xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f7aba7ba22e15e7b6dc0238feeb19cccc5f46f53)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Statepoint.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetFrameLowering.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 #include <algorithm>
71 #include <utility>
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "isel"
75 
76 /// LimitFloatPrecision - Generate low-precision inline sequences for
77 /// some float libcalls (6, 8 or 12 bits).
78 static unsigned LimitFloatPrecision;
79 
80 static cl::opt<unsigned, true>
81 LimitFPPrecision("limit-float-precision",
82                  cl::desc("Generate low-precision inline sequences "
83                           "for some float libcalls"),
84                  cl::location(LimitFloatPrecision),
85                  cl::init(0));
86 
87 static cl::opt<bool>
88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
89                 cl::desc("Enable fast-math-flags for DAG nodes"));
90 
91 /// Minimum jump table density for normal functions.
92 static cl::opt<unsigned>
93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
94                  cl::desc("Minimum density for building a jump table in "
95                           "a normal function"));
96 
97 /// Minimum jump table density for -Os or -Oz functions.
98 static cl::opt<unsigned>
99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
100                         cl::desc("Minimum density for building a jump table in "
101                                  "an optsize function"));
102 
103 
104 // Limit the width of DAG chains. This is important in general to prevent
105 // DAG-based analysis from blowing up. For example, alias analysis and
106 // load clustering may not complete in reasonable time. It is difficult to
107 // recognize and avoid this situation within each individual analysis, and
108 // future analyses are likely to have the same behavior. Limiting DAG width is
109 // the safe approach and will be especially important with global DAGs.
110 //
111 // MaxParallelChains default is arbitrarily high to avoid affecting
112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
113 // sequence over this should have been converted to llvm.memcpy by the
114 // frontend. It is easy to induce this behavior with .ll code such as:
115 // %buffer = alloca [4096 x i8]
116 // %data = load [4096 x i8]* %argPtr
117 // store [4096 x i8] %data, [4096 x i8]* %buffer
118 static const unsigned MaxParallelChains = 64;
119 
120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
121                                       const SDValue *Parts, unsigned NumParts,
122                                       MVT PartVT, EVT ValueVT, const Value *V);
123 
124 /// getCopyFromParts - Create a value that contains the specified legal parts
125 /// combined into the value they represent.  If the parts combine to a type
126 /// larger than ValueVT then AssertOp can be used to specify whether the extra
127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
128 /// (ISD::AssertSext).
129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
130                                 const SDValue *Parts, unsigned NumParts,
131                                 MVT PartVT, EVT ValueVT, const Value *V,
132                                 Optional<ISD::NodeType> AssertOp = None) {
133   if (ValueVT.isVector())
134     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
135                                   PartVT, ValueVT, V);
136 
137   assert(NumParts > 0 && "No parts to assemble!");
138   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
139   SDValue Val = Parts[0];
140 
141   if (NumParts > 1) {
142     // Assemble the value from multiple parts.
143     if (ValueVT.isInteger()) {
144       unsigned PartBits = PartVT.getSizeInBits();
145       unsigned ValueBits = ValueVT.getSizeInBits();
146 
147       // Assemble the power of 2 part.
148       unsigned RoundParts = NumParts & (NumParts - 1) ?
149         1 << Log2_32(NumParts) : NumParts;
150       unsigned RoundBits = PartBits * RoundParts;
151       EVT RoundVT = RoundBits == ValueBits ?
152         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
153       SDValue Lo, Hi;
154 
155       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
156 
157       if (RoundParts > 2) {
158         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
159                               PartVT, HalfVT, V);
160         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
161                               RoundParts / 2, PartVT, HalfVT, V);
162       } else {
163         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
164         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
165       }
166 
167       if (DAG.getDataLayout().isBigEndian())
168         std::swap(Lo, Hi);
169 
170       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
171 
172       if (RoundParts < NumParts) {
173         // Assemble the trailing non-power-of-2 part.
174         unsigned OddParts = NumParts - RoundParts;
175         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
176         Hi = getCopyFromParts(DAG, DL,
177                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
178 
179         // Combine the round and odd parts.
180         Lo = Val;
181         if (DAG.getDataLayout().isBigEndian())
182           std::swap(Lo, Hi);
183         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
184         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
185         Hi =
186             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
187                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
188                                         TLI.getPointerTy(DAG.getDataLayout())));
189         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
190         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
191       }
192     } else if (PartVT.isFloatingPoint()) {
193       // FP split into multiple FP parts (for ppcf128)
194       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
195              "Unexpected split");
196       SDValue Lo, Hi;
197       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
198       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
199       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
200         std::swap(Lo, Hi);
201       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
202     } else {
203       // FP split into integer parts (soft fp)
204       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
205              !PartVT.isVector() && "Unexpected split");
206       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
207       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
208     }
209   }
210 
211   // There is now one part, held in Val.  Correct it to match ValueVT.
212   // PartEVT is the type of the register class that holds the value.
213   // ValueVT is the type of the inline asm operation.
214   EVT PartEVT = Val.getValueType();
215 
216   if (PartEVT == ValueVT)
217     return Val;
218 
219   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
220       ValueVT.bitsLT(PartEVT)) {
221     // For an FP value in an integer part, we need to truncate to the right
222     // width first.
223     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
224     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
225   }
226 
227   // Handle types that have the same size.
228   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
229     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
230 
231   // Handle types with different sizes.
232   if (PartEVT.isInteger() && ValueVT.isInteger()) {
233     if (ValueVT.bitsLT(PartEVT)) {
234       // For a truncate, see if we have any information to
235       // indicate whether the truncated bits will always be
236       // zero or sign-extension.
237       if (AssertOp.hasValue())
238         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
239                           DAG.getValueType(ValueVT));
240       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
241     }
242     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
243   }
244 
245   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
246     // FP_ROUND's are always exact here.
247     if (ValueVT.bitsLT(Val.getValueType()))
248       return DAG.getNode(
249           ISD::FP_ROUND, DL, ValueVT, Val,
250           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
251 
252     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
253   }
254 
255   llvm_unreachable("Unknown mismatch!");
256 }
257 
258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
259                                               const Twine &ErrMsg) {
260   const Instruction *I = dyn_cast_or_null<Instruction>(V);
261   if (!V)
262     return Ctx.emitError(ErrMsg);
263 
264   const char *AsmError = ", possible invalid constraint for vector type";
265   if (const CallInst *CI = dyn_cast<CallInst>(I))
266     if (isa<InlineAsm>(CI->getCalledValue()))
267       return Ctx.emitError(I, ErrMsg + AsmError);
268 
269   return Ctx.emitError(I, ErrMsg);
270 }
271 
272 /// getCopyFromPartsVector - Create a value that contains the specified legal
273 /// parts combined into the value they represent.  If the parts combine to a
274 /// type larger than ValueVT then AssertOp can be used to specify whether the
275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
276 /// ValueVT (ISD::AssertSext).
277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
278                                       const SDValue *Parts, unsigned NumParts,
279                                       MVT PartVT, EVT ValueVT, const Value *V) {
280   assert(ValueVT.isVector() && "Not a vector value");
281   assert(NumParts > 0 && "No parts to assemble!");
282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
283   SDValue Val = Parts[0];
284 
285   // Handle a multi-element vector.
286   if (NumParts > 1) {
287     EVT IntermediateVT;
288     MVT RegisterVT;
289     unsigned NumIntermediates;
290     unsigned NumRegs =
291     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
292                                NumIntermediates, RegisterVT);
293     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
294     NumParts = NumRegs; // Silence a compiler warning.
295     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
296     assert(RegisterVT.getSizeInBits() ==
297            Parts[0].getSimpleValueType().getSizeInBits() &&
298            "Part type sizes don't match!");
299 
300     // Assemble the parts into intermediate operands.
301     SmallVector<SDValue, 8> Ops(NumIntermediates);
302     if (NumIntermediates == NumParts) {
303       // If the register was not expanded, truncate or copy the value,
304       // as appropriate.
305       for (unsigned i = 0; i != NumParts; ++i)
306         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
307                                   PartVT, IntermediateVT, V);
308     } else if (NumParts > 0) {
309       // If the intermediate type was expanded, build the intermediate
310       // operands from the parts.
311       assert(NumParts % NumIntermediates == 0 &&
312              "Must expand into a divisible number of parts!");
313       unsigned Factor = NumParts / NumIntermediates;
314       for (unsigned i = 0; i != NumIntermediates; ++i)
315         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
316                                   PartVT, IntermediateVT, V);
317     }
318 
319     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
320     // intermediate operands.
321     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
322                                                 : ISD::BUILD_VECTOR,
323                       DL, ValueVT, Ops);
324   }
325 
326   // There is now one part, held in Val.  Correct it to match ValueVT.
327   EVT PartEVT = Val.getValueType();
328 
329   if (PartEVT == ValueVT)
330     return Val;
331 
332   if (PartEVT.isVector()) {
333     // If the element type of the source/dest vectors are the same, but the
334     // parts vector has more elements than the value vector, then we have a
335     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
336     // elements we want.
337     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
338       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
339              "Cannot narrow, it would be a lossy transformation");
340       return DAG.getNode(
341           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
342           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
343     }
344 
345     // Vector/Vector bitcast.
346     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
347       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
348 
349     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
350       "Cannot handle this kind of promotion");
351     // Promoted vector extract
352     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
353 
354   }
355 
356   // Trivial bitcast if the types are the same size and the destination
357   // vector type is legal.
358   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
359       TLI.isTypeLegal(ValueVT))
360     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
361 
362   // Handle cases such as i8 -> <1 x i1>
363   if (ValueVT.getVectorNumElements() != 1) {
364     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
365                                       "non-trivial scalar-to-vector conversion");
366     return DAG.getUNDEF(ValueVT);
367   }
368 
369   if (ValueVT.getVectorNumElements() == 1 &&
370       ValueVT.getVectorElementType() != PartEVT)
371     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
372 
373   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
374 }
375 
376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
377                                  SDValue Val, SDValue *Parts, unsigned NumParts,
378                                  MVT PartVT, const Value *V);
379 
380 /// getCopyToParts - Create a series of nodes that contain the specified value
381 /// split into legal parts.  If the parts contain more bits than Val, then, for
382 /// integers, ExtendKind can be used to specify how to generate the extra bits.
383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
384                            SDValue *Parts, unsigned NumParts, MVT PartVT,
385                            const Value *V,
386                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
387   EVT ValueVT = Val.getValueType();
388 
389   // Handle the vector case separately.
390   if (ValueVT.isVector())
391     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
392 
393   unsigned PartBits = PartVT.getSizeInBits();
394   unsigned OrigNumParts = NumParts;
395   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
396          "Copying to an illegal type!");
397 
398   if (NumParts == 0)
399     return;
400 
401   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
402   EVT PartEVT = PartVT;
403   if (PartEVT == ValueVT) {
404     assert(NumParts == 1 && "No-op copy with multiple parts!");
405     Parts[0] = Val;
406     return;
407   }
408 
409   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
410     // If the parts cover more bits than the value has, promote the value.
411     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
412       assert(NumParts == 1 && "Do not know what to promote to!");
413       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
414     } else {
415       if (ValueVT.isFloatingPoint()) {
416         // FP values need to be bitcast, then extended if they are being put
417         // into a larger container.
418         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
419         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420       }
421       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
422              ValueVT.isInteger() &&
423              "Unknown mismatch!");
424       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
425       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
426       if (PartVT == MVT::x86mmx)
427         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428     }
429   } else if (PartBits == ValueVT.getSizeInBits()) {
430     // Different types of the same size.
431     assert(NumParts == 1 && PartEVT != ValueVT);
432     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
433   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
434     // If the parts cover less bits than value has, truncate the value.
435     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
436            ValueVT.isInteger() &&
437            "Unknown mismatch!");
438     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
439     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
440     if (PartVT == MVT::x86mmx)
441       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
442   }
443 
444   // The value may have changed - recompute ValueVT.
445   ValueVT = Val.getValueType();
446   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
447          "Failed to tile the value with PartVT!");
448 
449   if (NumParts == 1) {
450     if (PartEVT != ValueVT) {
451       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
452                                         "scalar-to-vector conversion failed");
453       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
454     }
455 
456     Parts[0] = Val;
457     return;
458   }
459 
460   // Expand the value into multiple parts.
461   if (NumParts & (NumParts - 1)) {
462     // The number of parts is not a power of 2.  Split off and copy the tail.
463     assert(PartVT.isInteger() && ValueVT.isInteger() &&
464            "Do not know what to expand to!");
465     unsigned RoundParts = 1 << Log2_32(NumParts);
466     unsigned RoundBits = RoundParts * PartBits;
467     unsigned OddParts = NumParts - RoundParts;
468     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
469                                  DAG.getIntPtrConstant(RoundBits, DL));
470     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
471 
472     if (DAG.getDataLayout().isBigEndian())
473       // The odd parts were reversed by getCopyToParts - unreverse them.
474       std::reverse(Parts + RoundParts, Parts + NumParts);
475 
476     NumParts = RoundParts;
477     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
478     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
479   }
480 
481   // The number of parts is a power of 2.  Repeatedly bisect the value using
482   // EXTRACT_ELEMENT.
483   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
484                          EVT::getIntegerVT(*DAG.getContext(),
485                                            ValueVT.getSizeInBits()),
486                          Val);
487 
488   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
489     for (unsigned i = 0; i < NumParts; i += StepSize) {
490       unsigned ThisBits = StepSize * PartBits / 2;
491       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
492       SDValue &Part0 = Parts[i];
493       SDValue &Part1 = Parts[i+StepSize/2];
494 
495       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
496                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
497       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
498                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
499 
500       if (ThisBits == PartBits && ThisVT != PartVT) {
501         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
502         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
503       }
504     }
505   }
506 
507   if (DAG.getDataLayout().isBigEndian())
508     std::reverse(Parts, Parts + OrigNumParts);
509 }
510 
511 
512 /// getCopyToPartsVector - Create a series of nodes that contain the specified
513 /// value split into legal parts.
514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
515                                  SDValue Val, SDValue *Parts, unsigned NumParts,
516                                  MVT PartVT, const Value *V) {
517   EVT ValueVT = Val.getValueType();
518   assert(ValueVT.isVector() && "Not a vector");
519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
520 
521   if (NumParts == 1) {
522     EVT PartEVT = PartVT;
523     if (PartEVT == ValueVT) {
524       // Nothing to do.
525     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
526       // Bitconvert vector->vector case.
527       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
530                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
531       EVT ElementVT = PartVT.getVectorElementType();
532       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
533       // undef elements.
534       SmallVector<SDValue, 16> Ops;
535       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
536         Ops.push_back(DAG.getNode(
537             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
538             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
539 
540       for (unsigned i = ValueVT.getVectorNumElements(),
541            e = PartVT.getVectorNumElements(); i != e; ++i)
542         Ops.push_back(DAG.getUNDEF(ElementVT));
543 
544       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
545 
546       // FIXME: Use CONCAT for 2x -> 4x.
547 
548       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
549       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
550     } else if (PartVT.isVector() &&
551                PartEVT.getVectorElementType().bitsGE(
552                  ValueVT.getVectorElementType()) &&
553                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
554 
555       // Promoted vector extract
556       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
557     } else{
558       // Vector -> scalar conversion.
559       assert(ValueVT.getVectorNumElements() == 1 &&
560              "Only trivial vector-to-scalar conversions should get here!");
561       Val = DAG.getNode(
562           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
563           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
564 
565       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
566     }
567 
568     Parts[0] = Val;
569     return;
570   }
571 
572   // Handle a multi-element vector.
573   EVT IntermediateVT;
574   MVT RegisterVT;
575   unsigned NumIntermediates;
576   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
577                                                 IntermediateVT,
578                                                 NumIntermediates, RegisterVT);
579   unsigned NumElements = ValueVT.getVectorNumElements();
580 
581   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
582   NumParts = NumRegs; // Silence a compiler warning.
583   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
584 
585   // Split the vector into intermediate operands.
586   SmallVector<SDValue, 8> Ops(NumIntermediates);
587   for (unsigned i = 0; i != NumIntermediates; ++i) {
588     if (IntermediateVT.isVector())
589       Ops[i] =
590           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
591                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
592                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
593     else
594       Ops[i] = DAG.getNode(
595           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
596           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
597   }
598 
599   // Split the intermediate operands into legal parts.
600   if (NumParts == NumIntermediates) {
601     // If the register was not expanded, promote or copy the value,
602     // as appropriate.
603     for (unsigned i = 0; i != NumParts; ++i)
604       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
605   } else if (NumParts > 0) {
606     // If the intermediate type was expanded, split each the value into
607     // legal parts.
608     assert(NumIntermediates != 0 && "division by zero");
609     assert(NumParts % NumIntermediates == 0 &&
610            "Must expand into a divisible number of parts!");
611     unsigned Factor = NumParts / NumIntermediates;
612     for (unsigned i = 0; i != NumIntermediates; ++i)
613       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
614   }
615 }
616 
617 RegsForValue::RegsForValue() {}
618 
619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
620                            EVT valuevt)
621     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
622 
623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
624                            const DataLayout &DL, unsigned Reg, Type *Ty) {
625   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
626 
627   for (EVT ValueVT : ValueVTs) {
628     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
629     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
630     for (unsigned i = 0; i != NumRegs; ++i)
631       Regs.push_back(Reg + i);
632     RegVTs.push_back(RegisterVT);
633     Reg += NumRegs;
634   }
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       const SDLoc &dl, SDValue &Chain,
644                                       SDValue *Flag, const Value *V) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     MVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (!Flag) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       if (NumZeroBits == RegSize) {
689         // The current value is a zero.
690         // Explicitly express that as it would be easier for
691         // optimizations to kick in.
692         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
693         continue;
694       }
695 
696       // FIXME: We capture more information than the dag can represent.  For
697       // now, just use the tightest assertzext/assertsext possible.
698       bool isSExt = true;
699       EVT FromVT(MVT::Other);
700       if (NumSignBits == RegSize) {
701         isSExt = true;   // ASSERT SEXT 1
702         FromVT = MVT::i1;
703       } else if (NumZeroBits >= RegSize - 1) {
704         isSExt = false;  // ASSERT ZEXT 1
705         FromVT = MVT::i1;
706       } else if (NumSignBits > RegSize - 8) {
707         isSExt = true;   // ASSERT SEXT 8
708         FromVT = MVT::i8;
709       } else if (NumZeroBits >= RegSize - 8) {
710         isSExt = false;  // ASSERT ZEXT 8
711         FromVT = MVT::i8;
712       } else if (NumSignBits > RegSize - 16) {
713         isSExt = true;   // ASSERT SEXT 16
714         FromVT = MVT::i16;
715       } else if (NumZeroBits >= RegSize - 16) {
716         isSExt = false;  // ASSERT ZEXT 16
717         FromVT = MVT::i16;
718       } else if (NumSignBits > RegSize - 32) {
719         isSExt = true;   // ASSERT SEXT 32
720         FromVT = MVT::i32;
721       } else if (NumZeroBits >= RegSize - 32) {
722         isSExt = false;  // ASSERT ZEXT 32
723         FromVT = MVT::i32;
724       } else {
725         continue;
726       }
727       // Add an assertion node.
728       assert(FromVT != MVT::Other);
729       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
730                              RegisterVT, P, DAG.getValueType(FromVT));
731     }
732 
733     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
734                                      NumRegs, RegisterVT, ValueVT, V);
735     Part += NumRegs;
736     Parts.clear();
737   }
738 
739   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
740 }
741 
742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
743 /// specified value into the registers specified by this object.  This uses
744 /// Chain/Flag as the input and updates them for the output Chain/Flag.
745 /// If the Flag pointer is NULL, no flag is used.
746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
747                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
748                                  const Value *V,
749                                  ISD::NodeType PreferredExtendType) const {
750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
751   ISD::NodeType ExtendKind = PreferredExtendType;
752 
753   // Get the list of the values's legal parts.
754   unsigned NumRegs = Regs.size();
755   SmallVector<SDValue, 8> Parts(NumRegs);
756   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
757     EVT ValueVT = ValueVTs[Value];
758     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
759     MVT RegisterVT = RegVTs[Value];
760 
761     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
762       ExtendKind = ISD::ZERO_EXTEND;
763 
764     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
765                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
766     Part += NumParts;
767   }
768 
769   // Copy the parts into the registers.
770   SmallVector<SDValue, 8> Chains(NumRegs);
771   for (unsigned i = 0; i != NumRegs; ++i) {
772     SDValue Part;
773     if (!Flag) {
774       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
775     } else {
776       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
777       *Flag = Part.getValue(1);
778     }
779 
780     Chains[i] = Part.getValue(0);
781   }
782 
783   if (NumRegs == 1 || Flag)
784     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
785     // flagged to it. That is the CopyToReg nodes and the user are considered
786     // a single scheduling unit. If we create a TokenFactor and return it as
787     // chain, then the TokenFactor is both a predecessor (operand) of the
788     // user as well as a successor (the TF operands are flagged to the user).
789     // c1, f1 = CopyToReg
790     // c2, f2 = CopyToReg
791     // c3     = TokenFactor c1, c2
792     // ...
793     //        = op c3, ..., f2
794     Chain = Chains[NumRegs-1];
795   else
796     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
797 }
798 
799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
800 /// operand list.  This adds the code marker and includes the number of
801 /// values added into it.
802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
803                                         unsigned MatchingIdx, const SDLoc &dl,
804                                         SelectionDAG &DAG,
805                                         std::vector<SDValue> &Ops) const {
806   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
807 
808   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
809   if (HasMatching)
810     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
811   else if (!Regs.empty() &&
812            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
813     // Put the register class of the virtual registers in the flag word.  That
814     // way, later passes can recompute register class constraints for inline
815     // assembly as well as normal instructions.
816     // Don't do this for tied operands that can use the regclass information
817     // from the def.
818     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
819     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
820     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
821   }
822 
823   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
824   Ops.push_back(Res);
825 
826   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
827   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
828     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
829     MVT RegisterVT = RegVTs[Value];
830     for (unsigned i = 0; i != NumRegs; ++i) {
831       assert(Reg < Regs.size() && "Mismatch in # registers expected");
832       unsigned TheReg = Regs[Reg++];
833       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
834 
835       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
836         // If we clobbered the stack pointer, MFI should know about it.
837         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
838       }
839     }
840   }
841 }
842 
843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844                                const TargetLibraryInfo *li) {
845   AA = &aa;
846   GFI = gfi;
847   LibInfo = li;
848   DL = &DAG.getDataLayout();
849   Context = DAG.getContext();
850   LPadToCallSiteMap.clear();
851 }
852 
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
859 void SelectionDAGBuilder::clear() {
860   NodeMap.clear();
861   UnusedArgNodeMap.clear();
862   PendingLoads.clear();
863   PendingExports.clear();
864   CurInst = nullptr;
865   HasTailCall = false;
866   SDNodeOrder = LowestSDNodeOrder;
867   StatepointLowering.clear();
868 }
869 
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877   DanglingDebugInfoMap.clear();
878 }
879 
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
885 SDValue SelectionDAGBuilder::getRoot() {
886   if (PendingLoads.empty())
887     return DAG.getRoot();
888 
889   if (PendingLoads.size() == 1) {
890     SDValue Root = PendingLoads[0];
891     DAG.setRoot(Root);
892     PendingLoads.clear();
893     return Root;
894   }
895 
896   // Otherwise, we have to make a token factor node.
897   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898                              PendingLoads);
899   PendingLoads.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
908 SDValue SelectionDAGBuilder::getControlRoot() {
909   SDValue Root = DAG.getRoot();
910 
911   if (PendingExports.empty())
912     return Root;
913 
914   // Turn all of the CopyToReg chains into one factored node.
915   if (Root.getOpcode() != ISD::EntryToken) {
916     unsigned i = 0, e = PendingExports.size();
917     for (; i != e; ++i) {
918       assert(PendingExports[i].getNode()->getNumOperands() > 1);
919       if (PendingExports[i].getNode()->getOperand(0) == Root)
920         break;  // Don't add the root if we already indirectly depend on it.
921     }
922 
923     if (i == e)
924       PendingExports.push_back(Root);
925   }
926 
927   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928                      PendingExports);
929   PendingExports.clear();
930   DAG.setRoot(Root);
931   return Root;
932 }
933 
934 void SelectionDAGBuilder::visit(const Instruction &I) {
935   // Set up outgoing PHI node register values before emitting the terminator.
936   if (isa<TerminatorInst>(&I)) {
937     HandlePHINodesInSuccessorBlocks(I.getParent());
938   }
939 
940   // Increase the SDNodeOrder if dealing with a non-debug instruction.
941   if (!isa<DbgInfoIntrinsic>(I))
942     ++SDNodeOrder;
943 
944   CurInst = &I;
945 
946   visit(I.getOpcode(), I);
947 
948   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
949       !isStatepoint(&I)) // statepoints handle their exports internally
950     CopyToExportRegsIfNeeded(&I);
951 
952   CurInst = nullptr;
953 }
954 
955 void SelectionDAGBuilder::visitPHI(const PHINode &) {
956   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
957 }
958 
959 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
960   // Note: this doesn't use InstVisitor, because it has to work with
961   // ConstantExpr's in addition to instructions.
962   switch (Opcode) {
963   default: llvm_unreachable("Unknown instruction type encountered!");
964     // Build the switch statement using the Instruction.def file.
965 #define HANDLE_INST(NUM, OPCODE, CLASS) \
966     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
967 #include "llvm/IR/Instruction.def"
968   }
969 }
970 
971 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
972 // generate the debug data structures now that we've seen its definition.
973 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
974                                                    SDValue Val) {
975   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
976   if (DDI.getDI()) {
977     const DbgValueInst *DI = DDI.getDI();
978     DebugLoc dl = DDI.getdl();
979     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
980     DILocalVariable *Variable = DI->getVariable();
981     DIExpression *Expr = DI->getExpression();
982     assert(Variable->isValidLocationForIntrinsic(dl) &&
983            "Expected inlined-at fields to agree");
984     uint64_t Offset = DI->getOffset();
985     SDDbgValue *SDV;
986     if (Val.getNode()) {
987       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
988                                     Val)) {
989         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
990         DAG.AddDbgValue(SDV, Val.getNode(), false);
991       }
992     } else
993       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
994     DanglingDebugInfoMap[V] = DanglingDebugInfo();
995   }
996 }
997 
998 /// getCopyFromRegs - If there was virtual register allocated for the value V
999 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1000 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1001   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1002   SDValue Result;
1003 
1004   if (It != FuncInfo.ValueMap.end()) {
1005     unsigned InReg = It->second;
1006     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1007                      DAG.getDataLayout(), InReg, Ty);
1008     SDValue Chain = DAG.getEntryNode();
1009     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1010     resolveDanglingDebugInfo(V, Result);
1011   }
1012 
1013   return Result;
1014 }
1015 
1016 /// getValue - Return an SDValue for the given Value.
1017 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1018   // If we already have an SDValue for this value, use it. It's important
1019   // to do this first, so that we don't create a CopyFromReg if we already
1020   // have a regular SDValue.
1021   SDValue &N = NodeMap[V];
1022   if (N.getNode()) return N;
1023 
1024   // If there's a virtual register allocated and initialized for this
1025   // value, use it.
1026   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1027     return copyFromReg;
1028 
1029   // Otherwise create a new SDValue and remember it.
1030   SDValue Val = getValueImpl(V);
1031   NodeMap[V] = Val;
1032   resolveDanglingDebugInfo(V, Val);
1033   return Val;
1034 }
1035 
1036 // Return true if SDValue exists for the given Value
1037 bool SelectionDAGBuilder::findValue(const Value *V) const {
1038   return (NodeMap.find(V) != NodeMap.end()) ||
1039     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1040 }
1041 
1042 /// getNonRegisterValue - Return an SDValue for the given Value, but
1043 /// don't look in FuncInfo.ValueMap for a virtual register.
1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1045   // If we already have an SDValue for this value, use it.
1046   SDValue &N = NodeMap[V];
1047   if (N.getNode()) {
1048     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1049       // Remove the debug location from the node as the node is about to be used
1050       // in a location which may differ from the original debug location.  This
1051       // is relevant to Constant and ConstantFP nodes because they can appear
1052       // as constant expressions inside PHI nodes.
1053       N->setDebugLoc(DebugLoc());
1054     }
1055     return N;
1056   }
1057 
1058   // Otherwise create a new SDValue and remember it.
1059   SDValue Val = getValueImpl(V);
1060   NodeMap[V] = Val;
1061   resolveDanglingDebugInfo(V, Val);
1062   return Val;
1063 }
1064 
1065 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1066 /// Create an SDValue for the given value.
1067 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1069 
1070   if (const Constant *C = dyn_cast<Constant>(V)) {
1071     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1072 
1073     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1074       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1075 
1076     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1077       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1078 
1079     if (isa<ConstantPointerNull>(C)) {
1080       unsigned AS = V->getType()->getPointerAddressSpace();
1081       return DAG.getConstant(0, getCurSDLoc(),
1082                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1083     }
1084 
1085     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1086       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1087 
1088     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1089       return DAG.getUNDEF(VT);
1090 
1091     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1092       visit(CE->getOpcode(), *CE);
1093       SDValue N1 = NodeMap[V];
1094       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1095       return N1;
1096     }
1097 
1098     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1099       SmallVector<SDValue, 4> Constants;
1100       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1101            OI != OE; ++OI) {
1102         SDNode *Val = getValue(*OI).getNode();
1103         // If the operand is an empty aggregate, there are no values.
1104         if (!Val) continue;
1105         // Add each leaf value from the operand to the Constants list
1106         // to form a flattened list of all the values.
1107         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1108           Constants.push_back(SDValue(Val, i));
1109       }
1110 
1111       return DAG.getMergeValues(Constants, getCurSDLoc());
1112     }
1113 
1114     if (const ConstantDataSequential *CDS =
1115           dyn_cast<ConstantDataSequential>(C)) {
1116       SmallVector<SDValue, 4> Ops;
1117       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1118         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1119         // Add each leaf value from the operand to the Constants list
1120         // to form a flattened list of all the values.
1121         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1122           Ops.push_back(SDValue(Val, i));
1123       }
1124 
1125       if (isa<ArrayType>(CDS->getType()))
1126         return DAG.getMergeValues(Ops, getCurSDLoc());
1127       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1128                                       VT, Ops);
1129     }
1130 
1131     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1132       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1133              "Unknown struct or array constant!");
1134 
1135       SmallVector<EVT, 4> ValueVTs;
1136       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1137       unsigned NumElts = ValueVTs.size();
1138       if (NumElts == 0)
1139         return SDValue(); // empty struct
1140       SmallVector<SDValue, 4> Constants(NumElts);
1141       for (unsigned i = 0; i != NumElts; ++i) {
1142         EVT EltVT = ValueVTs[i];
1143         if (isa<UndefValue>(C))
1144           Constants[i] = DAG.getUNDEF(EltVT);
1145         else if (EltVT.isFloatingPoint())
1146           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1147         else
1148           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1149       }
1150 
1151       return DAG.getMergeValues(Constants, getCurSDLoc());
1152     }
1153 
1154     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1155       return DAG.getBlockAddress(BA, VT);
1156 
1157     VectorType *VecTy = cast<VectorType>(V->getType());
1158     unsigned NumElements = VecTy->getNumElements();
1159 
1160     // Now that we know the number and type of the elements, get that number of
1161     // elements into the Ops array based on what kind of constant it is.
1162     SmallVector<SDValue, 16> Ops;
1163     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1164       for (unsigned i = 0; i != NumElements; ++i)
1165         Ops.push_back(getValue(CV->getOperand(i)));
1166     } else {
1167       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1168       EVT EltVT =
1169           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1170 
1171       SDValue Op;
1172       if (EltVT.isFloatingPoint())
1173         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1174       else
1175         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1176       Ops.assign(NumElements, Op);
1177     }
1178 
1179     // Create a BUILD_VECTOR node.
1180     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1181   }
1182 
1183   // If this is a static alloca, generate it as the frameindex instead of
1184   // computation.
1185   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1186     DenseMap<const AllocaInst*, int>::iterator SI =
1187       FuncInfo.StaticAllocaMap.find(AI);
1188     if (SI != FuncInfo.StaticAllocaMap.end())
1189       return DAG.getFrameIndex(SI->second,
1190                                TLI.getPointerTy(DAG.getDataLayout()));
1191   }
1192 
1193   // If this is an instruction which fast-isel has deferred, select it now.
1194   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1195     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1196     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1197                      Inst->getType());
1198     SDValue Chain = DAG.getEntryNode();
1199     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1200   }
1201 
1202   llvm_unreachable("Can't get register for value!");
1203 }
1204 
1205 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1206   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1207   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1208   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1209   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1210   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1211   if (IsMSVCCXX || IsCoreCLR)
1212     CatchPadMBB->setIsEHFuncletEntry();
1213 
1214   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1215 }
1216 
1217 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1218   // Update machine-CFG edge.
1219   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1220   FuncInfo.MBB->addSuccessor(TargetMBB);
1221 
1222   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1223   bool IsSEH = isAsynchronousEHPersonality(Pers);
1224   if (IsSEH) {
1225     // If this is not a fall-through branch or optimizations are switched off,
1226     // emit the branch.
1227     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1228         TM.getOptLevel() == CodeGenOpt::None)
1229       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1230                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1231     return;
1232   }
1233 
1234   // Figure out the funclet membership for the catchret's successor.
1235   // This will be used by the FuncletLayout pass to determine how to order the
1236   // BB's.
1237   // A 'catchret' returns to the outer scope's color.
1238   Value *ParentPad = I.getCatchSwitchParentPad();
1239   const BasicBlock *SuccessorColor;
1240   if (isa<ConstantTokenNone>(ParentPad))
1241     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1242   else
1243     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1244   assert(SuccessorColor && "No parent funclet for catchret!");
1245   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1246   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1247 
1248   // Create the terminator node.
1249   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1250                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1251                             DAG.getBasicBlock(SuccessorColorMBB));
1252   DAG.setRoot(Ret);
1253 }
1254 
1255 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1256   // Don't emit any special code for the cleanuppad instruction. It just marks
1257   // the start of a funclet.
1258   FuncInfo.MBB->setIsEHFuncletEntry();
1259   FuncInfo.MBB->setIsCleanupFuncletEntry();
1260 }
1261 
1262 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1263 /// many places it could ultimately go. In the IR, we have a single unwind
1264 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1265 /// This function skips over imaginary basic blocks that hold catchswitch
1266 /// instructions, and finds all the "real" machine
1267 /// basic block destinations. As those destinations may not be successors of
1268 /// EHPadBB, here we also calculate the edge probability to those destinations.
1269 /// The passed-in Prob is the edge probability to EHPadBB.
1270 static void findUnwindDestinations(
1271     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1272     BranchProbability Prob,
1273     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1274         &UnwindDests) {
1275   EHPersonality Personality =
1276     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1277   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1278   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1279 
1280   while (EHPadBB) {
1281     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1282     BasicBlock *NewEHPadBB = nullptr;
1283     if (isa<LandingPadInst>(Pad)) {
1284       // Stop on landingpads. They are not funclets.
1285       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1286       break;
1287     } else if (isa<CleanupPadInst>(Pad)) {
1288       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1289       // personalities.
1290       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1291       UnwindDests.back().first->setIsEHFuncletEntry();
1292       break;
1293     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1294       // Add the catchpad handlers to the possible destinations.
1295       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1296         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1297         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1298         if (IsMSVCCXX || IsCoreCLR)
1299           UnwindDests.back().first->setIsEHFuncletEntry();
1300       }
1301       NewEHPadBB = CatchSwitch->getUnwindDest();
1302     } else {
1303       continue;
1304     }
1305 
1306     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1307     if (BPI && NewEHPadBB)
1308       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1309     EHPadBB = NewEHPadBB;
1310   }
1311 }
1312 
1313 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1314   // Update successor info.
1315   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1316   auto UnwindDest = I.getUnwindDest();
1317   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1318   BranchProbability UnwindDestProb =
1319       (BPI && UnwindDest)
1320           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1321           : BranchProbability::getZero();
1322   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1323   for (auto &UnwindDest : UnwindDests) {
1324     UnwindDest.first->setIsEHPad();
1325     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1326   }
1327   FuncInfo.MBB->normalizeSuccProbs();
1328 
1329   // Create the terminator node.
1330   SDValue Ret =
1331       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1332   DAG.setRoot(Ret);
1333 }
1334 
1335 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1336   report_fatal_error("visitCatchSwitch not yet implemented!");
1337 }
1338 
1339 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1341   auto &DL = DAG.getDataLayout();
1342   SDValue Chain = getControlRoot();
1343   SmallVector<ISD::OutputArg, 8> Outs;
1344   SmallVector<SDValue, 8> OutVals;
1345 
1346   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1347   // lower
1348   //
1349   //   %val = call <ty> @llvm.experimental.deoptimize()
1350   //   ret <ty> %val
1351   //
1352   // differently.
