1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 const SDLoc &dl, SDValue &Chain, 644 SDValue *Flag, const Value *V) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 MVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (!Flag) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 if (NumZeroBits == RegSize) { 689 // The current value is a zero. 690 // Explicitly express that as it would be easier for 691 // optimizations to kick in. 692 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 693 continue; 694 } 695 696 // FIXME: We capture more information than the dag can represent. For 697 // now, just use the tightest assertzext/assertsext possible. 698 bool isSExt = true; 699 EVT FromVT(MVT::Other); 700 if (NumSignBits == RegSize) { 701 isSExt = true; // ASSERT SEXT 1 702 FromVT = MVT::i1; 703 } else if (NumZeroBits >= RegSize - 1) { 704 isSExt = false; // ASSERT ZEXT 1 705 FromVT = MVT::i1; 706 } else if (NumSignBits > RegSize - 8) { 707 isSExt = true; // ASSERT SEXT 8 708 FromVT = MVT::i8; 709 } else if (NumZeroBits >= RegSize - 8) { 710 isSExt = false; // ASSERT ZEXT 8 711 FromVT = MVT::i8; 712 } else if (NumSignBits > RegSize - 16) { 713 isSExt = true; // ASSERT SEXT 16 714 FromVT = MVT::i16; 715 } else if (NumZeroBits >= RegSize - 16) { 716 isSExt = false; // ASSERT ZEXT 16 717 FromVT = MVT::i16; 718 } else if (NumSignBits > RegSize - 32) { 719 isSExt = true; // ASSERT SEXT 32 720 FromVT = MVT::i32; 721 } else if (NumZeroBits >= RegSize - 32) { 722 isSExt = false; // ASSERT ZEXT 32 723 FromVT = MVT::i32; 724 } else { 725 continue; 726 } 727 // Add an assertion node. 728 assert(FromVT != MVT::Other); 729 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 730 RegisterVT, P, DAG.getValueType(FromVT)); 731 } 732 733 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 734 NumRegs, RegisterVT, ValueVT, V); 735 Part += NumRegs; 736 Parts.clear(); 737 } 738 739 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 740 } 741 742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 743 /// specified value into the registers specified by this object. This uses 744 /// Chain/Flag as the input and updates them for the output Chain/Flag. 745 /// If the Flag pointer is NULL, no flag is used. 746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 747 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 748 const Value *V, 749 ISD::NodeType PreferredExtendType) const { 750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 751 ISD::NodeType ExtendKind = PreferredExtendType; 752 753 // Get the list of the values's legal parts. 754 unsigned NumRegs = Regs.size(); 755 SmallVector<SDValue, 8> Parts(NumRegs); 756 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 757 EVT ValueVT = ValueVTs[Value]; 758 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 759 MVT RegisterVT = RegVTs[Value]; 760 761 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 762 ExtendKind = ISD::ZERO_EXTEND; 763 764 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 765 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 766 Part += NumParts; 767 } 768 769 // Copy the parts into the registers. 770 SmallVector<SDValue, 8> Chains(NumRegs); 771 for (unsigned i = 0; i != NumRegs; ++i) { 772 SDValue Part; 773 if (!Flag) { 774 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 775 } else { 776 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 777 *Flag = Part.getValue(1); 778 } 779 780 Chains[i] = Part.getValue(0); 781 } 782 783 if (NumRegs == 1 || Flag) 784 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 785 // flagged to it. That is the CopyToReg nodes and the user are considered 786 // a single scheduling unit. If we create a TokenFactor and return it as 787 // chain, then the TokenFactor is both a predecessor (operand) of the 788 // user as well as a successor (the TF operands are flagged to the user). 789 // c1, f1 = CopyToReg 790 // c2, f2 = CopyToReg 791 // c3 = TokenFactor c1, c2 792 // ... 793 // = op c3, ..., f2 794 Chain = Chains[NumRegs-1]; 795 else 796 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 797 } 798 799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 800 /// operand list. This adds the code marker and includes the number of 801 /// values added into it. 802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 803 unsigned MatchingIdx, const SDLoc &dl, 804 SelectionDAG &DAG, 805 std::vector<SDValue> &Ops) const { 806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 807 808 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 809 if (HasMatching) 810 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 811 else if (!Regs.empty() && 812 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 813 // Put the register class of the virtual registers in the flag word. That 814 // way, later passes can recompute register class constraints for inline 815 // assembly as well as normal instructions. 816 // Don't do this for tied operands that can use the regclass information 817 // from the def. 818 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 819 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 820 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 821 } 822 823 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 824 Ops.push_back(Res); 825 826 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 827 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 828 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 829 MVT RegisterVT = RegVTs[Value]; 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 832 unsigned TheReg = Regs[Reg++]; 833 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 834 835 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 836 // If we clobbered the stack pointer, MFI should know about it. 837 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 838 } 839 } 840 } 841 } 842 843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 844 const TargetLibraryInfo *li) { 845 AA = &aa; 846 GFI = gfi; 847 LibInfo = li; 848 DL = &DAG.getDataLayout(); 849 Context = DAG.getContext(); 850 LPadToCallSiteMap.clear(); 851 } 852 853 /// clear - Clear out the current SelectionDAG and the associated 854 /// state and prepare this SelectionDAGBuilder object to be used 855 /// for a new block. This doesn't clear out information about 856 /// additional blocks that are needed to complete switch lowering 857 /// or PHI node updating; that information is cleared out as it is 858 /// consumed. 859 void SelectionDAGBuilder::clear() { 860 NodeMap.clear(); 861 UnusedArgNodeMap.clear(); 862 PendingLoads.clear(); 863 PendingExports.clear(); 864 CurInst = nullptr; 865 HasTailCall = false; 866 SDNodeOrder = LowestSDNodeOrder; 867 StatepointLowering.clear(); 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 898 PendingLoads); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 928 PendingExports); 929 PendingExports.clear(); 930 DAG.setRoot(Root); 931 return Root; 932 } 933 934 void SelectionDAGBuilder::visit(const Instruction &I) { 935 // Set up outgoing PHI node register values before emitting the terminator. 936 if (isa<TerminatorInst>(&I)) { 937 HandlePHINodesInSuccessorBlocks(I.getParent()); 938 } 939 940 // Increase the SDNodeOrder if dealing with a non-debug instruction. 941 if (!isa<DbgInfoIntrinsic>(I)) 942 ++SDNodeOrder; 943 944 CurInst = &I; 945 946 visit(I.getOpcode(), I); 947 948 if (!isa<TerminatorInst>(&I) && !HasTailCall && 949 !isStatepoint(&I)) // statepoints handle their exports internally 950 CopyToExportRegsIfNeeded(&I); 951 952 CurInst = nullptr; 953 } 954 955 void SelectionDAGBuilder::visitPHI(const PHINode &) { 956 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 957 } 958 959 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 960 // Note: this doesn't use InstVisitor, because it has to work with 961 // ConstantExpr's in addition to instructions. 962 switch (Opcode) { 963 default: llvm_unreachable("Unknown instruction type encountered!"); 964 // Build the switch statement using the Instruction.def file. 965 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 966 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 967 #include "llvm/IR/Instruction.def" 968 } 969 } 970 971 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 972 // generate the debug data structures now that we've seen its definition. 973 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 974 SDValue Val) { 975 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 976 if (DDI.getDI()) { 977 const DbgValueInst *DI = DDI.getDI(); 978 DebugLoc dl = DDI.getdl(); 979 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 980 DILocalVariable *Variable = DI->getVariable(); 981 DIExpression *Expr = DI->getExpression(); 982 assert(Variable->isValidLocationForIntrinsic(dl) && 983 "Expected inlined-at fields to agree"); 984 uint64_t Offset = DI->getOffset(); 985 SDDbgValue *SDV; 986 if (Val.getNode()) { 987 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 988 Val)) { 989 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 990 DAG.AddDbgValue(SDV, Val.getNode(), false); 991 } 992 } else 993 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 994 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 995 } 996 } 997 998 /// getCopyFromRegs - If there was virtual register allocated for the value V 999 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1000 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1001 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1002 SDValue Result; 1003 1004 if (It != FuncInfo.ValueMap.end()) { 1005 unsigned InReg = It->second; 1006 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1007 DAG.getDataLayout(), InReg, Ty); 1008 SDValue Chain = DAG.getEntryNode(); 1009 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1010 resolveDanglingDebugInfo(V, Result); 1011 } 1012 1013 return Result; 1014 } 1015 1016 /// getValue - Return an SDValue for the given Value. 1017 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. It's important 1019 // to do this first, so that we don't create a CopyFromReg if we already 1020 // have a regular SDValue. 1021 SDValue &N = NodeMap[V]; 1022 if (N.getNode()) return N; 1023 1024 // If there's a virtual register allocated and initialized for this 1025 // value, use it. 1026 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1027 return copyFromReg; 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 // Return true if SDValue exists for the given Value 1037 bool SelectionDAGBuilder::findValue(const Value *V) const { 1038 return (NodeMap.find(V) != NodeMap.end()) || 1039 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) { 1048 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1049 // Remove the debug location from the node as the node is about to be used 1050 // in a location which may differ from the original debug location. This 1051 // is relevant to Constant and ConstantFP nodes because they can appear 1052 // as constant expressions inside PHI nodes. 1053 N->setDebugLoc(DebugLoc()); 1054 } 1055 return N; 1056 } 1057 1058 // Otherwise create a new SDValue and remember it. 1059 SDValue Val = getValueImpl(V); 1060 NodeMap[V] = Val; 1061 resolveDanglingDebugInfo(V, Val); 1062 return Val; 1063 } 1064 1065 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1066 /// Create an SDValue for the given value. 1067 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1069 1070 if (const Constant *C = dyn_cast<Constant>(V)) { 1071 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1072 1073 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1074 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1075 1076 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1077 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1078 1079 if (isa<ConstantPointerNull>(C)) { 1080 unsigned AS = V->getType()->getPointerAddressSpace(); 1081 return DAG.getConstant(0, getCurSDLoc(), 1082 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1083 } 1084 1085 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1086 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1087 1088 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1089 return DAG.getUNDEF(VT); 1090 1091 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1092 visit(CE->getOpcode(), *CE); 1093 SDValue N1 = NodeMap[V]; 1094 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1095 return N1; 1096 } 1097 1098 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1099 SmallVector<SDValue, 4> Constants; 1100 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1101 OI != OE; ++OI) { 1102 SDNode *Val = getValue(*OI).getNode(); 1103 // If the operand is an empty aggregate, there are no values. 1104 if (!Val) continue; 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Constants.push_back(SDValue(Val, i)); 1109 } 1110 1111 return DAG.getMergeValues(Constants, getCurSDLoc()); 1112 } 1113 1114 if (const ConstantDataSequential *CDS = 1115 dyn_cast<ConstantDataSequential>(C)) { 1116 SmallVector<SDValue, 4> Ops; 1117 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1118 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1119 // Add each leaf value from the operand to the Constants list 1120 // to form a flattened list of all the values. 1121 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1122 Ops.push_back(SDValue(Val, i)); 1123 } 1124 1125 if (isa<ArrayType>(CDS->getType())) 1126 return DAG.getMergeValues(Ops, getCurSDLoc()); 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1128 VT, Ops); 1129 } 1130 1131 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1132 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1133 "Unknown struct or array constant!"); 1134 1135 SmallVector<EVT, 4> ValueVTs; 1136 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1137 unsigned NumElts = ValueVTs.size(); 1138 if (NumElts == 0) 1139 return SDValue(); // empty struct 1140 SmallVector<SDValue, 4> Constants(NumElts); 1141 for (unsigned i = 0; i != NumElts; ++i) { 1142 EVT EltVT = ValueVTs[i]; 1143 if (isa<UndefValue>(C)) 1144 Constants[i] = DAG.getUNDEF(EltVT); 1145 else if (EltVT.isFloatingPoint()) 1146 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 } 1150 1151 return DAG.getMergeValues(Constants, getCurSDLoc()); 1152 } 1153 1154 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1155 return DAG.getBlockAddress(BA, VT); 1156 1157 VectorType *VecTy = cast<VectorType>(V->getType()); 1158 unsigned NumElements = VecTy->getNumElements(); 1159 1160 // Now that we know the number and type of the elements, get that number of 1161 // elements into the Ops array based on what kind of constant it is. 1162 SmallVector<SDValue, 16> Ops; 1163 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1164 for (unsigned i = 0; i != NumElements; ++i) 1165 Ops.push_back(getValue(CV->getOperand(i))); 1166 } else { 1167 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1168 EVT EltVT = 1169 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1170 1171 SDValue Op; 1172 if (EltVT.isFloatingPoint()) 1173 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1174 else 1175 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1176 Ops.assign(NumElements, Op); 1177 } 1178 1179 // Create a BUILD_VECTOR node. 1180 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1181 } 1182 1183 // If this is a static alloca, generate it as the frameindex instead of 1184 // computation. 1185 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1186 DenseMap<const AllocaInst*, int>::iterator SI = 1187 FuncInfo.StaticAllocaMap.find(AI); 1188 if (SI != FuncInfo.StaticAllocaMap.end()) 1189 return DAG.getFrameIndex(SI->second, 1190 TLI.getPointerTy(DAG.getDataLayout())); 1191 } 1192 1193 // If this is an instruction which fast-isel has deferred, select it now. 1194 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1195 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1196 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1197 Inst->getType()); 1198 SDValue Chain = DAG.getEntryNode(); 1199 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1200 } 1201 1202 llvm_unreachable("Can't get register for value!"); 1203 } 1204 1205 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1206 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1207 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1208 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1209 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1210 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1211 if (IsMSVCCXX || IsCoreCLR) 1212 CatchPadMBB->setIsEHFuncletEntry(); 1213 1214 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1215 } 1216 1217 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1218 // Update machine-CFG edge. 1219 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1220 FuncInfo.MBB->addSuccessor(TargetMBB); 1221 1222 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1223 bool IsSEH = isAsynchronousEHPersonality(Pers); 1224 if (IsSEH) { 1225 // If this is not a fall-through branch or optimizations are switched off, 1226 // emit the branch. 1227 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1228 TM.getOptLevel() == CodeGenOpt::None) 1229 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1230 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1231 return; 1232 } 1233 1234 // Figure out the funclet membership for the catchret's successor. 1235 // This will be used by the FuncletLayout pass to determine how to order the 1236 // BB's. 1237 // A 'catchret' returns to the outer scope's color. 1238 Value *ParentPad = I.getCatchSwitchParentPad(); 1239 const BasicBlock *SuccessorColor; 1240 if (isa<ConstantTokenNone>(ParentPad)) 1241 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1242 else 1243 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1244 assert(SuccessorColor && "No parent funclet for catchret!"); 1245 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1246 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1247 1248 // Create the terminator node. 1249 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1250 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1251 DAG.getBasicBlock(SuccessorColorMBB)); 1252 DAG.setRoot(Ret); 1253 } 1254 1255 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1256 // Don't emit any special code for the cleanuppad instruction. It just marks 1257 // the start of a funclet. 1258 FuncInfo.MBB->setIsEHFuncletEntry(); 1259 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1260 } 1261 1262 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1263 /// many places it could ultimately go. In the IR, we have a single unwind 1264 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1265 /// This function skips over imaginary basic blocks that hold catchswitch 1266 /// instructions, and finds all the "real" machine 1267 /// basic block destinations. As those destinations may not be successors of 1268 /// EHPadBB, here we also calculate the edge probability to those destinations. 1269 /// The passed-in Prob is the edge probability to EHPadBB. 1270 static void findUnwindDestinations( 1271 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1272 BranchProbability Prob, 1273 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1274 &UnwindDests) { 1275 EHPersonality Personality = 1276 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1277 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1278 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1279 1280 while (EHPadBB) { 1281 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1282 BasicBlock *NewEHPadBB = nullptr; 1283 if (isa<LandingPadInst>(Pad)) { 1284 // Stop on landingpads. They are not funclets. 1285 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1286 break; 1287 } else if (isa<CleanupPadInst>(Pad)) { 1288 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1289 // personalities. 1290 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1291 UnwindDests.back().first->setIsEHFuncletEntry(); 1292 break; 1293 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1294 // Add the catchpad handlers to the possible destinations. 1295 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1296 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1297 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1298 if (IsMSVCCXX || IsCoreCLR) 1299 UnwindDests.back().first->setIsEHFuncletEntry(); 1300 } 1301 NewEHPadBB = CatchSwitch->getUnwindDest(); 1302 } else { 1303 continue; 1304 } 1305 1306 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1307 if (BPI && NewEHPadBB) 1308 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1309 EHPadBB = NewEHPadBB; 1310 } 1311 } 1312 1313 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1314 // Update successor info. 1315 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1316 auto UnwindDest = I.getUnwindDest(); 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 BranchProbability UnwindDestProb = 1319 (BPI && UnwindDest) 1320 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1321 : BranchProbability::getZero(); 1322 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1323 for (auto &UnwindDest : UnwindDests) { 1324 UnwindDest.first->setIsEHPad(); 1325 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1326 } 1327 FuncInfo.MBB->normalizeSuccProbs(); 1328 1329 // Create the terminator node. 1330 SDValue Ret = 1331 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1332 DAG.setRoot(Ret); 1333 } 1334 1335 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1336 report_fatal_error("visitCatchSwitch not yet implemented!"); 1337 } 1338 1339 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1341 auto &DL = DAG.getDataLayout(); 1342 SDValue Chain = getControlRoot(); 1343 SmallVector<ISD::OutputArg, 8> Outs; 1344 SmallVector<SDValue, 8> OutVals; 1345 1346 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1347 // lower 1348 // 1349 // %val = call <ty> @llvm.experimental.deoptimize() 1350 // ret <ty> %val 1351 // 1352 // differently. 1353 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1354 LowerDeoptimizingReturn(); 1355 return; 1356 } 1357 1358 if (!FuncInfo.CanLowerReturn) { 1359 unsigned DemoteReg = FuncInfo.DemoteRegister; 1360 const Function *F = I.getParent()->getParent(); 1361 1362 // Emit a store of the return value through the virtual register. 1363 // Leave Outs empty so that LowerReturn won't try to load return 1364 // registers the usual way. 1365 SmallVector<EVT, 1> PtrValueVTs; 1366 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1367 PtrValueVTs); 1368 1369 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1370 DemoteReg, PtrValueVTs[0]); 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 SmallVector<EVT, 4> ValueVTs; 1374 SmallVector<uint64_t, 4> Offsets; 1375 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1376 unsigned NumValues = ValueVTs.size(); 1377 1378 // An aggregate return value cannot wrap around the address space, so 1379 // offsets to its parts don't wrap either. 1380 SDNodeFlags Flags; 1381 Flags.setNoUnsignedWrap(true); 1382 1383 SmallVector<SDValue, 4> Chains(NumValues); 1384 for (unsigned i = 0; i != NumValues; ++i) { 1385 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1386 RetPtr.getValueType(), RetPtr, 1387 DAG.getIntPtrConstant(Offsets[i], 1388 getCurSDLoc()), 1389 &Flags); 1390 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1391 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1392 // FIXME: better loc info would be nice. 1393 Add, MachinePointerInfo()); 1394 } 1395 1396 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1397 MVT::Other, Chains); 1398 } else if (I.getNumOperands() != 0) { 1399 SmallVector<EVT, 4> ValueVTs; 1400 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1401 unsigned NumValues = ValueVTs.size(); 1402 if (NumValues) { 1403 SDValue RetOp = getValue(I.getOperand(0)); 1404 1405 const Function *F = I.getParent()->getParent(); 1406 1407 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1408 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1409 Attribute::SExt)) 1410 ExtendKind = ISD::SIGN_EXTEND; 1411 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1412 Attribute::ZExt)) 1413 ExtendKind = ISD::ZERO_EXTEND; 1414 1415 LLVMContext &Context = F->getContext(); 1416 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1417 Attribute::InReg); 1418 1419 for (unsigned j = 0; j != NumValues; ++j) { 1420 EVT VT = ValueVTs[j]; 1421 1422 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1423 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1424 1425 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1426 MVT PartVT = TLI.getRegisterType(Context, VT); 1427 SmallVector<SDValue, 4> Parts(NumParts); 1428 getCopyToParts(DAG, getCurSDLoc(), 1429 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1430 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1431 1432 // 'inreg' on function refers to return value 1433 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1434 if (RetInReg) 1435 Flags.setInReg(); 1436 1437 // Propagate extension type if any 1438 if (ExtendKind == ISD::SIGN_EXTEND) 1439 Flags.setSExt(); 1440 else if (ExtendKind == ISD::ZERO_EXTEND) 1441 Flags.setZExt(); 1442 1443 for (unsigned i = 0; i < NumParts; ++i) { 1444 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1445 VT, /*isfixed=*/true, 0, 0)); 1446 OutVals.push_back(Parts[i]); 1447 } 1448 } 1449 } 1450 } 1451 1452 // Push in swifterror virtual register as the last element of Outs. This makes 1453 // sure swifterror virtual register will be returned in the swifterror 1454 // physical register. 1455 const Function *F = I.getParent()->getParent(); 1456 if (TLI.supportSwiftError() && 1457 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1458 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1459 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1460 Flags.setSwiftError(); 1461 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1462 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1463 true /*isfixed*/, 1 /*origidx*/, 1464 0 /*partOffs*/)); 1465 // Create SDNode for the swifterror virtual register. 1466 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1467 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1468 EVT(TLI.getPointerTy(DL)))); 1469 } 1470 1471 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1472 CallingConv::ID CallConv = 1473 DAG.getMachineFunction().getFunction()->getCallingConv(); 1474 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1475 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1476 1477 // Verify that the target's LowerReturn behaved as expected. 1478 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1479 "LowerReturn didn't return a valid chain!"); 1480 1481 // Update the DAG with the new chain value resulting from return lowering. 1482 DAG.setRoot(Chain); 1483 } 1484 1485 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1486 /// created for it, emit nodes to copy the value into the virtual 1487 /// registers. 1488 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1489 // Skip empty types 1490 if (V->getType()->isEmptyTy()) 1491 return; 1492 1493 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1494 if (VMI != FuncInfo.ValueMap.end()) { 1495 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1496 CopyValueToVirtualRegister(V, VMI->second); 1497 } 1498 } 1499 1500 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1501 /// the current basic block, add it to ValueMap now so that we'll get a 1502 /// CopyTo/FromReg. 1503 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1504 // No need to export constants. 1505 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1506 1507 // Already exported? 1508 if (FuncInfo.isExportedInst(V)) return; 1509 1510 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1511 CopyValueToVirtualRegister(V, Reg); 1512 } 1513 1514 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1515 const BasicBlock *FromBB) { 1516 // The operands of the setcc have to be in this block. We don't know 1517 // how to export them from some other block. 1518 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1519 // Can export from current BB. 1520 if (VI->getParent() == FromBB) 1521 return true; 1522 1523 // Is already exported, noop. 1524 return FuncInfo.isExportedInst(V); 1525 } 1526 1527 // If this is an argument, we can export it if the BB is the entry block or 1528 // if it is already exported. 1529 if (isa<Argument>(V)) { 1530 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1531 return true; 1532 1533 // Otherwise, can only export this if it is already exported. 1534 return FuncInfo.isExportedInst(V); 1535 } 1536 1537 // Otherwise, constants can always be exported. 1538 return true; 1539 } 1540 1541 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1542 BranchProbability 1543 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1544 const MachineBasicBlock *Dst) const { 1545 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1546 const BasicBlock *SrcBB = Src->getBasicBlock(); 1547 const BasicBlock *DstBB = Dst->getBasicBlock(); 1548 if (!BPI) { 1549 // If BPI is not available, set the default probability as 1 / N, where N is 1550 // the number of successors. 1551 auto SuccSize = std::max<uint32_t>( 1552 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1553 return BranchProbability(1, SuccSize); 1554 } 1555 return BPI->getEdgeProbability(SrcBB, DstBB); 1556 } 1557 1558 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1559 MachineBasicBlock *Dst, 1560 BranchProbability Prob) { 1561 if (!FuncInfo.BPI) 1562 Src->addSuccessorWithoutProb(Dst); 1563 else { 1564 if (Prob.isUnknown()) 1565 Prob = getEdgeProbability(Src, Dst); 1566 Src->addSuccessor(Dst, Prob); 1567 } 1568 } 1569 1570 static bool InBlock(const Value *V, const BasicBlock *BB) { 1571 if (const Instruction *I = dyn_cast<Instruction>(V)) 1572 return I->getParent() == BB; 1573 return true; 1574 } 1575 1576 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1577 /// This function emits a branch and is used at the leaves of an OR or an 1578 /// AND operator tree. 1579 /// 1580 void 1581 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1582 MachineBasicBlock *TBB, 1583 MachineBasicBlock *FBB, 1584 MachineBasicBlock *CurBB, 1585 MachineBasicBlock *SwitchBB, 1586 BranchProbability TProb, 1587 BranchProbability FProb, 1588 bool InvertCond) { 1589 const BasicBlock *BB = CurBB->getBasicBlock(); 1590 1591 // If the leaf of the tree is a comparison, merge the condition into 1592 // the caseblock. 1593 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1594 // The operands of the cmp have to be in this block. We don't know 1595 // how to export them from some other block. If this is the first block 1596 // of the sequence, no exporting is needed. 1597 if (CurBB == SwitchBB || 1598 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1599 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1600 ISD::CondCode Condition; 1601 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1602 ICmpInst::Predicate Pred = 1603 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1604 Condition = getICmpCondCode(Pred); 1605 } else { 1606 const FCmpInst *FC = cast<FCmpInst>(Cond); 1607 FCmpInst::Predicate Pred = 1608 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1609 Condition = getFCmpCondCode(Pred); 1610 if (TM.Options.NoNaNsFPMath) 1611 Condition = getFCmpCodeWithoutNaN(Condition); 1612 } 1613 1614 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1615 TBB, FBB, CurBB, TProb, FProb); 1616 SwitchCases.push_back(CB); 1617 return; 1618 } 1619 } 1620 1621 // Create a CaseBlock record representing this branch. 1622 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1623 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1624 nullptr, TBB, FBB, CurBB, TProb, FProb); 1625 SwitchCases.push_back(CB); 1626 } 1627 1628 /// FindMergedConditions - If Cond is an expression like 1629 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1630 MachineBasicBlock *TBB, 1631 MachineBasicBlock *FBB, 1632 MachineBasicBlock *CurBB, 1633 MachineBasicBlock *SwitchBB, 1634 Instruction::BinaryOps Opc, 1635 BranchProbability TProb, 1636 BranchProbability FProb, 1637 bool InvertCond) { 1638 // Skip over not part of the tree and remember to invert op and operands at 1639 // next level. 1640 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1641 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1642 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1643 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1644 !InvertCond); 1645 return; 1646 } 1647 } 1648 1649 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1650 // Compute the effective opcode for Cond, taking into account whether it needs 1651 // to be inverted, e.g. 1652 // and (not (or A, B)), C 1653 // gets lowered as 1654 // and (and (not A, not B), C) 1655 unsigned BOpc = 0; 1656 if (BOp) { 1657 BOpc = BOp->getOpcode(); 1658 if (InvertCond) { 1659 if (BOpc == Instruction::And) 1660 BOpc = Instruction::Or; 1661 else if (BOpc == Instruction::Or) 1662 BOpc = Instruction::And; 1663 } 1664 } 1665 1666 // If this node is not part of the or/and tree, emit it as a branch. 1667 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1668 BOpc != Opc || !BOp->hasOneUse() || 1669 BOp->getParent() != CurBB->getBasicBlock() || 1670 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1671 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1672 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1673 TProb, FProb, InvertCond); 1674 return; 1675 } 1676 1677 // Create TmpBB after CurBB. 1678 MachineFunction::iterator BBI(CurBB); 1679 MachineFunction &MF = DAG.getMachineFunction(); 1680 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1681 CurBB->getParent()->insert(++BBI, TmpBB); 1682 1683 if (Opc == Instruction::Or) { 1684 // Codegen X | Y as: 1685 // BB1: 1686 // jmp_if_X TBB 1687 // jmp TmpBB 1688 // TmpBB: 1689 // jmp_if_Y TBB 1690 // jmp FBB 1691 // 1692 1693 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1694 // The requirement is that 1695 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1696 // = TrueProb for original BB. 1697 // Assuming the original probabilities are A and B, one choice is to set 1698 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1699 // A/(1+B) and 2B/(1+B). This choice assumes that 1700 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1701 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1702 // TmpBB, but the math is more complicated. 1703 1704 auto NewTrueProb = TProb / 2; 1705 auto NewFalseProb = TProb / 2 + FProb; 1706 // Emit the LHS condition. 1707 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1708 NewTrueProb, NewFalseProb, InvertCond); 1709 1710 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1711 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1712 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1713 // Emit the RHS condition into TmpBB. 1714 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1715 Probs[0], Probs[1], InvertCond); 1716 } else { 1717 assert(Opc == Instruction::And && "Unknown merge op!"); 1718 // Codegen X & Y as: 1719 // BB1: 1720 // jmp_if_X TmpBB 1721 // jmp FBB 1722 // TmpBB: 1723 // jmp_if_Y TBB 1724 // jmp FBB 1725 // 1726 // This requires creation of TmpBB after CurBB. 1727 1728 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1729 // The requirement is that 1730 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1731 // = FalseProb for original BB. 1732 // Assuming the original probabilities are A and B, one choice is to set 1733 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1734 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1735 // TrueProb for BB1 * FalseProb for TmpBB. 1736 1737 auto NewTrueProb = TProb + FProb / 2; 1738 auto NewFalseProb = FProb / 2; 1739 // Emit the LHS condition. 1740 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1741 NewTrueProb, NewFalseProb, InvertCond); 1742 1743 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1744 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1745 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1746 // Emit the RHS condition into TmpBB. 1747 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1748 Probs[0], Probs[1], InvertCond); 1749 } 1750 } 1751 1752 /// If the set of cases should be emitted as a series of branches, return true. 1753 /// If we should emit this as a bunch of and/or'd together conditions, return 1754 /// false. 1755 bool 1756 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1757 if (Cases.size() != 2) return true; 1758 1759 // If this is two comparisons of the same values or'd or and'd together, they 1760 // will get folded into a single comparison, so don't emit two blocks. 