValue X = GetSignificand(DAG, Op1, dl); 3977 3978 SDValue Log10ofMantissa; 3979 if (LimitFloatPrecision <= 6) { 3980 // For floating-point precision of 6: 3981 // 3982 // Log10ofMantissa = 3983 // -0.50419619f + 3984 // (0.60948995f - 0.10380950f * x) * x; 3985 // 3986 // error 0.0014886165, which is 6 bits 3987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3988 getF32Constant(DAG, 0xbdd49a13, dl)); 3989 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3990 getF32Constant(DAG, 0x3f1c0789, dl)); 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3992 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3993 getF32Constant(DAG, 0x3f011300, dl)); 3994 } else if (LimitFloatPrecision <= 12) { 3995 // For floating-point precision of 12: 3996 // 3997 // Log10ofMantissa = 3998 // -0.64831180f + 3999 // (0.91751397f + 4000 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4001 // 4002 // error 0.00019228036, which is better than 12 bits 4003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4004 getF32Constant(DAG, 0x3d431f31, dl)); 4005 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4006 getF32Constant(DAG, 0x3ea21fb2, dl)); 4007 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4008 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4009 getF32Constant(DAG, 0x3f6ae232, dl)); 4010 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4011 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4012 getF32Constant(DAG, 0x3f25f7c3, dl)); 4013 } else { // LimitFloatPrecision <= 18 4014 // For floating-point precision of 18: 4015 // 4016 // Log10ofMantissa = 4017 // -0.84299375f + 4018 // (1.5327582f + 4019 // (-1.0688956f + 4020 // (0.49102474f + 4021 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4022 // 4023 // error 0.0000037995730, which is better than 18 bits 4024 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4025 getF32Constant(DAG, 0x3c5d51ce, dl)); 4026 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4027 getF32Constant(DAG, 0x3e00685a, dl)); 4028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4029 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4030 getF32Constant(DAG, 0x3efb6798, dl)); 4031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4032 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4033 getF32Constant(DAG, 0x3f88d192, dl)); 4034 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4035 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4036 getF32Constant(DAG, 0x3fc4316c, dl)); 4037 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4038 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4039 getF32Constant(DAG, 0x3f57ce70, dl)); 4040 } 4041 4042 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4043 } 4044 4045 // No special expansion. 4046 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4047 } 4048 4049 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4050 /// limited-precision mode. 4051 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4052 const TargetLowering &TLI) { 4053 if (Op.getValueType() == MVT::f32 && 4054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4055 return getLimitedPrecisionExp2(Op, dl, DAG); 4056 4057 // No special expansion. 4058 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4059 } 4060 4061 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4062 /// limited-precision mode with x == 10.0f. 4063 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4064 SelectionDAG &DAG, const TargetLowering &TLI) { 4065 bool IsExp10 = false; 4066 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4067 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4068 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4069 APFloat Ten(10.0f); 4070 IsExp10 = LHSC->isExactlyValue(Ten); 4071 } 4072 } 4073 4074 // TODO: What fast-math-flags should be set on the FMUL node? 4075 if (IsExp10) { 4076 // Put the exponent in the right bit position for later addition to the 4077 // final result: 4078 // 4079 // #define LOG2OF10 3.3219281f 4080 // t0 = Op * LOG2OF10; 4081 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4082 getF32Constant(DAG, 0x40549a78, dl)); 4083 return getLimitedPrecisionExp2(t0, dl, DAG); 4084 } 4085 4086 // No special expansion. 4087 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4088 } 4089 4090 4091 /// ExpandPowI - Expand a llvm.powi intrinsic. 4092 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4093 SelectionDAG &DAG) { 4094 // If RHS is a constant, we can expand this out to a multiplication tree, 4095 // otherwise we end up lowering to a call to __powidf2 (for example). When 4096 // optimizing for size, we only want to do this if the expansion would produce 4097 // a small number of multiplies, otherwise we do the full expansion. 4098 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4099 // Get the exponent as a positive value. 4100 unsigned Val = RHSC->getSExtValue(); 4101 if ((int)Val < 0) Val = -Val; 4102 4103 // powi(x, 0) -> 1.0 4104 if (Val == 0) 4105 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4106 4107 const Function *F = DAG.getMachineFunction().getFunction(); 4108 if (!F->optForSize() || 4109 // If optimizing for size, don't insert too many multiplies. 4110 // This inserts up to 5 multiplies. 4111 countPopulation(Val) + Log2_32(Val) < 7) { 4112 // We use the simple binary decomposition method to generate the multiply 4113 // sequence. There are more optimal ways to do this (for example, 4114 // powi(x,15) generates one more multiply than it should), but this has 4115 // the benefit of being both really simple and much better than a libcall. 4116 SDValue Res; // Logically starts equal to 1.0 4117 SDValue CurSquare = LHS; 4118 // TODO: Intrinsics should have fast-math-flags that propagate to these 4119 // nodes. 4120 while (Val) { 4121 if (Val & 1) { 4122 if (Res.getNode()) 4123 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4124 else 4125 Res = CurSquare; // 1.0*CurSquare. 4126 } 4127 4128 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4129 CurSquare, CurSquare); 4130 Val >>= 1; 4131 } 4132 4133 // If the original was negative, invert the result, producing 1/(x*x*x). 4134 if (RHSC->getSExtValue() < 0) 4135 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4136 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4137 return Res; 4138 } 4139 } 4140 4141 // Otherwise, expand to a libcall. 4142 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4143 } 4144 4145 // getTruncatedArgReg - Find underlying register used for an truncated 4146 // argument. 4147 static unsigned getTruncatedArgReg(const SDValue &N) { 4148 if (N.getOpcode() != ISD::TRUNCATE) 4149 return 0; 4150 4151 const SDValue &Ext = N.getOperand(0); 4152 if (Ext.getOpcode() == ISD::AssertZext || 4153 Ext.getOpcode() == ISD::AssertSext) { 4154 const SDValue &CFR = Ext.getOperand(0); 4155 if (CFR.getOpcode() == ISD::CopyFromReg) 4156 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4157 if (CFR.getOpcode() == ISD::TRUNCATE) 4158 return getTruncatedArgReg(CFR); 4159 } 4160 return 0; 4161 } 4162 4163 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4164 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4165 /// At the end of instruction selection, they will be inserted to the entry BB. 4166 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4167 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4168 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4169 const Argument *Arg = dyn_cast<Argument>(V); 4170 if (!Arg) 4171 return false; 4172 4173 MachineFunction &MF = DAG.getMachineFunction(); 4174 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4175 4176 // Ignore inlined function arguments here. 4177 // 4178 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4179 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4180 return false; 4181 4182 Optional<MachineOperand> Op; 4183 // Some arguments' frame index is recorded during argument lowering. 4184 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4185 Op = MachineOperand::CreateFI(FI); 4186 4187 if (!Op && N.getNode()) { 4188 unsigned Reg; 4189 if (N.getOpcode() == ISD::CopyFromReg) 4190 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4191 else 4192 Reg = getTruncatedArgReg(N); 4193 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4194 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4195 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4196 if (PR) 4197 Reg = PR; 4198 } 4199 if (Reg) 4200 Op = MachineOperand::CreateReg(Reg, false); 4201 } 4202 4203 if (!Op) { 4204 // Check if ValueMap has reg number. 4205 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4206 if (VMI != FuncInfo.ValueMap.end()) 4207 Op = MachineOperand::CreateReg(VMI->second, false); 4208 } 4209 4210 if (!Op && N.getNode()) 4211 // Check if frame index is available. 4212 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4213 if (FrameIndexSDNode *FINode = 4214 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4215 Op = MachineOperand::CreateFI(FINode->getIndex()); 4216 4217 if (!Op) 4218 return false; 4219 4220 assert(Variable->isValidLocationForIntrinsic(DL) && 4221 "Expected inlined-at fields to agree"); 4222 if (Op->isReg()) 4223 FuncInfo.ArgDbgValues.push_back( 4224 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4225 Op->getReg(), Offset, Variable, Expr)); 4226 else 4227 FuncInfo.ArgDbgValues.push_back( 4228 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4229 .addOperand(*Op) 4230 .addImm(Offset) 4231 .addMetadata(Variable) 4232 .addMetadata(Expr)); 4233 4234 return true; 4235 } 4236 4237 // VisualStudio defines setjmp as _setjmp 4238 #if defined(_MSC_VER) && defined(setjmp) && \ 4239 !defined(setjmp_undefined_for_msvc) 4240 # pragma push_macro("setjmp") 4241 # undef setjmp 4242 # define setjmp_undefined_for_msvc 4243 #endif 4244 4245 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4246 /// we want to emit this as a call to a named external function, return the name 4247 /// otherwise lower it and return null. 4248 const char * 4249 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4251 SDLoc sdl = getCurSDLoc(); 4252 DebugLoc dl = getCurDebugLoc(); 4253 SDValue Res; 4254 4255 switch (Intrinsic) { 4256 default: 4257 // By default, turn this into a target intrinsic node. 4258 visitTargetIntrinsic(I, Intrinsic); 4259 return nullptr; 4260 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4261 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4262 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4263 case Intrinsic::returnaddress: 4264 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4265 TLI.getPointerTy(DAG.getDataLayout()), 4266 getValue(I.getArgOperand(0)))); 4267 return nullptr; 4268 case Intrinsic::frameaddress: 4269 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4270 TLI.getPointerTy(DAG.getDataLayout()), 4271 getValue(I.getArgOperand(0)))); 4272 return nullptr; 4273 case Intrinsic::read_register: { 4274 Value *Reg = I.getArgOperand(0); 4275 SDValue Chain = getRoot(); 4276 SDValue RegName = 4277 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4278 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4279 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4280 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4281 setValue(&I, Res); 4282 DAG.setRoot(Res.getValue(1)); 4283 return nullptr; 4284 } 4285 case Intrinsic::write_register: { 4286 Value *Reg = I.getArgOperand(0); 4287 Value *RegValue = I.getArgOperand(1); 4288 SDValue Chain = getRoot(); 4289 SDValue RegName = 4290 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4291 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4292 RegName, getValue(RegValue))); 4293 return nullptr; 4294 } 4295 case Intrinsic::setjmp: 4296 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4297 case Intrinsic::longjmp: 4298 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4299 case Intrinsic::memcpy: { 4300 // FIXME: this definition of "user defined address space" is x86-specific 4301 // Assert for address < 256 since we support only user defined address 4302 // spaces. 4303 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4304 < 256 && 4305 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4306 < 256 && 4307 "Unknown address space"); 4308 SDValue Op1 = getValue(I.getArgOperand(0)); 4309 SDValue Op2 = getValue(I.getArgOperand(1)); 4310 SDValue Op3 = getValue(I.getArgOperand(2)); 4311 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4312 if (!Align) 4313 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4314 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4315 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4316 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4317 false, isTC, 4318 MachinePointerInfo(I.getArgOperand(0)), 4319 MachinePointerInfo(I.getArgOperand(1))); 4320 updateDAGForMaybeTailCall(MC); 4321 return nullptr; 4322 } 4323 case Intrinsic::memset: { 4324 // FIXME: this definition of "user defined address space" is x86-specific 4325 // Assert for address < 256 since we support only user defined address 4326 // spaces. 4327 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4328 < 256 && 4329 "Unknown address space"); 4330 SDValue Op1 = getValue(I.getArgOperand(0)); 4331 SDValue Op2 = getValue(I.getArgOperand(1)); 4332 SDValue Op3 = getValue(I.getArgOperand(2)); 4333 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4334 if (!Align) 4335 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4336 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4337 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4338 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4339 isTC, MachinePointerInfo(I.getArgOperand(0))); 4340 updateDAGForMaybeTailCall(MS); 4341 return nullptr; 4342 } 4343 case Intrinsic::memmove: { 4344 // FIXME: this definition of "user defined address space" is x86-specific 4345 // Assert for address < 256 since we support only user defined address 4346 // spaces. 4347 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4348 < 256 && 4349 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4350 < 256 && 4351 "Unknown address space"); 4352 SDValue Op1 = getValue(I.getArgOperand(0)); 4353 SDValue Op2 = getValue(I.getArgOperand(1)); 4354 SDValue Op3 = getValue(I.getArgOperand(2)); 4355 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4356 if (!Align) 4357 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4358 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4359 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4360 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4361 isTC, MachinePointerInfo(I.getArgOperand(0)), 4362 MachinePointerInfo(I.getArgOperand(1))); 4363 updateDAGForMaybeTailCall(MM); 4364 return nullptr; 4365 } 4366 case Intrinsic::dbg_declare: { 4367 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4368 DILocalVariable *Variable = DI.getVariable(); 4369 DIExpression *Expression = DI.getExpression(); 4370 const Value *Address = DI.getAddress(); 4371 assert(Variable && "Missing variable"); 4372 if (!Address) { 4373 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4374 return nullptr; 4375 } 4376 4377 // Check if address has undef value. 4378 if (isa<UndefValue>(Address) || 4379 (Address->use_empty() && !isa<Argument>(Address))) { 4380 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4381 return nullptr; 4382 } 4383 4384 SDValue &N = NodeMap[Address]; 4385 if (!N.getNode() && isa<Argument>(Address)) 4386 // Check unused arguments map. 4387 N = UnusedArgNodeMap[Address]; 4388 SDDbgValue *SDV; 4389 if (N.getNode()) { 4390 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4391 Address = BCI->getOperand(0); 4392 // Parameters are handled specially. 4393 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4394 4395 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4396 4397 if (isParameter && !AI) { 4398 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4399 if (FINode) 4400 // Byval parameter. We have a frame index at this point. 4401 SDV = DAG.getFrameIndexDbgValue( 4402 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4403 else { 4404 // Address is an argument, so try to emit its dbg value using 4405 // virtual register info from the FuncInfo.ValueMap. 4406 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4407 N); 4408 return nullptr; 4409 } 4410 } else { 4411 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4412 true, 0, dl, SDNodeOrder); 4413 } 4414 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4415 } else { 4416 // If Address is an argument then try to emit its dbg value using 4417 // virtual register info from the FuncInfo.ValueMap. 4418 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4419 N)) { 4420 // If variable is pinned by a alloca in dominating bb then 4421 // use StaticAllocaMap. 4422 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4423 if (AI->getParent() != DI.getParent()) { 4424 DenseMap<const AllocaInst*, int>::iterator SI = 4425 FuncInfo.StaticAllocaMap.find(AI); 4426 if (SI != FuncInfo.StaticAllocaMap.end()) { 4427 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4428 0, dl, SDNodeOrder); 4429 DAG.AddDbgValue(SDV, nullptr, false); 4430 return nullptr; 4431 } 4432 } 4433 } 4434 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4435 } 4436 } 4437 return nullptr; 4438 } 4439 case Intrinsic::dbg_value: { 4440 const DbgValueInst &DI = cast<DbgValueInst>(I); 4441 assert(DI.getVariable() && "Missing variable"); 4442 4443 DILocalVariable *Variable = DI.getVariable(); 4444 DIExpression *Expression = DI.getExpression(); 4445 uint64_t Offset = DI.getOffset(); 4446 const Value *V = DI.getValue(); 4447 if (!V) 4448 return nullptr; 4449 4450 SDDbgValue *SDV; 4451 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4452 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4453 SDNodeOrder); 4454 DAG.AddDbgValue(SDV, nullptr, false); 4455 } else { 4456 // Do not use getValue() in here; we don't want to generate code at 4457 // this point if it hasn't been done yet. 4458 SDValue N = NodeMap[V]; 4459 if (!N.getNode() && isa<Argument>(V)) 4460 // Check unused arguments map. 4461 N = UnusedArgNodeMap[V]; 4462 if (N.getNode()) { 4463 // A dbg.value for an alloca is always indirect. 4464 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4465 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4466 IsIndirect, N)) { 4467 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4468 IsIndirect, Offset, dl, SDNodeOrder); 4469 DAG.AddDbgValue(SDV, N.getNode(), false); 4470 } 4471 } else if (!V->use_empty() ) { 4472 // Do not call getValue(V) yet, as we don't want to generate code. 4473 // Remember it for later. 4474 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4475 DanglingDebugInfoMap[V] = DDI; 4476 } else { 4477 // We may expand this to cover more cases. One case where we have no 4478 // data available is an unreferenced parameter. 4479 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4480 } 4481 } 4482 4483 // Build a debug info table entry. 4484 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4485 V = BCI->getOperand(0); 4486 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4487 // Don't handle byval struct arguments or VLAs, for example. 4488 if (!AI) { 4489 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4490 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4491 return nullptr; 4492 } 4493 DenseMap<const AllocaInst*, int>::iterator SI = 4494 FuncInfo.StaticAllocaMap.find(AI); 4495 if (SI == FuncInfo.StaticAllocaMap.end()) 4496 return nullptr; // VLAs. 4497 return nullptr; 4498 } 4499 4500 case Intrinsic::eh_typeid_for: { 4501 // Find the type id for the given typeinfo. 4502 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4503 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4504 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4505 setValue(&I, Res); 4506 return nullptr; 4507 } 4508 4509 case Intrinsic::eh_return_i32: 4510 case Intrinsic::eh_return_i64: 4511 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4512 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4513 MVT::Other, 4514 getControlRoot(), 4515 getValue(I.getArgOperand(0)), 4516 getValue(I.getArgOperand(1)))); 4517 return nullptr; 4518 case Intrinsic::eh_unwind_init: 4519 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4520 return nullptr; 4521 case Intrinsic::eh_dwarf_cfa: { 4522 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4523 TLI.getPointerTy(DAG.getDataLayout())); 4524 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4525 CfaArg.getValueType(), 4526 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4527 CfaArg.getValueType()), 4528 CfaArg); 4529 SDValue FA = DAG.getNode( 4530 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4531 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4532 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4533 FA, Offset)); 4534 return nullptr; 4535 } 4536 case Intrinsic::eh_sjlj_callsite: { 4537 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4538 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4539 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4540 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4541 4542 MMI.setCurrentCallSite(CI->getZExtValue()); 4543 return nullptr; 4544 } 4545 case Intrinsic::eh_sjlj_functioncontext: { 4546 // Get and store the index of the function context. 