1353   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1354     LowerDeoptimizingReturn();
1355     return;
1356   }
1357 
1358   if (!FuncInfo.CanLowerReturn) {
1359     unsigned DemoteReg = FuncInfo.DemoteRegister;
1360     const Function *F = I.getParent()->getParent();
1361 
1362     // Emit a store of the return value through the virtual register.
1363     // Leave Outs empty so that LowerReturn won't try to load return
1364     // registers the usual way.
1365     SmallVector<EVT, 1> PtrValueVTs;
1366     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1367                     PtrValueVTs);
1368 
1369     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1370                                         DemoteReg, PtrValueVTs[0]);
1371     SDValue RetOp = getValue(I.getOperand(0));
1372 
1373     SmallVector<EVT, 4> ValueVTs;
1374     SmallVector<uint64_t, 4> Offsets;
1375     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1376     unsigned NumValues = ValueVTs.size();
1377 
1378     // An aggregate return value cannot wrap around the address space, so
1379     // offsets to its parts don't wrap either.
1380     SDNodeFlags Flags;
1381     Flags.setNoUnsignedWrap(true);
1382 
1383     SmallVector<SDValue, 4> Chains(NumValues);
1384     for (unsigned i = 0; i != NumValues; ++i) {
1385       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1386                                 RetPtr.getValueType(), RetPtr,
1387                                 DAG.getIntPtrConstant(Offsets[i],
1388                                                       getCurSDLoc()),
1389                                 &Flags);
1390       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1391                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1392                                // FIXME: better loc info would be nice.
1393                                Add, MachinePointerInfo());
1394     }
1395 
1396     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1397                         MVT::Other, Chains);
1398   } else if (I.getNumOperands() != 0) {
1399     SmallVector<EVT, 4> ValueVTs;
1400     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1401     unsigned NumValues = ValueVTs.size();
1402     if (NumValues) {
1403       SDValue RetOp = getValue(I.getOperand(0));
1404 
1405       const Function *F = I.getParent()->getParent();
1406 
1407       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1408       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                           Attribute::SExt))
1410         ExtendKind = ISD::SIGN_EXTEND;
1411       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1412                                                Attribute::ZExt))
1413         ExtendKind = ISD::ZERO_EXTEND;
1414 
1415       LLVMContext &Context = F->getContext();
1416       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1417                                                       Attribute::InReg);
1418 
1419       for (unsigned j = 0; j != NumValues; ++j) {
1420         EVT VT = ValueVTs[j];
1421 
1422         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1423           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1424 
1425         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1426         MVT PartVT = TLI.getRegisterType(Context, VT);
1427         SmallVector<SDValue, 4> Parts(NumParts);
1428         getCopyToParts(DAG, getCurSDLoc(),
1429                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1430                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1431 
1432         // 'inreg' on function refers to return value
1433         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1434         if (RetInReg)
1435           Flags.setInReg();
1436 
1437         // Propagate extension type if any
1438         if (ExtendKind == ISD::SIGN_EXTEND)
1439           Flags.setSExt();
1440         else if (ExtendKind == ISD::ZERO_EXTEND)
1441           Flags.setZExt();
1442 
1443         for (unsigned i = 0; i < NumParts; ++i) {
1444           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1445                                         VT, /*isfixed=*/true, 0, 0));
1446           OutVals.push_back(Parts[i]);
1447         }
1448       }
1449     }
1450   }
1451 
1452   // Push in swifterror virtual register as the last element of Outs. This makes
1453   // sure swifterror virtual register will be returned in the swifterror
1454   // physical register.
1455   const Function *F = I.getParent()->getParent();
1456   if (TLI.supportSwiftError() &&
1457       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1458     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1459     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1460     Flags.setSwiftError();
1461     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1462                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1463                                   true /*isfixed*/, 1 /*origidx*/,
1464                                   0 /*partOffs*/));
1465     // Create SDNode for the swifterror virtual register.
1466     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1467                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1468                                       EVT(TLI.getPointerTy(DL))));
1469   }
1470 
1471   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1472   CallingConv::ID CallConv =
1473     DAG.getMachineFunction().getFunction()->getCallingConv();
1474   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1475       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1476 
1477   // Verify that the target's LowerReturn behaved as expected.
1478   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1479          "LowerReturn didn't return a valid chain!");
1480 
1481   // Update the DAG with the new chain value resulting from return lowering.
1482   DAG.setRoot(Chain);
1483 }
1484 
1485 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1486 /// created for it, emit nodes to copy the value into the virtual
1487 /// registers.
1488 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1489   // Skip empty types
1490   if (V->getType()->isEmptyTy())
1491     return;
1492 
1493   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1494   if (VMI != FuncInfo.ValueMap.end()) {
1495     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1496     CopyValueToVirtualRegister(V, VMI->second);
1497   }
1498 }
1499 
1500 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1501 /// the current basic block, add it to ValueMap now so that we'll get a
1502 /// CopyTo/FromReg.
1503 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1504   // No need to export constants.
1505   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1506 
1507   // Already exported?
1508   if (FuncInfo.isExportedInst(V)) return;
1509 
1510   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1511   CopyValueToVirtualRegister(V, Reg);
1512 }
1513 
1514 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1515                                                      const BasicBlock *FromBB) {
1516   // The operands of the setcc have to be in this block.  We don't know
1517   // how to export them from some other block.
1518   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1519     // Can export from current BB.
1520     if (VI->getParent() == FromBB)
1521       return true;
1522 
1523     // Is already exported, noop.
1524     return FuncInfo.isExportedInst(V);
1525   }
1526 
1527   // If this is an argument, we can export it if the BB is the entry block or
1528   // if it is already exported.
1529   if (isa<Argument>(V)) {
1530     if (FromBB == &FromBB->getParent()->getEntryBlock())
1531       return true;
1532 
1533     // Otherwise, can only export this if it is already exported.
1534     return FuncInfo.isExportedInst(V);
1535   }
1536 
1537   // Otherwise, constants can always be exported.
1538   return true;
1539 }
1540 
1541 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1542 BranchProbability
1543 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1544                                         const MachineBasicBlock *Dst) const {
1545   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1546   const BasicBlock *SrcBB = Src->getBasicBlock();
1547   const BasicBlock *DstBB = Dst->getBasicBlock();
1548   if (!BPI) {
1549     // If BPI is not available, set the default probability as 1 / N, where N is
1550     // the number of successors.
1551     auto SuccSize = std::max<uint32_t>(
1552         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1553     return BranchProbability(1, SuccSize);
1554   }
1555   return BPI->getEdgeProbability(SrcBB, DstBB);
1556 }
1557 
1558 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1559                                                MachineBasicBlock *Dst,
1560                                                BranchProbability Prob) {
1561   if (!FuncInfo.BPI)
1562     Src->addSuccessorWithoutProb(Dst);
1563   else {
1564     if (Prob.isUnknown())
1565       Prob = getEdgeProbability(Src, Dst);
1566     Src->addSuccessor(Dst, Prob);
1567   }
1568 }
1569 
1570 static bool InBlock(const Value *V, const BasicBlock *BB) {
1571   if (const Instruction *I = dyn_cast<Instruction>(V))
1572     return I->getParent() == BB;
1573   return true;
1574 }
1575 
1576 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1577 /// This function emits a branch and is used at the leaves of an OR or an
1578 /// AND operator tree.
1579 ///
1580 void
1581 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1582                                                   MachineBasicBlock *TBB,
1583                                                   MachineBasicBlock *FBB,
1584                                                   MachineBasicBlock *CurBB,
1585                                                   MachineBasicBlock *SwitchBB,
1586                                                   BranchProbability TProb,
1587                                                   BranchProbability FProb,
1588                                                   bool InvertCond) {
1589   const BasicBlock *BB = CurBB->getBasicBlock();
1590 
1591   // If the leaf of the tree is a comparison, merge the condition into
1592   // the caseblock.
1593   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1594     // The operands of the cmp have to be in this block.  We don't know
1595     // how to export them from some other block.  If this is the first block
1596     // of the sequence, no exporting is needed.
1597     if (CurBB == SwitchBB ||
1598         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1599          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1600       ISD::CondCode Condition;
1601       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1602         ICmpInst::Predicate Pred =
1603             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1604         Condition = getICmpCondCode(Pred);
1605       } else {
1606         const FCmpInst *FC = cast<FCmpInst>(Cond);
1607         FCmpInst::Predicate Pred =
1608             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1609         Condition = getFCmpCondCode(Pred);
1610         if (TM.Options.NoNaNsFPMath)
1611           Condition = getFCmpCodeWithoutNaN(Condition);
1612       }
1613 
1614       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1615                    TBB, FBB, CurBB, TProb, FProb);
1616       SwitchCases.push_back(CB);
1617       return;
1618     }
1619   }
1620 
1621   // Create a CaseBlock record representing this branch.
1622   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1623   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1624                nullptr, TBB, FBB, CurBB, TProb, FProb);
1625   SwitchCases.push_back(CB);
1626 }
1627 
1628 /// FindMergedConditions - If Cond is an expression like
1629 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1630                                                MachineBasicBlock *TBB,
1631                                                MachineBasicBlock *FBB,
1632                                                MachineBasicBlock *CurBB,
1633                                                MachineBasicBlock *SwitchBB,
1634                                                Instruction::BinaryOps Opc,
1635                                                BranchProbability TProb,
1636                                                BranchProbability FProb,
1637                                                bool InvertCond) {
1638   // Skip over not part of the tree and remember to invert op and operands at
1639   // next level.
1640   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1641     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1642     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1643       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1644                            !InvertCond);
1645       return;
1646     }
1647   }
1648 
1649   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1650   // Compute the effective opcode for Cond, taking into account whether it needs
1651   // to be inverted, e.g.
1652   //   and (not (or A, B)), C
1653   // gets lowered as
1654   //   and (and (not A, not B), C)
1655   unsigned BOpc = 0;
1656   if (BOp) {
1657     BOpc = BOp->getOpcode();
1658     if (InvertCond) {
1659       if (BOpc == Instruction::And)
1660         BOpc = Instruction::Or;
1661       else if (BOpc == Instruction::Or)
1662         BOpc = Instruction::And;
1663     }
1664   }
1665 
1666   // If this node is not part of the or/and tree, emit it as a branch.
1667   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1668       BOpc != Opc || !BOp->hasOneUse() ||
1669       BOp->getParent() != CurBB->getBasicBlock() ||
1670       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1671       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1672     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1673                                  TProb, FProb, InvertCond);
1674     return;
1675   }
1676 
1677   //  Create TmpBB after CurBB.
1678   MachineFunction::iterator BBI(CurBB);
1679   MachineFunction &MF = DAG.getMachineFunction();
1680   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1681   CurBB->getParent()->insert(++BBI, TmpBB);
1682 
1683   if (Opc == Instruction::Or) {
1684     // Codegen X | Y as:
1685     // BB1:
1686     //   jmp_if_X TBB
1687     //   jmp TmpBB
1688     // TmpBB:
1689     //   jmp_if_Y TBB
1690     //   jmp FBB
1691     //
1692 
1693     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1694     // The requirement is that
1695     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1696     //     = TrueProb for original BB.
1697     // Assuming the original probabilities are A and B, one choice is to set
1698     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1699     // A/(1+B) and 2B/(1+B). This choice assumes that
1700     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1701     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1702     // TmpBB, but the math is more complicated.
1703 
1704     auto NewTrueProb = TProb / 2;
1705     auto NewFalseProb = TProb / 2 + FProb;
1706     // Emit the LHS condition.
1707     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1708                          NewTrueProb, NewFalseProb, InvertCond);
1709 
1710     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1711     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1712     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1713     // Emit the RHS condition into TmpBB.
1714     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1715                          Probs[0], Probs[1], InvertCond);
1716   } else {
1717     assert(Opc == Instruction::And && "Unknown merge op!");
1718     // Codegen X & Y as:
1719     // BB1:
1720     //   jmp_if_X TmpBB
1721     //   jmp FBB
1722     // TmpBB:
1723     //   jmp_if_Y TBB
1724     //   jmp FBB
1725     //
1726     //  This requires creation of TmpBB after CurBB.
1727 
1728     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1729     // The requirement is that
1730     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1731     //     = FalseProb for original BB.
1732     // Assuming the original probabilities are A and B, one choice is to set
1733     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1734     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1735     // TrueProb for BB1 * FalseProb for TmpBB.
1736 
1737     auto NewTrueProb = TProb + FProb / 2;
1738     auto NewFalseProb = FProb / 2;
1739     // Emit the LHS condition.
1740     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1741                          NewTrueProb, NewFalseProb, InvertCond);
1742 
1743     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1744     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1745     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1746     // Emit the RHS condition into TmpBB.
1747     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1748                          Probs[0], Probs[1], InvertCond);
1749   }
1750 }
1751 
1752 /// If the set of cases should be emitted as a series of branches, return true.
1753 /// If we should emit this as a bunch of and/or'd together conditions, return
1754 /// false.
1755 bool
1756 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1757   if (Cases.size() != 2) return true;
1758 
1759   // If this is two comparisons of the same values or'd or and'd together, they
1760   // will get folded into a single comparison, so don't emit two blocks.
1761   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1762        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1763       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1764        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1765     return false;
1766   }
1767 
1768   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1769   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1770   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1771       Cases[0].CC == Cases[1].CC &&
1772       isa<Constant>(Cases[0].CmpRHS) &&
1773       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1774     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1775       return false;
1776     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1777       return false;
1778   }
1779 
1780   return true;
1781 }
1782 
1783 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1784   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1785 
1786   // Update machine-CFG edges.
1787   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1788 
1789   if (I.isUnconditional()) {
1790     // Update machine-CFG edges.
1791     BrMBB->addSuccessor(Succ0MBB);
1792 
1793     // If this is not a fall-through branch or optimizations are switched off,
1794     // emit the branch.
1795     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1796       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1797                               MVT::Other, getControlRoot(),
1798                               DAG.getBasicBlock(Succ0MBB)));
1799 
1800     return;
1801   }
1802 
1803   // If this condition is one of the special cases we handle, do special stuff
1804   // now.
1805   const Value *CondVal = I.getCondition();
1806   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1807 
1808   // If this is a series of conditions that are or'd or and'd together, emit
1809   // this as a sequence of branches instead of setcc's with and/or operations.
1810   // As long as jumps are not expensive, this should improve performance.
1811   // For example, instead of something like:
1812   //     cmp A, B
1813   //     C = seteq
1814   //     cmp D, E
1815   //     F = setle
1816   //     or C, F
1817   //     jnz foo
1818   // Emit:
1819   //     cmp A, B
1820   //     je foo
1821   //     cmp D, E
1822   //     jle foo
1823   //
1824   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1825     Instruction::BinaryOps Opcode = BOp->getOpcode();
1826     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1827         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1828         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1829       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1830                            Opcode,
1831                            getEdgeProbability(BrMBB, Succ0MBB),
1832                            getEdgeProbability(BrMBB, Succ1MBB),
1833                            /*InvertCond=*/false);
1834       // If the compares in later blocks need to use values not currently
1835       // exported from this block, export them now.  This block should always
1836       // be the first entry.
1837       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1838 
1839       // Allow some cases to be rejected.
1840       if (ShouldEmitAsBranches(SwitchCases)) {
1841         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1842           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1843           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1844         }
1845 
1846         // Emit the branch for this block.
1847         visitSwitchCase(SwitchCases[0], BrMBB);
1848         SwitchCases.erase(SwitchCases.begin());
1849         return;
1850       }
1851 
1852       // Okay, we decided not to do this, remove any inserted MBB's and clear
1853       // SwitchCases.
1854       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1855         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1856 
1857       SwitchCases.clear();
1858     }
1859   }
1860 
1861   // Create a CaseBlock record representing this branch.
1862   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1863                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1864 
1865   // Use visitSwitchCase to actually insert the fast branch sequence for this
1866   // cond branch.
1867   visitSwitchCase(CB, BrMBB);
1868 }
1869 
1870 /// visitSwitchCase - Emits the necessary code to represent a single node in
1871 /// the binary search tree resulting from lowering a switch instruction.
1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1873                                           MachineBasicBlock *SwitchBB) {
1874   SDValue Cond;
1875   SDValue CondLHS = getValue(CB.CmpLHS);
1876   SDLoc dl = getCurSDLoc();
1877 
1878   // Build the setcc now.
1879   if (!CB.CmpMHS) {
1880     // Fold "(X == true)" to X and "(X == false)" to !X to
1881     // handle common cases produced by branch lowering.
1882     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1883         CB.CC == ISD::SETEQ)
1884       Cond = CondLHS;
1885     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1886              CB.CC == ISD::SETEQ) {
1887       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1888       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1889     } else
1890       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1891   } else {
1892     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1893 
1894     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1895     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1896 
1897     SDValue CmpOp = getValue(CB.CmpMHS);
1898     EVT VT = CmpOp.getValueType();
1899 
1900     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1901       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1902                           ISD::SETLE);
1903     } else {
1904       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1905                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1906       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1907                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1908     }
1909   }
1910 
1911   // Update successor info
1912   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1913   // TrueBB and FalseBB are always different unless the incoming IR is
1914   // degenerate. This only happens when running llc on weird IR.
1915   if (CB.TrueBB != CB.FalseBB)
1916     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1917   SwitchBB->normalizeSuccProbs();
1918 
1919   // If the lhs block is the next block, invert the condition so that we can
1920   // fall through to the lhs instead of the rhs block.
1921   if (CB.TrueBB == NextBlock(SwitchBB)) {
1922     std::swap(CB.TrueBB, CB.FalseBB);
1923     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1924     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1925   }
1926 
1927   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1928                                MVT::Other, getControlRoot(), Cond,
1929                                DAG.getBasicBlock(CB.TrueBB));
1930 
1931   // Insert the false branch. Do this even if it's a fall through branch,
1932   // this makes it easier to do DAG optimizations which require inverting
1933   // the branch condition.
1934   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1935                        DAG.getBasicBlock(CB.FalseBB));
1936 
1937   DAG.setRoot(BrCond);
1938 }
1939 
1940 /// visitJumpTable - Emit JumpTable node in the current MBB
1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1942   // Emit the code for the jump table
1943   assert(JT.Reg != -1U && "Should lower JT Header first!");
1944   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1945   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                      JT.Reg, PTy);
1947   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1948   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1949                                     MVT::Other, Index.getValue(1),
1950                                     Table, Index);
1951   DAG.setRoot(BrJumpTable);
1952 }
1953 
1954 /// visitJumpTableHeader - This function emits necessary code to produce index
1955 /// in the JumpTable from switch case.
1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1957                                                JumpTableHeader &JTH,
1958                                                MachineBasicBlock *SwitchBB) {
1959   SDLoc dl = getCurSDLoc();
1960 
1961   // Subtract the lowest switch case value from the value being switched on and
1962   // conditional branch to default mbb if the result is greater than the
1963   // difference between smallest and largest cases.
1964   SDValue SwitchOp = getValue(JTH.SValue);
1965   EVT VT = SwitchOp.getValueType();
1966   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1967                             DAG.getConstant(JTH.First, dl, VT));
1968 
1969   // The SDNode we just created, which holds the value being switched on minus
1970   // the smallest case value, needs to be copied to a virtual register so it
1971   // can be used as an index into the jump table in a subsequent basic block.
1972   // This value may be smaller or larger than the target's pointer type, and
1973   // therefore require extension or truncating.
1974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1975   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1976 
1977   unsigned JumpTableReg =
1978       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1979   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1980                                     JumpTableReg, SwitchOp);
1981   JT.Reg = JumpTableReg;
1982 
1983   // Emit the range check for the jump table, and branch to the default block
1984   // for the switch statement if the value being switched on exceeds the largest
1985   // case in the switch.
1986   SDValue CMP = DAG.getSetCC(
1987       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1988                                  Sub.getValueType()),
1989       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1990 
1991   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1992                                MVT::Other, CopyTo, CMP,
1993                                DAG.getBasicBlock(JT.Default));
1994 
1995   // Avoid emitting unnecessary branches to the next block.
1996   if (JT.MBB != NextBlock(SwitchBB))
1997     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1998                          DAG.getBasicBlock(JT.MBB));
1999 
2000   DAG.setRoot(BrCond);
2001 }
2002 
2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2004 /// variable if there exists one.
2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2006                                  SDValue &Chain) {
2007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2008   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2009   MachineFunction &MF = DAG.getMachineFunction();
2010   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2011   MachineSDNode *Node =
2012       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2013   if (Global) {
2014     MachinePointerInfo MPInfo(Global);
2015     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2016     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2017                  MachineMemOperand::MODereferenceable;
2018     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2019                                        DAG.getEVTAlignment(PtrTy));
2020     Node->setMemRefs(MemRefs, MemRefs + 1);
2021   }
2022   return SDValue(Node, 0);
2023 }
2024 
2025 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2026 /// tail spliced into a stack protector check success bb.
2027 ///
2028 /// For a high level explanation of how this fits into the stack protector
2029 /// generation see the comment on the declaration of class
2030 /// StackProtectorDescriptor.
2031 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2032                                                   MachineBasicBlock *ParentBB) {
2033 
2034   // First create the loads to the guard/stack slot for the comparison.
2035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2036   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2037 
2038   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2039   int FI = MFI.getStackProtectorIndex();
2040 
2041   SDValue Guard;
2042   SDLoc dl = getCurSDLoc();
2043   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2044   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2045   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2046 
2047   // Generate code to load the content of the guard slot.
2048   SDValue StackSlot = DAG.getLoad(
2049       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2050       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2051       MachineMemOperand::MOVolatile);
2052 
2053   // Retrieve guard check function, nullptr if instrumentation is inlined.
2054   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2055     // The target provides a guard check function to validate the guard value.
2056     // Generate a call to that function with the content of the guard slot as
2057     // argument.
2058     auto *Fn = cast<Function>(GuardCheck);
2059     FunctionType *FnTy = Fn->getFunctionType();
2060     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2061 
2062     TargetLowering::ArgListTy Args;
2063     TargetLowering::ArgListEntry Entry;
2064     Entry.Node = StackSlot;
2065     Entry.Ty = FnTy->getParamType(0);
2066     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2067       Entry.isInReg = true;
2068     Args.push_back(Entry);
2069 
2070     TargetLowering::CallLoweringInfo CLI(DAG);
2071     CLI.setDebugLoc(getCurSDLoc())
2072       .setChain(DAG.getEntryNode())
2073       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2074                  getValue(GuardCheck), std::move(Args));
2075 
2076     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2077     DAG.setRoot(Result.second);
2078     return;
2079   }
2080 
2081   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2082   // Otherwise, emit a volatile load to retrieve the stack guard value.
2083   SDValue Chain = DAG.getEntryNode();
2084   if (TLI.useLoadStackGuardNode()) {
2085     Guard = getLoadStackGuard(DAG, dl, Chain);
2086   } else {
2087     const Value *IRGuard = TLI.getSDagStackGuard(M);
2088     SDValue GuardPtr = getValue(IRGuard);
2089 
2090     Guard =
2091         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2092                     Align, MachineMemOperand::MOVolatile);
2093   }
2094 
2095   // Perform the comparison via a subtract/getsetcc.
2096   EVT VT = Guard.getValueType();
2097   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2098 
2099   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2100                                                         *DAG.getContext(),
2101                                                         Sub.getValueType()),
2102                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2103 
2104   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2105   // branch to failure MBB.
2106   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2107                                MVT::Other, StackSlot.getOperand(0),
2108                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2109   // Otherwise branch to success MBB.
2110   SDValue Br = DAG.getNode(ISD::BR, dl,
2111                            MVT::Other, BrCond,
2112                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2113 
2114   DAG.setRoot(Br);
2115 }
2116 
2117 /// Codegen the failure basic block for a stack protector check.
2118 ///
2119 /// A failure stack protector machine basic block consists simply of a call to
2120 /// __stack_chk_fail().
2121 ///
2122 /// For a high level explanation of how this fits into the stack protector
2123 /// generation see the comment on the declaration of class
2124 /// StackProtectorDescriptor.
2125 void
2126 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2128   SDValue Chain =
2129       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2130                       None, false, getCurSDLoc(), false, false).second;
2131   DAG.setRoot(Chain);
2132 }
2133 
2134 /// visitBitTestHeader - This function emits necessary code to produce value
2135 /// suitable for "bit tests"
2136 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2137                                              MachineBasicBlock *SwitchBB) {
2138   SDLoc dl = getCurSDLoc();
2139 
2140   // Subtract the minimum value
2141   SDValue SwitchOp = getValue(B.SValue);
2142   EVT VT = SwitchOp.getValueType();
2143   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2144                             DAG.getConstant(B.First, dl, VT));
2145 
2146   // Check range
2147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2148   SDValue RangeCmp = DAG.getSetCC(
2149       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2150                                  Sub.getValueType()),
2151       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2152 
2153   // Determine the type of the test operands.
2154   bool UsePtrType = false;
2155   if (!TLI.isTypeLegal(VT))
2156     UsePtrType = true;
2157   else {
2158     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2159       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2160         // Switch table case range are encoded into series of masks.
2161         // Just use pointer type, it's guaranteed to fit.
2162         UsePtrType = true;
2163         break;
2164       }
2165   }
2166   if (UsePtrType) {
2167     VT = TLI.getPointerTy(DAG.getDataLayout());
2168     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2169   }
2170 
2171   B.RegVT = VT.getSimpleVT();
2172   B.Reg = FuncInfo.CreateReg(B.RegVT);
2173   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2174 
2175   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2176 
2177   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2178   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2179   SwitchBB->normalizeSuccProbs();
2180 
2181   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2182                                 MVT::Other, CopyTo, RangeCmp,
2183                                 DAG.getBasicBlock(B.Default));
2184 
2185   // Avoid emitting unnecessary branches to the next block.
2186   if (MBB != NextBlock(SwitchBB))
2187     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2188                           DAG.getBasicBlock(MBB));
2189 
2190   DAG.setRoot(BrRange);
2191 }
2192 
2193 /// visitBitTestCase - this function produces one "bit test"
2194 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2195                                            MachineBasicBlock* NextMBB,
2196                                            BranchProbability BranchProbToNext,
2197                                            unsigned Reg,
2198                                            BitTestCase &B,
2199                                            MachineBasicBlock *SwitchBB) {
2200   SDLoc dl = getCurSDLoc();
2201   MVT VT = BB.RegVT;
2202   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2203   SDValue Cmp;
2204   unsigned PopCount = countPopulation(B.Mask);
2205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2206   if (PopCount == 1) {
2207     // Testing for a single bit; just compare the shift count with what it
2208     // would need to be to shift a 1 bit in that position.
2209     Cmp = DAG.getSetCC(
2210         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2211         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2212         ISD::SETEQ);
2213   } else if (PopCount == BB.Range) {
2214     // There is only one zero bit in the range, test for it directly.
2215     Cmp = DAG.getSetCC(
2216         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2217         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2218         ISD::SETNE);
2219   } else {
2220     // Make desired shift
2221     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2222                                     DAG.getConstant(1, dl, VT), ShiftOp);
2223 
2224     // Emit bit tests and jumps
2225     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2226                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2227     Cmp = DAG.getSetCC(
2228         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2229         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2230   }
2231 
2232   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2233   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2234   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2235   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2236   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2237   // one as they are relative probabilities (and thus work more like weights),
2238   // and hence we need to normalize them to let the sum of them become one.
2239   SwitchBB->normalizeSuccProbs();
2240 
2241   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2242                               MVT::Other, getControlRoot(),
2243                               Cmp, DAG.getBasicBlock(B.TargetBB));
2244 
2245   // Avoid emitting unnecessary branches to the next block.
2246   if (NextMBB != NextBlock(SwitchBB))
2247     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2248                         DAG.getBasicBlock(NextMBB));
2249 
2250   DAG.setRoot(BrAnd);
2251 }
2252 
2253 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2254   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2255 
2256   // Retrieve successors. Look through artificial IR level blocks like
2257   // catchswitch for successors.
2258   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2259   const BasicBlock *EHPadBB = I.getSuccessor(1);
2260 
2261   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2262   // have to do anything here to lower funclet bundles.
2263   assert(!I.hasOperandBundlesOtherThan(
2264              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2265          "Cannot lower invokes with arbitrary operand bundles yet!");
2266 
2267   const Value *Callee(I.getCalledValue());
2268   const Function *Fn = dyn_cast<Function>(Callee);
2269   if (isa<InlineAsm>(Callee))
2270     visitInlineAsm(&I);
2271   else if (Fn && Fn->isIntrinsic()) {
2272     switch (Fn->getIntrinsicID()) {
2273     default:
2274       llvm_unreachable("Cannot invoke this intrinsic");
2275     case Intrinsic::donothing:
2276       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2277       break;
2278     case Intrinsic::experimental_patchpoint_void:
2279     case Intrinsic::experimental_patchpoint_i64:
2280       visitPatchpoint(&I, EHPadBB);
2281       break;
2282     case Intrinsic::experimental_gc_statepoint:
2283       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2284       break;
2285     }
2286   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2287     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2288     // Eventually we will support lowering the @llvm.experimental.deoptimize
2289     // intrinsic, and right now there are no plans to support other intrinsics
2290     // with deopt state.
2291     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2292   } else {
2293     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2294   }
2295 
2296   // If the value of the invoke is used outside of its defining block, make it
2297   // available as a virtual register.
2298   // We already took care of the exported value for the statepoint instruction
2299   // during call to the LowerStatepoint.
2300   if (!isStatepoint(I)) {
2301     CopyToExportRegsIfNeeded(&I);
2302   }
2303 
2304   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2305   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2306   BranchProbability EHPadBBProb =
2307       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2308           : BranchProbability::getZero();
2309   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2310 
2311   // Update successor info.
2312   addSuccessorWithProb(InvokeMBB, Return);
2313   for (auto &UnwindDest : UnwindDests) {
2314     UnwindDest.first->setIsEHPad();
2315     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2316   }
2317   InvokeMBB->normalizeSuccProbs();
2318 
2319   // Drop into normal successor.
2320   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2321                           MVT::Other, getControlRoot(),
2322                           DAG.getBasicBlock(Return)));
2323 }
2324 
2325 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2326   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2327 }
2328 
2329 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2330   assert(FuncInfo.MBB->isEHPad() &&
2331          "Call to landingpad not in landing pad!");
2332 
2333   MachineBasicBlock *MBB = FuncInfo.MBB;
2334   addLandingPadInfo(LP, *MBB);
2335 
2336   // If there aren't registers to copy the values into (e.g., during SjLj
2337   // exceptions), then don't bother to create these DAG nodes.
2338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2340   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2341       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2342     return;
2343 
2344   // If landingpad's return type is token type, we don't create DAG nodes
2345   // for its exception pointer and selector value. The extraction of exception
2346   // pointer or selector value from token type landingpads is not currently
2347   // supported.
2348   if (LP.getType()->isTokenTy())
2349     return;
2350 
2351   SmallVector<EVT, 2> ValueVTs;
2352   SDLoc dl = getCurSDLoc();
2353   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2354   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2355 
2356   // Get the two live-in registers as SDValues. The physregs have already been
2357   // copied into virtual registers.
2358   SDValue Ops[2];
2359   if (FuncInfo.ExceptionPointerVirtReg) {
2360     Ops[0] = DAG.getZExtOrTrunc(
2361         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2362                            FuncInfo.ExceptionPointerVirtReg,
2363                            TLI.getPointerTy(DAG.getDataLayout())),
2364         dl, ValueVTs[0]);
2365   } else {
2366     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2367   }
2368   Ops[1] = DAG.getZExtOrTrunc(
2369       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2370                          FuncInfo.ExceptionSelectorVirtReg,
2371                          TLI.getPointerTy(DAG.getDataLayout())),
2372       dl, ValueVTs[1]);
2373 
2374   // Merge into one.
2375   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2376                             DAG.getVTList(ValueVTs), Ops);
2377   setValue(&LP, Res);
2378 }
2379 
2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2381 #ifndef NDEBUG
2382   for (const CaseCluster &CC : Clusters)
2383     assert(CC.Low == CC.High && "Input clusters must be single-case");
2384 #endif
2385 
2386   std::sort(Clusters.begin(), Clusters.end(),
2387             [](const CaseCluster &a, const CaseCluster &b) {
2388     return a.Low->getValue().slt(b.Low->getValue());
2389   });
2390 
2391   // Merge adjacent clusters with the same destination.
2392   const unsigned N = Clusters.size();
2393   unsigned DstIndex = 0;
2394   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2395     CaseCluster &CC = Clusters[SrcIndex];
2396     const ConstantInt *CaseVal = CC.Low;
2397     MachineBasicBlock *Succ = CC.MBB;
2398 
2399     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2400         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2401       // If this case has the same successor and is a neighbour, merge it into
2402       // the previous cluster.
2403       Clusters[DstIndex - 1].High = CaseVal;
2404       Clusters[DstIndex - 1].Prob += CC.Prob;
2405     } else {
2406       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2407                    sizeof(Clusters[SrcIndex]));
2408     }
2409   }
2410   Clusters.resize(DstIndex);
2411 }
2412 
2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2414                                            MachineBasicBlock *Last) {
2415   // Update JTCases.
2416   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2417     if (JTCases[i].first.HeaderBB == First)
2418       JTCases[i].first.HeaderBB = Last;
2419 
2420   // Update BitTestCases.
2421   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2422     if (BitTestCases[i].Parent == First)
2423       BitTestCases[i].Parent = Last;
2424 }
2425 
2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2427   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2428 
2429   // Update machine-CFG edges with unique successors.
2430   SmallSet<BasicBlock*, 32> Done;
2431   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2432     BasicBlock *BB = I.getSuccessor(i);
2433     bool Inserted = Done.insert(BB).second;
2434     if (!Inserted)
2435         continue;
2436 
2437     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2438     addSuccessorWithProb(IndirectBrMBB, Succ);
2439   }
2440   IndirectBrMBB->normalizeSuccProbs();
2441 
2442   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2443                           MVT::Other, getControlRoot(),
2444                           getValue(I.getAddress())));
2445 }
2446 
2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2448   if (DAG.getTarget().Options.TrapUnreachable)
2449     DAG.setRoot(
2450         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2451 }
2452 
2453 void SelectionDAGBuilder::visitFSub(const User &I) {
2454   // -0.0 - X --> fneg
2455   Type *Ty = I.getType();
2456   if (isa<Constant>(I.getOperand(0)) &&
2457       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2458     SDValue Op2 = getValue(I.getOperand(1));
2459     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2460                              Op2.getValueType(), Op2));
2461     return;
2462   }
2463 
2464   visitBinary(I, ISD::FSUB);
2465 }
2466 
2467 /// Checks if the given instruction performs a vector reduction, in which case
2468 /// we have the freedom to alter the elements in the result as long as the
2469 /// reduction of them stays unchanged.
2470 static bool isVectorReductionOp(const User *I) {
2471   const Instruction *Inst = dyn_cast<Instruction>(I);
2472   if (!Inst || !Inst->getType()->isVectorTy())
2473     return false;
2474 
2475   auto OpCode = Inst->getOpcode();
2476   switch (OpCode) {
2477   case Instruction::Add:
2478   case Instruction::Mul:
2479   case Instruction::And:
2480   case Instruction::Or:
2481   case Instruction::Xor:
2482     break;
2483   case Instruction::FAdd:
2484   case Instruction::FMul:
2485     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2486       if (FPOp->getFastMathFlags().unsafeAlgebra())
2487         break;
2488     LLVM_FALLTHROUGH;
2489   default:
2490     return false;
2491   }
2492 
2493   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2494   unsigned ElemNumToReduce = ElemNum;
2495 
2496   // Do DFS search on the def-use chain from the given instruction. We only
2497   // allow four kinds of operations during the search until we reach the
2498   // instruction that extracts the first element from the vector:
2499   //
2500   //   1. The reduction operation of the same opcode as the given instruction.
2501   //
2502   //   2. PHI node.
2503   //
2504   //   3. ShuffleVector instruction together with a reduction operation that
2505   //      does a partial reduction.
2506   //
2507   //   4. ExtractElement that extracts the first element from the vector, and we
2508   //      stop searching the def-use chain here.
2509   //
2510   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2511   // from 1-3 to the stack to continue the DFS. The given instruction is not
2512   // a reduction operation if we meet any other instructions other than those
2513   // listed above.
2514 
2515   SmallVector<const User *, 16> UsersToVisit{Inst};
2516   SmallPtrSet<const User *, 16> Visited;
2517   bool ReduxExtracted = false;
2518 
2519   while (!UsersToVisit.empty()) {
2520     auto User = UsersToVisit.back();
2521     UsersToVisit.pop_back();
2522     if (!Visited.insert(User).second)
2523       continue;
2524 
2525     for (const auto &U : User->users()) {
2526       auto Inst = dyn_cast<Instruction>(U);
2527       if (!Inst)
2528         return false;
2529 
2530       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2531         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2532           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2533             return false;
2534         UsersToVisit.push_back(U);
2535       } else if (const ShuffleVectorInst *ShufInst =
2536                      dyn_cast<ShuffleVectorInst>(U)) {
2537         // Detect the following pattern: A ShuffleVector instruction together
2538         // with a reduction that do partial reduction on the first and second
2539         // ElemNumToReduce / 2 elements, and store the result in
2540         // ElemNumToReduce / 2 elements in another vector.