1761 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1762 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1763 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1764 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1765 return false; 1766 } 1767 1768 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1769 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1770 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1771 Cases[0].CC == Cases[1].CC && 1772 isa<Constant>(Cases[0].CmpRHS) && 1773 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1774 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1775 return false; 1776 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1777 return false; 1778 } 1779 1780 return true; 1781 } 1782 1783 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1784 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1785 1786 // Update machine-CFG edges. 1787 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1788 1789 if (I.isUnconditional()) { 1790 // Update machine-CFG edges. 1791 BrMBB->addSuccessor(Succ0MBB); 1792 1793 // If this is not a fall-through branch or optimizations are switched off, 1794 // emit the branch. 1795 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1796 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1797 MVT::Other, getControlRoot(), 1798 DAG.getBasicBlock(Succ0MBB))); 1799 1800 return; 1801 } 1802 1803 // If this condition is one of the special cases we handle, do special stuff 1804 // now. 1805 const Value *CondVal = I.getCondition(); 1806 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1807 1808 // If this is a series of conditions that are or'd or and'd together, emit 1809 // this as a sequence of branches instead of setcc's with and/or operations. 1810 // As long as jumps are not expensive, this should improve performance. 1811 // For example, instead of something like: 1812 // cmp A, B 1813 // C = seteq 1814 // cmp D, E 1815 // F = setle 1816 // or C, F 1817 // jnz foo 1818 // Emit: 1819 // cmp A, B 1820 // je foo 1821 // cmp D, E 1822 // jle foo 1823 // 1824 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1825 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1827 !I.getMetadata(LLVMContext::MD_unpredictable) && 1828 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1829 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1830 Opcode, 1831 getEdgeProbability(BrMBB, Succ0MBB), 1832 getEdgeProbability(BrMBB, Succ1MBB), 1833 /*InvertCond=*/false); 1834 // If the compares in later blocks need to use values not currently 1835 // exported from this block, export them now. This block should always 1836 // be the first entry. 1837 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1838 1839 // Allow some cases to be rejected. 1840 if (ShouldEmitAsBranches(SwitchCases)) { 1841 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1842 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1843 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1844 } 1845 1846 // Emit the branch for this block. 1847 visitSwitchCase(SwitchCases[0], BrMBB); 1848 SwitchCases.erase(SwitchCases.begin()); 1849 return; 1850 } 1851 1852 // Okay, we decided not to do this, remove any inserted MBB's and clear 1853 // SwitchCases. 1854 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1855 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1856 1857 SwitchCases.clear(); 1858 } 1859 } 1860 1861 // Create a CaseBlock record representing this branch. 1862 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1863 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1864 1865 // Use visitSwitchCase to actually insert the fast branch sequence for this 1866 // cond branch. 1867 visitSwitchCase(CB, BrMBB); 1868 } 1869 1870 /// visitSwitchCase - Emits the necessary code to represent a single node in 1871 /// the binary search tree resulting from lowering a switch instruction. 1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1873 MachineBasicBlock *SwitchBB) { 1874 SDValue Cond; 1875 SDValue CondLHS = getValue(CB.CmpLHS); 1876 SDLoc dl = getCurSDLoc(); 1877 1878 // Build the setcc now. 1879 if (!CB.CmpMHS) { 1880 // Fold "(X == true)" to X and "(X == false)" to !X to 1881 // handle common cases produced by branch lowering. 1882 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1883 CB.CC == ISD::SETEQ) 1884 Cond = CondLHS; 1885 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1886 CB.CC == ISD::SETEQ) { 1887 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1888 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1889 } else 1890 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1891 } else { 1892 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1893 1894 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1895 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1896 1897 SDValue CmpOp = getValue(CB.CmpMHS); 1898 EVT VT = CmpOp.getValueType(); 1899 1900 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1901 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1902 ISD::SETLE); 1903 } else { 1904 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1905 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1906 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1907 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1908 } 1909 } 1910 1911 // Update successor info 1912 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1913 // TrueBB and FalseBB are always different unless the incoming IR is 1914 // degenerate. This only happens when running llc on weird IR. 1915 if (CB.TrueBB != CB.FalseBB) 1916 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1917 SwitchBB->normalizeSuccProbs(); 1918 1919 // If the lhs block is the next block, invert the condition so that we can 1920 // fall through to the lhs instead of the rhs block. 1921 if (CB.TrueBB == NextBlock(SwitchBB)) { 1922 std::swap(CB.TrueBB, CB.FalseBB); 1923 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1924 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1925 } 1926 1927 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1928 MVT::Other, getControlRoot(), Cond, 1929 DAG.getBasicBlock(CB.TrueBB)); 1930 1931 // Insert the false branch. Do this even if it's a fall through branch, 1932 // this makes it easier to do DAG optimizations which require inverting 1933 // the branch condition. 1934 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1935 DAG.getBasicBlock(CB.FalseBB)); 1936 1937 DAG.setRoot(BrCond); 1938 } 1939 1940 /// visitJumpTable - Emit JumpTable node in the current MBB 1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1942 // Emit the code for the jump table 1943 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1944 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1945 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 JT.Reg, PTy); 1947 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1948 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1949 MVT::Other, Index.getValue(1), 1950 Table, Index); 1951 DAG.setRoot(BrJumpTable); 1952 } 1953 1954 /// visitJumpTableHeader - This function emits necessary code to produce index 1955 /// in the JumpTable from switch case. 1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1957 JumpTableHeader &JTH, 1958 MachineBasicBlock *SwitchBB) { 1959 SDLoc dl = getCurSDLoc(); 1960 1961 // Subtract the lowest switch case value from the value being switched on and 1962 // conditional branch to default mbb if the result is greater than the 1963 // difference between smallest and largest cases. 1964 SDValue SwitchOp = getValue(JTH.SValue); 1965 EVT VT = SwitchOp.getValueType(); 1966 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1967 DAG.getConstant(JTH.First, dl, VT)); 1968 1969 // The SDNode we just created, which holds the value being switched on minus 1970 // the smallest case value, needs to be copied to a virtual register so it 1971 // can be used as an index into the jump table in a subsequent basic block. 1972 // This value may be smaller or larger than the target's pointer type, and 1973 // therefore require extension or truncating. 1974 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1975 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1976 1977 unsigned JumpTableReg = 1978 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1979 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1980 JumpTableReg, SwitchOp); 1981 JT.Reg = JumpTableReg; 1982 1983 // Emit the range check for the jump table, and branch to the default block 1984 // for the switch statement if the value being switched on exceeds the largest 1985 // case in the switch. 1986 SDValue CMP = DAG.getSetCC( 1987 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1988 Sub.getValueType()), 1989 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1990 1991 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1992 MVT::Other, CopyTo, CMP, 1993 DAG.getBasicBlock(JT.Default)); 1994 1995 // Avoid emitting unnecessary branches to the next block. 1996 if (JT.MBB != NextBlock(SwitchBB)) 1997 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1998 DAG.getBasicBlock(JT.MBB)); 1999 2000 DAG.setRoot(BrCond); 2001 } 2002 2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2004 /// variable if there exists one. 2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2006 SDValue &Chain) { 2007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2008 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2009 MachineFunction &MF = DAG.getMachineFunction(); 2010 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2011 MachineSDNode *Node = 2012 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2013 if (Global) { 2014 MachinePointerInfo MPInfo(Global); 2015 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2016 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2017 MachineMemOperand::MODereferenceable; 2018 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2019 DAG.getEVTAlignment(PtrTy)); 2020 Node->setMemRefs(MemRefs, MemRefs + 1); 2021 } 2022 return SDValue(Node, 0); 2023 } 2024 2025 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2026 /// tail spliced into a stack protector check success bb. 2027 /// 2028 /// For a high level explanation of how this fits into the stack protector 2029 /// generation see the comment on the declaration of class 2030 /// StackProtectorDescriptor. 2031 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2032 MachineBasicBlock *ParentBB) { 2033 2034 // First create the loads to the guard/stack slot for the comparison. 2035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2036 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2037 2038 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2039 int FI = MFI.getStackProtectorIndex(); 2040 2041 SDValue Guard; 2042 SDLoc dl = getCurSDLoc(); 2043 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2044 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2045 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2046 2047 // Generate code to load the content of the guard slot. 2048 SDValue StackSlot = DAG.getLoad( 2049 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2050 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2051 MachineMemOperand::MOVolatile); 2052 2053 // Retrieve guard check function, nullptr if instrumentation is inlined. 2054 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2055 // The target provides a guard check function to validate the guard value. 2056 // Generate a call to that function with the content of the guard slot as 2057 // argument. 2058 auto *Fn = cast<Function>(GuardCheck); 2059 FunctionType *FnTy = Fn->getFunctionType(); 2060 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2061 2062 TargetLowering::ArgListTy Args; 2063 TargetLowering::ArgListEntry Entry; 2064 Entry.Node = StackSlot; 2065 Entry.Ty = FnTy->getParamType(0); 2066 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2067 Entry.isInReg = true; 2068 Args.push_back(Entry); 2069 2070 TargetLowering::CallLoweringInfo CLI(DAG); 2071 CLI.setDebugLoc(getCurSDLoc()) 2072 .setChain(DAG.getEntryNode()) 2073 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2074 getValue(GuardCheck), std::move(Args)); 2075 2076 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2077 DAG.setRoot(Result.second); 2078 return; 2079 } 2080 2081 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2082 // Otherwise, emit a volatile load to retrieve the stack guard value. 2083 SDValue Chain = DAG.getEntryNode(); 2084 if (TLI.useLoadStackGuardNode()) { 2085 Guard = getLoadStackGuard(DAG, dl, Chain); 2086 } else { 2087 const Value *IRGuard = TLI.getSDagStackGuard(M); 2088 SDValue GuardPtr = getValue(IRGuard); 2089 2090 Guard = 2091 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2092 Align, MachineMemOperand::MOVolatile); 2093 } 2094 2095 // Perform the comparison via a subtract/getsetcc. 2096 EVT VT = Guard.getValueType(); 2097 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2098 2099 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2100 *DAG.getContext(), 2101 Sub.getValueType()), 2102 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2103 2104 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2105 // branch to failure MBB. 2106 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2107 MVT::Other, StackSlot.getOperand(0), 2108 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2109 // Otherwise branch to success MBB. 2110 SDValue Br = DAG.getNode(ISD::BR, dl, 2111 MVT::Other, BrCond, 2112 DAG.getBasicBlock(SPD.getSuccessMBB())); 2113 2114 DAG.setRoot(Br); 2115 } 2116 2117 /// Codegen the failure basic block for a stack protector check. 2118 /// 2119 /// A failure stack protector machine basic block consists simply of a call to 2120 /// __stack_chk_fail(). 2121 /// 2122 /// For a high level explanation of how this fits into the stack protector 2123 /// generation see the comment on the declaration of class 2124 /// StackProtectorDescriptor. 2125 void 2126 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2128 SDValue Chain = 2129 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2130 None, false, getCurSDLoc(), false, false).second; 2131 DAG.setRoot(Chain); 2132 } 2133 2134 /// visitBitTestHeader - This function emits necessary code to produce value 2135 /// suitable for "bit tests" 2136 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2137 MachineBasicBlock *SwitchBB) { 2138 SDLoc dl = getCurSDLoc(); 2139 2140 // Subtract the minimum value 2141 SDValue SwitchOp = getValue(B.SValue); 2142 EVT VT = SwitchOp.getValueType(); 2143 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2144 DAG.getConstant(B.First, dl, VT)); 2145 2146 // Check range 2147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2148 SDValue RangeCmp = DAG.getSetCC( 2149 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2150 Sub.getValueType()), 2151 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2152 2153 // Determine the type of the test operands. 2154 bool UsePtrType = false; 2155 if (!TLI.isTypeLegal(VT)) 2156 UsePtrType = true; 2157 else { 2158 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2159 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2160 // Switch table case range are encoded into series of masks. 2161 // Just use pointer type, it's guaranteed to fit. 2162 UsePtrType = true; 2163 break; 2164 } 2165 } 2166 if (UsePtrType) { 2167 VT = TLI.getPointerTy(DAG.getDataLayout()); 2168 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2169 } 2170 2171 B.RegVT = VT.getSimpleVT(); 2172 B.Reg = FuncInfo.CreateReg(B.RegVT); 2173 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2174 2175 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2176 2177 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2178 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2179 SwitchBB->normalizeSuccProbs(); 2180 2181 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2182 MVT::Other, CopyTo, RangeCmp, 2183 DAG.getBasicBlock(B.Default)); 2184 2185 // Avoid emitting unnecessary branches to the next block. 2186 if (MBB != NextBlock(SwitchBB)) 2187 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2188 DAG.getBasicBlock(MBB)); 2189 2190 DAG.setRoot(BrRange); 2191 } 2192 2193 /// visitBitTestCase - this function produces one "bit test" 2194 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2195 MachineBasicBlock* NextMBB, 2196 BranchProbability BranchProbToNext, 2197 unsigned Reg, 2198 BitTestCase &B, 2199 MachineBasicBlock *SwitchBB) { 2200 SDLoc dl = getCurSDLoc(); 2201 MVT VT = BB.RegVT; 2202 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2203 SDValue Cmp; 2204 unsigned PopCount = countPopulation(B.Mask); 2205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2206 if (PopCount == 1) { 2207 // Testing for a single bit; just compare the shift count with what it 2208 // would need to be to shift a 1 bit in that position. 2209 Cmp = DAG.getSetCC( 2210 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2211 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2212 ISD::SETEQ); 2213 } else if (PopCount == BB.Range) { 2214 // There is only one zero bit in the range, test for it directly. 2215 Cmp = DAG.getSetCC( 2216 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2217 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2218 ISD::SETNE); 2219 } else { 2220 // Make desired shift 2221 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2222 DAG.getConstant(1, dl, VT), ShiftOp); 2223 2224 // Emit bit tests and jumps 2225 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2226 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2227 Cmp = DAG.getSetCC( 2228 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2229 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2230 } 2231 2232 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2233 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2234 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2235 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2236 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2237 // one as they are relative probabilities (and thus work more like weights), 2238 // and hence we need to normalize them to let the sum of them become one. 2239 SwitchBB->normalizeSuccProbs(); 2240 2241 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2242 MVT::Other, getControlRoot(), 2243 Cmp, DAG.getBasicBlock(B.TargetBB)); 2244 2245 // Avoid emitting unnecessary branches to the next block. 2246 if (NextMBB != NextBlock(SwitchBB)) 2247 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2248 DAG.getBasicBlock(NextMBB)); 2249 2250 DAG.setRoot(BrAnd); 2251 } 2252 2253 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2254 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2255 2256 // Retrieve successors. Look through artificial IR level blocks like 2257 // catchswitch for successors. 2258 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2259 const BasicBlock *EHPadBB = I.getSuccessor(1); 2260 2261 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2262 // have to do anything here to lower funclet bundles. 2263 assert(!I.hasOperandBundlesOtherThan( 2264 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2265 "Cannot lower invokes with arbitrary operand bundles yet!"); 2266 2267 const Value *Callee(I.getCalledValue()); 2268 const Function *Fn = dyn_cast<Function>(Callee); 2269 if (isa<InlineAsm>(Callee)) 2270 visitInlineAsm(&I); 2271 else if (Fn && Fn->isIntrinsic()) { 2272 switch (Fn->getIntrinsicID()) { 2273 default: 2274 llvm_unreachable("Cannot invoke this intrinsic"); 2275 case Intrinsic::donothing: 2276 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2277 break; 2278 case Intrinsic::experimental_patchpoint_void: 2279 case Intrinsic::experimental_patchpoint_i64: 2280 visitPatchpoint(&I, EHPadBB); 2281 break; 2282 case Intrinsic::experimental_gc_statepoint: 2283 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2284 break; 2285 } 2286 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2287 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2288 // Eventually we will support lowering the @llvm.experimental.deoptimize 2289 // intrinsic, and right now there are no plans to support other intrinsics 2290 // with deopt state. 2291 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2292 } else { 2293 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2294 } 2295 2296 // If the value of the invoke is used outside of its defining block, make it 2297 // available as a virtual register. 2298 // We already took care of the exported value for the statepoint instruction 2299 // during call to the LowerStatepoint. 2300 if (!isStatepoint(I)) { 2301 CopyToExportRegsIfNeeded(&I); 2302 } 2303 2304 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2305 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2306 BranchProbability EHPadBBProb = 2307 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2308 : BranchProbability::getZero(); 2309 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2310 2311 // Update successor info. 2312 addSuccessorWithProb(InvokeMBB, Return); 2313 for (auto &UnwindDest : UnwindDests) { 2314 UnwindDest.first->setIsEHPad(); 2315 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2316 } 2317 InvokeMBB->normalizeSuccProbs(); 2318 2319 // Drop into normal successor. 2320 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2321 MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(Return))); 2323 } 2324 2325 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2326 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2327 } 2328 2329 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2330 assert(FuncInfo.MBB->isEHPad() && 2331 "Call to landingpad not in landing pad!"); 2332 2333 MachineBasicBlock *MBB = FuncInfo.MBB; 2334 addLandingPadInfo(LP, *MBB); 2335 2336 // If there aren't registers to copy the values into (e.g., during SjLj 2337 // exceptions), then don't bother to create these DAG nodes. 2338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2339 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2340 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2341 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2342 return; 2343 2344 // If landingpad's return type is token type, we don't create DAG nodes 2345 // for its exception pointer and selector value. The extraction of exception 2346 // pointer or selector value from token type landingpads is not currently 2347 // supported. 2348 if (LP.getType()->isTokenTy()) 2349 return; 2350 2351 SmallVector<EVT, 2> ValueVTs; 2352 SDLoc dl = getCurSDLoc(); 2353 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2354 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2355 2356 // Get the two live-in registers as SDValues. The physregs have already been 2357 // copied into virtual registers. 2358 SDValue Ops[2]; 2359 if (FuncInfo.ExceptionPointerVirtReg) { 2360 Ops[0] = DAG.getZExtOrTrunc( 2361 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2362 FuncInfo.ExceptionPointerVirtReg, 2363 TLI.getPointerTy(DAG.getDataLayout())), 2364 dl, ValueVTs[0]); 2365 } else { 2366 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2367 } 2368 Ops[1] = DAG.getZExtOrTrunc( 2369 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2370 FuncInfo.ExceptionSelectorVirtReg, 2371 TLI.getPointerTy(DAG.getDataLayout())), 2372 dl, ValueVTs[1]); 2373 2374 // Merge into one. 2375 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2376 DAG.getVTList(ValueVTs), Ops); 2377 setValue(&LP, Res); 2378 } 2379 2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2381 #ifndef NDEBUG 2382 for (const CaseCluster &CC : Clusters) 2383 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2384 #endif 2385 2386 std::sort(Clusters.begin(), Clusters.end(), 2387 [](const CaseCluster &a, const CaseCluster &b) { 2388 return a.Low->getValue().slt(b.Low->getValue()); 2389 }); 2390 2391 // Merge adjacent clusters with the same destination. 2392 const unsigned N = Clusters.size(); 2393 unsigned DstIndex = 0; 2394 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2395 CaseCluster &CC = Clusters[SrcIndex]; 2396 const ConstantInt *CaseVal = CC.Low; 2397 MachineBasicBlock *Succ = CC.MBB; 2398 2399 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2400 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2401 // If this case has the same successor and is a neighbour, merge it into 2402 // the previous cluster. 2403 Clusters[DstIndex - 1].High = CaseVal; 2404 Clusters[DstIndex - 1].Prob += CC.Prob; 2405 } else { 2406 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2407 sizeof(Clusters[SrcIndex])); 2408 } 2409 } 2410 Clusters.resize(DstIndex); 2411 } 2412 2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2414 MachineBasicBlock *Last) { 2415 // Update JTCases. 2416 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2417 if (JTCases[i].first.HeaderBB == First) 2418 JTCases[i].first.HeaderBB = Last; 2419 2420 // Update BitTestCases. 2421 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2422 if (BitTestCases[i].Parent == First) 2423 BitTestCases[i].Parent = Last; 2424 } 2425 2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2427 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2428 2429 // Update machine-CFG edges with unique successors. 2430 SmallSet<BasicBlock*, 32> Done; 2431 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2432 BasicBlock *BB = I.getSuccessor(i); 2433 bool Inserted = Done.insert(BB).second; 2434 if (!Inserted) 2435 continue; 2436 2437 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2438 addSuccessorWithProb(IndirectBrMBB, Succ); 2439 } 2440 IndirectBrMBB->normalizeSuccProbs(); 2441 2442 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2443 MVT::Other, getControlRoot(), 2444 getValue(I.getAddress()))); 2445 } 2446 2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2448 if (DAG.getTarget().Options.TrapUnreachable) 2449 DAG.setRoot( 2450 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2451 } 2452 2453 void SelectionDAGBuilder::visitFSub(const User &I) { 2454 // -0.0 - X --> fneg 2455 Type *Ty = I.getType(); 2456 if (isa<Constant>(I.getOperand(0)) && 2457 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2458 SDValue Op2 = getValue(I.getOperand(1)); 2459 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2460 Op2.getValueType(), Op2)); 2461 return; 2462 } 2463 2464 visitBinary(I, ISD::FSUB); 2465 } 2466 2467 /// Checks if the given instruction performs a vector reduction, in which case 2468 /// we have the freedom to alter the elements in the result as long as the 2469 /// reduction of them stays unchanged. 2470 static bool isVectorReductionOp(const User *I) { 2471 const Instruction *Inst = dyn_cast<Instruction>(I); 2472 if (!Inst || !Inst->getType()->isVectorTy()) 2473 return false; 2474 2475 auto OpCode = Inst->getOpcode(); 2476 switch (OpCode) { 2477 case Instruction::Add: 2478 case Instruction::Mul: 2479 case Instruction::And: 2480 case Instruction::Or: 2481 case Instruction::Xor: 2482 break; 2483 case Instruction::FAdd: 2484 case Instruction::FMul: 2485 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2486 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2487 break; 2488 LLVM_FALLTHROUGH; 2489 default: 2490 return false; 2491 } 2492 2493 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2494 unsigned ElemNumToReduce = ElemNum; 2495 2496 // Do DFS search on the def-use chain from the given instruction. We only 2497 // allow four kinds of operations during the search until we reach the 2498 // instruction that extracts the first element from the vector: 2499 // 2500 // 1. The reduction operation of the same opcode as the given instruction. 2501 // 2502 // 2. PHI node. 2503 // 2504 // 3. ShuffleVector instruction together with a reduction operation that 2505 // does a partial reduction. 2506 // 2507 // 4. ExtractElement that extracts the first element from the vector, and we 2508 // stop searching the def-use chain here. 2509 // 2510 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2511 // from 1-3 to the stack to continue the DFS. The given instruction is not 2512 // a reduction operation if we meet any other instructions other than those 2513 // listed above. 2514 2515 SmallVector<const User *, 16> UsersToVisit{Inst}; 2516 SmallPtrSet<const User *, 16> Visited; 2517 bool ReduxExtracted = false; 2518 2519 while (!UsersToVisit.empty()) { 2520 auto User = UsersToVisit.back(); 2521 UsersToVisit.pop_back(); 2522 if (!Visited.insert(User).second) 2523 continue; 2524 2525 for (const auto &U : User->users()) { 2526 auto Inst = dyn_cast<Instruction>(U); 2527 if (!Inst) 2528 return false; 2529 2530 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2531 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2532 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2533 return false; 2534 UsersToVisit.push_back(U); 2535 } else if (const ShuffleVectorInst *ShufInst = 2536 dyn_cast<ShuffleVectorInst>(U)) { 2537 // Detect the following pattern: A ShuffleVector instruction together 2538 // with a reduction that do partial reduction on the first and second 2539 // ElemNumToReduce / 2 elements, and store the result in 2540 // ElemNumToReduce / 2 elements in another vector. 2541 2542 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2543 if (ResultElements < ElemNum) 2544 return false; 2545 2546 if (ElemNumToReduce == 1) 2547 return false; 2548 if (!isa<UndefValue>(U->getOperand(1))) 2549 return false; 2550 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2551 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2552 return false; 2553 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2554 if (ShufInst->getMaskValue(i) != -1) 2555 return false; 2556 2557 // There is only one user of this ShuffleVector instruction, which 2558 // must be a reduction operation. 2559 if (!U->hasOneUse()) 2560 return false; 2561 2562 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2563 if (!U2 || U2->getOpcode() != OpCode) 2564 return false; 2565 2566 // Check operands of the reduction operation. 2567 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2568 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2569 UsersToVisit.push_back(U2); 2570 ElemNumToReduce /= 2; 2571 } else 2572 return false; 2573 } else if (isa<ExtractElementInst>(U)) { 2574 // At this moment we should have reduced all elements in the vector. 2575 if (ElemNumToReduce != 1) 2576 return false; 2577 2578 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2579 if (!Val || Val->getZExtValue() != 0) 2580 return false; 2581 2582 ReduxExtracted = true; 2583 } else 2584 return false; 2585 } 2586 } 2587 return ReduxExtracted; 2588 } 2589 2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2591 SDValue Op1 = getValue(I.getOperand(0)); 2592 SDValue Op2 = getValue(I.getOperand(1)); 2593 2594 bool nuw = false; 2595 bool nsw = false; 2596 bool exact = false; 2597 bool vec_redux = false; 2598 FastMathFlags FMF; 2599 2600 if (const OverflowingBinaryOperator *OFBinOp = 2601 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2602 nuw = OFBinOp->hasNoUnsignedWrap(); 2603 nsw = OFBinOp->hasNoSignedWrap(); 2604 } 2605 if (const PossiblyExactOperator *ExactOp = 2606 dyn_cast<const PossiblyExactOperator>(&I)) 2607 exact = ExactOp->isExact(); 2608 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2609 FMF = FPOp->getFastMathFlags(); 2610 2611 if (isVectorReductionOp(&I)) { 2612 vec_redux = true; 2613 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2614 } 2615 2616 SDNodeFlags Flags; 2617 Flags.setExact(exact); 2618 Flags.setNoSignedWrap(nsw); 2619 Flags.setNoUnsignedWrap(nuw); 2620 Flags.setVectorReduction(vec_redux); 2621 if (EnableFMFInDAG) { 2622 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2623 Flags.setNoInfs(FMF.noInfs()); 2624 Flags.setNoNaNs(FMF.noNaNs()); 2625 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2626 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2627 } 2628 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2629 Op1, Op2, &Flags); 2630 setValue(&I, BinNodeValue); 2631 } 2632 2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2634 SDValue Op1 = getValue(I.getOperand(0)); 2635 SDValue Op2 = getValue(I.getOperand(1)); 2636 2637 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2638 Op2.getValueType(), DAG.getDataLayout()); 2639 2640 // Coerce the shift amount to the right type if we can. 2641 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2642 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2643 unsigned Op2Size = Op2.getValueSizeInBits(); 2644 SDLoc DL = getCurSDLoc(); 2645 2646 // If the operand is smaller than the shift count type, promote it. 2647 if (ShiftSize > Op2Size) 2648 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2649 2650 // If the operand is larger than the shift count type but the shift 2651 // count type has enough bits to represent any shift value, truncate 2652 // it now. This is a common case and it exposes the truncate to 2653 // optimization early. 2654 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2655 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2656 // Otherwise we'll need to temporarily settle for some other convenient 2657 // type. Type legalization will make adjustments once the shiftee is split. 2658 else 2659 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2660 } 2661 2662 bool nuw = false; 2663 bool nsw = false; 2664 bool exact = false; 2665 2666 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2667 2668 if (const OverflowingBinaryOperator *OFBinOp = 2669 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2670 nuw = OFBinOp->hasNoUnsignedWrap(); 2671 nsw = OFBinOp->hasNoSignedWrap(); 2672 } 2673 if (const PossiblyExactOperator *ExactOp = 2674 dyn_cast<const PossiblyExactOperator>(&I)) 2675 exact = ExactOp->isExact(); 2676 } 2677 SDNodeFlags Flags; 2678 Flags.setExact(exact); 2679 Flags.setNoSignedWrap(nsw); 2680 Flags.setNoUnsignedWrap(nuw); 2681 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2682 &Flags); 2683 setValue(&I, Res); 2684 } 2685 2686 void SelectionDAGBuilder::visitSDiv(const User &I) { 2687 SDValue Op1 = getValue(I.getOperand(0)); 2688 SDValue Op2 = getValue(I.getOperand(1)); 2689 2690 SDNodeFlags Flags; 2691 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2692 cast<PossiblyExactOperator>(&I)->isExact()); 2693 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2694 Op2, &Flags)); 2695 } 2696 2697 void SelectionDAGBuilder::visitICmp(const User &I) { 2698 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2699 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2700 predicate = IC->getPredicate(); 2701 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2702 predicate = ICmpInst::Predicate(IC->getPredicate()); 2703 SDValue Op1 = getValue(I.getOperand(0)); 2704 SDValue Op2 = getValue(I.getOperand(1)); 2705 ISD::CondCode Opcode = getICmpCondCode(predicate); 2706 2707 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2708 I.getType()); 2709 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2710 } 2711 2712 void SelectionDAGBuilder::visitFCmp(const User &I) { 2713 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2714 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2715 predicate = FC->getPredicate(); 2716 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2717 predicate = FCmpInst::Predicate(FC->getPredicate()); 2718 SDValue Op1 = getValue(I.getOperand(0)); 2719 SDValue Op2 = getValue(I.getOperand(1)); 2720 ISD::CondCode Condition = getFCmpCondCode(predicate); 2721 2722 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2723 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2724 // further optimization, but currently FMF is only applicable to binary nodes. 2725 if (TM.Options.NoNaNsFPMath) 2726 Condition = getFCmpCodeWithoutNaN(Condition); 2727 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2728 I.getType()); 2729 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2730 } 2731 2732 // Check if the condition of the select has one use or two users that are both 2733 // selects with the same condition. 2734 static bool hasOnlySelectUsers(const Value *Cond) { 2735 return all_of(Cond->users(), [](const Value *V) { 2736 return isa<SelectInst>(V); 2737 }); 2738 } 2739 2740 void SelectionDAGBuilder::visitSelect(const User &I) { 2741 SmallVector<EVT, 4> ValueVTs; 2742 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2743 ValueVTs); 2744 unsigned NumValues = ValueVTs.size(); 2745 if (NumValues == 0) return; 2746 2747 SmallVector<SDValue, 4> Values(NumValues); 2748 SDValue Cond = getValue(I.getOperand(0)); 2749 SDValue LHSVal = getValue(I.getOperand(1)); 2750 SDValue RHSVal = getValue(I.getOperand(2)); 2751 auto BaseOps = {Cond}; 2752 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2753 ISD::VSELECT : ISD::SELECT; 2754 2755 // Min/max matching is only viable if all output VTs are the same. 2756 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2757 EVT VT = ValueVTs[0]; 2758 LLVMContext &Ctx = *DAG.getContext(); 2759 auto &TLI = DAG.getTargetLoweringInfo(); 2760 2761 // We care about the legality of the operation after it has been type 2762 // legalized. 