4547 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4548 AllocaInst *FnCtx = 4549 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4550 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4551 MFI->setFunctionContextIndex(FI); 4552 return nullptr; 4553 } 4554 case Intrinsic::eh_sjlj_setjmp: { 4555 SDValue Ops[2]; 4556 Ops[0] = getRoot(); 4557 Ops[1] = getValue(I.getArgOperand(0)); 4558 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4559 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4560 setValue(&I, Op.getValue(0)); 4561 DAG.setRoot(Op.getValue(1)); 4562 return nullptr; 4563 } 4564 case Intrinsic::eh_sjlj_longjmp: { 4565 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4566 getRoot(), getValue(I.getArgOperand(0)))); 4567 return nullptr; 4568 } 4569 case Intrinsic::eh_sjlj_setup_dispatch: { 4570 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4571 getRoot())); 4572 return nullptr; 4573 } 4574 4575 case Intrinsic::masked_gather: 4576 visitMaskedGather(I); 4577 return nullptr; 4578 case Intrinsic::masked_load: 4579 visitMaskedLoad(I); 4580 return nullptr; 4581 case Intrinsic::masked_scatter: 4582 visitMaskedScatter(I); 4583 return nullptr; 4584 case Intrinsic::masked_store: 4585 visitMaskedStore(I); 4586 return nullptr; 4587 case Intrinsic::x86_mmx_pslli_w: 4588 case Intrinsic::x86_mmx_pslli_d: 4589 case Intrinsic::x86_mmx_pslli_q: 4590 case Intrinsic::x86_mmx_psrli_w: 4591 case Intrinsic::x86_mmx_psrli_d: 4592 case Intrinsic::x86_mmx_psrli_q: 4593 case Intrinsic::x86_mmx_psrai_w: 4594 case Intrinsic::x86_mmx_psrai_d: { 4595 SDValue ShAmt = getValue(I.getArgOperand(1)); 4596 if (isa<ConstantSDNode>(ShAmt)) { 4597 visitTargetIntrinsic(I, Intrinsic); 4598 return nullptr; 4599 } 4600 unsigned NewIntrinsic = 0; 4601 EVT ShAmtVT = MVT::v2i32; 4602 switch (Intrinsic) { 4603 case Intrinsic::x86_mmx_pslli_w: 4604 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4605 break; 4606 case Intrinsic::x86_mmx_pslli_d: 4607 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4608 break; 4609 case Intrinsic::x86_mmx_pslli_q: 4610 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4611 break; 4612 case Intrinsic::x86_mmx_psrli_w: 4613 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4614 break; 4615 case Intrinsic::x86_mmx_psrli_d: 4616 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4617 break; 4618 case Intrinsic::x86_mmx_psrli_q: 4619 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4620 break; 4621 case Intrinsic::x86_mmx_psrai_w: 4622 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4623 break; 4624 case Intrinsic::x86_mmx_psrai_d: 4625 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4626 break; 4627 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4628 } 4629 4630 // The vector shift intrinsics with scalars uses 32b shift amounts but 4631 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4632 // to be zero. 4633 // We must do this early because v2i32 is not a legal type. 4634 SDValue ShOps[2]; 4635 ShOps[0] = ShAmt; 4636 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4637 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4638 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4639 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4640 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4641 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4642 getValue(I.getArgOperand(0)), ShAmt); 4643 setValue(&I, Res); 4644 return nullptr; 4645 } 4646 case Intrinsic::convertff: 4647 case Intrinsic::convertfsi: 4648 case Intrinsic::convertfui: 4649 case Intrinsic::convertsif: 4650 case Intrinsic::convertuif: 4651 case Intrinsic::convertss: 4652 case Intrinsic::convertsu: 4653 case Intrinsic::convertus: 4654 case Intrinsic::convertuu: { 4655 ISD::CvtCode Code = ISD::CVT_INVALID; 4656 switch (Intrinsic) { 4657 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4658 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4659 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4660 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4661 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4662 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4663 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4664 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4665 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4666 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4667 } 4668 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4669 const Value *Op1 = I.getArgOperand(0); 4670 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4671 DAG.getValueType(DestVT), 4672 DAG.getValueType(getValue(Op1).getValueType()), 4673 getValue(I.getArgOperand(1)), 4674 getValue(I.getArgOperand(2)), 4675 Code); 4676 setValue(&I, Res); 4677 return nullptr; 4678 } 4679 case Intrinsic::powi: 4680 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4681 getValue(I.getArgOperand(1)), DAG)); 4682 return nullptr; 4683 case Intrinsic::log: 4684 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4685 return nullptr; 4686 case Intrinsic::log2: 4687 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4688 return nullptr; 4689 case Intrinsic::log10: 4690 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4691 return nullptr; 4692 case Intrinsic::exp: 4693 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4694 return nullptr; 4695 case Intrinsic::exp2: 4696 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4697 return nullptr; 4698 case Intrinsic::pow: 4699 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4700 getValue(I.getArgOperand(1)), DAG, TLI)); 4701 return nullptr; 4702 case Intrinsic::sqrt: 4703 case Intrinsic::fabs: 4704 case Intrinsic::sin: 4705 case Intrinsic::cos: 4706 case Intrinsic::floor: 4707 case Intrinsic::ceil: 4708 case Intrinsic::trunc: 4709 case Intrinsic::rint: 4710 case Intrinsic::nearbyint: 4711 case Intrinsic::round: { 4712 unsigned Opcode; 4713 switch (Intrinsic) { 4714 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4715 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4716 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4717 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4718 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4719 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4720 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4721 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4722 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4723 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4724 case Intrinsic::round: Opcode = ISD::FROUND; break; 4725 } 4726 4727 setValue(&I, DAG.getNode(Opcode, sdl, 4728 getValue(I.getArgOperand(0)).getValueType(), 4729 getValue(I.getArgOperand(0)))); 4730 return nullptr; 4731 } 4732 case Intrinsic::minnum: 4733 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4734 getValue(I.getArgOperand(0)).getValueType(), 4735 getValue(I.getArgOperand(0)), 4736 getValue(I.getArgOperand(1)))); 4737 return nullptr; 4738 case Intrinsic::maxnum: 4739 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4740 getValue(I.getArgOperand(0)).getValueType(), 4741 getValue(I.getArgOperand(0)), 4742 getValue(I.getArgOperand(1)))); 4743 return nullptr; 4744 case Intrinsic::copysign: 4745 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4746 getValue(I.getArgOperand(0)).getValueType(), 4747 getValue(I.getArgOperand(0)), 4748 getValue(I.getArgOperand(1)))); 4749 return nullptr; 4750 case Intrinsic::fma: 4751 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4752 getValue(I.getArgOperand(0)).getValueType(), 4753 getValue(I.getArgOperand(0)), 4754 getValue(I.getArgOperand(1)), 4755 getValue(I.getArgOperand(2)))); 4756 return nullptr; 4757 case Intrinsic::fmuladd: { 4758 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4759 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4760 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4761 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4762 getValue(I.getArgOperand(0)).getValueType(), 4763 getValue(I.getArgOperand(0)), 4764 getValue(I.getArgOperand(1)), 4765 getValue(I.getArgOperand(2)))); 4766 } else { 4767 // TODO: Intrinsic calls should have fast-math-flags. 4768 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4769 getValue(I.getArgOperand(0)).getValueType(), 4770 getValue(I.getArgOperand(0)), 4771 getValue(I.getArgOperand(1))); 4772 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4773 getValue(I.getArgOperand(0)).getValueType(), 4774 Mul, 4775 getValue(I.getArgOperand(2))); 4776 setValue(&I, Add); 4777 } 4778 return nullptr; 4779 } 4780 case Intrinsic::convert_to_fp16: 4781 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4782 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4783 getValue(I.getArgOperand(0)), 4784 DAG.getTargetConstant(0, sdl, 4785 MVT::i32)))); 4786 return nullptr; 4787 case Intrinsic::convert_from_fp16: 4788 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4789 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4790 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4791 getValue(I.getArgOperand(0))))); 4792 return nullptr; 4793 case Intrinsic::pcmarker: { 4794 SDValue Tmp = getValue(I.getArgOperand(0)); 4795 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4796 return nullptr; 4797 } 4798 case Intrinsic::readcyclecounter: { 4799 SDValue Op = getRoot(); 4800 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4801 DAG.getVTList(MVT::i64, MVT::Other), Op); 4802 setValue(&I, Res); 4803 DAG.setRoot(Res.getValue(1)); 4804 return nullptr; 4805 } 4806 case Intrinsic::bswap: 4807 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4808 getValue(I.getArgOperand(0)).getValueType(), 4809 getValue(I.getArgOperand(0)))); 4810 return nullptr; 4811 case Intrinsic::uabsdiff: 4812 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)))); 4816 return nullptr; 4817 case Intrinsic::sabsdiff: 4818 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)), 4821 getValue(I.getArgOperand(1)))); 4822 return nullptr; 4823 case Intrinsic::cttz: { 4824 SDValue Arg = getValue(I.getArgOperand(0)); 4825 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4826 EVT Ty = Arg.getValueType(); 4827 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4828 sdl, Ty, Arg)); 4829 return nullptr; 4830 } 4831 case Intrinsic::ctlz: { 4832 SDValue Arg = getValue(I.getArgOperand(0)); 4833 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4834 EVT Ty = Arg.getValueType(); 4835 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4836 sdl, Ty, Arg)); 4837 return nullptr; 4838 } 4839 case Intrinsic::ctpop: { 4840 SDValue Arg = getValue(I.getArgOperand(0)); 4841 EVT Ty = Arg.getValueType(); 4842 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4843 return nullptr; 4844 } 4845 case Intrinsic::stacksave: { 4846 SDValue Op = getRoot(); 4847 Res = DAG.getNode( 4848 ISD::STACKSAVE, sdl, 4849 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4850 setValue(&I, Res); 4851 DAG.setRoot(Res.getValue(1)); 4852 return nullptr; 4853 } 4854 case Intrinsic::stackrestore: { 4855 Res = getValue(I.getArgOperand(0)); 4856 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4857 return nullptr; 4858 } 4859 case Intrinsic::stackprotector: { 4860 // Emit code into the DAG to store the stack guard onto the stack. 4861 MachineFunction &MF = DAG.getMachineFunction(); 4862 MachineFrameInfo *MFI = MF.getFrameInfo(); 4863 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4864 SDValue Src, Chain = getRoot(); 4865 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4866 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4867 4868 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4869 // global variable __stack_chk_guard. 4870 if (!GV) 4871 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4872 if (BC->getOpcode() == Instruction::BitCast) 4873 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4874 4875 if (GV && TLI.useLoadStackGuardNode()) { 4876 // Emit a LOAD_STACK_GUARD node. 4877 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4878 sdl, PtrTy, Chain); 4879 MachinePointerInfo MPInfo(GV); 4880 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4881 unsigned Flags = MachineMemOperand::MOLoad | 4882 MachineMemOperand::MOInvariant; 4883 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4884 PtrTy.getSizeInBits() / 8, 4885 DAG.getEVTAlignment(PtrTy)); 4886 Node->setMemRefs(MemRefs, MemRefs + 1); 4887 4888 // Copy the guard value to a virtual register so that it can be 4889 // retrieved in the epilogue. 4890 Src = SDValue(Node, 0); 4891 const TargetRegisterClass *RC = 4892 TLI.getRegClassFor(Src.getSimpleValueType()); 4893 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4894 4895 SPDescriptor.setGuardReg(Reg); 4896 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4897 } else { 4898 Src = getValue(I.getArgOperand(0)); // The guard's value. 4899 } 4900 4901 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4902 4903 int FI = FuncInfo.StaticAllocaMap[Slot]; 4904 MFI->setStackProtectorIndex(FI); 4905 4906 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4907 4908 // Store the stack protector onto the stack. 4909 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4910 DAG.getMachineFunction(), FI), 4911 true, false, 0); 4912 setValue(&I, Res); 4913 DAG.setRoot(Res); 4914 return nullptr; 4915 } 4916 case Intrinsic::objectsize: { 4917 // If we don't know by now, we're never going to know. 4918 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4919 4920 assert(CI && "Non-constant type in __builtin_object_size?"); 4921 4922 SDValue Arg = getValue(I.getCalledValue()); 4923 EVT Ty = Arg.getValueType(); 4924 4925 if (CI->isZero()) 4926 Res = DAG.getConstant(-1ULL, sdl, Ty); 4927 else 4928 Res = DAG.getConstant(0, sdl, Ty); 4929 4930 setValue(&I, Res); 4931 return nullptr; 4932 } 4933 case Intrinsic::annotation: 4934 case Intrinsic::ptr_annotation: 4935 // Drop the intrinsic, but forward the value 4936 setValue(&I, getValue(I.getOperand(0))); 4937 return nullptr; 4938 case Intrinsic::assume: 4939 case Intrinsic::var_annotation: 4940 // Discard annotate attributes and assumptions 4941 return nullptr; 4942 4943 case Intrinsic::init_trampoline: { 4944 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4945 4946 SDValue Ops[6]; 4947 Ops[0] = getRoot(); 4948 Ops[1] = getValue(I.getArgOperand(0)); 4949 Ops[2] = getValue(I.getArgOperand(1)); 4950 Ops[3] = getValue(I.getArgOperand(2)); 4951 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4952 Ops[5] = DAG.getSrcValue(F); 4953 4954 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4955 4956 DAG.setRoot(Res); 4957 return nullptr; 4958 } 4959 case Intrinsic::adjust_trampoline: { 4960 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4961 TLI.getPointerTy(DAG.getDataLayout()), 4962 getValue(I.getArgOperand(0)))); 4963 return nullptr; 4964 } 4965 case Intrinsic::gcroot: 4966 if (GFI) { 4967 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4968 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4969 4970 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4971 GFI->addStackRoot(FI->getIndex(), TypeMap); 4972 } 4973 return nullptr; 4974 case Intrinsic::gcread: 4975 case Intrinsic::gcwrite: 4976 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4977 case Intrinsic::flt_rounds: 4978 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4979 return nullptr; 4980 4981 case Intrinsic::expect: { 4982 // Just replace __builtin_expect(exp, c) with EXP. 4983 setValue(&I, getValue(I.getArgOperand(0))); 4984 return nullptr; 4985 } 4986 4987 case Intrinsic::debugtrap: 4988 case Intrinsic::trap: { 4989 StringRef TrapFuncName = 4990 I.getAttributes() 4991 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4992 .getValueAsString(); 4993 if (TrapFuncName.empty()) { 4994 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4995 ISD::TRAP : ISD::DEBUGTRAP; 4996 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4997 return nullptr; 4998 } 4999 TargetLowering::ArgListTy Args; 5000 5001 TargetLowering::CallLoweringInfo CLI(DAG); 5002 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5003 CallingConv::C, I.getType(), 5004 DAG.getExternalSymbol(TrapFuncName.data(), 5005 TLI.getPointerTy(DAG.getDataLayout())), 5006 std::move(Args), 0); 5007 5008 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5009 DAG.setRoot(Result.second); 5010 return nullptr; 5011 } 5012 5013 case Intrinsic::uadd_with_overflow: 5014 case Intrinsic::sadd_with_overflow: 5015 case Intrinsic::usub_with_overflow: 5016 case Intrinsic::ssub_with_overflow: 5017 case Intrinsic::umul_with_overflow: 5018 case Intrinsic::smul_with_overflow: { 5019 ISD::NodeType Op; 5020 switch (Intrinsic) { 5021 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5022 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5023 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5024 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5025 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5026 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5027 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5028 } 5029 SDValue Op1 = getValue(I.getArgOperand(0)); 5030 SDValue Op2 = getValue(I.getArgOperand(1)); 5031 5032 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5033 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5034 return nullptr; 5035 } 5036 case Intrinsic::prefetch: { 5037 SDValue Ops[5]; 5038 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5039 Ops[0] = getRoot(); 5040 Ops[1] = getValue(I.getArgOperand(0)); 5041 Ops[2] = getValue(I.getArgOperand(1)); 5042 Ops[3] = getValue(I.getArgOperand(2)); 5043 Ops[4] = getValue(I.getArgOperand(3)); 5044 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5045 DAG.getVTList(MVT::Other), Ops, 5046 EVT::getIntegerVT(*Context, 8), 5047 MachinePointerInfo(I.getArgOperand(0)), 5048 0, /* align */ 5049 false, /* volatile */ 5050 rw==0, /* read */ 5051 rw==1)); /* write */ 5052 return nullptr; 5053 } 5054 case Intrinsic::lifetime_start: 5055 case Intrinsic::lifetime_end: { 5056 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5057 // Stack coloring is not enabled in O0, discard region information. 5058 if (TM.getOptLevel() == CodeGenOpt::None) 5059 return nullptr; 5060 5061 SmallVector<Value *, 4> Allocas; 5062 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5063 5064 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5065 E = Allocas.end(); Object != E; ++Object) { 5066 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5067 5068 // Could not find an Alloca. 5069 if (!LifetimeObject) 5070 continue; 5071 5072 // First check that the Alloca is static, otherwise it won't have a 5073 // valid frame index. 5074 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5075 if (SI == FuncInfo.StaticAllocaMap.end()) 5076 return nullptr; 5077 5078 int FI = SI->second; 5079 5080 SDValue Ops[2]; 5081 Ops[0] = getRoot(); 5082 Ops[1] = 5083 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5084 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5085 5086 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5087 DAG.setRoot(Res); 5088 } 5089 return nullptr; 5090 } 5091 case Intrinsic::invariant_start: 5092 // Discard region information. 5093 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5094 return nullptr; 5095 case Intrinsic::invariant_end: 5096 // Discard region information. 5097 return nullptr; 5098 case Intrinsic::stackprotectorcheck: { 5099 // Do not actually emit anything for this basic block. Instead we initialize 5100 // the stack protector descriptor and export the guard variable so we can 5101 // access it in FinishBasicBlock. 5102 const BasicBlock *BB = I.getParent(); 5103 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5104 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5105 5106 // Flush our exports since we are going to process a terminator. 