2541 
2542         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2543         if (ResultElements < ElemNum)
2544           return false;
2545 
2546         if (ElemNumToReduce == 1)
2547           return false;
2548         if (!isa<UndefValue>(U->getOperand(1)))
2549           return false;
2550         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2551           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2552             return false;
2553         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2554           if (ShufInst->getMaskValue(i) != -1)
2555             return false;
2556 
2557         // There is only one user of this ShuffleVector instruction, which
2558         // must be a reduction operation.
2559         if (!U->hasOneUse())
2560           return false;
2561 
2562         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2563         if (!U2 || U2->getOpcode() != OpCode)
2564           return false;
2565 
2566         // Check operands of the reduction operation.
2567         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2568             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2569           UsersToVisit.push_back(U2);
2570           ElemNumToReduce /= 2;
2571         } else
2572           return false;
2573       } else if (isa<ExtractElementInst>(U)) {
2574         // At this moment we should have reduced all elements in the vector.
2575         if (ElemNumToReduce != 1)
2576           return false;
2577 
2578         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2579         if (!Val || Val->getZExtValue() != 0)
2580           return false;
2581 
2582         ReduxExtracted = true;
2583       } else
2584         return false;
2585     }
2586   }
2587   return ReduxExtracted;
2588 }
2589 
2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2591   SDValue Op1 = getValue(I.getOperand(0));
2592   SDValue Op2 = getValue(I.getOperand(1));
2593 
2594   bool nuw = false;
2595   bool nsw = false;
2596   bool exact = false;
2597   bool vec_redux = false;
2598   FastMathFlags FMF;
2599 
2600   if (const OverflowingBinaryOperator *OFBinOp =
2601           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2602     nuw = OFBinOp->hasNoUnsignedWrap();
2603     nsw = OFBinOp->hasNoSignedWrap();
2604   }
2605   if (const PossiblyExactOperator *ExactOp =
2606           dyn_cast<const PossiblyExactOperator>(&I))
2607     exact = ExactOp->isExact();
2608   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2609     FMF = FPOp->getFastMathFlags();
2610 
2611   if (isVectorReductionOp(&I)) {
2612     vec_redux = true;
2613     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2614   }
2615 
2616   SDNodeFlags Flags;
2617   Flags.setExact(exact);
2618   Flags.setNoSignedWrap(nsw);
2619   Flags.setNoUnsignedWrap(nuw);
2620   Flags.setVectorReduction(vec_redux);
2621   if (EnableFMFInDAG) {
2622     Flags.setAllowReciprocal(FMF.allowReciprocal());
2623     Flags.setNoInfs(FMF.noInfs());
2624     Flags.setNoNaNs(FMF.noNaNs());
2625     Flags.setNoSignedZeros(FMF.noSignedZeros());
2626     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2627   }
2628   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2629                                      Op1, Op2, &Flags);
2630   setValue(&I, BinNodeValue);
2631 }
2632 
2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2634   SDValue Op1 = getValue(I.getOperand(0));
2635   SDValue Op2 = getValue(I.getOperand(1));
2636 
2637   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2638       Op2.getValueType(), DAG.getDataLayout());
2639 
2640   // Coerce the shift amount to the right type if we can.
2641   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2642     unsigned ShiftSize = ShiftTy.getSizeInBits();
2643     unsigned Op2Size = Op2.getValueSizeInBits();
2644     SDLoc DL = getCurSDLoc();
2645 
2646     // If the operand is smaller than the shift count type, promote it.
2647     if (ShiftSize > Op2Size)
2648       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2649 
2650     // If the operand is larger than the shift count type but the shift
2651     // count type has enough bits to represent any shift value, truncate
2652     // it now. This is a common case and it exposes the truncate to
2653     // optimization early.
2654     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2655       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2656     // Otherwise we'll need to temporarily settle for some other convenient
2657     // type.  Type legalization will make adjustments once the shiftee is split.
2658     else
2659       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2660   }
2661 
2662   bool nuw = false;
2663   bool nsw = false;
2664   bool exact = false;
2665 
2666   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2667 
2668     if (const OverflowingBinaryOperator *OFBinOp =
2669             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2670       nuw = OFBinOp->hasNoUnsignedWrap();
2671       nsw = OFBinOp->hasNoSignedWrap();
2672     }
2673     if (const PossiblyExactOperator *ExactOp =
2674             dyn_cast<const PossiblyExactOperator>(&I))
2675       exact = ExactOp->isExact();
2676   }
2677   SDNodeFlags Flags;
2678   Flags.setExact(exact);
2679   Flags.setNoSignedWrap(nsw);
2680   Flags.setNoUnsignedWrap(nuw);
2681   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2682                             &Flags);
2683   setValue(&I, Res);
2684 }
2685 
2686 void SelectionDAGBuilder::visitSDiv(const User &I) {
2687   SDValue Op1 = getValue(I.getOperand(0));
2688   SDValue Op2 = getValue(I.getOperand(1));
2689 
2690   SDNodeFlags Flags;
2691   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2692                  cast<PossiblyExactOperator>(&I)->isExact());
2693   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2694                            Op2, &Flags));
2695 }
2696 
2697 void SelectionDAGBuilder::visitICmp(const User &I) {
2698   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2699   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2700     predicate = IC->getPredicate();
2701   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2702     predicate = ICmpInst::Predicate(IC->getPredicate());
2703   SDValue Op1 = getValue(I.getOperand(0));
2704   SDValue Op2 = getValue(I.getOperand(1));
2705   ISD::CondCode Opcode = getICmpCondCode(predicate);
2706 
2707   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708                                                         I.getType());
2709   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2710 }
2711 
2712 void SelectionDAGBuilder::visitFCmp(const User &I) {
2713   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715     predicate = FC->getPredicate();
2716   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717     predicate = FCmpInst::Predicate(FC->getPredicate());
2718   SDValue Op1 = getValue(I.getOperand(0));
2719   SDValue Op2 = getValue(I.getOperand(1));
2720   ISD::CondCode Condition = getFCmpCondCode(predicate);
2721 
2722   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2723   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2724   // further optimization, but currently FMF is only applicable to binary nodes.
2725   if (TM.Options.NoNaNsFPMath)
2726     Condition = getFCmpCodeWithoutNaN(Condition);
2727   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2728                                                         I.getType());
2729   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2730 }
2731 
2732 // Check if the condition of the select has one use or two users that are both
2733 // selects with the same condition.
2734 static bool hasOnlySelectUsers(const Value *Cond) {
2735   return all_of(Cond->users(), [](const Value *V) {
2736     return isa<SelectInst>(V);
2737   });
2738 }
2739 
2740 void SelectionDAGBuilder::visitSelect(const User &I) {
2741   SmallVector<EVT, 4> ValueVTs;
2742   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2743                   ValueVTs);
2744   unsigned NumValues = ValueVTs.size();
2745   if (NumValues == 0) return;
2746 
2747   SmallVector<SDValue, 4> Values(NumValues);
2748   SDValue Cond     = getValue(I.getOperand(0));
2749   SDValue LHSVal   = getValue(I.getOperand(1));
2750   SDValue RHSVal   = getValue(I.getOperand(2));
2751   auto BaseOps = {Cond};
2752   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2753     ISD::VSELECT : ISD::SELECT;
2754 
2755   // Min/max matching is only viable if all output VTs are the same.
2756   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2757     EVT VT = ValueVTs[0];
2758     LLVMContext &Ctx = *DAG.getContext();
2759     auto &TLI = DAG.getTargetLoweringInfo();
2760 
2761     // We care about the legality of the operation after it has been type
2762     // legalized.
2763     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2764            VT != TLI.getTypeToTransformTo(Ctx, VT))
2765       VT = TLI.getTypeToTransformTo(Ctx, VT);
2766 
2767     // If the vselect is legal, assume we want to leave this as a vector setcc +
2768     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2769     // min/max is legal on the scalar type.
2770     bool UseScalarMinMax = VT.isVector() &&
2771       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2772 
2773     Value *LHS, *RHS;
2774     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2775     ISD::NodeType Opc = ISD::DELETED_NODE;
2776     switch (SPR.Flavor) {
2777     case SPF_UMAX:    Opc = ISD::UMAX; break;
2778     case SPF_UMIN:    Opc = ISD::UMIN; break;
2779     case SPF_SMAX:    Opc = ISD::SMAX; break;
2780     case SPF_SMIN:    Opc = ISD::SMIN; break;
2781     case SPF_FMINNUM:
2782       switch (SPR.NaNBehavior) {
2783       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2784       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2785       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2786       case SPNB_RETURNS_ANY: {
2787         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2788           Opc = ISD::FMINNUM;
2789         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2790           Opc = ISD::FMINNAN;
2791         else if (UseScalarMinMax)
2792           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2793             ISD::FMINNUM : ISD::FMINNAN;
2794         break;
2795       }
2796       }
2797       break;
2798     case SPF_FMAXNUM:
2799       switch (SPR.NaNBehavior) {
2800       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2801       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2802       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2803       case SPNB_RETURNS_ANY:
2804 
2805         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2806           Opc = ISD::FMAXNUM;
2807         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2808           Opc = ISD::FMAXNAN;
2809         else if (UseScalarMinMax)
2810           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2811             ISD::FMAXNUM : ISD::FMAXNAN;
2812         break;
2813       }
2814       break;
2815     default: break;
2816     }
2817 
2818     if (Opc != ISD::DELETED_NODE &&
2819         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2820          (UseScalarMinMax &&
2821           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2822         // If the underlying comparison instruction is used by any other
2823         // instruction, the consumed instructions won't be destroyed, so it is
2824         // not profitable to convert to a min/max.
2825         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2826       OpCode = Opc;
2827       LHSVal = getValue(LHS);
2828       RHSVal = getValue(RHS);
2829       BaseOps = {};
2830     }
2831   }
2832 
2833   for (unsigned i = 0; i != NumValues; ++i) {
2834     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2835     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2836     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2837     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2838                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2839                             Ops);
2840   }
2841 
2842   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2843                            DAG.getVTList(ValueVTs), Values));
2844 }
2845 
2846 void SelectionDAGBuilder::visitTrunc(const User &I) {
2847   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2852 }
2853 
2854 void SelectionDAGBuilder::visitZExt(const User &I) {
2855   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2856   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2857   SDValue N = getValue(I.getOperand(0));
2858   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2859                                                         I.getType());
2860   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2861 }
2862 
2863 void SelectionDAGBuilder::visitSExt(const User &I) {
2864   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2865   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2866   SDValue N = getValue(I.getOperand(0));
2867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2868                                                         I.getType());
2869   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2870 }
2871 
2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2873   // FPTrunc is never a no-op cast, no need to check
2874   SDValue N = getValue(I.getOperand(0));
2875   SDLoc dl = getCurSDLoc();
2876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2877   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2878   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2879                            DAG.getTargetConstant(
2880                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2881 }
2882 
2883 void SelectionDAGBuilder::visitFPExt(const User &I) {
2884   // FPExt is never a no-op cast, no need to check
2885   SDValue N = getValue(I.getOperand(0));
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2889 }
2890 
2891 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2892   // FPToUI is never a no-op cast, no need to check
2893   SDValue N = getValue(I.getOperand(0));
2894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2895                                                         I.getType());
2896   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2897 }
2898 
2899 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2900   // FPToSI is never a no-op cast, no need to check
2901   SDValue N = getValue(I.getOperand(0));
2902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2903                                                         I.getType());
2904   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2905 }
2906 
2907 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2908   // UIToFP is never a no-op cast, no need to check
2909   SDValue N = getValue(I.getOperand(0));
2910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2911                                                         I.getType());
2912   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2913 }
2914 
2915 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2916   // SIToFP is never a no-op cast, no need to check
2917   SDValue N = getValue(I.getOperand(0));
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2921 }
2922 
2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2924   // What to do depends on the size of the integer and the size of the pointer.
2925   // We can either truncate, zero extend, or no-op, accordingly.
2926   SDValue N = getValue(I.getOperand(0));
2927   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2928                                                         I.getType());
2929   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2930 }
2931 
2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2933   // What to do depends on the size of the integer and the size of the pointer.
2934   // We can either truncate, zero extend, or no-op, accordingly.
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2939 }
2940 
2941 void SelectionDAGBuilder::visitBitCast(const User &I) {
2942   SDValue N = getValue(I.getOperand(0));
2943   SDLoc dl = getCurSDLoc();
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946 
2947   // BitCast assures us that source and destination are the same size so this is
2948   // either a BITCAST or a no-op.
2949   if (DestVT != N.getValueType())
2950     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2951                              DestVT, N)); // convert types.
2952   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2953   // might fold any kind of constant expression to an integer constant and that
2954   // is not what we are looking for. Only recognize a bitcast of a genuine
2955   // constant integer as an opaque constant.
2956   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2957     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2958                                  /*isOpaque*/true));
2959   else
2960     setValue(&I, N);            // noop cast.
2961 }
2962 
2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2965   const Value *SV = I.getOperand(0);
2966   SDValue N = getValue(SV);
2967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968 
2969   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2970   unsigned DestAS = I.getType()->getPointerAddressSpace();
2971 
2972   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2973     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2974 
2975   setValue(&I, N);
2976 }
2977 
2978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980   SDValue InVec = getValue(I.getOperand(0));
2981   SDValue InVal = getValue(I.getOperand(1));
2982   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2984   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2986                            InVec, InVal, InIdx));
2987 }
2988 
2989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991   SDValue InVec = getValue(I.getOperand(0));
2992   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2993                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2994   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2995                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2996                            InVec, InIdx));
2997 }
2998 
2999 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3000   SDValue Src1 = getValue(I.getOperand(0));
3001   SDValue Src2 = getValue(I.getOperand(1));
3002   SDLoc DL = getCurSDLoc();
3003 
3004   SmallVector<int, 8> Mask;
3005   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3006   unsigned MaskNumElts = Mask.size();
3007 
3008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3009   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3010   EVT SrcVT = Src1.getValueType();
3011   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3012 
3013   if (SrcNumElts == MaskNumElts) {
3014     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3015     return;
3016   }
3017 
3018   // Normalize the shuffle vector since mask and vector length don't match.
3019   if (SrcNumElts < MaskNumElts) {
3020     // Mask is longer than the source vectors. We can use concatenate vector to
3021     // make the mask and vectors lengths match.
3022 
3023     if (MaskNumElts % SrcNumElts == 0) {
3024       // Mask length is a multiple of the source vector length.
3025       // Check if the shuffle is some kind of concatenation of the input
3026       // vectors.
3027       unsigned NumConcat = MaskNumElts / SrcNumElts;
3028       bool IsConcat = true;
3029       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3030       for (unsigned i = 0; i != MaskNumElts; ++i) {
3031         int Idx = Mask[i];
3032         if (Idx < 0)
3033           continue;
3034         // Ensure the indices in each SrcVT sized piece are sequential and that
3035         // the same source is used for the whole piece.
3036         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3037             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3038              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3039           IsConcat = false;
3040           break;
3041         }
3042         // Remember which source this index came from.
3043         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3044       }
3045 
3046       // The shuffle is concatenating multiple vectors together. Just emit
3047       // a CONCAT_VECTORS operation.
3048       if (IsConcat) {
3049         SmallVector<SDValue, 8> ConcatOps;
3050         for (auto Src : ConcatSrcs) {
3051           if (Src < 0)
3052             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3053           else if (Src == 0)
3054             ConcatOps.push_back(Src1);
3055           else
3056             ConcatOps.push_back(Src2);
3057         }
3058         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3059         return;
3060       }
3061     }
3062 
3063     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3064     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3065     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3066                                     PaddedMaskNumElts);
3067 
3068     // Pad both vectors with undefs to make them the same length as the mask.
3069     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3070 
3071     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3072     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3073     MOps1[0] = Src1;
3074     MOps2[0] = Src2;
3075 
3076     Src1 = Src1.isUndef()
3077                ? DAG.getUNDEF(PaddedVT)
3078                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3079     Src2 = Src2.isUndef()
3080                ? DAG.getUNDEF(PaddedVT)
3081                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3082 
3083     // Readjust mask for new input vector length.
3084     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3085     for (unsigned i = 0; i != MaskNumElts; ++i) {
3086       int Idx = Mask[i];
3087       if (Idx >= (int)SrcNumElts)
3088         Idx -= SrcNumElts - PaddedMaskNumElts;
3089       MappedOps[i] = Idx;
3090     }
3091 
3092     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3093 
3094     // If the concatenated vector was padded, extract a subvector with the
3095     // correct number of elements.
3096     if (MaskNumElts != PaddedMaskNumElts)
3097       Result = DAG.getNode(
3098           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3099           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3100 
3101     setValue(&I, Result);
3102     return;
3103   }
3104 
3105   if (SrcNumElts > MaskNumElts) {
3106     // Analyze the access pattern of the vector to see if we can extract
3107     // two subvectors and do the shuffle.
3108     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3109     bool CanExtract = true;
3110     for (int Idx : Mask) {
3111       unsigned Input = 0;
3112       if (Idx < 0)
3113         continue;
3114 
3115       if (Idx >= (int)SrcNumElts) {
3116         Input = 1;
3117         Idx -= SrcNumElts;
3118       }
3119 
3120       // If all the indices come from the same MaskNumElts sized portion of
3121       // the sources we can use extract. Also make sure the extract wouldn't
3122       // extract past the end of the source.
3123       int NewStartIdx = alignDown(Idx, MaskNumElts);
3124       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3125           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3126         CanExtract = false;
3127       // Make sure we always update StartIdx as we use it to track if all
3128       // elements are undef.
3129       StartIdx[Input] = NewStartIdx;
3130     }
3131 
3132     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3133       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3134       return;
3135     }
3136     if (CanExtract) {
3137       // Extract appropriate subvector and generate a vector shuffle
3138       for (unsigned Input = 0; Input < 2; ++Input) {
3139         SDValue &Src = Input == 0 ? Src1 : Src2;
3140         if (StartIdx[Input] < 0)
3141           Src = DAG.getUNDEF(VT);
3142         else {
3143           Src = DAG.getNode(
3144               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3145               DAG.getConstant(StartIdx[Input], DL,
3146                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3147         }
3148       }
3149 
3150       // Calculate new mask.
3151       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3152       for (int &Idx : MappedOps) {
3153         if (Idx >= (int)SrcNumElts)
3154           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3155         else if (Idx >= 0)
3156           Idx -= StartIdx[0];
3157       }
3158 
3159       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3160       return;
3161     }
3162   }
3163 
3164   // We can't use either concat vectors or extract subvectors so fall back to
3165   // replacing the shuffle with extract and build vector.
3166   // to insert and build vector.
3167   EVT EltVT = VT.getVectorElementType();
3168   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3169   SmallVector<SDValue,8> Ops;
3170   for (int Idx : Mask) {
3171     SDValue Res;
3172 
3173     if (Idx < 0) {
3174       Res = DAG.getUNDEF(EltVT);
3175     } else {
3176       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3177       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3178 
3179       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3180                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3181     }
3182 
3183     Ops.push_back(Res);
3184   }
3185 
3186   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3187 }
3188 
3189 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3190   const Value *Op0 = I.getOperand(0);
3191   const Value *Op1 = I.getOperand(1);
3192   Type *AggTy = I.getType();
3193   Type *ValTy = Op1->getType();
3194   bool IntoUndef = isa<UndefValue>(Op0);
3195   bool FromUndef = isa<UndefValue>(Op1);
3196 
3197   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3198 
3199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3200   SmallVector<EVT, 4> AggValueVTs;
3201   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3202   SmallVector<EVT, 4> ValValueVTs;
3203   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3204 
3205   unsigned NumAggValues = AggValueVTs.size();
3206   unsigned NumValValues = ValValueVTs.size();
3207   SmallVector<SDValue, 4> Values(NumAggValues);
3208 
3209   // Ignore an insertvalue that produces an empty object
3210   if (!NumAggValues) {
3211     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3212     return;
3213   }
3214 
3215   SDValue Agg = getValue(Op0);
3216   unsigned i = 0;
3217   // Copy the beginning value(s) from the original aggregate.
3218   for (; i != LinearIndex; ++i)
3219     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3220                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3221   // Copy values from the inserted value(s).
3222   if (NumValValues) {
3223     SDValue Val = getValue(Op1);
3224     for (; i != LinearIndex + NumValValues; ++i)
3225       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3226                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3227   }
3228   // Copy remaining value(s) from the original aggregate.
3229   for (; i != NumAggValues; ++i)
3230     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3231                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3232 
3233   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3234                            DAG.getVTList(AggValueVTs), Values));
3235 }
3236 
3237 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3238   const Value *Op0 = I.getOperand(0);
3239   Type *AggTy = Op0->getType();
3240   Type *ValTy = I.getType();
3241   bool OutOfUndef = isa<UndefValue>(Op0);
3242 
3243   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3244 
3245   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3246   SmallVector<EVT, 4> ValValueVTs;
3247   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3248 
3249   unsigned NumValValues = ValValueVTs.size();
3250 
3251   // Ignore a extractvalue that produces an empty object
3252   if (!NumValValues) {
3253     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3254     return;
3255   }
3256 
3257   SmallVector<SDValue, 4> Values(NumValValues);
3258 
3259   SDValue Agg = getValue(Op0);
3260   // Copy out the selected value(s).
3261   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3262     Values[i - LinearIndex] =
3263       OutOfUndef ?
3264         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3265         SDValue(Agg.getNode(), Agg.getResNo() + i);
3266 
3267   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3268                            DAG.getVTList(ValValueVTs), Values));
3269 }
3270 
3271 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3272   Value *Op0 = I.getOperand(0);
3273   // Note that the pointer operand may be a vector of pointers. Take the scalar
3274   // element which holds a pointer.
3275   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3276   SDValue N = getValue(Op0);
3277   SDLoc dl = getCurSDLoc();
3278 
3279   // Normalize Vector GEP - all scalar operands should be converted to the
3280   // splat vector.
3281   unsigned VectorWidth = I.getType()->isVectorTy() ?
3282     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3283 
3284   if (VectorWidth && !N.getValueType().isVector()) {
3285     LLVMContext &Context = *DAG.getContext();
3286     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3287     N = DAG.getSplatBuildVector(VT, dl, N);
3288   }
3289 
3290   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3291        GTI != E; ++GTI) {
3292     const Value *Idx = GTI.getOperand();
3293     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3294       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3295       if (Field) {
3296         // N = N + Offset
3297         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3298 
3299         // In an inbouds GEP with an offset that is nonnegative even when
3300         // interpreted as signed, assume there is no unsigned overflow.
3301         SDNodeFlags Flags;
3302         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3303           Flags.setNoUnsignedWrap(true);
3304 
3305         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3306                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3307       }
3308     } else {
3309       MVT PtrTy =
3310           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3311       unsigned PtrSize = PtrTy.getSizeInBits();
3312       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3313 
3314       // If this is a scalar constant or a splat vector of constants,
3315       // handle it quickly.
3316       const auto *CI = dyn_cast<ConstantInt>(Idx);
3317       if (!CI && isa<ConstantDataVector>(Idx) &&
3318           cast<ConstantDataVector>(Idx)->getSplatValue())
3319         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3320 
3321       if (CI) {
3322         if (CI->isZero())
3323           continue;
3324         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3325         LLVMContext &Context = *DAG.getContext();
3326         SDValue OffsVal = VectorWidth ?
3327           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3328           DAG.getConstant(Offs, dl, PtrTy);
3329 
3330         // In an inbouds GEP with an offset that is nonnegative even when
3331         // interpreted as signed, assume there is no unsigned overflow.
3332         SDNodeFlags Flags;
3333         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3334           Flags.setNoUnsignedWrap(true);
3335 
3336         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3337         continue;
3338       }
3339 
3340       // N = N + Idx * ElementSize;
3341       SDValue IdxN = getValue(Idx);
3342 
3343       if (!IdxN.getValueType().isVector() && VectorWidth) {
3344         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3345         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3346       }
3347 
3348       // If the index is smaller or larger than intptr_t, truncate or extend
3349       // it.
3350       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3351 
3352       // If this is a multiply by a power of two, turn it into a shl
3353       // immediately.  This is a very common case.
3354       if (ElementSize != 1) {
3355         if (ElementSize.isPowerOf2()) {
3356           unsigned Amt = ElementSize.logBase2();
3357           IdxN = DAG.getNode(ISD::SHL, dl,
3358                              N.getValueType(), IdxN,
3359                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3360         } else {
3361           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3362           IdxN = DAG.getNode(ISD::MUL, dl,
3363                              N.getValueType(), IdxN, Scale);
3364         }
3365       }
3366 
3367       N = DAG.getNode(ISD::ADD, dl,
3368                       N.getValueType(), N, IdxN);
3369     }
3370   }
3371 
3372   setValue(&I, N);
3373 }
3374 
3375 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3376   // If this is a fixed sized alloca in the entry block of the function,
3377   // allocate it statically on the stack.
3378   if (FuncInfo.StaticAllocaMap.count(&I))
3379     return;   // getValue will auto-populate this.
3380 
3381   SDLoc dl = getCurSDLoc();
3382   Type *Ty = I.getAllocatedType();
3383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3384   auto &DL = DAG.getDataLayout();
3385   uint64_t TySize = DL.getTypeAllocSize(Ty);
3386   unsigned Align =
3387       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3388 
3389   SDValue AllocSize = getValue(I.getArraySize());
3390 
3391   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3392   if (AllocSize.getValueType() != IntPtr)
3393     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3394 
3395   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3396                           AllocSize,
3397                           DAG.getConstant(TySize, dl, IntPtr));
3398 
3399   // Handle alignment.  If the requested alignment is less than or equal to
3400   // the stack alignment, ignore it.  If the size is greater than or equal to
3401   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3402   unsigned StackAlign =
3403       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3404   if (Align <= StackAlign)
3405     Align = 0;
3406 
3407   // Round the size of the allocation up to the stack alignment size
3408   // by add SA-1 to the size. This doesn't overflow because we're computing
3409   // an address inside an alloca.
3410   SDNodeFlags Flags;
3411   Flags.setNoUnsignedWrap(true);
3412   AllocSize = DAG.getNode(ISD::ADD, dl,
3413                           AllocSize.getValueType(), AllocSize,
3414                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3415 
3416   // Mask out the low bits for alignment purposes.
3417   AllocSize = DAG.getNode(ISD::AND, dl,
3418                           AllocSize.getValueType(), AllocSize,
3419                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3420                                                 dl));
3421 
3422   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3423   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3424   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3425   setValue(&I, DSA);
3426   DAG.setRoot(DSA.getValue(1));
3427 
3428   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3429 }
3430 
3431 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3432   if (I.isAtomic())
3433     return visitAtomicLoad(I);
3434 
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   const Value *SV = I.getOperand(0);
3437   if (TLI.supportSwiftError()) {
3438     // Swifterror values can come from either a function parameter with
3439     // swifterror attribute or an alloca with swifterror attribute.
3440     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3441       if (Arg->hasSwiftErrorAttr())
3442         return visitLoadFromSwiftError(I);
3443     }
3444 
3445     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3446       if (Alloca->isSwiftError())
3447         return visitLoadFromSwiftError(I);
3448     }
3449   }
3450 
3451   SDValue Ptr = getValue(SV);
3452 
3453   Type *Ty = I.getType();
3454 
3455   bool isVolatile = I.isVolatile();
3456   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3457   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3458   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3459   unsigned Alignment = I.getAlignment();
3460 
3461   AAMDNodes AAInfo;
3462   I.getAAMetadata(AAInfo);
3463   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3464 
3465   SmallVector<EVT, 4> ValueVTs;
3466   SmallVector<uint64_t, 4> Offsets;
3467   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3468   unsigned NumValues = ValueVTs.size();
3469   if (NumValues == 0)
3470     return;
3471 
3472   SDValue Root;
3473   bool ConstantMemory = false;
3474   if (isVolatile || NumValues > MaxParallelChains)
3475     // Serialize volatile loads with other side effects.
3476     Root = getRoot();
3477   else if (AA->pointsToConstantMemory(MemoryLocation(
3478                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3479     // Do not serialize (non-volatile) loads of constant memory with anything.
3480     Root = DAG.getEntryNode();
3481     ConstantMemory = true;
3482   } else {
3483     // Do not serialize non-volatile loads against each other.
3484     Root = DAG.getRoot();
3485   }
3486 
3487   SDLoc dl = getCurSDLoc();
3488 
3489   if (isVolatile)
3490     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3491 
3492   // An aggregate load cannot wrap around the address space, so offsets to its
3493   // parts don't wrap either.
3494   SDNodeFlags Flags;
3495   Flags.setNoUnsignedWrap(true);
3496 
3497   SmallVector<SDValue, 4> Values(NumValues);
3498   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3499   EVT PtrVT = Ptr.getValueType();
3500   unsigned ChainI = 0;
3501   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3502     // Serializing loads here may result in excessive register pressure, and
3503     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3504     // could recover a bit by hoisting nodes upward in the chain by recognizing
3505     // they are side-effect free or do not alias. The optimizer should really
3506     // avoid this case by converting large object/array copies to llvm.memcpy
3507     // (MaxParallelChains should always remain as failsafe).
3508     if (ChainI == MaxParallelChains) {
3509       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3510       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3511                                   makeArrayRef(Chains.data(), ChainI));
3512       Root = Chain;
3513       ChainI = 0;
3514     }
3515     SDValue A = DAG.getNode(ISD::ADD, dl,
3516                             PtrVT, Ptr,
3517                             DAG.getConstant(Offsets[i], dl, PtrVT),
3518                             &Flags);
3519     auto MMOFlags = MachineMemOperand::MONone;
3520     if (isVolatile)
3521       MMOFlags |= MachineMemOperand::MOVolatile;
3522     if (isNonTemporal)
3523       MMOFlags |= MachineMemOperand::MONonTemporal;
3524     if (isInvariant)
3525       MMOFlags |= MachineMemOperand::MOInvariant;
3526     if (isDereferenceable)
3527       MMOFlags |= MachineMemOperand::MODereferenceable;
3528 
3529     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3530                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3531                             MMOFlags, AAInfo, Ranges);
3532 
3533     Values[i] = L;
3534     Chains[ChainI] = L.getValue(1);
3535   }
3536 
3537   if (!ConstantMemory) {
3538     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3539                                 makeArrayRef(Chains.data(), ChainI));
3540     if (isVolatile)
3541       DAG.setRoot(Chain);
3542     else
3543       PendingLoads.push_back(Chain);
3544   }
3545 
3546   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3547                            DAG.getVTList(ValueVTs), Values));
3548 }
3549 
3550 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3552   assert(TLI.supportSwiftError() &&
3553          "call visitStoreToSwiftError when backend supports swifterror");
3554 
3555   SmallVector<EVT, 4> ValueVTs;
3556   SmallVector<uint64_t, 4> Offsets;
3557   const Value *SrcV = I.getOperand(0);
3558   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3559                   SrcV->getType(), ValueVTs, &Offsets);
3560   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3561          "expect a single EVT for swifterror");
3562 
3563   SDValue Src = getValue(SrcV);
3564   // Create a virtual register, then update the virtual register.
3565   auto &DL = DAG.getDataLayout();
3566   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3567   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3568   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3569   // Chain can be getRoot or getControlRoot.
3570   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3571                                       SDValue(Src.getNode(), Src.getResNo()));
3572   DAG.setRoot(CopyNode);
3573   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3574 }
3575 
3576 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3577   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3578          "call visitLoadFromSwiftError when backend supports swifterror");
3579 
3580   assert(!I.isVolatile() &&
3581          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3582          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3583          "Support volatile, non temporal, invariant for load_from_swift_error");
3584 
3585   const Value *SV = I.getOperand(0);
3586   Type *Ty = I.getType();
3587   AAMDNodes AAInfo;
3588   I.getAAMetadata(AAInfo);
3589   assert(!AA->pointsToConstantMemory(MemoryLocation(
3590              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3591          "load_from_swift_error should not be constant memory");
3592 
3593   SmallVector<EVT, 4> ValueVTs;
3594   SmallVector<uint64_t, 4> Offsets;
3595   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3596                   ValueVTs, &Offsets);
3597   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3598          "expect a single EVT for swifterror");
3599 
3600   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3601   SDValue L = DAG.getCopyFromReg(
3602       getRoot(), getCurSDLoc(),
3603       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3604 
3605   setValue(&I, L);
3606 }
3607 
3608 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3609   if (I.isAtomic())
3610     return visitAtomicStore(I);
3611 
3612   const Value *SrcV = I.getOperand(0);
3613   const Value *PtrV = I.getOperand(1);
3614 
3615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3616   if (TLI.supportSwiftError()) {
3617     // Swifterror values can come from either a function parameter with
3618     // swifterror attribute or an alloca with swifterror attribute.
3619     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3620       if (Arg->hasSwiftErrorAttr())
3621         return visitStoreToSwiftError(I);
3622     }
3623 
3624     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3625       if (Alloca->isSwiftError())
3626         return visitStoreToSwiftError(I);
3627     }
3628   }
3629 
3630   SmallVector<EVT, 4> ValueVTs;
3631   SmallVector<uint64_t, 4> Offsets;
3632   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3633                   SrcV->getType(), ValueVTs, &Offsets);
3634   unsigned NumValues = ValueVTs.size();
3635   if (NumValues == 0)
3636     return;
3637 
3638   // Get the lowered operands. Note that we do this after
3639   // checking if NumResults is zero, because with zero results
3640   // the operands won't have values in the map.
3641   SDValue Src = getValue(SrcV);
3642   SDValue Ptr = getValue(PtrV);
3643 
3644   SDValue Root = getRoot();
3645   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3646   SDLoc dl = getCurSDLoc();
3647   EVT PtrVT = Ptr.getValueType();
3648   unsigned Alignment = I.getAlignment();
3649   AAMDNodes AAInfo;
3650   I.getAAMetadata(AAInfo);
3651 
3652   auto MMOFlags = MachineMemOperand::MONone;
3653   if (I.isVolatile())
3654     MMOFlags |= MachineMemOperand::MOVolatile;
3655   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3656     MMOFlags |= MachineMemOperand::MONonTemporal;
3657 
3658   // An aggregate load cannot wrap around the address space, so offsets to its
3659   // parts don't wrap either.
3660   SDNodeFlags Flags;
3661   Flags.setNoUnsignedWrap(true);
3662 
3663   unsigned ChainI = 0;
3664   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3665     // See visitLoad comments.
3666     if (ChainI == MaxParallelChains) {
3667       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3668                                   makeArrayRef(Chains.data(), ChainI));
3669       Root = Chain;
3670       ChainI = 0;
3671     }
3672     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3673                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3674     SDValue St = DAG.getStore(
3675         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3676         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3677     Chains[ChainI] = St;
3678   }
3679 
3680   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3681                                   makeArrayRef(Chains.data(), ChainI));
3682   DAG.setRoot(StoreNode);
3683 }
3684 
3685 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3686                                            bool IsCompressing) {
3687   SDLoc sdl = getCurSDLoc();
3688 
3689   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3690                            unsigned& Alignment) {
3691     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3692     Src0 = I.getArgOperand(0);
3693     Ptr = I.getArgOperand(1);
3694     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3695     Mask = I.getArgOperand(3);
3696   };
3697   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3698                            unsigned& Alignment) {
3699     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3700     Src0 = I.getArgOperand(0);
3701     Ptr = I.getArgOperand(1);
3702     Mask = I.getArgOperand(2);
3703     Alignment = 0;
3704   };
3705 
3706   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3707   unsigned Alignment;
3708   if (IsCompressing)
3709     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3710   else
3711     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3712 
3713   SDValue Ptr = getValue(PtrOperand);
3714   SDValue Src0 = getValue(Src0Operand);
3715   SDValue Mask = getValue(MaskOperand);
3716 
3717   EVT VT = Src0.getValueType();
3718   if (!Alignment)
3719     Alignment = DAG.getEVTAlignment(VT);
3720 
3721   AAMDNodes AAInfo;
3722   I.getAAMetadata(AAInfo);
3723 
3724   MachineMemOperand *MMO =
3725     DAG.getMachineFunction().
3726     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3727                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3728                           Alignment, AAInfo);
3729   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3730                                          MMO, false /* Truncating */,
3731                                          IsCompressing);
3732   DAG.setRoot(StoreNode);
3733   setValue(&I, StoreNode);
3734 }
3735 
3736 // Get a uniform base for the Gather/Scatter intrinsic.
3737 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3738 // We try to represent it as a base pointer + vector of indices.
3739 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3740 // The first operand of the GEP may be a single pointer or a vector of pointers
3741 // Example:
3742 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3743 //  or
3744 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3745 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3746 //
3747 // When the first GEP operand is a single pointer - it is the uniform base we
3748 // are looking for. If first operand of the GEP is a splat vector - we
3749 // extract the spalt value and use it as a uniform base.
3750 // In all other cases the function returns 'false'.