2763 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2764 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2765 VT = TLI.getTypeToTransformTo(Ctx, VT); 2766 2767 // If the vselect is legal, assume we want to leave this as a vector setcc + 2768 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2769 // min/max is legal on the scalar type. 2770 bool UseScalarMinMax = VT.isVector() && 2771 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2772 2773 Value *LHS, *RHS; 2774 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2775 ISD::NodeType Opc = ISD::DELETED_NODE; 2776 switch (SPR.Flavor) { 2777 case SPF_UMAX: Opc = ISD::UMAX; break; 2778 case SPF_UMIN: Opc = ISD::UMIN; break; 2779 case SPF_SMAX: Opc = ISD::SMAX; break; 2780 case SPF_SMIN: Opc = ISD::SMIN; break; 2781 case SPF_FMINNUM: 2782 switch (SPR.NaNBehavior) { 2783 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2784 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2785 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2786 case SPNB_RETURNS_ANY: { 2787 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2788 Opc = ISD::FMINNUM; 2789 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2790 Opc = ISD::FMINNAN; 2791 else if (UseScalarMinMax) 2792 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2793 ISD::FMINNUM : ISD::FMINNAN; 2794 break; 2795 } 2796 } 2797 break; 2798 case SPF_FMAXNUM: 2799 switch (SPR.NaNBehavior) { 2800 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2801 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2802 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2803 case SPNB_RETURNS_ANY: 2804 2805 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2806 Opc = ISD::FMAXNUM; 2807 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2808 Opc = ISD::FMAXNAN; 2809 else if (UseScalarMinMax) 2810 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2811 ISD::FMAXNUM : ISD::FMAXNAN; 2812 break; 2813 } 2814 break; 2815 default: break; 2816 } 2817 2818 if (Opc != ISD::DELETED_NODE && 2819 (TLI.isOperationLegalOrCustom(Opc, VT) || 2820 (UseScalarMinMax && 2821 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2822 // If the underlying comparison instruction is used by any other 2823 // instruction, the consumed instructions won't be destroyed, so it is 2824 // not profitable to convert to a min/max. 2825 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2826 OpCode = Opc; 2827 LHSVal = getValue(LHS); 2828 RHSVal = getValue(RHS); 2829 BaseOps = {}; 2830 } 2831 } 2832 2833 for (unsigned i = 0; i != NumValues; ++i) { 2834 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2835 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2836 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2837 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2838 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2839 Ops); 2840 } 2841 2842 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2843 DAG.getVTList(ValueVTs), Values)); 2844 } 2845 2846 void SelectionDAGBuilder::visitTrunc(const User &I) { 2847 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2848 SDValue N = getValue(I.getOperand(0)); 2849 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2850 I.getType()); 2851 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2852 } 2853 2854 void SelectionDAGBuilder::visitZExt(const User &I) { 2855 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2856 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2857 SDValue N = getValue(I.getOperand(0)); 2858 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2859 I.getType()); 2860 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2861 } 2862 2863 void SelectionDAGBuilder::visitSExt(const User &I) { 2864 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2865 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2866 SDValue N = getValue(I.getOperand(0)); 2867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2868 I.getType()); 2869 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2870 } 2871 2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2873 // FPTrunc is never a no-op cast, no need to check 2874 SDValue N = getValue(I.getOperand(0)); 2875 SDLoc dl = getCurSDLoc(); 2876 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2877 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2878 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2879 DAG.getTargetConstant( 2880 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2881 } 2882 2883 void SelectionDAGBuilder::visitFPExt(const User &I) { 2884 // FPExt is never a no-op cast, no need to check 2885 SDValue N = getValue(I.getOperand(0)); 2886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2887 I.getType()); 2888 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2889 } 2890 2891 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2892 // FPToUI is never a no-op cast, no need to check 2893 SDValue N = getValue(I.getOperand(0)); 2894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2895 I.getType()); 2896 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2897 } 2898 2899 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2900 // FPToSI is never a no-op cast, no need to check 2901 SDValue N = getValue(I.getOperand(0)); 2902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2903 I.getType()); 2904 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2905 } 2906 2907 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2908 // UIToFP is never a no-op cast, no need to check 2909 SDValue N = getValue(I.getOperand(0)); 2910 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2911 I.getType()); 2912 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2913 } 2914 2915 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2916 // SIToFP is never a no-op cast, no need to check 2917 SDValue N = getValue(I.getOperand(0)); 2918 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2919 I.getType()); 2920 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2921 } 2922 2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2924 // What to do depends on the size of the integer and the size of the pointer. 2925 // We can either truncate, zero extend, or no-op, accordingly. 2926 SDValue N = getValue(I.getOperand(0)); 2927 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2928 I.getType()); 2929 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2930 } 2931 2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2933 // What to do depends on the size of the integer and the size of the pointer. 2934 // We can either truncate, zero extend, or no-op, accordingly. 2935 SDValue N = getValue(I.getOperand(0)); 2936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2937 I.getType()); 2938 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2939 } 2940 2941 void SelectionDAGBuilder::visitBitCast(const User &I) { 2942 SDValue N = getValue(I.getOperand(0)); 2943 SDLoc dl = getCurSDLoc(); 2944 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2945 I.getType()); 2946 2947 // BitCast assures us that source and destination are the same size so this is 2948 // either a BITCAST or a no-op. 2949 if (DestVT != N.getValueType()) 2950 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2951 DestVT, N)); // convert types. 2952 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2953 // might fold any kind of constant expression to an integer constant and that 2954 // is not what we are looking for. Only recognize a bitcast of a genuine 2955 // constant integer as an opaque constant. 2956 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2957 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2958 /*isOpaque*/true)); 2959 else 2960 setValue(&I, N); // noop cast. 2961 } 2962 2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2965 const Value *SV = I.getOperand(0); 2966 SDValue N = getValue(SV); 2967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2968 2969 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2970 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2971 2972 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2973 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2974 2975 setValue(&I, N); 2976 } 2977 2978 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2980 SDValue InVec = getValue(I.getOperand(0)); 2981 SDValue InVal = getValue(I.getOperand(1)); 2982 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2983 TLI.getVectorIdxTy(DAG.getDataLayout())); 2984 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2985 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2986 InVec, InVal, InIdx)); 2987 } 2988 2989 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2991 SDValue InVec = getValue(I.getOperand(0)); 2992 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2993 TLI.getVectorIdxTy(DAG.getDataLayout())); 2994 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2995 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2996 InVec, InIdx)); 2997 } 2998 2999 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3000 SDValue Src1 = getValue(I.getOperand(0)); 3001 SDValue Src2 = getValue(I.getOperand(1)); 3002 SDLoc DL = getCurSDLoc(); 3003 3004 SmallVector<int, 8> Mask; 3005 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3006 unsigned MaskNumElts = Mask.size(); 3007 3008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3009 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3010 EVT SrcVT = Src1.getValueType(); 3011 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3012 3013 if (SrcNumElts == MaskNumElts) { 3014 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3015 return; 3016 } 3017 3018 // Normalize the shuffle vector since mask and vector length don't match. 3019 if (SrcNumElts < MaskNumElts) { 3020 // Mask is longer than the source vectors. We can use concatenate vector to 3021 // make the mask and vectors lengths match. 3022 3023 if (MaskNumElts % SrcNumElts == 0) { 3024 // Mask length is a multiple of the source vector length. 3025 // Check if the shuffle is some kind of concatenation of the input 3026 // vectors. 3027 unsigned NumConcat = MaskNumElts / SrcNumElts; 3028 bool IsConcat = true; 3029 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3030 for (unsigned i = 0; i != MaskNumElts; ++i) { 3031 int Idx = Mask[i]; 3032 if (Idx < 0) 3033 continue; 3034 // Ensure the indices in each SrcVT sized piece are sequential and that 3035 // the same source is used for the whole piece. 3036 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3037 (ConcatSrcs[i / SrcNumElts] >= 0 && 3038 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3039 IsConcat = false; 3040 break; 3041 } 3042 // Remember which source this index came from. 3043 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3044 } 3045 3046 // The shuffle is concatenating multiple vectors together. Just emit 3047 // a CONCAT_VECTORS operation. 3048 if (IsConcat) { 3049 SmallVector<SDValue, 8> ConcatOps; 3050 for (auto Src : ConcatSrcs) { 3051 if (Src < 0) 3052 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3053 else if (Src == 0) 3054 ConcatOps.push_back(Src1); 3055 else 3056 ConcatOps.push_back(Src2); 3057 } 3058 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3059 return; 3060 } 3061 } 3062 3063 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3064 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3065 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3066 PaddedMaskNumElts); 3067 3068 // Pad both vectors with undefs to make them the same length as the mask. 3069 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3070 3071 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3072 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3073 MOps1[0] = Src1; 3074 MOps2[0] = Src2; 3075 3076 Src1 = Src1.isUndef() 3077 ? DAG.getUNDEF(PaddedVT) 3078 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3079 Src2 = Src2.isUndef() 3080 ? DAG.getUNDEF(PaddedVT) 3081 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3082 3083 // Readjust mask for new input vector length. 3084 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3085 for (unsigned i = 0; i != MaskNumElts; ++i) { 3086 int Idx = Mask[i]; 3087 if (Idx >= (int)SrcNumElts) 3088 Idx -= SrcNumElts - PaddedMaskNumElts; 3089 MappedOps[i] = Idx; 3090 } 3091 3092 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3093 3094 // If the concatenated vector was padded, extract a subvector with the 3095 // correct number of elements. 3096 if (MaskNumElts != PaddedMaskNumElts) 3097 Result = DAG.getNode( 3098 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3099 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3100 3101 setValue(&I, Result); 3102 return; 3103 } 3104 3105 if (SrcNumElts > MaskNumElts) { 3106 // Analyze the access pattern of the vector to see if we can extract 3107 // two subvectors and do the shuffle. 3108 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3109 bool CanExtract = true; 3110 for (int Idx : Mask) { 3111 unsigned Input = 0; 3112 if (Idx < 0) 3113 continue; 3114 3115 if (Idx >= (int)SrcNumElts) { 3116 Input = 1; 3117 Idx -= SrcNumElts; 3118 } 3119 3120 // If all the indices come from the same MaskNumElts sized portion of 3121 // the sources we can use extract. Also make sure the extract wouldn't 3122 // extract past the end of the source. 3123 int NewStartIdx = alignDown(Idx, MaskNumElts); 3124 if (NewStartIdx + MaskNumElts > SrcNumElts || 3125 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3126 CanExtract = false; 3127 // Make sure we always update StartIdx as we use it to track if all 3128 // elements are undef. 3129 StartIdx[Input] = NewStartIdx; 3130 } 3131 3132 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3133 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3134 return; 3135 } 3136 if (CanExtract) { 3137 // Extract appropriate subvector and generate a vector shuffle 3138 for (unsigned Input = 0; Input < 2; ++Input) { 3139 SDValue &Src = Input == 0 ? Src1 : Src2; 3140 if (StartIdx[Input] < 0) 3141 Src = DAG.getUNDEF(VT); 3142 else { 3143 Src = DAG.getNode( 3144 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3145 DAG.getConstant(StartIdx[Input], DL, 3146 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3147 } 3148 } 3149 3150 // Calculate new mask. 3151 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3152 for (int &Idx : MappedOps) { 3153 if (Idx >= (int)SrcNumElts) 3154 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3155 else if (Idx >= 0) 3156 Idx -= StartIdx[0]; 3157 } 3158 3159 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3160 return; 3161 } 3162 } 3163 3164 // We can't use either concat vectors or extract subvectors so fall back to 3165 // replacing the shuffle with extract and build vector. 3166 // to insert and build vector. 3167 EVT EltVT = VT.getVectorElementType(); 3168 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3169 SmallVector<SDValue,8> Ops; 3170 for (int Idx : Mask) { 3171 SDValue Res; 3172 3173 if (Idx < 0) { 3174 Res = DAG.getUNDEF(EltVT); 3175 } else { 3176 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3177 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3178 3179 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3180 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3181 } 3182 3183 Ops.push_back(Res); 3184 } 3185 3186 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3187 } 3188 3189 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3190 const Value *Op0 = I.getOperand(0); 3191 const Value *Op1 = I.getOperand(1); 3192 Type *AggTy = I.getType(); 3193 Type *ValTy = Op1->getType(); 3194 bool IntoUndef = isa<UndefValue>(Op0); 3195 bool FromUndef = isa<UndefValue>(Op1); 3196 3197 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3198 3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3200 SmallVector<EVT, 4> AggValueVTs; 3201 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3202 SmallVector<EVT, 4> ValValueVTs; 3203 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3204 3205 unsigned NumAggValues = AggValueVTs.size(); 3206 unsigned NumValValues = ValValueVTs.size(); 3207 SmallVector<SDValue, 4> Values(NumAggValues); 3208 3209 // Ignore an insertvalue that produces an empty object 3210 if (!NumAggValues) { 3211 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3212 return; 3213 } 3214 3215 SDValue Agg = getValue(Op0); 3216 unsigned i = 0; 3217 // Copy the beginning value(s) from the original aggregate. 3218 for (; i != LinearIndex; ++i) 3219 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3220 SDValue(Agg.getNode(), Agg.getResNo() + i); 3221 // Copy values from the inserted value(s). 3222 if (NumValValues) { 3223 SDValue Val = getValue(Op1); 3224 for (; i != LinearIndex + NumValValues; ++i) 3225 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3226 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3227 } 3228 // Copy remaining value(s) from the original aggregate. 3229 for (; i != NumAggValues; ++i) 3230 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3231 SDValue(Agg.getNode(), Agg.getResNo() + i); 3232 3233 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3234 DAG.getVTList(AggValueVTs), Values)); 3235 } 3236 3237 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3238 const Value *Op0 = I.getOperand(0); 3239 Type *AggTy = Op0->getType(); 3240 Type *ValTy = I.getType(); 3241 bool OutOfUndef = isa<UndefValue>(Op0); 3242 3243 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3244 3245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3246 SmallVector<EVT, 4> ValValueVTs; 3247 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3248 3249 unsigned NumValValues = ValValueVTs.size(); 3250 3251 // Ignore a extractvalue that produces an empty object 3252 if (!NumValValues) { 3253 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3254 return; 3255 } 3256 3257 SmallVector<SDValue, 4> Values(NumValValues); 3258 3259 SDValue Agg = getValue(Op0); 3260 // Copy out the selected value(s). 3261 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3262 Values[i - LinearIndex] = 3263 OutOfUndef ? 3264 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3265 SDValue(Agg.getNode(), Agg.getResNo() + i); 3266 3267 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3268 DAG.getVTList(ValValueVTs), Values)); 3269 } 3270 3271 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3272 Value *Op0 = I.getOperand(0); 3273 // Note that the pointer operand may be a vector of pointers. Take the scalar 3274 // element which holds a pointer. 3275 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3276 SDValue N = getValue(Op0); 3277 SDLoc dl = getCurSDLoc(); 3278 3279 // Normalize Vector GEP - all scalar operands should be converted to the 3280 // splat vector. 3281 unsigned VectorWidth = I.getType()->isVectorTy() ? 3282 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3283 3284 if (VectorWidth && !N.getValueType().isVector()) { 3285 LLVMContext &Context = *DAG.getContext(); 3286 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3287 N = DAG.getSplatBuildVector(VT, dl, N); 3288 } 3289 3290 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3291 GTI != E; ++GTI) { 3292 const Value *Idx = GTI.getOperand(); 3293 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3294 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3295 if (Field) { 3296 // N = N + Offset 3297 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3298 3299 // In an inbouds GEP with an offset that is nonnegative even when 3300 // interpreted as signed, assume there is no unsigned overflow. 3301 SDNodeFlags Flags; 3302 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3303 Flags.setNoUnsignedWrap(true); 3304 3305 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3306 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3307 } 3308 } else { 3309 MVT PtrTy = 3310 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3311 unsigned PtrSize = PtrTy.getSizeInBits(); 3312 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3313 3314 // If this is a scalar constant or a splat vector of constants, 3315 // handle it quickly. 3316 const auto *CI = dyn_cast<ConstantInt>(Idx); 3317 if (!CI && isa<ConstantDataVector>(Idx) && 3318 cast<ConstantDataVector>(Idx)->getSplatValue()) 3319 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3320 3321 if (CI) { 3322 if (CI->isZero()) 3323 continue; 3324 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3325 LLVMContext &Context = *DAG.getContext(); 3326 SDValue OffsVal = VectorWidth ? 3327 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3328 DAG.getConstant(Offs, dl, PtrTy); 3329 3330 // In an inbouds GEP with an offset that is nonnegative even when 3331 // interpreted as signed, assume there is no unsigned overflow. 3332 SDNodeFlags Flags; 3333 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3334 Flags.setNoUnsignedWrap(true); 3335 3336 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3337 continue; 3338 } 3339 3340 // N = N + Idx * ElementSize; 3341 SDValue IdxN = getValue(Idx); 3342 3343 if (!IdxN.getValueType().isVector() && VectorWidth) { 3344 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3345 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3346 } 3347 3348 // If the index is smaller or larger than intptr_t, truncate or extend 3349 // it. 3350 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3351 3352 // If this is a multiply by a power of two, turn it into a shl 3353 // immediately. This is a very common case. 3354 if (ElementSize != 1) { 3355 if (ElementSize.isPowerOf2()) { 3356 unsigned Amt = ElementSize.logBase2(); 3357 IdxN = DAG.getNode(ISD::SHL, dl, 3358 N.getValueType(), IdxN, 3359 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3360 } else { 3361 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3362 IdxN = DAG.getNode(ISD::MUL, dl, 3363 N.getValueType(), IdxN, Scale); 3364 } 3365 } 3366 3367 N = DAG.getNode(ISD::ADD, dl, 3368 N.getValueType(), N, IdxN); 3369 } 3370 } 3371 3372 setValue(&I, N); 3373 } 3374 3375 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3376 // If this is a fixed sized alloca in the entry block of the function, 3377 // allocate it statically on the stack. 3378 if (FuncInfo.StaticAllocaMap.count(&I)) 3379 return; // getValue will auto-populate this. 3380 3381 SDLoc dl = getCurSDLoc(); 3382 Type *Ty = I.getAllocatedType(); 3383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3384 auto &DL = DAG.getDataLayout(); 3385 uint64_t TySize = DL.getTypeAllocSize(Ty); 3386 unsigned Align = 3387 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3388 3389 SDValue AllocSize = getValue(I.getArraySize()); 3390 3391 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3392 if (AllocSize.getValueType() != IntPtr) 3393 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3394 3395 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3396 AllocSize, 3397 DAG.getConstant(TySize, dl, IntPtr)); 3398 3399 // Handle alignment. If the requested alignment is less than or equal to 3400 // the stack alignment, ignore it. If the size is greater than or equal to 3401 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3402 unsigned StackAlign = 3403 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3404 if (Align <= StackAlign) 3405 Align = 0; 3406 3407 // Round the size of the allocation up to the stack alignment size 3408 // by add SA-1 to the size. This doesn't overflow because we're computing 3409 // an address inside an alloca. 3410 SDNodeFlags Flags; 3411 Flags.setNoUnsignedWrap(true); 3412 AllocSize = DAG.getNode(ISD::ADD, dl, 3413 AllocSize.getValueType(), AllocSize, 3414 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3415 3416 // Mask out the low bits for alignment purposes. 3417 AllocSize = DAG.getNode(ISD::AND, dl, 3418 AllocSize.getValueType(), AllocSize, 3419 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3420 dl)); 3421 3422 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3423 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3424 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3425 setValue(&I, DSA); 3426 DAG.setRoot(DSA.getValue(1)); 3427 3428 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3429 } 3430 3431 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3432 if (I.isAtomic()) 3433 return visitAtomicLoad(I); 3434 3435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3436 const Value *SV = I.getOperand(0); 3437 if (TLI.supportSwiftError()) { 3438 // Swifterror values can come from either a function parameter with 3439 // swifterror attribute or an alloca with swifterror attribute. 3440 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3441 if (Arg->hasSwiftErrorAttr()) 3442 return visitLoadFromSwiftError(I); 3443 } 3444 3445 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3446 if (Alloca->isSwiftError()) 3447 return visitLoadFromSwiftError(I); 3448 } 3449 } 3450 3451 SDValue Ptr = getValue(SV); 3452 3453 Type *Ty = I.getType(); 3454 3455 bool isVolatile = I.isVolatile(); 3456 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3457 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3458 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3459 unsigned Alignment = I.getAlignment(); 3460 3461 AAMDNodes AAInfo; 3462 I.getAAMetadata(AAInfo); 3463 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3464 3465 SmallVector<EVT, 4> ValueVTs; 3466 SmallVector<uint64_t, 4> Offsets; 3467 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3468 unsigned NumValues = ValueVTs.size(); 3469 if (NumValues == 0) 3470 return; 3471 3472 SDValue Root; 3473 bool ConstantMemory = false; 3474 if (isVolatile || NumValues > MaxParallelChains) 3475 // Serialize volatile loads with other side effects. 3476 Root = getRoot(); 3477 else if (AA->pointsToConstantMemory(MemoryLocation( 3478 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3479 // Do not serialize (non-volatile) loads of constant memory with anything. 3480 Root = DAG.getEntryNode(); 3481 ConstantMemory = true; 3482 } else { 3483 // Do not serialize non-volatile loads against each other. 3484 Root = DAG.getRoot(); 3485 } 3486 3487 SDLoc dl = getCurSDLoc(); 3488 3489 if (isVolatile) 3490 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3491 3492 // An aggregate load cannot wrap around the address space, so offsets to its 3493 // parts don't wrap either. 3494 SDNodeFlags Flags; 3495 Flags.setNoUnsignedWrap(true); 3496 3497 SmallVector<SDValue, 4> Values(NumValues); 3498 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3499 EVT PtrVT = Ptr.getValueType(); 3500 unsigned ChainI = 0; 3501 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3502 // Serializing loads here may result in excessive register pressure, and 3503 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3504 // could recover a bit by hoisting nodes upward in the chain by recognizing 3505 // they are side-effect free or do not alias. The optimizer should really 3506 // avoid this case by converting large object/array copies to llvm.memcpy 3507 // (MaxParallelChains should always remain as failsafe). 3508 if (ChainI == MaxParallelChains) { 3509 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3510 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3511 makeArrayRef(Chains.data(), ChainI)); 3512 Root = Chain; 3513 ChainI = 0; 3514 } 3515 SDValue A = DAG.getNode(ISD::ADD, dl, 3516 PtrVT, Ptr, 3517 DAG.getConstant(Offsets[i], dl, PtrVT), 3518 &Flags); 3519 auto MMOFlags = MachineMemOperand::MONone; 3520 if (isVolatile) 3521 MMOFlags |= MachineMemOperand::MOVolatile; 3522 if (isNonTemporal) 3523 MMOFlags |= MachineMemOperand::MONonTemporal; 3524 if (isInvariant) 3525 MMOFlags |= MachineMemOperand::MOInvariant; 3526 if (isDereferenceable) 3527 MMOFlags |= MachineMemOperand::MODereferenceable; 3528 3529 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3530 MachinePointerInfo(SV, Offsets[i]), Alignment, 3531 MMOFlags, AAInfo, Ranges); 3532 3533 Values[i] = L; 3534 Chains[ChainI] = L.getValue(1); 3535 } 3536 3537 if (!ConstantMemory) { 3538 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3539 makeArrayRef(Chains.data(), ChainI)); 3540 if (isVolatile) 3541 DAG.setRoot(Chain); 3542 else 3543 PendingLoads.push_back(Chain); 3544 } 3545 3546 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3547 DAG.getVTList(ValueVTs), Values)); 3548 } 3549 3550 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 assert(TLI.supportSwiftError() && 3553 "call visitStoreToSwiftError when backend supports swifterror"); 3554 3555 SmallVector<EVT, 4> ValueVTs; 3556 SmallVector<uint64_t, 4> Offsets; 3557 const Value *SrcV = I.getOperand(0); 3558 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3559 SrcV->getType(), ValueVTs, &Offsets); 3560 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3561 "expect a single EVT for swifterror"); 3562 3563 SDValue Src = getValue(SrcV); 3564 // Create a virtual register, then update the virtual register. 3565 auto &DL = DAG.getDataLayout(); 3566 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3567 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3568 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3569 // Chain can be getRoot or getControlRoot. 3570 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3571 SDValue(Src.getNode(), Src.getResNo())); 3572 DAG.setRoot(CopyNode); 3573 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3574 } 3575 3576 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3577 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3578 "call visitLoadFromSwiftError when backend supports swifterror"); 3579 3580 assert(!I.isVolatile() && 3581 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3582 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3583 "Support volatile, non temporal, invariant for load_from_swift_error"); 3584 3585 const Value *SV = I.getOperand(0); 3586 Type *Ty = I.getType(); 3587 AAMDNodes AAInfo; 3588 I.getAAMetadata(AAInfo); 3589 assert(!AA->pointsToConstantMemory(MemoryLocation( 3590 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3591 "load_from_swift_error should not be constant memory"); 3592 3593 SmallVector<EVT, 4> ValueVTs; 3594 SmallVector<uint64_t, 4> Offsets; 3595 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3596 ValueVTs, &Offsets); 3597 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3598 "expect a single EVT for swifterror"); 3599 3600 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3601 SDValue L = DAG.getCopyFromReg( 3602 getRoot(), getCurSDLoc(), 3603 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3604 3605 setValue(&I, L); 3606 } 3607 3608 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3609 if (I.isAtomic()) 3610 return visitAtomicStore(I); 3611 3612 const Value *SrcV = I.getOperand(0); 3613 const Value *PtrV = I.getOperand(1); 3614 3615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3616 if (TLI.supportSwiftError()) { 3617 // Swifterror values can come from either a function parameter with 3618 // swifterror attribute or an alloca with swifterror attribute. 3619 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3620 if (Arg->hasSwiftErrorAttr()) 3621 return visitStoreToSwiftError(I); 3622 } 3623 3624 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3625 if (Alloca->isSwiftError()) 3626 return visitStoreToSwiftError(I); 3627 } 3628 } 3629 3630 SmallVector<EVT, 4> ValueVTs; 3631 SmallVector<uint64_t, 4> Offsets; 3632 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3633 SrcV->getType(), ValueVTs, &Offsets); 3634 unsigned NumValues = ValueVTs.size(); 3635 if (NumValues == 0) 3636 return; 3637 3638 // Get the lowered operands. Note that we do this after 3639 // checking if NumResults is zero, because with zero results 3640 // the operands won't have values in the map. 3641 SDValue Src = getValue(SrcV); 3642 SDValue Ptr = getValue(PtrV); 3643 3644 SDValue Root = getRoot(); 3645 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3646 SDLoc dl = getCurSDLoc(); 3647 EVT PtrVT = Ptr.getValueType(); 3648 unsigned Alignment = I.getAlignment(); 3649 AAMDNodes AAInfo; 3650 I.getAAMetadata(AAInfo); 3651 3652 auto MMOFlags = MachineMemOperand::MONone; 3653 if (I.isVolatile()) 3654 MMOFlags |= MachineMemOperand::MOVolatile; 3655 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3656 MMOFlags |= MachineMemOperand::MONonTemporal; 3657 3658 // An aggregate load cannot wrap around the address space, so offsets to its 3659 // parts don't wrap either. 3660 SDNodeFlags Flags; 3661 Flags.setNoUnsignedWrap(true); 3662 3663 unsigned ChainI = 0; 3664 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3665 // See visitLoad comments. 3666 if (ChainI == MaxParallelChains) { 3667 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3668 makeArrayRef(Chains.data(), ChainI)); 3669 Root = Chain; 3670 ChainI = 0; 3671 } 3672 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3673 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3674 SDValue St = DAG.getStore( 3675 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3676 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3677 Chains[ChainI] = St; 3678 } 3679 3680 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3681 makeArrayRef(Chains.data(), ChainI)); 3682 DAG.setRoot(StoreNode); 3683 } 3684 3685 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3686 bool IsCompressing) { 3687 SDLoc sdl = getCurSDLoc(); 3688 3689 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3690 unsigned& Alignment) { 3691 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3692 Src0 = I.getArgOperand(0); 3693 Ptr = I.getArgOperand(1); 3694 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3695 Mask = I.getArgOperand(3); 3696 }; 3697 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3698 unsigned& Alignment) { 3699 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3700 Src0 = I.getArgOperand(0); 3701 Ptr = I.getArgOperand(1); 3702 Mask = I.getArgOperand(2); 3703 Alignment = 0; 3704 }; 3705 3706 Value *PtrOperand, *MaskOperand, *Src0Operand; 3707 unsigned Alignment; 3708 if (IsCompressing) 3709 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3710 else 3711 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3712 3713 SDValue Ptr = getValue(PtrOperand); 3714 SDValue Src0 = getValue(Src0Operand); 3715 SDValue Mask = getValue(MaskOperand); 3716 3717 EVT VT = Src0.getValueType(); 3718 if (!Alignment) 3719 Alignment = DAG.getEVTAlignment(VT); 3720 3721 AAMDNodes AAInfo; 3722 I.getAAMetadata(AAInfo); 3723 3724 MachineMemOperand *MMO = 3725 DAG.getMachineFunction(). 3726 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3727 MachineMemOperand::MOStore, VT.getStoreSize(), 3728 Alignment, AAInfo); 3729 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3730 MMO, false /* Truncating */, 3731 IsCompressing); 3732 DAG.setRoot(StoreNode); 3733 setValue(&I, StoreNode); 3734 } 3735 3736 // Get a uniform base for the Gather/Scatter intrinsic. 3737 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3738 // We try to represent it as a base pointer + vector of indices. 3739 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3740 // The first operand of the GEP may be a single pointer or a vector of pointers 3741 // Example: 3742 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3743 // or 3744 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3745 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3746 // 3747 // When the first GEP operand is a single pointer - it is the uniform base we 3748 // are looking for. If first operand of the GEP is a splat vector - we 3749 // extract the spalt value and use it as a uniform base. 3750 // In all other cases the function returns 'false'. 3751 // 3752 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3753 SelectionDAGBuilder* SDB) { 3754 3755 SelectionDAG& DAG = SDB->DAG; 3756 LLVMContext &Context = *DAG.getContext(); 3757 3758 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3759 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3760 if (!GEP || GEP->getNumOperands() > 2) 3761 return false; 3762 3763 const Value *GEPPtr = GEP->getPointerOperand(); 3764 if (!GEPPtr->getType()->isVectorTy()) 3765 Ptr = GEPPtr; 3766 else if (!(Ptr = getSplatValue(GEPPtr))) 3767 return false; 3768 3769 Value *IndexVal = GEP->getOperand(1); 3770 3771 // The operands of the GEP may be defined in another basic block. 3772 // In this case we'll not find nodes for the operands. 3773 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3774 return false; 3775 3776 Base = SDB->getValue(Ptr); 3777 Index = SDB->getValue(IndexVal); 3778 3779 // Suppress sign extension. 3780 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3781 if (SDB->findValue(Sext->getOperand(0))) { 3782 IndexVal = Sext->getOperand(0); 3783 Index = SDB->getValue(IndexVal); 3784 } 3785 } 3786 if (!Index.getValueType().isVector()) { 3787 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3788 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3789 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3790 } 3791 return true; 3792 } 3793 3794 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3795 SDLoc sdl = getCurSDLoc(); 3796 3797 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3798 const Value *Ptr = I.getArgOperand(1); 3799 SDValue Src0 = getValue(I.getArgOperand(0)); 3800 SDValue Mask = getValue(I.getArgOperand(3)); 3801 EVT VT = Src0.getValueType(); 3802 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3803 if (!Alignment) 3804 Alignment = DAG.getEVTAlignment(VT); 3805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3806 3807 AAMDNodes AAInfo; 3808 I.getAAMetadata(AAInfo); 3809 3810 SDValue Base; 3811 SDValue Index; 3812 const Value *BasePtr = Ptr; 3813 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3814 3815 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3816 MachineMemOperand *MMO = DAG.getMachineFunction(). 