5107 (void)getControlRoot(); 5108 return nullptr; 5109 } 5110 case Intrinsic::clear_cache: 5111 return TLI.getClearCacheBuiltinName(); 5112 case Intrinsic::eh_actions: 5113 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5114 return nullptr; 5115 case Intrinsic::donothing: 5116 // ignore 5117 return nullptr; 5118 case Intrinsic::experimental_stackmap: { 5119 visitStackmap(I); 5120 return nullptr; 5121 } 5122 case Intrinsic::experimental_patchpoint_void: 5123 case Intrinsic::experimental_patchpoint_i64: { 5124 visitPatchpoint(&I); 5125 return nullptr; 5126 } 5127 case Intrinsic::experimental_gc_statepoint: { 5128 visitStatepoint(I); 5129 return nullptr; 5130 } 5131 case Intrinsic::experimental_gc_result_int: 5132 case Intrinsic::experimental_gc_result_float: 5133 case Intrinsic::experimental_gc_result_ptr: 5134 case Intrinsic::experimental_gc_result: { 5135 visitGCResult(I); 5136 return nullptr; 5137 } 5138 case Intrinsic::experimental_gc_relocate: { 5139 visitGCRelocate(I); 5140 return nullptr; 5141 } 5142 case Intrinsic::instrprof_increment: 5143 llvm_unreachable("instrprof failed to lower an increment"); 5144 5145 case Intrinsic::localescape: { 5146 MachineFunction &MF = DAG.getMachineFunction(); 5147 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5148 5149 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5150 // is the same on all targets. 5151 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5152 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5153 if (isa<ConstantPointerNull>(Arg)) 5154 continue; // Skip null pointers. They represent a hole in index space. 5155 AllocaInst *Slot = cast<AllocaInst>(Arg); 5156 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5157 "can only escape static allocas"); 5158 int FI = FuncInfo.StaticAllocaMap[Slot]; 5159 MCSymbol *FrameAllocSym = 5160 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5161 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5163 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5164 .addSym(FrameAllocSym) 5165 .addFrameIndex(FI); 5166 } 5167 5168 return nullptr; 5169 } 5170 5171 case Intrinsic::localrecover: { 5172 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5173 MachineFunction &MF = DAG.getMachineFunction(); 5174 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5175 5176 // Get the symbol that defines the frame offset. 5177 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5178 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5179 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5180 MCSymbol *FrameAllocSym = 5181 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5182 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5183 5184 // Create a MCSymbol for the label to avoid any target lowering 5185 // that would make this PC relative. 5186 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5187 SDValue OffsetVal = 5188 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5189 5190 // Add the offset to the FP. 5191 Value *FP = I.getArgOperand(1); 5192 SDValue FPVal = getValue(FP); 5193 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5194 setValue(&I, Add); 5195 5196 return nullptr; 5197 } 5198 case Intrinsic::eh_begincatch: 5199 case Intrinsic::eh_endcatch: 5200 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5201 case Intrinsic::eh_exceptioncode: { 5202 unsigned Reg = TLI.getExceptionPointerRegister(); 5203 assert(Reg && "cannot get exception code on this platform"); 5204 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5205 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5206 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5207 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5208 SDValue N = 5209 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5210 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5211 setValue(&I, N); 5212 return nullptr; 5213 } 5214 } 5215 } 5216 5217 std::pair<SDValue, SDValue> 5218 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5219 const BasicBlock *EHPadBB) { 5220 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5221 MCSymbol *BeginLabel = nullptr; 5222 5223 if (EHPadBB) { 5224 // Insert a label before the invoke call to mark the try range. This can be 5225 // used to detect deletion of the invoke via the MachineModuleInfo. 5226 BeginLabel = MMI.getContext().createTempSymbol(); 5227 5228 // For SjLj, keep track of which landing pads go with which invokes 5229 // so as to maintain the ordering of pads in the LSDA. 5230 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5231 if (CallSiteIndex) { 5232 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5233 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5234 5235 // Now that the call site is handled, stop tracking it. 5236 MMI.setCurrentCallSite(0); 5237 } 5238 5239 // Both PendingLoads and PendingExports must be flushed here; 5240 // this call might not return. 5241 (void)getRoot(); 5242 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5243 5244 CLI.setChain(getRoot()); 5245 } 5246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5247 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5248 5249 assert((CLI.IsTailCall || Result.second.getNode()) && 5250 "Non-null chain expected with non-tail call!"); 5251 assert((Result.second.getNode() || !Result.first.getNode()) && 5252 "Null value expected with tail call!"); 5253 5254 if (!Result.second.getNode()) { 5255 // As a special case, a null chain means that a tail call has been emitted 5256 // and the DAG root is already updated. 5257 HasTailCall = true; 5258 5259 // Since there's no actual continuation from this block, nothing can be 5260 // relying on us setting vregs for them. 5261 PendingExports.clear(); 5262 } else { 5263 DAG.setRoot(Result.second); 5264 } 5265 5266 if (EHPadBB) { 5267 // Insert a label at the end of the invoke call to mark the try range. This 5268 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5269 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5270 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5271 5272 // Inform MachineModuleInfo of range. 5273 if (MMI.hasEHFunclets()) { 5274 WinEHFuncInfo &EHInfo = 5275 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5276 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5277 } else { 5278 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5279 } 5280 } 5281 5282 return Result; 5283 } 5284 5285 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5286 bool isTailCall, 5287 const BasicBlock *EHPadBB) { 5288 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5289 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5290 Type *RetTy = FTy->getReturnType(); 5291 5292 TargetLowering::ArgListTy Args; 5293 TargetLowering::ArgListEntry Entry; 5294 Args.reserve(CS.arg_size()); 5295 5296 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5297 i != e; ++i) { 5298 const Value *V = *i; 5299 5300 // Skip empty types 5301 if (V->getType()->isEmptyTy()) 5302 continue; 5303 5304 SDValue ArgNode = getValue(V); 5305 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5306 5307 // Skip the first return-type Attribute to get to params. 5308 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5309 Args.push_back(Entry); 5310 5311 // If we have an explicit sret argument that is an Instruction, (i.e., it 5312 // might point to function-local memory), we can't meaningfully tail-call. 5313 if (Entry.isSRet && isa<Instruction>(V)) 5314 isTailCall = false; 5315 } 5316 5317 // Check if target-independent constraints permit a tail call here. 5318 // Target-dependent constraints are checked within TLI->LowerCallTo. 5319 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5320 isTailCall = false; 5321 5322 TargetLowering::CallLoweringInfo CLI(DAG); 5323 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5324 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5325 .setTailCall(isTailCall); 5326 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5327 5328 if (Result.first.getNode()) 5329 setValue(CS.getInstruction(), Result.first); 5330 } 5331 5332 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5333 /// value is equal or not-equal to zero. 5334 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5335 for (const User *U : V->users()) { 5336 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5337 if (IC->isEquality()) 5338 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5339 if (C->isNullValue()) 5340 continue; 5341 // Unknown instruction. 5342 return false; 5343 } 5344 return true; 5345 } 5346 5347 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5348 Type *LoadTy, 5349 SelectionDAGBuilder &Builder) { 5350 5351 // Check to see if this load can be trivially constant folded, e.g. if the 5352 // input is from a string literal. 5353 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5354 // Cast pointer to the type we really want to load. 5355 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5356 PointerType::getUnqual(LoadTy)); 5357 5358 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5359 const_cast<Constant *>(LoadInput), *Builder.DL)) 5360 return Builder.getValue(LoadCst); 5361 } 5362 5363 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5364 // still constant memory, the input chain can be the entry node. 5365 SDValue Root; 5366 bool ConstantMemory = false; 5367 5368 // Do not serialize (non-volatile) loads of constant memory with anything. 5369 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5370 Root = Builder.DAG.getEntryNode(); 5371 ConstantMemory = true; 5372 } else { 5373 // Do not serialize non-volatile loads against each other. 5374 Root = Builder.DAG.getRoot(); 5375 } 5376 5377 SDValue Ptr = Builder.getValue(PtrVal); 5378 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5379 Ptr, MachinePointerInfo(PtrVal), 5380 false /*volatile*/, 5381 false /*nontemporal*/, 5382 false /*isinvariant*/, 1 /* align=1 */); 5383 5384 if (!ConstantMemory) 5385 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5386 return LoadVal; 5387 } 5388 5389 /// processIntegerCallValue - Record the value for an instruction that 5390 /// produces an integer result, converting the type where necessary. 5391 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5392 SDValue Value, 5393 bool IsSigned) { 5394 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5395 I.getType(), true); 5396 if (IsSigned) 5397 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5398 else 5399 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5400 setValue(&I, Value); 5401 } 5402 5403 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5404 /// If so, return true and lower it, otherwise return false and it will be 5405 /// lowered like a normal call. 5406 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5407 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5408 if (I.getNumArgOperands() != 3) 5409 return false; 5410 5411 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5412 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5413 !I.getArgOperand(2)->getType()->isIntegerTy() || 5414 !I.getType()->isIntegerTy()) 5415 return false; 5416 5417 const Value *Size = I.getArgOperand(2); 5418 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5419 if (CSize && CSize->getZExtValue() == 0) { 5420 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5421 I.getType(), true); 5422 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5423 return true; 5424 } 5425 5426 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5427 std::pair<SDValue, SDValue> Res = 5428 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5429 getValue(LHS), getValue(RHS), getValue(Size), 5430 MachinePointerInfo(LHS), 5431 MachinePointerInfo(RHS)); 5432 if (Res.first.getNode()) { 5433 processIntegerCallValue(I, Res.first, true); 5434 PendingLoads.push_back(Res.second); 5435 return true; 5436 } 5437 5438 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5439 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5440 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5441 bool ActuallyDoIt = true; 5442 MVT LoadVT; 5443 Type *LoadTy; 5444 switch (CSize->getZExtValue()) { 5445 default: 5446 LoadVT = MVT::Other; 5447 LoadTy = nullptr; 5448 ActuallyDoIt = false; 5449 break; 5450 case 2: 5451 LoadVT = MVT::i16; 5452 LoadTy = Type::getInt16Ty(CSize->getContext()); 5453 break; 5454 case 4: 5455 LoadVT = MVT::i32; 5456 LoadTy = Type::getInt32Ty(CSize->getContext()); 5457 break; 5458 case 8: 5459 LoadVT = MVT::i64; 5460 LoadTy = Type::getInt64Ty(CSize->getContext()); 5461 break; 5462 /* 5463 case 16: 5464 LoadVT = MVT::v4i32; 5465 LoadTy = Type::getInt32Ty(CSize->getContext()); 5466 LoadTy = VectorType::get(LoadTy, 4); 5467 break; 5468 */ 5469 } 5470 5471 // This turns into unaligned loads. We only do this if the target natively 5472 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5473 // we'll only produce a small number of byte loads. 5474 5475 // Require that we can find a legal MVT, and only do this if the target 5476 // supports unaligned loads of that type. Expanding into byte loads would 5477 // bloat the code. 5478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5479 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5480 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5481 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5482 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5483 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5484 // TODO: Check alignment of src and dest ptrs. 5485 if (!TLI.isTypeLegal(LoadVT) || 5486 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5487 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5488 ActuallyDoIt = false; 5489 } 5490 5491 if (ActuallyDoIt) { 5492 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5493 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5494 5495 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5496 ISD::SETNE); 5497 processIntegerCallValue(I, Res, false); 5498 return true; 5499 } 5500 } 5501 5502 5503 return false; 5504 } 5505 5506 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5507 /// form. If so, return true and lower it, otherwise return false and it 5508 /// will be lowered like a normal call. 5509 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5510 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5511 if (I.getNumArgOperands() != 3) 5512 return false; 5513 5514 const Value *Src = I.getArgOperand(0); 5515 const Value *Char = I.getArgOperand(1); 5516 const Value *Length = I.getArgOperand(2); 5517 if (!Src->getType()->isPointerTy() || 5518 !Char->getType()->isIntegerTy() || 5519 !Length->getType()->isIntegerTy() || 5520 !I.getType()->isPointerTy()) 5521 return false; 5522 5523 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5524 std::pair<SDValue, SDValue> Res = 5525 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5526 getValue(Src), getValue(Char), getValue(Length), 5527 MachinePointerInfo(Src)); 5528 if (Res.first.getNode()) { 5529 setValue(&I, Res.first); 5530 PendingLoads.push_back(Res.second); 5531 return true; 5532 } 5533 5534 return false; 5535 } 5536 5537 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5538 /// optimized form. If so, return true and lower it, otherwise return false 5539 /// and it will be lowered like a normal call. 5540 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5541 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5542 if (I.getNumArgOperands() != 2) 5543 return false; 5544 5545 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5546 if (!Arg0->getType()->isPointerTy() || 5547 !Arg1->getType()->isPointerTy() || 5548 !I.getType()->isPointerTy()) 5549 return false; 5550 5551 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5552 std::pair<SDValue, SDValue> Res = 5553 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5554 getValue(Arg0), getValue(Arg1), 5555 MachinePointerInfo(Arg0), 5556 MachinePointerInfo(Arg1), isStpcpy); 5557 if (Res.first.getNode()) { 5558 setValue(&I, Res.first); 5559 DAG.setRoot(Res.second); 5560 return true; 5561 } 5562 5563 return false; 5564 } 5565 5566 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5567 /// If so, return true and lower it, otherwise return false and it will be 5568 /// lowered like a normal call. 5569 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5570 // Verify that the prototype makes sense. int strcmp(void*,void*) 5571 if (I.getNumArgOperands() != 2) 5572 return false; 5573 5574 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5575 if (!Arg0->getType()->isPointerTy() || 5576 !Arg1->getType()->isPointerTy() || 5577 !I.getType()->isIntegerTy()) 5578 return false; 5579 5580 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5581 std::pair<SDValue, SDValue> Res = 5582 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5583 getValue(Arg0), getValue(Arg1), 5584 MachinePointerInfo(Arg0), 5585 MachinePointerInfo(Arg1)); 5586 if (Res.first.getNode()) { 5587 processIntegerCallValue(I, Res.first, true); 5588 PendingLoads.push_back(Res.second); 5589 return true; 5590 } 5591 5592 return false; 5593 } 5594 5595 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5596 /// form. If so, return true and lower it, otherwise return false and it 5597 /// will be lowered like a normal call. 5598 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5599 // Verify that the prototype makes sense. size_t strlen(char *) 5600 if (I.getNumArgOperands() != 1) 5601 return false; 5602 5603 const Value *Arg0 = I.getArgOperand(0); 5604 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5605 return false; 5606 5607 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5608 std::pair<SDValue, SDValue> Res = 5609 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5610 getValue(Arg0), MachinePointerInfo(Arg0)); 5611 if (Res.first.getNode()) { 5612 processIntegerCallValue(I, Res.first, false); 5613 PendingLoads.push_back(Res.second); 5614 return true; 5615 } 5616 5617 return false; 5618 } 5619 5620 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5621 /// form. If so, return true and lower it, otherwise return false and it 5622 /// will be lowered like a normal call. 5623 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5624 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5625 if (I.getNumArgOperands() != 2) 5626 return false; 5627 5628 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5629 if (!Arg0->getType()->isPointerTy() || 5630 !Arg1->getType()->isIntegerTy() || 5631 !I.getType()->isIntegerTy()) 5632 return false; 5633 5634 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5635 std::pair<SDValue, SDValue> Res = 5636 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5637 getValue(Arg0), getValue(Arg1), 5638 MachinePointerInfo(Arg0)); 5639 if (Res.first.getNode()) { 5640 processIntegerCallValue(I, Res.first, false); 5641 PendingLoads.push_back(Res.second); 5642 return true; 5643 } 5644 5645 return false; 5646 } 5647 5648 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5649 /// operation (as expected), translate it to an SDNode with the specified opcode 5650 /// and return true. 5651 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5652 unsigned Opcode) { 5653 // Sanity check that it really is a unary floating-point call. 5654 if (I.getNumArgOperands() != 1 || 5655 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5656 I.getType() != I.getArgOperand(0)->getType() || 5657 !I.onlyReadsMemory()) 5658 return false; 5659 5660 SDValue Tmp = getValue(I.getArgOperand(0)); 5661 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5662 return true; 5663 } 5664 5665 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5666 /// operation (as expected), translate it to an SDNode with the specified opcode 5667 /// and return true. 5668 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5669 unsigned Opcode) { 5670 // Sanity check that it really is a binary floating-point call. 5671 if (I.getNumArgOperands() != 2 || 5672 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5673 I.getType() != I.getArgOperand(0)->getType() || 5674 I.getType() != I.getArgOperand(1)->getType() || 5675 !I.onlyReadsMemory()) 5676 return false; 5677 5678 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5679 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5680 EVT VT = Tmp0.getValueType(); 5681 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5682 return true; 5683 } 5684 5685 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5686 // Handle inline assembly differently. 