3751 //
3752 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3753                            SelectionDAGBuilder* SDB) {
3754 
3755   SelectionDAG& DAG = SDB->DAG;
3756   LLVMContext &Context = *DAG.getContext();
3757 
3758   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3759   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3760   if (!GEP || GEP->getNumOperands() > 2)
3761     return false;
3762 
3763   const Value *GEPPtr = GEP->getPointerOperand();
3764   if (!GEPPtr->getType()->isVectorTy())
3765     Ptr = GEPPtr;
3766   else if (!(Ptr = getSplatValue(GEPPtr)))
3767     return false;
3768 
3769   Value *IndexVal = GEP->getOperand(1);
3770 
3771   // The operands of the GEP may be defined in another basic block.
3772   // In this case we'll not find nodes for the operands.
3773   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3774     return false;
3775 
3776   Base = SDB->getValue(Ptr);
3777   Index = SDB->getValue(IndexVal);
3778 
3779   // Suppress sign extension.
3780   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3781     if (SDB->findValue(Sext->getOperand(0))) {
3782       IndexVal = Sext->getOperand(0);
3783       Index = SDB->getValue(IndexVal);
3784     }
3785   }
3786   if (!Index.getValueType().isVector()) {
3787     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3788     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3789     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3790   }
3791   return true;
3792 }
3793 
3794 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3795   SDLoc sdl = getCurSDLoc();
3796 
3797   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3798   const Value *Ptr = I.getArgOperand(1);
3799   SDValue Src0 = getValue(I.getArgOperand(0));
3800   SDValue Mask = getValue(I.getArgOperand(3));
3801   EVT VT = Src0.getValueType();
3802   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3803   if (!Alignment)
3804     Alignment = DAG.getEVTAlignment(VT);
3805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3806 
3807   AAMDNodes AAInfo;
3808   I.getAAMetadata(AAInfo);
3809 
3810   SDValue Base;
3811   SDValue Index;
3812   const Value *BasePtr = Ptr;
3813   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3814 
3815   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3816   MachineMemOperand *MMO = DAG.getMachineFunction().
3817     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3818                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3819                          Alignment, AAInfo);
3820   if (!UniformBase) {
3821     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3822     Index = getValue(Ptr);
3823   }
3824   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3825   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3826                                          Ops, MMO);
3827   DAG.setRoot(Scatter);
3828   setValue(&I, Scatter);
3829 }
3830 
3831 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3832   SDLoc sdl = getCurSDLoc();
3833 
3834   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3835                            unsigned& Alignment) {
3836     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3837     Ptr = I.getArgOperand(0);
3838     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3839     Mask = I.getArgOperand(2);
3840     Src0 = I.getArgOperand(3);
3841   };
3842   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3843                            unsigned& Alignment) {
3844     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3845     Ptr = I.getArgOperand(0);
3846     Alignment = 0;
3847     Mask = I.getArgOperand(1);
3848     Src0 = I.getArgOperand(2);
3849   };
3850 
3851   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3852   unsigned Alignment;
3853   if (IsExpanding)
3854     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3855   else
3856     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3857 
3858   SDValue Ptr = getValue(PtrOperand);
3859   SDValue Src0 = getValue(Src0Operand);
3860   SDValue Mask = getValue(MaskOperand);
3861 
3862   EVT VT = Src0.getValueType();
3863   if (!Alignment)
3864     Alignment = DAG.getEVTAlignment(VT);
3865 
3866   AAMDNodes AAInfo;
3867   I.getAAMetadata(AAInfo);
3868   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3869 
3870   // Do not serialize masked loads of constant memory with anything.
3871   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3872       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3873   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3874 
3875   MachineMemOperand *MMO =
3876     DAG.getMachineFunction().
3877     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3878                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3879                           Alignment, AAInfo, Ranges);
3880 
3881   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3882                                    ISD::NON_EXTLOAD, IsExpanding);
3883   if (AddToChain) {
3884     SDValue OutChain = Load.getValue(1);
3885     DAG.setRoot(OutChain);
3886   }
3887   setValue(&I, Load);
3888 }
3889 
3890 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3891   SDLoc sdl = getCurSDLoc();
3892 
3893   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3894   const Value *Ptr = I.getArgOperand(0);
3895   SDValue Src0 = getValue(I.getArgOperand(3));
3896   SDValue Mask = getValue(I.getArgOperand(2));
3897 
3898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3899   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3900   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3901   if (!Alignment)
3902     Alignment = DAG.getEVTAlignment(VT);
3903 
3904   AAMDNodes AAInfo;
3905   I.getAAMetadata(AAInfo);
3906   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3907 
3908   SDValue Root = DAG.getRoot();
3909   SDValue Base;
3910   SDValue Index;
3911   const Value *BasePtr = Ptr;
3912   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3913   bool ConstantMemory = false;
3914   if (UniformBase &&
3915       AA->pointsToConstantMemory(MemoryLocation(
3916           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3917           AAInfo))) {
3918     // Do not serialize (non-volatile) loads of constant memory with anything.
3919     Root = DAG.getEntryNode();
3920     ConstantMemory = true;
3921   }
3922 
3923   MachineMemOperand *MMO =
3924     DAG.getMachineFunction().
3925     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3926                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3927                          Alignment, AAInfo, Ranges);
3928 
3929   if (!UniformBase) {
3930     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3931     Index = getValue(Ptr);
3932   }
3933   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3934   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3935                                        Ops, MMO);
3936 
3937   SDValue OutChain = Gather.getValue(1);
3938   if (!ConstantMemory)
3939     PendingLoads.push_back(OutChain);
3940   setValue(&I, Gather);
3941 }
3942 
3943 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3944   SDLoc dl = getCurSDLoc();
3945   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3946   AtomicOrdering FailureOrder = I.getFailureOrdering();
3947   SynchronizationScope Scope = I.getSynchScope();
3948 
3949   SDValue InChain = getRoot();
3950 
3951   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3952   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3953   SDValue L = DAG.getAtomicCmpSwap(
3954       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3955       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3956       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3957       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3958 
3959   SDValue OutChain = L.getValue(2);
3960 
3961   setValue(&I, L);
3962   DAG.setRoot(OutChain);
3963 }
3964 
3965 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3966   SDLoc dl = getCurSDLoc();
3967   ISD::NodeType NT;
3968   switch (I.getOperation()) {
3969   default: llvm_unreachable("Unknown atomicrmw operation");
3970   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3971   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3972   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3973   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3974   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3975   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3976   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3977   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3978   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3979   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3980   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3981   }
3982   AtomicOrdering Order = I.getOrdering();
3983   SynchronizationScope Scope = I.getSynchScope();
3984 
3985   SDValue InChain = getRoot();
3986 
3987   SDValue L =
3988     DAG.getAtomic(NT, dl,
3989                   getValue(I.getValOperand()).getSimpleValueType(),
3990                   InChain,
3991                   getValue(I.getPointerOperand()),
3992                   getValue(I.getValOperand()),
3993                   I.getPointerOperand(),
3994                   /* Alignment=*/ 0, Order, Scope);
3995 
3996   SDValue OutChain = L.getValue(1);
3997 
3998   setValue(&I, L);
3999   DAG.setRoot(OutChain);
4000 }
4001 
4002 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4003   SDLoc dl = getCurSDLoc();
4004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4005   SDValue Ops[3];
4006   Ops[0] = getRoot();
4007   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4008                            TLI.getPointerTy(DAG.getDataLayout()));
4009   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
4010                            TLI.getPointerTy(DAG.getDataLayout()));
4011   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4012 }
4013 
4014 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4015   SDLoc dl = getCurSDLoc();
4016   AtomicOrdering Order = I.getOrdering();
4017   SynchronizationScope Scope = I.getSynchScope();
4018 
4019   SDValue InChain = getRoot();
4020 
4021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4022   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4023 
4024   if (I.getAlignment() < VT.getSizeInBits() / 8)
4025     report_fatal_error("Cannot generate unaligned atomic load");
4026 
4027   MachineMemOperand *MMO =
4028       DAG.getMachineFunction().
4029       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4030                            MachineMemOperand::MOVolatile |
4031                            MachineMemOperand::MOLoad,
4032                            VT.getStoreSize(),
4033                            I.getAlignment() ? I.getAlignment() :
4034                                               DAG.getEVTAlignment(VT),
4035                            AAMDNodes(), nullptr, Scope, Order);
4036 
4037   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4038   SDValue L =
4039       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4040                     getValue(I.getPointerOperand()), MMO);
4041 
4042   SDValue OutChain = L.getValue(1);
4043 
4044   setValue(&I, L);
4045   DAG.setRoot(OutChain);
4046 }
4047 
4048 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4049   SDLoc dl = getCurSDLoc();
4050 
4051   AtomicOrdering Order = I.getOrdering();
4052   SynchronizationScope Scope = I.getSynchScope();
4053 
4054   SDValue InChain = getRoot();
4055 
4056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4057   EVT VT =
4058       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4059 
4060   if (I.getAlignment() < VT.getSizeInBits() / 8)
4061     report_fatal_error("Cannot generate unaligned atomic store");
4062 
4063   SDValue OutChain =
4064     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4065                   InChain,
4066                   getValue(I.getPointerOperand()),
4067                   getValue(I.getValueOperand()),
4068                   I.getPointerOperand(), I.getAlignment(),
4069                   Order, Scope);
4070 
4071   DAG.setRoot(OutChain);
4072 }
4073 
4074 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4075 /// node.
4076 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4077                                                unsigned Intrinsic) {
4078   // Ignore the callsite's attributes. A specific call site may be marked with
4079   // readnone, but the lowering code will expect the chain based on the
4080   // definition.
4081   const Function *F = I.getCalledFunction();
4082   bool HasChain = !F->doesNotAccessMemory();
4083   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4084 
4085   // Build the operand list.
4086   SmallVector<SDValue, 8> Ops;
4087   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4088     if (OnlyLoad) {
4089       // We don't need to serialize loads against other loads.
4090       Ops.push_back(DAG.getRoot());
4091     } else {
4092       Ops.push_back(getRoot());
4093     }
4094   }
4095 
4096   // Info is set by getTgtMemInstrinsic
4097   TargetLowering::IntrinsicInfo Info;
4098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4099   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4100 
4101   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4102   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4103       Info.opc == ISD::INTRINSIC_W_CHAIN)
4104     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4105                                         TLI.getPointerTy(DAG.getDataLayout())));
4106 
4107   // Add all operands of the call to the operand list.
4108   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4109     SDValue Op = getValue(I.getArgOperand(i));
4110     Ops.push_back(Op);
4111   }
4112 
4113   SmallVector<EVT, 4> ValueVTs;
4114   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4115 
4116   if (HasChain)
4117     ValueVTs.push_back(MVT::Other);
4118 
4119   SDVTList VTs = DAG.getVTList(ValueVTs);
4120 
4121   // Create the node.
4122   SDValue Result;
4123   if (IsTgtIntrinsic) {
4124     // This is target intrinsic that touches memory
4125     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4126                                      VTs, Ops, Info.memVT,
4127                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4128                                      Info.align, Info.vol,
4129                                      Info.readMem, Info.writeMem, Info.size);
4130   } else if (!HasChain) {
4131     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4132   } else if (!I.getType()->isVoidTy()) {
4133     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4134   } else {
4135     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4136   }
4137 
4138   if (HasChain) {
4139     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4140     if (OnlyLoad)
4141       PendingLoads.push_back(Chain);
4142     else
4143       DAG.setRoot(Chain);
4144   }
4145 
4146   if (!I.getType()->isVoidTy()) {
4147     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4148       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4149       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4150     } else
4151       Result = lowerRangeToAssertZExt(DAG, I, Result);
4152 
4153     setValue(&I, Result);
4154   }
4155 }
4156 
4157 /// GetSignificand - Get the significand and build it into a floating-point
4158 /// number with exponent of 1:
4159 ///
4160 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4161 ///
4162 /// where Op is the hexadecimal representation of floating point value.
4163 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4164   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4165                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4166   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4167                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4168   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4169 }
4170 
4171 /// GetExponent - Get the exponent:
4172 ///
4173 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4174 ///
4175 /// where Op is the hexadecimal representation of floating point value.
4176 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4177                            const TargetLowering &TLI, const SDLoc &dl) {
4178   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4179                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4180   SDValue t1 = DAG.getNode(
4181       ISD::SRL, dl, MVT::i32, t0,
4182       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4183   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4184                            DAG.getConstant(127, dl, MVT::i32));
4185   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4186 }
4187 
4188 /// getF32Constant - Get 32-bit floating point constant.
4189 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4190                               const SDLoc &dl) {
4191   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4192                            MVT::f32);
4193 }
4194 
4195 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4196                                        SelectionDAG &DAG) {
4197   // TODO: What fast-math-flags should be set on the floating-point nodes?
4198 
4199   //   IntegerPartOfX = ((int32_t)(t0);
4200   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4201 
4202   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4203   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4204   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4205 
4206   //   IntegerPartOfX <<= 23;
4207   IntegerPartOfX = DAG.getNode(
4208       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4209       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4210                                   DAG.getDataLayout())));
4211 
4212   SDValue TwoToFractionalPartOfX;
4213   if (LimitFloatPrecision <= 6) {
4214     // For floating-point precision of 6:
4215     //
4216     //   TwoToFractionalPartOfX =
4217     //     0.997535578f +
4218     //       (0.735607626f + 0.252464424f * x) * x;
4219     //
4220     // error 0.0144103317, which is 6 bits
4221     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4222                              getF32Constant(DAG, 0x3e814304, dl));
4223     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4224                              getF32Constant(DAG, 0x3f3c50c8, dl));
4225     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4226     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4227                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4228   } else if (LimitFloatPrecision <= 12) {
4229     // For floating-point precision of 12:
4230     //
4231     //   TwoToFractionalPartOfX =
4232     //     0.999892986f +
4233     //       (0.696457318f +
4234     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4235     //
4236     // error 0.000107046256, which is 13 to 14 bits
4237     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                              getF32Constant(DAG, 0x3da235e3, dl));
4239     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                              getF32Constant(DAG, 0x3e65b8f3, dl));
4241     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4243                              getF32Constant(DAG, 0x3f324b07, dl));
4244     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4245     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4246                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4247   } else { // LimitFloatPrecision <= 18
4248     // For floating-point precision of 18:
4249     //
4250     //   TwoToFractionalPartOfX =
4251     //     0.999999982f +
4252     //       (0.693148872f +
4253     //         (0.240227044f +
4254     //           (0.554906021e-1f +
4255     //             (0.961591928e-2f +
4256     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4257     // error 2.47208000*10^(-7), which is better than 18 bits
4258     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4259                              getF32Constant(DAG, 0x3924b03e, dl));
4260     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4261                              getF32Constant(DAG, 0x3ab24b87, dl));
4262     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4263     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4264                              getF32Constant(DAG, 0x3c1d8c17, dl));
4265     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4266     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4267                              getF32Constant(DAG, 0x3d634a1d, dl));
4268     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4269     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4270                              getF32Constant(DAG, 0x3e75fe14, dl));
4271     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4272     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4273                               getF32Constant(DAG, 0x3f317234, dl));
4274     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4275     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4276                                          getF32Constant(DAG, 0x3f800000, dl));
4277   }
4278 
4279   // Add the exponent into the result in integer domain.
4280   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4281   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4282                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4283 }
4284 
4285 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4286 /// limited-precision mode.
4287 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4288                          const TargetLowering &TLI) {
4289   if (Op.getValueType() == MVT::f32 &&
4290       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4291 
4292     // Put the exponent in the right bit position for later addition to the
4293     // final result:
4294     //
4295     //   #define LOG2OFe 1.4426950f
4296     //   t0 = Op * LOG2OFe
4297 
4298     // TODO: What fast-math-flags should be set here?
4299     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4300                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4301     return getLimitedPrecisionExp2(t0, dl, DAG);
4302   }
4303 
4304   // No special expansion.
4305   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4306 }
4307 
4308 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4309 /// limited-precision mode.
4310 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4311                          const TargetLowering &TLI) {
4312 
4313   // TODO: What fast-math-flags should be set on the floating-point nodes?
4314 
4315   if (Op.getValueType() == MVT::f32 &&
4316       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4317     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4318 
4319     // Scale the exponent by log(2) [0.69314718f].
4320     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4321     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4322                                         getF32Constant(DAG, 0x3f317218, dl));
4323 
4324     // Get the significand and build it into a floating-point number with
4325     // exponent of 1.
4326     SDValue X = GetSignificand(DAG, Op1, dl);
4327 
4328     SDValue LogOfMantissa;
4329     if (LimitFloatPrecision <= 6) {
4330       // For floating-point precision of 6:
4331       //
4332       //   LogofMantissa =
4333       //     -1.1609546f +
4334       //       (1.4034025f - 0.23903021f * x) * x;
4335       //
4336       // error 0.0034276066, which is better than 8 bits
4337       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4338                                getF32Constant(DAG, 0xbe74c456, dl));
4339       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4340                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4341       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4342       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4343                                   getF32Constant(DAG, 0x3f949a29, dl));
4344     } else if (LimitFloatPrecision <= 12) {
4345       // For floating-point precision of 12:
4346       //
4347       //   LogOfMantissa =
4348       //     -1.7417939f +
4349       //       (2.8212026f +
4350       //         (-1.4699568f +
4351       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4352       //
4353       // error 0.000061011436, which is 14 bits
4354       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4355                                getF32Constant(DAG, 0xbd67b6d6, dl));
4356       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4357                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4358       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4359       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4360                                getF32Constant(DAG, 0x3fbc278b, dl));
4361       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4362       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4363                                getF32Constant(DAG, 0x40348e95, dl));
4364       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4365       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4366                                   getF32Constant(DAG, 0x3fdef31a, dl));
4367     } else { // LimitFloatPrecision <= 18
4368       // For floating-point precision of 18:
4369       //
4370       //   LogOfMantissa =
4371       //     -2.1072184f +
4372       //       (4.2372794f +
4373       //         (-3.7029485f +
4374       //           (2.2781945f +
4375       //             (-0.87823314f +
4376       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4377       //
4378       // error 0.0000023660568, which is better than 18 bits
4379       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4380                                getF32Constant(DAG, 0xbc91e5ac, dl));
4381       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4382                                getF32Constant(DAG, 0x3e4350aa, dl));
4383       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4384       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4385                                getF32Constant(DAG, 0x3f60d3e3, dl));
4386       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4387       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4388                                getF32Constant(DAG, 0x4011cdf0, dl));
4389       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4390       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4391                                getF32Constant(DAG, 0x406cfd1c, dl));
4392       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4393       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4394                                getF32Constant(DAG, 0x408797cb, dl));
4395       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4396       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4397                                   getF32Constant(DAG, 0x4006dcab, dl));
4398     }
4399 
4400     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4401   }
4402 
4403   // No special expansion.
4404   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4405 }
4406 
4407 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4408 /// limited-precision mode.
4409 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4410                           const TargetLowering &TLI) {
4411 
4412   // TODO: What fast-math-flags should be set on the floating-point nodes?
4413 
4414   if (Op.getValueType() == MVT::f32 &&
4415       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4416     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4417 
4418     // Get the exponent.
4419     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4420 
4421     // Get the significand and build it into a floating-point number with
4422     // exponent of 1.
4423     SDValue X = GetSignificand(DAG, Op1, dl);
4424 
4425     // Different possible minimax approximations of significand in
4426     // floating-point for various degrees of accuracy over [1,2].
4427     SDValue Log2ofMantissa;
4428     if (LimitFloatPrecision <= 6) {
4429       // For floating-point precision of 6:
4430       //
4431       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4432       //
4433       // error 0.0049451742, which is more than 7 bits
4434       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4435                                getF32Constant(DAG, 0xbeb08fe0, dl));
4436       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4437                                getF32Constant(DAG, 0x40019463, dl));
4438       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4439       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4440                                    getF32Constant(DAG, 0x3fd6633d, dl));
4441     } else if (LimitFloatPrecision <= 12) {
4442       // For floating-point precision of 12:
4443       //
4444       //   Log2ofMantissa =
4445       //     -2.51285454f +
4446       //       (4.07009056f +
4447       //         (-2.12067489f +
4448       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4449       //
4450       // error 0.0000876136000, which is better than 13 bits
4451       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4452                                getF32Constant(DAG, 0xbda7262e, dl));
4453       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4454                                getF32Constant(DAG, 0x3f25280b, dl));
4455       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4456       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4457                                getF32Constant(DAG, 0x4007b923, dl));
4458       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4459       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4460                                getF32Constant(DAG, 0x40823e2f, dl));
4461       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4462       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4463                                    getF32Constant(DAG, 0x4020d29c, dl));
4464     } else { // LimitFloatPrecision <= 18
4465       // For floating-point precision of 18:
4466       //
4467       //   Log2ofMantissa =
4468       //     -3.0400495f +
4469       //       (6.1129976f +
4470       //         (-5.3420409f +
4471       //           (3.2865683f +
4472       //             (-1.2669343f +
4473       //               (0.27515199f -
4474       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4475       //
4476       // error 0.0000018516, which is better than 18 bits
4477       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4478                                getF32Constant(DAG, 0xbcd2769e, dl));
4479       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4480                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4481       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4482       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4483                                getF32Constant(DAG, 0x3fa22ae7, dl));
4484       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4485       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4486                                getF32Constant(DAG, 0x40525723, dl));
4487       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4488       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4489                                getF32Constant(DAG, 0x40aaf200, dl));
4490       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4491       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4492                                getF32Constant(DAG, 0x40c39dad, dl));
4493       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4494       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4495                                    getF32Constant(DAG, 0x4042902c, dl));
4496     }
4497 
4498     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4499   }
4500 
4501   // No special expansion.
4502   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4503 }
4504 
4505 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4506 /// limited-precision mode.
4507 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4508                            const TargetLowering &TLI) {
4509 
4510   // TODO: What fast-math-flags should be set on the floating-point nodes?
4511 
4512   if (Op.getValueType() == MVT::f32 &&
4513       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4514     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4515 
4516     // Scale the exponent by log10(2) [0.30102999f].
4517     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4518     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4519                                         getF32Constant(DAG, 0x3e9a209a, dl));
4520 
4521     // Get the significand and build it into a floating-point number with
4522     // exponent of 1.
4523     SDValue X = GetSignificand(DAG, Op1, dl);
4524 
4525     SDValue Log10ofMantissa;
4526     if (LimitFloatPrecision <= 6) {
4527       // For floating-point precision of 6:
4528       //
4529       //   Log10ofMantissa =
4530       //     -0.50419619f +
4531       //       (0.60948995f - 0.10380950f * x) * x;
4532       //
4533       // error 0.0014886165, which is 6 bits
4534       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4535                                getF32Constant(DAG, 0xbdd49a13, dl));
4536       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4537                                getF32Constant(DAG, 0x3f1c0789, dl));
4538       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4539       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4540                                     getF32Constant(DAG, 0x3f011300, dl));
4541     } else if (LimitFloatPrecision <= 12) {
4542       // For floating-point precision of 12:
4543       //
4544       //   Log10ofMantissa =
4545       //     -0.64831180f +
4546       //       (0.91751397f +
4547       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4548       //
4549       // error 0.00019228036, which is better than 12 bits
4550       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4551                                getF32Constant(DAG, 0x3d431f31, dl));
4552       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4553                                getF32Constant(DAG, 0x3ea21fb2, dl));
4554       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4555       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4556                                getF32Constant(DAG, 0x3f6ae232, dl));
4557       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4558       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4559                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4560     } else { // LimitFloatPrecision <= 18
4561       // For floating-point precision of 18:
4562       //
4563       //   Log10ofMantissa =
4564       //     -0.84299375f +
4565       //       (1.5327582f +
4566       //         (-1.0688956f +
4567       //           (0.49102474f +
4568       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4569       //
4570       // error 0.0000037995730, which is better than 18 bits
4571       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4572                                getF32Constant(DAG, 0x3c5d51ce, dl));
4573       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4574                                getF32Constant(DAG, 0x3e00685a, dl));
4575       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4576       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4577                                getF32Constant(DAG, 0x3efb6798, dl));
4578       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4579       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4580                                getF32Constant(DAG, 0x3f88d192, dl));
4581       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4582       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4583                                getF32Constant(DAG, 0x3fc4316c, dl));
4584       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4585       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4586                                     getF32Constant(DAG, 0x3f57ce70, dl));
4587     }
4588 
4589     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4590   }
4591 
4592   // No special expansion.
4593   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4594 }
4595 
4596 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4597 /// limited-precision mode.
4598 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4599                           const TargetLowering &TLI) {
4600   if (Op.getValueType() == MVT::f32 &&
4601       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4602     return getLimitedPrecisionExp2(Op, dl, DAG);
4603 
4604   // No special expansion.
4605   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4606 }
4607 
4608 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4609 /// limited-precision mode with x == 10.0f.
4610 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4611                          SelectionDAG &DAG, const TargetLowering &TLI) {
4612   bool IsExp10 = false;
4613   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4614       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4615     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4616       APFloat Ten(10.0f);
4617       IsExp10 = LHSC->isExactlyValue(Ten);
4618     }
4619   }
4620 
4621   // TODO: What fast-math-flags should be set on the FMUL node?
4622   if (IsExp10) {
4623     // Put the exponent in the right bit position for later addition to the
4624     // final result:
4625     //
4626     //   #define LOG2OF10 3.3219281f
4627     //   t0 = Op * LOG2OF10;
4628     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4629                              getF32Constant(DAG, 0x40549a78, dl));
4630     return getLimitedPrecisionExp2(t0, dl, DAG);
4631   }
4632 
4633   // No special expansion.
4634   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4635 }
4636 
4637 
4638 /// ExpandPowI - Expand a llvm.powi intrinsic.
4639 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4640                           SelectionDAG &DAG) {
4641   // If RHS is a constant, we can expand this out to a multiplication tree,
4642   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4643   // optimizing for size, we only want to do this if the expansion would produce
4644   // a small number of multiplies, otherwise we do the full expansion.
4645   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4646     // Get the exponent as a positive value.
4647     unsigned Val = RHSC->getSExtValue();
4648     if ((int)Val < 0) Val = -Val;
4649 
4650     // powi(x, 0) -> 1.0
4651     if (Val == 0)
4652       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4653 
4654     const Function *F = DAG.getMachineFunction().getFunction();
4655     if (!F->optForSize() ||
4656         // If optimizing for size, don't insert too many multiplies.
4657         // This inserts up to 5 multiplies.
4658         countPopulation(Val) + Log2_32(Val) < 7) {
4659       // We use the simple binary decomposition method to generate the multiply
4660       // sequence.  There are more optimal ways to do this (for example,
4661       // powi(x,15) generates one more multiply than it should), but this has
4662       // the benefit of being both really simple and much better than a libcall.
4663       SDValue Res;  // Logically starts equal to 1.0
4664       SDValue CurSquare = LHS;
4665       // TODO: Intrinsics should have fast-math-flags that propagate to these
4666       // nodes.
4667       while (Val) {
4668         if (Val & 1) {
4669           if (Res.getNode())
4670             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4671           else
4672             Res = CurSquare;  // 1.0*CurSquare.
4673         }
4674 
4675         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4676                                 CurSquare, CurSquare);
4677         Val >>= 1;
4678       }
4679 
4680       // If the original was negative, invert the result, producing 1/(x*x*x).
4681       if (RHSC->getSExtValue() < 0)
4682         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4683                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4684       return Res;
4685     }
4686   }
4687 
4688   // Otherwise, expand to a libcall.
4689   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4690 }
4691 
4692 // getUnderlyingArgReg - Find underlying register used for a truncated or
4693 // bitcasted argument.
4694 static unsigned getUnderlyingArgReg(const SDValue &N) {
4695   switch (N.getOpcode()) {
4696   case ISD::CopyFromReg:
4697     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4698   case ISD::BITCAST:
4699   case ISD::AssertZext:
4700   case ISD::AssertSext:
4701   case ISD::TRUNCATE:
4702     return getUnderlyingArgReg(N.getOperand(0));
4703   default:
4704     return 0;
4705   }
4706 }
4707 
4708 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4709 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4710 /// At the end of instruction selection, they will be inserted to the entry BB.
4711 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4712     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4713     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4714   const Argument *Arg = dyn_cast<Argument>(V);
4715   if (!Arg)
4716     return false;
4717 
4718   MachineFunction &MF = DAG.getMachineFunction();
4719   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4720 
4721   // Ignore inlined function arguments here.
4722   //
4723   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4724   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4725     return false;
4726 
4727   Optional<MachineOperand> Op;
4728   // Some arguments' frame index is recorded during argument lowering.
4729   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4730     Op = MachineOperand::CreateFI(FI);
4731 
4732   if (!Op && N.getNode()) {
4733     unsigned Reg = getUnderlyingArgReg(N);
4734     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4735       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4736       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4737       if (PR)
4738         Reg = PR;
4739     }
4740     if (Reg)
4741       Op = MachineOperand::CreateReg(Reg, false);
4742   }
4743 
4744   if (!Op) {
4745     // Check if ValueMap has reg number.
4746     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4747     if (VMI != FuncInfo.ValueMap.end())
4748       Op = MachineOperand::CreateReg(VMI->second, false);
4749   }
4750 
4751   if (!Op && N.getNode())
4752     // Check if frame index is available.
4753     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4754       if (FrameIndexSDNode *FINode =
4755           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4756         Op = MachineOperand::CreateFI(FINode->getIndex());
4757 
4758   if (!Op)
4759     return false;
4760 
4761   assert(Variable->isValidLocationForIntrinsic(DL) &&
4762          "Expected inlined-at fields to agree");
4763   if (Op->isReg())
4764     FuncInfo.ArgDbgValues.push_back(
4765         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4766                 Op->getReg(), Offset, Variable, Expr));
4767   else
4768     FuncInfo.ArgDbgValues.push_back(
4769         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4770             .add(*Op)
4771             .addImm(Offset)
4772             .addMetadata(Variable)
4773             .addMetadata(Expr));
4774 
4775   return true;
4776 }
4777 
4778 /// Return the appropriate SDDbgValue based on N.
4779 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4780                                              DILocalVariable *Variable,
4781                                              DIExpression *Expr, int64_t Offset,
4782                                              const DebugLoc &dl,
4783                                              unsigned DbgSDNodeOrder) {
4784   SDDbgValue *SDV;
4785   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4786   if (FISDN && Expr->startsWithDeref()) {
4787     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4788     // stack slot locations as such instead of as indirectly addressed
4789     // locations.
4790     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4791                                         Expr->elements_end());
4792     DIExpression *DerefedDIExpr =
4793         DIExpression::get(*DAG.getContext(), TrailingElements);
4794     int FI = FISDN->getIndex();
4795     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4796                                     DbgSDNodeOrder);
4797   } else {
4798     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4799                           Offset, dl, DbgSDNodeOrder);
4800   }
4801   return SDV;
4802 }
4803 
4804 // VisualStudio defines setjmp as _setjmp
4805 #if defined(_MSC_VER) && defined(setjmp) && \
4806                          !defined(setjmp_undefined_for_msvc)
4807 #  pragma push_macro("setjmp")
4808 #  undef setjmp
4809 #  define setjmp_undefined_for_msvc
4810 #endif
4811 
4812 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4813 /// we want to emit this as a call to a named external function, return the name
4814 /// otherwise lower it and return null.
4815 const char *
4816 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4818   SDLoc sdl = getCurSDLoc();
4819   DebugLoc dl = getCurDebugLoc();
4820   SDValue Res;
4821 
4822   switch (Intrinsic) {
4823   default:
4824     // By default, turn this into a target intrinsic node.
4825     visitTargetIntrinsic(I, Intrinsic);
4826     return nullptr;
4827   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4828   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4829   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4830   case Intrinsic::returnaddress:
4831     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4832                              TLI.getPointerTy(DAG.getDataLayout()),
4833                              getValue(I.getArgOperand(0))));
4834     return nullptr;
4835   case Intrinsic::addressofreturnaddress:
4836     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4837                              TLI.getPointerTy(DAG.getDataLayout())));
4838     return nullptr;
4839   case Intrinsic::frameaddress:
4840     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4841                              TLI.getPointerTy(DAG.getDataLayout()),
4842                              getValue(I.getArgOperand(0))));
4843     return nullptr;
4844   case Intrinsic::read_register: {
4845     Value *Reg = I.getArgOperand(0);
4846     SDValue Chain = getRoot();
4847     SDValue RegName =
4848         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4849     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4850     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4851       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4852     setValue(&I, Res);
4853     DAG.setRoot(Res.getValue(1));
4854     return nullptr;
4855   }
4856   case Intrinsic::write_register: {
4857     Value *Reg = I.getArgOperand(0);
4858     Value *RegValue = I.getArgOperand(1);
4859     SDValue Chain = getRoot();
4860     SDValue RegName =
4861         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4862     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4863                             RegName, getValue(RegValue)));
4864     return nullptr;
4865   }
4866   case Intrinsic::setjmp:
4867     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4868   case Intrinsic::longjmp:
4869     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4870   case Intrinsic::memcpy: {
4871     SDValue Op1 = getValue(I.getArgOperand(0));
4872     SDValue Op2 = getValue(I.getArgOperand(1));
4873     SDValue Op3 = getValue(I.getArgOperand(2));
4874     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4875     if (!Align)
4876       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4877     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4878     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4879     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4880                                false, isTC,
4881                                MachinePointerInfo(I.getArgOperand(0)),
4882                                MachinePointerInfo(I.getArgOperand(1)));
4883     updateDAGForMaybeTailCall(MC);
4884     return nullptr;
4885   }
4886   case Intrinsic::memset: {
4887     SDValue Op1 = getValue(I.getArgOperand(0));
4888     SDValue Op2 = getValue(I.getArgOperand(1));
4889     SDValue Op3 = getValue(I.getArgOperand(2));
4890     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4891     if (!Align)
4892       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4893     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4894     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4895     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4896                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4897     updateDAGForMaybeTailCall(MS);
4898     return nullptr;
4899   }
4900   case Intrinsic::memmove: {
4901     SDValue Op1 = getValue(I.getArgOperand(0));
4902     SDValue Op2 = getValue(I.getArgOperand(1));
4903     SDValue Op3 = getValue(I.getArgOperand(2));
4904     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4905     if (!Align)
4906       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4907     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4908     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4909     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4910                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4911                                 MachinePointerInfo(I.getArgOperand(1)));
4912     updateDAGForMaybeTailCall(MM);
4913     return nullptr;
4914   }
4915   case Intrinsic::memcpy_element_atomic: {
4916     SDValue Dst = getValue(I.getArgOperand(0));
4917     SDValue Src = getValue(I.getArgOperand(1));
4918     SDValue NumElements = getValue(I.getArgOperand(2));
4919     SDValue ElementSize = getValue(I.getArgOperand(3));
4920 
4921     // Emit a library call.
4922     TargetLowering::ArgListTy Args;
4923     TargetLowering::ArgListEntry Entry;
4924     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4925     Entry.Node = Dst;
4926     Args.push_back(Entry);
4927 
4928     Entry.Node = Src;
4929     Args.push_back(Entry);
4930 
4931     Entry.Ty = I.getArgOperand(2)->getType();
4932     Entry.Node = NumElements;
4933     Args.push_back(Entry);
4934 
4935     Entry.Ty = Type::getInt32Ty(*DAG.getContext());
4936     Entry.Node = ElementSize;
4937     Args.push_back(Entry);
4938 
4939     uint64_t ElementSizeConstant =
4940         cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4941     RTLIB::Libcall LibraryCall =
4942         RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
4943     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4944       report_fatal_error("Unsupported element size");
4945 
4946     TargetLowering::CallLoweringInfo CLI(DAG);
4947     CLI.setDebugLoc(sdl)
4948         .setChain(getRoot())
4949         .setCallee(TLI.getLibcallCallingConv(LibraryCall),
4950                    Type::getVoidTy(*DAG.getContext()),
4951                    DAG.getExternalSymbol(
4952                        TLI.getLibcallName(LibraryCall),
4953                        TLI.getPointerTy(DAG.getDataLayout())),
4954                    std::move(Args));
4955 
4956     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4957     DAG.setRoot(CallResult.second);
4958     return nullptr;
4959   }
4960   case Intrinsic::dbg_declare: {
4961     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4962     DILocalVariable *Variable = DI.getVariable();
4963     DIExpression *Expression = DI.getExpression();
4964     const Value *Address = DI.getAddress();
4965     assert(Variable && "Missing variable");
4966     if (!Address) {
4967       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4968       return nullptr;
4969     }
4970 
4971     // Check if address has undef value.
4972     if (isa<UndefValue>(Address) ||
4973         (Address->use_empty() && !isa<Argument>(Address))) {
4974       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4975       return nullptr;
4976     }
4977 
4978     SDValue &N = NodeMap[Address];
4979     if (!N.getNode() && isa<Argument>(Address))
4980       // Check unused arguments map.
4981       N = UnusedArgNodeMap[Address];
4982     SDDbgValue *SDV;
4983     if (N.getNode()) {
4984       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4985         Address = BCI->getOperand(0);
4986       // Parameters are handled specially.
4987       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4988       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4989       if (isParameter && FINode) {
4990         // Byval parameter. We have a frame index at this point.
4991         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4992                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4993       } else if (isa<Argument>(Address)) {
4994         // Address is an argument, so try to emit its dbg value using
4995         // virtual register info from the FuncInfo.ValueMap.