3817 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3818 MachineMemOperand::MOStore, VT.getStoreSize(), 3819 Alignment, AAInfo); 3820 if (!UniformBase) { 3821 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3822 Index = getValue(Ptr); 3823 } 3824 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3825 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3826 Ops, MMO); 3827 DAG.setRoot(Scatter); 3828 setValue(&I, Scatter); 3829 } 3830 3831 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3832 SDLoc sdl = getCurSDLoc(); 3833 3834 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3835 unsigned& Alignment) { 3836 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3837 Ptr = I.getArgOperand(0); 3838 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3839 Mask = I.getArgOperand(2); 3840 Src0 = I.getArgOperand(3); 3841 }; 3842 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3843 unsigned& Alignment) { 3844 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3845 Ptr = I.getArgOperand(0); 3846 Alignment = 0; 3847 Mask = I.getArgOperand(1); 3848 Src0 = I.getArgOperand(2); 3849 }; 3850 3851 Value *PtrOperand, *MaskOperand, *Src0Operand; 3852 unsigned Alignment; 3853 if (IsExpanding) 3854 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3855 else 3856 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3857 3858 SDValue Ptr = getValue(PtrOperand); 3859 SDValue Src0 = getValue(Src0Operand); 3860 SDValue Mask = getValue(MaskOperand); 3861 3862 EVT VT = Src0.getValueType(); 3863 if (!Alignment) 3864 Alignment = DAG.getEVTAlignment(VT); 3865 3866 AAMDNodes AAInfo; 3867 I.getAAMetadata(AAInfo); 3868 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3869 3870 // Do not serialize masked loads of constant memory with anything. 3871 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3872 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3873 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3874 3875 MachineMemOperand *MMO = 3876 DAG.getMachineFunction(). 3877 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3878 MachineMemOperand::MOLoad, VT.getStoreSize(), 3879 Alignment, AAInfo, Ranges); 3880 3881 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3882 ISD::NON_EXTLOAD, IsExpanding); 3883 if (AddToChain) { 3884 SDValue OutChain = Load.getValue(1); 3885 DAG.setRoot(OutChain); 3886 } 3887 setValue(&I, Load); 3888 } 3889 3890 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3891 SDLoc sdl = getCurSDLoc(); 3892 3893 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3894 const Value *Ptr = I.getArgOperand(0); 3895 SDValue Src0 = getValue(I.getArgOperand(3)); 3896 SDValue Mask = getValue(I.getArgOperand(2)); 3897 3898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3899 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3900 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3901 if (!Alignment) 3902 Alignment = DAG.getEVTAlignment(VT); 3903 3904 AAMDNodes AAInfo; 3905 I.getAAMetadata(AAInfo); 3906 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3907 3908 SDValue Root = DAG.getRoot(); 3909 SDValue Base; 3910 SDValue Index; 3911 const Value *BasePtr = Ptr; 3912 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3913 bool ConstantMemory = false; 3914 if (UniformBase && 3915 AA->pointsToConstantMemory(MemoryLocation( 3916 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3917 AAInfo))) { 3918 // Do not serialize (non-volatile) loads of constant memory with anything. 3919 Root = DAG.getEntryNode(); 3920 ConstantMemory = true; 3921 } 3922 3923 MachineMemOperand *MMO = 3924 DAG.getMachineFunction(). 3925 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3926 MachineMemOperand::MOLoad, VT.getStoreSize(), 3927 Alignment, AAInfo, Ranges); 3928 3929 if (!UniformBase) { 3930 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3931 Index = getValue(Ptr); 3932 } 3933 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3934 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3935 Ops, MMO); 3936 3937 SDValue OutChain = Gather.getValue(1); 3938 if (!ConstantMemory) 3939 PendingLoads.push_back(OutChain); 3940 setValue(&I, Gather); 3941 } 3942 3943 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3944 SDLoc dl = getCurSDLoc(); 3945 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3946 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3947 SynchronizationScope Scope = I.getSynchScope(); 3948 3949 SDValue InChain = getRoot(); 3950 3951 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3952 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3953 SDValue L = DAG.getAtomicCmpSwap( 3954 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3955 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3956 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3957 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3958 3959 SDValue OutChain = L.getValue(2); 3960 3961 setValue(&I, L); 3962 DAG.setRoot(OutChain); 3963 } 3964 3965 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3966 SDLoc dl = getCurSDLoc(); 3967 ISD::NodeType NT; 3968 switch (I.getOperation()) { 3969 default: llvm_unreachable("Unknown atomicrmw operation"); 3970 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3971 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3972 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3973 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3974 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3975 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3976 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3977 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3978 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3979 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3980 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3981 } 3982 AtomicOrdering Order = I.getOrdering(); 3983 SynchronizationScope Scope = I.getSynchScope(); 3984 3985 SDValue InChain = getRoot(); 3986 3987 SDValue L = 3988 DAG.getAtomic(NT, dl, 3989 getValue(I.getValOperand()).getSimpleValueType(), 3990 InChain, 3991 getValue(I.getPointerOperand()), 3992 getValue(I.getValOperand()), 3993 I.getPointerOperand(), 3994 /* Alignment=*/ 0, Order, Scope); 3995 3996 SDValue OutChain = L.getValue(1); 3997 3998 setValue(&I, L); 3999 DAG.setRoot(OutChain); 4000 } 4001 4002 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4003 SDLoc dl = getCurSDLoc(); 4004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4005 SDValue Ops[3]; 4006 Ops[0] = getRoot(); 4007 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4008 TLI.getPointerTy(DAG.getDataLayout())); 4009 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 4010 TLI.getPointerTy(DAG.getDataLayout())); 4011 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4012 } 4013 4014 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4015 SDLoc dl = getCurSDLoc(); 4016 AtomicOrdering Order = I.getOrdering(); 4017 SynchronizationScope Scope = I.getSynchScope(); 4018 4019 SDValue InChain = getRoot(); 4020 4021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4022 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4023 4024 if (I.getAlignment() < VT.getSizeInBits() / 8) 4025 report_fatal_error("Cannot generate unaligned atomic load"); 4026 4027 MachineMemOperand *MMO = 4028 DAG.getMachineFunction(). 4029 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4030 MachineMemOperand::MOVolatile | 4031 MachineMemOperand::MOLoad, 4032 VT.getStoreSize(), 4033 I.getAlignment() ? I.getAlignment() : 4034 DAG.getEVTAlignment(VT), 4035 AAMDNodes(), nullptr, Scope, Order); 4036 4037 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4038 SDValue L = 4039 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4040 getValue(I.getPointerOperand()), MMO); 4041 4042 SDValue OutChain = L.getValue(1); 4043 4044 setValue(&I, L); 4045 DAG.setRoot(OutChain); 4046 } 4047 4048 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4049 SDLoc dl = getCurSDLoc(); 4050 4051 AtomicOrdering Order = I.getOrdering(); 4052 SynchronizationScope Scope = I.getSynchScope(); 4053 4054 SDValue InChain = getRoot(); 4055 4056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4057 EVT VT = 4058 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4059 4060 if (I.getAlignment() < VT.getSizeInBits() / 8) 4061 report_fatal_error("Cannot generate unaligned atomic store"); 4062 4063 SDValue OutChain = 4064 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4065 InChain, 4066 getValue(I.getPointerOperand()), 4067 getValue(I.getValueOperand()), 4068 I.getPointerOperand(), I.getAlignment(), 4069 Order, Scope); 4070 4071 DAG.setRoot(OutChain); 4072 } 4073 4074 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4075 /// node. 4076 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4077 unsigned Intrinsic) { 4078 // Ignore the callsite's attributes. A specific call site may be marked with 4079 // readnone, but the lowering code will expect the chain based on the 4080 // definition. 4081 const Function *F = I.getCalledFunction(); 4082 bool HasChain = !F->doesNotAccessMemory(); 4083 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4084 4085 // Build the operand list. 4086 SmallVector<SDValue, 8> Ops; 4087 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4088 if (OnlyLoad) { 4089 // We don't need to serialize loads against other loads. 4090 Ops.push_back(DAG.getRoot()); 4091 } else { 4092 Ops.push_back(getRoot()); 4093 } 4094 } 4095 4096 // Info is set by getTgtMemInstrinsic 4097 TargetLowering::IntrinsicInfo Info; 4098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4099 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4100 4101 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4102 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4103 Info.opc == ISD::INTRINSIC_W_CHAIN) 4104 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4105 TLI.getPointerTy(DAG.getDataLayout()))); 4106 4107 // Add all operands of the call to the operand list. 4108 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4109 SDValue Op = getValue(I.getArgOperand(i)); 4110 Ops.push_back(Op); 4111 } 4112 4113 SmallVector<EVT, 4> ValueVTs; 4114 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4115 4116 if (HasChain) 4117 ValueVTs.push_back(MVT::Other); 4118 4119 SDVTList VTs = DAG.getVTList(ValueVTs); 4120 4121 // Create the node. 4122 SDValue Result; 4123 if (IsTgtIntrinsic) { 4124 // This is target intrinsic that touches memory 4125 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4126 VTs, Ops, Info.memVT, 4127 MachinePointerInfo(Info.ptrVal, Info.offset), 4128 Info.align, Info.vol, 4129 Info.readMem, Info.writeMem, Info.size); 4130 } else if (!HasChain) { 4131 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4132 } else if (!I.getType()->isVoidTy()) { 4133 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4134 } else { 4135 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4136 } 4137 4138 if (HasChain) { 4139 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4140 if (OnlyLoad) 4141 PendingLoads.push_back(Chain); 4142 else 4143 DAG.setRoot(Chain); 4144 } 4145 4146 if (!I.getType()->isVoidTy()) { 4147 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4148 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4149 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4150 } else 4151 Result = lowerRangeToAssertZExt(DAG, I, Result); 4152 4153 setValue(&I, Result); 4154 } 4155 } 4156 4157 /// GetSignificand - Get the significand and build it into a floating-point 4158 /// number with exponent of 1: 4159 /// 4160 /// Op = (Op & 0x007fffff) | 0x3f800000; 4161 /// 4162 /// where Op is the hexadecimal representation of floating point value. 4163 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4164 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4165 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4166 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4167 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4168 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4169 } 4170 4171 /// GetExponent - Get the exponent: 4172 /// 4173 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4174 /// 4175 /// where Op is the hexadecimal representation of floating point value. 4176 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4177 const TargetLowering &TLI, const SDLoc &dl) { 4178 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4179 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4180 SDValue t1 = DAG.getNode( 4181 ISD::SRL, dl, MVT::i32, t0, 4182 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4183 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4184 DAG.getConstant(127, dl, MVT::i32)); 4185 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4186 } 4187 4188 /// getF32Constant - Get 32-bit floating point constant. 4189 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4190 const SDLoc &dl) { 4191 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4192 MVT::f32); 4193 } 4194 4195 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4196 SelectionDAG &DAG) { 4197 // TODO: What fast-math-flags should be set on the floating-point nodes? 4198 4199 // IntegerPartOfX = ((int32_t)(t0); 4200 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4201 4202 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4203 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4204 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4205 4206 // IntegerPartOfX <<= 23; 4207 IntegerPartOfX = DAG.getNode( 4208 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4209 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4210 DAG.getDataLayout()))); 4211 4212 SDValue TwoToFractionalPartOfX; 4213 if (LimitFloatPrecision <= 6) { 4214 // For floating-point precision of 6: 4215 // 4216 // TwoToFractionalPartOfX = 4217 // 0.997535578f + 4218 // (0.735607626f + 0.252464424f * x) * x; 4219 // 4220 // error 0.0144103317, which is 6 bits 4221 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4222 getF32Constant(DAG, 0x3e814304, dl)); 4223 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4224 getF32Constant(DAG, 0x3f3c50c8, dl)); 4225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4226 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4227 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4228 } else if (LimitFloatPrecision <= 12) { 4229 // For floating-point precision of 12: 4230 // 4231 // TwoToFractionalPartOfX = 4232 // 0.999892986f + 4233 // (0.696457318f + 4234 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4235 // 4236 // error 0.000107046256, which is 13 to 14 bits 4237 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4238 getF32Constant(DAG, 0x3da235e3, dl)); 4239 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4240 getF32Constant(DAG, 0x3e65b8f3, dl)); 4241 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4242 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4243 getF32Constant(DAG, 0x3f324b07, dl)); 4244 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4245 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4246 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4247 } else { // LimitFloatPrecision <= 18 4248 // For floating-point precision of 18: 4249 // 4250 // TwoToFractionalPartOfX = 4251 // 0.999999982f + 4252 // (0.693148872f + 4253 // (0.240227044f + 4254 // (0.554906021e-1f + 4255 // (0.961591928e-2f + 4256 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4257 // error 2.47208000*10^(-7), which is better than 18 bits 4258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4259 getF32Constant(DAG, 0x3924b03e, dl)); 4260 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4261 getF32Constant(DAG, 0x3ab24b87, dl)); 4262 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4263 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4264 getF32Constant(DAG, 0x3c1d8c17, dl)); 4265 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4266 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4267 getF32Constant(DAG, 0x3d634a1d, dl)); 4268 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4269 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4270 getF32Constant(DAG, 0x3e75fe14, dl)); 4271 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4272 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4273 getF32Constant(DAG, 0x3f317234, dl)); 4274 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4275 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4276 getF32Constant(DAG, 0x3f800000, dl)); 4277 } 4278 4279 // Add the exponent into the result in integer domain. 4280 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4281 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4282 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4283 } 4284 4285 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4286 /// limited-precision mode. 4287 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4288 const TargetLowering &TLI) { 4289 if (Op.getValueType() == MVT::f32 && 4290 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4291 4292 // Put the exponent in the right bit position for later addition to the 4293 // final result: 4294 // 4295 // #define LOG2OFe 1.4426950f 4296 // t0 = Op * LOG2OFe 4297 4298 // TODO: What fast-math-flags should be set here? 4299 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4300 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4301 return getLimitedPrecisionExp2(t0, dl, DAG); 4302 } 4303 4304 // No special expansion. 4305 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4306 } 4307 4308 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4309 /// limited-precision mode. 4310 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4311 const TargetLowering &TLI) { 4312 4313 // TODO: What fast-math-flags should be set on the floating-point nodes? 4314 4315 if (Op.getValueType() == MVT::f32 && 4316 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4317 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4318 4319 // Scale the exponent by log(2) [0.69314718f]. 4320 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4321 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4322 getF32Constant(DAG, 0x3f317218, dl)); 4323 4324 // Get the significand and build it into a floating-point number with 4325 // exponent of 1. 4326 SDValue X = GetSignificand(DAG, Op1, dl); 4327 4328 SDValue LogOfMantissa; 4329 if (LimitFloatPrecision <= 6) { 4330 // For floating-point precision of 6: 4331 // 4332 // LogofMantissa = 4333 // -1.1609546f + 4334 // (1.4034025f - 0.23903021f * x) * x; 4335 // 4336 // error 0.0034276066, which is better than 8 bits 4337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4338 getF32Constant(DAG, 0xbe74c456, dl)); 4339 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4340 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4342 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4343 getF32Constant(DAG, 0x3f949a29, dl)); 4344 } else if (LimitFloatPrecision <= 12) { 4345 // For floating-point precision of 12: 4346 // 4347 // LogOfMantissa = 4348 // -1.7417939f + 4349 // (2.8212026f + 4350 // (-1.4699568f + 4351 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4352 // 4353 // error 0.000061011436, which is 14 bits 4354 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4355 getF32Constant(DAG, 0xbd67b6d6, dl)); 4356 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4357 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4358 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4359 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4360 getF32Constant(DAG, 0x3fbc278b, dl)); 4361 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4362 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4363 getF32Constant(DAG, 0x40348e95, dl)); 4364 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4365 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4366 getF32Constant(DAG, 0x3fdef31a, dl)); 4367 } else { // LimitFloatPrecision <= 18 4368 // For floating-point precision of 18: 4369 // 4370 // LogOfMantissa = 4371 // -2.1072184f + 4372 // (4.2372794f + 4373 // (-3.7029485f + 4374 // (2.2781945f + 4375 // (-0.87823314f + 4376 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4377 // 4378 // error 0.0000023660568, which is better than 18 bits 4379 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4380 getF32Constant(DAG, 0xbc91e5ac, dl)); 4381 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4382 getF32Constant(DAG, 0x3e4350aa, dl)); 4383 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4384 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4385 getF32Constant(DAG, 0x3f60d3e3, dl)); 4386 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4387 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4388 getF32Constant(DAG, 0x4011cdf0, dl)); 4389 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4390 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4391 getF32Constant(DAG, 0x406cfd1c, dl)); 4392 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4393 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4394 getF32Constant(DAG, 0x408797cb, dl)); 4395 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4396 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4397 getF32Constant(DAG, 0x4006dcab, dl)); 4398 } 4399 4400 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4401 } 4402 4403 // No special expansion. 4404 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4405 } 4406 4407 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4408 /// limited-precision mode. 4409 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4410 const TargetLowering &TLI) { 4411 4412 // TODO: What fast-math-flags should be set on the floating-point nodes? 4413 4414 if (Op.getValueType() == MVT::f32 && 4415 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4416 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4417 4418 // Get the exponent. 4419 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4420 4421 // Get the significand and build it into a floating-point number with 4422 // exponent of 1. 4423 SDValue X = GetSignificand(DAG, Op1, dl); 4424 4425 // Different possible minimax approximations of significand in 4426 // floating-point for various degrees of accuracy over [1,2]. 4427 SDValue Log2ofMantissa; 4428 if (LimitFloatPrecision <= 6) { 4429 // For floating-point precision of 6: 4430 // 4431 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4432 // 4433 // error 0.0049451742, which is more than 7 bits 4434 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4435 getF32Constant(DAG, 0xbeb08fe0, dl)); 4436 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4437 getF32Constant(DAG, 0x40019463, dl)); 4438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4439 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4440 getF32Constant(DAG, 0x3fd6633d, dl)); 4441 } else if (LimitFloatPrecision <= 12) { 4442 // For floating-point precision of 12: 4443 // 4444 // Log2ofMantissa = 4445 // -2.51285454f + 4446 // (4.07009056f + 4447 // (-2.12067489f + 4448 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4449 // 4450 // error 0.0000876136000, which is better than 13 bits 4451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4452 getF32Constant(DAG, 0xbda7262e, dl)); 4453 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4454 getF32Constant(DAG, 0x3f25280b, dl)); 4455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4456 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4457 getF32Constant(DAG, 0x4007b923, dl)); 4458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4460 getF32Constant(DAG, 0x40823e2f, dl)); 4461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4462 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4463 getF32Constant(DAG, 0x4020d29c, dl)); 4464 } else { // LimitFloatPrecision <= 18 4465 // For floating-point precision of 18: 4466 // 4467 // Log2ofMantissa = 4468 // -3.0400495f + 4469 // (6.1129976f + 4470 // (-5.3420409f + 4471 // (3.2865683f + 4472 // (-1.2669343f + 4473 // (0.27515199f - 4474 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4475 // 4476 // error 0.0000018516, which is better than 18 bits 4477 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4478 getF32Constant(DAG, 0xbcd2769e, dl)); 4479 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4480 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4481 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4482 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4483 getF32Constant(DAG, 0x3fa22ae7, dl)); 4484 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4485 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4486 getF32Constant(DAG, 0x40525723, dl)); 4487 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4488 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4489 getF32Constant(DAG, 0x40aaf200, dl)); 4490 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4491 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4492 getF32Constant(DAG, 0x40c39dad, dl)); 4493 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4494 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4495 getF32Constant(DAG, 0x4042902c, dl)); 4496 } 4497 4498 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4499 } 4500 4501 // No special expansion. 4502 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4503 } 4504 4505 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4506 /// limited-precision mode. 4507 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4508 const TargetLowering &TLI) { 4509 4510 // TODO: What fast-math-flags should be set on the floating-point nodes? 4511 4512 if (Op.getValueType() == MVT::f32 && 4513 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4514 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4515 4516 // Scale the exponent by log10(2) [0.30102999f]. 4517 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4518 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4519 getF32Constant(DAG, 0x3e9a209a, dl)); 4520 4521 // Get the significand and build it into a floating-point number with 4522 // exponent of 1. 4523 SDValue X = GetSignificand(DAG, Op1, dl); 4524 4525 SDValue Log10ofMantissa; 4526 if (LimitFloatPrecision <= 6) { 4527 // For floating-point precision of 6: 4528 // 4529 // Log10ofMantissa = 4530 // -0.50419619f + 4531 // (0.60948995f - 0.10380950f * x) * x; 4532 // 4533 // error 0.0014886165, which is 6 bits 4534 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4535 getF32Constant(DAG, 0xbdd49a13, dl)); 4536 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4537 getF32Constant(DAG, 0x3f1c0789, dl)); 4538 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4539 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4540 getF32Constant(DAG, 0x3f011300, dl)); 4541 } else if (LimitFloatPrecision <= 12) { 4542 // For floating-point precision of 12: 4543 // 4544 // Log10ofMantissa = 4545 // -0.64831180f + 4546 // (0.91751397f + 4547 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4548 // 4549 // error 0.00019228036, which is better than 12 bits 4550 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4551 getF32Constant(DAG, 0x3d431f31, dl)); 4552 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4553 getF32Constant(DAG, 0x3ea21fb2, dl)); 4554 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4555 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4556 getF32Constant(DAG, 0x3f6ae232, dl)); 4557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4558 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4559 getF32Constant(DAG, 0x3f25f7c3, dl)); 4560 } else { // LimitFloatPrecision <= 18 4561 // For floating-point precision of 18: 4562 // 4563 // Log10ofMantissa = 4564 // -0.84299375f + 4565 // (1.5327582f + 4566 // (-1.0688956f + 4567 // (0.49102474f + 4568 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4569 // 4570 // error 0.0000037995730, which is better than 18 bits 4571 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4572 getF32Constant(DAG, 0x3c5d51ce, dl)); 4573 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4574 getF32Constant(DAG, 0x3e00685a, dl)); 4575 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4576 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4577 getF32Constant(DAG, 0x3efb6798, dl)); 4578 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4579 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4580 getF32Constant(DAG, 0x3f88d192, dl)); 4581 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4582 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4583 getF32Constant(DAG, 0x3fc4316c, dl)); 4584 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4585 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4586 getF32Constant(DAG, 0x3f57ce70, dl)); 4587 } 4588 4589 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4590 } 4591 4592 // No special expansion. 4593 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4594 } 4595 4596 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4597 /// limited-precision mode. 4598 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4599 const TargetLowering &TLI) { 4600 if (Op.getValueType() == MVT::f32 && 4601 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4602 return getLimitedPrecisionExp2(Op, dl, DAG); 4603 4604 // No special expansion. 4605 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4606 } 4607 4608 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4609 /// limited-precision mode with x == 10.0f. 4610 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4611 SelectionDAG &DAG, const TargetLowering &TLI) { 4612 bool IsExp10 = false; 4613 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4614 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4615 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4616 APFloat Ten(10.0f); 4617 IsExp10 = LHSC->isExactlyValue(Ten); 4618 } 4619 } 4620 4621 // TODO: What fast-math-flags should be set on the FMUL node? 4622 if (IsExp10) { 4623 // Put the exponent in the right bit position for later addition to the 4624 // final result: 4625 // 4626 // #define LOG2OF10 3.3219281f 4627 // t0 = Op * LOG2OF10; 4628 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4629 getF32Constant(DAG, 0x40549a78, dl)); 4630 return getLimitedPrecisionExp2(t0, dl, DAG); 4631 } 4632 4633 // No special expansion. 4634 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4635 } 4636 4637 4638 /// ExpandPowI - Expand a llvm.powi intrinsic. 4639 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4640 SelectionDAG &DAG) { 4641 // If RHS is a constant, we can expand this out to a multiplication tree, 4642 // otherwise we end up lowering to a call to __powidf2 (for example). When 4643 // optimizing for size, we only want to do this if the expansion would produce 4644 // a small number of multiplies, otherwise we do the full expansion. 4645 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4646 // Get the exponent as a positive value. 4647 unsigned Val = RHSC->getSExtValue(); 4648 if ((int)Val < 0) Val = -Val; 4649 4650 // powi(x, 0) -> 1.0 4651 if (Val == 0) 4652 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4653 4654 const Function *F = DAG.getMachineFunction().getFunction(); 4655 if (!F->optForSize() || 4656 // If optimizing for size, don't insert too many multiplies. 4657 // This inserts up to 5 multiplies. 4658 countPopulation(Val) + Log2_32(Val) < 7) { 4659 // We use the simple binary decomposition method to generate the multiply 4660 // sequence. There are more optimal ways to do this (for example, 4661 // powi(x,15) generates one more multiply than it should), but this has 4662 // the benefit of being both really simple and much better than a libcall. 4663 SDValue Res; // Logically starts equal to 1.0 4664 SDValue CurSquare = LHS; 4665 // TODO: Intrinsics should have fast-math-flags that propagate to these 4666 // nodes. 4667 while (Val) { 4668 if (Val & 1) { 4669 if (Res.getNode()) 4670 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4671 else 4672 Res = CurSquare; // 1.0*CurSquare. 4673 } 4674 4675 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4676 CurSquare, CurSquare); 4677 Val >>= 1; 4678 } 4679 4680 // If the original was negative, invert the result, producing 1/(x*x*x). 4681 if (RHSC->getSExtValue() < 0) 4682 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4683 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4684 return Res; 4685 } 4686 } 4687 4688 // Otherwise, expand to a libcall. 4689 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4690 } 4691 4692 // getUnderlyingArgReg - Find underlying register used for a truncated or 4693 // bitcasted argument. 4694 static unsigned getUnderlyingArgReg(const SDValue &N) { 4695 switch (N.getOpcode()) { 4696 case ISD::CopyFromReg: 4697 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4698 case ISD::BITCAST: 4699 case ISD::AssertZext: 4700 case ISD::AssertSext: 4701 case ISD::TRUNCATE: 4702 return getUnderlyingArgReg(N.getOperand(0)); 4703 default: 4704 return 0; 4705 } 4706 } 4707 4708 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4709 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4710 /// At the end of instruction selection, they will be inserted to the entry BB. 4711 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4712 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4713 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4714 const Argument *Arg = dyn_cast<Argument>(V); 4715 if (!Arg) 4716 return false; 4717 4718 MachineFunction &MF = DAG.getMachineFunction(); 4719 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4720 4721 // Ignore inlined function arguments here. 4722 // 4723 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4724 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4725 return false; 4726 4727 Optional<MachineOperand> Op; 4728 // Some arguments' frame index is recorded during argument lowering. 4729 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4730 Op = MachineOperand::CreateFI(FI); 4731 4732 if (!Op && N.getNode()) { 4733 unsigned Reg = getUnderlyingArgReg(N); 4734 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4735 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4736 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4737 if (PR) 4738 Reg = PR; 4739 } 4740 if (Reg) 4741 Op = MachineOperand::CreateReg(Reg, false); 4742 } 4743 4744 if (!Op) { 4745 // Check if ValueMap has reg number. 4746 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4747 if (VMI != FuncInfo.ValueMap.end()) 4748 Op = MachineOperand::CreateReg(VMI->second, false); 4749 } 4750 4751 if (!Op && N.getNode()) 4752 // Check if frame index is available. 4753 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4754 if (FrameIndexSDNode *FINode = 4755 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4756 Op = MachineOperand::CreateFI(FINode->getIndex()); 4757 4758 if (!Op) 4759 return false; 4760 4761 assert(Variable->isValidLocationForIntrinsic(DL) && 4762 "Expected inlined-at fields to agree"); 4763 if (Op->isReg()) 4764 FuncInfo.ArgDbgValues.push_back( 4765 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4766 Op->getReg(), Offset, Variable, Expr)); 4767 else 4768 FuncInfo.ArgDbgValues.push_back( 4769 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4770 .add(*Op) 4771 .addImm(Offset) 4772 .addMetadata(Variable) 4773 .addMetadata(Expr)); 4774 4775 return true; 4776 } 4777 4778 /// Return the appropriate SDDbgValue based on N. 4779 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4780 DILocalVariable *Variable, 4781 DIExpression *Expr, int64_t Offset, 4782 const DebugLoc &dl, 4783 unsigned DbgSDNodeOrder) { 4784 SDDbgValue *SDV; 4785 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4786 if (FISDN && Expr->startsWithDeref()) { 4787 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4788 // stack slot locations as such instead of as indirectly addressed 4789 // locations. 