5687 if (isa<InlineAsm>(I.getCalledValue())) { 5688 visitInlineAsm(&I); 5689 return; 5690 } 5691 5692 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5693 ComputeUsesVAFloatArgument(I, &MMI); 5694 5695 const char *RenameFn = nullptr; 5696 if (Function *F = I.getCalledFunction()) { 5697 if (F->isDeclaration()) { 5698 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5699 if (unsigned IID = II->getIntrinsicID(F)) { 5700 RenameFn = visitIntrinsicCall(I, IID); 5701 if (!RenameFn) 5702 return; 5703 } 5704 } 5705 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5706 RenameFn = visitIntrinsicCall(I, IID); 5707 if (!RenameFn) 5708 return; 5709 } 5710 } 5711 5712 // Check for well-known libc/libm calls. If the function is internal, it 5713 // can't be a library call. 5714 LibFunc::Func Func; 5715 if (!F->hasLocalLinkage() && F->hasName() && 5716 LibInfo->getLibFunc(F->getName(), Func) && 5717 LibInfo->hasOptimizedCodeGen(Func)) { 5718 switch (Func) { 5719 default: break; 5720 case LibFunc::copysign: 5721 case LibFunc::copysignf: 5722 case LibFunc::copysignl: 5723 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5724 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5725 I.getType() == I.getArgOperand(0)->getType() && 5726 I.getType() == I.getArgOperand(1)->getType() && 5727 I.onlyReadsMemory()) { 5728 SDValue LHS = getValue(I.getArgOperand(0)); 5729 SDValue RHS = getValue(I.getArgOperand(1)); 5730 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5731 LHS.getValueType(), LHS, RHS)); 5732 return; 5733 } 5734 break; 5735 case LibFunc::fabs: 5736 case LibFunc::fabsf: 5737 case LibFunc::fabsl: 5738 if (visitUnaryFloatCall(I, ISD::FABS)) 5739 return; 5740 break; 5741 case LibFunc::fmin: 5742 case LibFunc::fminf: 5743 case LibFunc::fminl: 5744 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5745 return; 5746 break; 5747 case LibFunc::fmax: 5748 case LibFunc::fmaxf: 5749 case LibFunc::fmaxl: 5750 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5751 return; 5752 break; 5753 case LibFunc::sin: 5754 case LibFunc::sinf: 5755 case LibFunc::sinl: 5756 if (visitUnaryFloatCall(I, ISD::FSIN)) 5757 return; 5758 break; 5759 case LibFunc::cos: 5760 case LibFunc::cosf: 5761 case LibFunc::cosl: 5762 if (visitUnaryFloatCall(I, ISD::FCOS)) 5763 return; 5764 break; 5765 case LibFunc::sqrt: 5766 case LibFunc::sqrtf: 5767 case LibFunc::sqrtl: 5768 case LibFunc::sqrt_finite: 5769 case LibFunc::sqrtf_finite: 5770 case LibFunc::sqrtl_finite: 5771 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5772 return; 5773 break; 5774 case LibFunc::floor: 5775 case LibFunc::floorf: 5776 case LibFunc::floorl: 5777 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5778 return; 5779 break; 5780 case LibFunc::nearbyint: 5781 case LibFunc::nearbyintf: 5782 case LibFunc::nearbyintl: 5783 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5784 return; 5785 break; 5786 case LibFunc::ceil: 5787 case LibFunc::ceilf: 5788 case LibFunc::ceill: 5789 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5790 return; 5791 break; 5792 case LibFunc::rint: 5793 case LibFunc::rintf: 5794 case LibFunc::rintl: 5795 if (visitUnaryFloatCall(I, ISD::FRINT)) 5796 return; 5797 break; 5798 case LibFunc::round: 5799 case LibFunc::roundf: 5800 case LibFunc::roundl: 5801 if (visitUnaryFloatCall(I, ISD::FROUND)) 5802 return; 5803 break; 5804 case LibFunc::trunc: 5805 case LibFunc::truncf: 5806 case LibFunc::truncl: 5807 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5808 return; 5809 break; 5810 case LibFunc::log2: 5811 case LibFunc::log2f: 5812 case LibFunc::log2l: 5813 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5814 return; 5815 break; 5816 case LibFunc::exp2: 5817 case LibFunc::exp2f: 5818 case LibFunc::exp2l: 5819 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5820 return; 5821 break; 5822 case LibFunc::memcmp: 5823 if (visitMemCmpCall(I)) 5824 return; 5825 break; 5826 case LibFunc::memchr: 5827 if (visitMemChrCall(I)) 5828 return; 5829 break; 5830 case LibFunc::strcpy: 5831 if (visitStrCpyCall(I, false)) 5832 return; 5833 break; 5834 case LibFunc::stpcpy: 5835 if (visitStrCpyCall(I, true)) 5836 return; 5837 break; 5838 case LibFunc::strcmp: 5839 if (visitStrCmpCall(I)) 5840 return; 5841 break; 5842 case LibFunc::strlen: 5843 if (visitStrLenCall(I)) 5844 return; 5845 break; 5846 case LibFunc::strnlen: 5847 if (visitStrNLenCall(I)) 5848 return; 5849 break; 5850 } 5851 } 5852 } 5853 5854 SDValue Callee; 5855 if (!RenameFn) 5856 Callee = getValue(I.getCalledValue()); 5857 else 5858 Callee = DAG.getExternalSymbol( 5859 RenameFn, 5860 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5861 5862 // Check if we can potentially perform a tail call. More detailed checking is 5863 // be done within LowerCallTo, after more information about the call is known. 5864 LowerCallTo(&I, Callee, I.isTailCall()); 5865 } 5866 5867 namespace { 5868 5869 /// AsmOperandInfo - This contains information for each constraint that we are 5870 /// lowering. 5871 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5872 public: 5873 /// CallOperand - If this is the result output operand or a clobber 5874 /// this is null, otherwise it is the incoming operand to the CallInst. 5875 /// This gets modified as the asm is processed. 5876 SDValue CallOperand; 5877 5878 /// AssignedRegs - If this is a register or register class operand, this 5879 /// contains the set of register corresponding to the operand. 5880 RegsForValue AssignedRegs; 5881 5882 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5883 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5884 } 5885 5886 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5887 /// corresponds to. If there is no Value* for this operand, it returns 5888 /// MVT::Other. 5889 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5890 const DataLayout &DL) const { 5891 if (!CallOperandVal) return MVT::Other; 5892 5893 if (isa<BasicBlock>(CallOperandVal)) 5894 return TLI.getPointerTy(DL); 5895 5896 llvm::Type *OpTy = CallOperandVal->getType(); 5897 5898 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5899 // If this is an indirect operand, the operand is a pointer to the 5900 // accessed type. 5901 if (isIndirect) { 5902 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5903 if (!PtrTy) 5904 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5905 OpTy = PtrTy->getElementType(); 5906 } 5907 5908 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5909 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5910 if (STy->getNumElements() == 1) 5911 OpTy = STy->getElementType(0); 5912 5913 // If OpTy is not a single value, it may be a struct/union that we 5914 // can tile with integers. 5915 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5916 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5917 switch (BitSize) { 5918 default: break; 5919 case 1: 5920 case 8: 5921 case 16: 5922 case 32: 5923 case 64: 5924 case 128: 5925 OpTy = IntegerType::get(Context, BitSize); 5926 break; 5927 } 5928 } 5929 5930 return TLI.getValueType(DL, OpTy, true); 5931 } 5932 }; 5933 5934 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5935 5936 } // end anonymous namespace 5937 5938 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5939 /// specified operand. We prefer to assign virtual registers, to allow the 5940 /// register allocator to handle the assignment process. However, if the asm 5941 /// uses features that we can't model on machineinstrs, we have SDISel do the 5942 /// allocation. This produces generally horrible, but correct, code. 5943 /// 5944 /// OpInfo describes the operand. 5945 /// 5946 static void GetRegistersForValue(SelectionDAG &DAG, 5947 const TargetLowering &TLI, 5948 SDLoc DL, 5949 SDISelAsmOperandInfo &OpInfo) { 5950 LLVMContext &Context = *DAG.getContext(); 5951 5952 MachineFunction &MF = DAG.getMachineFunction(); 5953 SmallVector<unsigned, 4> Regs; 5954 5955 // If this is a constraint for a single physreg, or a constraint for a 5956 // register class, find it. 5957 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5958 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5959 OpInfo.ConstraintCode, 5960 OpInfo.ConstraintVT); 5961 5962 unsigned NumRegs = 1; 5963 if (OpInfo.ConstraintVT != MVT::Other) { 5964 // If this is a FP input in an integer register (or visa versa) insert a bit 5965 // cast of the input value. More generally, handle any case where the input 5966 // value disagrees with the register class we plan to stick this in. 5967 if (OpInfo.Type == InlineAsm::isInput && 5968 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5969 // Try to convert to the first EVT that the reg class contains. If the 5970 // types are identical size, use a bitcast to convert (e.g. two differing 5971 // vector types). 5972 MVT RegVT = *PhysReg.second->vt_begin(); 5973 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5974 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5975 RegVT, OpInfo.CallOperand); 5976 OpInfo.ConstraintVT = RegVT; 5977 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5978 // If the input is a FP value and we want it in FP registers, do a 5979 // bitcast to the corresponding integer type. This turns an f64 value 5980 // into i64, which can be passed with two i32 values on a 32-bit 5981 // machine. 5982 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5983 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5984 RegVT, OpInfo.CallOperand); 5985 OpInfo.ConstraintVT = RegVT; 5986 } 5987 } 5988 5989 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5990 } 5991 5992 MVT RegVT; 5993 EVT ValueVT = OpInfo.ConstraintVT; 5994 5995 // If this is a constraint for a specific physical register, like {r17}, 5996 // assign it now. 5997 if (unsigned AssignedReg = PhysReg.first) { 5998 const TargetRegisterClass *RC = PhysReg.second; 5999 if (OpInfo.ConstraintVT == MVT::Other) 6000 ValueVT = *RC->vt_begin(); 6001 6002 // Get the actual register value type. This is important, because the user 6003 // may have asked for (e.g.) the AX register in i32 type. We need to 6004 // remember that AX is actually i16 to get the right extension. 6005 RegVT = *RC->vt_begin(); 6006 6007 // This is a explicit reference to a physical register. 6008 Regs.push_back(AssignedReg); 6009 6010 // If this is an expanded reference, add the rest of the regs to Regs. 6011 if (NumRegs != 1) { 6012 TargetRegisterClass::iterator I = RC->begin(); 6013 for (; *I != AssignedReg; ++I) 6014 assert(I != RC->end() && "Didn't find reg!"); 6015 6016 // Already added the first reg. 6017 --NumRegs; ++I; 6018 for (; NumRegs; --NumRegs, ++I) { 6019 assert(I != RC->end() && "Ran out of registers to allocate!"); 6020 Regs.push_back(*I); 6021 } 6022 } 6023 6024 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6025 return; 6026 } 6027 6028 // Otherwise, if this was a reference to an LLVM register class, create vregs 6029 // for this reference. 6030 if (const TargetRegisterClass *RC = PhysReg.second) { 6031 RegVT = *RC->vt_begin(); 6032 if (OpInfo.ConstraintVT == MVT::Other) 6033 ValueVT = RegVT; 6034 6035 // Create the appropriate number of virtual registers. 6036 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6037 for (; NumRegs; --NumRegs) 6038 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6039 6040 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6041 return; 6042 } 6043 6044 // Otherwise, we couldn't allocate enough registers for this. 6045 } 6046 6047 /// visitInlineAsm - Handle a call to an InlineAsm object. 6048 /// 6049 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6050 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6051 6052 /// ConstraintOperands - Information about all of the constraints. 6053 SDISelAsmOperandInfoVector ConstraintOperands; 6054 6055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6056 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6057 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6058 6059 bool hasMemory = false; 6060 6061 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6062 unsigned ResNo = 0; // ResNo - The result number of the next output. 6063 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6064 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6065 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6066 6067 MVT OpVT = MVT::Other; 6068 6069 // Compute the value type for each operand. 6070 switch (OpInfo.Type) { 6071 case InlineAsm::isOutput: 6072 // Indirect outputs just consume an argument. 6073 if (OpInfo.isIndirect) { 6074 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6075 break; 6076 } 6077 6078 // The return value of the call is this value. As such, there is no 6079 // corresponding argument. 6080 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6081 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6082 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6083 STy->getElementType(ResNo)); 6084 } else { 6085 assert(ResNo == 0 && "Asm only has one result!"); 6086 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6087 } 6088 ++ResNo; 6089 break; 6090 case InlineAsm::isInput: 6091 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6092 break; 6093 case InlineAsm::isClobber: 6094 // Nothing to do. 6095 break; 6096 } 6097 6098 // If this is an input or an indirect output, process the call argument. 6099 // BasicBlocks are labels, currently appearing only in asm's. 6100 if (OpInfo.CallOperandVal) { 6101 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6102 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6103 } else { 6104 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6105 } 6106 6107 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6108 DAG.getDataLayout()).getSimpleVT(); 6109 } 6110 6111 OpInfo.ConstraintVT = OpVT; 6112 6113 // Indirect operand accesses access memory. 6114 if (OpInfo.isIndirect) 6115 hasMemory = true; 6116 else { 6117 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6118 TargetLowering::ConstraintType 6119 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6120 if (CType == TargetLowering::C_Memory) { 6121 hasMemory = true; 6122 break; 6123 } 6124 } 6125 } 6126 } 6127 6128 SDValue Chain, Flag; 6129 6130 // We won't need to flush pending loads if this asm doesn't touch 6131 // memory and is nonvolatile. 6132 if (hasMemory || IA->hasSideEffects()) 6133 Chain = getRoot(); 6134 else 6135 Chain = DAG.getRoot(); 6136 6137 // Second pass over the constraints: compute which constraint option to use 6138 // and assign registers to constraints that want a specific physreg. 6139 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6140 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6141 6142 // If this is an output operand with a matching input operand, look up the 6143 // matching input. If their types mismatch, e.g. one is an integer, the 6144 // other is floating point, or their sizes are different, flag it as an 6145 // error. 6146 if (OpInfo.hasMatchingInput()) { 6147 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6148 6149 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6150 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6151 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6152 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6153 OpInfo.ConstraintVT); 6154 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6155 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6156 Input.ConstraintVT); 6157 if ((OpInfo.ConstraintVT.isInteger() != 6158 Input.ConstraintVT.isInteger()) || 6159 (MatchRC.second != InputRC.second)) { 6160 report_fatal_error("Unsupported asm: input constraint" 6161 " with a matching output constraint of" 6162 " incompatible type!"); 6163 } 6164 Input.ConstraintVT = OpInfo.ConstraintVT; 6165 } 6166 } 6167 6168 // Compute the constraint code and ConstraintType to use. 6169 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6170 6171 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6172 OpInfo.Type == InlineAsm::isClobber) 6173 continue; 6174 6175 // If this is a memory input, and if the operand is not indirect, do what we 6176 // need to to provide an address for the memory input. 6177 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6178 !OpInfo.isIndirect) { 6179 assert((OpInfo.isMultipleAlternative || 6180 (OpInfo.Type == InlineAsm::isInput)) && 6181 "Can only indirectify direct input operands!"); 6182 6183 // Memory operands really want the address of the value. If we don't have 6184 // an indirect input, put it in the constpool if we can, otherwise spill 6185 // it to a stack slot. 6186 // TODO: This isn't quite right. We need to handle these according to 6187 // the addressing mode that the constraint wants. Also, this may take 6188 // an additional register for the computation and we don't want that 6189 // either. 6190 6191 // If the operand is a float, integer, or vector constant, spill to a 6192 // constant pool entry to get its address. 6193 const Value *OpVal = OpInfo.CallOperandVal; 6194 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6195 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6196 OpInfo.CallOperand = DAG.getConstantPool( 6197 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6198 } else { 6199 // Otherwise, create a stack slot and emit a store to it before the 6200 // asm. 6201 Type *Ty = OpVal->getType(); 6202 auto &DL = DAG.getDataLayout(); 6203 uint64_t TySize = DL.getTypeAllocSize(Ty); 6204 unsigned Align = DL.getPrefTypeAlignment(Ty); 6205 MachineFunction &MF = DAG.getMachineFunction(); 6206 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6207 SDValue StackSlot = 6208 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6209 Chain = DAG.getStore( 6210 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6211 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6212 false, false, 0); 6213 OpInfo.CallOperand = StackSlot; 6214 } 6215 6216 // There is no longer a Value* corresponding to this operand. 6217 OpInfo.CallOperandVal = nullptr; 6218 6219 // It is now an indirect operand. 6220 OpInfo.isIndirect = true; 6221 } 6222 6223 // If this constraint is for a specific register, allocate it before 6224 // anything else. 6225 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6226 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6227 } 6228 6229 // Second pass - Loop over all of the operands, assigning virtual or physregs 6230 // to register class operands. 6231 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6232 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6233 6234 // C_Register operands have already been allocated, Other/Memory don't need 6235 // to be. 6236 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6237 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6238 } 6239 6240 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6241 std::vector<SDValue> AsmNodeOperands; 6242 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6243 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6244 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6245 6246 // If we have a !srcloc metadata node associated with it, we want to attach 6247 // this to the ultimately generated inline asm machineinstr. To do this, we 6248 // pass in the third operand as this (potentially null) inline asm MDNode. 6249 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6250 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6251 6252 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6253 // bits as operand 3. 6254 unsigned ExtraInfo = 0; 6255 if (IA->hasSideEffects()) 6256 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6257 if (IA->isAlignStack()) 6258 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6259 // Set the asm dialect. 6260 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6261 6262 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6263 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6264 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6265 6266 // Compute the constraint code and ConstraintType to use. 6267 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6268 6269 // Ideally, we would only check against memory constraints. However, the 6270 // meaning of an other constraint can be target-specific and we can't easily 6271 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6272 // for other constriants as well. 6273 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6274 OpInfo.ConstraintType == TargetLowering::C_Other) { 6275 if (OpInfo.Type == InlineAsm::isInput) 6276 ExtraInfo |= InlineAsm::Extra_MayLoad; 6277 else if (OpInfo.Type == InlineAsm::isOutput) 6278 ExtraInfo |= InlineAsm::Extra_MayStore; 6279 else if (OpInfo.Type == InlineAsm::isClobber) 6280 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6281 } 6282 } 6283 6284 AsmNodeOperands.push_back(DAG.getTargetConstant( 6285 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6286 6287 // Loop over all of the inputs, copying the operand values into the 6288 // appropriate registers and processing the output regs. 6289 RegsForValue RetValRegs; 6290 6291 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6292 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6293 6294 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6295 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6296 6297 switch (OpInfo.Type) { 6298 case InlineAsm::isOutput: { 6299 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6300 OpInfo.ConstraintType != TargetLowering::C_Register) { 6301 // Memory output, or 'other' output (e.g. 