4996         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4997                                  N);
4998         return nullptr;
4999       } else {
5000         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5001                               true, 0, dl, SDNodeOrder);
5002       }
5003       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5004     } else {
5005       // If Address is an argument then try to emit its dbg value using
5006       // virtual register info from the FuncInfo.ValueMap.
5007       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
5008                                     N)) {
5009         // If variable is pinned by a alloca in dominating bb then
5010         // use StaticAllocaMap.
5011         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
5012           if (AI->getParent() != DI.getParent()) {
5013             DenseMap<const AllocaInst*, int>::iterator SI =
5014               FuncInfo.StaticAllocaMap.find(AI);
5015             if (SI != FuncInfo.StaticAllocaMap.end()) {
5016               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5017                                               0, dl, SDNodeOrder);
5018               DAG.AddDbgValue(SDV, nullptr, false);
5019               return nullptr;
5020             }
5021           }
5022         }
5023         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5024       }
5025     }
5026     return nullptr;
5027   }
5028   case Intrinsic::dbg_value: {
5029     const DbgValueInst &DI = cast<DbgValueInst>(I);
5030     assert(DI.getVariable() && "Missing variable");
5031 
5032     DILocalVariable *Variable = DI.getVariable();
5033     DIExpression *Expression = DI.getExpression();
5034     uint64_t Offset = DI.getOffset();
5035     const Value *V = DI.getValue();
5036     if (!V)
5037       return nullptr;
5038 
5039     SDDbgValue *SDV;
5040     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5041       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
5042                                     SDNodeOrder);
5043       DAG.AddDbgValue(SDV, nullptr, false);
5044     } else {
5045       // Do not use getValue() in here; we don't want to generate code at
5046       // this point if it hasn't been done yet.
5047       SDValue N = NodeMap[V];
5048       if (!N.getNode() && isa<Argument>(V))
5049         // Check unused arguments map.
5050         N = UnusedArgNodeMap[V];
5051       if (N.getNode()) {
5052         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
5053                                       false, N)) {
5054           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5055           DAG.AddDbgValue(SDV, N.getNode(), false);
5056         }
5057       } else if (!V->use_empty() ) {
5058         // Do not call getValue(V) yet, as we don't want to generate code.
5059         // Remember it for later.
5060         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5061         DanglingDebugInfoMap[V] = DDI;
5062       } else {
5063         // We may expand this to cover more cases.  One case where we have no
5064         // data available is an unreferenced parameter.
5065         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5066       }
5067     }
5068 
5069     // Build a debug info table entry.
5070     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5071       V = BCI->getOperand(0);
5072     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5073     // Don't handle byval struct arguments or VLAs, for example.
5074     if (!AI) {
5075       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5076       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5077       return nullptr;
5078     }
5079     DenseMap<const AllocaInst*, int>::iterator SI =
5080       FuncInfo.StaticAllocaMap.find(AI);
5081     if (SI == FuncInfo.StaticAllocaMap.end())
5082       return nullptr; // VLAs.
5083     return nullptr;
5084   }
5085 
5086   case Intrinsic::eh_typeid_for: {
5087     // Find the type id for the given typeinfo.
5088     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5089     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5090     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5091     setValue(&I, Res);
5092     return nullptr;
5093   }
5094 
5095   case Intrinsic::eh_return_i32:
5096   case Intrinsic::eh_return_i64:
5097     DAG.getMachineFunction().setCallsEHReturn(true);
5098     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5099                             MVT::Other,
5100                             getControlRoot(),
5101                             getValue(I.getArgOperand(0)),
5102                             getValue(I.getArgOperand(1))));
5103     return nullptr;
5104   case Intrinsic::eh_unwind_init:
5105     DAG.getMachineFunction().setCallsUnwindInit(true);
5106     return nullptr;
5107   case Intrinsic::eh_dwarf_cfa: {
5108     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5109                              TLI.getPointerTy(DAG.getDataLayout()),
5110                              getValue(I.getArgOperand(0))));
5111     return nullptr;
5112   }
5113   case Intrinsic::eh_sjlj_callsite: {
5114     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5115     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5116     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5117     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5118 
5119     MMI.setCurrentCallSite(CI->getZExtValue());
5120     return nullptr;
5121   }
5122   case Intrinsic::eh_sjlj_functioncontext: {
5123     // Get and store the index of the function context.
5124     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5125     AllocaInst *FnCtx =
5126       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5127     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5128     MFI.setFunctionContextIndex(FI);
5129     return nullptr;
5130   }
5131   case Intrinsic::eh_sjlj_setjmp: {
5132     SDValue Ops[2];
5133     Ops[0] = getRoot();
5134     Ops[1] = getValue(I.getArgOperand(0));
5135     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5136                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5137     setValue(&I, Op.getValue(0));
5138     DAG.setRoot(Op.getValue(1));
5139     return nullptr;
5140   }
5141   case Intrinsic::eh_sjlj_longjmp: {
5142     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5143                             getRoot(), getValue(I.getArgOperand(0))));
5144     return nullptr;
5145   }
5146   case Intrinsic::eh_sjlj_setup_dispatch: {
5147     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5148                             getRoot()));
5149     return nullptr;
5150   }
5151 
5152   case Intrinsic::masked_gather:
5153     visitMaskedGather(I);
5154     return nullptr;
5155   case Intrinsic::masked_load:
5156     visitMaskedLoad(I);
5157     return nullptr;
5158   case Intrinsic::masked_scatter:
5159     visitMaskedScatter(I);
5160     return nullptr;
5161   case Intrinsic::masked_store:
5162     visitMaskedStore(I);
5163     return nullptr;
5164   case Intrinsic::masked_expandload:
5165     visitMaskedLoad(I, true /* IsExpanding */);
5166     return nullptr;
5167   case Intrinsic::masked_compressstore:
5168     visitMaskedStore(I, true /* IsCompressing */);
5169     return nullptr;
5170   case Intrinsic::x86_mmx_pslli_w:
5171   case Intrinsic::x86_mmx_pslli_d:
5172   case Intrinsic::x86_mmx_pslli_q:
5173   case Intrinsic::x86_mmx_psrli_w:
5174   case Intrinsic::x86_mmx_psrli_d:
5175   case Intrinsic::x86_mmx_psrli_q:
5176   case Intrinsic::x86_mmx_psrai_w:
5177   case Intrinsic::x86_mmx_psrai_d: {
5178     SDValue ShAmt = getValue(I.getArgOperand(1));
5179     if (isa<ConstantSDNode>(ShAmt)) {
5180       visitTargetIntrinsic(I, Intrinsic);
5181       return nullptr;
5182     }
5183     unsigned NewIntrinsic = 0;
5184     EVT ShAmtVT = MVT::v2i32;
5185     switch (Intrinsic) {
5186     case Intrinsic::x86_mmx_pslli_w:
5187       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5188       break;
5189     case Intrinsic::x86_mmx_pslli_d:
5190       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5191       break;
5192     case Intrinsic::x86_mmx_pslli_q:
5193       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5194       break;
5195     case Intrinsic::x86_mmx_psrli_w:
5196       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5197       break;
5198     case Intrinsic::x86_mmx_psrli_d:
5199       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5200       break;
5201     case Intrinsic::x86_mmx_psrli_q:
5202       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5203       break;
5204     case Intrinsic::x86_mmx_psrai_w:
5205       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5206       break;
5207     case Intrinsic::x86_mmx_psrai_d:
5208       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5209       break;
5210     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5211     }
5212 
5213     // The vector shift intrinsics with scalars uses 32b shift amounts but
5214     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5215     // to be zero.
5216     // We must do this early because v2i32 is not a legal type.
5217     SDValue ShOps[2];
5218     ShOps[0] = ShAmt;
5219     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5220     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5221     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5222     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5223     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5224                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5225                        getValue(I.getArgOperand(0)), ShAmt);
5226     setValue(&I, Res);
5227     return nullptr;
5228   }
5229   case Intrinsic::powi:
5230     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5231                             getValue(I.getArgOperand(1)), DAG));
5232     return nullptr;
5233   case Intrinsic::log:
5234     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5235     return nullptr;
5236   case Intrinsic::log2:
5237     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5238     return nullptr;
5239   case Intrinsic::log10:
5240     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5241     return nullptr;
5242   case Intrinsic::exp:
5243     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5244     return nullptr;
5245   case Intrinsic::exp2:
5246     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5247     return nullptr;
5248   case Intrinsic::pow:
5249     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5250                            getValue(I.getArgOperand(1)), DAG, TLI));
5251     return nullptr;
5252   case Intrinsic::sqrt:
5253   case Intrinsic::fabs:
5254   case Intrinsic::sin:
5255   case Intrinsic::cos:
5256   case Intrinsic::floor:
5257   case Intrinsic::ceil:
5258   case Intrinsic::trunc:
5259   case Intrinsic::rint:
5260   case Intrinsic::nearbyint:
5261   case Intrinsic::round:
5262   case Intrinsic::canonicalize: {
5263     unsigned Opcode;
5264     switch (Intrinsic) {
5265     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5266     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5267     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5268     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5269     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5270     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5271     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5272     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5273     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5274     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5275     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5276     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5277     }
5278 
5279     setValue(&I, DAG.getNode(Opcode, sdl,
5280                              getValue(I.getArgOperand(0)).getValueType(),
5281                              getValue(I.getArgOperand(0))));
5282     return nullptr;
5283   }
5284   case Intrinsic::minnum: {
5285     auto VT = getValue(I.getArgOperand(0)).getValueType();
5286     unsigned Opc =
5287         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5288             ? ISD::FMINNAN
5289             : ISD::FMINNUM;
5290     setValue(&I, DAG.getNode(Opc, sdl, VT,
5291                              getValue(I.getArgOperand(0)),
5292                              getValue(I.getArgOperand(1))));
5293     return nullptr;
5294   }
5295   case Intrinsic::maxnum: {
5296     auto VT = getValue(I.getArgOperand(0)).getValueType();
5297     unsigned Opc =
5298         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5299             ? ISD::FMAXNAN
5300             : ISD::FMAXNUM;
5301     setValue(&I, DAG.getNode(Opc, sdl, VT,
5302                              getValue(I.getArgOperand(0)),
5303                              getValue(I.getArgOperand(1))));
5304     return nullptr;
5305   }
5306   case Intrinsic::copysign:
5307     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5308                              getValue(I.getArgOperand(0)).getValueType(),
5309                              getValue(I.getArgOperand(0)),
5310                              getValue(I.getArgOperand(1))));
5311     return nullptr;
5312   case Intrinsic::fma:
5313     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5314                              getValue(I.getArgOperand(0)).getValueType(),
5315                              getValue(I.getArgOperand(0)),
5316                              getValue(I.getArgOperand(1)),
5317                              getValue(I.getArgOperand(2))));
5318     return nullptr;
5319   case Intrinsic::experimental_constrained_fadd:
5320   case Intrinsic::experimental_constrained_fsub:
5321   case Intrinsic::experimental_constrained_fmul:
5322   case Intrinsic::experimental_constrained_fdiv:
5323   case Intrinsic::experimental_constrained_frem:
5324     visitConstrainedFPIntrinsic(I, Intrinsic);
5325     return nullptr;
5326   case Intrinsic::fmuladd: {
5327     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5328     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5329         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5330       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5331                                getValue(I.getArgOperand(0)).getValueType(),
5332                                getValue(I.getArgOperand(0)),
5333                                getValue(I.getArgOperand(1)),
5334                                getValue(I.getArgOperand(2))));
5335     } else {
5336       // TODO: Intrinsic calls should have fast-math-flags.
5337       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5338                                 getValue(I.getArgOperand(0)).getValueType(),
5339                                 getValue(I.getArgOperand(0)),
5340                                 getValue(I.getArgOperand(1)));
5341       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5342                                 getValue(I.getArgOperand(0)).getValueType(),
5343                                 Mul,
5344                                 getValue(I.getArgOperand(2)));
5345       setValue(&I, Add);
5346     }
5347     return nullptr;
5348   }
5349   case Intrinsic::convert_to_fp16:
5350     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5351                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5352                                          getValue(I.getArgOperand(0)),
5353                                          DAG.getTargetConstant(0, sdl,
5354                                                                MVT::i32))));
5355     return nullptr;
5356   case Intrinsic::convert_from_fp16:
5357     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5358                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5359                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5360                                          getValue(I.getArgOperand(0)))));
5361     return nullptr;
5362   case Intrinsic::pcmarker: {
5363     SDValue Tmp = getValue(I.getArgOperand(0));
5364     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5365     return nullptr;
5366   }
5367   case Intrinsic::readcyclecounter: {
5368     SDValue Op = getRoot();
5369     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5370                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5371     setValue(&I, Res);
5372     DAG.setRoot(Res.getValue(1));
5373     return nullptr;
5374   }
5375   case Intrinsic::bitreverse:
5376     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5377                              getValue(I.getArgOperand(0)).getValueType(),
5378                              getValue(I.getArgOperand(0))));
5379     return nullptr;
5380   case Intrinsic::bswap:
5381     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5382                              getValue(I.getArgOperand(0)).getValueType(),
5383                              getValue(I.getArgOperand(0))));
5384     return nullptr;
5385   case Intrinsic::cttz: {
5386     SDValue Arg = getValue(I.getArgOperand(0));
5387     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5388     EVT Ty = Arg.getValueType();
5389     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5390                              sdl, Ty, Arg));
5391     return nullptr;
5392   }
5393   case Intrinsic::ctlz: {
5394     SDValue Arg = getValue(I.getArgOperand(0));
5395     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5396     EVT Ty = Arg.getValueType();
5397     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5398                              sdl, Ty, Arg));
5399     return nullptr;
5400   }
5401   case Intrinsic::ctpop: {
5402     SDValue Arg = getValue(I.getArgOperand(0));
5403     EVT Ty = Arg.getValueType();
5404     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5405     return nullptr;
5406   }
5407   case Intrinsic::stacksave: {
5408     SDValue Op = getRoot();
5409     Res = DAG.getNode(
5410         ISD::STACKSAVE, sdl,
5411         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5412     setValue(&I, Res);
5413     DAG.setRoot(Res.getValue(1));
5414     return nullptr;
5415   }
5416   case Intrinsic::stackrestore: {
5417     Res = getValue(I.getArgOperand(0));
5418     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5419     return nullptr;
5420   }
5421   case Intrinsic::get_dynamic_area_offset: {
5422     SDValue Op = getRoot();
5423     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5424     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5425     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5426     // target.
5427     if (PtrTy != ResTy)
5428       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5429                          " intrinsic!");
5430     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5431                       Op);
5432     DAG.setRoot(Op);
5433     setValue(&I, Res);
5434     return nullptr;
5435   }
5436   case Intrinsic::stackguard: {
5437     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5438     MachineFunction &MF = DAG.getMachineFunction();
5439     const Module &M = *MF.getFunction()->getParent();
5440     SDValue Chain = getRoot();
5441     if (TLI.useLoadStackGuardNode()) {
5442       Res = getLoadStackGuard(DAG, sdl, Chain);
5443     } else {
5444       const Value *Global = TLI.getSDagStackGuard(M);
5445       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5446       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5447                         MachinePointerInfo(Global, 0), Align,
5448                         MachineMemOperand::MOVolatile);
5449     }
5450     DAG.setRoot(Chain);
5451     setValue(&I, Res);
5452     return nullptr;
5453   }
5454   case Intrinsic::stackprotector: {
5455     // Emit code into the DAG to store the stack guard onto the stack.
5456     MachineFunction &MF = DAG.getMachineFunction();
5457     MachineFrameInfo &MFI = MF.getFrameInfo();
5458     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5459     SDValue Src, Chain = getRoot();
5460 
5461     if (TLI.useLoadStackGuardNode())
5462       Src = getLoadStackGuard(DAG, sdl, Chain);
5463     else
5464       Src = getValue(I.getArgOperand(0));   // The guard's value.
5465 
5466     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5467 
5468     int FI = FuncInfo.StaticAllocaMap[Slot];
5469     MFI.setStackProtectorIndex(FI);
5470 
5471     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5472 
5473     // Store the stack protector onto the stack.
5474     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5475                                                  DAG.getMachineFunction(), FI),
5476                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5477     setValue(&I, Res);
5478     DAG.setRoot(Res);
5479     return nullptr;
5480   }
5481   case Intrinsic::objectsize: {
5482     // If we don't know by now, we're never going to know.
5483     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5484 
5485     assert(CI && "Non-constant type in __builtin_object_size?");
5486 
5487     SDValue Arg = getValue(I.getCalledValue());
5488     EVT Ty = Arg.getValueType();
5489 
5490     if (CI->isZero())
5491       Res = DAG.getConstant(-1ULL, sdl, Ty);
5492     else
5493       Res = DAG.getConstant(0, sdl, Ty);
5494 
5495     setValue(&I, Res);
5496     return nullptr;
5497   }
5498   case Intrinsic::annotation:
5499   case Intrinsic::ptr_annotation:
5500   case Intrinsic::invariant_group_barrier:
5501     // Drop the intrinsic, but forward the value
5502     setValue(&I, getValue(I.getOperand(0)));
5503     return nullptr;
5504   case Intrinsic::assume:
5505   case Intrinsic::var_annotation:
5506     // Discard annotate attributes and assumptions
5507     return nullptr;
5508 
5509   case Intrinsic::init_trampoline: {
5510     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5511 
5512     SDValue Ops[6];
5513     Ops[0] = getRoot();
5514     Ops[1] = getValue(I.getArgOperand(0));
5515     Ops[2] = getValue(I.getArgOperand(1));
5516     Ops[3] = getValue(I.getArgOperand(2));
5517     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5518     Ops[5] = DAG.getSrcValue(F);
5519 
5520     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5521 
5522     DAG.setRoot(Res);
5523     return nullptr;
5524   }
5525   case Intrinsic::adjust_trampoline: {
5526     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5527                              TLI.getPointerTy(DAG.getDataLayout()),
5528                              getValue(I.getArgOperand(0))));
5529     return nullptr;
5530   }
5531   case Intrinsic::gcroot: {
5532     MachineFunction &MF = DAG.getMachineFunction();
5533     const Function *F = MF.getFunction();
5534     (void)F;
5535     assert(F->hasGC() &&
5536            "only valid in functions with gc specified, enforced by Verifier");
5537     assert(GFI && "implied by previous");
5538     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5539     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5540 
5541     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5542     GFI->addStackRoot(FI->getIndex(), TypeMap);
5543     return nullptr;
5544   }
5545   case Intrinsic::gcread:
5546   case Intrinsic::gcwrite:
5547     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5548   case Intrinsic::flt_rounds:
5549     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5550     return nullptr;
5551 
5552   case Intrinsic::expect: {
5553     // Just replace __builtin_expect(exp, c) with EXP.
5554     setValue(&I, getValue(I.getArgOperand(0)));
5555     return nullptr;
5556   }
5557 
5558   case Intrinsic::debugtrap:
5559   case Intrinsic::trap: {
5560     StringRef TrapFuncName =
5561         I.getAttributes()
5562             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5563             .getValueAsString();
5564     if (TrapFuncName.empty()) {
5565       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5566         ISD::TRAP : ISD::DEBUGTRAP;
5567       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5568       return nullptr;
5569     }
5570     TargetLowering::ArgListTy Args;
5571 
5572     TargetLowering::CallLoweringInfo CLI(DAG);
5573     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5574         CallingConv::C, I.getType(),
5575         DAG.getExternalSymbol(TrapFuncName.data(),
5576                               TLI.getPointerTy(DAG.getDataLayout())),
5577         std::move(Args));
5578 
5579     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5580     DAG.setRoot(Result.second);
5581     return nullptr;
5582   }
5583 
5584   case Intrinsic::uadd_with_overflow:
5585   case Intrinsic::sadd_with_overflow:
5586   case Intrinsic::usub_with_overflow:
5587   case Intrinsic::ssub_with_overflow:
5588   case Intrinsic::umul_with_overflow:
5589   case Intrinsic::smul_with_overflow: {
5590     ISD::NodeType Op;
5591     switch (Intrinsic) {
5592     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5593     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5594     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5595     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5596     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5597     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5598     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5599     }
5600     SDValue Op1 = getValue(I.getArgOperand(0));
5601     SDValue Op2 = getValue(I.getArgOperand(1));
5602 
5603     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5604     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5605     return nullptr;
5606   }
5607   case Intrinsic::prefetch: {
5608     SDValue Ops[5];
5609     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5610     Ops[0] = getRoot();
5611     Ops[1] = getValue(I.getArgOperand(0));
5612     Ops[2] = getValue(I.getArgOperand(1));
5613     Ops[3] = getValue(I.getArgOperand(2));
5614     Ops[4] = getValue(I.getArgOperand(3));
5615     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5616                                         DAG.getVTList(MVT::Other), Ops,
5617                                         EVT::getIntegerVT(*Context, 8),
5618                                         MachinePointerInfo(I.getArgOperand(0)),
5619                                         0, /* align */
5620                                         false, /* volatile */
5621                                         rw==0, /* read */
5622                                         rw==1)); /* write */
5623     return nullptr;
5624   }
5625   case Intrinsic::lifetime_start:
5626   case Intrinsic::lifetime_end: {
5627     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5628     // Stack coloring is not enabled in O0, discard region information.
5629     if (TM.getOptLevel() == CodeGenOpt::None)
5630       return nullptr;
5631 
5632     SmallVector<Value *, 4> Allocas;
5633     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5634 
5635     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5636            E = Allocas.end(); Object != E; ++Object) {
5637       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5638 
5639       // Could not find an Alloca.
5640       if (!LifetimeObject)
5641         continue;
5642 
5643       // First check that the Alloca is static, otherwise it won't have a
5644       // valid frame index.
5645       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5646       if (SI == FuncInfo.StaticAllocaMap.end())
5647         return nullptr;
5648 
5649       int FI = SI->second;
5650 
5651       SDValue Ops[2];
5652       Ops[0] = getRoot();
5653       Ops[1] =
5654           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5655       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5656 
5657       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5658       DAG.setRoot(Res);
5659     }
5660     return nullptr;
5661   }
5662   case Intrinsic::invariant_start:
5663     // Discard region information.
5664     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5665     return nullptr;
5666   case Intrinsic::invariant_end:
5667     // Discard region information.
5668     return nullptr;
5669   case Intrinsic::clear_cache:
5670     return TLI.getClearCacheBuiltinName();
5671   case Intrinsic::donothing:
5672     // ignore
5673     return nullptr;
5674   case Intrinsic::experimental_stackmap: {
5675     visitStackmap(I);
5676     return nullptr;
5677   }
5678   case Intrinsic::experimental_patchpoint_void:
5679   case Intrinsic::experimental_patchpoint_i64: {
5680     visitPatchpoint(&I);
5681     return nullptr;
5682   }
5683   case Intrinsic::experimental_gc_statepoint: {
5684     LowerStatepoint(ImmutableStatepoint(&I));
5685     return nullptr;
5686   }
5687   case Intrinsic::experimental_gc_result: {
5688     visitGCResult(cast<GCResultInst>(I));
5689     return nullptr;
5690   }
5691   case Intrinsic::experimental_gc_relocate: {
5692     visitGCRelocate(cast<GCRelocateInst>(I));
5693     return nullptr;
5694   }
5695   case Intrinsic::instrprof_increment:
5696     llvm_unreachable("instrprof failed to lower an increment");
5697   case Intrinsic::instrprof_value_profile:
5698     llvm_unreachable("instrprof failed to lower a value profiling call");
5699   case Intrinsic::localescape: {
5700     MachineFunction &MF = DAG.getMachineFunction();
5701     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5702 
5703     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5704     // is the same on all targets.
5705     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5706       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5707       if (isa<ConstantPointerNull>(Arg))
5708         continue; // Skip null pointers. They represent a hole in index space.
5709       AllocaInst *Slot = cast<AllocaInst>(Arg);
5710       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5711              "can only escape static allocas");
5712       int FI = FuncInfo.StaticAllocaMap[Slot];
5713       MCSymbol *FrameAllocSym =
5714           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5715               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5716       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5717               TII->get(TargetOpcode::LOCAL_ESCAPE))
5718           .addSym(FrameAllocSym)
5719           .addFrameIndex(FI);
5720     }
5721 
5722     return nullptr;
5723   }
5724 
5725   case Intrinsic::localrecover: {
5726     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5727     MachineFunction &MF = DAG.getMachineFunction();
5728     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5729 
5730     // Get the symbol that defines the frame offset.
5731     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5732     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5733     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5734     MCSymbol *FrameAllocSym =
5735         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5736             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5737 
5738     // Create a MCSymbol for the label to avoid any target lowering
5739     // that would make this PC relative.
5740     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5741     SDValue OffsetVal =
5742         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5743 
5744     // Add the offset to the FP.
5745     Value *FP = I.getArgOperand(1);
5746     SDValue FPVal = getValue(FP);
5747     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5748     setValue(&I, Add);
5749 
5750     return nullptr;
5751   }
5752 
5753   case Intrinsic::eh_exceptionpointer:
5754   case Intrinsic::eh_exceptioncode: {
5755     // Get the exception pointer vreg, copy from it, and resize it to fit.
5756     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5757     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5758     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5759     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5760     SDValue N =
5761         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5762     if (Intrinsic == Intrinsic::eh_exceptioncode)
5763       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5764     setValue(&I, N);
5765     return nullptr;
5766   }
5767 
5768   case Intrinsic::experimental_deoptimize:
5769     LowerDeoptimizeCall(&I);
5770     return nullptr;
5771   }
5772 }
5773 
5774 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I,
5775                                                       unsigned Intrinsic) {
5776   SDLoc sdl = getCurSDLoc();
5777   unsigned Opcode;
5778   switch (Intrinsic) {
5779   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5780   case Intrinsic::experimental_constrained_fadd:
5781     Opcode = ISD::STRICT_FADD;
5782     break;
5783   case Intrinsic::experimental_constrained_fsub:
5784     Opcode = ISD::STRICT_FSUB;
5785     break;
5786   case Intrinsic::experimental_constrained_fmul:
5787     Opcode = ISD::STRICT_FMUL;
5788     break;
5789   case Intrinsic::experimental_constrained_fdiv:
5790     Opcode = ISD::STRICT_FDIV;
5791     break;
5792   case Intrinsic::experimental_constrained_frem:
5793     Opcode = ISD::STRICT_FREM;
5794     break;
5795   }
5796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5797   SDValue Chain = getRoot();
5798   SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)),
5799                      getValue(I.getArgOperand(1)) };
5800   SmallVector<EVT, 4> ValueVTs;
5801   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5802   ValueVTs.push_back(MVT::Other); // Out chain
5803 
5804   SDVTList VTs = DAG.getVTList(ValueVTs);
5805   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops);
5806 
5807   assert(Result.getNode()->getNumValues() == 2);
5808   SDValue OutChain = Result.getValue(1);
5809   DAG.setRoot(OutChain);
5810   SDValue FPResult = Result.getValue(0);
5811   setValue(&I, FPResult);
5812 }
5813 
5814 std::pair<SDValue, SDValue>
5815 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5816                                     const BasicBlock *EHPadBB) {
5817   MachineFunction &MF = DAG.getMachineFunction();
5818   MachineModuleInfo &MMI = MF.getMMI();
5819   MCSymbol *BeginLabel = nullptr;
5820 
5821   if (EHPadBB) {
5822     // Insert a label before the invoke call to mark the try range.  This can be
5823     // used to detect deletion of the invoke via the MachineModuleInfo.
5824     BeginLabel = MMI.getContext().createTempSymbol();
5825 
5826     // For SjLj, keep track of which landing pads go with which invokes
5827     // so as to maintain the ordering of pads in the LSDA.
5828     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5829     if (CallSiteIndex) {
5830       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5831       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5832 
5833       // Now that the call site is handled, stop tracking it.
5834       MMI.setCurrentCallSite(0);
5835     }
5836 
5837     // Both PendingLoads and PendingExports must be flushed here;
5838     // this call might not return.
5839     (void)getRoot();
5840     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5841 
5842     CLI.setChain(getRoot());
5843   }
5844   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5845   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5846 
5847   assert((CLI.IsTailCall || Result.second.getNode()) &&
5848          "Non-null chain expected with non-tail call!");
5849   assert((Result.second.getNode() || !Result.first.getNode()) &&
5850          "Null value expected with tail call!");
5851 
5852   if (!Result.second.getNode()) {
5853     // As a special case, a null chain means that a tail call has been emitted
5854     // and the DAG root is already updated.
5855     HasTailCall = true;
5856 
5857     // Since there's no actual continuation from this block, nothing can be
5858     // relying on us setting vregs for them.
5859     PendingExports.clear();
5860   } else {
5861     DAG.setRoot(Result.second);
5862   }
5863 
5864   if (EHPadBB) {
5865     // Insert a label at the end of the invoke call to mark the try range.  This
5866     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5867     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5868     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5869 
5870     // Inform MachineModuleInfo of range.
5871     if (MF.hasEHFunclets()) {
5872       assert(CLI.CS);
5873       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5874       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5875                                 BeginLabel, EndLabel);
5876     } else {
5877       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5878     }
5879   }
5880 
5881   return Result;
5882 }
5883 
5884 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5885                                       bool isTailCall,
5886                                       const BasicBlock *EHPadBB) {
5887   auto &DL = DAG.getDataLayout();
5888   FunctionType *FTy = CS.getFunctionType();
5889   Type *RetTy = CS.getType();
5890 
5891   TargetLowering::ArgListTy Args;
5892   TargetLowering::ArgListEntry Entry;
5893   Args.reserve(CS.arg_size());
5894 
5895   const Value *SwiftErrorVal = nullptr;
5896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5897 
5898   // We can't tail call inside a function with a swifterror argument. Lowering
5899   // does not support this yet. It would have to move into the swifterror
5900   // register before the call.
5901   auto *Caller = CS.getInstruction()->getParent()->getParent();
5902   if (TLI.supportSwiftError() &&
5903       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
5904     isTailCall = false;
5905 
5906   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5907        i != e; ++i) {
5908     const Value *V = *i;
5909 
5910     // Skip empty types
5911     if (V->getType()->isEmptyTy())
5912       continue;
5913 
5914     SDValue ArgNode = getValue(V);
5915     Entry.Node = ArgNode; Entry.Ty = V->getType();
5916 
5917     // Skip the first return-type Attribute to get to params.
5918     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5919 
5920     // Use swifterror virtual register as input to the call.
5921     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5922       SwiftErrorVal = V;
5923       // We find the virtual register for the actual swifterror argument.
5924       // Instead of using the Value, we use the virtual register instead.
5925       Entry.Node =
5926           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5927                           EVT(TLI.getPointerTy(DL)));
5928     }
5929 
5930     Args.push_back(Entry);
5931 
5932     // If we have an explicit sret argument that is an Instruction, (i.e., it
5933     // might point to function-local memory), we can't meaningfully tail-call.
5934     if (Entry.isSRet && isa<Instruction>(V))
5935       isTailCall = false;
5936   }
5937 
5938   // Check if target-independent constraints permit a tail call here.
5939   // Target-dependent constraints are checked within TLI->LowerCallTo.
5940   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5941     isTailCall = false;
5942 
5943   // Disable tail calls if there is an swifterror argument. Targets have not
5944   // been updated to support tail calls.
5945   if (TLI.supportSwiftError() && SwiftErrorVal)
5946     isTailCall = false;
5947 
5948   TargetLowering::CallLoweringInfo CLI(DAG);
5949   CLI.setDebugLoc(getCurSDLoc())
5950       .setChain(getRoot())
5951       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5952       .setTailCall(isTailCall)
5953       .setConvergent(CS.isConvergent());
5954   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5955 
5956   if (Result.first.getNode()) {
5957     const Instruction *Inst = CS.getInstruction();
5958     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5959     setValue(Inst, Result.first);
5960   }
5961 
5962   // The last element of CLI.InVals has the SDValue for swifterror return.
5963   // Here we copy it to a virtual register and update SwiftErrorMap for
5964   // book-keeping.
5965   if (SwiftErrorVal && TLI.supportSwiftError()) {
5966     // Get the last element of InVals.
5967     SDValue Src = CLI.InVals.back();
5968     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5969     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5970     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5971     // We update the virtual register for the actual swifterror argument.
5972     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5973     DAG.setRoot(CopyNode);
5974   }
5975 }
5976 
5977 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5978 /// value is equal or not-equal to zero.
5979 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5980   for (const User *U : V->users()) {
5981     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5982       if (IC->isEquality())
5983         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5984           if (C->isNullValue())
5985             continue;
5986     // Unknown instruction.
5987     return false;
5988   }
5989   return true;
5990 }
5991 
5992 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5993                              Type *LoadTy,
5994                              SelectionDAGBuilder &Builder) {
5995 
5996   // Check to see if this load can be trivially constant folded, e.g. if the
5997   // input is from a string literal.
5998   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5999     // Cast pointer to the type we really want to load.
6000     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6001                                          PointerType::getUnqual(LoadTy));
6002 
6003     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6004             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6005       return Builder.getValue(LoadCst);
6006   }
6007 
6008   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6009   // still constant memory, the input chain can be the entry node.
6010   SDValue Root;
6011   bool ConstantMemory = false;
6012 
6013   // Do not serialize (non-volatile) loads of constant memory with anything.
6014   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
6015     Root = Builder.DAG.getEntryNode();
6016     ConstantMemory = true;
6017   } else {
6018     // Do not serialize non-volatile loads against each other.
6019     Root = Builder.DAG.getRoot();
6020   }
6021 
6022   SDValue Ptr = Builder.getValue(PtrVal);
6023   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6024                                         Ptr, MachinePointerInfo(PtrVal),
6025                                         /* Alignment = */ 1);
6026 
6027   if (!ConstantMemory)
6028     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6029   return LoadVal;
6030 }
6031 
6032 /// processIntegerCallValue - Record the value for an instruction that
6033 /// produces an integer result, converting the type where necessary.
6034 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6035                                                   SDValue Value,
6036                                                   bool IsSigned) {
6037   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6038                                                     I.getType(), true);
6039   if (IsSigned)
6040     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6041   else
6042     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6043   setValue(&I, Value);
6044 }
6045 
6046 /// See if we can lower a memcmp call into an optimized form.  If so, return
6047 /// true and lower it, otherwise return false and it will be lowered like a
6048 /// normal call.
6049 /// The caller already checked that \p I calls the appropriate LibFunc with a
6050 /// correct prototype.
6051 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6052   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6053   const Value *Size = I.getArgOperand(2);
6054   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6055   if (CSize && CSize->getZExtValue() == 0) {
6056     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6057                                                           I.getType(), true);
6058     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6059     return true;
6060   }
6061 
6062   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6063   std::pair<SDValue, SDValue> Res =
6064     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6065                                 getValue(LHS), getValue(RHS), getValue(Size),
6066                                 MachinePointerInfo(LHS),
6067                                 MachinePointerInfo(RHS));
6068   if (Res.first.getNode()) {
6069     processIntegerCallValue(I, Res.first, true);
6070     PendingLoads.push_back(Res.second);
6071     return true;
6072   }
6073 
6074   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6075   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6076   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
6077     bool ActuallyDoIt = true;
6078     MVT LoadVT;
6079     Type *LoadTy;
6080     switch (CSize->getZExtValue()) {
6081     default:
6082       LoadVT = MVT::Other;
6083       LoadTy = nullptr;
6084       ActuallyDoIt = false;
6085       break;
6086     case 2:
6087       LoadVT = MVT::i16;
6088       LoadTy = Type::getInt16Ty(CSize->getContext());
6089       break;
6090     case 4:
6091       LoadVT = MVT::i32;
6092       LoadTy = Type::getInt32Ty(CSize->getContext());
6093       break;
6094     case 8:
6095       LoadVT = MVT::i64;
6096       LoadTy = Type::getInt64Ty(CSize->getContext());
6097       break;
6098         /*
6099     case 16:
6100       LoadVT = MVT::v4i32;
6101       LoadTy = Type::getInt32Ty(CSize->getContext());
6102       LoadTy = VectorType::get(LoadTy, 4);
6103       break;
6104          */
6105     }
6106 
6107     // This turns into unaligned loads.  We only do this if the target natively
6108     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6109     // we'll only produce a small number of byte loads.
6110 
6111     // Require that we can find a legal MVT, and only do this if the target
6112     // supports unaligned loads of that type.  Expanding into byte loads would
6113     // bloat the code.
6114     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6115     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6116       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6117       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6118       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6119       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6120       // TODO: Check alignment of src and dest ptrs.
6121       if (!TLI.isTypeLegal(LoadVT) ||
6122           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6123           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6124         ActuallyDoIt = false;
6125     }
6126 
6127     if (ActuallyDoIt) {
6128       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6129       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6130 
6131       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6132                                  ISD::SETNE);
6133       processIntegerCallValue(I, Res, false);
6134       return true;
6135     }
6136   }
6137 
6138 
6139   return false;
6140 }
6141 
6142 /// See if we can lower a memchr call into an optimized form.  If so, return
6143 /// true and lower it, otherwise return false and it will be lowered like a
6144 /// normal call.