4790 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4791 Expr->elements_end()); 4792 DIExpression *DerefedDIExpr = 4793 DIExpression::get(*DAG.getContext(), TrailingElements); 4794 int FI = FISDN->getIndex(); 4795 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4796 DbgSDNodeOrder); 4797 } else { 4798 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4799 Offset, dl, DbgSDNodeOrder); 4800 } 4801 return SDV; 4802 } 4803 4804 // VisualStudio defines setjmp as _setjmp 4805 #if defined(_MSC_VER) && defined(setjmp) && \ 4806 !defined(setjmp_undefined_for_msvc) 4807 # pragma push_macro("setjmp") 4808 # undef setjmp 4809 # define setjmp_undefined_for_msvc 4810 #endif 4811 4812 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4813 /// we want to emit this as a call to a named external function, return the name 4814 /// otherwise lower it and return null. 4815 const char * 4816 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4818 SDLoc sdl = getCurSDLoc(); 4819 DebugLoc dl = getCurDebugLoc(); 4820 SDValue Res; 4821 4822 switch (Intrinsic) { 4823 default: 4824 // By default, turn this into a target intrinsic node. 4825 visitTargetIntrinsic(I, Intrinsic); 4826 return nullptr; 4827 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4828 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4829 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4830 case Intrinsic::returnaddress: 4831 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4832 TLI.getPointerTy(DAG.getDataLayout()), 4833 getValue(I.getArgOperand(0)))); 4834 return nullptr; 4835 case Intrinsic::addressofreturnaddress: 4836 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4837 TLI.getPointerTy(DAG.getDataLayout()))); 4838 return nullptr; 4839 case Intrinsic::frameaddress: 4840 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4841 TLI.getPointerTy(DAG.getDataLayout()), 4842 getValue(I.getArgOperand(0)))); 4843 return nullptr; 4844 case Intrinsic::read_register: { 4845 Value *Reg = I.getArgOperand(0); 4846 SDValue Chain = getRoot(); 4847 SDValue RegName = 4848 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4849 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4850 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4851 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4852 setValue(&I, Res); 4853 DAG.setRoot(Res.getValue(1)); 4854 return nullptr; 4855 } 4856 case Intrinsic::write_register: { 4857 Value *Reg = I.getArgOperand(0); 4858 Value *RegValue = I.getArgOperand(1); 4859 SDValue Chain = getRoot(); 4860 SDValue RegName = 4861 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4862 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4863 RegName, getValue(RegValue))); 4864 return nullptr; 4865 } 4866 case Intrinsic::setjmp: 4867 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4868 case Intrinsic::longjmp: 4869 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4870 case Intrinsic::memcpy: { 4871 SDValue Op1 = getValue(I.getArgOperand(0)); 4872 SDValue Op2 = getValue(I.getArgOperand(1)); 4873 SDValue Op3 = getValue(I.getArgOperand(2)); 4874 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4875 if (!Align) 4876 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4877 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4878 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4879 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4880 false, isTC, 4881 MachinePointerInfo(I.getArgOperand(0)), 4882 MachinePointerInfo(I.getArgOperand(1))); 4883 updateDAGForMaybeTailCall(MC); 4884 return nullptr; 4885 } 4886 case Intrinsic::memset: { 4887 SDValue Op1 = getValue(I.getArgOperand(0)); 4888 SDValue Op2 = getValue(I.getArgOperand(1)); 4889 SDValue Op3 = getValue(I.getArgOperand(2)); 4890 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4891 if (!Align) 4892 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4893 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4894 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4895 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4896 isTC, MachinePointerInfo(I.getArgOperand(0))); 4897 updateDAGForMaybeTailCall(MS); 4898 return nullptr; 4899 } 4900 case Intrinsic::memmove: { 4901 SDValue Op1 = getValue(I.getArgOperand(0)); 4902 SDValue Op2 = getValue(I.getArgOperand(1)); 4903 SDValue Op3 = getValue(I.getArgOperand(2)); 4904 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4905 if (!Align) 4906 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4907 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4908 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4909 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4910 isTC, MachinePointerInfo(I.getArgOperand(0)), 4911 MachinePointerInfo(I.getArgOperand(1))); 4912 updateDAGForMaybeTailCall(MM); 4913 return nullptr; 4914 } 4915 case Intrinsic::memcpy_element_atomic: { 4916 SDValue Dst = getValue(I.getArgOperand(0)); 4917 SDValue Src = getValue(I.getArgOperand(1)); 4918 SDValue NumElements = getValue(I.getArgOperand(2)); 4919 SDValue ElementSize = getValue(I.getArgOperand(3)); 4920 4921 // Emit a library call. 4922 TargetLowering::ArgListTy Args; 4923 TargetLowering::ArgListEntry Entry; 4924 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4925 Entry.Node = Dst; 4926 Args.push_back(Entry); 4927 4928 Entry.Node = Src; 4929 Args.push_back(Entry); 4930 4931 Entry.Ty = I.getArgOperand(2)->getType(); 4932 Entry.Node = NumElements; 4933 Args.push_back(Entry); 4934 4935 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4936 Entry.Node = ElementSize; 4937 Args.push_back(Entry); 4938 4939 uint64_t ElementSizeConstant = 4940 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4941 RTLIB::Libcall LibraryCall = 4942 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4943 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4944 report_fatal_error("Unsupported element size"); 4945 4946 TargetLowering::CallLoweringInfo CLI(DAG); 4947 CLI.setDebugLoc(sdl) 4948 .setChain(getRoot()) 4949 .setCallee(TLI.getLibcallCallingConv(LibraryCall), 4950 Type::getVoidTy(*DAG.getContext()), 4951 DAG.getExternalSymbol( 4952 TLI.getLibcallName(LibraryCall), 4953 TLI.getPointerTy(DAG.getDataLayout())), 4954 std::move(Args)); 4955 4956 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4957 DAG.setRoot(CallResult.second); 4958 return nullptr; 4959 } 4960 case Intrinsic::dbg_declare: { 4961 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4962 DILocalVariable *Variable = DI.getVariable(); 4963 DIExpression *Expression = DI.getExpression(); 4964 const Value *Address = DI.getAddress(); 4965 assert(Variable && "Missing variable"); 4966 if (!Address) { 4967 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4968 return nullptr; 4969 } 4970 4971 // Check if address has undef value. 4972 if (isa<UndefValue>(Address) || 4973 (Address->use_empty() && !isa<Argument>(Address))) { 4974 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4975 return nullptr; 4976 } 4977 4978 SDValue &N = NodeMap[Address]; 4979 if (!N.getNode() && isa<Argument>(Address)) 4980 // Check unused arguments map. 4981 N = UnusedArgNodeMap[Address]; 4982 SDDbgValue *SDV; 4983 if (N.getNode()) { 4984 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4985 Address = BCI->getOperand(0); 4986 // Parameters are handled specially. 4987 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4988 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4989 if (isParameter && FINode) { 4990 // Byval parameter. We have a frame index at this point. 4991 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4992 FINode->getIndex(), 0, dl, SDNodeOrder); 4993 } else if (isa<Argument>(Address)) { 4994 // Address is an argument, so try to emit its dbg value using 4995 // virtual register info from the FuncInfo.ValueMap. 4996 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4997 N); 4998 return nullptr; 4999 } else { 5000 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5001 true, 0, dl, SDNodeOrder); 5002 } 5003 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5004 } else { 5005 // If Address is an argument then try to emit its dbg value using 5006 // virtual register info from the FuncInfo.ValueMap. 5007 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 5008 N)) { 5009 // If variable is pinned by a alloca in dominating bb then 5010 // use StaticAllocaMap. 5011 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 5012 if (AI->getParent() != DI.getParent()) { 5013 DenseMap<const AllocaInst*, int>::iterator SI = 5014 FuncInfo.StaticAllocaMap.find(AI); 5015 if (SI != FuncInfo.StaticAllocaMap.end()) { 5016 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5017 0, dl, SDNodeOrder); 5018 DAG.AddDbgValue(SDV, nullptr, false); 5019 return nullptr; 5020 } 5021 } 5022 } 5023 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5024 } 5025 } 5026 return nullptr; 5027 } 5028 case Intrinsic::dbg_value: { 5029 const DbgValueInst &DI = cast<DbgValueInst>(I); 5030 assert(DI.getVariable() && "Missing variable"); 5031 5032 DILocalVariable *Variable = DI.getVariable(); 5033 DIExpression *Expression = DI.getExpression(); 5034 uint64_t Offset = DI.getOffset(); 5035 const Value *V = DI.getValue(); 5036 if (!V) 5037 return nullptr; 5038 5039 SDDbgValue *SDV; 5040 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5041 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5042 SDNodeOrder); 5043 DAG.AddDbgValue(SDV, nullptr, false); 5044 } else { 5045 // Do not use getValue() in here; we don't want to generate code at 5046 // this point if it hasn't been done yet. 5047 SDValue N = NodeMap[V]; 5048 if (!N.getNode() && isa<Argument>(V)) 5049 // Check unused arguments map. 5050 N = UnusedArgNodeMap[V]; 5051 if (N.getNode()) { 5052 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5053 false, N)) { 5054 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5055 DAG.AddDbgValue(SDV, N.getNode(), false); 5056 } 5057 } else if (!V->use_empty() ) { 5058 // Do not call getValue(V) yet, as we don't want to generate code. 5059 // Remember it for later. 5060 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5061 DanglingDebugInfoMap[V] = DDI; 5062 } else { 5063 // We may expand this to cover more cases. One case where we have no 5064 // data available is an unreferenced parameter. 5065 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5066 } 5067 } 5068 5069 // Build a debug info table entry. 5070 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5071 V = BCI->getOperand(0); 5072 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5073 // Don't handle byval struct arguments or VLAs, for example. 5074 if (!AI) { 5075 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5076 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5077 return nullptr; 5078 } 5079 DenseMap<const AllocaInst*, int>::iterator SI = 5080 FuncInfo.StaticAllocaMap.find(AI); 5081 if (SI == FuncInfo.StaticAllocaMap.end()) 5082 return nullptr; // VLAs. 5083 return nullptr; 5084 } 5085 5086 case Intrinsic::eh_typeid_for: { 5087 // Find the type id for the given typeinfo. 5088 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5089 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5090 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5091 setValue(&I, Res); 5092 return nullptr; 5093 } 5094 5095 case Intrinsic::eh_return_i32: 5096 case Intrinsic::eh_return_i64: 5097 DAG.getMachineFunction().setCallsEHReturn(true); 5098 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5099 MVT::Other, 5100 getControlRoot(), 5101 getValue(I.getArgOperand(0)), 5102 getValue(I.getArgOperand(1)))); 5103 return nullptr; 5104 case Intrinsic::eh_unwind_init: 5105 DAG.getMachineFunction().setCallsUnwindInit(true); 5106 return nullptr; 5107 case Intrinsic::eh_dwarf_cfa: { 5108 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5109 TLI.getPointerTy(DAG.getDataLayout()), 5110 getValue(I.getArgOperand(0)))); 5111 return nullptr; 5112 } 5113 case Intrinsic::eh_sjlj_callsite: { 5114 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5115 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5116 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5117 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5118 5119 MMI.setCurrentCallSite(CI->getZExtValue()); 5120 return nullptr; 5121 } 5122 case Intrinsic::eh_sjlj_functioncontext: { 5123 // Get and store the index of the function context. 5124 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5125 AllocaInst *FnCtx = 5126 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5127 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5128 MFI.setFunctionContextIndex(FI); 5129 return nullptr; 5130 } 5131 case Intrinsic::eh_sjlj_setjmp: { 5132 SDValue Ops[2]; 5133 Ops[0] = getRoot(); 5134 Ops[1] = getValue(I.getArgOperand(0)); 5135 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5136 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5137 setValue(&I, Op.getValue(0)); 5138 DAG.setRoot(Op.getValue(1)); 5139 return nullptr; 5140 } 5141 case Intrinsic::eh_sjlj_longjmp: { 5142 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5143 getRoot(), getValue(I.getArgOperand(0)))); 5144 return nullptr; 5145 } 5146 case Intrinsic::eh_sjlj_setup_dispatch: { 5147 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5148 getRoot())); 5149 return nullptr; 5150 } 5151 5152 case Intrinsic::masked_gather: 5153 visitMaskedGather(I); 5154 return nullptr; 5155 case Intrinsic::masked_load: 5156 visitMaskedLoad(I); 5157 return nullptr; 5158 case Intrinsic::masked_scatter: 5159 visitMaskedScatter(I); 5160 return nullptr; 5161 case Intrinsic::masked_store: 5162 visitMaskedStore(I); 5163 return nullptr; 5164 case Intrinsic::masked_expandload: 5165 visitMaskedLoad(I, true /* IsExpanding */); 5166 return nullptr; 5167 case Intrinsic::masked_compressstore: 5168 visitMaskedStore(I, true /* IsCompressing */); 5169 return nullptr; 5170 case Intrinsic::x86_mmx_pslli_w: 5171 case Intrinsic::x86_mmx_pslli_d: 5172 case Intrinsic::x86_mmx_pslli_q: 5173 case Intrinsic::x86_mmx_psrli_w: 5174 case Intrinsic::x86_mmx_psrli_d: 5175 case Intrinsic::x86_mmx_psrli_q: 5176 case Intrinsic::x86_mmx_psrai_w: 5177 case Intrinsic::x86_mmx_psrai_d: { 5178 SDValue ShAmt = getValue(I.getArgOperand(1)); 5179 if (isa<ConstantSDNode>(ShAmt)) { 5180 visitTargetIntrinsic(I, Intrinsic); 5181 return nullptr; 5182 } 5183 unsigned NewIntrinsic = 0; 5184 EVT ShAmtVT = MVT::v2i32; 5185 switch (Intrinsic) { 5186 case Intrinsic::x86_mmx_pslli_w: 5187 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5188 break; 5189 case Intrinsic::x86_mmx_pslli_d: 5190 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5191 break; 5192 case Intrinsic::x86_mmx_pslli_q: 5193 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5194 break; 5195 case Intrinsic::x86_mmx_psrli_w: 5196 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5197 break; 5198 case Intrinsic::x86_mmx_psrli_d: 5199 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5200 break; 5201 case Intrinsic::x86_mmx_psrli_q: 5202 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5203 break; 5204 case Intrinsic::x86_mmx_psrai_w: 5205 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5206 break; 5207 case Intrinsic::x86_mmx_psrai_d: 5208 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5209 break; 5210 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5211 } 5212 5213 // The vector shift intrinsics with scalars uses 32b shift amounts but 5214 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5215 // to be zero. 5216 // We must do this early because v2i32 is not a legal type. 5217 SDValue ShOps[2]; 5218 ShOps[0] = ShAmt; 5219 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5220 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5221 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5222 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5223 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5224 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5225 getValue(I.getArgOperand(0)), ShAmt); 5226 setValue(&I, Res); 5227 return nullptr; 5228 } 5229 case Intrinsic::powi: 5230 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5231 getValue(I.getArgOperand(1)), DAG)); 5232 return nullptr; 5233 case Intrinsic::log: 5234 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5235 return nullptr; 5236 case Intrinsic::log2: 5237 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5238 return nullptr; 5239 case Intrinsic::log10: 5240 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5241 return nullptr; 5242 case Intrinsic::exp: 5243 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5244 return nullptr; 5245 case Intrinsic::exp2: 5246 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5247 return nullptr; 5248 case Intrinsic::pow: 5249 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5250 getValue(I.getArgOperand(1)), DAG, TLI)); 5251 return nullptr; 5252 case Intrinsic::sqrt: 5253 case Intrinsic::fabs: 5254 case Intrinsic::sin: 5255 case Intrinsic::cos: 5256 case Intrinsic::floor: 5257 case Intrinsic::ceil: 5258 case Intrinsic::trunc: 5259 case Intrinsic::rint: 5260 case Intrinsic::nearbyint: 5261 case Intrinsic::round: 5262 case Intrinsic::canonicalize: { 5263 unsigned Opcode; 5264 switch (Intrinsic) { 5265 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5266 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5267 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5268 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5269 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5270 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5271 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5272 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5273 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5274 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5275 case Intrinsic::round: Opcode = ISD::FROUND; break; 5276 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5277 } 5278 5279 setValue(&I, DAG.getNode(Opcode, sdl, 5280 getValue(I.getArgOperand(0)).getValueType(), 5281 getValue(I.getArgOperand(0)))); 5282 return nullptr; 5283 } 5284 case Intrinsic::minnum: { 5285 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5286 unsigned Opc = 5287 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5288 ? ISD::FMINNAN 5289 : ISD::FMINNUM; 5290 setValue(&I, DAG.getNode(Opc, sdl, VT, 5291 getValue(I.getArgOperand(0)), 5292 getValue(I.getArgOperand(1)))); 5293 return nullptr; 5294 } 5295 case Intrinsic::maxnum: { 5296 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5297 unsigned Opc = 5298 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5299 ? ISD::FMAXNAN 5300 : ISD::FMAXNUM; 5301 setValue(&I, DAG.getNode(Opc, sdl, VT, 5302 getValue(I.getArgOperand(0)), 5303 getValue(I.getArgOperand(1)))); 5304 return nullptr; 5305 } 5306 case Intrinsic::copysign: 5307 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5308 getValue(I.getArgOperand(0)).getValueType(), 5309 getValue(I.getArgOperand(0)), 5310 getValue(I.getArgOperand(1)))); 5311 return nullptr; 5312 case Intrinsic::fma: 5313 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5314 getValue(I.getArgOperand(0)).getValueType(), 5315 getValue(I.getArgOperand(0)), 5316 getValue(I.getArgOperand(1)), 5317 getValue(I.getArgOperand(2)))); 5318 return nullptr; 5319 case Intrinsic::experimental_constrained_fadd: 5320 case Intrinsic::experimental_constrained_fsub: 5321 case Intrinsic::experimental_constrained_fmul: 5322 case Intrinsic::experimental_constrained_fdiv: 5323 case Intrinsic::experimental_constrained_frem: 5324 visitConstrainedFPIntrinsic(I, Intrinsic); 5325 return nullptr; 5326 case Intrinsic::fmuladd: { 5327 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5328 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5329 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5330 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5331 getValue(I.getArgOperand(0)).getValueType(), 5332 getValue(I.getArgOperand(0)), 5333 getValue(I.getArgOperand(1)), 5334 getValue(I.getArgOperand(2)))); 5335 } else { 5336 // TODO: Intrinsic calls should have fast-math-flags. 5337 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5338 getValue(I.getArgOperand(0)).getValueType(), 5339 getValue(I.getArgOperand(0)), 5340 getValue(I.getArgOperand(1))); 5341 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5342 getValue(I.getArgOperand(0)).getValueType(), 5343 Mul, 5344 getValue(I.getArgOperand(2))); 5345 setValue(&I, Add); 5346 } 5347 return nullptr; 5348 } 5349 case Intrinsic::convert_to_fp16: 5350 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5351 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5352 getValue(I.getArgOperand(0)), 5353 DAG.getTargetConstant(0, sdl, 5354 MVT::i32)))); 5355 return nullptr; 5356 case Intrinsic::convert_from_fp16: 5357 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5358 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5359 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5360 getValue(I.getArgOperand(0))))); 5361 return nullptr; 5362 case Intrinsic::pcmarker: { 5363 SDValue Tmp = getValue(I.getArgOperand(0)); 5364 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5365 return nullptr; 5366 } 5367 case Intrinsic::readcyclecounter: { 5368 SDValue Op = getRoot(); 5369 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5370 DAG.getVTList(MVT::i64, MVT::Other), Op); 5371 setValue(&I, Res); 5372 DAG.setRoot(Res.getValue(1)); 5373 return nullptr; 5374 } 5375 case Intrinsic::bitreverse: 5376 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5377 getValue(I.getArgOperand(0)).getValueType(), 5378 getValue(I.getArgOperand(0)))); 5379 return nullptr; 5380 case Intrinsic::bswap: 5381 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5382 getValue(I.getArgOperand(0)).getValueType(), 5383 getValue(I.getArgOperand(0)))); 5384 return nullptr; 5385 case Intrinsic::cttz: { 5386 SDValue Arg = getValue(I.getArgOperand(0)); 5387 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5388 EVT Ty = Arg.getValueType(); 5389 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5390 sdl, Ty, Arg)); 5391 return nullptr; 5392 } 5393 case Intrinsic::ctlz: { 5394 SDValue Arg = getValue(I.getArgOperand(0)); 5395 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5396 EVT Ty = Arg.getValueType(); 5397 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5398 sdl, Ty, Arg)); 5399 return nullptr; 5400 } 5401 case Intrinsic::ctpop: { 5402 SDValue Arg = getValue(I.getArgOperand(0)); 5403 EVT Ty = Arg.getValueType(); 5404 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5405 return nullptr; 5406 } 5407 case Intrinsic::stacksave: { 5408 SDValue Op = getRoot(); 5409 Res = DAG.getNode( 5410 ISD::STACKSAVE, sdl, 5411 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5412 setValue(&I, Res); 5413 DAG.setRoot(Res.getValue(1)); 5414 return nullptr; 5415 } 5416 case Intrinsic::stackrestore: { 5417 Res = getValue(I.getArgOperand(0)); 5418 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5419 return nullptr; 5420 } 5421 case Intrinsic::get_dynamic_area_offset: { 5422 SDValue Op = getRoot(); 5423 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5424 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5425 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5426 // target. 5427 if (PtrTy != ResTy) 5428 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5429 " intrinsic!"); 5430 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5431 Op); 5432 DAG.setRoot(Op); 5433 setValue(&I, Res); 5434 return nullptr; 5435 } 5436 case Intrinsic::stackguard: { 5437 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5438 MachineFunction &MF = DAG.getMachineFunction(); 5439 const Module &M = *MF.getFunction()->getParent(); 5440 SDValue Chain = getRoot(); 5441 if (TLI.useLoadStackGuardNode()) { 5442 Res = getLoadStackGuard(DAG, sdl, Chain); 5443 } else { 5444 const Value *Global = TLI.getSDagStackGuard(M); 5445 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5446 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5447 MachinePointerInfo(Global, 0), Align, 5448 MachineMemOperand::MOVolatile); 5449 } 5450 DAG.setRoot(Chain); 5451 setValue(&I, Res); 5452 return nullptr; 5453 } 5454 case Intrinsic::stackprotector: { 5455 // Emit code into the DAG to store the stack guard onto the stack. 5456 MachineFunction &MF = DAG.getMachineFunction(); 5457 MachineFrameInfo &MFI = MF.getFrameInfo(); 5458 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5459 SDValue Src, Chain = getRoot(); 5460 5461 if (TLI.useLoadStackGuardNode()) 5462 Src = getLoadStackGuard(DAG, sdl, Chain); 5463 else 5464 Src = getValue(I.getArgOperand(0)); // The guard's value. 5465 5466 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5467 5468 int FI = FuncInfo.StaticAllocaMap[Slot]; 5469 MFI.setStackProtectorIndex(FI); 5470 5471 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5472 5473 // Store the stack protector onto the stack. 5474 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5475 DAG.getMachineFunction(), FI), 5476 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5477 setValue(&I, Res); 5478 DAG.setRoot(Res); 5479 return nullptr; 5480 } 5481 case Intrinsic::objectsize: { 5482 // If we don't know by now, we're never going to know. 5483 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5484 5485 assert(CI && "Non-constant type in __builtin_object_size?"); 5486 5487 SDValue Arg = getValue(I.getCalledValue()); 5488 EVT Ty = Arg.getValueType(); 5489 5490 if (CI->isZero()) 5491 Res = DAG.getConstant(-1ULL, sdl, Ty); 5492 else 5493 Res = DAG.getConstant(0, sdl, Ty); 5494 5495 setValue(&I, Res); 5496 return nullptr; 5497 } 5498 case Intrinsic::annotation: 5499 case Intrinsic::ptr_annotation: 5500 case Intrinsic::invariant_group_barrier: 5501 // Drop the intrinsic, but forward the value 5502 setValue(&I, getValue(I.getOperand(0))); 5503 return nullptr; 5504 case Intrinsic::assume: 5505 case Intrinsic::var_annotation: 5506 // Discard annotate attributes and assumptions 5507 return nullptr; 5508 5509 case Intrinsic::init_trampoline: { 5510 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5511 5512 SDValue Ops[6]; 5513 Ops[0] = getRoot(); 5514 Ops[1] = getValue(I.getArgOperand(0)); 5515 Ops[2] = getValue(I.getArgOperand(1)); 5516 Ops[3] = getValue(I.getArgOperand(2)); 5517 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5518 Ops[5] = DAG.getSrcValue(F); 5519 5520 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5521 5522 DAG.setRoot(Res); 5523 return nullptr; 5524 } 5525 case Intrinsic::adjust_trampoline: { 5526 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5527 TLI.getPointerTy(DAG.getDataLayout()), 5528 getValue(I.getArgOperand(0)))); 5529 return nullptr; 5530 } 5531 case Intrinsic::gcroot: { 5532 MachineFunction &MF = DAG.getMachineFunction(); 5533 const Function *F = MF.getFunction(); 5534 (void)F; 5535 assert(F->hasGC() && 5536 "only valid in functions with gc specified, enforced by Verifier"); 5537 assert(GFI && "implied by previous"); 5538 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5539 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5540 5541 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5542 GFI->addStackRoot(FI->getIndex(), TypeMap); 5543 return nullptr; 5544 } 5545 case Intrinsic::gcread: 5546 case Intrinsic::gcwrite: 5547 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5548 case Intrinsic::flt_rounds: 5549 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5550 return nullptr; 5551 5552 case Intrinsic::expect: { 5553 // Just replace __builtin_expect(exp, c) with EXP. 5554 setValue(&I, getValue(I.getArgOperand(0))); 5555 return nullptr; 5556 } 5557 5558 case Intrinsic::debugtrap: 5559 case Intrinsic::trap: { 5560 StringRef TrapFuncName = 5561 I.getAttributes() 5562 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5563 .getValueAsString(); 5564 if (TrapFuncName.empty()) { 5565 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5566 ISD::TRAP : ISD::DEBUGTRAP; 5567 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5568 return nullptr; 5569 } 5570 TargetLowering::ArgListTy Args; 5571 5572 TargetLowering::CallLoweringInfo CLI(DAG); 5573 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5574 CallingConv::C, I.getType(), 5575 DAG.getExternalSymbol(TrapFuncName.data(), 5576 TLI.getPointerTy(DAG.getDataLayout())), 5577 std::move(Args)); 5578 5579 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5580 DAG.setRoot(Result.second); 5581 return nullptr; 5582 } 5583 5584 case Intrinsic::uadd_with_overflow: 5585 case Intrinsic::sadd_with_overflow: 5586 case Intrinsic::usub_with_overflow: 5587 case Intrinsic::ssub_with_overflow: 5588 case Intrinsic::umul_with_overflow: 5589 case Intrinsic::smul_with_overflow: { 5590 ISD::NodeType Op; 5591 switch (Intrinsic) { 5592 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5593 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5594 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5595 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5596 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5597 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5598 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5599 } 5600 SDValue Op1 = getValue(I.getArgOperand(0)); 5601 SDValue Op2 = getValue(I.getArgOperand(1)); 5602 5603 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5604 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5605 return nullptr; 5606 } 5607 case Intrinsic::prefetch: { 5608 SDValue Ops[5]; 5609 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5610 Ops[0] = getRoot(); 5611 Ops[1] = getValue(I.getArgOperand(0)); 5612 Ops[2] = getValue(I.getArgOperand(1)); 5613 Ops[3] = getValue(I.getArgOperand(2)); 5614 Ops[4] = getValue(I.getArgOperand(3)); 5615 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5616 DAG.getVTList(MVT::Other), Ops, 5617 EVT::getIntegerVT(*Context, 8), 5618 MachinePointerInfo(I.getArgOperand(0)), 5619 0, /* align */ 5620 false, /* volatile */ 5621 rw==0, /* read */ 5622 rw==1)); /* write */ 5623 return nullptr; 5624 } 5625 case Intrinsic::lifetime_start: 5626 case Intrinsic::lifetime_end: { 5627 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5628 // Stack coloring is not enabled in O0, discard region information. 5629 if (TM.getOptLevel() == CodeGenOpt::None) 5630 return nullptr; 5631 5632 SmallVector<Value *, 4> Allocas; 5633 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5634 5635 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5636 E = Allocas.end(); Object != E; ++Object) { 5637 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5638 5639 // Could not find an Alloca. 5640 if (!LifetimeObject) 5641 continue; 5642 5643 // First check that the Alloca is static, otherwise it won't have a 5644 // valid frame index. 5645 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5646 if (SI == FuncInfo.StaticAllocaMap.end()) 5647 return nullptr; 5648 5649 int FI = SI->second; 5650 5651 SDValue Ops[2]; 5652 Ops[0] = getRoot(); 5653 Ops[1] = 5654 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5655 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5656 5657 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5658 DAG.setRoot(Res); 5659 } 5660 return nullptr; 5661 } 5662 case Intrinsic::invariant_start: 5663 // Discard region information. 5664 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5665 return nullptr; 5666 case Intrinsic::invariant_end: 5667 // Discard region information. 5668 return nullptr; 5669 case Intrinsic::clear_cache: 5670 return TLI.getClearCacheBuiltinName(); 5671 case Intrinsic::donothing: 5672 // ignore 5673 return nullptr; 5674 case Intrinsic::experimental_stackmap: { 5675 visitStackmap(I); 5676 return nullptr; 5677 } 5678 case Intrinsic::experimental_patchpoint_void: 5679 case Intrinsic::experimental_patchpoint_i64: { 5680 visitPatchpoint(&I); 5681 return nullptr; 5682 } 5683 case Intrinsic::experimental_gc_statepoint: { 5684 LowerStatepoint(ImmutableStatepoint(&I)); 5685 return nullptr; 5686 } 5687 case Intrinsic::experimental_gc_result: { 5688 visitGCResult(cast<GCResultInst>(I)); 5689 return nullptr; 5690 } 5691 case Intrinsic::experimental_gc_relocate: { 5692 visitGCRelocate(cast<GCRelocateInst>(I)); 5693 return nullptr; 5694 } 5695 case Intrinsic::instrprof_increment: 5696 llvm_unreachable("instrprof failed to lower an increment"); 5697 case Intrinsic::instrprof_value_profile: 5698 llvm_unreachable("instrprof failed to lower a value profiling call"); 5699 case Intrinsic::localescape: { 5700 MachineFunction &MF = DAG.getMachineFunction(); 5701 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5702 5703 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5704 // is the same on all targets. 5705 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5706 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5707 if (isa<ConstantPointerNull>(Arg)) 5708 continue; // Skip null pointers. They represent a hole in index space. 5709 AllocaInst *Slot = cast<AllocaInst>(Arg); 5710 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5711 "can only escape static allocas"); 5712 int FI = FuncInfo.StaticAllocaMap[Slot]; 5713 MCSymbol *FrameAllocSym = 5714 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5715 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5716 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5717 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5718 .addSym(FrameAllocSym) 5719 .addFrameIndex(FI); 5720 } 5721 5722 return nullptr; 5723 } 5724 5725 case Intrinsic::localrecover: { 5726 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5727 MachineFunction &MF = DAG.getMachineFunction(); 5728 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5729 5730 // Get the symbol that defines the frame offset. 5731 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5732 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5733 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5734 MCSymbol *FrameAllocSym = 5735 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5736 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5737 5738 // Create a MCSymbol for the label to avoid any target lowering 5739 // that would make this PC relative. 5740 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5741 SDValue OffsetVal = 5742 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5743 5744 // Add the offset to the FP. 5745 Value *FP = I.getArgOperand(1); 5746 SDValue FPVal = getValue(FP); 5747 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5748 setValue(&I, Add); 5749 5750 return nullptr; 5751 } 5752 5753 case Intrinsic::eh_exceptionpointer: 5754 case Intrinsic::eh_exceptioncode: { 5755 // Get the exception pointer vreg, copy from it, and resize it to fit. 5756 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5757 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5758 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5759 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5760 SDValue N = 5761 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5762 if (Intrinsic == Intrinsic::eh_exceptioncode) 5763 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5764 setValue(&I, N); 5765 return nullptr; 5766 } 5767 5768 case Intrinsic::experimental_deoptimize: 5769 LowerDeoptimizeCall(&I); 5770 return nullptr; 5771 } 5772 } 5773 5774 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5775 unsigned Intrinsic) { 5776 SDLoc sdl = getCurSDLoc(); 5777 unsigned Opcode; 5778 switch (Intrinsic) { 5779 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5780 case Intrinsic::experimental_constrained_fadd: 5781 Opcode = ISD::STRICT_FADD; 5782 break; 5783 case Intrinsic::experimental_constrained_fsub: 5784 Opcode = ISD::STRICT_FSUB; 5785 break; 5786 case Intrinsic::experimental_constrained_fmul: 5787 Opcode = ISD::STRICT_FMUL; 5788 break; 5789 case Intrinsic::experimental_constrained_fdiv: 5790 Opcode = ISD::STRICT_FDIV; 5791 break; 5792 case Intrinsic::experimental_constrained_frem: 5793 Opcode = ISD::STRICT_FREM; 5794 break; 5795 } 5796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5797 SDValue Chain = getRoot(); 5798 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5799 getValue(I.getArgOperand(1)) }; 5800 SmallVector<EVT, 4> ValueVTs; 5801 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5802 ValueVTs.push_back(MVT::Other); // Out chain 5803 5804 SDVTList VTs = DAG.getVTList(ValueVTs); 5805 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5806 5807 assert(Result.getNode()->getNumValues() == 2); 5808 SDValue OutChain = Result.getValue(1); 5809 DAG.setRoot(OutChain); 5810 SDValue FPResult = Result.getValue(0); 5811 setValue(&I, FPResult); 5812 } 5813 5814 std::pair<SDValue, SDValue> 5815 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5816 const BasicBlock *EHPadBB) { 5817 MachineFunction &MF = DAG.getMachineFunction(); 5818 MachineModuleInfo &MMI = MF.getMMI(); 5819 MCSymbol *BeginLabel = nullptr; 5820 5821 if (EHPadBB) { 5822 // Insert a label before the invoke call to mark the try range. This can be 5823 // used to detect deletion of the invoke via the MachineModuleInfo. 5824 BeginLabel = MMI.getContext().createTempSymbol(); 5825 5826 // For SjLj, keep track of which landing pads go with which invokes 5827 // so as to maintain the ordering of pads in the LSDA. 5828 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5829 if (CallSiteIndex) { 5830 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5831 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5832 5833 // Now that the call site is handled, stop tracking it. 5834 MMI.setCurrentCallSite(0); 5835 } 5836 5837 // Both PendingLoads and PendingExports must be flushed here; 5838 // this call might not return. 