'X' constraint). 6302 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6303 6304 unsigned ConstraintID = 6305 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6306 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6307 "Failed to convert memory constraint code to constraint id."); 6308 6309 // Add information to the INLINEASM node to know about this output. 6310 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6311 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6312 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6313 MVT::i32)); 6314 AsmNodeOperands.push_back(OpInfo.CallOperand); 6315 break; 6316 } 6317 6318 // Otherwise, this is a register or register class output. 6319 6320 // Copy the output from the appropriate register. Find a register that 6321 // we can use. 6322 if (OpInfo.AssignedRegs.Regs.empty()) { 6323 LLVMContext &Ctx = *DAG.getContext(); 6324 Ctx.emitError(CS.getInstruction(), 6325 "couldn't allocate output register for constraint '" + 6326 Twine(OpInfo.ConstraintCode) + "'"); 6327 return; 6328 } 6329 6330 // If this is an indirect operand, store through the pointer after the 6331 // asm. 6332 if (OpInfo.isIndirect) { 6333 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6334 OpInfo.CallOperandVal)); 6335 } else { 6336 // This is the result value of the call. 6337 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6338 // Concatenate this output onto the outputs list. 6339 RetValRegs.append(OpInfo.AssignedRegs); 6340 } 6341 6342 // Add information to the INLINEASM node to know that this register is 6343 // set. 6344 OpInfo.AssignedRegs 6345 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6346 ? InlineAsm::Kind_RegDefEarlyClobber 6347 : InlineAsm::Kind_RegDef, 6348 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6349 break; 6350 } 6351 case InlineAsm::isInput: { 6352 SDValue InOperandVal = OpInfo.CallOperand; 6353 6354 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6355 // If this is required to match an output register we have already set, 6356 // just use its register. 6357 unsigned OperandNo = OpInfo.getMatchedOperand(); 6358 6359 // Scan until we find the definition we already emitted of this operand. 6360 // When we find it, create a RegsForValue operand. 6361 unsigned CurOp = InlineAsm::Op_FirstOperand; 6362 for (; OperandNo; --OperandNo) { 6363 // Advance to the next operand. 6364 unsigned OpFlag = 6365 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6366 assert((InlineAsm::isRegDefKind(OpFlag) || 6367 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6368 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6369 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6370 } 6371 6372 unsigned OpFlag = 6373 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6374 if (InlineAsm::isRegDefKind(OpFlag) || 6375 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6376 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6377 if (OpInfo.isIndirect) { 6378 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6379 LLVMContext &Ctx = *DAG.getContext(); 6380 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6381 " don't know how to handle tied " 6382 "indirect register inputs"); 6383 return; 6384 } 6385 6386 RegsForValue MatchedRegs; 6387 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6388 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6389 MatchedRegs.RegVTs.push_back(RegVT); 6390 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6391 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6392 i != e; ++i) { 6393 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6394 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6395 else { 6396 LLVMContext &Ctx = *DAG.getContext(); 6397 Ctx.emitError(CS.getInstruction(), 6398 "inline asm error: This value" 6399 " type register class is not natively supported!"); 6400 return; 6401 } 6402 } 6403 SDLoc dl = getCurSDLoc(); 6404 // Use the produced MatchedRegs object to 6405 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6406 Chain, &Flag, CS.getInstruction()); 6407 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6408 true, OpInfo.getMatchedOperand(), dl, 6409 DAG, AsmNodeOperands); 6410 break; 6411 } 6412 6413 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6414 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6415 "Unexpected number of operands"); 6416 // Add information to the INLINEASM node to know about this input. 6417 // See InlineAsm.h isUseOperandTiedToDef. 6418 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6419 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6420 OpInfo.getMatchedOperand()); 6421 AsmNodeOperands.push_back(DAG.getTargetConstant( 6422 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6423 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6424 break; 6425 } 6426 6427 // Treat indirect 'X' constraint as memory. 6428 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6429 OpInfo.isIndirect) 6430 OpInfo.ConstraintType = TargetLowering::C_Memory; 6431 6432 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6433 std::vector<SDValue> Ops; 6434 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6435 Ops, DAG); 6436 if (Ops.empty()) { 6437 LLVMContext &Ctx = *DAG.getContext(); 6438 Ctx.emitError(CS.getInstruction(), 6439 "invalid operand for inline asm constraint '" + 6440 Twine(OpInfo.ConstraintCode) + "'"); 6441 return; 6442 } 6443 6444 // Add information to the INLINEASM node to know about this input. 6445 unsigned ResOpType = 6446 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6447 AsmNodeOperands.push_back(DAG.getTargetConstant( 6448 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6449 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6450 break; 6451 } 6452 6453 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6454 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6455 assert(InOperandVal.getValueType() == 6456 TLI.getPointerTy(DAG.getDataLayout()) && 6457 "Memory operands expect pointer values"); 6458 6459 unsigned ConstraintID = 6460 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6461 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6462 "Failed to convert memory constraint code to constraint id."); 6463 6464 // Add information to the INLINEASM node to know about this input. 6465 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6466 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6467 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6468 getCurSDLoc(), 6469 MVT::i32)); 6470 AsmNodeOperands.push_back(InOperandVal); 6471 break; 6472 } 6473 6474 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6475 OpInfo.ConstraintType == TargetLowering::C_Register) && 6476 "Unknown constraint type!"); 6477 6478 // TODO: Support this. 6479 if (OpInfo.isIndirect) { 6480 LLVMContext &Ctx = *DAG.getContext(); 6481 Ctx.emitError(CS.getInstruction(), 6482 "Don't know how to handle indirect register inputs yet " 6483 "for constraint '" + 6484 Twine(OpInfo.ConstraintCode) + "'"); 6485 return; 6486 } 6487 6488 // Copy the input into the appropriate registers. 6489 if (OpInfo.AssignedRegs.Regs.empty()) { 6490 LLVMContext &Ctx = *DAG.getContext(); 6491 Ctx.emitError(CS.getInstruction(), 6492 "couldn't allocate input reg for constraint '" + 6493 Twine(OpInfo.ConstraintCode) + "'"); 6494 return; 6495 } 6496 6497 SDLoc dl = getCurSDLoc(); 6498 6499 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6500 Chain, &Flag, CS.getInstruction()); 6501 6502 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6503 dl, DAG, AsmNodeOperands); 6504 break; 6505 } 6506 case InlineAsm::isClobber: { 6507 // Add the clobbered value to the operand list, so that the register 6508 // allocator is aware that the physreg got clobbered. 6509 if (!OpInfo.AssignedRegs.Regs.empty()) 6510 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6511 false, 0, getCurSDLoc(), DAG, 6512 AsmNodeOperands); 6513 break; 6514 } 6515 } 6516 } 6517 6518 // Finish up input operands. Set the input chain and add the flag last. 6519 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6520 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6521 6522 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6523 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6524 Flag = Chain.getValue(1); 6525 6526 // If this asm returns a register value, copy the result from that register 6527 // and set it as the value of the call. 6528 if (!RetValRegs.Regs.empty()) { 6529 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6530 Chain, &Flag, CS.getInstruction()); 6531 6532 // FIXME: Why don't we do this for inline asms with MRVs? 6533 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6534 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6535 6536 // If any of the results of the inline asm is a vector, it may have the 6537 // wrong width/num elts. This can happen for register classes that can 6538 // contain multiple different value types. The preg or vreg allocated may 6539 // not have the same VT as was expected. Convert it to the right type 6540 // with bit_convert. 6541 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6542 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6543 ResultType, Val); 6544 6545 } else if (ResultType != Val.getValueType() && 6546 ResultType.isInteger() && Val.getValueType().isInteger()) { 6547 // If a result value was tied to an input value, the computed result may 6548 // have a wider width than the expected result. Extract the relevant 6549 // portion. 6550 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6551 } 6552 6553 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6554 } 6555 6556 setValue(CS.getInstruction(), Val); 6557 // Don't need to use this as a chain in this case. 6558 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6559 return; 6560 } 6561 6562 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6563 6564 // Process indirect outputs, first output all of the flagged copies out of 6565 // physregs. 6566 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6567 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6568 const Value *Ptr = IndirectStoresToEmit[i].second; 6569 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6570 Chain, &Flag, IA); 6571 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6572 } 6573 6574 // Emit the non-flagged stores from the physregs. 6575 SmallVector<SDValue, 8> OutChains; 6576 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6577 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6578 StoresToEmit[i].first, 6579 getValue(StoresToEmit[i].second), 6580 MachinePointerInfo(StoresToEmit[i].second), 6581 false, false, 0); 6582 OutChains.push_back(Val); 6583 } 6584 6585 if (!OutChains.empty()) 6586 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6587 6588 DAG.setRoot(Chain); 6589 } 6590 6591 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6592 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6593 MVT::Other, getRoot(), 6594 getValue(I.getArgOperand(0)), 6595 DAG.getSrcValue(I.getArgOperand(0)))); 6596 } 6597 6598 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6600 const DataLayout &DL = DAG.getDataLayout(); 6601 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6602 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6603 DAG.getSrcValue(I.getOperand(0)), 6604 DL.getABITypeAlignment(I.getType())); 6605 setValue(&I, V); 6606 DAG.setRoot(V.getValue(1)); 6607 } 6608 6609 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6610 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6611 MVT::Other, getRoot(), 6612 getValue(I.getArgOperand(0)), 6613 DAG.getSrcValue(I.getArgOperand(0)))); 6614 } 6615 6616 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6617 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6618 MVT::Other, getRoot(), 6619 getValue(I.getArgOperand(0)), 6620 getValue(I.getArgOperand(1)), 6621 DAG.getSrcValue(I.getArgOperand(0)), 6622 DAG.getSrcValue(I.getArgOperand(1)))); 6623 } 6624 6625 /// \brief Lower an argument list according to the target calling convention. 6626 /// 6627 /// \return A tuple of <return-value, token-chain> 6628 /// 6629 /// This is a helper for lowering intrinsics that follow a target calling 6630 /// convention or require stack pointer adjustment. Only a subset of the 6631 /// intrinsic's operands need to participate in the calling convention. 6632 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6633 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6634 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6635 TargetLowering::ArgListTy Args; 6636 Args.reserve(NumArgs); 6637 6638 // Populate the argument list. 6639 // Attributes for args start at offset 1, after the return attribute. 6640 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6641 ArgI != ArgE; ++ArgI) { 6642 const Value *V = CS->getOperand(ArgI); 6643 6644 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6645 6646 TargetLowering::ArgListEntry Entry; 6647 Entry.Node = getValue(V); 6648 Entry.Ty = V->getType(); 6649 Entry.setAttributes(&CS, AttrI); 6650 Args.push_back(Entry); 6651 } 6652 6653 TargetLowering::CallLoweringInfo CLI(DAG); 6654 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6655 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6656 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6657 6658 return lowerInvokable(CLI, EHPadBB); 6659 } 6660 6661 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6662 /// or patchpoint target node's operand list. 6663 /// 6664 /// Constants are converted to TargetConstants purely as an optimization to 6665 /// avoid constant materialization and register allocation. 6666 /// 6667 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6668 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6669 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6670 /// address materialization and register allocation, but may also be required 6671 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6672 /// alloca in the entry block, then the runtime may assume that the alloca's 6673 /// StackMap location can be read immediately after compilation and that the 6674 /// location is valid at any point during execution (this is similar to the 6675 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6676 /// only available in a register, then the runtime would need to trap when 6677 /// execution reaches the StackMap in order to read the alloca's location. 6678 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6679 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6680 SelectionDAGBuilder &Builder) { 6681 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6682 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6683 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6684 Ops.push_back( 6685 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6686 Ops.push_back( 6687 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6688 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6689 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6690 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6691 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6692 } else 6693 Ops.push_back(OpVal); 6694 } 6695 } 6696 6697 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6698 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6699 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6700 // [live variables...]) 6701 6702 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6703 6704 SDValue Chain, InFlag, Callee, NullPtr; 6705 SmallVector<SDValue, 32> Ops; 6706 6707 SDLoc DL = getCurSDLoc(); 6708 Callee = getValue(CI.getCalledValue()); 6709 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6710 6711 // The stackmap intrinsic only records the live variables (the arguemnts 6712 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6713 // intrinsic, this won't be lowered to a function call. This means we don't 6714 // have to worry about calling conventions and target specific lowering code. 6715 // Instead we perform the call lowering right here. 6716 // 6717 // chain, flag = CALLSEQ_START(chain, 0) 6718 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6719 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6720 // 6721 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6722 InFlag = Chain.getValue(1); 6723 6724 // Add the <id> and <numBytes> constants. 6725 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6726 Ops.push_back(DAG.getTargetConstant( 6727 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6728 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6729 Ops.push_back(DAG.getTargetConstant( 6730 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6731 MVT::i32)); 6732 6733 // Push live variables for the stack map. 6734 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6735 6736 // We are not pushing any register mask info here on the operands list, 6737 // because the stackmap doesn't clobber anything. 6738 6739 // Push the chain and the glue flag. 6740 Ops.push_back(Chain); 6741 Ops.push_back(InFlag); 6742 6743 // Create the STACKMAP node. 6744 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6745 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6746 Chain = SDValue(SM, 0); 6747 InFlag = Chain.getValue(1); 6748 6749 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6750 6751 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6752 6753 // Set the root to the target-lowered call chain. 6754 DAG.setRoot(Chain); 6755 6756 // Inform the Frame Information that we have a stackmap in this function. 6757 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6758 } 6759 6760 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6761 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6762 const BasicBlock *EHPadBB) { 6763 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6764 // i32 <numBytes>, 6765 // i8* <target>, 6766 // i32 <numArgs>, 6767 // [Args...], 6768 // [live variables...]) 6769 6770 CallingConv::ID CC = CS.getCallingConv(); 6771 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6772 bool HasDef = !CS->getType()->isVoidTy(); 6773 SDLoc dl = getCurSDLoc(); 6774 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6775 6776 // Handle immediate and symbolic callees. 6777 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6778 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6779 /*isTarget=*/true); 6780 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6781 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6782 SDLoc(SymbolicCallee), 6783 SymbolicCallee->getValueType(0)); 6784 6785 // Get the real number of arguments participating in the call <numArgs> 6786 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6787 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6788 6789 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6790 // Intrinsics include all meta-operands up to but not including CC. 6791 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6792 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6793 "Not enough arguments provided to the patchpoint intrinsic"); 6794 6795 // For AnyRegCC the arguments are lowered later on manually. 6796 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6797 Type *ReturnTy = 6798 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6799 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6800 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6801 6802 SDNode *CallEnd = Result.second.getNode(); 6803 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6804 CallEnd = CallEnd->getOperand(0).getNode(); 6805 6806 /// Get a call instruction from the call sequence chain. 6807 /// Tail calls are not allowed. 6808 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6809 "Expected a callseq node."); 6810 SDNode *Call = CallEnd->getOperand(0).getNode(); 6811 bool HasGlue = Call->getGluedNode(); 6812 6813 // Replace the target specific call node with the patchable intrinsic. 