6145 /// The caller already checked that \p I calls the appropriate LibFunc with a
6146 /// correct prototype.
6147 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6148   const Value *Src = I.getArgOperand(0);
6149   const Value *Char = I.getArgOperand(1);
6150   const Value *Length = I.getArgOperand(2);
6151 
6152   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6153   std::pair<SDValue, SDValue> Res =
6154     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6155                                 getValue(Src), getValue(Char), getValue(Length),
6156                                 MachinePointerInfo(Src));
6157   if (Res.first.getNode()) {
6158     setValue(&I, Res.first);
6159     PendingLoads.push_back(Res.second);
6160     return true;
6161   }
6162 
6163   return false;
6164 }
6165 
6166 /// See if we can lower a mempcpy call into an optimized form.  If so, return
6167 /// true and lower it, otherwise return false and it will be lowered like a
6168 /// normal call.
6169 /// The caller already checked that \p I calls the appropriate LibFunc with a
6170 /// correct prototype.
6171 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6172   SDValue Dst = getValue(I.getArgOperand(0));
6173   SDValue Src = getValue(I.getArgOperand(1));
6174   SDValue Size = getValue(I.getArgOperand(2));
6175 
6176   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6177   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6178   unsigned Align = std::min(DstAlign, SrcAlign);
6179   if (Align == 0) // Alignment of one or both could not be inferred.
6180     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6181 
6182   bool isVol = false;
6183   SDLoc sdl = getCurSDLoc();
6184 
6185   // In the mempcpy context we need to pass in a false value for isTailCall
6186   // because the return pointer needs to be adjusted by the size of
6187   // the copied memory.
6188   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6189                              false, /*isTailCall=*/false,
6190                              MachinePointerInfo(I.getArgOperand(0)),
6191                              MachinePointerInfo(I.getArgOperand(1)));
6192   assert(MC.getNode() != nullptr &&
6193          "** memcpy should not be lowered as TailCall in mempcpy context **");
6194   DAG.setRoot(MC);
6195 
6196   // Check if Size needs to be truncated or extended.
6197   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6198 
6199   // Adjust return pointer to point just past the last dst byte.
6200   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6201                                     Dst, Size);
6202   setValue(&I, DstPlusSize);
6203   return true;
6204 }
6205 
6206 /// See if we can lower a strcpy call into an optimized form.  If so, return
6207 /// true and lower it, otherwise return false and it will be lowered like a
6208 /// normal call.
6209 /// The caller already checked that \p I calls the appropriate LibFunc with a
6210 /// correct prototype.
6211 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6212   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6213 
6214   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6215   std::pair<SDValue, SDValue> Res =
6216     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6217                                 getValue(Arg0), getValue(Arg1),
6218                                 MachinePointerInfo(Arg0),
6219                                 MachinePointerInfo(Arg1), isStpcpy);
6220   if (Res.first.getNode()) {
6221     setValue(&I, Res.first);
6222     DAG.setRoot(Res.second);
6223     return true;
6224   }
6225 
6226   return false;
6227 }
6228 
6229 /// See if we can lower a strcmp call into an optimized form.  If so, return
6230 /// true and lower it, otherwise return false and it will be lowered like a
6231 /// normal call.
6232 /// The caller already checked that \p I calls the appropriate LibFunc with a
6233 /// correct prototype.
6234 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6235   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6236 
6237   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6238   std::pair<SDValue, SDValue> Res =
6239     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6240                                 getValue(Arg0), getValue(Arg1),
6241                                 MachinePointerInfo(Arg0),
6242                                 MachinePointerInfo(Arg1));
6243   if (Res.first.getNode()) {
6244     processIntegerCallValue(I, Res.first, true);
6245     PendingLoads.push_back(Res.second);
6246     return true;
6247   }
6248 
6249   return false;
6250 }
6251 
6252 /// See if we can lower a strlen call into an optimized form.  If so, return
6253 /// true and lower it, otherwise return false and it will be lowered like a
6254 /// normal call.
6255 /// The caller already checked that \p I calls the appropriate LibFunc with a
6256 /// correct prototype.
6257 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6258   const Value *Arg0 = I.getArgOperand(0);
6259 
6260   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6261   std::pair<SDValue, SDValue> Res =
6262     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6263                                 getValue(Arg0), MachinePointerInfo(Arg0));
6264   if (Res.first.getNode()) {
6265     processIntegerCallValue(I, Res.first, false);
6266     PendingLoads.push_back(Res.second);
6267     return true;
6268   }
6269 
6270   return false;
6271 }
6272 
6273 /// See if we can lower a strnlen call into an optimized form.  If so, return
6274 /// true and lower it, otherwise return false and it will be lowered like a
6275 /// normal call.
6276 /// The caller already checked that \p I calls the appropriate LibFunc with a
6277 /// correct prototype.
6278 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6279   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6280 
6281   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6282   std::pair<SDValue, SDValue> Res =
6283     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6284                                  getValue(Arg0), getValue(Arg1),
6285                                  MachinePointerInfo(Arg0));
6286   if (Res.first.getNode()) {
6287     processIntegerCallValue(I, Res.first, false);
6288     PendingLoads.push_back(Res.second);
6289     return true;
6290   }
6291 
6292   return false;
6293 }
6294 
6295 /// See if we can lower a unary floating-point operation into an SDNode with
6296 /// the specified Opcode.  If so, return true and lower it, otherwise return
6297 /// false and it will be lowered like a normal call.
6298 /// The caller already checked that \p I calls the appropriate LibFunc with a
6299 /// correct prototype.
6300 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6301                                               unsigned Opcode) {
6302   // We already checked this call's prototype; verify it doesn't modify errno.
6303   if (!I.onlyReadsMemory())
6304     return false;
6305 
6306   SDValue Tmp = getValue(I.getArgOperand(0));
6307   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6308   return true;
6309 }
6310 
6311 /// See if we can lower a binary floating-point operation into an SDNode with
6312 /// the specified Opcode.  If so, return true and lower it, otherwise return
6313 /// false and it will be lowered like a normal call.
6314 /// The caller already checked that \p I calls the appropriate LibFunc with a
6315 /// correct prototype.
6316 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6317                                                unsigned Opcode) {
6318   // We already checked this call's prototype; verify it doesn't modify errno.
6319   if (!I.onlyReadsMemory())
6320     return false;
6321 
6322   SDValue Tmp0 = getValue(I.getArgOperand(0));
6323   SDValue Tmp1 = getValue(I.getArgOperand(1));
6324   EVT VT = Tmp0.getValueType();
6325   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6326   return true;
6327 }
6328 
6329 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6330   // Handle inline assembly differently.
6331   if (isa<InlineAsm>(I.getCalledValue())) {
6332     visitInlineAsm(&I);
6333     return;
6334   }
6335 
6336   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6337   computeUsesVAFloatArgument(I, MMI);
6338 
6339   const char *RenameFn = nullptr;
6340   if (Function *F = I.getCalledFunction()) {
6341     if (F->isDeclaration()) {
6342       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6343         if (unsigned IID = II->getIntrinsicID(F)) {
6344           RenameFn = visitIntrinsicCall(I, IID);
6345           if (!RenameFn)
6346             return;
6347         }
6348       }
6349       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6350         RenameFn = visitIntrinsicCall(I, IID);
6351         if (!RenameFn)
6352           return;
6353       }
6354     }
6355 
6356     // Check for well-known libc/libm calls.  If the function is internal, it
6357     // can't be a library call.  Don't do the check if marked as nobuiltin for
6358     // some reason.
6359     LibFunc Func;
6360     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6361         LibInfo->getLibFunc(*F, Func) &&
6362         LibInfo->hasOptimizedCodeGen(Func)) {
6363       switch (Func) {
6364       default: break;
6365       case LibFunc_copysign:
6366       case LibFunc_copysignf:
6367       case LibFunc_copysignl:
6368         // We already checked this call's prototype; verify it doesn't modify
6369         // errno.
6370         if (I.onlyReadsMemory()) {
6371           SDValue LHS = getValue(I.getArgOperand(0));
6372           SDValue RHS = getValue(I.getArgOperand(1));
6373           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6374                                    LHS.getValueType(), LHS, RHS));
6375           return;
6376         }
6377         break;
6378       case LibFunc_fabs:
6379       case LibFunc_fabsf:
6380       case LibFunc_fabsl:
6381         if (visitUnaryFloatCall(I, ISD::FABS))
6382           return;
6383         break;
6384       case LibFunc_fmin:
6385       case LibFunc_fminf:
6386       case LibFunc_fminl:
6387         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6388           return;
6389         break;
6390       case LibFunc_fmax:
6391       case LibFunc_fmaxf:
6392       case LibFunc_fmaxl:
6393         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6394           return;
6395         break;
6396       case LibFunc_sin:
6397       case LibFunc_sinf:
6398       case LibFunc_sinl:
6399         if (visitUnaryFloatCall(I, ISD::FSIN))
6400           return;
6401         break;
6402       case LibFunc_cos:
6403       case LibFunc_cosf:
6404       case LibFunc_cosl:
6405         if (visitUnaryFloatCall(I, ISD::FCOS))
6406           return;
6407         break;
6408       case LibFunc_sqrt:
6409       case LibFunc_sqrtf:
6410       case LibFunc_sqrtl:
6411       case LibFunc_sqrt_finite:
6412       case LibFunc_sqrtf_finite:
6413       case LibFunc_sqrtl_finite:
6414         if (visitUnaryFloatCall(I, ISD::FSQRT))
6415           return;
6416         break;
6417       case LibFunc_floor:
6418       case LibFunc_floorf:
6419       case LibFunc_floorl:
6420         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6421           return;
6422         break;
6423       case LibFunc_nearbyint:
6424       case LibFunc_nearbyintf:
6425       case LibFunc_nearbyintl:
6426         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6427           return;
6428         break;
6429       case LibFunc_ceil:
6430       case LibFunc_ceilf:
6431       case LibFunc_ceill:
6432         if (visitUnaryFloatCall(I, ISD::FCEIL))
6433           return;
6434         break;
6435       case LibFunc_rint:
6436       case LibFunc_rintf:
6437       case LibFunc_rintl:
6438         if (visitUnaryFloatCall(I, ISD::FRINT))
6439           return;
6440         break;
6441       case LibFunc_round:
6442       case LibFunc_roundf:
6443       case LibFunc_roundl:
6444         if (visitUnaryFloatCall(I, ISD::FROUND))
6445           return;
6446         break;
6447       case LibFunc_trunc:
6448       case LibFunc_truncf:
6449       case LibFunc_truncl:
6450         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6451           return;
6452         break;
6453       case LibFunc_log2:
6454       case LibFunc_log2f:
6455       case LibFunc_log2l:
6456         if (visitUnaryFloatCall(I, ISD::FLOG2))
6457           return;
6458         break;
6459       case LibFunc_exp2:
6460       case LibFunc_exp2f:
6461       case LibFunc_exp2l:
6462         if (visitUnaryFloatCall(I, ISD::FEXP2))
6463           return;
6464         break;
6465       case LibFunc_memcmp:
6466         if (visitMemCmpCall(I))
6467           return;
6468         break;
6469       case LibFunc_mempcpy:
6470         if (visitMemPCpyCall(I))
6471           return;
6472         break;
6473       case LibFunc_memchr:
6474         if (visitMemChrCall(I))
6475           return;
6476         break;
6477       case LibFunc_strcpy:
6478         if (visitStrCpyCall(I, false))
6479           return;
6480         break;
6481       case LibFunc_stpcpy:
6482         if (visitStrCpyCall(I, true))
6483           return;
6484         break;
6485       case LibFunc_strcmp:
6486         if (visitStrCmpCall(I))
6487           return;
6488         break;
6489       case LibFunc_strlen:
6490         if (visitStrLenCall(I))
6491           return;
6492         break;
6493       case LibFunc_strnlen:
6494         if (visitStrNLenCall(I))
6495           return;
6496         break;
6497       }
6498     }
6499   }
6500 
6501   SDValue Callee;
6502   if (!RenameFn)
6503     Callee = getValue(I.getCalledValue());
6504   else
6505     Callee = DAG.getExternalSymbol(
6506         RenameFn,
6507         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6508 
6509   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6510   // have to do anything here to lower funclet bundles.
6511   assert(!I.hasOperandBundlesOtherThan(
6512              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6513          "Cannot lower calls with arbitrary operand bundles!");
6514 
6515   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6516     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6517   else
6518     // Check if we can potentially perform a tail call. More detailed checking
6519     // is be done within LowerCallTo, after more information about the call is
6520     // known.
6521     LowerCallTo(&I, Callee, I.isTailCall());
6522 }
6523 
6524 namespace {
6525 
6526 /// AsmOperandInfo - This contains information for each constraint that we are
6527 /// lowering.
6528 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6529 public:
6530   /// CallOperand - If this is the result output operand or a clobber
6531   /// this is null, otherwise it is the incoming operand to the CallInst.
6532   /// This gets modified as the asm is processed.
6533   SDValue CallOperand;
6534 
6535   /// AssignedRegs - If this is a register or register class operand, this
6536   /// contains the set of register corresponding to the operand.
6537   RegsForValue AssignedRegs;
6538 
6539   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6540     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6541   }
6542 
6543   /// Whether or not this operand accesses memory
6544   bool hasMemory(const TargetLowering &TLI) const {
6545     // Indirect operand accesses access memory.
6546     if (isIndirect)
6547       return true;
6548 
6549     for (const auto &Code : Codes)
6550       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6551         return true;
6552 
6553     return false;
6554   }
6555 
6556   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6557   /// corresponds to.  If there is no Value* for this operand, it returns
6558   /// MVT::Other.
6559   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6560                            const DataLayout &DL) const {
6561     if (!CallOperandVal) return MVT::Other;
6562 
6563     if (isa<BasicBlock>(CallOperandVal))
6564       return TLI.getPointerTy(DL);
6565 
6566     llvm::Type *OpTy = CallOperandVal->getType();
6567 
6568     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6569     // If this is an indirect operand, the operand is a pointer to the
6570     // accessed type.
6571     if (isIndirect) {
6572       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6573       if (!PtrTy)
6574         report_fatal_error("Indirect operand for inline asm not a pointer!");
6575       OpTy = PtrTy->getElementType();
6576     }
6577 
6578     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6579     if (StructType *STy = dyn_cast<StructType>(OpTy))
6580       if (STy->getNumElements() == 1)
6581         OpTy = STy->getElementType(0);
6582 
6583     // If OpTy is not a single value, it may be a struct/union that we
6584     // can tile with integers.
6585     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6586       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6587       switch (BitSize) {
6588       default: break;
6589       case 1:
6590       case 8:
6591       case 16:
6592       case 32:
6593       case 64:
6594       case 128:
6595         OpTy = IntegerType::get(Context, BitSize);
6596         break;
6597       }
6598     }
6599 
6600     return TLI.getValueType(DL, OpTy, true);
6601   }
6602 };
6603 
6604 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6605 
6606 } // end anonymous namespace
6607 
6608 /// Make sure that the output operand \p OpInfo and its corresponding input
6609 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6610 /// out).
6611 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6612                                SDISelAsmOperandInfo &MatchingOpInfo,
6613                                SelectionDAG &DAG) {
6614   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6615     return;
6616 
6617   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6618   const auto &TLI = DAG.getTargetLoweringInfo();
6619 
6620   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6621       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6622                                        OpInfo.ConstraintVT);
6623   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6624       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6625                                        MatchingOpInfo.ConstraintVT);
6626   if ((OpInfo.ConstraintVT.isInteger() !=
6627        MatchingOpInfo.ConstraintVT.isInteger()) ||
6628       (MatchRC.second != InputRC.second)) {
6629     // FIXME: error out in a more elegant fashion
6630     report_fatal_error("Unsupported asm: input constraint"
6631                        " with a matching output constraint of"
6632                        " incompatible type!");
6633   }
6634   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6635 }
6636 
6637 /// Get a direct memory input to behave well as an indirect operand.
6638 /// This may introduce stores, hence the need for a \p Chain.
6639 /// \return The (possibly updated) chain.
6640 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6641                                         SDISelAsmOperandInfo &OpInfo,
6642                                         SelectionDAG &DAG) {
6643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6644 
6645   // If we don't have an indirect input, put it in the constpool if we can,
6646   // otherwise spill it to a stack slot.
6647   // TODO: This isn't quite right. We need to handle these according to
6648   // the addressing mode that the constraint wants. Also, this may take
6649   // an additional register for the computation and we don't want that
6650   // either.
6651 
6652   // If the operand is a float, integer, or vector constant, spill to a
6653   // constant pool entry to get its address.
6654   const Value *OpVal = OpInfo.CallOperandVal;
6655   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6656       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6657     OpInfo.CallOperand = DAG.getConstantPool(
6658         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6659     return Chain;
6660   }
6661 
6662   // Otherwise, create a stack slot and emit a store to it before the asm.
6663   Type *Ty = OpVal->getType();
6664   auto &DL = DAG.getDataLayout();
6665   uint64_t TySize = DL.getTypeAllocSize(Ty);
6666   unsigned Align = DL.getPrefTypeAlignment(Ty);
6667   MachineFunction &MF = DAG.getMachineFunction();
6668   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6669   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6670   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6671                        MachinePointerInfo::getFixedStack(MF, SSFI));
6672   OpInfo.CallOperand = StackSlot;
6673 
6674   return Chain;
6675 }
6676 
6677 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6678 /// specified operand.  We prefer to assign virtual registers, to allow the
6679 /// register allocator to handle the assignment process.  However, if the asm
6680 /// uses features that we can't model on machineinstrs, we have SDISel do the
6681 /// allocation.  This produces generally horrible, but correct, code.
6682 ///
6683 ///   OpInfo describes the operand.
6684 ///
6685 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6686                                  const SDLoc &DL,
6687                                  SDISelAsmOperandInfo &OpInfo) {
6688   LLVMContext &Context = *DAG.getContext();
6689 
6690   MachineFunction &MF = DAG.getMachineFunction();
6691   SmallVector<unsigned, 4> Regs;
6692 
6693   // If this is a constraint for a single physreg, or a constraint for a
6694   // register class, find it.
6695   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6696       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6697                                        OpInfo.ConstraintCode,
6698                                        OpInfo.ConstraintVT);
6699 
6700   unsigned NumRegs = 1;
6701   if (OpInfo.ConstraintVT != MVT::Other) {
6702     // If this is a FP input in an integer register (or visa versa) insert a bit
6703     // cast of the input value.  More generally, handle any case where the input
6704     // value disagrees with the register class we plan to stick this in.
6705     if (OpInfo.Type == InlineAsm::isInput &&
6706         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6707       // Try to convert to the first EVT that the reg class contains.  If the
6708       // types are identical size, use a bitcast to convert (e.g. two differing
6709       // vector types).
6710       MVT RegVT = *PhysReg.second->vt_begin();
6711       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6712         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6713                                          RegVT, OpInfo.CallOperand);
6714         OpInfo.ConstraintVT = RegVT;
6715       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6716         // If the input is a FP value and we want it in FP registers, do a
6717         // bitcast to the corresponding integer type.  This turns an f64 value
6718         // into i64, which can be passed with two i32 values on a 32-bit
6719         // machine.
6720         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6721         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6722                                          RegVT, OpInfo.CallOperand);
6723         OpInfo.ConstraintVT = RegVT;
6724       }
6725     }
6726 
6727     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6728   }
6729 
6730   MVT RegVT;
6731   EVT ValueVT = OpInfo.ConstraintVT;
6732 
6733   // If this is a constraint for a specific physical register, like {r17},
6734   // assign it now.
6735   if (unsigned AssignedReg = PhysReg.first) {
6736     const TargetRegisterClass *RC = PhysReg.second;
6737     if (OpInfo.ConstraintVT == MVT::Other)
6738       ValueVT = *RC->vt_begin();
6739 
6740     // Get the actual register value type.  This is important, because the user
6741     // may have asked for (e.g.) the AX register in i32 type.  We need to
6742     // remember that AX is actually i16 to get the right extension.
6743     RegVT = *RC->vt_begin();
6744 
6745     // This is a explicit reference to a physical register.
6746     Regs.push_back(AssignedReg);
6747 
6748     // If this is an expanded reference, add the rest of the regs to Regs.
6749     if (NumRegs != 1) {
6750       TargetRegisterClass::iterator I = RC->begin();
6751       for (; *I != AssignedReg; ++I)
6752         assert(I != RC->end() && "Didn't find reg!");
6753 
6754       // Already added the first reg.
6755       --NumRegs; ++I;
6756       for (; NumRegs; --NumRegs, ++I) {
6757         assert(I != RC->end() && "Ran out of registers to allocate!");
6758         Regs.push_back(*I);
6759       }
6760     }
6761 
6762     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6763     return;
6764   }
6765 
6766   // Otherwise, if this was a reference to an LLVM register class, create vregs
6767   // for this reference.
6768   if (const TargetRegisterClass *RC = PhysReg.second) {
6769     RegVT = *RC->vt_begin();
6770     if (OpInfo.ConstraintVT == MVT::Other)
6771       ValueVT = RegVT;
6772 
6773     // Create the appropriate number of virtual registers.
6774     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6775     for (; NumRegs; --NumRegs)
6776       Regs.push_back(RegInfo.createVirtualRegister(RC));
6777 
6778     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6779     return;
6780   }
6781 
6782   // Otherwise, we couldn't allocate enough registers for this.
6783 }
6784 
6785 static unsigned
6786 findMatchingInlineAsmOperand(unsigned OperandNo,
6787                              const std::vector<SDValue> &AsmNodeOperands) {
6788   // Scan until we find the definition we already emitted of this operand.
6789   unsigned CurOp = InlineAsm::Op_FirstOperand;
6790   for (; OperandNo; --OperandNo) {
6791     // Advance to the next operand.
6792     unsigned OpFlag =
6793         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6794     assert((InlineAsm::isRegDefKind(OpFlag) ||
6795             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6796             InlineAsm::isMemKind(OpFlag)) &&
6797            "Skipped past definitions?");
6798     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6799   }
6800   return CurOp;
6801 }
6802 
6803 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6804 /// \return true if it has succeeded, false otherwise
6805 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6806                               MVT RegVT, SelectionDAG &DAG) {
6807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6808   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6809   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6810     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6811       Regs.push_back(RegInfo.createVirtualRegister(RC));
6812     else
6813       return false;
6814   }
6815   return true;
6816 }
6817 
6818 class ExtraFlags {
6819   unsigned Flags = 0;
6820 
6821 public:
6822   explicit ExtraFlags(ImmutableCallSite CS) {
6823     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6824     if (IA->hasSideEffects())
6825       Flags |= InlineAsm::Extra_HasSideEffects;
6826     if (IA->isAlignStack())
6827       Flags |= InlineAsm::Extra_IsAlignStack;
6828     if (CS.isConvergent())
6829       Flags |= InlineAsm::Extra_IsConvergent;
6830     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6831   }
6832 
6833   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6834     // Ideally, we would only check against memory constraints.  However, the
6835     // meaning of an Other constraint can be target-specific and we can't easily
6836     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6837     // for Other constraints as well.
6838     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6839         OpInfo.ConstraintType == TargetLowering::C_Other) {
6840       if (OpInfo.Type == InlineAsm::isInput)
6841         Flags |= InlineAsm::Extra_MayLoad;
6842       else if (OpInfo.Type == InlineAsm::isOutput)
6843         Flags |= InlineAsm::Extra_MayStore;
6844       else if (OpInfo.Type == InlineAsm::isClobber)
6845         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6846     }
6847   }
6848 
6849   unsigned get() const { return Flags; }
6850 };
6851 
6852 /// visitInlineAsm - Handle a call to an InlineAsm object.
6853 ///
6854 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6855   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6856 
6857   /// ConstraintOperands - Information about all of the constraints.
6858   SDISelAsmOperandInfoVector ConstraintOperands;
6859 
6860   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6861   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6862       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6863 
6864   bool hasMemory = false;
6865 
6866   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6867   ExtraFlags ExtraInfo(CS);
6868 
6869   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6870   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6871   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6872     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6873     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6874 
6875     MVT OpVT = MVT::Other;
6876 
6877     // Compute the value type for each operand.
6878     if (OpInfo.Type == InlineAsm::isInput ||
6879         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6880       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6881 
6882       // Process the call argument. BasicBlocks are labels, currently appearing
6883       // only in asm's.
6884       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6885         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6886       } else {
6887         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6888       }
6889 
6890       OpVT =
6891           OpInfo
6892               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6893               .getSimpleVT();
6894     }
6895 
6896     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6897       // The return value of the call is this value.  As such, there is no
6898       // corresponding argument.
6899       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6900       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6901         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6902                                       STy->getElementType(ResNo));
6903       } else {
6904         assert(ResNo == 0 && "Asm only has one result!");
6905         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6906       }
6907       ++ResNo;
6908     }
6909 
6910     OpInfo.ConstraintVT = OpVT;
6911 
6912     if (!hasMemory)
6913       hasMemory = OpInfo.hasMemory(TLI);
6914 
6915     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6916     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6917     auto TargetConstraint = TargetConstraints[i];
6918 
6919     // Compute the constraint code and ConstraintType to use.
6920     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6921 
6922     ExtraInfo.update(TargetConstraint);
6923   }
6924 
6925   SDValue Chain, Flag;
6926 
6927   // We won't need to flush pending loads if this asm doesn't touch
6928   // memory and is nonvolatile.
6929   if (hasMemory || IA->hasSideEffects())
6930     Chain = getRoot();
6931   else
6932     Chain = DAG.getRoot();
6933 
6934   // Second pass over the constraints: compute which constraint option to use
6935   // and assign registers to constraints that want a specific physreg.
6936   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6937     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6938 
6939     // If this is an output operand with a matching input operand, look up the
6940     // matching input. If their types mismatch, e.g. one is an integer, the
6941     // other is floating point, or their sizes are different, flag it as an
6942     // error.
6943     if (OpInfo.hasMatchingInput()) {
6944       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6945       patchMatchingInput(OpInfo, Input, DAG);
6946     }
6947 
6948     // Compute the constraint code and ConstraintType to use.
6949     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6950 
6951     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6952         OpInfo.Type == InlineAsm::isClobber)
6953       continue;
6954 
6955     // If this is a memory input, and if the operand is not indirect, do what we
6956     // need to to provide an address for the memory input.
6957     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6958         !OpInfo.isIndirect) {
6959       assert((OpInfo.isMultipleAlternative ||
6960               (OpInfo.Type == InlineAsm::isInput)) &&
6961              "Can only indirectify direct input operands!");
6962 
6963       // Memory operands really want the address of the value.
6964       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6965 
6966       // There is no longer a Value* corresponding to this operand.
6967       OpInfo.CallOperandVal = nullptr;
6968 
6969       // It is now an indirect operand.
6970       OpInfo.isIndirect = true;
6971     }
6972 
6973     // If this constraint is for a specific register, allocate it before
6974     // anything else.
6975     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6976       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6977   }
6978 
6979   // Third pass - Loop over all of the operands, assigning virtual or physregs
6980   // to register class operands.
6981   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6982     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6983 
6984     // C_Register operands have already been allocated, Other/Memory don't need
6985     // to be.
6986     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6987       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6988   }
6989 
6990   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6991   std::vector<SDValue> AsmNodeOperands;
6992   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6993   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6994       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6995 
6996   // If we have a !srcloc metadata node associated with it, we want to attach
6997   // this to the ultimately generated inline asm machineinstr.  To do this, we
6998   // pass in the third operand as this (potentially null) inline asm MDNode.
6999   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7000   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7001 
7002   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7003   // bits as operand 3.
7004   AsmNodeOperands.push_back(DAG.getTargetConstant(
7005       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7006 
7007   // Loop over all of the inputs, copying the operand values into the
7008   // appropriate registers and processing the output regs.
7009   RegsForValue RetValRegs;
7010 
7011   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7012   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
7013 
7014   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7015     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7016 
7017     switch (OpInfo.Type) {
7018     case InlineAsm::isOutput: {
7019       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7020           OpInfo.ConstraintType != TargetLowering::C_Register) {
7021         // Memory output, or 'other' output (e.g. 'X' constraint).
7022         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7023 
7024         unsigned ConstraintID =
7025             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7026         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7027                "Failed to convert memory constraint code to constraint id.");
7028 
7029         // Add information to the INLINEASM node to know about this output.
7030         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7031         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7032         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7033                                                         MVT::i32));
7034         AsmNodeOperands.push_back(OpInfo.CallOperand);
7035         break;
7036       }
7037 
7038       // Otherwise, this is a register or register class output.
7039 
7040       // Copy the output from the appropriate register.  Find a register that
7041       // we can use.
7042       if (OpInfo.AssignedRegs.Regs.empty()) {
7043         emitInlineAsmError(
7044             CS, "couldn't allocate output register for constraint '" +
7045                     Twine(OpInfo.ConstraintCode) + "'");
7046         return;
7047       }
7048 
7049       // If this is an indirect operand, store through the pointer after the
7050       // asm.
7051       if (OpInfo.isIndirect) {
7052         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7053                                                       OpInfo.CallOperandVal));
7054       } else {
7055         // This is the result value of the call.
7056         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7057         // Concatenate this output onto the outputs list.
7058         RetValRegs.append(OpInfo.AssignedRegs);
7059       }
7060 
7061       // Add information to the INLINEASM node to know that this register is
7062       // set.
7063       OpInfo.AssignedRegs
7064           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7065                                     ? InlineAsm::Kind_RegDefEarlyClobber
7066                                     : InlineAsm::Kind_RegDef,
7067                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7068       break;
7069     }
7070     case InlineAsm::isInput: {
7071       SDValue InOperandVal = OpInfo.CallOperand;
7072 
7073       if (OpInfo.isMatchingInputConstraint()) {
7074         // If this is required to match an output register we have already set,
7075         // just use its register.
7076         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7077                                                   AsmNodeOperands);
7078         unsigned OpFlag =
7079           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7080         if (InlineAsm::isRegDefKind(OpFlag) ||
7081             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7082           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7083           if (OpInfo.isIndirect) {
7084             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7085             emitInlineAsmError(CS, "inline asm not supported yet:"
7086                                    " don't know how to handle tied "
7087                                    "indirect register inputs");
7088             return;
7089           }
7090 
7091           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7092           SmallVector<unsigned, 4> Regs;
7093 
7094           if (!createVirtualRegs(Regs,
7095                                  InlineAsm::getNumOperandRegisters(OpFlag),
7096                                  RegVT, DAG)) {
7097             emitInlineAsmError(CS, "inline asm error: This value type register "
7098                                    "class is not natively supported!");
7099             return;
7100           }
7101 
7102           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7103 
7104           SDLoc dl = getCurSDLoc();
7105           // Use the produced MatchedRegs object to
7106           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7107                                     Chain, &Flag, CS.getInstruction());
7108           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7109                                            true, OpInfo.getMatchedOperand(), dl,
7110                                            DAG, AsmNodeOperands);
7111           break;
7112         }
7113 
7114         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7115         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7116                "Unexpected number of operands");
7117         // Add information to the INLINEASM node to know about this input.
7118         // See InlineAsm.h isUseOperandTiedToDef.
7119         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7120         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7121                                                     OpInfo.getMatchedOperand());
7122         AsmNodeOperands.push_back(DAG.getTargetConstant(
7123             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7124         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7125         break;
7126       }
7127 
7128       // Treat indirect 'X' constraint as memory.
7129       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7130           OpInfo.isIndirect)
7131         OpInfo.ConstraintType = TargetLowering::C_Memory;
7132 
7133       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7134         std::vector<SDValue> Ops;
7135         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7136                                           Ops, DAG);
7137         if (Ops.empty()) {
7138           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7139                                      Twine(OpInfo.ConstraintCode) + "'");
7140           return;
7141         }
7142 
7143         // Add information to the INLINEASM node to know about this input.
7144         unsigned ResOpType =
7145           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7146         AsmNodeOperands.push_back(DAG.getTargetConstant(
7147             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7148         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7149         break;
7150       }
7151 
7152       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7153         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7154         assert(InOperandVal.getValueType() ==
7155                    TLI.getPointerTy(DAG.getDataLayout()) &&
7156                "Memory operands expect pointer values");
7157 
7158         unsigned ConstraintID =
7159             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7160         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7161                "Failed to convert memory constraint code to constraint id.");
7162 
7163         // Add information to the INLINEASM node to know about this input.
7164         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7165         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7166         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7167                                                         getCurSDLoc(),
7168                                                         MVT::i32));
7169         AsmNodeOperands.push_back(InOperandVal);
7170         break;
7171       }
7172 
7173       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7174               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7175              "Unknown constraint type!");
7176 
7177       // TODO: Support this.
7178       if (OpInfo.isIndirect) {
7179         emitInlineAsmError(
7180             CS, "Don't know how to handle indirect register inputs yet "
7181                 "for constraint '" +
7182                     Twine(OpInfo.ConstraintCode) + "'");
7183         return;
7184       }
7185 
7186       // Copy the input into the appropriate registers.
7187       if (OpInfo.AssignedRegs.Regs.empty()) {
7188         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7189                                    Twine(OpInfo.ConstraintCode) + "'");
7190         return;
7191       }
7192 
7193       SDLoc dl = getCurSDLoc();
7194 
7195       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7196                                         Chain, &Flag, CS.getInstruction());
7197 
7198       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7199                                                dl, DAG, AsmNodeOperands);
7200       break;
7201     }
7202     case InlineAsm::isClobber: {
7203       // Add the clobbered value to the operand list, so that the register
7204       // allocator is aware that the physreg got clobbered.
7205       if (!OpInfo.AssignedRegs.Regs.empty())
7206         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7207                                                  false, 0, getCurSDLoc(), DAG,
7208                                                  AsmNodeOperands);
7209       break;
7210     }
7211     }
7212   }
7213 
7214   // Finish up input operands.  Set the input chain and add the flag last.
7215   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7216   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7217 
7218   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7219                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7220   Flag = Chain.getValue(1);
7221 
7222   // If this asm returns a register value, copy the result from that register
7223   // and set it as the value of the call.
7224   if (!RetValRegs.Regs.empty()) {
7225     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7226                                              Chain, &Flag, CS.getInstruction());
7227 
7228     // FIXME: Why don't we do this for inline asms with MRVs?
7229     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7230       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7231 
7232       // If any of the results of the inline asm is a vector, it may have the
7233       // wrong width/num elts.  This can happen for register classes that can
7234       // contain multiple different value types.  The preg or vreg allocated may
7235       // not have the same VT as was expected.  Convert it to the right type
7236       // with bit_convert.
7237       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7238         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7239                           ResultType, Val);
7240 
7241       } else if (ResultType != Val.getValueType() &&
7242                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7243         // If a result value was tied to an input value, the computed result may
7244         // have a wider width than the expected result.  Extract the relevant
7245         // portion.
7246         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7247       }
7248 
7249       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7250     }
7251 
7252     setValue(CS.getInstruction(), Val);
7253     // Don't need to use this as a chain in this case.
7254     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7255       return;
7256   }
7257 
7258   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7259 
7260   // Process indirect outputs, first output all of the flagged copies out of
7261   // physregs.
7262   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7263     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7264     const Value *Ptr = IndirectStoresToEmit[i].second;
7265     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7266                                              Chain, &Flag, IA);
7267     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7268   }
7269 
7270   // Emit the non-flagged stores from the physregs.
7271   SmallVector<SDValue, 8> OutChains;
7272   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7273     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7274                                getValue(StoresToEmit[i].second),
7275                                MachinePointerInfo(StoresToEmit[i].second));
7276     OutChains.push_back(Val);
7277   }
7278 
7279   if (!OutChains.empty())
7280     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7281 
7282   DAG.setRoot(Chain);
7283 }
7284 
7285 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7286                                              const Twine &Message) {
7287   LLVMContext &Ctx = *DAG.getContext();
7288   Ctx.emitError(CS.getInstruction(), Message);
7289 
7290   // Make sure we leave the DAG in a valid state
7291   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7292   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7293   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7294 }
7295 
7296 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7297   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7298                           MVT::Other, getRoot(),
7299                           getValue(I.getArgOperand(0)),
7300                           DAG.getSrcValue(I.getArgOperand(0))));
7301 }
7302 
7303 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7305   const DataLayout &DL = DAG.getDataLayout();
7306   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7307                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7308                            DAG.getSrcValue(I.getOperand(0)),
7309                            DL.getABITypeAlignment(I.getType()));
7310   setValue(&I, V);
7311   DAG.setRoot(V.getValue(1));
7312 }
7313 
7314 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7315   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7316                           MVT::Other, getRoot(),
7317                           getValue(I.getArgOperand(0)),
7318                           DAG.getSrcValue(I.getArgOperand(0))));
7319 }
7320 
7321 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7322   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7323                           MVT::Other, getRoot(),
7324                           getValue(I.getArgOperand(0)),
7325                           getValue(I.getArgOperand(1)),
7326                           DAG.getSrcValue(I.getArgOperand(0)),
7327                           DAG.getSrcValue(I.getArgOperand(1))));
7328 }
7329 
7330 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7331                                                     const Instruction &I,
7332                                                     SDValue Op) {
7333   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7334   if (!Range)
7335     return Op;
7336 
7337   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7338   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7339     return Op;
7340 
7341   APInt Lo = CR.getUnsignedMin();
7342   if (!Lo.isMinValue())
7343     return Op;
7344 
7345   APInt Hi = CR.getUnsignedMax();
7346   unsigned Bits = Hi.getActiveBits();
7347 
7348   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7349 
7350   SDLoc SL = getCurSDLoc();
7351 
7352   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7353                              DAG.getValueType(SmallVT));
7354   unsigned NumVals = Op.getNode()->getNumValues();
7355   if (NumVals == 1)
7356     return ZExt;
7357 
7358   SmallVector<SDValue, 4> Ops;
7359 
7360   Ops.push_back(ZExt);
7361   for (unsigned I = 1; I != NumVals; ++I)
7362     Ops.push_back(Op.getValue(I));
7363 
7364   return DAG.getMergeValues(Ops, SL);
7365 }
7366 
7367 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7368 /// the call being lowered.