5839 (void)getRoot(); 5840 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5841 5842 CLI.setChain(getRoot()); 5843 } 5844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5845 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5846 5847 assert((CLI.IsTailCall || Result.second.getNode()) && 5848 "Non-null chain expected with non-tail call!"); 5849 assert((Result.second.getNode() || !Result.first.getNode()) && 5850 "Null value expected with tail call!"); 5851 5852 if (!Result.second.getNode()) { 5853 // As a special case, a null chain means that a tail call has been emitted 5854 // and the DAG root is already updated. 5855 HasTailCall = true; 5856 5857 // Since there's no actual continuation from this block, nothing can be 5858 // relying on us setting vregs for them. 5859 PendingExports.clear(); 5860 } else { 5861 DAG.setRoot(Result.second); 5862 } 5863 5864 if (EHPadBB) { 5865 // Insert a label at the end of the invoke call to mark the try range. This 5866 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5867 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5868 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5869 5870 // Inform MachineModuleInfo of range. 5871 if (MF.hasEHFunclets()) { 5872 assert(CLI.CS); 5873 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5874 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5875 BeginLabel, EndLabel); 5876 } else { 5877 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5878 } 5879 } 5880 5881 return Result; 5882 } 5883 5884 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5885 bool isTailCall, 5886 const BasicBlock *EHPadBB) { 5887 auto &DL = DAG.getDataLayout(); 5888 FunctionType *FTy = CS.getFunctionType(); 5889 Type *RetTy = CS.getType(); 5890 5891 TargetLowering::ArgListTy Args; 5892 TargetLowering::ArgListEntry Entry; 5893 Args.reserve(CS.arg_size()); 5894 5895 const Value *SwiftErrorVal = nullptr; 5896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5897 5898 // We can't tail call inside a function with a swifterror argument. Lowering 5899 // does not support this yet. It would have to move into the swifterror 5900 // register before the call. 5901 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5902 if (TLI.supportSwiftError() && 5903 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5904 isTailCall = false; 5905 5906 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5907 i != e; ++i) { 5908 const Value *V = *i; 5909 5910 // Skip empty types 5911 if (V->getType()->isEmptyTy()) 5912 continue; 5913 5914 SDValue ArgNode = getValue(V); 5915 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5916 5917 // Skip the first return-type Attribute to get to params. 5918 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5919 5920 // Use swifterror virtual register as input to the call. 5921 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5922 SwiftErrorVal = V; 5923 // We find the virtual register for the actual swifterror argument. 5924 // Instead of using the Value, we use the virtual register instead. 5925 Entry.Node = 5926 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5927 EVT(TLI.getPointerTy(DL))); 5928 } 5929 5930 Args.push_back(Entry); 5931 5932 // If we have an explicit sret argument that is an Instruction, (i.e., it 5933 // might point to function-local memory), we can't meaningfully tail-call. 5934 if (Entry.isSRet && isa<Instruction>(V)) 5935 isTailCall = false; 5936 } 5937 5938 // Check if target-independent constraints permit a tail call here. 5939 // Target-dependent constraints are checked within TLI->LowerCallTo. 5940 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5941 isTailCall = false; 5942 5943 // Disable tail calls if there is an swifterror argument. Targets have not 5944 // been updated to support tail calls. 5945 if (TLI.supportSwiftError() && SwiftErrorVal) 5946 isTailCall = false; 5947 5948 TargetLowering::CallLoweringInfo CLI(DAG); 5949 CLI.setDebugLoc(getCurSDLoc()) 5950 .setChain(getRoot()) 5951 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5952 .setTailCall(isTailCall) 5953 .setConvergent(CS.isConvergent()); 5954 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5955 5956 if (Result.first.getNode()) { 5957 const Instruction *Inst = CS.getInstruction(); 5958 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5959 setValue(Inst, Result.first); 5960 } 5961 5962 // The last element of CLI.InVals has the SDValue for swifterror return. 5963 // Here we copy it to a virtual register and update SwiftErrorMap for 5964 // book-keeping. 5965 if (SwiftErrorVal && TLI.supportSwiftError()) { 5966 // Get the last element of InVals. 5967 SDValue Src = CLI.InVals.back(); 5968 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5969 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5970 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5971 // We update the virtual register for the actual swifterror argument. 5972 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5973 DAG.setRoot(CopyNode); 5974 } 5975 } 5976 5977 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5978 /// value is equal or not-equal to zero. 5979 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5980 for (const User *U : V->users()) { 5981 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5982 if (IC->isEquality()) 5983 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5984 if (C->isNullValue()) 5985 continue; 5986 // Unknown instruction. 5987 return false; 5988 } 5989 return true; 5990 } 5991 5992 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5993 Type *LoadTy, 5994 SelectionDAGBuilder &Builder) { 5995 5996 // Check to see if this load can be trivially constant folded, e.g. if the 5997 // input is from a string literal. 5998 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5999 // Cast pointer to the type we really want to load. 6000 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6001 PointerType::getUnqual(LoadTy)); 6002 6003 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6004 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6005 return Builder.getValue(LoadCst); 6006 } 6007 6008 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6009 // still constant memory, the input chain can be the entry node. 6010 SDValue Root; 6011 bool ConstantMemory = false; 6012 6013 // Do not serialize (non-volatile) loads of constant memory with anything. 6014 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 6015 Root = Builder.DAG.getEntryNode(); 6016 ConstantMemory = true; 6017 } else { 6018 // Do not serialize non-volatile loads against each other. 6019 Root = Builder.DAG.getRoot(); 6020 } 6021 6022 SDValue Ptr = Builder.getValue(PtrVal); 6023 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6024 Ptr, MachinePointerInfo(PtrVal), 6025 /* Alignment = */ 1); 6026 6027 if (!ConstantMemory) 6028 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6029 return LoadVal; 6030 } 6031 6032 /// processIntegerCallValue - Record the value for an instruction that 6033 /// produces an integer result, converting the type where necessary. 6034 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6035 SDValue Value, 6036 bool IsSigned) { 6037 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6038 I.getType(), true); 6039 if (IsSigned) 6040 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6041 else 6042 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6043 setValue(&I, Value); 6044 } 6045 6046 /// See if we can lower a memcmp call into an optimized form. If so, return 6047 /// true and lower it, otherwise return false and it will be lowered like a 6048 /// normal call. 6049 /// The caller already checked that \p I calls the appropriate LibFunc with a 6050 /// correct prototype. 6051 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6052 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6053 const Value *Size = I.getArgOperand(2); 6054 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6055 if (CSize && CSize->getZExtValue() == 0) { 6056 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6057 I.getType(), true); 6058 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6059 return true; 6060 } 6061 6062 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6063 std::pair<SDValue, SDValue> Res = 6064 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6065 getValue(LHS), getValue(RHS), getValue(Size), 6066 MachinePointerInfo(LHS), 6067 MachinePointerInfo(RHS)); 6068 if (Res.first.getNode()) { 6069 processIntegerCallValue(I, Res.first, true); 6070 PendingLoads.push_back(Res.second); 6071 return true; 6072 } 6073 6074 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6075 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6076 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 6077 bool ActuallyDoIt = true; 6078 MVT LoadVT; 6079 Type *LoadTy; 6080 switch (CSize->getZExtValue()) { 6081 default: 6082 LoadVT = MVT::Other; 6083 LoadTy = nullptr; 6084 ActuallyDoIt = false; 6085 break; 6086 case 2: 6087 LoadVT = MVT::i16; 6088 LoadTy = Type::getInt16Ty(CSize->getContext()); 6089 break; 6090 case 4: 6091 LoadVT = MVT::i32; 6092 LoadTy = Type::getInt32Ty(CSize->getContext()); 6093 break; 6094 case 8: 6095 LoadVT = MVT::i64; 6096 LoadTy = Type::getInt64Ty(CSize->getContext()); 6097 break; 6098 /* 6099 case 16: 6100 LoadVT = MVT::v4i32; 6101 LoadTy = Type::getInt32Ty(CSize->getContext()); 6102 LoadTy = VectorType::get(LoadTy, 4); 6103 break; 6104 */ 6105 } 6106 6107 // This turns into unaligned loads. We only do this if the target natively 6108 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6109 // we'll only produce a small number of byte loads. 6110 6111 // Require that we can find a legal MVT, and only do this if the target 6112 // supports unaligned loads of that type. Expanding into byte loads would 6113 // bloat the code. 6114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6115 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 6116 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6117 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6118 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6119 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6120 // TODO: Check alignment of src and dest ptrs. 6121 if (!TLI.isTypeLegal(LoadVT) || 6122 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 6123 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 6124 ActuallyDoIt = false; 6125 } 6126 6127 if (ActuallyDoIt) { 6128 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6129 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6130 6131 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6132 ISD::SETNE); 6133 processIntegerCallValue(I, Res, false); 6134 return true; 6135 } 6136 } 6137 6138 6139 return false; 6140 } 6141 6142 /// See if we can lower a memchr call into an optimized form. If so, return 6143 /// true and lower it, otherwise return false and it will be lowered like a 6144 /// normal call. 6145 /// The caller already checked that \p I calls the appropriate LibFunc with a 6146 /// correct prototype. 6147 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6148 const Value *Src = I.getArgOperand(0); 6149 const Value *Char = I.getArgOperand(1); 6150 const Value *Length = I.getArgOperand(2); 6151 6152 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6153 std::pair<SDValue, SDValue> Res = 6154 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6155 getValue(Src), getValue(Char), getValue(Length), 6156 MachinePointerInfo(Src)); 6157 if (Res.first.getNode()) { 6158 setValue(&I, Res.first); 6159 PendingLoads.push_back(Res.second); 6160 return true; 6161 } 6162 6163 return false; 6164 } 6165 6166 /// See if we can lower a mempcpy call into an optimized form. If so, return 6167 /// true and lower it, otherwise return false and it will be lowered like a 6168 /// normal call. 6169 /// The caller already checked that \p I calls the appropriate LibFunc with a 6170 /// correct prototype. 6171 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6172 SDValue Dst = getValue(I.getArgOperand(0)); 6173 SDValue Src = getValue(I.getArgOperand(1)); 6174 SDValue Size = getValue(I.getArgOperand(2)); 6175 6176 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6177 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6178 unsigned Align = std::min(DstAlign, SrcAlign); 6179 if (Align == 0) // Alignment of one or both could not be inferred. 6180 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6181 6182 bool isVol = false; 6183 SDLoc sdl = getCurSDLoc(); 6184 6185 // In the mempcpy context we need to pass in a false value for isTailCall 6186 // because the return pointer needs to be adjusted by the size of 6187 // the copied memory. 6188 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6189 false, /*isTailCall=*/false, 6190 MachinePointerInfo(I.getArgOperand(0)), 6191 MachinePointerInfo(I.getArgOperand(1))); 6192 assert(MC.getNode() != nullptr && 6193 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6194 DAG.setRoot(MC); 6195 6196 // Check if Size needs to be truncated or extended. 6197 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6198 6199 // Adjust return pointer to point just past the last dst byte. 6200 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6201 Dst, Size); 6202 setValue(&I, DstPlusSize); 6203 return true; 6204 } 6205 6206 /// See if we can lower a strcpy call into an optimized form. If so, return 6207 /// true and lower it, otherwise return false and it will be lowered like a 6208 /// normal call. 6209 /// The caller already checked that \p I calls the appropriate LibFunc with a 6210 /// correct prototype. 6211 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6212 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6213 6214 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6215 std::pair<SDValue, SDValue> Res = 6216 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6217 getValue(Arg0), getValue(Arg1), 6218 MachinePointerInfo(Arg0), 6219 MachinePointerInfo(Arg1), isStpcpy); 6220 if (Res.first.getNode()) { 6221 setValue(&I, Res.first); 6222 DAG.setRoot(Res.second); 6223 return true; 6224 } 6225 6226 return false; 6227 } 6228 6229 /// See if we can lower a strcmp call into an optimized form. If so, return 6230 /// true and lower it, otherwise return false and it will be lowered like a 6231 /// normal call. 6232 /// The caller already checked that \p I calls the appropriate LibFunc with a 6233 /// correct prototype. 6234 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6235 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6236 6237 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6238 std::pair<SDValue, SDValue> Res = 6239 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6240 getValue(Arg0), getValue(Arg1), 6241 MachinePointerInfo(Arg0), 6242 MachinePointerInfo(Arg1)); 6243 if (Res.first.getNode()) { 6244 processIntegerCallValue(I, Res.first, true); 6245 PendingLoads.push_back(Res.second); 6246 return true; 6247 } 6248 6249 return false; 6250 } 6251 6252 /// See if we can lower a strlen call into an optimized form. If so, return 6253 /// true and lower it, otherwise return false and it will be lowered like a 6254 /// normal call. 6255 /// The caller already checked that \p I calls the appropriate LibFunc with a 6256 /// correct prototype. 6257 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6258 const Value *Arg0 = I.getArgOperand(0); 6259 6260 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6261 std::pair<SDValue, SDValue> Res = 6262 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6263 getValue(Arg0), MachinePointerInfo(Arg0)); 6264 if (Res.first.getNode()) { 6265 processIntegerCallValue(I, Res.first, false); 6266 PendingLoads.push_back(Res.second); 6267 return true; 6268 } 6269 6270 return false; 6271 } 6272 6273 /// See if we can lower a strnlen call into an optimized form. If so, return 6274 /// true and lower it, otherwise return false and it will be lowered like a 6275 /// normal call. 6276 /// The caller already checked that \p I calls the appropriate LibFunc with a 6277 /// correct prototype. 6278 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6279 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6280 6281 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6282 std::pair<SDValue, SDValue> Res = 6283 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6284 getValue(Arg0), getValue(Arg1), 6285 MachinePointerInfo(Arg0)); 6286 if (Res.first.getNode()) { 6287 processIntegerCallValue(I, Res.first, false); 6288 PendingLoads.push_back(Res.second); 6289 return true; 6290 } 6291 6292 return false; 6293 } 6294 6295 /// See if we can lower a unary floating-point operation into an SDNode with 6296 /// the specified Opcode. If so, return true and lower it, otherwise return 6297 /// false and it will be lowered like a normal call. 6298 /// The caller already checked that \p I calls the appropriate LibFunc with a 6299 /// correct prototype. 6300 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6301 unsigned Opcode) { 6302 // We already checked this call's prototype; verify it doesn't modify errno. 6303 if (!I.onlyReadsMemory()) 6304 return false; 6305 6306 SDValue Tmp = getValue(I.getArgOperand(0)); 6307 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6308 return true; 6309 } 6310 6311 /// See if we can lower a binary floating-point operation into an SDNode with 6312 /// the specified Opcode. If so, return true and lower it, otherwise return 6313 /// false and it will be lowered like a normal call. 6314 /// The caller already checked that \p I calls the appropriate LibFunc with a 6315 /// correct prototype. 6316 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6317 unsigned Opcode) { 6318 // We already checked this call's prototype; verify it doesn't modify errno. 6319 if (!I.onlyReadsMemory()) 6320 return false; 6321 6322 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6323 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6324 EVT VT = Tmp0.getValueType(); 6325 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6326 return true; 6327 } 6328 6329 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6330 // Handle inline assembly differently. 6331 if (isa<InlineAsm>(I.getCalledValue())) { 6332 visitInlineAsm(&I); 6333 return; 6334 } 6335 6336 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6337 computeUsesVAFloatArgument(I, MMI); 6338 6339 const char *RenameFn = nullptr; 6340 if (Function *F = I.getCalledFunction()) { 6341 if (F->isDeclaration()) { 6342 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6343 if (unsigned IID = II->getIntrinsicID(F)) { 6344 RenameFn = visitIntrinsicCall(I, IID); 6345 if (!RenameFn) 6346 return; 6347 } 6348 } 6349 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6350 RenameFn = visitIntrinsicCall(I, IID); 6351 if (!RenameFn) 6352 return; 6353 } 6354 } 6355 6356 // Check for well-known libc/libm calls. If the function is internal, it 6357 // can't be a library call. Don't do the check if marked as nobuiltin for 6358 // some reason. 6359 LibFunc Func; 6360 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6361 LibInfo->getLibFunc(*F, Func) && 6362 LibInfo->hasOptimizedCodeGen(Func)) { 6363 switch (Func) { 6364 default: break; 6365 case LibFunc_copysign: 6366 case LibFunc_copysignf: 6367 case LibFunc_copysignl: 6368 // We already checked this call's prototype; verify it doesn't modify 6369 // errno. 6370 if (I.onlyReadsMemory()) { 6371 SDValue LHS = getValue(I.getArgOperand(0)); 6372 SDValue RHS = getValue(I.getArgOperand(1)); 6373 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6374 LHS.getValueType(), LHS, RHS)); 6375 return; 6376 } 6377 break; 6378 case LibFunc_fabs: 6379 case LibFunc_fabsf: 6380 case LibFunc_fabsl: 6381 if (visitUnaryFloatCall(I, ISD::FABS)) 6382 return; 6383 break; 6384 case LibFunc_fmin: 6385 case LibFunc_fminf: 6386 case LibFunc_fminl: 6387 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6388 return; 6389 break; 6390 case LibFunc_fmax: 6391 case LibFunc_fmaxf: 6392 case LibFunc_fmaxl: 6393 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6394 return; 6395 break; 6396 case LibFunc_sin: 6397 case LibFunc_sinf: 6398 case LibFunc_sinl: 6399 if (visitUnaryFloatCall(I, ISD::FSIN)) 6400 return; 6401 break; 6402 case LibFunc_cos: 6403 case LibFunc_cosf: 6404 case LibFunc_cosl: 6405 if (visitUnaryFloatCall(I, ISD::FCOS)) 6406 return; 6407 break; 6408 case LibFunc_sqrt: 6409 case LibFunc_sqrtf: 6410 case LibFunc_sqrtl: 6411 case LibFunc_sqrt_finite: 6412 case LibFunc_sqrtf_finite: 6413 case LibFunc_sqrtl_finite: 6414 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6415 return; 6416 break; 6417 case LibFunc_floor: 6418 case LibFunc_floorf: 6419 case LibFunc_floorl: 6420 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6421 return; 6422 break; 6423 case LibFunc_nearbyint: 6424 case LibFunc_nearbyintf: 6425 case LibFunc_nearbyintl: 6426 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6427 return; 6428 break; 6429 case LibFunc_ceil: 6430 case LibFunc_ceilf: 6431 case LibFunc_ceill: 6432 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6433 return; 6434 break; 6435 case LibFunc_rint: 6436 case LibFunc_rintf: 6437 case LibFunc_rintl: 6438 if (visitUnaryFloatCall(I, ISD::FRINT)) 6439 return; 6440 break; 6441 case LibFunc_round: 6442 case LibFunc_roundf: 6443 case LibFunc_roundl: 6444 if (visitUnaryFloatCall(I, ISD::FROUND)) 6445 return; 6446 break; 6447 case LibFunc_trunc: 6448 case LibFunc_truncf: 6449 case LibFunc_truncl: 6450 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6451 return; 6452 break; 6453 case LibFunc_log2: 6454 case LibFunc_log2f: 6455 case LibFunc_log2l: 6456 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6457 return; 6458 break; 6459 case LibFunc_exp2: 6460 case LibFunc_exp2f: 6461 case LibFunc_exp2l: 6462 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6463 return; 6464 break; 6465 case LibFunc_memcmp: 6466 if (visitMemCmpCall(I)) 6467 return; 6468 break; 6469 case LibFunc_mempcpy: 6470 if (visitMemPCpyCall(I)) 6471 return; 6472 break; 6473 case LibFunc_memchr: 6474 if (visitMemChrCall(I)) 6475 return; 6476 break; 6477 case LibFunc_strcpy: 6478 if (visitStrCpyCall(I, false)) 6479 return; 6480 break; 6481 case LibFunc_stpcpy: 6482 if (visitStrCpyCall(I, true)) 6483 return; 6484 break; 6485 case LibFunc_strcmp: 6486 if (visitStrCmpCall(I)) 6487 return; 6488 break; 6489 case LibFunc_strlen: 6490 if (visitStrLenCall(I)) 6491 return; 6492 break; 6493 case LibFunc_strnlen: 6494 if (visitStrNLenCall(I)) 6495 return; 6496 break; 6497 } 6498 } 6499 } 6500 6501 SDValue Callee; 6502 if (!RenameFn) 6503 Callee = getValue(I.getCalledValue()); 6504 else 6505 Callee = DAG.getExternalSymbol( 6506 RenameFn, 6507 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6508 6509 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6510 // have to do anything here to lower funclet bundles. 6511 assert(!I.hasOperandBundlesOtherThan( 6512 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6513 "Cannot lower calls with arbitrary operand bundles!"); 6514 6515 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6516 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6517 else 6518 // Check if we can potentially perform a tail call. More detailed checking 6519 // is be done within LowerCallTo, after more information about the call is 6520 // known. 6521 LowerCallTo(&I, Callee, I.isTailCall()); 6522 } 6523 6524 namespace { 6525 6526 /// AsmOperandInfo - This contains information for each constraint that we are 6527 /// lowering. 6528 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6529 public: 6530 /// CallOperand - If this is the result output operand or a clobber 6531 /// this is null, otherwise it is the incoming operand to the CallInst. 6532 /// This gets modified as the asm is processed. 6533 SDValue CallOperand; 6534 6535 /// AssignedRegs - If this is a register or register class operand, this 6536 /// contains the set of register corresponding to the operand. 6537 RegsForValue AssignedRegs; 6538 6539 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6540 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6541 } 6542 6543 /// Whether or not this operand accesses memory 6544 bool hasMemory(const TargetLowering &TLI) const { 6545 // Indirect operand accesses access memory. 6546 if (isIndirect) 6547 return true; 6548 6549 for (const auto &Code : Codes) 6550 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6551 return true; 6552 6553 return false; 6554 } 6555 6556 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6557 /// corresponds to. If there is no Value* for this operand, it returns 6558 /// MVT::Other. 6559 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6560 const DataLayout &DL) const { 6561 if (!CallOperandVal) return MVT::Other; 6562 6563 if (isa<BasicBlock>(CallOperandVal)) 6564 return TLI.getPointerTy(DL); 6565 6566 llvm::Type *OpTy = CallOperandVal->getType(); 6567 6568 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6569 // If this is an indirect operand, the operand is a pointer to the 6570 // accessed type. 6571 if (isIndirect) { 6572 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6573 if (!PtrTy) 6574 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6575 OpTy = PtrTy->getElementType(); 6576 } 6577 6578 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6579 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6580 if (STy->getNumElements() == 1) 6581 OpTy = STy->getElementType(0); 6582 6583 // If OpTy is not a single value, it may be a struct/union that we 6584 // can tile with integers. 6585 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6586 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6587 switch (BitSize) { 6588 default: break; 6589 case 1: 6590 case 8: 6591 case 16: 6592 case 32: 6593 case 64: 6594 case 128: 6595 OpTy = IntegerType::get(Context, BitSize); 6596 break; 6597 } 6598 } 6599 6600 return TLI.getValueType(DL, OpTy, true); 6601 } 6602 }; 6603 6604 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6605 6606 } // end anonymous namespace 6607 6608 /// Make sure that the output operand \p OpInfo and its corresponding input 6609 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6610 /// out). 6611 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6612 SDISelAsmOperandInfo &MatchingOpInfo, 6613 SelectionDAG &DAG) { 6614 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6615 return; 6616 6617 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6618 const auto &TLI = DAG.getTargetLoweringInfo(); 6619 6620 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6621 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6622 OpInfo.ConstraintVT); 6623 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6624 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6625 MatchingOpInfo.ConstraintVT); 6626 if ((OpInfo.ConstraintVT.isInteger() != 6627 MatchingOpInfo.ConstraintVT.isInteger()) || 6628 (MatchRC.second != InputRC.second)) { 6629 // FIXME: error out in a more elegant fashion 6630 report_fatal_error("Unsupported asm: input constraint" 6631 " with a matching output constraint of" 6632 " incompatible type!"); 6633 } 6634 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6635 } 6636 6637 /// Get a direct memory input to behave well as an indirect operand. 6638 /// This may introduce stores, hence the need for a \p Chain. 6639 /// \return The (possibly updated) chain. 6640 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6641 SDISelAsmOperandInfo &OpInfo, 6642 SelectionDAG &DAG) { 6643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6644 6645 // If we don't have an indirect input, put it in the constpool if we can, 6646 // otherwise spill it to a stack slot. 6647 // TODO: This isn't quite right. We need to handle these according to 6648 // the addressing mode that the constraint wants. Also, this may take 6649 // an additional register for the computation and we don't want that 6650 // either. 6651 6652 // If the operand is a float, integer, or vector constant, spill to a 6653 // constant pool entry to get its address. 6654 const Value *OpVal = OpInfo.CallOperandVal; 6655 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6656 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6657 OpInfo.CallOperand = DAG.getConstantPool( 6658 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6659 return Chain; 6660 } 6661 6662 // Otherwise, create a stack slot and emit a store to it before the asm. 6663 Type *Ty = OpVal->getType(); 6664 auto &DL = DAG.getDataLayout(); 6665 uint64_t TySize = DL.getTypeAllocSize(Ty); 6666 unsigned Align = DL.getPrefTypeAlignment(Ty); 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6669 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6670 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6671 MachinePointerInfo::getFixedStack(MF, SSFI)); 6672 OpInfo.CallOperand = StackSlot; 6673 6674 return Chain; 6675 } 6676 6677 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6678 /// specified operand. We prefer to assign virtual registers, to allow the 6679 /// register allocator to handle the assignment process. However, if the asm 6680 /// uses features that we can't model on machineinstrs, we have SDISel do the 6681 /// allocation. This produces generally horrible, but correct, code. 6682 /// 6683 /// OpInfo describes the operand. 6684 /// 6685 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6686 const SDLoc &DL, 6687 SDISelAsmOperandInfo &OpInfo) { 6688 LLVMContext &Context = *DAG.getContext(); 6689 6690 MachineFunction &MF = DAG.getMachineFunction(); 6691 SmallVector<unsigned, 4> Regs; 6692 6693 // If this is a constraint for a single physreg, or a constraint for a 6694 // register class, find it. 6695 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6696 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6697 OpInfo.ConstraintCode, 6698 OpInfo.ConstraintVT); 6699 6700 unsigned NumRegs = 1; 6701 if (OpInfo.ConstraintVT != MVT::Other) { 6702 // If this is a FP input in an integer register (or visa versa) insert a bit 6703 // cast of the input value. More generally, handle any case where the input 6704 // value disagrees with the register class we plan to stick this in. 6705 if (OpInfo.Type == InlineAsm::isInput && 6706 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6707 // Try to convert to the first EVT that the reg class contains. If the 6708 // types are identical size, use a bitcast to convert (e.g. two differing 6709 // vector types). 6710 MVT RegVT = *PhysReg.second->vt_begin(); 6711 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6712 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6713 RegVT, OpInfo.CallOperand); 6714 OpInfo.ConstraintVT = RegVT; 6715 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6716 // If the input is a FP value and we want it in FP registers, do a 6717 // bitcast to the corresponding integer type. This turns an f64 value 6718 // into i64, which can be passed with two i32 values on a 32-bit 6719 // machine. 6720 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6721 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6722 RegVT, OpInfo.CallOperand); 6723 OpInfo.ConstraintVT = RegVT; 6724 } 6725 } 6726 6727 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6728 } 6729 6730 MVT RegVT; 6731 EVT ValueVT = OpInfo.ConstraintVT; 6732 6733 // If this is a constraint for a specific physical register, like {r17}, 6734 // assign it now. 6735 if (unsigned AssignedReg = PhysReg.first) { 6736 const TargetRegisterClass *RC = PhysReg.second; 6737 if (OpInfo.ConstraintVT == MVT::Other) 6738 ValueVT = *RC->vt_begin(); 6739 6740 // Get the actual register value type. This is important, because the user 6741 // may have asked for (e.g.) the AX register in i32 type. We need to 6742 // remember that AX is actually i16 to get the right extension. 6743 RegVT = *RC->vt_begin(); 6744 6745 // This is a explicit reference to a physical register. 6746 Regs.push_back(AssignedReg); 6747 6748 // If this is an expanded reference, add the rest of the regs to Regs. 6749 if (NumRegs != 1) { 6750 TargetRegisterClass::iterator I = RC->begin(); 6751 for (; *I != AssignedReg; ++I) 6752 assert(I != RC->end() && "Didn't find reg!"); 6753 6754 // Already added the first reg. 6755 --NumRegs; ++I; 6756 for (; NumRegs; --NumRegs, ++I) { 6757 assert(I != RC->end() && "Ran out of registers to allocate!"); 6758 Regs.push_back(*I); 6759 } 6760 } 6761 6762 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6763 return; 6764 } 6765 6766 // Otherwise, if this was a reference to an LLVM register class, create vregs 6767 // for this reference. 6768 if (const TargetRegisterClass *RC = PhysReg.second) { 6769 RegVT = *RC->vt_begin(); 6770 if (OpInfo.ConstraintVT == MVT::Other) 6771 ValueVT = RegVT; 6772 6773 // Create the appropriate number of virtual registers. 6774 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6775 for (; NumRegs; --NumRegs) 6776 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6777 6778 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6779 return; 6780 } 6781 6782 // Otherwise, we couldn't allocate enough registers for this. 6783 } 6784 6785 static unsigned 6786 findMatchingInlineAsmOperand(unsigned OperandNo, 6787 const std::vector<SDValue> &AsmNodeOperands) { 6788 // Scan until we find the definition we already emitted of this operand. 6789 unsigned CurOp = InlineAsm::Op_FirstOperand; 6790 for (; OperandNo; --OperandNo) { 6791 // Advance to the next operand. 6792 unsigned OpFlag = 6793 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6794 assert((InlineAsm::isRegDefKind(OpFlag) || 6795 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6796 InlineAsm::isMemKind(OpFlag)) && 6797 "Skipped past definitions?"); 6798 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6799 } 6800 return CurOp; 6801 } 6802 6803 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6804 /// \return true if it has succeeded, false otherwise 6805 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6806 MVT RegVT, SelectionDAG &DAG) { 6807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6808 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6809 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6810 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6811 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6812 else 6813 return false; 6814 } 6815 return true; 6816 } 6817 6818 class ExtraFlags { 6819 unsigned Flags = 0; 6820 6821 public: 6822 explicit ExtraFlags(ImmutableCallSite CS) { 6823 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6824 if (IA->hasSideEffects()) 6825 Flags |= InlineAsm::Extra_HasSideEffects; 6826 if (IA->isAlignStack()) 6827 Flags |= InlineAsm::Extra_IsAlignStack; 6828 if (CS.isConvergent()) 6829 Flags |= InlineAsm::Extra_IsConvergent; 6830 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6831 } 6832 6833 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6834 // Ideally, we would only check against memory constraints. However, the 6835 // meaning of an Other constraint can be target-specific and we can't easily 6836 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6837 // for Other constraints as well. 6838 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6839 OpInfo.ConstraintType == TargetLowering::C_Other) { 6840 if (OpInfo.Type == InlineAsm::isInput) 6841 Flags |= InlineAsm::Extra_MayLoad; 6842 else if (OpInfo.Type == InlineAsm::isOutput) 6843 Flags |= InlineAsm::Extra_MayStore; 6844 else if (OpInfo.Type == InlineAsm::isClobber) 6845 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6846 } 6847 } 6848 6849 unsigned get() const { return Flags; } 6850 }; 6851 6852 /// visitInlineAsm - Handle a call to an InlineAsm object. 6853 /// 6854 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6855 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6856 6857 /// ConstraintOperands - Information about all of the constraints. 6858 SDISelAsmOperandInfoVector ConstraintOperands; 6859 6860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6861 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6862 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6863 6864 bool hasMemory = false; 6865 6866 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6867 ExtraFlags ExtraInfo(CS); 6868 6869 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6870 unsigned ResNo = 0; // ResNo - The result number of the next output. 6871 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6872 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6873 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6874 6875 MVT OpVT = MVT::Other; 6876 6877 // Compute the value type for each operand. 6878 if (OpInfo.Type == InlineAsm::isInput || 6879 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6880 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6881 6882 // Process the call argument. BasicBlocks are labels, currently appearing 6883 // only in asm's. 6884 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6885 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6886 } else { 6887 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6888 } 6889 6890 OpVT = 6891 OpInfo 6892 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6893 .getSimpleVT(); 6894 } 6895 6896 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6897 // The return value of the call is this value. As such, there is no 6898 // corresponding argument. 