6814 SmallVector<SDValue, 8> Ops; 6815 6816 // Add the <id> and <numBytes> constants. 6817 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6818 Ops.push_back(DAG.getTargetConstant( 6819 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6820 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6821 Ops.push_back(DAG.getTargetConstant( 6822 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6823 MVT::i32)); 6824 6825 // Add the callee. 6826 Ops.push_back(Callee); 6827 6828 // Adjust <numArgs> to account for any arguments that have been passed on the 6829 // stack instead. 6830 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6831 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6832 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6833 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6834 6835 // Add the calling convention 6836 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6837 6838 // Add the arguments we omitted previously. The register allocator should 6839 // place these in any free register. 6840 if (IsAnyRegCC) 6841 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6842 Ops.push_back(getValue(CS.getArgument(i))); 6843 6844 // Push the arguments from the call instruction up to the register mask. 6845 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6846 Ops.append(Call->op_begin() + 2, e); 6847 6848 // Push live variables for the stack map. 6849 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6850 6851 // Push the register mask info. 6852 if (HasGlue) 6853 Ops.push_back(*(Call->op_end()-2)); 6854 else 6855 Ops.push_back(*(Call->op_end()-1)); 6856 6857 // Push the chain (this is originally the first operand of the call, but 6858 // becomes now the last or second to last operand). 6859 Ops.push_back(*(Call->op_begin())); 6860 6861 // Push the glue flag (last operand). 6862 if (HasGlue) 6863 Ops.push_back(*(Call->op_end()-1)); 6864 6865 SDVTList NodeTys; 6866 if (IsAnyRegCC && HasDef) { 6867 // Create the return types based on the intrinsic definition 6868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6869 SmallVector<EVT, 3> ValueVTs; 6870 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6871 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6872 6873 // There is always a chain and a glue type at the end 6874 ValueVTs.push_back(MVT::Other); 6875 ValueVTs.push_back(MVT::Glue); 6876 NodeTys = DAG.getVTList(ValueVTs); 6877 } else 6878 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6879 6880 // Replace the target specific call node with a PATCHPOINT node. 6881 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6882 dl, NodeTys, Ops); 6883 6884 // Update the NodeMap. 6885 if (HasDef) { 6886 if (IsAnyRegCC) 6887 setValue(CS.getInstruction(), SDValue(MN, 0)); 6888 else 6889 setValue(CS.getInstruction(), Result.first); 6890 } 6891 6892 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6893 // call sequence. Furthermore the location of the chain and glue can change 6894 // when the AnyReg calling convention is used and the intrinsic returns a 6895 // value. 6896 if (IsAnyRegCC && HasDef) { 6897 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6898 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6899 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6900 } else 6901 DAG.ReplaceAllUsesWith(Call, MN); 6902 DAG.DeleteNode(Call); 6903 6904 // Inform the Frame Information that we have a patchpoint in this function. 6905 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6906 } 6907 6908 /// Returns an AttributeSet representing the attributes applied to the return 6909 /// value of the given call. 6910 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6911 SmallVector<Attribute::AttrKind, 2> Attrs; 6912 if (CLI.RetSExt) 6913 Attrs.push_back(Attribute::SExt); 6914 if (CLI.RetZExt) 6915 Attrs.push_back(Attribute::ZExt); 6916 if (CLI.IsInReg) 6917 Attrs.push_back(Attribute::InReg); 6918 6919 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6920 Attrs); 6921 } 6922 6923 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6924 /// implementation, which just calls LowerCall. 6925 /// FIXME: When all targets are 6926 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6927 std::pair<SDValue, SDValue> 6928 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6929 // Handle the incoming return values from the call. 6930 CLI.Ins.clear(); 6931 Type *OrigRetTy = CLI.RetTy; 6932 SmallVector<EVT, 4> RetTys; 6933 SmallVector<uint64_t, 4> Offsets; 6934 auto &DL = CLI.DAG.getDataLayout(); 6935 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6936 6937 SmallVector<ISD::OutputArg, 4> Outs; 6938 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6939 6940 bool CanLowerReturn = 6941 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6942 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6943 6944 SDValue DemoteStackSlot; 6945 int DemoteStackIdx = -100; 6946 if (!CanLowerReturn) { 6947 // FIXME: equivalent assert? 6948 // assert(!CS.hasInAllocaArgument() && 6949 // "sret demotion is incompatible with inalloca"); 6950 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6951 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6952 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6953 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6954 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6955 6956 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6957 ArgListEntry Entry; 6958 Entry.Node = DemoteStackSlot; 6959 Entry.Ty = StackSlotPtrType; 6960 Entry.isSExt = false; 6961 Entry.isZExt = false; 6962 Entry.isInReg = false; 6963 Entry.isSRet = true; 6964 Entry.isNest = false; 6965 Entry.isByVal = false; 6966 Entry.isReturned = false; 6967 Entry.Alignment = Align; 6968 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6969 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6970 6971 // sret demotion isn't compatible with tail-calls, since the sret argument 6972 // points into the callers stack frame. 6973 CLI.IsTailCall = false; 6974 } else { 6975 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6976 EVT VT = RetTys[I]; 6977 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6978 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6979 for (unsigned i = 0; i != NumRegs; ++i) { 6980 ISD::InputArg MyFlags; 6981 MyFlags.VT = RegisterVT; 6982 MyFlags.ArgVT = VT; 6983 MyFlags.Used = CLI.IsReturnValueUsed; 6984 if (CLI.RetSExt) 6985 MyFlags.Flags.setSExt(); 6986 if (CLI.RetZExt) 6987 MyFlags.Flags.setZExt(); 6988 if (CLI.IsInReg) 6989 MyFlags.Flags.setInReg(); 6990 CLI.Ins.push_back(MyFlags); 6991 } 6992 } 6993 } 6994 6995 // Handle all of the outgoing arguments. 6996 CLI.Outs.clear(); 6997 CLI.OutVals.clear(); 6998 ArgListTy &Args = CLI.getArgs(); 6999 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7000 SmallVector<EVT, 4> ValueVTs; 7001 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7002 Type *FinalType = Args[i].Ty; 7003 if (Args[i].isByVal) 7004 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7005 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7006 FinalType, CLI.CallConv, CLI.IsVarArg); 7007 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7008 ++Value) { 7009 EVT VT = ValueVTs[Value]; 7010 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7011 SDValue Op = SDValue(Args[i].Node.getNode(), 7012 Args[i].Node.getResNo() + Value); 7013 ISD::ArgFlagsTy Flags; 7014 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7015 7016 if (Args[i].isZExt) 7017 Flags.setZExt(); 7018 if (Args[i].isSExt) 7019 Flags.setSExt(); 7020 if (Args[i].isInReg) 7021 Flags.setInReg(); 7022 if (Args[i].isSRet) 7023 Flags.setSRet(); 7024 if (Args[i].isByVal) 7025 Flags.setByVal(); 7026 if (Args[i].isInAlloca) { 7027 Flags.setInAlloca(); 7028 // Set the byval flag for CCAssignFn callbacks that don't know about 7029 // inalloca. This way we can know how many bytes we should've allocated 7030 // and how many bytes a callee cleanup function will pop. If we port 7031 // inalloca to more targets, we'll have to add custom inalloca handling 7032 // in the various CC lowering callbacks. 7033 Flags.setByVal(); 7034 } 7035 if (Args[i].isByVal || Args[i].isInAlloca) { 7036 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7037 Type *ElementTy = Ty->getElementType(); 7038 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7039 // For ByVal, alignment should come from FE. BE will guess if this 7040 // info is not there but there are cases it cannot get right. 7041 unsigned FrameAlign; 7042 if (Args[i].Alignment) 7043 FrameAlign = Args[i].Alignment; 7044 else 7045 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7046 Flags.setByValAlign(FrameAlign); 7047 } 7048 if (Args[i].isNest) 7049 Flags.setNest(); 7050 if (NeedsRegBlock) 7051 Flags.setInConsecutiveRegs(); 7052 Flags.setOrigAlign(OriginalAlignment); 7053 7054 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7055 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7056 SmallVector<SDValue, 4> Parts(NumParts); 7057 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7058 7059 if (Args[i].isSExt) 7060 ExtendKind = ISD::SIGN_EXTEND; 7061 else if (Args[i].isZExt) 7062 ExtendKind = ISD::ZERO_EXTEND; 7063 7064 // Conservatively only handle 'returned' on non-vectors for now 7065 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7066 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7067 "unexpected use of 'returned'"); 7068 // Before passing 'returned' to the target lowering code, ensure that 7069 // either the register MVT and the actual EVT are the same size or that 7070 // the return value and argument are extended in the same way; in these 7071 // cases it's safe to pass the argument register value unchanged as the 7072 // return register value (although it's at the target's option whether 7073 // to do so) 7074 // TODO: allow code generation to take advantage of partially preserved 7075 // registers rather than clobbering the entire register when the 7076 // parameter extension method is not compatible with the return 7077 // extension method 7078 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7079 (ExtendKind != ISD::ANY_EXTEND && 7080 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7081 Flags.setReturned(); 7082 } 7083 7084 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7085 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7086 7087 for (unsigned j = 0; j != NumParts; ++j) { 7088 // if it isn't first piece, alignment must be 1 7089 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7090 i < CLI.NumFixedArgs, 7091 i, j*Parts[j].getValueType().getStoreSize()); 7092 if (NumParts > 1 && j == 0) 7093 MyFlags.Flags.setSplit(); 7094 else if (j != 0) 7095 MyFlags.Flags.setOrigAlign(1); 7096 7097 CLI.Outs.push_back(MyFlags); 7098 CLI.OutVals.push_back(Parts[j]); 7099 } 7100 7101 if (NeedsRegBlock && Value == NumValues - 1) 7102 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7103 } 7104 } 7105 7106 SmallVector<SDValue, 4> InVals; 7107 CLI.Chain = LowerCall(CLI, InVals); 7108 7109 // Verify that the target's LowerCall behaved as expected. 7110 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7111 "LowerCall didn't return a valid chain!"); 7112 assert((!CLI.IsTailCall || InVals.empty()) && 7113 "LowerCall emitted a return value for a tail call!"); 7114 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7115 "LowerCall didn't emit the correct number of values!"); 7116 7117 // For a tail call, the return value is merely live-out and there aren't 7118 // any nodes in the DAG representing it. Return a special value to 7119 // indicate that a tail call has been emitted and no more Instructions 7120 // should be processed in the current block. 7121 if (CLI.IsTailCall) { 7122 CLI.DAG.setRoot(CLI.Chain); 7123 return std::make_pair(SDValue(), SDValue()); 7124 } 7125 7126 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7127 assert(InVals[i].getNode() && 7128 "LowerCall emitted a null value!"); 7129 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7130 "LowerCall emitted a value with the wrong type!"); 7131 }); 7132 7133 SmallVector<SDValue, 4> ReturnValues; 7134 if (!CanLowerReturn) { 7135 // The instruction result is the result of loading from the 7136 // hidden sret parameter. 7137 SmallVector<EVT, 1> PVTs; 7138 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7139 7140 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7141 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7142 EVT PtrVT = PVTs[0]; 7143 7144 unsigned NumValues = RetTys.size(); 7145 ReturnValues.resize(NumValues); 7146 SmallVector<SDValue, 4> Chains(NumValues); 7147 7148 for (unsigned i = 0; i < NumValues; ++i) { 7149 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7150 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7151 PtrVT)); 7152 SDValue L = CLI.DAG.getLoad( 7153 RetTys[i], CLI.DL, CLI.Chain, Add, 7154 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7155 DemoteStackIdx, Offsets[i]), 7156 false, false, false, 1); 7157 ReturnValues[i] = L; 7158 Chains[i] = L.getValue(1); 7159 } 7160 7161 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7162 } else { 7163 // Collect the legal value parts into potentially illegal values 7164 // that correspond to the original function's return values. 7165 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7166 if (CLI.RetSExt) 7167 AssertOp = ISD::AssertSext; 7168 else if (CLI.RetZExt) 7169 AssertOp = ISD::AssertZext; 7170 unsigned CurReg = 0; 7171 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7172 EVT VT = RetTys[I]; 7173 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7174 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7175 7176 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7177 NumRegs, RegisterVT, VT, nullptr, 7178 AssertOp)); 7179 CurReg += NumRegs; 7180 } 7181 7182 // For a function returning void, there is no return value. We can't create 7183 // such a node, so we just return a null return value in that case. In 7184 // that case, nothing will actually look at the value. 7185 if (ReturnValues.empty()) 7186 return std::make_pair(SDValue(), CLI.Chain); 7187 } 7188 7189 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7190 CLI.DAG.getVTList(RetTys), ReturnValues); 7191 return std::make_pair(Res, CLI.Chain); 7192 } 7193 7194 void TargetLowering::LowerOperationWrapper(SDNode *N, 7195 SmallVectorImpl<SDValue> &Results, 7196 SelectionDAG &DAG) const { 7197 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7198 if (Res.getNode()) 7199 Results.push_back(Res); 7200 } 7201 7202 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7203 llvm_unreachable("LowerOperation not implemented for this target!"); 7204 } 7205 7206 void 7207 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7208 SDValue Op = getNonRegisterValue(V); 7209 assert((Op.getOpcode() != ISD::CopyFromReg || 7210 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7211 "Copy from a reg to the same reg!"); 7212 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7213 7214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7215 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7216 V->getType()); 7217 SDValue Chain = DAG.getEntryNode(); 7218 7219 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7220 FuncInfo.PreferredExtendType.end()) 7221 ? ISD::ANY_EXTEND 7222 : FuncInfo.PreferredExtendType[V]; 7223 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7224 PendingExports.push_back(Chain); 7225 } 7226 7227 #include "llvm/CodeGen/SelectionDAGISel.h" 7228 7229 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7230 /// entry block, return true. This includes arguments used by switches, since 7231 /// the switch may expand into multiple basic blocks. 7232 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7233 // With FastISel active, we may be splitting blocks, so force creation 7234 // of virtual registers for all non-dead arguments. 7235 if (FastISel) 7236 return A->use_empty(); 7237 7238 const BasicBlock *Entry = A->getParent()->begin(); 7239 for (const User *U : A->users()) 7240 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7241 return false; // Use not in entry block. 7242 7243 return true; 7244 } 7245 7246 void SelectionDAGISel::LowerArguments(const Function &F) { 7247 SelectionDAG &DAG = SDB->DAG; 7248 SDLoc dl = SDB->getCurSDLoc(); 7249 const DataLayout &DL = DAG.getDataLayout(); 7250 SmallVector<ISD::InputArg, 16> Ins; 7251 7252 if (!FuncInfo->CanLowerReturn) { 7253 // Put in an sret pointer parameter before all the other parameters. 7254 SmallVector<EVT, 1> ValueVTs; 7255 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7256 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7257 7258 // NOTE: Assuming that a pointer will never break down to more than one VT 7259 // or one register. 7260 ISD::ArgFlagsTy Flags; 7261 Flags.setSRet(); 7262 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7263 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7264 ISD::InputArg::NoArgIndex, 0); 7265 Ins.push_back(RetArg); 7266 } 7267 7268 // Set up the incoming argument description vector. 7269 unsigned Idx = 1; 7270 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7271 I != E; ++I, ++Idx) { 7272 SmallVector<EVT, 4> ValueVTs; 7273 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7274 bool isArgValueUsed = !I->use_empty(); 7275 unsigned PartBase = 0; 7276 Type *FinalType = I->getType(); 7277 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7278 FinalType = cast<PointerType>(FinalType)->getElementType(); 7279 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7280 FinalType, F.getCallingConv(), F.isVarArg()); 7281 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7282 Value != NumValues; ++Value) { 7283 EVT VT = ValueVTs[Value]; 7284 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7285 ISD::ArgFlagsTy Flags; 7286 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7287 7288 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7289 Flags.setZExt(); 7290 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7291 Flags.setSExt(); 7292 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7293 Flags.setInReg(); 7294 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7295 Flags.setSRet(); 7296 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7297 Flags.setByVal(); 7298 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7299 Flags.setInAlloca(); 7300 // Set the byval flag for CCAssignFn callbacks that don't know about 7301 // inalloca. This way we can know how many bytes we should've allocated 7302 // and how many bytes a callee cleanup function will pop. If we port 7303 // inalloca to more targets, we'll have to add custom inalloca handling 7304 // in the various CC lowering callbacks. 7305 Flags.setByVal(); 7306 } 7307 if (Flags.isByVal() || Flags.isInAlloca()) { 7308 PointerType *Ty = cast<PointerType>(I->getType()); 7309 Type *ElementTy = Ty->getElementType(); 7310 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7311 // For ByVal, alignment should be passed from FE. BE will guess if 7312 // this info is not there but there are cases it cannot get right. 7313 unsigned FrameAlign; 7314 if (F.getParamAlignment(Idx)) 7315 FrameAlign = F.getParamAlignment(Idx); 7316 else 7317 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7318 Flags.setByValAlign(FrameAlign); 7319 } 7320 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7321 Flags.setNest(); 7322 if (NeedsRegBlock) 7323 Flags.setInConsecutiveRegs(); 7324 Flags.setOrigAlign(OriginalAlignment); 7325 7326 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7327 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7328 for (unsigned i = 0; i != NumRegs; ++i) { 7329 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7330 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7331 if (NumRegs > 1 && i == 0) 7332 MyFlags.Flags.setSplit(); 7333 // if it isn't first piece, alignment must be 1 7334 else if (i > 0) 7335 MyFlags.Flags.setOrigAlign(1); 7336 Ins.push_back(MyFlags); 7337 } 7338 if (NeedsRegBlock && Value == NumValues - 1) 7339 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7340 PartBase += VT.getStoreSize(); 7341 } 7342 } 7343 7344 // Call the target to set up the argument values. 7345 SmallVector<SDValue, 8> InVals; 7346 SDValue NewRoot = TLI->LowerFormalArguments( 7347 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7348 7349 // Verify that the target's LowerFormalArguments behaved as expected. 