7369 ///
7370 /// This is a helper for lowering intrinsics that follow a target calling
7371 /// convention or require stack pointer adjustment. Only a subset of the
7372 /// intrinsic's operands need to participate in the calling convention.
7373 void SelectionDAGBuilder::populateCallLoweringInfo(
7374     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7375     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7376     bool IsPatchPoint) {
7377   TargetLowering::ArgListTy Args;
7378   Args.reserve(NumArgs);
7379 
7380   // Populate the argument list.
7381   // Attributes for args start at offset 1, after the return attribute.
7382   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7383        ArgI != ArgE; ++ArgI) {
7384     const Value *V = CS->getOperand(ArgI);
7385 
7386     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7387 
7388     TargetLowering::ArgListEntry Entry;
7389     Entry.Node = getValue(V);
7390     Entry.Ty = V->getType();
7391     Entry.setAttributes(&CS, AttrI);
7392     Args.push_back(Entry);
7393   }
7394 
7395   CLI.setDebugLoc(getCurSDLoc())
7396       .setChain(getRoot())
7397       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7398       .setDiscardResult(CS->use_empty())
7399       .setIsPatchPoint(IsPatchPoint);
7400 }
7401 
7402 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7403 /// or patchpoint target node's operand list.
7404 ///
7405 /// Constants are converted to TargetConstants purely as an optimization to
7406 /// avoid constant materialization and register allocation.
7407 ///
7408 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7409 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7410 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7411 /// address materialization and register allocation, but may also be required
7412 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7413 /// alloca in the entry block, then the runtime may assume that the alloca's
7414 /// StackMap location can be read immediately after compilation and that the
7415 /// location is valid at any point during execution (this is similar to the
7416 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7417 /// only available in a register, then the runtime would need to trap when
7418 /// execution reaches the StackMap in order to read the alloca's location.
7419 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7420                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7421                                 SelectionDAGBuilder &Builder) {
7422   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7423     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7424     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7425       Ops.push_back(
7426         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7427       Ops.push_back(
7428         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7429     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7430       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7431       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7432           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7433     } else
7434       Ops.push_back(OpVal);
7435   }
7436 }
7437 
7438 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7439 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7440   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7441   //                                  [live variables...])
7442 
7443   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7444 
7445   SDValue Chain, InFlag, Callee, NullPtr;
7446   SmallVector<SDValue, 32> Ops;
7447 
7448   SDLoc DL = getCurSDLoc();
7449   Callee = getValue(CI.getCalledValue());
7450   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7451 
7452   // The stackmap intrinsic only records the live variables (the arguemnts
7453   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7454   // intrinsic, this won't be lowered to a function call. This means we don't
7455   // have to worry about calling conventions and target specific lowering code.
7456   // Instead we perform the call lowering right here.
7457   //
7458   // chain, flag = CALLSEQ_START(chain, 0)
7459   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7460   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7461   //
7462   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7463   InFlag = Chain.getValue(1);
7464 
7465   // Add the <id> and <numBytes> constants.
7466   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7467   Ops.push_back(DAG.getTargetConstant(
7468                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7469   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7470   Ops.push_back(DAG.getTargetConstant(
7471                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7472                   MVT::i32));
7473 
7474   // Push live variables for the stack map.
7475   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7476 
7477   // We are not pushing any register mask info here on the operands list,
7478   // because the stackmap doesn't clobber anything.
7479 
7480   // Push the chain and the glue flag.
7481   Ops.push_back(Chain);
7482   Ops.push_back(InFlag);
7483 
7484   // Create the STACKMAP node.
7485   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7486   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7487   Chain = SDValue(SM, 0);
7488   InFlag = Chain.getValue(1);
7489 
7490   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7491 
7492   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7493 
7494   // Set the root to the target-lowered call chain.
7495   DAG.setRoot(Chain);
7496 
7497   // Inform the Frame Information that we have a stackmap in this function.
7498   FuncInfo.MF->getFrameInfo().setHasStackMap();
7499 }
7500 
7501 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7502 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7503                                           const BasicBlock *EHPadBB) {
7504   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7505   //                                                 i32 <numBytes>,
7506   //                                                 i8* <target>,
7507   //                                                 i32 <numArgs>,
7508   //                                                 [Args...],
7509   //                                                 [live variables...])
7510 
7511   CallingConv::ID CC = CS.getCallingConv();
7512   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7513   bool HasDef = !CS->getType()->isVoidTy();
7514   SDLoc dl = getCurSDLoc();
7515   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7516 
7517   // Handle immediate and symbolic callees.
7518   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7519     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7520                                    /*isTarget=*/true);
7521   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7522     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7523                                          SDLoc(SymbolicCallee),
7524                                          SymbolicCallee->getValueType(0));
7525 
7526   // Get the real number of arguments participating in the call <numArgs>
7527   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7528   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7529 
7530   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7531   // Intrinsics include all meta-operands up to but not including CC.
7532   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7533   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7534          "Not enough arguments provided to the patchpoint intrinsic");
7535 
7536   // For AnyRegCC the arguments are lowered later on manually.
7537   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7538   Type *ReturnTy =
7539     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7540 
7541   TargetLowering::CallLoweringInfo CLI(DAG);
7542   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7543                            true);
7544   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7545 
7546   SDNode *CallEnd = Result.second.getNode();
7547   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7548     CallEnd = CallEnd->getOperand(0).getNode();
7549 
7550   /// Get a call instruction from the call sequence chain.
7551   /// Tail calls are not allowed.
7552   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7553          "Expected a callseq node.");
7554   SDNode *Call = CallEnd->getOperand(0).getNode();
7555   bool HasGlue = Call->getGluedNode();
7556 
7557   // Replace the target specific call node with the patchable intrinsic.
7558   SmallVector<SDValue, 8> Ops;
7559 
7560   // Add the <id> and <numBytes> constants.
7561   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7562   Ops.push_back(DAG.getTargetConstant(
7563                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7564   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7565   Ops.push_back(DAG.getTargetConstant(
7566                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7567                   MVT::i32));
7568 
7569   // Add the callee.
7570   Ops.push_back(Callee);
7571 
7572   // Adjust <numArgs> to account for any arguments that have been passed on the
7573   // stack instead.
7574   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7575   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7576   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7577   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7578 
7579   // Add the calling convention
7580   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7581 
7582   // Add the arguments we omitted previously. The register allocator should
7583   // place these in any free register.
7584   if (IsAnyRegCC)
7585     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7586       Ops.push_back(getValue(CS.getArgument(i)));
7587 
7588   // Push the arguments from the call instruction up to the register mask.
7589   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7590   Ops.append(Call->op_begin() + 2, e);
7591 
7592   // Push live variables for the stack map.
7593   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7594 
7595   // Push the register mask info.
7596   if (HasGlue)
7597     Ops.push_back(*(Call->op_end()-2));
7598   else
7599     Ops.push_back(*(Call->op_end()-1));
7600 
7601   // Push the chain (this is originally the first operand of the call, but
7602   // becomes now the last or second to last operand).
7603   Ops.push_back(*(Call->op_begin()));
7604 
7605   // Push the glue flag (last operand).
7606   if (HasGlue)
7607     Ops.push_back(*(Call->op_end()-1));
7608 
7609   SDVTList NodeTys;
7610   if (IsAnyRegCC && HasDef) {
7611     // Create the return types based on the intrinsic definition
7612     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7613     SmallVector<EVT, 3> ValueVTs;
7614     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7615     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7616 
7617     // There is always a chain and a glue type at the end
7618     ValueVTs.push_back(MVT::Other);
7619     ValueVTs.push_back(MVT::Glue);
7620     NodeTys = DAG.getVTList(ValueVTs);
7621   } else
7622     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7623 
7624   // Replace the target specific call node with a PATCHPOINT node.
7625   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7626                                          dl, NodeTys, Ops);
7627 
7628   // Update the NodeMap.
7629   if (HasDef) {
7630     if (IsAnyRegCC)
7631       setValue(CS.getInstruction(), SDValue(MN, 0));
7632     else
7633       setValue(CS.getInstruction(), Result.first);
7634   }
7635 
7636   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7637   // call sequence. Furthermore the location of the chain and glue can change
7638   // when the AnyReg calling convention is used and the intrinsic returns a
7639   // value.
7640   if (IsAnyRegCC && HasDef) {
7641     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7642     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7643     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7644   } else
7645     DAG.ReplaceAllUsesWith(Call, MN);
7646   DAG.DeleteNode(Call);
7647 
7648   // Inform the Frame Information that we have a patchpoint in this function.
7649   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7650 }
7651 
7652 /// Returns an AttributeSet representing the attributes applied to the return
7653 /// value of the given call.
7654 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7655   SmallVector<Attribute::AttrKind, 2> Attrs;
7656   if (CLI.RetSExt)
7657     Attrs.push_back(Attribute::SExt);
7658   if (CLI.RetZExt)
7659     Attrs.push_back(Attribute::ZExt);
7660   if (CLI.IsInReg)
7661     Attrs.push_back(Attribute::InReg);
7662 
7663   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7664                            Attrs);
7665 }
7666 
7667 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7668 /// implementation, which just calls LowerCall.
7669 /// FIXME: When all targets are
7670 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7671 std::pair<SDValue, SDValue>
7672 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7673   // Handle the incoming return values from the call.
7674   CLI.Ins.clear();
7675   Type *OrigRetTy = CLI.RetTy;
7676   SmallVector<EVT, 4> RetTys;
7677   SmallVector<uint64_t, 4> Offsets;
7678   auto &DL = CLI.DAG.getDataLayout();
7679   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7680 
7681   SmallVector<ISD::OutputArg, 4> Outs;
7682   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7683 
7684   bool CanLowerReturn =
7685       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7686                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7687 
7688   SDValue DemoteStackSlot;
7689   int DemoteStackIdx = -100;
7690   if (!CanLowerReturn) {
7691     // FIXME: equivalent assert?
7692     // assert(!CS.hasInAllocaArgument() &&
7693     //        "sret demotion is incompatible with inalloca");
7694     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7695     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7696     MachineFunction &MF = CLI.DAG.getMachineFunction();
7697     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7698     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7699 
7700     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7701     ArgListEntry Entry;
7702     Entry.Node = DemoteStackSlot;
7703     Entry.Ty = StackSlotPtrType;
7704     Entry.isSExt = false;
7705     Entry.isZExt = false;
7706     Entry.isInReg = false;
7707     Entry.isSRet = true;
7708     Entry.isNest = false;
7709     Entry.isByVal = false;
7710     Entry.isReturned = false;
7711     Entry.isSwiftSelf = false;
7712     Entry.isSwiftError = false;
7713     Entry.Alignment = Align;
7714     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7715     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7716 
7717     // sret demotion isn't compatible with tail-calls, since the sret argument
7718     // points into the callers stack frame.
7719     CLI.IsTailCall = false;
7720   } else {
7721     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7722       EVT VT = RetTys[I];
7723       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7724       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7725       for (unsigned i = 0; i != NumRegs; ++i) {
7726         ISD::InputArg MyFlags;
7727         MyFlags.VT = RegisterVT;
7728         MyFlags.ArgVT = VT;
7729         MyFlags.Used = CLI.IsReturnValueUsed;
7730         if (CLI.RetSExt)
7731           MyFlags.Flags.setSExt();
7732         if (CLI.RetZExt)
7733           MyFlags.Flags.setZExt();
7734         if (CLI.IsInReg)
7735           MyFlags.Flags.setInReg();
7736         CLI.Ins.push_back(MyFlags);
7737       }
7738     }
7739   }
7740 
7741   // We push in swifterror return as the last element of CLI.Ins.
7742   ArgListTy &Args = CLI.getArgs();
7743   if (supportSwiftError()) {
7744     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7745       if (Args[i].isSwiftError) {
7746         ISD::InputArg MyFlags;
7747         MyFlags.VT = getPointerTy(DL);
7748         MyFlags.ArgVT = EVT(getPointerTy(DL));
7749         MyFlags.Flags.setSwiftError();
7750         CLI.Ins.push_back(MyFlags);
7751       }
7752     }
7753   }
7754 
7755   // Handle all of the outgoing arguments.
7756   CLI.Outs.clear();
7757   CLI.OutVals.clear();
7758   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7759     SmallVector<EVT, 4> ValueVTs;
7760     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7761     Type *FinalType = Args[i].Ty;
7762     if (Args[i].isByVal)
7763       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7764     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7765         FinalType, CLI.CallConv, CLI.IsVarArg);
7766     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7767          ++Value) {
7768       EVT VT = ValueVTs[Value];
7769       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7770       SDValue Op = SDValue(Args[i].Node.getNode(),
7771                            Args[i].Node.getResNo() + Value);
7772       ISD::ArgFlagsTy Flags;
7773       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7774 
7775       if (Args[i].isZExt)
7776         Flags.setZExt();
7777       if (Args[i].isSExt)
7778         Flags.setSExt();
7779       if (Args[i].isInReg) {
7780         // If we are using vectorcall calling convention, a structure that is
7781         // passed InReg - is surely an HVA
7782         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7783             isa<StructType>(FinalType)) {
7784           // The first value of a structure is marked
7785           if (0 == Value)
7786             Flags.setHvaStart();
7787           Flags.setHva();
7788         }
7789         // Set InReg Flag
7790         Flags.setInReg();
7791       }
7792       if (Args[i].isSRet)
7793         Flags.setSRet();
7794       if (Args[i].isSwiftSelf)
7795         Flags.setSwiftSelf();
7796       if (Args[i].isSwiftError)
7797         Flags.setSwiftError();
7798       if (Args[i].isByVal)
7799         Flags.setByVal();
7800       if (Args[i].isInAlloca) {
7801         Flags.setInAlloca();
7802         // Set the byval flag for CCAssignFn callbacks that don't know about
7803         // inalloca.  This way we can know how many bytes we should've allocated
7804         // and how many bytes a callee cleanup function will pop.  If we port
7805         // inalloca to more targets, we'll have to add custom inalloca handling
7806         // in the various CC lowering callbacks.
7807         Flags.setByVal();
7808       }
7809       if (Args[i].isByVal || Args[i].isInAlloca) {
7810         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7811         Type *ElementTy = Ty->getElementType();
7812         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7813         // For ByVal, alignment should come from FE.  BE will guess if this
7814         // info is not there but there are cases it cannot get right.
7815         unsigned FrameAlign;
7816         if (Args[i].Alignment)
7817           FrameAlign = Args[i].Alignment;
7818         else
7819           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7820         Flags.setByValAlign(FrameAlign);
7821       }
7822       if (Args[i].isNest)
7823         Flags.setNest();
7824       if (NeedsRegBlock)
7825         Flags.setInConsecutiveRegs();
7826       Flags.setOrigAlign(OriginalAlignment);
7827 
7828       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7829       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7830       SmallVector<SDValue, 4> Parts(NumParts);
7831       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7832 
7833       if (Args[i].isSExt)
7834         ExtendKind = ISD::SIGN_EXTEND;
7835       else if (Args[i].isZExt)
7836         ExtendKind = ISD::ZERO_EXTEND;
7837 
7838       // Conservatively only handle 'returned' on non-vectors for now
7839       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7840         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7841                "unexpected use of 'returned'");
7842         // Before passing 'returned' to the target lowering code, ensure that
7843         // either the register MVT and the actual EVT are the same size or that
7844         // the return value and argument are extended in the same way; in these
7845         // cases it's safe to pass the argument register value unchanged as the
7846         // return register value (although it's at the target's option whether
7847         // to do so)
7848         // TODO: allow code generation to take advantage of partially preserved
7849         // registers rather than clobbering the entire register when the
7850         // parameter extension method is not compatible with the return
7851         // extension method
7852         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7853             (ExtendKind != ISD::ANY_EXTEND &&
7854              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7855         Flags.setReturned();
7856       }
7857 
7858       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7859                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7860 
7861       for (unsigned j = 0; j != NumParts; ++j) {
7862         // if it isn't first piece, alignment must be 1
7863         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7864                                i < CLI.NumFixedArgs,
7865                                i, j*Parts[j].getValueType().getStoreSize());
7866         if (NumParts > 1 && j == 0)
7867           MyFlags.Flags.setSplit();
7868         else if (j != 0) {
7869           MyFlags.Flags.setOrigAlign(1);
7870           if (j == NumParts - 1)
7871             MyFlags.Flags.setSplitEnd();
7872         }
7873 
7874         CLI.Outs.push_back(MyFlags);
7875         CLI.OutVals.push_back(Parts[j]);
7876       }
7877 
7878       if (NeedsRegBlock && Value == NumValues - 1)
7879         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7880     }
7881   }
7882 
7883   SmallVector<SDValue, 4> InVals;
7884   CLI.Chain = LowerCall(CLI, InVals);
7885 
7886   // Update CLI.InVals to use outside of this function.
7887   CLI.InVals = InVals;
7888 
7889   // Verify that the target's LowerCall behaved as expected.
7890   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7891          "LowerCall didn't return a valid chain!");
7892   assert((!CLI.IsTailCall || InVals.empty()) &&
7893          "LowerCall emitted a return value for a tail call!");
7894   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7895          "LowerCall didn't emit the correct number of values!");
7896 
7897   // For a tail call, the return value is merely live-out and there aren't
7898   // any nodes in the DAG representing it. Return a special value to
7899   // indicate that a tail call has been emitted and no more Instructions
7900   // should be processed in the current block.
7901   if (CLI.IsTailCall) {
7902     CLI.DAG.setRoot(CLI.Chain);
7903     return std::make_pair(SDValue(), SDValue());
7904   }
7905 
7906 #ifndef NDEBUG
7907   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7908     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7909     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7910            "LowerCall emitted a value with the wrong type!");
7911   }
7912 #endif
7913 
7914   SmallVector<SDValue, 4> ReturnValues;
7915   if (!CanLowerReturn) {
7916     // The instruction result is the result of loading from the
7917     // hidden sret parameter.
7918     SmallVector<EVT, 1> PVTs;
7919     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7920 
7921     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7922     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7923     EVT PtrVT = PVTs[0];
7924 
7925     unsigned NumValues = RetTys.size();
7926     ReturnValues.resize(NumValues);
7927     SmallVector<SDValue, 4> Chains(NumValues);
7928 
7929     // An aggregate return value cannot wrap around the address space, so
7930     // offsets to its parts don't wrap either.
7931     SDNodeFlags Flags;
7932     Flags.setNoUnsignedWrap(true);
7933 
7934     for (unsigned i = 0; i < NumValues; ++i) {
7935       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7936                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7937                                                         PtrVT), &Flags);
7938       SDValue L = CLI.DAG.getLoad(
7939           RetTys[i], CLI.DL, CLI.Chain, Add,
7940           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7941                                             DemoteStackIdx, Offsets[i]),
7942           /* Alignment = */ 1);
7943       ReturnValues[i] = L;
7944       Chains[i] = L.getValue(1);
7945     }
7946 
7947     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7948   } else {
7949     // Collect the legal value parts into potentially illegal values
7950     // that correspond to the original function's return values.
7951     Optional<ISD::NodeType> AssertOp;
7952     if (CLI.RetSExt)
7953       AssertOp = ISD::AssertSext;
7954     else if (CLI.RetZExt)
7955       AssertOp = ISD::AssertZext;
7956     unsigned CurReg = 0;
7957     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7958       EVT VT = RetTys[I];
7959       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7960       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7961 
7962       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7963                                               NumRegs, RegisterVT, VT, nullptr,
7964                                               AssertOp));
7965       CurReg += NumRegs;
7966     }
7967 
7968     // For a function returning void, there is no return value. We can't create
7969     // such a node, so we just return a null return value in that case. In
7970     // that case, nothing will actually look at the value.
7971     if (ReturnValues.empty())
7972       return std::make_pair(SDValue(), CLI.Chain);
7973   }
7974 
7975   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7976                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7977   return std::make_pair(Res, CLI.Chain);
7978 }
7979 
7980 void TargetLowering::LowerOperationWrapper(SDNode *N,
7981                                            SmallVectorImpl<SDValue> &Results,
7982                                            SelectionDAG &DAG) const {
7983   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7984     Results.push_back(Res);
7985 }
7986 
7987 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7988   llvm_unreachable("LowerOperation not implemented for this target!");
7989 }
7990 
7991 void
7992 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7993   SDValue Op = getNonRegisterValue(V);
7994   assert((Op.getOpcode() != ISD::CopyFromReg ||
7995           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7996          "Copy from a reg to the same reg!");
7997   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7998 
7999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8000   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8001                    V->getType());
8002   SDValue Chain = DAG.getEntryNode();
8003 
8004   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8005                               FuncInfo.PreferredExtendType.end())
8006                                  ? ISD::ANY_EXTEND
8007                                  : FuncInfo.PreferredExtendType[V];
8008   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8009   PendingExports.push_back(Chain);
8010 }
8011 
8012 #include "llvm/CodeGen/SelectionDAGISel.h"
8013 
8014 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8015 /// entry block, return true.  This includes arguments used by switches, since
8016 /// the switch may expand into multiple basic blocks.
8017 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8018   // With FastISel active, we may be splitting blocks, so force creation
8019   // of virtual registers for all non-dead arguments.
8020   if (FastISel)
8021     return A->use_empty();
8022 
8023   const BasicBlock &Entry = A->getParent()->front();
8024   for (const User *U : A->users())
8025     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8026       return false;  // Use not in entry block.
8027 
8028   return true;
8029 }
8030 
8031 typedef DenseMap<const Argument *,
8032                  std::pair<const AllocaInst *, const StoreInst *>>
8033     ArgCopyElisionMapTy;
8034 
8035 /// Scan the entry block of the function in FuncInfo for arguments that look
8036 /// like copies into a local alloca. Record any copied arguments in
8037 /// ArgCopyElisionCandidates.
8038 static void
8039 findArgumentCopyElisionCandidates(const DataLayout &DL,
8040                                   FunctionLoweringInfo *FuncInfo,
8041                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8042   // Record the state of every static alloca used in the entry block. Argument
8043   // allocas are all used in the entry block, so we need approximately as many
8044   // entries as we have arguments.
8045   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8046   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8047   unsigned NumArgs = FuncInfo->Fn->getArgumentList().size();
8048   StaticAllocas.reserve(NumArgs * 2);
8049 
8050   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8051     if (!V)
8052       return nullptr;
8053     V = V->stripPointerCasts();
8054     const auto *AI = dyn_cast<AllocaInst>(V);
8055     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8056       return nullptr;
8057     auto Iter = StaticAllocas.insert({AI, Unknown});
8058     return &Iter.first->second;
8059   };
8060 
8061   // Look for stores of arguments to static allocas. Look through bitcasts and
8062   // GEPs to handle type coercions, as long as the alloca is fully initialized
8063   // by the store. Any non-store use of an alloca escapes it and any subsequent
8064   // unanalyzed store might write it.
8065   // FIXME: Handle structs initialized with multiple stores.
8066   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8067     // Look for stores, and handle non-store uses conservatively.
8068     const auto *SI = dyn_cast<StoreInst>(&I);
8069     if (!SI) {
8070       // We will look through cast uses, so ignore them completely.
8071       if (I.isCast())
8072         continue;
8073       // Ignore debug info intrinsics, they don't escape or store to allocas.
8074       if (isa<DbgInfoIntrinsic>(I))
8075         continue;
8076       // This is an unknown instruction. Assume it escapes or writes to all
8077       // static alloca operands.
8078       for (const Use &U : I.operands()) {
8079         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8080           *Info = StaticAllocaInfo::Clobbered;
8081       }
8082       continue;
8083     }
8084 
8085     // If the stored value is a static alloca, mark it as escaped.
8086     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8087       *Info = StaticAllocaInfo::Clobbered;
8088 
8089     // Check if the destination is a static alloca.
8090     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8091     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8092     if (!Info)
8093       continue;
8094     const AllocaInst *AI = cast<AllocaInst>(Dst);
8095 
8096     // Skip allocas that have been initialized or clobbered.
8097     if (*Info != StaticAllocaInfo::Unknown)
8098       continue;
8099 
8100     // Check if the stored value is an argument, and that this store fully
8101     // initializes the alloca. Don't elide copies from the same argument twice.
8102     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8103     const auto *Arg = dyn_cast<Argument>(Val);
8104     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8105         Arg->getType()->isEmptyTy() ||
8106         DL.getTypeStoreSize(Arg->getType()) !=
8107             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8108         ArgCopyElisionCandidates.count(Arg)) {
8109       *Info = StaticAllocaInfo::Clobbered;
8110       continue;
8111     }
8112 
8113     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8114 
8115     // Mark this alloca and store for argument copy elision.
8116     *Info = StaticAllocaInfo::Elidable;
8117     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8118 
8119     // Stop scanning if we've seen all arguments. This will happen early in -O0
8120     // builds, which is useful, because -O0 builds have large entry blocks and
8121     // many allocas.
8122     if (ArgCopyElisionCandidates.size() == NumArgs)
8123       break;
8124   }
8125 }
8126 
8127 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8128 /// ArgVal is a load from a suitable fixed stack object.
8129 static void tryToElideArgumentCopy(
8130     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8131     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8132     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8133     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8134     SDValue ArgVal, bool &ArgHasUses) {
8135   // Check if this is a load from a fixed stack object.
8136   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8137   if (!LNode)
8138     return;
8139   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8140   if (!FINode)
8141     return;
8142 
8143   // Check that the fixed stack object is the right size and alignment.
8144   // Look at the alignment that the user wrote on the alloca instead of looking
8145   // at the stack object.
8146   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8147   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8148   const AllocaInst *AI = ArgCopyIter->second.first;
8149   int FixedIndex = FINode->getIndex();
8150   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8151   int OldIndex = AllocaIndex;
8152   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8153   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8154     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8155                     "object size\n");
8156     return;
8157   }
8158   unsigned RequiredAlignment = AI->getAlignment();
8159   if (!RequiredAlignment) {
8160     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8161         AI->getAllocatedType());
8162   }
8163   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8164     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8165                     "greater than stack argument alignment ("
8166                  << RequiredAlignment << " vs "
8167                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8168     return;
8169   }
8170 
8171   // Perform the elision. Delete the old stack object and replace its only use
8172   // in the variable info map. Mark the stack object as mutable.
8173   DEBUG({
8174     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8175            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8176            << '\n';
8177   });
8178   MFI.RemoveStackObject(OldIndex);
8179   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8180   AllocaIndex = FixedIndex;
8181   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8182   Chains.push_back(ArgVal.getValue(1));
8183 
8184   // Avoid emitting code for the store implementing the copy.
8185   const StoreInst *SI = ArgCopyIter->second.second;
8186   ElidedArgCopyInstrs.insert(SI);
8187 
8188   // Check for uses of the argument again so that we can avoid exporting ArgVal
8189   // if it is't used by anything other than the store.
8190   for (const Value *U : Arg.users()) {
8191     if (U != SI) {
8192       ArgHasUses = true;
8193       break;
8194     }
8195   }
8196 }
8197 
8198 void SelectionDAGISel::LowerArguments(const Function &F) {
8199   SelectionDAG &DAG = SDB->DAG;
8200   SDLoc dl = SDB->getCurSDLoc();
8201   const DataLayout &DL = DAG.getDataLayout();
8202   SmallVector<ISD::InputArg, 16> Ins;
8203 
8204   if (!FuncInfo->CanLowerReturn) {
8205     // Put in an sret pointer parameter before all the other parameters.
8206     SmallVector<EVT, 1> ValueVTs;
8207     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8208                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8209 
8210     // NOTE: Assuming that a pointer will never break down to more than one VT
8211     // or one register.
8212     ISD::ArgFlagsTy Flags;
8213     Flags.setSRet();
8214     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8215     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8216                          ISD::InputArg::NoArgIndex, 0);
8217     Ins.push_back(RetArg);
8218   }
8219 
8220   // Look for stores of arguments to static allocas. Mark such arguments with a
8221   // flag to ask the target to give us the memory location of that argument if
8222   // available.
8223   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8224   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8225 
8226   // Set up the incoming argument description vector.
8227   unsigned Idx = 0;
8228   for (const Argument &Arg : F.args()) {
8229     ++Idx;
8230     SmallVector<EVT, 4> ValueVTs;
8231     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8232     bool isArgValueUsed = !Arg.use_empty();
8233     unsigned PartBase = 0;
8234     Type *FinalType = Arg.getType();
8235     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8236       FinalType = cast<PointerType>(FinalType)->getElementType();
8237     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8238         FinalType, F.getCallingConv(), F.isVarArg());
8239     for (unsigned Value = 0, NumValues = ValueVTs.size();
8240          Value != NumValues; ++Value) {
8241       EVT VT = ValueVTs[Value];
8242       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8243       ISD::ArgFlagsTy Flags;
8244       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8245 
8246       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8247         Flags.setZExt();
8248       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8249         Flags.setSExt();
8250       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) {
8251         // If we are using vectorcall calling convention, a structure that is
8252         // passed InReg - is surely an HVA
8253         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8254             isa<StructType>(Arg.getType())) {
8255           // The first value of a structure is marked
8256           if (0 == Value)
8257             Flags.setHvaStart();
8258           Flags.setHva();
8259         }
8260         // Set InReg Flag
8261         Flags.setInReg();
8262       }
8263       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8264         Flags.setSRet();
8265       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8266         Flags.setSwiftSelf();
8267       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8268         Flags.setSwiftError();
8269       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8270         Flags.setByVal();
8271       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8272         Flags.setInAlloca();
8273         // Set the byval flag for CCAssignFn callbacks that don't know about
8274         // inalloca.  This way we can know how many bytes we should've allocated
8275         // and how many bytes a callee cleanup function will pop.  If we port
8276         // inalloca to more targets, we'll have to add custom inalloca handling
8277         // in the various CC lowering callbacks.
8278         Flags.setByVal();
8279       }
8280       if (F.getCallingConv() == CallingConv::X86_INTR) {
8281         // IA Interrupt passes frame (1st parameter) by value in the stack.
8282         if (Idx == 1)
8283           Flags.setByVal();
8284       }
8285       if (Flags.isByVal() || Flags.isInAlloca()) {
8286         PointerType *Ty = cast<PointerType>(Arg.getType());
8287         Type *ElementTy = Ty->getElementType();
8288         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8289         // For ByVal, alignment should be passed from FE.  BE will guess if
8290         // this info is not there but there are cases it cannot get right.
8291         unsigned FrameAlign;
8292         if (F.getParamAlignment(Idx))
8293           FrameAlign = F.getParamAlignment(Idx);
8294         else
8295           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8296         Flags.setByValAlign(FrameAlign);
8297       }
8298       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8299         Flags.setNest();
8300       if (NeedsRegBlock)
8301         Flags.setInConsecutiveRegs();
8302       Flags.setOrigAlign(OriginalAlignment);
8303       if (ArgCopyElisionCandidates.count(&Arg))
8304         Flags.setCopyElisionCandidate();
8305 
8306       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8307       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8308       for (unsigned i = 0; i != NumRegs; ++i) {
8309         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8310                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8311         if (NumRegs > 1 && i == 0)
8312           MyFlags.Flags.setSplit();
8313         // if it isn't first piece, alignment must be 1
8314         else if (i > 0) {
8315           MyFlags.Flags.setOrigAlign(1);
8316           if (i == NumRegs - 1)
8317             MyFlags.Flags.setSplitEnd();
8318         }
8319         Ins.push_back(MyFlags);
8320       }
8321       if (NeedsRegBlock && Value == NumValues - 1)
8322         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8323       PartBase += VT.getStoreSize();
8324     }
8325   }
8326 
8327   // Call the target to set up the argument values.
8328   SmallVector<SDValue, 8> InVals;
8329   SDValue NewRoot = TLI->LowerFormalArguments(
8330       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8331 
8332   // Verify that the target's LowerFormalArguments behaved as expected.
8333   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8334          "LowerFormalArguments didn't return a valid chain!");
8335   assert(InVals.size() == Ins.size() &&
8336          "LowerFormalArguments didn't emit the correct number of values!");
8337   DEBUG({
8338       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8339         assert(InVals[i].getNode() &&
8340                "LowerFormalArguments emitted a null value!");
8341         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8342                "LowerFormalArguments emitted a value with the wrong type!");
8343       }
8344     });
8345 
8346   // Update the DAG with the new chain value resulting from argument lowering.
8347   DAG.setRoot(NewRoot);
8348 
8349   // Set up the argument values.
8350   unsigned i = 0;
8351   Idx = 0;
8352   if (!FuncInfo->CanLowerReturn) {
8353     // Create a virtual register for the sret pointer, and put in a copy
8354     // from the sret argument into it.
8355     SmallVector<EVT, 1> ValueVTs;
8356     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8357                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8358     MVT VT = ValueVTs[0].getSimpleVT();
8359     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8360     Optional<ISD::NodeType> AssertOp = None;
8361     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8362                                         RegVT, VT, nullptr, AssertOp);
8363 
8364     MachineFunction& MF = SDB->DAG.getMachineFunction();
8365     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8366     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8367     FuncInfo->DemoteRegister = SRetReg;
8368     NewRoot =
8369         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8370     DAG.setRoot(NewRoot);
8371 
8372     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8373     // Idx indexes LLVM arguments.  Don't touch it.
8374     ++i;
8375   }
8376 
8377   SmallVector<SDValue, 4> Chains;
8378   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8379   for (const Argument &Arg : F.args()) {
8380     ++Idx;
8381     SmallVector<SDValue, 4> ArgValues;
8382     SmallVector<EVT, 4> ValueVTs;
8383     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8384     unsigned NumValues = ValueVTs.size();
8385     if (NumValues == 0)
8386       continue;
8387 
8388     bool ArgHasUses = !Arg.use_empty();
8389 
8390     // Elide the copying store if the target loaded this argument from a
8391     // suitable fixed stack object.
8392     if (Ins[i].Flags.isCopyElisionCandidate()) {
8393       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8394                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8395                              InVals[i], ArgHasUses);
8396     }
8397 
8398     // If this argument is unused then remember its value. It is used to generate
8399     // debugging information.
8400     bool isSwiftErrorArg =
8401         TLI->supportSwiftError() &&
8402         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8403     if (!ArgHasUses && !isSwiftErrorArg) {
8404       SDB->setUnusedArgValue(&Arg, InVals[i]);
8405 
8406       // Also remember any frame index for use in FastISel.
8407       if (FrameIndexSDNode *FI =
8408           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8409         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8410     }
8411 
8412     for (unsigned Val = 0; Val != NumValues; ++Val) {
8413       EVT VT = ValueVTs[Val];
8414       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8415       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8416 
8417       // Even an apparant 'unused' swifterror argument needs to be returned. So
8418       // we do generate a copy for it that can be used on return from the
8419       // function.
8420       if (ArgHasUses || isSwiftErrorArg) {
8421         Optional<ISD::NodeType> AssertOp;
8422         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8423           AssertOp = ISD::AssertSext;
8424         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8425           AssertOp = ISD::AssertZext;
8426 
8427         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8428                                              PartVT, VT, nullptr, AssertOp));
8429       }
8430 
8431       i += NumParts;
8432     }
8433 
8434     // We don't need to do anything else for unused arguments.
8435     if (ArgValues.empty())
8436       continue;
8437 
8438     // Note down frame index.
8439     if (FrameIndexSDNode *FI =
8440         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8441       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8442 
8443     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8444                                      SDB->getCurSDLoc());
8445 
8446     SDB->setValue(&Arg, Res);
8447     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8448       if (LoadSDNode *LNode =
8449           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8450         if (FrameIndexSDNode *FI =
8451             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8452         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8453     }
8454 
8455     // Update the SwiftErrorVRegDefMap.
8456     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8457       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8458       if (TargetRegisterInfo::isVirtualRegister(Reg))
8459         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8460                                            FuncInfo->SwiftErrorArg, Reg);
8461     }
8462 
8463     // If this argument is live outside of the entry block, insert a copy from
8464     // wherever we got it to the vreg that other BB's will reference it as.
8465     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8466       // If we can, though, try to skip creating an unnecessary vreg.
8467       // FIXME: This isn't very clean... it would be nice to make this more
8468       // general.  It's also subtly incompatible with the hacks FastISel
8469       // uses with vregs.