6899 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6900 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6901 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6902 STy->getElementType(ResNo)); 6903 } else { 6904 assert(ResNo == 0 && "Asm only has one result!"); 6905 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6906 } 6907 ++ResNo; 6908 } 6909 6910 OpInfo.ConstraintVT = OpVT; 6911 6912 if (!hasMemory) 6913 hasMemory = OpInfo.hasMemory(TLI); 6914 6915 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6916 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6917 auto TargetConstraint = TargetConstraints[i]; 6918 6919 // Compute the constraint code and ConstraintType to use. 6920 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6921 6922 ExtraInfo.update(TargetConstraint); 6923 } 6924 6925 SDValue Chain, Flag; 6926 6927 // We won't need to flush pending loads if this asm doesn't touch 6928 // memory and is nonvolatile. 6929 if (hasMemory || IA->hasSideEffects()) 6930 Chain = getRoot(); 6931 else 6932 Chain = DAG.getRoot(); 6933 6934 // Second pass over the constraints: compute which constraint option to use 6935 // and assign registers to constraints that want a specific physreg. 6936 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6937 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6938 6939 // If this is an output operand with a matching input operand, look up the 6940 // matching input. If their types mismatch, e.g. one is an integer, the 6941 // other is floating point, or their sizes are different, flag it as an 6942 // error. 6943 if (OpInfo.hasMatchingInput()) { 6944 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6945 patchMatchingInput(OpInfo, Input, DAG); 6946 } 6947 6948 // Compute the constraint code and ConstraintType to use. 6949 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6950 6951 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6952 OpInfo.Type == InlineAsm::isClobber) 6953 continue; 6954 6955 // If this is a memory input, and if the operand is not indirect, do what we 6956 // need to to provide an address for the memory input. 6957 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6958 !OpInfo.isIndirect) { 6959 assert((OpInfo.isMultipleAlternative || 6960 (OpInfo.Type == InlineAsm::isInput)) && 6961 "Can only indirectify direct input operands!"); 6962 6963 // Memory operands really want the address of the value. 6964 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6965 6966 // There is no longer a Value* corresponding to this operand. 6967 OpInfo.CallOperandVal = nullptr; 6968 6969 // It is now an indirect operand. 6970 OpInfo.isIndirect = true; 6971 } 6972 6973 // If this constraint is for a specific register, allocate it before 6974 // anything else. 6975 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6976 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6977 } 6978 6979 // Third pass - Loop over all of the operands, assigning virtual or physregs 6980 // to register class operands. 6981 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6982 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6983 6984 // C_Register operands have already been allocated, Other/Memory don't need 6985 // to be. 6986 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6987 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6988 } 6989 6990 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6991 std::vector<SDValue> AsmNodeOperands; 6992 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6993 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6994 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6995 6996 // If we have a !srcloc metadata node associated with it, we want to attach 6997 // this to the ultimately generated inline asm machineinstr. To do this, we 6998 // pass in the third operand as this (potentially null) inline asm MDNode. 6999 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7000 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7001 7002 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7003 // bits as operand 3. 7004 AsmNodeOperands.push_back(DAG.getTargetConstant( 7005 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7006 7007 // Loop over all of the inputs, copying the operand values into the 7008 // appropriate registers and processing the output regs. 7009 RegsForValue RetValRegs; 7010 7011 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7012 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7013 7014 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7015 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7016 7017 switch (OpInfo.Type) { 7018 case InlineAsm::isOutput: { 7019 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7020 OpInfo.ConstraintType != TargetLowering::C_Register) { 7021 // Memory output, or 'other' output (e.g. 'X' constraint). 7022 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7023 7024 unsigned ConstraintID = 7025 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7026 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7027 "Failed to convert memory constraint code to constraint id."); 7028 7029 // Add information to the INLINEASM node to know about this output. 7030 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7031 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7032 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7033 MVT::i32)); 7034 AsmNodeOperands.push_back(OpInfo.CallOperand); 7035 break; 7036 } 7037 7038 // Otherwise, this is a register or register class output. 7039 7040 // Copy the output from the appropriate register. Find a register that 7041 // we can use. 7042 if (OpInfo.AssignedRegs.Regs.empty()) { 7043 emitInlineAsmError( 7044 CS, "couldn't allocate output register for constraint '" + 7045 Twine(OpInfo.ConstraintCode) + "'"); 7046 return; 7047 } 7048 7049 // If this is an indirect operand, store through the pointer after the 7050 // asm. 7051 if (OpInfo.isIndirect) { 7052 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7053 OpInfo.CallOperandVal)); 7054 } else { 7055 // This is the result value of the call. 7056 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7057 // Concatenate this output onto the outputs list. 7058 RetValRegs.append(OpInfo.AssignedRegs); 7059 } 7060 7061 // Add information to the INLINEASM node to know that this register is 7062 // set. 7063 OpInfo.AssignedRegs 7064 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7065 ? InlineAsm::Kind_RegDefEarlyClobber 7066 : InlineAsm::Kind_RegDef, 7067 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7068 break; 7069 } 7070 case InlineAsm::isInput: { 7071 SDValue InOperandVal = OpInfo.CallOperand; 7072 7073 if (OpInfo.isMatchingInputConstraint()) { 7074 // If this is required to match an output register we have already set, 7075 // just use its register. 7076 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7077 AsmNodeOperands); 7078 unsigned OpFlag = 7079 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7080 if (InlineAsm::isRegDefKind(OpFlag) || 7081 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7082 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7083 if (OpInfo.isIndirect) { 7084 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7085 emitInlineAsmError(CS, "inline asm not supported yet:" 7086 " don't know how to handle tied " 7087 "indirect register inputs"); 7088 return; 7089 } 7090 7091 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7092 SmallVector<unsigned, 4> Regs; 7093 7094 if (!createVirtualRegs(Regs, 7095 InlineAsm::getNumOperandRegisters(OpFlag), 7096 RegVT, DAG)) { 7097 emitInlineAsmError(CS, "inline asm error: This value type register " 7098 "class is not natively supported!"); 7099 return; 7100 } 7101 7102 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7103 7104 SDLoc dl = getCurSDLoc(); 7105 // Use the produced MatchedRegs object to 7106 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7107 Chain, &Flag, CS.getInstruction()); 7108 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7109 true, OpInfo.getMatchedOperand(), dl, 7110 DAG, AsmNodeOperands); 7111 break; 7112 } 7113 7114 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7115 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7116 "Unexpected number of operands"); 7117 // Add information to the INLINEASM node to know about this input. 7118 // See InlineAsm.h isUseOperandTiedToDef. 7119 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7120 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7121 OpInfo.getMatchedOperand()); 7122 AsmNodeOperands.push_back(DAG.getTargetConstant( 7123 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7124 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7125 break; 7126 } 7127 7128 // Treat indirect 'X' constraint as memory. 7129 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7130 OpInfo.isIndirect) 7131 OpInfo.ConstraintType = TargetLowering::C_Memory; 7132 7133 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7134 std::vector<SDValue> Ops; 7135 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7136 Ops, DAG); 7137 if (Ops.empty()) { 7138 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7139 Twine(OpInfo.ConstraintCode) + "'"); 7140 return; 7141 } 7142 7143 // Add information to the INLINEASM node to know about this input. 7144 unsigned ResOpType = 7145 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7146 AsmNodeOperands.push_back(DAG.getTargetConstant( 7147 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7148 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7149 break; 7150 } 7151 7152 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7153 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7154 assert(InOperandVal.getValueType() == 7155 TLI.getPointerTy(DAG.getDataLayout()) && 7156 "Memory operands expect pointer values"); 7157 7158 unsigned ConstraintID = 7159 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7160 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7161 "Failed to convert memory constraint code to constraint id."); 7162 7163 // Add information to the INLINEASM node to know about this input. 7164 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7165 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7166 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7167 getCurSDLoc(), 7168 MVT::i32)); 7169 AsmNodeOperands.push_back(InOperandVal); 7170 break; 7171 } 7172 7173 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7174 OpInfo.ConstraintType == TargetLowering::C_Register) && 7175 "Unknown constraint type!"); 7176 7177 // TODO: Support this. 7178 if (OpInfo.isIndirect) { 7179 emitInlineAsmError( 7180 CS, "Don't know how to handle indirect register inputs yet " 7181 "for constraint '" + 7182 Twine(OpInfo.ConstraintCode) + "'"); 7183 return; 7184 } 7185 7186 // Copy the input into the appropriate registers. 7187 if (OpInfo.AssignedRegs.Regs.empty()) { 7188 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7189 Twine(OpInfo.ConstraintCode) + "'"); 7190 return; 7191 } 7192 7193 SDLoc dl = getCurSDLoc(); 7194 7195 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7196 Chain, &Flag, CS.getInstruction()); 7197 7198 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7199 dl, DAG, AsmNodeOperands); 7200 break; 7201 } 7202 case InlineAsm::isClobber: { 7203 // Add the clobbered value to the operand list, so that the register 7204 // allocator is aware that the physreg got clobbered. 7205 if (!OpInfo.AssignedRegs.Regs.empty()) 7206 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7207 false, 0, getCurSDLoc(), DAG, 7208 AsmNodeOperands); 7209 break; 7210 } 7211 } 7212 } 7213 7214 // Finish up input operands. Set the input chain and add the flag last. 7215 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7216 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7217 7218 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7219 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7220 Flag = Chain.getValue(1); 7221 7222 // If this asm returns a register value, copy the result from that register 7223 // and set it as the value of the call. 7224 if (!RetValRegs.Regs.empty()) { 7225 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7226 Chain, &Flag, CS.getInstruction()); 7227 7228 // FIXME: Why don't we do this for inline asms with MRVs? 7229 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7230 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7231 7232 // If any of the results of the inline asm is a vector, it may have the 7233 // wrong width/num elts. This can happen for register classes that can 7234 // contain multiple different value types. The preg or vreg allocated may 7235 // not have the same VT as was expected. Convert it to the right type 7236 // with bit_convert. 7237 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7238 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7239 ResultType, Val); 7240 7241 } else if (ResultType != Val.getValueType() && 7242 ResultType.isInteger() && Val.getValueType().isInteger()) { 7243 // If a result value was tied to an input value, the computed result may 7244 // have a wider width than the expected result. Extract the relevant 7245 // portion. 7246 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7247 } 7248 7249 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7250 } 7251 7252 setValue(CS.getInstruction(), Val); 7253 // Don't need to use this as a chain in this case. 7254 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7255 return; 7256 } 7257 7258 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7259 7260 // Process indirect outputs, first output all of the flagged copies out of 7261 // physregs. 7262 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7263 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7264 const Value *Ptr = IndirectStoresToEmit[i].second; 7265 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7266 Chain, &Flag, IA); 7267 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7268 } 7269 7270 // Emit the non-flagged stores from the physregs. 7271 SmallVector<SDValue, 8> OutChains; 7272 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7273 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7274 getValue(StoresToEmit[i].second), 7275 MachinePointerInfo(StoresToEmit[i].second)); 7276 OutChains.push_back(Val); 7277 } 7278 7279 if (!OutChains.empty()) 7280 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7281 7282 DAG.setRoot(Chain); 7283 } 7284 7285 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7286 const Twine &Message) { 7287 LLVMContext &Ctx = *DAG.getContext(); 7288 Ctx.emitError(CS.getInstruction(), Message); 7289 7290 // Make sure we leave the DAG in a valid state 7291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7292 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7293 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7294 } 7295 7296 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7297 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7298 MVT::Other, getRoot(), 7299 getValue(I.getArgOperand(0)), 7300 DAG.getSrcValue(I.getArgOperand(0)))); 7301 } 7302 7303 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7305 const DataLayout &DL = DAG.getDataLayout(); 7306 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7307 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7308 DAG.getSrcValue(I.getOperand(0)), 7309 DL.getABITypeAlignment(I.getType())); 7310 setValue(&I, V); 7311 DAG.setRoot(V.getValue(1)); 7312 } 7313 7314 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7315 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7316 MVT::Other, getRoot(), 7317 getValue(I.getArgOperand(0)), 7318 DAG.getSrcValue(I.getArgOperand(0)))); 7319 } 7320 7321 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7322 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7323 MVT::Other, getRoot(), 7324 getValue(I.getArgOperand(0)), 7325 getValue(I.getArgOperand(1)), 7326 DAG.getSrcValue(I.getArgOperand(0)), 7327 DAG.getSrcValue(I.getArgOperand(1)))); 7328 } 7329 7330 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7331 const Instruction &I, 7332 SDValue Op) { 7333 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7334 if (!Range) 7335 return Op; 7336 7337 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7338 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7339 return Op; 7340 7341 APInt Lo = CR.getUnsignedMin(); 7342 if (!Lo.isMinValue()) 7343 return Op; 7344 7345 APInt Hi = CR.getUnsignedMax(); 7346 unsigned Bits = Hi.getActiveBits(); 7347 7348 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7349 7350 SDLoc SL = getCurSDLoc(); 7351 7352 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7353 DAG.getValueType(SmallVT)); 7354 unsigned NumVals = Op.getNode()->getNumValues(); 7355 if (NumVals == 1) 7356 return ZExt; 7357 7358 SmallVector<SDValue, 4> Ops; 7359 7360 Ops.push_back(ZExt); 7361 for (unsigned I = 1; I != NumVals; ++I) 7362 Ops.push_back(Op.getValue(I)); 7363 7364 return DAG.getMergeValues(Ops, SL); 7365 } 7366 7367 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7368 /// the call being lowered. 7369 /// 7370 /// This is a helper for lowering intrinsics that follow a target calling 7371 /// convention or require stack pointer adjustment. Only a subset of the 7372 /// intrinsic's operands need to participate in the calling convention. 7373 void SelectionDAGBuilder::populateCallLoweringInfo( 7374 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7375 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7376 bool IsPatchPoint) { 7377 TargetLowering::ArgListTy Args; 7378 Args.reserve(NumArgs); 7379 7380 // Populate the argument list. 7381 // Attributes for args start at offset 1, after the return attribute. 7382 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7383 ArgI != ArgE; ++ArgI) { 7384 const Value *V = CS->getOperand(ArgI); 7385 7386 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7387 7388 TargetLowering::ArgListEntry Entry; 7389 Entry.Node = getValue(V); 7390 Entry.Ty = V->getType(); 7391 Entry.setAttributes(&CS, AttrI); 7392 Args.push_back(Entry); 7393 } 7394 7395 CLI.setDebugLoc(getCurSDLoc()) 7396 .setChain(getRoot()) 7397 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7398 .setDiscardResult(CS->use_empty()) 7399 .setIsPatchPoint(IsPatchPoint); 7400 } 7401 7402 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7403 /// or patchpoint target node's operand list. 7404 /// 7405 /// Constants are converted to TargetConstants purely as an optimization to 7406 /// avoid constant materialization and register allocation. 7407 /// 7408 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7409 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7410 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7411 /// address materialization and register allocation, but may also be required 7412 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7413 /// alloca in the entry block, then the runtime may assume that the alloca's 7414 /// StackMap location can be read immediately after compilation and that the 7415 /// location is valid at any point during execution (this is similar to the 7416 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7417 /// only available in a register, then the runtime would need to trap when 7418 /// execution reaches the StackMap in order to read the alloca's location. 7419 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7420 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7421 SelectionDAGBuilder &Builder) { 7422 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7423 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7424 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7425 Ops.push_back( 7426 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7427 Ops.push_back( 7428 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7429 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7430 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7431 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7432 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7433 } else 7434 Ops.push_back(OpVal); 7435 } 7436 } 7437 7438 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7439 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7440 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7441 // [live variables...]) 7442 7443 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7444 7445 SDValue Chain, InFlag, Callee, NullPtr; 7446 SmallVector<SDValue, 32> Ops; 7447 7448 SDLoc DL = getCurSDLoc(); 7449 Callee = getValue(CI.getCalledValue()); 7450 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7451 7452 // The stackmap intrinsic only records the live variables (the arguemnts 7453 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7454 // intrinsic, this won't be lowered to a function call. This means we don't 7455 // have to worry about calling conventions and target specific lowering code. 7456 // Instead we perform the call lowering right here. 7457 // 7458 // chain, flag = CALLSEQ_START(chain, 0) 7459 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7460 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7461 // 7462 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7463 InFlag = Chain.getValue(1); 7464 7465 // Add the <id> and <numBytes> constants. 7466 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7467 Ops.push_back(DAG.getTargetConstant( 7468 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7469 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7470 Ops.push_back(DAG.getTargetConstant( 7471 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7472 MVT::i32)); 7473 7474 // Push live variables for the stack map. 7475 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7476 7477 // We are not pushing any register mask info here on the operands list, 7478 // because the stackmap doesn't clobber anything. 7479 7480 // Push the chain and the glue flag. 7481 Ops.push_back(Chain); 7482 Ops.push_back(InFlag); 7483 7484 // Create the STACKMAP node. 7485 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7486 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7487 Chain = SDValue(SM, 0); 7488 InFlag = Chain.getValue(1); 7489 7490 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7491 7492 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7493 7494 // Set the root to the target-lowered call chain. 7495 DAG.setRoot(Chain); 7496 7497 // Inform the Frame Information that we have a stackmap in this function. 7498 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7499 } 7500 7501 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7502 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7503 const BasicBlock *EHPadBB) { 7504 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7505 // i32 <numBytes>, 7506 // i8* <target>, 7507 // i32 <numArgs>, 7508 // [Args...], 7509 // [live variables...]) 7510 7511 CallingConv::ID CC = CS.getCallingConv(); 7512 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7513 bool HasDef = !CS->getType()->isVoidTy(); 7514 SDLoc dl = getCurSDLoc(); 7515 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7516 7517 // Handle immediate and symbolic callees. 7518 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7519 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7520 /*isTarget=*/true); 7521 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7522 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7523 SDLoc(SymbolicCallee), 7524 SymbolicCallee->getValueType(0)); 7525 7526 // Get the real number of arguments participating in the call <numArgs> 7527 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7528 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7529 7530 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7531 // Intrinsics include all meta-operands up to but not including CC. 7532 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7533 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7534 "Not enough arguments provided to the patchpoint intrinsic"); 7535 7536 // For AnyRegCC the arguments are lowered later on manually. 7537 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7538 Type *ReturnTy = 7539 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7540 7541 TargetLowering::CallLoweringInfo CLI(DAG); 7542 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7543 true); 7544 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7545 7546 SDNode *CallEnd = Result.second.getNode(); 7547 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7548 CallEnd = CallEnd->getOperand(0).getNode(); 7549 7550 /// Get a call instruction from the call sequence chain. 7551 /// Tail calls are not allowed. 7552 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7553 "Expected a callseq node."); 7554 SDNode *Call = CallEnd->getOperand(0).getNode(); 7555 bool HasGlue = Call->getGluedNode(); 7556 7557 // Replace the target specific call node with the patchable intrinsic. 7558 SmallVector<SDValue, 8> Ops; 7559 7560 // Add the <id> and <numBytes> constants. 7561 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7562 Ops.push_back(DAG.getTargetConstant( 7563 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7564 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7565 Ops.push_back(DAG.getTargetConstant( 7566 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7567 MVT::i32)); 7568 7569 // Add the callee. 7570 Ops.push_back(Callee); 7571 7572 // Adjust <numArgs> to account for any arguments that have been passed on the 7573 // stack instead. 7574 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7575 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7576 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7577 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7578 7579 // Add the calling convention 7580 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7581 7582 // Add the arguments we omitted previously. The register allocator should 7583 // place these in any free register. 7584 if (IsAnyRegCC) 7585 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7586 Ops.push_back(getValue(CS.getArgument(i))); 7587 7588 // Push the arguments from the call instruction up to the register mask. 7589 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7590 Ops.append(Call->op_begin() + 2, e); 7591 7592 // Push live variables for the stack map. 7593 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7594 7595 // Push the register mask info. 7596 if (HasGlue) 7597 Ops.push_back(*(Call->op_end()-2)); 7598 else 7599 Ops.push_back(*(Call->op_end()-1)); 7600 7601 // Push the chain (this is originally the first operand of the call, but 7602 // becomes now the last or second to last operand). 7603 Ops.push_back(*(Call->op_begin())); 7604 7605 // Push the glue flag (last operand). 7606 if (HasGlue) 7607 Ops.push_back(*(Call->op_end()-1)); 7608 7609 SDVTList NodeTys; 7610 if (IsAnyRegCC && HasDef) { 7611 // Create the return types based on the intrinsic definition 7612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7613 SmallVector<EVT, 3> ValueVTs; 7614 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7615 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7616 7617 // There is always a chain and a glue type at the end 7618 ValueVTs.push_back(MVT::Other); 7619 ValueVTs.push_back(MVT::Glue); 7620 NodeTys = DAG.getVTList(ValueVTs); 7621 } else 7622 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7623 7624 // Replace the target specific call node with a PATCHPOINT node. 7625 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7626 dl, NodeTys, Ops); 7627 7628 // Update the NodeMap. 7629 if (HasDef) { 7630 if (IsAnyRegCC) 7631 setValue(CS.getInstruction(), SDValue(MN, 0)); 7632 else 7633 setValue(CS.getInstruction(), Result.first); 7634 } 7635 7636 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7637 // call sequence. Furthermore the location of the chain and glue can change 7638 // when the AnyReg calling convention is used and the intrinsic returns a 7639 // value. 7640 if (IsAnyRegCC && HasDef) { 7641 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7642 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7643 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7644 } else 7645 DAG.ReplaceAllUsesWith(Call, MN); 7646 DAG.DeleteNode(Call); 7647 7648 // Inform the Frame Information that we have a patchpoint in this function. 7649 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7650 } 7651 7652 /// Returns an AttributeSet representing the attributes applied to the return 7653 /// value of the given call. 7654 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7655 SmallVector<Attribute::AttrKind, 2> Attrs; 7656 if (CLI.RetSExt) 7657 Attrs.push_back(Attribute::SExt); 7658 if (CLI.RetZExt) 7659 Attrs.push_back(Attribute::ZExt); 7660 if (CLI.IsInReg) 7661 Attrs.push_back(Attribute::InReg); 7662 7663 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7664 Attrs); 7665 } 7666 7667 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7668 /// implementation, which just calls LowerCall. 7669 /// FIXME: When all targets are 7670 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7671 std::pair<SDValue, SDValue> 7672 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7673 // Handle the incoming return values from the call. 7674 CLI.Ins.clear(); 7675 Type *OrigRetTy = CLI.RetTy; 7676 SmallVector<EVT, 4> RetTys; 7677 SmallVector<uint64_t, 4> Offsets; 7678 auto &DL = CLI.DAG.getDataLayout(); 7679 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7680 7681 SmallVector<ISD::OutputArg, 4> Outs; 7682 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7683 7684 bool CanLowerReturn = 7685 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7686 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7687 7688 SDValue DemoteStackSlot; 7689 int DemoteStackIdx = -100; 7690 if (!CanLowerReturn) { 7691 // FIXME: equivalent assert? 7692 // assert(!CS.hasInAllocaArgument() && 7693 // "sret demotion is incompatible with inalloca"); 7694 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7695 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7696 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7697 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7698 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7699 7700 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7701 ArgListEntry Entry; 7702 Entry.Node = DemoteStackSlot; 7703 Entry.Ty = StackSlotPtrType; 7704 Entry.isSExt = false; 7705 Entry.isZExt = false; 7706 Entry.isInReg = false; 7707 Entry.isSRet = true; 7708 Entry.isNest = false; 7709 Entry.isByVal = false; 7710 Entry.isReturned = false; 7711 Entry.isSwiftSelf = false; 7712 Entry.isSwiftError = false; 7713 Entry.Alignment = Align; 7714 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7715 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7716 7717 // sret demotion isn't compatible with tail-calls, since the sret argument 7718 // points into the callers stack frame. 7719 CLI.IsTailCall = false; 7720 } else { 7721 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7722 EVT VT = RetTys[I]; 7723 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7724 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7725 for (unsigned i = 0; i != NumRegs; ++i) { 7726 ISD::InputArg MyFlags; 7727 MyFlags.VT = RegisterVT; 7728 MyFlags.ArgVT = VT; 7729 MyFlags.Used = CLI.IsReturnValueUsed; 7730 if (CLI.RetSExt) 7731 MyFlags.Flags.setSExt(); 7732 if (CLI.RetZExt) 7733 MyFlags.Flags.setZExt(); 7734 if (CLI.IsInReg) 7735 MyFlags.Flags.setInReg(); 7736 CLI.Ins.push_back(MyFlags); 7737 } 7738 } 7739 } 7740 7741 // We push in swifterror return as the last element of CLI.Ins. 7742 ArgListTy &Args = CLI.getArgs(); 7743 if (supportSwiftError()) { 7744 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7745 if (Args[i].isSwiftError) { 7746 ISD::InputArg MyFlags; 7747 MyFlags.VT = getPointerTy(DL); 7748 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7749 MyFlags.Flags.setSwiftError(); 7750 CLI.Ins.push_back(MyFlags); 7751 } 7752 } 7753 } 7754 7755 // Handle all of the outgoing arguments. 7756 CLI.Outs.clear(); 7757 CLI.OutVals.clear(); 7758 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7759 SmallVector<EVT, 4> ValueVTs; 7760 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7761 Type *FinalType = Args[i].Ty; 7762 if (Args[i].isByVal) 7763 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7764 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7765 FinalType, CLI.CallConv, CLI.IsVarArg); 7766 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7767 ++Value) { 7768 EVT VT = ValueVTs[Value]; 7769 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7770 SDValue Op = SDValue(Args[i].Node.getNode(), 7771 Args[i].Node.getResNo() + Value); 7772 ISD::ArgFlagsTy Flags; 7773 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7774 7775 if (Args[i].isZExt) 7776 Flags.setZExt(); 7777 if (Args[i].isSExt) 7778 Flags.setSExt(); 7779 if (Args[i].isInReg) { 7780 // If we are using vectorcall calling convention, a structure that is 7781 // passed InReg - is surely an HVA 7782 if (CLI.CallConv == CallingConv::X86_VectorCall && 7783 isa<StructType>(FinalType)) { 7784 // The first value of a structure is marked 7785 if (0 == Value) 7786 Flags.setHvaStart(); 7787 Flags.setHva(); 7788 } 7789 // Set InReg Flag 7790 Flags.setInReg(); 7791 } 7792 if (Args[i].isSRet) 7793 Flags.setSRet(); 7794 if (Args[i].isSwiftSelf) 7795 Flags.setSwiftSelf(); 7796 if (Args[i].isSwiftError) 7797 Flags.setSwiftError(); 7798 if (Args[i].isByVal) 7799 Flags.setByVal(); 7800 if (Args[i].isInAlloca) { 7801 Flags.setInAlloca(); 7802 // Set the byval flag for CCAssignFn callbacks that don't know about 7803 // inalloca. This way we can know how many bytes we should've allocated 7804 // and how many bytes a callee cleanup function will pop. If we port 7805 // inalloca to more targets, we'll have to add custom inalloca handling 7806 // in the various CC lowering callbacks. 7807 Flags.setByVal(); 7808 } 7809 if (Args[i].isByVal || Args[i].isInAlloca) { 7810 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7811 Type *ElementTy = Ty->getElementType(); 7812 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7813 // For ByVal, alignment should come from FE. BE will guess if this 7814 // info is not there but there are cases it cannot get right. 7815 unsigned FrameAlign; 7816 if (Args[i].Alignment) 7817 FrameAlign = Args[i].Alignment; 7818 else 7819 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7820 Flags.setByValAlign(FrameAlign); 7821 } 7822 if (Args[i].isNest) 7823 Flags.setNest(); 7824 if (NeedsRegBlock) 7825 Flags.setInConsecutiveRegs(); 7826 Flags.setOrigAlign(OriginalAlignment); 7827 7828 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7829 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7830 SmallVector<SDValue, 4> Parts(NumParts); 7831 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7832 7833 if (Args[i].isSExt) 7834 ExtendKind = ISD::SIGN_EXTEND; 7835 else if (Args[i].isZExt) 7836 ExtendKind = ISD::ZERO_EXTEND; 7837 7838 // Conservatively only handle 'returned' on non-vectors for now 7839 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7840 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7841 "unexpected use of 'returned'"); 7842 // Before passing 'returned' to the target lowering code, ensure that 7843 // either the register MVT and the actual EVT are the same size or that 7844 // the return value and argument are extended in the same way; in these 7845 // cases it's safe to pass the argument register value unchanged as the 7846 // return register value (although it's at the target's option whether 7847 // to do so) 7848 // TODO: allow code generation to take advantage of partially preserved 7849 // registers rather than clobbering the entire register when the 7850 // parameter extension method is not compatible with the return 7851 // extension method 7852 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7853 (ExtendKind != ISD::ANY_EXTEND && 7854 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7855 Flags.setReturned(); 7856 } 7857 7858 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7859 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7860 7861 for (unsigned j = 0; j != NumParts; ++j) { 7862 // if it isn't first piece, alignment must be 1 7863 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7864 i < CLI.NumFixedArgs, 7865 i, j*Parts[j].getValueType().getStoreSize()); 7866 if (NumParts > 1 && j == 0) 7867 MyFlags.Flags.setSplit(); 7868 else if (j != 0) { 7869 MyFlags.Flags.setOrigAlign(1); 7870 if (j == NumParts - 1) 7871 MyFlags.Flags.setSplitEnd(); 7872 } 7873 7874 CLI.Outs.push_back(MyFlags); 7875 CLI.OutVals.push_back(Parts[j]); 7876 } 7877 7878 if (NeedsRegBlock && Value == NumValues - 1) 7879 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7880 } 7881 } 7882 7883 SmallVector<SDValue, 4> InVals; 7884 CLI.Chain = LowerCall(CLI, InVals); 7885 7886 // Update CLI.InVals to use outside of this function. 