7350 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7351 "LowerFormalArguments didn't return a valid chain!"); 7352 assert(InVals.size() == Ins.size() && 7353 "LowerFormalArguments didn't emit the correct number of values!"); 7354 DEBUG({ 7355 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7356 assert(InVals[i].getNode() && 7357 "LowerFormalArguments emitted a null value!"); 7358 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7359 "LowerFormalArguments emitted a value with the wrong type!"); 7360 } 7361 }); 7362 7363 // Update the DAG with the new chain value resulting from argument lowering. 7364 DAG.setRoot(NewRoot); 7365 7366 // Set up the argument values. 7367 unsigned i = 0; 7368 Idx = 1; 7369 if (!FuncInfo->CanLowerReturn) { 7370 // Create a virtual register for the sret pointer, and put in a copy 7371 // from the sret argument into it. 7372 SmallVector<EVT, 1> ValueVTs; 7373 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7374 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7375 MVT VT = ValueVTs[0].getSimpleVT(); 7376 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7377 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7378 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7379 RegVT, VT, nullptr, AssertOp); 7380 7381 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7382 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7383 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7384 FuncInfo->DemoteRegister = SRetReg; 7385 NewRoot = 7386 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7387 DAG.setRoot(NewRoot); 7388 7389 // i indexes lowered arguments. Bump it past the hidden sret argument. 7390 // Idx indexes LLVM arguments. Don't touch it. 7391 ++i; 7392 } 7393 7394 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7395 ++I, ++Idx) { 7396 SmallVector<SDValue, 4> ArgValues; 7397 SmallVector<EVT, 4> ValueVTs; 7398 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7399 unsigned NumValues = ValueVTs.size(); 7400 7401 // If this argument is unused then remember its value. It is used to generate 7402 // debugging information. 7403 if (I->use_empty() && NumValues) { 7404 SDB->setUnusedArgValue(I, InVals[i]); 7405 7406 // Also remember any frame index for use in FastISel. 7407 if (FrameIndexSDNode *FI = 7408 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7409 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7410 } 7411 7412 for (unsigned Val = 0; Val != NumValues; ++Val) { 7413 EVT VT = ValueVTs[Val]; 7414 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7415 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7416 7417 if (!I->use_empty()) { 7418 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7419 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7420 AssertOp = ISD::AssertSext; 7421 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7422 AssertOp = ISD::AssertZext; 7423 7424 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7425 NumParts, PartVT, VT, 7426 nullptr, AssertOp)); 7427 } 7428 7429 i += NumParts; 7430 } 7431 7432 // We don't need to do anything else for unused arguments. 7433 if (ArgValues.empty()) 7434 continue; 7435 7436 // Note down frame index. 7437 if (FrameIndexSDNode *FI = 7438 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7439 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7440 7441 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7442 SDB->getCurSDLoc()); 7443 7444 SDB->setValue(I, Res); 7445 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7446 if (LoadSDNode *LNode = 7447 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7448 if (FrameIndexSDNode *FI = 7449 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7450 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7451 } 7452 7453 // If this argument is live outside of the entry block, insert a copy from 7454 // wherever we got it to the vreg that other BB's will reference it as. 7455 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7456 // If we can, though, try to skip creating an unnecessary vreg. 7457 // FIXME: This isn't very clean... it would be nice to make this more 7458 // general. It's also subtly incompatible with the hacks FastISel 7459 // uses with vregs. 7460 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7461 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7462 FuncInfo->ValueMap[I] = Reg; 7463 continue; 7464 } 7465 } 7466 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7467 FuncInfo->InitializeRegForValue(I); 7468 SDB->CopyToExportRegsIfNeeded(I); 7469 } 7470 } 7471 7472 assert(i == InVals.size() && "Argument register count mismatch!"); 7473 7474 // Finally, if the target has anything special to do, allow it to do so. 7475 EmitFunctionEntryCode(); 7476 } 7477 7478 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7479 /// ensure constants are generated when needed. Remember the virtual registers 7480 /// that need to be added to the Machine PHI nodes as input. We cannot just 7481 /// directly add them, because expansion might result in multiple MBB's for one 7482 /// BB. As such, the start of the BB might correspond to a different MBB than 7483 /// the end. 7484 /// 7485 void 7486 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7487 const TerminatorInst *TI = LLVMBB->getTerminator(); 7488 7489 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7490 7491 // Check PHI nodes in successors that expect a value to be available from this 7492 // block. 7493 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7494 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7495 if (!isa<PHINode>(SuccBB->begin())) continue; 7496 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7497 7498 // If this terminator has multiple identical successors (common for 7499 // switches), only handle each succ once. 7500 if (!SuccsHandled.insert(SuccMBB).second) 7501 continue; 7502 7503 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7504 7505 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7506 // nodes and Machine PHI nodes, but the incoming operands have not been 7507 // emitted yet. 7508 for (BasicBlock::const_iterator I = SuccBB->begin(); 7509 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7510 // Ignore dead phi's. 7511 if (PN->use_empty()) continue; 7512 7513 // Skip empty types 7514 if (PN->getType()->isEmptyTy()) 7515 continue; 7516 7517 unsigned Reg; 7518 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7519 7520 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7521 unsigned &RegOut = ConstantsOut[C]; 7522 if (RegOut == 0) { 7523 RegOut = FuncInfo.CreateRegs(C->getType()); 7524 CopyValueToVirtualRegister(C, RegOut); 7525 } 7526 Reg = RegOut; 7527 } else { 7528 DenseMap<const Value *, unsigned>::iterator I = 7529 FuncInfo.ValueMap.find(PHIOp); 7530 if (I != FuncInfo.ValueMap.end()) 7531 Reg = I->second; 7532 else { 7533 assert(isa<AllocaInst>(PHIOp) && 7534 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7535 "Didn't codegen value into a register!??"); 7536 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7537 CopyValueToVirtualRegister(PHIOp, Reg); 7538 } 7539 } 7540 7541 // Remember that this register needs to added to the machine PHI node as 7542 // the input for this MBB. 7543 SmallVector<EVT, 4> ValueVTs; 7544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7545 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7546 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7547 EVT VT = ValueVTs[vti]; 7548 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7549 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7550 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7551 Reg += NumRegisters; 7552 } 7553 } 7554 } 7555 7556 ConstantsOut.clear(); 7557 } 7558 7559 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7560 /// is 0. 7561 MachineBasicBlock * 7562 SelectionDAGBuilder::StackProtectorDescriptor:: 7563 AddSuccessorMBB(const BasicBlock *BB, 7564 MachineBasicBlock *ParentMBB, 7565 bool IsLikely, 7566 MachineBasicBlock *SuccMBB) { 7567 // If SuccBB has not been created yet, create it. 7568 if (!SuccMBB) { 7569 MachineFunction *MF = ParentMBB->getParent(); 7570 MachineFunction::iterator BBI = ParentMBB; 7571 SuccMBB = MF->CreateMachineBasicBlock(BB); 7572 MF->insert(++BBI, SuccMBB); 7573 } 7574 // Add it as a successor of ParentMBB. 7575 ParentMBB->addSuccessor( 7576 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7577 return SuccMBB; 7578 } 7579 7580 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7581 MachineFunction::iterator I = MBB; 7582 if (++I == FuncInfo.MF->end()) 7583 return nullptr; 7584 return I; 7585 } 7586 7587 /// During lowering new call nodes can be created (such as memset, etc.). 7588 /// Those will become new roots of the current DAG, but complications arise 7589 /// when they are tail calls. In such cases, the call lowering will update 7590 /// the root, but the builder still needs to know that a tail call has been 7591 /// lowered in order to avoid generating an additional return. 7592 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7593 // If the node is null, we do have a tail call. 7594 if (MaybeTC.getNode() != nullptr) 7595 DAG.setRoot(MaybeTC); 7596 else 7597 HasTailCall = true; 7598 } 7599 7600 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7601 unsigned *TotalCases, unsigned First, 7602 unsigned Last) { 7603 assert(Last >= First); 7604 assert(TotalCases[Last] >= TotalCases[First]); 7605 7606 APInt LowCase = Clusters[First].Low->getValue(); 7607 APInt HighCase = Clusters[Last].High->getValue(); 7608 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7609 7610 // FIXME: A range of consecutive cases has 100% density, but only requires one 7611 // comparison to lower. We should discriminate against such consecutive ranges 7612 // in jump tables. 7613 7614 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7615 uint64_t Range = Diff + 1; 7616 7617 uint64_t NumCases = 7618 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7619 7620 assert(NumCases < UINT64_MAX / 100); 7621 assert(Range >= NumCases); 7622 7623 return NumCases * 100 >= Range * MinJumpTableDensity; 7624 } 7625 7626 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7627 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7628 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7629 } 7630 7631 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7632 unsigned First, unsigned Last, 7633 const SwitchInst *SI, 7634 MachineBasicBlock *DefaultMBB, 7635 CaseCluster &JTCluster) { 7636 assert(First <= Last); 7637 7638 uint32_t Weight = 0; 7639 unsigned NumCmps = 0; 7640 std::vector<MachineBasicBlock*> Table; 7641 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7642 for (unsigned I = First; I <= Last; ++I) { 7643 assert(Clusters[I].Kind == CC_Range); 7644 Weight += Clusters[I].Weight; 7645 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7646 APInt Low = Clusters[I].Low->getValue(); 7647 APInt High = Clusters[I].High->getValue(); 7648 NumCmps += (Low == High) ? 1 : 2; 7649 if (I != First) { 7650 // Fill the gap between this and the previous cluster. 7651 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7652 assert(PreviousHigh.slt(Low)); 7653 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7654 for (uint64_t J = 0; J < Gap; J++) 7655 Table.push_back(DefaultMBB); 7656 } 7657 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7658 for (uint64_t J = 0; J < ClusterSize; ++J) 7659 Table.push_back(Clusters[I].MBB); 7660 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7661 } 7662 7663 unsigned NumDests = JTWeights.size(); 7664 if (isSuitableForBitTests(NumDests, NumCmps, 7665 Clusters[First].Low->getValue(), 7666 Clusters[Last].High->getValue())) { 7667 // Clusters[First..Last] should be lowered as bit tests instead. 7668 return false; 7669 } 7670 7671 // Create the MBB that will load from and jump through the table. 7672 // Note: We create it here, but it's not inserted into the function yet. 7673 MachineFunction *CurMF = FuncInfo.MF; 7674 MachineBasicBlock *JumpTableMBB = 7675 CurMF->CreateMachineBasicBlock(SI->getParent()); 7676 7677 // Add successors. Note: use table order for determinism. 7678 SmallPtrSet<MachineBasicBlock *, 8> Done; 7679 for (MachineBasicBlock *Succ : Table) { 7680 if (Done.count(Succ)) 7681 continue; 7682 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7683 Done.insert(Succ); 7684 } 7685 7686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7687 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7688 ->createJumpTableIndex(Table); 7689 7690 // Set up the jump table info. 7691 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7692 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7693 Clusters[Last].High->getValue(), SI->getCondition(), 7694 nullptr, false); 7695 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7696 7697 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7698 JTCases.size() - 1, Weight); 7699 return true; 7700 } 7701 7702 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7703 const SwitchInst *SI, 7704 MachineBasicBlock *DefaultMBB) { 7705 #ifndef NDEBUG 7706 // Clusters must be non-empty, sorted, and only contain Range clusters. 7707 assert(!Clusters.empty()); 7708 for (CaseCluster &C : Clusters) 7709 assert(C.Kind == CC_Range); 7710 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7711 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7712 #endif 7713 7714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7715 if (!areJTsAllowed(TLI)) 7716 return; 7717 7718 const int64_t N = Clusters.size(); 7719 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7720 7721 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7722 SmallVector<unsigned, 8> TotalCases(N); 7723 7724 for (unsigned i = 0; i < N; ++i) { 7725 APInt Hi = Clusters[i].High->getValue(); 7726 APInt Lo = Clusters[i].Low->getValue(); 7727 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7728 if (i != 0) 7729 TotalCases[i] += TotalCases[i - 1]; 7730 } 7731 7732 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7733 // Cheap case: the whole range might be suitable for jump table. 7734 CaseCluster JTCluster; 7735 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7736 Clusters[0] = JTCluster; 7737 Clusters.resize(1); 7738 return; 7739 } 7740 } 7741 7742 // The algorithm below is not suitable for -O0. 7743 if (TM.getOptLevel() == CodeGenOpt::None) 7744 return; 7745 7746 // Split Clusters into minimum number of dense partitions. The algorithm uses 7747 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7748 // for the Case Statement'" (1994), but builds the MinPartitions array in 7749 // reverse order to make it easier to reconstruct the partitions in ascending 7750 // order. In the choice between two optimal partitionings, it picks the one 7751 // which yields more jump tables. 7752 7753 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7754 SmallVector<unsigned, 8> MinPartitions(N); 7755 // LastElement[i] is the last element of the partition starting at i. 7756 SmallVector<unsigned, 8> LastElement(N); 7757 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7758 SmallVector<unsigned, 8> NumTables(N); 7759 7760 // Base case: There is only one way to partition Clusters[N-1]. 7761 MinPartitions[N - 1] = 1; 7762 LastElement[N - 1] = N - 1; 7763 assert(MinJumpTableSize > 1); 7764 NumTables[N - 1] = 0; 7765 7766 // Note: loop indexes are signed to avoid underflow. 7767 for (int64_t i = N - 2; i >= 0; i--) { 7768 // Find optimal partitioning of Clusters[i..N-1]. 7769 // Baseline: Put Clusters[i] into a partition on its own. 7770 MinPartitions[i] = MinPartitions[i + 1] + 1; 7771 LastElement[i] = i; 7772 NumTables[i] = NumTables[i + 1]; 7773 7774 // Search for a solution that results in fewer partitions. 7775 for (int64_t j = N - 1; j > i; j--) { 7776 // Try building a partition from Clusters[i..j]. 7777 if (isDense(Clusters, &TotalCases[0], i, j)) { 7778 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7779 bool IsTable = j - i + 1 >= MinJumpTableSize; 7780 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7781 7782 // If this j leads to fewer partitions, or same number of partitions 7783 // with more lookup tables, it is a better partitioning. 7784 if (NumPartitions < MinPartitions[i] || 7785 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7786 MinPartitions[i] = NumPartitions; 7787 LastElement[i] = j; 7788 NumTables[i] = Tables; 7789 } 7790 } 7791 } 7792 } 7793 7794 // Iterate over the partitions, replacing some with jump tables in-place. 7795 unsigned DstIndex = 0; 7796 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7797 Last = LastElement[First]; 7798 assert(Last >= First); 7799 assert(DstIndex <= First); 7800 unsigned NumClusters = Last - First + 1; 7801 7802 CaseCluster JTCluster; 7803 if (NumClusters >= MinJumpTableSize && 7804 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7805 Clusters[DstIndex++] = JTCluster; 7806 } else { 7807 for (unsigned I = First; I <= Last; ++I) 7808 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7809 } 7810 } 7811 Clusters.resize(DstIndex); 7812 } 7813 7814 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7815 // FIXME: Using the pointer type doesn't seem ideal. 7816 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7817 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7818 return Range <= BW; 7819 } 7820 7821 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7822 unsigned NumCmps, 7823 const APInt &Low, 7824 const APInt &High) { 7825 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7826 // range of cases both require only one branch to lower. Just looking at the 7827 // number of clusters and destinations should be enough to decide whether to 7828 // build bit tests. 7829 7830 // To lower a range with bit tests, the range must fit the bitwidth of a 7831 // machine word. 7832 if (!rangeFitsInWord(Low, High)) 7833 return false; 7834 7835 // Decide whether it's profitable to lower this range with bit tests. Each 7836 // destination requires a bit test and branch, and there is an overall range 7837 // check branch. For a small number of clusters, separate comparisons might be 7838 // cheaper, and for many destinations, splitting the range might be better. 7839 return (NumDests == 1 && NumCmps >= 3) || 7840 (NumDests == 2 && NumCmps >= 5) || 7841 (NumDests == 3 && NumCmps >= 6); 7842 } 7843 7844 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7845 unsigned First, unsigned Last, 7846 const SwitchInst *SI, 7847 CaseCluster &BTCluster) { 7848 assert(First <= Last); 7849 if (First == Last) 7850 return false; 7851 7852 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7853 unsigned NumCmps = 0; 7854 for (int64_t I = First; I <= Last; ++I) { 7855 assert(Clusters[I].Kind == CC_Range); 7856 Dests.set(Clusters[I].MBB->getNumber()); 7857 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7858 } 7859 unsigned NumDests = Dests.count(); 7860 7861 APInt Low = Clusters[First].Low->getValue(); 7862 APInt High = Clusters[Last].High->getValue(); 7863 assert(Low.slt(High)); 7864 7865 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7866 return false; 7867 7868 APInt LowBound; 7869 APInt CmpRange; 7870 7871 const int BitWidth = DAG.getTargetLoweringInfo() 7872 .getPointerTy(DAG.getDataLayout()) 7873 .getSizeInBits(); 7874 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7875 7876 // Check if the clusters cover a contiguous range such that no value in the 7877 // range will jump to the default statement. 7878 bool ContiguousRange = true; 7879 for (int64_t I = First + 1; I <= Last; ++I) { 7880 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7881 ContiguousRange = false; 7882 break; 7883 } 7884 } 7885 7886 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7887 // Optimize the case where all the case values fit in a word without having 7888 // to subtract minValue. In this case, we can optimize away the subtraction. 7889 LowBound = APInt::getNullValue(Low.getBitWidth()); 7890 CmpRange = High; 7891 ContiguousRange = false; 7892 } else { 7893 LowBound = Low; 7894 CmpRange = High - Low; 7895 } 7896 7897 CaseBitsVector CBV; 7898 uint32_t TotalWeight = 0; 7899 for (unsigned i = First; i <= Last; ++i) { 7900 // Find the CaseBits for this destination. 7901 unsigned j; 7902 for (j = 0; j < CBV.size(); ++j) 7903 if (CBV[j].BB == Clusters[i].MBB) 7904 break; 7905 if (j == CBV.size()) 7906 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7907 CaseBits *CB = &CBV[j]; 7908 7909 // Update Mask, Bits and ExtraWeight. 