8470       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8471       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8472         FuncInfo->ValueMap[&Arg] = Reg;
8473         continue;
8474       }
8475     }
8476     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8477       FuncInfo->InitializeRegForValue(&Arg);
8478       SDB->CopyToExportRegsIfNeeded(&Arg);
8479     }
8480   }
8481 
8482   if (!Chains.empty()) {
8483     Chains.push_back(NewRoot);
8484     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8485   }
8486 
8487   DAG.setRoot(NewRoot);
8488 
8489   assert(i == InVals.size() && "Argument register count mismatch!");
8490 
8491   // If any argument copy elisions occurred and we have debug info, update the
8492   // stale frame indices used in the dbg.declare variable info table.
8493   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8494   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8495     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8496       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8497       if (I != ArgCopyElisionFrameIndexMap.end())
8498         VI.Slot = I->second;
8499     }
8500   }
8501 
8502   // Finally, if the target has anything special to do, allow it to do so.
8503   EmitFunctionEntryCode();
8504 }
8505 
8506 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8507 /// ensure constants are generated when needed.  Remember the virtual registers
8508 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8509 /// directly add them, because expansion might result in multiple MBB's for one
8510 /// BB.  As such, the start of the BB might correspond to a different MBB than
8511 /// the end.
8512 ///
8513 void
8514 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8515   const TerminatorInst *TI = LLVMBB->getTerminator();
8516 
8517   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8518 
8519   // Check PHI nodes in successors that expect a value to be available from this
8520   // block.
8521   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8522     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8523     if (!isa<PHINode>(SuccBB->begin())) continue;
8524     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8525 
8526     // If this terminator has multiple identical successors (common for
8527     // switches), only handle each succ once.
8528     if (!SuccsHandled.insert(SuccMBB).second)
8529       continue;
8530 
8531     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8532 
8533     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8534     // nodes and Machine PHI nodes, but the incoming operands have not been
8535     // emitted yet.
8536     for (BasicBlock::const_iterator I = SuccBB->begin();
8537          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8538       // Ignore dead phi's.
8539       if (PN->use_empty()) continue;
8540 
8541       // Skip empty types
8542       if (PN->getType()->isEmptyTy())
8543         continue;
8544 
8545       unsigned Reg;
8546       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8547 
8548       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8549         unsigned &RegOut = ConstantsOut[C];
8550         if (RegOut == 0) {
8551           RegOut = FuncInfo.CreateRegs(C->getType());
8552           CopyValueToVirtualRegister(C, RegOut);
8553         }
8554         Reg = RegOut;
8555       } else {
8556         DenseMap<const Value *, unsigned>::iterator I =
8557           FuncInfo.ValueMap.find(PHIOp);
8558         if (I != FuncInfo.ValueMap.end())
8559           Reg = I->second;
8560         else {
8561           assert(isa<AllocaInst>(PHIOp) &&
8562                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8563                  "Didn't codegen value into a register!??");
8564           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8565           CopyValueToVirtualRegister(PHIOp, Reg);
8566         }
8567       }
8568 
8569       // Remember that this register needs to added to the machine PHI node as
8570       // the input for this MBB.
8571       SmallVector<EVT, 4> ValueVTs;
8572       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8573       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8574       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8575         EVT VT = ValueVTs[vti];
8576         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8577         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8578           FuncInfo.PHINodesToUpdate.push_back(
8579               std::make_pair(&*MBBI++, Reg + i));
8580         Reg += NumRegisters;
8581       }
8582     }
8583   }
8584 
8585   ConstantsOut.clear();
8586 }
8587 
8588 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8589 /// is 0.
8590 MachineBasicBlock *
8591 SelectionDAGBuilder::StackProtectorDescriptor::
8592 AddSuccessorMBB(const BasicBlock *BB,
8593                 MachineBasicBlock *ParentMBB,
8594                 bool IsLikely,
8595                 MachineBasicBlock *SuccMBB) {
8596   // If SuccBB has not been created yet, create it.
8597   if (!SuccMBB) {
8598     MachineFunction *MF = ParentMBB->getParent();
8599     MachineFunction::iterator BBI(ParentMBB);
8600     SuccMBB = MF->CreateMachineBasicBlock(BB);
8601     MF->insert(++BBI, SuccMBB);
8602   }
8603   // Add it as a successor of ParentMBB.
8604   ParentMBB->addSuccessor(
8605       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8606   return SuccMBB;
8607 }
8608 
8609 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8610   MachineFunction::iterator I(MBB);
8611   if (++I == FuncInfo.MF->end())
8612     return nullptr;
8613   return &*I;
8614 }
8615 
8616 /// During lowering new call nodes can be created (such as memset, etc.).
8617 /// Those will become new roots of the current DAG, but complications arise
8618 /// when they are tail calls. In such cases, the call lowering will update
8619 /// the root, but the builder still needs to know that a tail call has been
8620 /// lowered in order to avoid generating an additional return.
8621 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8622   // If the node is null, we do have a tail call.
8623   if (MaybeTC.getNode() != nullptr)
8624     DAG.setRoot(MaybeTC);
8625   else
8626     HasTailCall = true;
8627 }
8628 
8629 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8630                                   const SmallVectorImpl<unsigned> &TotalCases,
8631                                   unsigned First, unsigned Last,
8632                                   unsigned Density) const {
8633   assert(Last >= First);
8634   assert(TotalCases[Last] >= TotalCases[First]);
8635 
8636   const APInt &LowCase = Clusters[First].Low->getValue();
8637   const APInt &HighCase = Clusters[Last].High->getValue();
8638   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8639 
8640   // FIXME: A range of consecutive cases has 100% density, but only requires one
8641   // comparison to lower. We should discriminate against such consecutive ranges
8642   // in jump tables.
8643 
8644   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8645   uint64_t Range = Diff + 1;
8646 
8647   uint64_t NumCases =
8648       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8649 
8650   assert(NumCases < UINT64_MAX / 100);
8651   assert(Range >= NumCases);
8652 
8653   return NumCases * 100 >= Range * Density;
8654 }
8655 
8656 static inline bool areJTsAllowed(const TargetLowering &TLI,
8657                                  const SwitchInst *SI) {
8658   const Function *Fn = SI->getParent()->getParent();
8659   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8660     return false;
8661 
8662   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8663          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8664 }
8665 
8666 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8667                                          unsigned First, unsigned Last,
8668                                          const SwitchInst *SI,
8669                                          MachineBasicBlock *DefaultMBB,
8670                                          CaseCluster &JTCluster) {
8671   assert(First <= Last);
8672 
8673   auto Prob = BranchProbability::getZero();
8674   unsigned NumCmps = 0;
8675   std::vector<MachineBasicBlock*> Table;
8676   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8677 
8678   // Initialize probabilities in JTProbs.
8679   for (unsigned I = First; I <= Last; ++I)
8680     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8681 
8682   for (unsigned I = First; I <= Last; ++I) {
8683     assert(Clusters[I].Kind == CC_Range);
8684     Prob += Clusters[I].Prob;
8685     const APInt &Low = Clusters[I].Low->getValue();
8686     const APInt &High = Clusters[I].High->getValue();
8687     NumCmps += (Low == High) ? 1 : 2;
8688     if (I != First) {
8689       // Fill the gap between this and the previous cluster.
8690       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8691       assert(PreviousHigh.slt(Low));
8692       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8693       for (uint64_t J = 0; J < Gap; J++)
8694         Table.push_back(DefaultMBB);
8695     }
8696     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8697     for (uint64_t J = 0; J < ClusterSize; ++J)
8698       Table.push_back(Clusters[I].MBB);
8699     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8700   }
8701 
8702   unsigned NumDests = JTProbs.size();
8703   if (isSuitableForBitTests(NumDests, NumCmps,
8704                             Clusters[First].Low->getValue(),
8705                             Clusters[Last].High->getValue())) {
8706     // Clusters[First..Last] should be lowered as bit tests instead.
8707     return false;
8708   }
8709 
8710   // Create the MBB that will load from and jump through the table.
8711   // Note: We create it here, but it's not inserted into the function yet.
8712   MachineFunction *CurMF = FuncInfo.MF;
8713   MachineBasicBlock *JumpTableMBB =
8714       CurMF->CreateMachineBasicBlock(SI->getParent());
8715 
8716   // Add successors. Note: use table order for determinism.
8717   SmallPtrSet<MachineBasicBlock *, 8> Done;
8718   for (MachineBasicBlock *Succ : Table) {
8719     if (Done.count(Succ))
8720       continue;
8721     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8722     Done.insert(Succ);
8723   }
8724   JumpTableMBB->normalizeSuccProbs();
8725 
8726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8727   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8728                      ->createJumpTableIndex(Table);
8729 
8730   // Set up the jump table info.
8731   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8732   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8733                       Clusters[Last].High->getValue(), SI->getCondition(),
8734                       nullptr, false);
8735   JTCases.emplace_back(std::move(JTH), std::move(JT));
8736 
8737   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8738                                      JTCases.size() - 1, Prob);
8739   return true;
8740 }
8741 
8742 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8743                                          const SwitchInst *SI,
8744                                          MachineBasicBlock *DefaultMBB) {
8745 #ifndef NDEBUG
8746   // Clusters must be non-empty, sorted, and only contain Range clusters.
8747   assert(!Clusters.empty());
8748   for (CaseCluster &C : Clusters)
8749     assert(C.Kind == CC_Range);
8750   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8751     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8752 #endif
8753 
8754   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8755   if (!areJTsAllowed(TLI, SI))
8756     return;
8757 
8758   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8759 
8760   const int64_t N = Clusters.size();
8761   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8762   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8763   const unsigned MaxJumpTableSize =
8764                    OptForSize || TLI.getMaximumJumpTableSize() == 0
8765                    ? UINT_MAX : TLI.getMaximumJumpTableSize();
8766 
8767   if (N < 2 || N < MinJumpTableEntries)
8768     return;
8769 
8770   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8771   SmallVector<unsigned, 8> TotalCases(N);
8772   for (unsigned i = 0; i < N; ++i) {
8773     const APInt &Hi = Clusters[i].High->getValue();
8774     const APInt &Lo = Clusters[i].Low->getValue();
8775     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8776     if (i != 0)
8777       TotalCases[i] += TotalCases[i - 1];
8778   }
8779 
8780   const unsigned MinDensity =
8781     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8782 
8783   // Cheap case: the whole range may be suitable for jump table.
8784   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8785                             Clusters[0].Low->getValue())
8786                            .getLimitedValue(UINT_MAX - 1) + 1;
8787   if (JumpTableSize <= MaxJumpTableSize &&
8788       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8789     CaseCluster JTCluster;
8790     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8791       Clusters[0] = JTCluster;
8792       Clusters.resize(1);
8793       return;
8794     }
8795   }
8796 
8797   // The algorithm below is not suitable for -O0.
8798   if (TM.getOptLevel() == CodeGenOpt::None)
8799     return;
8800 
8801   // Split Clusters into minimum number of dense partitions. The algorithm uses
8802   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8803   // for the Case Statement'" (1994), but builds the MinPartitions array in
8804   // reverse order to make it easier to reconstruct the partitions in ascending
8805   // order. In the choice between two optimal partitionings, it picks the one
8806   // which yields more jump tables.
8807 
8808   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8809   SmallVector<unsigned, 8> MinPartitions(N);
8810   // LastElement[i] is the last element of the partition starting at i.
8811   SmallVector<unsigned, 8> LastElement(N);
8812   // PartitionsScore[i] is used to break ties when choosing between two
8813   // partitionings resulting in the same number of partitions.
8814   SmallVector<unsigned, 8> PartitionsScore(N);
8815   // For PartitionsScore, a small number of comparisons is considered as good as
8816   // a jump table and a single comparison is considered better than a jump
8817   // table.
8818   enum PartitionScores : unsigned {
8819     NoTable = 0,
8820     Table = 1,
8821     FewCases = 1,
8822     SingleCase = 2
8823   };
8824 
8825   // Base case: There is only one way to partition Clusters[N-1].
8826   MinPartitions[N - 1] = 1;
8827   LastElement[N - 1] = N - 1;
8828   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8829 
8830   // Note: loop indexes are signed to avoid underflow.
8831   for (int64_t i = N - 2; i >= 0; i--) {
8832     // Find optimal partitioning of Clusters[i..N-1].
8833     // Baseline: Put Clusters[i] into a partition on its own.
8834     MinPartitions[i] = MinPartitions[i + 1] + 1;
8835     LastElement[i] = i;
8836     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8837 
8838     // Search for a solution that results in fewer partitions.
8839     for (int64_t j = N - 1; j > i; j--) {
8840       // Try building a partition from Clusters[i..j].
8841       JumpTableSize = (Clusters[j].High->getValue() -
8842                        Clusters[i].Low->getValue())
8843                       .getLimitedValue(UINT_MAX - 1) + 1;
8844       if (JumpTableSize <= MaxJumpTableSize &&
8845           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8846         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8847         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8848         int64_t NumEntries = j - i + 1;
8849 
8850         if (NumEntries == 1)
8851           Score += PartitionScores::SingleCase;
8852         else if (NumEntries <= SmallNumberOfEntries)
8853           Score += PartitionScores::FewCases;
8854         else if (NumEntries >= MinJumpTableEntries)
8855           Score += PartitionScores::Table;
8856 
8857         // If this leads to fewer partitions, or to the same number of
8858         // partitions with better score, it is a better partitioning.
8859         if (NumPartitions < MinPartitions[i] ||
8860             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8861           MinPartitions[i] = NumPartitions;
8862           LastElement[i] = j;
8863           PartitionsScore[i] = Score;
8864         }
8865       }
8866     }
8867   }
8868 
8869   // Iterate over the partitions, replacing some with jump tables in-place.
8870   unsigned DstIndex = 0;
8871   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8872     Last = LastElement[First];
8873     assert(Last >= First);
8874     assert(DstIndex <= First);
8875     unsigned NumClusters = Last - First + 1;
8876 
8877     CaseCluster JTCluster;
8878     if (NumClusters >= MinJumpTableEntries &&
8879         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8880       Clusters[DstIndex++] = JTCluster;
8881     } else {
8882       for (unsigned I = First; I <= Last; ++I)
8883         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8884     }
8885   }
8886   Clusters.resize(DstIndex);
8887 }
8888 
8889 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8890   // FIXME: Using the pointer type doesn't seem ideal.
8891   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8892   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8893   return Range <= BW;
8894 }
8895 
8896 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8897                                                 unsigned NumCmps,
8898                                                 const APInt &Low,
8899                                                 const APInt &High) {
8900   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8901   // range of cases both require only one branch to lower. Just looking at the
8902   // number of clusters and destinations should be enough to decide whether to
8903   // build bit tests.
8904 
8905   // To lower a range with bit tests, the range must fit the bitwidth of a
8906   // machine word.
8907   if (!rangeFitsInWord(Low, High))
8908     return false;
8909 
8910   // Decide whether it's profitable to lower this range with bit tests. Each
8911   // destination requires a bit test and branch, and there is an overall range
8912   // check branch. For a small number of clusters, separate comparisons might be
8913   // cheaper, and for many destinations, splitting the range might be better.
8914   return (NumDests == 1 && NumCmps >= 3) ||
8915          (NumDests == 2 && NumCmps >= 5) ||
8916          (NumDests == 3 && NumCmps >= 6);
8917 }
8918 
8919 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8920                                         unsigned First, unsigned Last,
8921                                         const SwitchInst *SI,
8922                                         CaseCluster &BTCluster) {
8923   assert(First <= Last);
8924   if (First == Last)
8925     return false;
8926 
8927   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8928   unsigned NumCmps = 0;
8929   for (int64_t I = First; I <= Last; ++I) {
8930     assert(Clusters[I].Kind == CC_Range);
8931     Dests.set(Clusters[I].MBB->getNumber());
8932     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8933   }
8934   unsigned NumDests = Dests.count();
8935 
8936   APInt Low = Clusters[First].Low->getValue();
8937   APInt High = Clusters[Last].High->getValue();
8938   assert(Low.slt(High));
8939 
8940   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8941     return false;
8942 
8943   APInt LowBound;
8944   APInt CmpRange;
8945 
8946   const int BitWidth = DAG.getTargetLoweringInfo()
8947                            .getPointerTy(DAG.getDataLayout())
8948                            .getSizeInBits();
8949   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8950 
8951   // Check if the clusters cover a contiguous range such that no value in the
8952   // range will jump to the default statement.
8953   bool ContiguousRange = true;
8954   for (int64_t I = First + 1; I <= Last; ++I) {
8955     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8956       ContiguousRange = false;
8957       break;
8958     }
8959   }
8960 
8961   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8962     // Optimize the case where all the case values fit in a word without having
8963     // to subtract minValue. In this case, we can optimize away the subtraction.
8964     LowBound = APInt::getNullValue(Low.getBitWidth());
8965     CmpRange = High;
8966     ContiguousRange = false;
8967   } else {
8968     LowBound = Low;
8969     CmpRange = High - Low;
8970   }
8971 
8972   CaseBitsVector CBV;
8973   auto TotalProb = BranchProbability::getZero();
8974   for (unsigned i = First; i <= Last; ++i) {
8975     // Find the CaseBits for this destination.
8976     unsigned j;
8977     for (j = 0; j < CBV.size(); ++j)
8978       if (CBV[j].BB == Clusters[i].MBB)
8979         break;
8980     if (j == CBV.size())
8981       CBV.push_back(
8982           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8983     CaseBits *CB = &CBV[j];
8984 
8985     // Update Mask, Bits and ExtraProb.
8986     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8987     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8988     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8989     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8990     CB->Bits += Hi - Lo + 1;
8991     CB->ExtraProb += Clusters[i].Prob;
8992     TotalProb += Clusters[i].Prob;
8993   }
8994 
8995   BitTestInfo BTI;
8996   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8997     // Sort by probability first, number of bits second.
8998     if (a.ExtraProb != b.ExtraProb)
8999       return a.ExtraProb > b.ExtraProb;
9000     return a.Bits > b.Bits;
9001   });
9002 
9003   for (auto &CB : CBV) {
9004     MachineBasicBlock *BitTestBB =
9005         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9006     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9007   }
9008   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9009                             SI->getCondition(), -1U, MVT::Other, false,
9010                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9011                             TotalProb);
9012 
9013   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9014                                     BitTestCases.size() - 1, TotalProb);
9015   return true;
9016 }
9017 
9018 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9019                                               const SwitchInst *SI) {
9020 // Partition Clusters into as few subsets as possible, where each subset has a
9021 // range that fits in a machine word and has <= 3 unique destinations.
9022 
9023 #ifndef NDEBUG
9024   // Clusters must be sorted and contain Range or JumpTable clusters.
9025   assert(!Clusters.empty());
9026   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9027   for (const CaseCluster &C : Clusters)
9028     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9029   for (unsigned i = 1; i < Clusters.size(); ++i)
9030     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9031 #endif
9032 
9033   // The algorithm below is not suitable for -O0.
9034   if (TM.getOptLevel() == CodeGenOpt::None)
9035     return;
9036 
9037   // If target does not have legal shift left, do not emit bit tests at all.
9038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9039   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
9040   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9041     return;
9042 
9043   int BitWidth = PTy.getSizeInBits();
9044   const int64_t N = Clusters.size();
9045 
9046   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9047   SmallVector<unsigned, 8> MinPartitions(N);
9048   // LastElement[i] is the last element of the partition starting at i.
9049   SmallVector<unsigned, 8> LastElement(N);
9050 
9051   // FIXME: This might not be the best algorithm for finding bit test clusters.
9052 
9053   // Base case: There is only one way to partition Clusters[N-1].
9054   MinPartitions[N - 1] = 1;
9055   LastElement[N - 1] = N - 1;
9056 
9057   // Note: loop indexes are signed to avoid underflow.
9058   for (int64_t i = N - 2; i >= 0; --i) {
9059     // Find optimal partitioning of Clusters[i..N-1].
9060     // Baseline: Put Clusters[i] into a partition on its own.
9061     MinPartitions[i] = MinPartitions[i + 1] + 1;
9062     LastElement[i] = i;
9063 
9064     // Search for a solution that results in fewer partitions.
9065     // Note: the search is limited by BitWidth, reducing time complexity.
9066     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9067       // Try building a partition from Clusters[i..j].
9068 
9069       // Check the range.
9070       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
9071                            Clusters[j].High->getValue()))
9072         continue;
9073 
9074       // Check nbr of destinations and cluster types.
9075       // FIXME: This works, but doesn't seem very efficient.
9076       bool RangesOnly = true;
9077       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9078       for (int64_t k = i; k <= j; k++) {
9079         if (Clusters[k].Kind != CC_Range) {
9080           RangesOnly = false;
9081           break;
9082         }
9083         Dests.set(Clusters[k].MBB->getNumber());
9084       }
9085       if (!RangesOnly || Dests.count() > 3)
9086         break;
9087 
9088       // Check if it's a better partition.
9089       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9090       if (NumPartitions < MinPartitions[i]) {
9091         // Found a better partition.
9092         MinPartitions[i] = NumPartitions;
9093         LastElement[i] = j;
9094       }
9095     }
9096   }
9097 
9098   // Iterate over the partitions, replacing with bit-test clusters in-place.
9099   unsigned DstIndex = 0;
9100   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9101     Last = LastElement[First];
9102     assert(First <= Last);
9103     assert(DstIndex <= First);
9104 
9105     CaseCluster BitTestCluster;
9106     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9107       Clusters[DstIndex++] = BitTestCluster;
9108     } else {
9109       size_t NumClusters = Last - First + 1;
9110       std::memmove(&Clusters[DstIndex], &Clusters[First],
9111                    sizeof(Clusters[0]) * NumClusters);
9112       DstIndex += NumClusters;
9113     }
9114   }
9115   Clusters.resize(DstIndex);
9116 }
9117 
9118 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9119                                         MachineBasicBlock *SwitchMBB,
9120                                         MachineBasicBlock *DefaultMBB) {
9121   MachineFunction *CurMF = FuncInfo.MF;
9122   MachineBasicBlock *NextMBB = nullptr;
9123   MachineFunction::iterator BBI(W.MBB);
9124   if (++BBI != FuncInfo.MF->end())
9125     NextMBB = &*BBI;
9126 
9127   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9128 
9129   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9130 
9131   if (Size == 2 && W.MBB == SwitchMBB) {
9132     // If any two of the cases has the same destination, and if one value
9133     // is the same as the other, but has one bit unset that the other has set,
9134     // use bit manipulation to do two compares at once.  For example:
9135     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9136     // TODO: This could be extended to merge any 2 cases in switches with 3
9137     // cases.
9138     // TODO: Handle cases where W.CaseBB != SwitchBB.
9139     CaseCluster &Small = *W.FirstCluster;
9140     CaseCluster &Big = *W.LastCluster;
9141 
9142     if (Small.Low == Small.High && Big.Low == Big.High &&
9143         Small.MBB == Big.MBB) {
9144       const APInt &SmallValue = Small.Low->getValue();
9145       const APInt &BigValue = Big.Low->getValue();
9146 
9147       // Check that there is only one bit different.
9148       APInt CommonBit = BigValue ^ SmallValue;
9149       if (CommonBit.isPowerOf2()) {
9150         SDValue CondLHS = getValue(Cond);
9151         EVT VT = CondLHS.getValueType();
9152         SDLoc DL = getCurSDLoc();
9153 
9154         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9155                                  DAG.getConstant(CommonBit, DL, VT));
9156         SDValue Cond = DAG.getSetCC(
9157             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9158             ISD::SETEQ);
9159 
9160         // Update successor info.
9161         // Both Small and Big will jump to Small.BB, so we sum up the
9162         // probabilities.
9163         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9164         if (BPI)
9165           addSuccessorWithProb(
9166               SwitchMBB, DefaultMBB,
9167               // The default destination is the first successor in IR.
9168               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9169         else
9170           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9171 
9172         // Insert the true branch.
9173         SDValue BrCond =
9174             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9175                         DAG.getBasicBlock(Small.MBB));
9176         // Insert the false branch.
9177         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9178                              DAG.getBasicBlock(DefaultMBB));
9179 
9180         DAG.setRoot(BrCond);
9181         return;
9182       }
9183     }
9184   }
9185 
9186   if (TM.getOptLevel() != CodeGenOpt::None) {
9187     // Order cases by probability so the most likely case will be checked first.
9188     std::sort(W.FirstCluster, W.LastCluster + 1,
9189               [](const CaseCluster &a, const CaseCluster &b) {
9190       return a.Prob > b.Prob;
9191     });
9192 
9193     // Rearrange the case blocks so that the last one falls through if possible
9194     // without without changing the order of probabilities.
9195     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9196       --I;
9197       if (I->Prob > W.LastCluster->Prob)
9198         break;
9199       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9200         std::swap(*I, *W.LastCluster);
9201         break;
9202       }
9203     }
9204   }
9205 
9206   // Compute total probability.
9207   BranchProbability DefaultProb = W.DefaultProb;
9208   BranchProbability UnhandledProbs = DefaultProb;
9209   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9210     UnhandledProbs += I->Prob;
9211 
9212   MachineBasicBlock *CurMBB = W.MBB;
9213   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9214     MachineBasicBlock *Fallthrough;
9215     if (I == W.LastCluster) {
9216       // For the last cluster, fall through to the default destination.
9217       Fallthrough = DefaultMBB;
9218     } else {
9219       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9220       CurMF->insert(BBI, Fallthrough);
9221       // Put Cond in a virtual register to make it available from the new blocks.
9222       ExportFromCurrentBlock(Cond);
9223     }
9224     UnhandledProbs -= I->Prob;
9225 
9226     switch (I->Kind) {
9227       case CC_JumpTable: {
9228         // FIXME: Optimize away range check based on pivot comparisons.
9229         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9230         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9231 
9232         // The jump block hasn't been inserted yet; insert it here.
9233         MachineBasicBlock *JumpMBB = JT->MBB;
9234         CurMF->insert(BBI, JumpMBB);
9235 
9236         auto JumpProb = I->Prob;
9237         auto FallthroughProb = UnhandledProbs;
9238 
9239         // If the default statement is a target of the jump table, we evenly
9240         // distribute the default probability to successors of CurMBB. Also
9241         // update the probability on the edge from JumpMBB to Fallthrough.
9242         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9243                                               SE = JumpMBB->succ_end();
9244              SI != SE; ++SI) {
9245           if (*SI == DefaultMBB) {
9246             JumpProb += DefaultProb / 2;
9247             FallthroughProb -= DefaultProb / 2;
9248             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9249             JumpMBB->normalizeSuccProbs();
9250             break;
9251           }
9252         }
9253 
9254         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9255         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9256         CurMBB->normalizeSuccProbs();
9257 
9258         // The jump table header will be inserted in our current block, do the
9259         // range check, and fall through to our fallthrough block.
9260         JTH->HeaderBB = CurMBB;
9261         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9262 
9263         // If we're in the right place, emit the jump table header right now.
9264         if (CurMBB == SwitchMBB) {
9265           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9266           JTH->Emitted = true;
9267         }
9268         break;
9269       }
9270       case CC_BitTests: {
9271         // FIXME: Optimize away range check based on pivot comparisons.
9272         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9273 
9274         // The bit test blocks haven't been inserted yet; insert them here.
9275         for (BitTestCase &BTC : BTB->Cases)
9276           CurMF->insert(BBI, BTC.ThisBB);
9277 
9278         // Fill in fields of the BitTestBlock.
9279         BTB->Parent = CurMBB;
9280         BTB->Default = Fallthrough;
9281 
9282         BTB->DefaultProb = UnhandledProbs;
9283         // If the cases in bit test don't form a contiguous range, we evenly
9284         // distribute the probability on the edge to Fallthrough to two
9285         // successors of CurMBB.
9286         if (!BTB->ContiguousRange) {
9287           BTB->Prob += DefaultProb / 2;
9288           BTB->DefaultProb -= DefaultProb / 2;
9289         }
9290 
9291         // If we're in the right place, emit the bit test header right now.
9292         if (CurMBB == SwitchMBB) {
9293           visitBitTestHeader(*BTB, SwitchMBB);
9294           BTB->Emitted = true;
9295         }
9296         break;
9297       }
9298       case CC_Range: {
9299         const Value *RHS, *LHS, *MHS;
9300         ISD::CondCode CC;
9301         if (I->Low == I->High) {
9302           // Check Cond == I->Low.
9303           CC = ISD::SETEQ;
9304           LHS = Cond;
9305           RHS=I->Low;
9306           MHS = nullptr;
9307         } else {
9308           // Check I->Low <= Cond <= I->High.
9309           CC = ISD::SETLE;
9310           LHS = I->Low;
9311           MHS = Cond;
9312           RHS = I->High;
9313         }
9314 
9315         // The false probability is the sum of all unhandled cases.
9316         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9317                      UnhandledProbs);
9318 
9319         if (CurMBB == SwitchMBB)
9320           visitSwitchCase(CB, SwitchMBB);
9321         else
9322           SwitchCases.push_back(CB);
9323 
9324         break;
9325       }
9326     }
9327     CurMBB = Fallthrough;
9328   }
9329 }
9330 
9331 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9332                                               CaseClusterIt First,
9333                                               CaseClusterIt Last) {
9334   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9335     if (X.Prob != CC.Prob)
9336       return X.Prob > CC.Prob;
9337 
9338     // Ties are broken by comparing the case value.
9339     return X.Low->getValue().slt(CC.Low->getValue());
9340   });
9341 }
9342 
9343 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9344                                         const SwitchWorkListItem &W,
9345                                         Value *Cond,
9346                                         MachineBasicBlock *SwitchMBB) {
9347   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9348          "Clusters not sorted?");
9349 
9350   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9351 
9352   // Balance the tree based on branch probabilities to create a near-optimal (in
9353   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9354   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9355   CaseClusterIt LastLeft = W.FirstCluster;
9356   CaseClusterIt FirstRight = W.LastCluster;
9357   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9358   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9359 
9360   // Move LastLeft and FirstRight towards each other from opposite directions to
9361   // find a partitioning of the clusters which balances the probability on both
9362   // sides. If LeftProb and RightProb are equal, alternate which side is
9363   // taken to ensure 0-probability nodes are distributed evenly.
9364   unsigned I = 0;
9365   while (LastLeft + 1 < FirstRight) {
9366     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9367       LeftProb += (++LastLeft)->Prob;
9368     else
9369       RightProb += (--FirstRight)->Prob;
9370     I++;
9371   }
9372 
9373   for (;;) {
9374     // Our binary search tree differs from a typical BST in that ours can have up
9375     // to three values in each leaf. The pivot selection above doesn't take that
9376     // into account, which means the tree might require more nodes and be less
9377     // efficient. We compensate for this here.
9378 
9379     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9380     unsigned NumRight = W.LastCluster - FirstRight + 1;
9381 
9382     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9383       // If one side has less than 3 clusters, and the other has more than 3,
9384       // consider taking a cluster from the other side.
9385 
9386       if (NumLeft < NumRight) {
9387         // Consider moving the first cluster on the right to the left side.
9388         CaseCluster &CC = *FirstRight;
9389         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9390         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9391         if (LeftSideRank <= RightSideRank) {
9392           // Moving the cluster to the left does not demote it.
9393           ++LastLeft;
9394           ++FirstRight;
9395           continue;
9396         }
9397       } else {
9398         assert(NumRight < NumLeft);
9399         // Consider moving the last element on the left to the right side.
9400         CaseCluster &CC = *LastLeft;
9401         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9402         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9403         if (RightSideRank <= LeftSideRank) {
9404           // Moving the cluster to the right does not demot it.
9405           --LastLeft;
9406           --FirstRight;
9407           continue;
9408         }
9409       }
9410     }
9411     break;
9412   }
9413 
9414   assert(LastLeft + 1 == FirstRight);
9415   assert(LastLeft >= W.FirstCluster);
9416   assert(FirstRight <= W.LastCluster);
9417 
9418   // Use the first element on the right as pivot since we will make less-than
9419   // comparisons against it.
9420   CaseClusterIt PivotCluster = FirstRight;
9421   assert(PivotCluster > W.FirstCluster);
9422   assert(PivotCluster <= W.LastCluster);
9423 
9424   CaseClusterIt FirstLeft = W.FirstCluster;
9425   CaseClusterIt LastRight = W.LastCluster;
9426 
9427   const ConstantInt *Pivot = PivotCluster->Low;
9428 
9429   // New blocks will be inserted immediately after the current one.
9430   MachineFunction::iterator BBI(W.MBB);
9431   ++BBI;
9432 
9433   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9434   // we can branch to its destination directly if it's squeezed exactly in
9435   // between the known lower bound and Pivot - 1.
9436   MachineBasicBlock *LeftMBB;
9437   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9438       FirstLeft->Low == W.GE &&
9439       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9440     LeftMBB = FirstLeft->MBB;
9441   } else {
9442     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9443     FuncInfo.MF->insert(BBI, LeftMBB);
9444     WorkList.push_back(
9445         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9446     // Put Cond in a virtual register to make it available from the new blocks.
9447     ExportFromCurrentBlock(Cond);
9448   }
9449 
9450   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9451   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9452   // directly if RHS.High equals the current upper bound.
9453   MachineBasicBlock *RightMBB;
9454   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9455       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9456     RightMBB = FirstRight->MBB;
9457   } else {
9458     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9459     FuncInfo.MF->insert(BBI, RightMBB);
9460     WorkList.push_back(
9461         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9462     // Put Cond in a virtual register to make it available from the new blocks.
9463     ExportFromCurrentBlock(Cond);
9464   }
9465 
9466   // Create the CaseBlock record that will be used to lower the branch.
9467   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9468                LeftProb, RightProb);
9469 
9470   if (W.MBB == SwitchMBB)
9471     visitSwitchCase(CB, SwitchMBB);
9472   else
9473     SwitchCases.push_back(CB);
9474 }
9475 
9476 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9477   // Extract cases from the switch.
9478   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9479   CaseClusterVector Clusters;
9480   Clusters.reserve(SI.getNumCases());
9481   for (auto I : SI.cases()) {
9482     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9483     const ConstantInt *CaseVal = I.getCaseValue();
9484     BranchProbability Prob =
9485         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9486             : BranchProbability(1, SI.getNumCases() + 1);
9487     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9488   }
9489 
9490   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9491 
9492   // Cluster adjacent cases with the same destination. We do this at all
9493   // optimization levels because it's cheap to do and will make codegen faster
9494   // if there are many clusters.
9495   sortAndRangeify(Clusters);
9496 
9497   if (TM.getOptLevel() != CodeGenOpt::None) {
9498     // Replace an unreachable default with the most popular destination.
9499     // FIXME: Exploit unreachable default more aggressively.
9500     bool UnreachableDefault =
9501         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9502     if (UnreachableDefault && !Clusters.empty()) {
9503       DenseMap<const BasicBlock *, unsigned> Popularity;
9504       unsigned MaxPop = 0;
9505       const BasicBlock *MaxBB = nullptr;
9506       for (auto I : SI.cases()) {
9507         const BasicBlock *BB = I.getCaseSuccessor();
9508         if (++Popularity[BB] > MaxPop) {
9509           MaxPop = Popularity[BB];
9510           MaxBB = BB;
9511         }
9512       }
9513       // Set new default.
9514       assert(MaxPop > 0 && MaxBB);
9515       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9516 
9517       // Remove cases that were pointing to the destination that is now the
9518       // default.
9519       CaseClusterVector New;
9520       New.reserve(Clusters.size());
9521       for (CaseCluster &CC : Clusters) {
9522         if (CC.MBB != DefaultMBB)
9523           New.push_back(CC);
9524       }
9525       Clusters = std::move(New);
9526     }
9527   }
9528 
9529   // If there is only the default destination, jump there directly.
9530   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9531   if (Clusters.empty()) {
9532     SwitchMBB->addSuccessor(DefaultMBB);
9533     if (DefaultMBB != NextBlock(SwitchMBB)) {
9534       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9535                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9536     }
9537     return;
9538   }
9539 
9540   findJumpTables(Clusters, &SI, DefaultMBB);
9541   findBitTestClusters(Clusters, &SI);
9542 
9543   DEBUG({
9544     dbgs() << "Case clusters: ";
9545     for (const CaseCluster &C : Clusters) {
9546       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9547       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9548 
9549       C.Low->getValue().print(dbgs(), true);
9550       if (C.Low != C.High) {
9551         dbgs() << '-';
9552         C.High->getValue().print(dbgs(), true);
9553       }
9554       dbgs() << ' ';
9555     }
9556     dbgs() << '\n';
9557   });
9558 
9559   assert(!Clusters.empty());
9560   SwitchWorkList WorkList;
9561   CaseClusterIt First = Clusters.begin();
9562   CaseClusterIt Last = Clusters.end() - 1;
9563   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9564   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9565 
9566   while (!WorkList.empty()) {
9567     SwitchWorkListItem W = WorkList.back();
9568     WorkList.pop_back();
9569     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9570 
9571     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9572         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9573       // For optimized builds, lower large range as a balanced binary tree.
9574       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9575       continue;
9576     }
9577 
9578     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9579   }
9580 }
9581