7910 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7911 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7912 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7913 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7914 CB->Bits += Hi - Lo + 1; 7915 CB->ExtraWeight += Clusters[i].Weight; 7916 TotalWeight += Clusters[i].Weight; 7917 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7918 } 7919 7920 BitTestInfo BTI; 7921 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7922 // Sort by weight first, number of bits second. 7923 if (a.ExtraWeight != b.ExtraWeight) 7924 return a.ExtraWeight > b.ExtraWeight; 7925 return a.Bits > b.Bits; 7926 }); 7927 7928 for (auto &CB : CBV) { 7929 MachineBasicBlock *BitTestBB = 7930 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7931 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7932 } 7933 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7934 SI->getCondition(), -1U, MVT::Other, false, 7935 ContiguousRange, nullptr, nullptr, std::move(BTI), 7936 TotalWeight); 7937 7938 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7939 BitTestCases.size() - 1, TotalWeight); 7940 return true; 7941 } 7942 7943 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7944 const SwitchInst *SI) { 7945 // Partition Clusters into as few subsets as possible, where each subset has a 7946 // range that fits in a machine word and has <= 3 unique destinations. 7947 7948 #ifndef NDEBUG 7949 // Clusters must be sorted and contain Range or JumpTable clusters. 7950 assert(!Clusters.empty()); 7951 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7952 for (const CaseCluster &C : Clusters) 7953 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7954 for (unsigned i = 1; i < Clusters.size(); ++i) 7955 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7956 #endif 7957 7958 // The algorithm below is not suitable for -O0. 7959 if (TM.getOptLevel() == CodeGenOpt::None) 7960 return; 7961 7962 // If target does not have legal shift left, do not emit bit tests at all. 7963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7964 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7965 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7966 return; 7967 7968 int BitWidth = PTy.getSizeInBits(); 7969 const int64_t N = Clusters.size(); 7970 7971 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7972 SmallVector<unsigned, 8> MinPartitions(N); 7973 // LastElement[i] is the last element of the partition starting at i. 7974 SmallVector<unsigned, 8> LastElement(N); 7975 7976 // FIXME: This might not be the best algorithm for finding bit test clusters. 7977 7978 // Base case: There is only one way to partition Clusters[N-1]. 7979 MinPartitions[N - 1] = 1; 7980 LastElement[N - 1] = N - 1; 7981 7982 // Note: loop indexes are signed to avoid underflow. 7983 for (int64_t i = N - 2; i >= 0; --i) { 7984 // Find optimal partitioning of Clusters[i..N-1]. 7985 // Baseline: Put Clusters[i] into a partition on its own. 7986 MinPartitions[i] = MinPartitions[i + 1] + 1; 7987 LastElement[i] = i; 7988 7989 // Search for a solution that results in fewer partitions. 7990 // Note: the search is limited by BitWidth, reducing time complexity. 7991 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7992 // Try building a partition from Clusters[i..j]. 7993 7994 // Check the range. 7995 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7996 Clusters[j].High->getValue())) 7997 continue; 7998 7999 // Check nbr of destinations and cluster types. 8000 // FIXME: This works, but doesn't seem very efficient. 8001 bool RangesOnly = true; 8002 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8003 for (int64_t k = i; k <= j; k++) { 8004 if (Clusters[k].Kind != CC_Range) { 8005 RangesOnly = false; 8006 break; 8007 } 8008 Dests.set(Clusters[k].MBB->getNumber()); 8009 } 8010 if (!RangesOnly || Dests.count() > 3) 8011 break; 8012 8013 // Check if it's a better partition. 8014 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8015 if (NumPartitions < MinPartitions[i]) { 8016 // Found a better partition. 8017 MinPartitions[i] = NumPartitions; 8018 LastElement[i] = j; 8019 } 8020 } 8021 } 8022 8023 // Iterate over the partitions, replacing with bit-test clusters in-place. 8024 unsigned DstIndex = 0; 8025 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8026 Last = LastElement[First]; 8027 assert(First <= Last); 8028 assert(DstIndex <= First); 8029 8030 CaseCluster BitTestCluster; 8031 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8032 Clusters[DstIndex++] = BitTestCluster; 8033 } else { 8034 size_t NumClusters = Last - First + 1; 8035 std::memmove(&Clusters[DstIndex], &Clusters[First], 8036 sizeof(Clusters[0]) * NumClusters); 8037 DstIndex += NumClusters; 8038 } 8039 } 8040 Clusters.resize(DstIndex); 8041 } 8042 8043 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8044 MachineBasicBlock *SwitchMBB, 8045 MachineBasicBlock *DefaultMBB) { 8046 MachineFunction *CurMF = FuncInfo.MF; 8047 MachineBasicBlock *NextMBB = nullptr; 8048 MachineFunction::iterator BBI = W.MBB; 8049 if (++BBI != FuncInfo.MF->end()) 8050 NextMBB = BBI; 8051 8052 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8053 8054 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8055 8056 if (Size == 2 && W.MBB == SwitchMBB) { 8057 // If any two of the cases has the same destination, and if one value 8058 // is the same as the other, but has one bit unset that the other has set, 8059 // use bit manipulation to do two compares at once. For example: 8060 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8061 // TODO: This could be extended to merge any 2 cases in switches with 3 8062 // cases. 8063 // TODO: Handle cases where W.CaseBB != SwitchBB. 8064 CaseCluster &Small = *W.FirstCluster; 8065 CaseCluster &Big = *W.LastCluster; 8066 8067 if (Small.Low == Small.High && Big.Low == Big.High && 8068 Small.MBB == Big.MBB) { 8069 const APInt &SmallValue = Small.Low->getValue(); 8070 const APInt &BigValue = Big.Low->getValue(); 8071 8072 // Check that there is only one bit different. 8073 APInt CommonBit = BigValue ^ SmallValue; 8074 if (CommonBit.isPowerOf2()) { 8075 SDValue CondLHS = getValue(Cond); 8076 EVT VT = CondLHS.getValueType(); 8077 SDLoc DL = getCurSDLoc(); 8078 8079 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8080 DAG.getConstant(CommonBit, DL, VT)); 8081 SDValue Cond = DAG.getSetCC( 8082 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8083 ISD::SETEQ); 8084 8085 // Update successor info. 8086 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8087 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8088 addSuccessorWithWeight( 8089 SwitchMBB, DefaultMBB, 8090 // The default destination is the first successor in IR. 8091 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8092 : 0); 8093 8094 // Insert the true branch. 8095 SDValue BrCond = 8096 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8097 DAG.getBasicBlock(Small.MBB)); 8098 // Insert the false branch. 8099 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8100 DAG.getBasicBlock(DefaultMBB)); 8101 8102 DAG.setRoot(BrCond); 8103 return; 8104 } 8105 } 8106 } 8107 8108 if (TM.getOptLevel() != CodeGenOpt::None) { 8109 // Order cases by weight so the most likely case will be checked first. 8110 std::sort(W.FirstCluster, W.LastCluster + 1, 8111 [](const CaseCluster &a, const CaseCluster &b) { 8112 return a.Weight > b.Weight; 8113 }); 8114 8115 // Rearrange the case blocks so that the last one falls through if possible 8116 // without without changing the order of weights. 8117 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8118 --I; 8119 if (I->Weight > W.LastCluster->Weight) 8120 break; 8121 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8122 std::swap(*I, *W.LastCluster); 8123 break; 8124 } 8125 } 8126 } 8127 8128 // Compute total weight. 8129 uint32_t DefaultWeight = W.DefaultWeight; 8130 uint32_t UnhandledWeights = DefaultWeight; 8131 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8132 UnhandledWeights += I->Weight; 8133 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8134 } 8135 8136 MachineBasicBlock *CurMBB = W.MBB; 8137 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8138 MachineBasicBlock *Fallthrough; 8139 if (I == W.LastCluster) { 8140 // For the last cluster, fall through to the default destination. 8141 Fallthrough = DefaultMBB; 8142 } else { 8143 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8144 CurMF->insert(BBI, Fallthrough); 8145 // Put Cond in a virtual register to make it available from the new blocks. 8146 ExportFromCurrentBlock(Cond); 8147 } 8148 UnhandledWeights -= I->Weight; 8149 8150 switch (I->Kind) { 8151 case CC_JumpTable: { 8152 // FIXME: Optimize away range check based on pivot comparisons. 8153 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8154 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8155 8156 // The jump block hasn't been inserted yet; insert it here. 8157 MachineBasicBlock *JumpMBB = JT->MBB; 8158 CurMF->insert(BBI, JumpMBB); 8159 8160 uint32_t JumpWeight = I->Weight; 8161 uint32_t FallthroughWeight = UnhandledWeights; 8162 8163 // If the default statement is a target of the jump table, we evenly 8164 // distribute the default weight to successors of CurMBB. Also update 8165 // the weight on the edge from JumpMBB to Fallthrough. 8166 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8167 SE = JumpMBB->succ_end(); 8168 SI != SE; ++SI) { 8169 if (*SI == DefaultMBB) { 8170 JumpWeight += DefaultWeight / 2; 8171 FallthroughWeight -= DefaultWeight / 2; 8172 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8173 break; 8174 } 8175 } 8176 8177 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8178 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8179 8180 // The jump table header will be inserted in our current block, do the 8181 // range check, and fall through to our fallthrough block. 8182 JTH->HeaderBB = CurMBB; 8183 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8184 8185 // If we're in the right place, emit the jump table header right now. 8186 if (CurMBB == SwitchMBB) { 8187 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8188 JTH->Emitted = true; 8189 } 8190 break; 8191 } 8192 case CC_BitTests: { 8193 // FIXME: Optimize away range check based on pivot comparisons. 8194 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8195 8196 // The bit test blocks haven't been inserted yet; insert them here. 8197 for (BitTestCase &BTC : BTB->Cases) 8198 CurMF->insert(BBI, BTC.ThisBB); 8199 8200 // Fill in fields of the BitTestBlock. 8201 BTB->Parent = CurMBB; 8202 BTB->Default = Fallthrough; 8203 8204 BTB->DefaultWeight = UnhandledWeights; 8205 // If the cases in bit test don't form a contiguous range, we evenly 8206 // distribute the weight on the edge to Fallthrough to two successors 8207 // of CurMBB. 8208 if (!BTB->ContiguousRange) { 8209 BTB->Weight += DefaultWeight / 2; 8210 BTB->DefaultWeight -= DefaultWeight / 2; 8211 } 8212 8213 // If we're in the right place, emit the bit test header right now. 8214 if (CurMBB == SwitchMBB) { 8215 visitBitTestHeader(*BTB, SwitchMBB); 8216 BTB->Emitted = true; 8217 } 8218 break; 8219 } 8220 case CC_Range: { 8221 const Value *RHS, *LHS, *MHS; 8222 ISD::CondCode CC; 8223 if (I->Low == I->High) { 8224 // Check Cond == I->Low. 8225 CC = ISD::SETEQ; 8226 LHS = Cond; 8227 RHS=I->Low; 8228 MHS = nullptr; 8229 } else { 8230 // Check I->Low <= Cond <= I->High. 8231 CC = ISD::SETLE; 8232 LHS = I->Low; 8233 MHS = Cond; 8234 RHS = I->High; 8235 } 8236 8237 // The false weight is the sum of all unhandled cases. 8238 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8239 UnhandledWeights); 8240 8241 if (CurMBB == SwitchMBB) 8242 visitSwitchCase(CB, SwitchMBB); 8243 else 8244 SwitchCases.push_back(CB); 8245 8246 break; 8247 } 8248 } 8249 CurMBB = Fallthrough; 8250 } 8251 } 8252 8253 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8254 CaseClusterIt First, 8255 CaseClusterIt Last) { 8256 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8257 if (X.Weight != CC.Weight) 8258 return X.Weight > CC.Weight; 8259 8260 // Ties are broken by comparing the case value. 8261 return X.Low->getValue().slt(CC.Low->getValue()); 8262 }); 8263 } 8264 8265 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8266 const SwitchWorkListItem &W, 8267 Value *Cond, 8268 MachineBasicBlock *SwitchMBB) { 8269 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8270 "Clusters not sorted?"); 8271 8272 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8273 8274 // Balance the tree based on branch weights to create a near-optimal (in terms 8275 // of search time given key frequency) binary search tree. See e.g. Kurt 8276 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8277 CaseClusterIt LastLeft = W.FirstCluster; 8278 CaseClusterIt FirstRight = W.LastCluster; 8279 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8280 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8281 8282 // Move LastLeft and FirstRight towards each other from opposite directions to 8283 // find a partitioning of the clusters which balances the weight on both 8284 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8285 // taken to ensure 0-weight nodes are distributed evenly. 8286 unsigned I = 0; 8287 while (LastLeft + 1 < FirstRight) { 8288 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8289 LeftWeight += (++LastLeft)->Weight; 8290 else 8291 RightWeight += (--FirstRight)->Weight; 8292 I++; 8293 } 8294 8295 for (;;) { 8296 // Our binary search tree differs from a typical BST in that ours can have up 8297 // to three values in each leaf. The pivot selection above doesn't take that 8298 // into account, which means the tree might require more nodes and be less 8299 // efficient. We compensate for this here. 8300 8301 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8302 unsigned NumRight = W.LastCluster - FirstRight + 1; 8303 8304 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8305 // If one side has less than 3 clusters, and the other has more than 3, 8306 // consider taking a cluster from the other side. 8307 8308 if (NumLeft < NumRight) { 8309 // Consider moving the first cluster on the right to the left side. 8310 CaseCluster &CC = *FirstRight; 8311 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8312 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8313 if (LeftSideRank <= RightSideRank) { 8314 // Moving the cluster to the left does not demote it. 8315 ++LastLeft; 8316 ++FirstRight; 8317 continue; 8318 } 8319 } else { 8320 assert(NumRight < NumLeft); 8321 // Consider moving the last element on the left to the right side. 8322 CaseCluster &CC = *LastLeft; 8323 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8324 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8325 if (RightSideRank <= LeftSideRank) { 8326 // Moving the cluster to the right does not demot it. 8327 --LastLeft; 8328 --FirstRight; 8329 continue; 8330 } 8331 } 8332 } 8333 break; 8334 } 8335 8336 assert(LastLeft + 1 == FirstRight); 8337 assert(LastLeft >= W.FirstCluster); 8338 assert(FirstRight <= W.LastCluster); 8339 8340 // Use the first element on the right as pivot since we will make less-than 8341 // comparisons against it. 8342 CaseClusterIt PivotCluster = FirstRight; 8343 assert(PivotCluster > W.FirstCluster); 8344 assert(PivotCluster <= W.LastCluster); 8345 8346 CaseClusterIt FirstLeft = W.FirstCluster; 8347 CaseClusterIt LastRight = W.LastCluster; 8348 8349 const ConstantInt *Pivot = PivotCluster->Low; 8350 8351 // New blocks will be inserted immediately after the current one. 8352 MachineFunction::iterator BBI = W.MBB; 8353 ++BBI; 8354 8355 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8356 // we can branch to its destination directly if it's squeezed exactly in 8357 // between the known lower bound and Pivot - 1. 8358 MachineBasicBlock *LeftMBB; 8359 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8360 FirstLeft->Low == W.GE && 8361 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8362 LeftMBB = FirstLeft->MBB; 8363 } else { 8364 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8365 FuncInfo.MF->insert(BBI, LeftMBB); 8366 WorkList.push_back( 8367 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8368 // Put Cond in a virtual register to make it available from the new blocks. 8369 ExportFromCurrentBlock(Cond); 8370 } 8371 8372 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8373 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8374 // directly if RHS.High equals the current upper bound. 8375 MachineBasicBlock *RightMBB; 8376 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8377 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8378 RightMBB = FirstRight->MBB; 8379 } else { 8380 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8381 FuncInfo.MF->insert(BBI, RightMBB); 8382 WorkList.push_back( 8383 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8384 // Put Cond in a virtual register to make it available from the new blocks. 8385 ExportFromCurrentBlock(Cond); 8386 } 8387 8388 // Create the CaseBlock record that will be used to lower the branch. 8389 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8390 LeftWeight, RightWeight); 8391 8392 if (W.MBB == SwitchMBB) 8393 visitSwitchCase(CB, SwitchMBB); 8394 else 8395 SwitchCases.push_back(CB); 8396 } 8397 8398 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8399 // Extract cases from the switch. 8400 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8401 CaseClusterVector Clusters; 8402 Clusters.reserve(SI.getNumCases()); 8403 for (auto I : SI.cases()) { 8404 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8405 const ConstantInt *CaseVal = I.getCaseValue(); 8406 uint32_t Weight = 8407 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8408 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8409 } 8410 8411 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8412 8413 // Cluster adjacent cases with the same destination. We do this at all 8414 // optimization levels because it's cheap to do and will make codegen faster 8415 // if there are many clusters. 8416 sortAndRangeify(Clusters); 8417 8418 if (TM.getOptLevel() != CodeGenOpt::None) { 8419 // Replace an unreachable default with the most popular destination. 8420 // FIXME: Exploit unreachable default more aggressively. 8421 bool UnreachableDefault = 8422 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8423 if (UnreachableDefault && !Clusters.empty()) { 8424 DenseMap<const BasicBlock *, unsigned> Popularity; 8425 unsigned MaxPop = 0; 8426 const BasicBlock *MaxBB = nullptr; 8427 for (auto I : SI.cases()) { 8428 const BasicBlock *BB = I.getCaseSuccessor(); 8429 if (++Popularity[BB] > MaxPop) { 8430 MaxPop = Popularity[BB]; 8431 MaxBB = BB; 8432 } 8433 } 8434 // Set new default. 8435 assert(MaxPop > 0 && MaxBB); 8436 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8437 8438 // Remove cases that were pointing to the destination that is now the 8439 // default. 8440 CaseClusterVector New; 8441 New.reserve(Clusters.size()); 8442 for (CaseCluster &CC : Clusters) { 8443 if (CC.MBB != DefaultMBB) 8444 New.push_back(CC); 8445 } 8446 Clusters = std::move(New); 8447 } 8448 } 8449 8450 // If there is only the default destination, jump there directly. 8451 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8452 if (Clusters.empty()) { 8453 SwitchMBB->addSuccessor(DefaultMBB); 8454 if (DefaultMBB != NextBlock(SwitchMBB)) { 8455 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8456 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8457 } 8458 return; 8459 } 8460 8461 findJumpTables(Clusters, &SI, DefaultMBB); 8462 findBitTestClusters(Clusters, &SI); 8463 8464 DEBUG({ 8465 dbgs() << "Case clusters: "; 8466 for (const CaseCluster &C : Clusters) { 8467 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8468 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8469 8470 C.Low->getValue().print(dbgs(), true); 8471 if (C.Low != C.High) { 8472 dbgs() << '-'; 8473 C.High->getValue().print(dbgs(), true); 8474 } 8475 dbgs() << ' '; 8476 } 8477 dbgs() << '\n'; 8478 }); 8479 8480 assert(!Clusters.empty()); 8481 SwitchWorkList WorkList; 8482 CaseClusterIt First = Clusters.begin(); 8483 CaseClusterIt Last = Clusters.end() - 1; 8484 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8485 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8486 8487 while (!WorkList.empty()) { 8488 SwitchWorkListItem W = WorkList.back(); 8489 WorkList.pop_back(); 8490 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8491 8492 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8493 // For optimized builds, lower large range as a balanced binary tree. 8494 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8495 continue; 8496 } 8497 8498 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8499 } 8500 } 8501