7887 CLI.InVals = InVals; 7888 7889 // Verify that the target's LowerCall behaved as expected. 7890 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7891 "LowerCall didn't return a valid chain!"); 7892 assert((!CLI.IsTailCall || InVals.empty()) && 7893 "LowerCall emitted a return value for a tail call!"); 7894 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7895 "LowerCall didn't emit the correct number of values!"); 7896 7897 // For a tail call, the return value is merely live-out and there aren't 7898 // any nodes in the DAG representing it. Return a special value to 7899 // indicate that a tail call has been emitted and no more Instructions 7900 // should be processed in the current block. 7901 if (CLI.IsTailCall) { 7902 CLI.DAG.setRoot(CLI.Chain); 7903 return std::make_pair(SDValue(), SDValue()); 7904 } 7905 7906 #ifndef NDEBUG 7907 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7908 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7909 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7910 "LowerCall emitted a value with the wrong type!"); 7911 } 7912 #endif 7913 7914 SmallVector<SDValue, 4> ReturnValues; 7915 if (!CanLowerReturn) { 7916 // The instruction result is the result of loading from the 7917 // hidden sret parameter. 7918 SmallVector<EVT, 1> PVTs; 7919 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7920 7921 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7922 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7923 EVT PtrVT = PVTs[0]; 7924 7925 unsigned NumValues = RetTys.size(); 7926 ReturnValues.resize(NumValues); 7927 SmallVector<SDValue, 4> Chains(NumValues); 7928 7929 // An aggregate return value cannot wrap around the address space, so 7930 // offsets to its parts don't wrap either. 7931 SDNodeFlags Flags; 7932 Flags.setNoUnsignedWrap(true); 7933 7934 for (unsigned i = 0; i < NumValues; ++i) { 7935 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7936 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7937 PtrVT), &Flags); 7938 SDValue L = CLI.DAG.getLoad( 7939 RetTys[i], CLI.DL, CLI.Chain, Add, 7940 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7941 DemoteStackIdx, Offsets[i]), 7942 /* Alignment = */ 1); 7943 ReturnValues[i] = L; 7944 Chains[i] = L.getValue(1); 7945 } 7946 7947 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7948 } else { 7949 // Collect the legal value parts into potentially illegal values 7950 // that correspond to the original function's return values. 7951 Optional<ISD::NodeType> AssertOp; 7952 if (CLI.RetSExt) 7953 AssertOp = ISD::AssertSext; 7954 else if (CLI.RetZExt) 7955 AssertOp = ISD::AssertZext; 7956 unsigned CurReg = 0; 7957 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7958 EVT VT = RetTys[I]; 7959 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7960 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7961 7962 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7963 NumRegs, RegisterVT, VT, nullptr, 7964 AssertOp)); 7965 CurReg += NumRegs; 7966 } 7967 7968 // For a function returning void, there is no return value. We can't create 7969 // such a node, so we just return a null return value in that case. In 7970 // that case, nothing will actually look at the value. 7971 if (ReturnValues.empty()) 7972 return std::make_pair(SDValue(), CLI.Chain); 7973 } 7974 7975 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7976 CLI.DAG.getVTList(RetTys), ReturnValues); 7977 return std::make_pair(Res, CLI.Chain); 7978 } 7979 7980 void TargetLowering::LowerOperationWrapper(SDNode *N, 7981 SmallVectorImpl<SDValue> &Results, 7982 SelectionDAG &DAG) const { 7983 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7984 Results.push_back(Res); 7985 } 7986 7987 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7988 llvm_unreachable("LowerOperation not implemented for this target!"); 7989 } 7990 7991 void 7992 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7993 SDValue Op = getNonRegisterValue(V); 7994 assert((Op.getOpcode() != ISD::CopyFromReg || 7995 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7996 "Copy from a reg to the same reg!"); 7997 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7998 7999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8000 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8001 V->getType()); 8002 SDValue Chain = DAG.getEntryNode(); 8003 8004 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8005 FuncInfo.PreferredExtendType.end()) 8006 ? ISD::ANY_EXTEND 8007 : FuncInfo.PreferredExtendType[V]; 8008 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8009 PendingExports.push_back(Chain); 8010 } 8011 8012 #include "llvm/CodeGen/SelectionDAGISel.h" 8013 8014 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8015 /// entry block, return true. This includes arguments used by switches, since 8016 /// the switch may expand into multiple basic blocks. 8017 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8018 // With FastISel active, we may be splitting blocks, so force creation 8019 // of virtual registers for all non-dead arguments. 8020 if (FastISel) 8021 return A->use_empty(); 8022 8023 const BasicBlock &Entry = A->getParent()->front(); 8024 for (const User *U : A->users()) 8025 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8026 return false; // Use not in entry block. 8027 8028 return true; 8029 } 8030 8031 typedef DenseMap<const Argument *, 8032 std::pair<const AllocaInst *, const StoreInst *>> 8033 ArgCopyElisionMapTy; 8034 8035 /// Scan the entry block of the function in FuncInfo for arguments that look 8036 /// like copies into a local alloca. Record any copied arguments in 8037 /// ArgCopyElisionCandidates. 8038 static void 8039 findArgumentCopyElisionCandidates(const DataLayout &DL, 8040 FunctionLoweringInfo *FuncInfo, 8041 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8042 // Record the state of every static alloca used in the entry block. Argument 8043 // allocas are all used in the entry block, so we need approximately as many 8044 // entries as we have arguments. 8045 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8046 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8047 unsigned NumArgs = FuncInfo->Fn->getArgumentList().size(); 8048 StaticAllocas.reserve(NumArgs * 2); 8049 8050 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8051 if (!V) 8052 return nullptr; 8053 V = V->stripPointerCasts(); 8054 const auto *AI = dyn_cast<AllocaInst>(V); 8055 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8056 return nullptr; 8057 auto Iter = StaticAllocas.insert({AI, Unknown}); 8058 return &Iter.first->second; 8059 }; 8060 8061 // Look for stores of arguments to static allocas. Look through bitcasts and 8062 // GEPs to handle type coercions, as long as the alloca is fully initialized 8063 // by the store. Any non-store use of an alloca escapes it and any subsequent 8064 // unanalyzed store might write it. 8065 // FIXME: Handle structs initialized with multiple stores. 8066 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8067 // Look for stores, and handle non-store uses conservatively. 8068 const auto *SI = dyn_cast<StoreInst>(&I); 8069 if (!SI) { 8070 // We will look through cast uses, so ignore them completely. 8071 if (I.isCast()) 8072 continue; 8073 // Ignore debug info intrinsics, they don't escape or store to allocas. 8074 if (isa<DbgInfoIntrinsic>(I)) 8075 continue; 8076 // This is an unknown instruction. Assume it escapes or writes to all 8077 // static alloca operands. 8078 for (const Use &U : I.operands()) { 8079 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8080 *Info = StaticAllocaInfo::Clobbered; 8081 } 8082 continue; 8083 } 8084 8085 // If the stored value is a static alloca, mark it as escaped. 8086 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8087 *Info = StaticAllocaInfo::Clobbered; 8088 8089 // Check if the destination is a static alloca. 8090 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8091 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8092 if (!Info) 8093 continue; 8094 const AllocaInst *AI = cast<AllocaInst>(Dst); 8095 8096 // Skip allocas that have been initialized or clobbered. 8097 if (*Info != StaticAllocaInfo::Unknown) 8098 continue; 8099 8100 // Check if the stored value is an argument, and that this store fully 8101 // initializes the alloca. Don't elide copies from the same argument twice. 8102 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8103 const auto *Arg = dyn_cast<Argument>(Val); 8104 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8105 Arg->getType()->isEmptyTy() || 8106 DL.getTypeStoreSize(Arg->getType()) != 8107 DL.getTypeAllocSize(AI->getAllocatedType()) || 8108 ArgCopyElisionCandidates.count(Arg)) { 8109 *Info = StaticAllocaInfo::Clobbered; 8110 continue; 8111 } 8112 8113 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8114 8115 // Mark this alloca and store for argument copy elision. 8116 *Info = StaticAllocaInfo::Elidable; 8117 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8118 8119 // Stop scanning if we've seen all arguments. This will happen early in -O0 8120 // builds, which is useful, because -O0 builds have large entry blocks and 8121 // many allocas. 8122 if (ArgCopyElisionCandidates.size() == NumArgs) 8123 break; 8124 } 8125 } 8126 8127 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8128 /// ArgVal is a load from a suitable fixed stack object. 8129 static void tryToElideArgumentCopy( 8130 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8131 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8132 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8133 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8134 SDValue ArgVal, bool &ArgHasUses) { 8135 // Check if this is a load from a fixed stack object. 8136 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8137 if (!LNode) 8138 return; 8139 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8140 if (!FINode) 8141 return; 8142 8143 // Check that the fixed stack object is the right size and alignment. 8144 // Look at the alignment that the user wrote on the alloca instead of looking 8145 // at the stack object. 8146 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8147 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8148 const AllocaInst *AI = ArgCopyIter->second.first; 8149 int FixedIndex = FINode->getIndex(); 8150 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8151 int OldIndex = AllocaIndex; 8152 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8153 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8154 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8155 "object size\n"); 8156 return; 8157 } 8158 unsigned RequiredAlignment = AI->getAlignment(); 8159 if (!RequiredAlignment) { 8160 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8161 AI->getAllocatedType()); 8162 } 8163 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8164 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8165 "greater than stack argument alignment (" 8166 << RequiredAlignment << " vs " 8167 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8168 return; 8169 } 8170 8171 // Perform the elision. Delete the old stack object and replace its only use 8172 // in the variable info map. Mark the stack object as mutable. 8173 DEBUG({ 8174 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8175 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8176 << '\n'; 8177 }); 8178 MFI.RemoveStackObject(OldIndex); 8179 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8180 AllocaIndex = FixedIndex; 8181 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8182 Chains.push_back(ArgVal.getValue(1)); 8183 8184 // Avoid emitting code for the store implementing the copy. 8185 const StoreInst *SI = ArgCopyIter->second.second; 8186 ElidedArgCopyInstrs.insert(SI); 8187 8188 // Check for uses of the argument again so that we can avoid exporting ArgVal 8189 // if it is't used by anything other than the store. 8190 for (const Value *U : Arg.users()) { 8191 if (U != SI) { 8192 ArgHasUses = true; 8193 break; 8194 } 8195 } 8196 } 8197 8198 void SelectionDAGISel::LowerArguments(const Function &F) { 8199 SelectionDAG &DAG = SDB->DAG; 8200 SDLoc dl = SDB->getCurSDLoc(); 8201 const DataLayout &DL = DAG.getDataLayout(); 8202 SmallVector<ISD::InputArg, 16> Ins; 8203 8204 if (!FuncInfo->CanLowerReturn) { 8205 // Put in an sret pointer parameter before all the other parameters. 8206 SmallVector<EVT, 1> ValueVTs; 8207 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8208 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8209 8210 // NOTE: Assuming that a pointer will never break down to more than one VT 8211 // or one register. 8212 ISD::ArgFlagsTy Flags; 8213 Flags.setSRet(); 8214 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8215 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8216 ISD::InputArg::NoArgIndex, 0); 8217 Ins.push_back(RetArg); 8218 } 8219 8220 // Look for stores of arguments to static allocas. Mark such arguments with a 8221 // flag to ask the target to give us the memory location of that argument if 8222 // available. 8223 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8224 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8225 8226 // Set up the incoming argument description vector. 8227 unsigned Idx = 0; 8228 for (const Argument &Arg : F.args()) { 8229 ++Idx; 8230 SmallVector<EVT, 4> ValueVTs; 8231 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8232 bool isArgValueUsed = !Arg.use_empty(); 8233 unsigned PartBase = 0; 8234 Type *FinalType = Arg.getType(); 8235 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8236 FinalType = cast<PointerType>(FinalType)->getElementType(); 8237 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8238 FinalType, F.getCallingConv(), F.isVarArg()); 8239 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8240 Value != NumValues; ++Value) { 8241 EVT VT = ValueVTs[Value]; 8242 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8243 ISD::ArgFlagsTy Flags; 8244 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8245 8246 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8247 Flags.setZExt(); 8248 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8249 Flags.setSExt(); 8250 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8251 // If we are using vectorcall calling convention, a structure that is 8252 // passed InReg - is surely an HVA 8253 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8254 isa<StructType>(Arg.getType())) { 8255 // The first value of a structure is marked 8256 if (0 == Value) 8257 Flags.setHvaStart(); 8258 Flags.setHva(); 8259 } 8260 // Set InReg Flag 8261 Flags.setInReg(); 8262 } 8263 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8264 Flags.setSRet(); 8265 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8266 Flags.setSwiftSelf(); 8267 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8268 Flags.setSwiftError(); 8269 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8270 Flags.setByVal(); 8271 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8272 Flags.setInAlloca(); 8273 // Set the byval flag for CCAssignFn callbacks that don't know about 8274 // inalloca. This way we can know how many bytes we should've allocated 8275 // and how many bytes a callee cleanup function will pop. If we port 8276 // inalloca to more targets, we'll have to add custom inalloca handling 8277 // in the various CC lowering callbacks. 8278 Flags.setByVal(); 8279 } 8280 if (F.getCallingConv() == CallingConv::X86_INTR) { 8281 // IA Interrupt passes frame (1st parameter) by value in the stack. 8282 if (Idx == 1) 8283 Flags.setByVal(); 8284 } 8285 if (Flags.isByVal() || Flags.isInAlloca()) { 8286 PointerType *Ty = cast<PointerType>(Arg.getType()); 8287 Type *ElementTy = Ty->getElementType(); 8288 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8289 // For ByVal, alignment should be passed from FE. BE will guess if 8290 // this info is not there but there are cases it cannot get right. 8291 unsigned FrameAlign; 8292 if (F.getParamAlignment(Idx)) 8293 FrameAlign = F.getParamAlignment(Idx); 8294 else 8295 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8296 Flags.setByValAlign(FrameAlign); 8297 } 8298 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8299 Flags.setNest(); 8300 if (NeedsRegBlock) 8301 Flags.setInConsecutiveRegs(); 8302 Flags.setOrigAlign(OriginalAlignment); 8303 if (ArgCopyElisionCandidates.count(&Arg)) 8304 Flags.setCopyElisionCandidate(); 8305 8306 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8307 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8308 for (unsigned i = 0; i != NumRegs; ++i) { 8309 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8310 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8311 if (NumRegs > 1 && i == 0) 8312 MyFlags.Flags.setSplit(); 8313 // if it isn't first piece, alignment must be 1 8314 else if (i > 0) { 8315 MyFlags.Flags.setOrigAlign(1); 8316 if (i == NumRegs - 1) 8317 MyFlags.Flags.setSplitEnd(); 8318 } 8319 Ins.push_back(MyFlags); 8320 } 8321 if (NeedsRegBlock && Value == NumValues - 1) 8322 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8323 PartBase += VT.getStoreSize(); 8324 } 8325 } 8326 8327 // Call the target to set up the argument values. 8328 SmallVector<SDValue, 8> InVals; 8329 SDValue NewRoot = TLI->LowerFormalArguments( 8330 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8331 8332 // Verify that the target's LowerFormalArguments behaved as expected. 8333 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8334 "LowerFormalArguments didn't return a valid chain!"); 8335 assert(InVals.size() == Ins.size() && 8336 "LowerFormalArguments didn't emit the correct number of values!"); 8337 DEBUG({ 8338 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8339 assert(InVals[i].getNode() && 8340 "LowerFormalArguments emitted a null value!"); 8341 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8342 "LowerFormalArguments emitted a value with the wrong type!"); 8343 } 8344 }); 8345 8346 // Update the DAG with the new chain value resulting from argument lowering. 8347 DAG.setRoot(NewRoot); 8348 8349 // Set up the argument values. 8350 unsigned i = 0; 8351 Idx = 0; 8352 if (!FuncInfo->CanLowerReturn) { 8353 // Create a virtual register for the sret pointer, and put in a copy 8354 // from the sret argument into it. 8355 SmallVector<EVT, 1> ValueVTs; 8356 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8357 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8358 MVT VT = ValueVTs[0].getSimpleVT(); 8359 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8360 Optional<ISD::NodeType> AssertOp = None; 8361 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8362 RegVT, VT, nullptr, AssertOp); 8363 8364 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8365 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8366 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8367 FuncInfo->DemoteRegister = SRetReg; 8368 NewRoot = 8369 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8370 DAG.setRoot(NewRoot); 8371 8372 // i indexes lowered arguments. Bump it past the hidden sret argument. 8373 // Idx indexes LLVM arguments. Don't touch it. 8374 ++i; 8375 } 8376 8377 SmallVector<SDValue, 4> Chains; 8378 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8379 for (const Argument &Arg : F.args()) { 8380 ++Idx; 8381 SmallVector<SDValue, 4> ArgValues; 8382 SmallVector<EVT, 4> ValueVTs; 8383 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8384 unsigned NumValues = ValueVTs.size(); 8385 if (NumValues == 0) 8386 continue; 8387 8388 bool ArgHasUses = !Arg.use_empty(); 8389 8390 // Elide the copying store if the target loaded this argument from a 8391 // suitable fixed stack object. 8392 if (Ins[i].Flags.isCopyElisionCandidate()) { 8393 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8394 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8395 InVals[i], ArgHasUses); 8396 } 8397 8398 // If this argument is unused then remember its value. It is used to generate 8399 // debugging information. 8400 bool isSwiftErrorArg = 8401 TLI->supportSwiftError() && 8402 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8403 if (!ArgHasUses && !isSwiftErrorArg) { 8404 SDB->setUnusedArgValue(&Arg, InVals[i]); 8405 8406 // Also remember any frame index for use in FastISel. 8407 if (FrameIndexSDNode *FI = 8408 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8409 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8410 } 8411 8412 for (unsigned Val = 0; Val != NumValues; ++Val) { 8413 EVT VT = ValueVTs[Val]; 8414 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8415 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8416 8417 // Even an apparant 'unused' swifterror argument needs to be returned. So 8418 // we do generate a copy for it that can be used on return from the 8419 // function. 8420 if (ArgHasUses || isSwiftErrorArg) { 8421 Optional<ISD::NodeType> AssertOp; 8422 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8423 AssertOp = ISD::AssertSext; 8424 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8425 AssertOp = ISD::AssertZext; 8426 8427 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8428 PartVT, VT, nullptr, AssertOp)); 8429 } 8430 8431 i += NumParts; 8432 } 8433 8434 // We don't need to do anything else for unused arguments. 8435 if (ArgValues.empty()) 8436 continue; 8437 8438 // Note down frame index. 8439 if (FrameIndexSDNode *FI = 8440 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8441 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8442 8443 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8444 SDB->getCurSDLoc()); 8445 8446 SDB->setValue(&Arg, Res); 8447 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8448 if (LoadSDNode *LNode = 8449 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8450 if (FrameIndexSDNode *FI = 8451 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8452 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8453 } 8454 8455 // Update the SwiftErrorVRegDefMap. 8456 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8457 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8458 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8459 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8460 FuncInfo->SwiftErrorArg, Reg); 8461 } 8462 8463 // If this argument is live outside of the entry block, insert a copy from 8464 // wherever we got it to the vreg that other BB's will reference it as. 8465 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8466 // If we can, though, try to skip creating an unnecessary vreg. 8467 // FIXME: This isn't very clean... it would be nice to make this more 8468 // general. It's also subtly incompatible with the hacks FastISel 8469 // uses with vregs. 8470 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8471 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8472 FuncInfo->ValueMap[&Arg] = Reg; 8473 continue; 8474 } 8475 } 8476 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8477 FuncInfo->InitializeRegForValue(&Arg); 8478 SDB->CopyToExportRegsIfNeeded(&Arg); 8479 } 8480 } 8481 8482 if (!Chains.empty()) { 8483 Chains.push_back(NewRoot); 8484 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8485 } 8486 8487 DAG.setRoot(NewRoot); 8488 8489 assert(i == InVals.size() && "Argument register count mismatch!"); 8490 8491 // If any argument copy elisions occurred and we have debug info, update the 8492 // stale frame indices used in the dbg.declare variable info table. 8493 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8494 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8495 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8496 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8497 if (I != ArgCopyElisionFrameIndexMap.end()) 8498 VI.Slot = I->second; 8499 } 8500 } 8501 8502 // Finally, if the target has anything special to do, allow it to do so. 8503 EmitFunctionEntryCode(); 8504 } 8505 8506 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8507 /// ensure constants are generated when needed. Remember the virtual registers 8508 /// that need to be added to the Machine PHI nodes as input. We cannot just 8509 /// directly add them, because expansion might result in multiple MBB's for one 8510 /// BB. As such, the start of the BB might correspond to a different MBB than 8511 /// the end. 8512 /// 8513 void 8514 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8515 const TerminatorInst *TI = LLVMBB->getTerminator(); 8516 8517 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8518 8519 // Check PHI nodes in successors that expect a value to be available from this 8520 // block. 8521 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8522 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8523 if (!isa<PHINode>(SuccBB->begin())) continue; 8524 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8525 8526 // If this terminator has multiple identical successors (common for 8527 // switches), only handle each succ once. 8528 if (!SuccsHandled.insert(SuccMBB).second) 8529 continue; 8530 8531 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8532 8533 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8534 // nodes and Machine PHI nodes, but the incoming operands have not been 8535 // emitted yet. 8536 for (BasicBlock::const_iterator I = SuccBB->begin(); 8537 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8538 // Ignore dead phi's. 8539 if (PN->use_empty()) continue; 8540 8541 // Skip empty types 8542 if (PN->getType()->isEmptyTy()) 8543 continue; 8544 8545 unsigned Reg; 8546 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8547 8548 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8549 unsigned &RegOut = ConstantsOut[C]; 8550 if (RegOut == 0) { 8551 RegOut = FuncInfo.CreateRegs(C->getType()); 8552 CopyValueToVirtualRegister(C, RegOut); 8553 } 8554 Reg = RegOut; 8555 } else { 8556 DenseMap<const Value *, unsigned>::iterator I = 8557 FuncInfo.ValueMap.find(PHIOp); 8558 if (I != FuncInfo.ValueMap.end()) 8559 Reg = I->second; 8560 else { 8561 assert(isa<AllocaInst>(PHIOp) && 8562 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8563 "Didn't codegen value into a register!??"); 8564 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8565 CopyValueToVirtualRegister(PHIOp, Reg); 8566 } 8567 } 8568 8569 // Remember that this register needs to added to the machine PHI node as 8570 // the input for this MBB. 8571 SmallVector<EVT, 4> ValueVTs; 8572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8573 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8574 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8575 EVT VT = ValueVTs[vti]; 8576 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8577 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8578 FuncInfo.PHINodesToUpdate.push_back( 8579 std::make_pair(&*MBBI++, Reg + i)); 8580 Reg += NumRegisters; 8581 } 8582 } 8583 } 8584 8585 ConstantsOut.clear(); 8586 } 8587 8588 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8589 /// is 0. 8590 MachineBasicBlock * 8591 SelectionDAGBuilder::StackProtectorDescriptor:: 8592 AddSuccessorMBB(const BasicBlock *BB, 8593 MachineBasicBlock *ParentMBB, 8594 bool IsLikely, 8595 MachineBasicBlock *SuccMBB) { 8596 // If SuccBB has not been created yet, create it. 8597 if (!SuccMBB) { 8598 MachineFunction *MF = ParentMBB->getParent(); 8599 MachineFunction::iterator BBI(ParentMBB); 8600 SuccMBB = MF->CreateMachineBasicBlock(BB); 8601 MF->insert(++BBI, SuccMBB); 8602 } 8603 // Add it as a successor of ParentMBB. 8604 ParentMBB->addSuccessor( 8605 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8606 return SuccMBB; 8607 } 8608 8609 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8610 MachineFunction::iterator I(MBB); 8611 if (++I == FuncInfo.MF->end()) 8612 return nullptr; 8613 return &*I; 8614 } 8615 8616 /// During lowering new call nodes can be created (such as memset, etc.). 8617 /// Those will become new roots of the current DAG, but complications arise 8618 /// when they are tail calls. In such cases, the call lowering will update 8619 /// the root, but the builder still needs to know that a tail call has been 8620 /// lowered in order to avoid generating an additional return. 8621 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8622 // If the node is null, we do have a tail call. 8623 if (MaybeTC.getNode() != nullptr) 8624 DAG.setRoot(MaybeTC); 8625 else 8626 HasTailCall = true; 8627 } 8628 8629 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8630 const SmallVectorImpl<unsigned> &TotalCases, 8631 unsigned First, unsigned Last, 8632 unsigned Density) const { 8633 assert(Last >= First); 8634 assert(TotalCases[Last] >= TotalCases[First]); 8635 8636 const APInt &LowCase = Clusters[First].Low->getValue(); 8637 const APInt &HighCase = Clusters[Last].High->getValue(); 8638 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8639 8640 // FIXME: A range of consecutive cases has 100% density, but only requires one 8641 // comparison to lower. We should discriminate against such consecutive ranges 8642 // in jump tables. 8643 8644 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8645 uint64_t Range = Diff + 1; 8646 8647 uint64_t NumCases = 8648 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8649 8650 assert(NumCases < UINT64_MAX / 100); 8651 assert(Range >= NumCases); 8652 8653 return NumCases * 100 >= Range * Density; 8654 } 8655 8656 static inline bool areJTsAllowed(const TargetLowering &TLI, 8657 const SwitchInst *SI) { 8658 const Function *Fn = SI->getParent()->getParent(); 8659 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8660 return false; 8661 8662 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8663 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8664 } 8665 8666 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8667 unsigned First, unsigned Last, 8668 const SwitchInst *SI, 8669 MachineBasicBlock *DefaultMBB, 8670 CaseCluster &JTCluster) { 8671 assert(First <= Last); 8672 8673 auto Prob = BranchProbability::getZero(); 8674 unsigned NumCmps = 0; 8675 std::vector<MachineBasicBlock*> Table; 8676 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8677 8678 // Initialize probabilities in JTProbs. 8679 for (unsigned I = First; I <= Last; ++I) 8680 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8681 8682 for (unsigned I = First; I <= Last; ++I) { 8683 assert(Clusters[I].Kind == CC_Range); 8684 Prob += Clusters[I].Prob; 8685 const APInt &Low = Clusters[I].Low->getValue(); 8686 const APInt &High = Clusters[I].High->getValue(); 8687 NumCmps += (Low == High) ? 1 : 2; 8688 if (I != First) { 8689 // Fill the gap between this and the previous cluster. 8690 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8691 assert(PreviousHigh.slt(Low)); 8692 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8693 for (uint64_t J = 0; J < Gap; J++) 8694 Table.push_back(DefaultMBB); 8695 } 8696 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8697 for (uint64_t J = 0; J < ClusterSize; ++J) 8698 Table.push_back(Clusters[I].MBB); 8699 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8700 } 8701 8702 unsigned NumDests = JTProbs.size(); 8703 if (isSuitableForBitTests(NumDests, NumCmps, 8704 Clusters[First].Low->getValue(), 8705 Clusters[Last].High->getValue())) { 8706 // Clusters[First..Last] should be lowered as bit tests instead. 8707 return false; 8708 } 8709 8710 // Create the MBB that will load from and jump through the table. 8711 // Note: We create it here, but it's not inserted into the function yet. 8712 MachineFunction *CurMF = FuncInfo.MF; 8713 MachineBasicBlock *JumpTableMBB = 8714 CurMF->CreateMachineBasicBlock(SI->getParent()); 8715 8716 // Add successors. Note: use table order for determinism. 8717 SmallPtrSet<MachineBasicBlock *, 8> Done; 8718 for (MachineBasicBlock *Succ : Table) { 8719 if (Done.count(Succ)) 8720 continue; 8721 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8722 Done.insert(Succ); 8723 } 8724 JumpTableMBB->normalizeSuccProbs(); 8725 8726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8727 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8728 ->createJumpTableIndex(Table); 8729 8730 // Set up the jump table info. 8731 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8732 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8733 Clusters[Last].High->getValue(), SI->getCondition(), 8734 nullptr, false); 8735 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8736 8737 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8738 JTCases.size() - 1, Prob); 8739 return true; 8740 } 8741 8742 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8743 const SwitchInst *SI, 8744 MachineBasicBlock *DefaultMBB) { 8745 #ifndef NDEBUG 8746 // Clusters must be non-empty, sorted, and only contain Range clusters. 8747 assert(!Clusters.empty()); 8748 for (CaseCluster &C : Clusters) 8749 assert(C.Kind == CC_Range); 8750 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8751 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8752 #endif 8753 8754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8755 if (!areJTsAllowed(TLI, SI)) 8756 return; 8757 8758 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8759 8760 const int64_t N = Clusters.size(); 8761 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8762 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8763 const unsigned MaxJumpTableSize = 8764 OptForSize || TLI.getMaximumJumpTableSize() == 0 8765 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8766 8767 if (N < 2 || N < MinJumpTableEntries) 8768 return; 8769 8770 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8771 SmallVector<unsigned, 8> TotalCases(N); 8772 for (unsigned i = 0; i < N; ++i) { 8773 const APInt &Hi = Clusters[i].High->getValue(); 8774 const APInt &Lo = Clusters[i].Low->getValue(); 8775 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8776 if (i != 0) 8777 TotalCases[i] += TotalCases[i - 1]; 8778 } 8779 8780 const unsigned MinDensity = 8781 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8782 8783 // Cheap case: the whole range may be suitable for jump table. 8784 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8785 Clusters[0].Low->getValue()) 8786 .getLimitedValue(UINT_MAX - 1) + 1; 8787 if (JumpTableSize <= MaxJumpTableSize && 8788 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8789 CaseCluster JTCluster; 8790 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8791 Clusters[0] = JTCluster; 8792 Clusters.resize(1); 8793 return; 8794 } 8795 } 8796 8797 // The algorithm below is not suitable for -O0. 8798 if (TM.getOptLevel() == CodeGenOpt::None) 8799 return; 8800 8801 // Split Clusters into minimum number of dense partitions. The algorithm uses 8802 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8803 // for the Case Statement'" (1994), but builds the MinPartitions array in 8804 // reverse order to make it easier to reconstruct the partitions in ascending 8805 // order. In the choice between two optimal partitionings, it picks the one 8806 // which yields more jump tables. 8807 8808 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8809 SmallVector<unsigned, 8> MinPartitions(N); 8810 // LastElement[i] is the last element of the partition starting at i. 8811 SmallVector<unsigned, 8> LastElement(N); 8812 // PartitionsScore[i] is used to break ties when choosing between two 8813 // partitionings resulting in the same number of partitions. 8814 SmallVector<unsigned, 8> PartitionsScore(N); 8815 // For PartitionsScore, a small number of comparisons is considered as good as 8816 // a jump table and a single comparison is considered better than a jump 8817 // table. 8818 enum PartitionScores : unsigned { 8819 NoTable = 0, 8820 Table = 1, 8821 FewCases = 1, 8822 SingleCase = 2 8823 }; 8824 8825 // Base case: There is only one way to partition Clusters[N-1]. 8826 MinPartitions[N - 1] = 1; 8827 LastElement[N - 1] = N - 1; 8828 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8829 8830 // Note: loop indexes are signed to avoid underflow. 8831 for (int64_t i = N - 2; i >= 0; i--) { 8832 // Find optimal partitioning of Clusters[i..N-1]. 8833 // Baseline: Put Clusters[i] into a partition on its own. 8834 MinPartitions[i] = MinPartitions[i + 1] + 1; 8835 LastElement[i] = i; 8836 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8837 8838 // Search for a solution that results in fewer partitions. 8839 for (int64_t j = N - 1; j > i; j--) { 8840 // Try building a partition from Clusters[i..j]. 8841 JumpTableSize = (Clusters[j].High->getValue() - 8842 Clusters[i].Low->getValue()) 8843 .getLimitedValue(UINT_MAX - 1) + 1; 8844 if (JumpTableSize <= MaxJumpTableSize && 8845 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8846 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8847 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8848 int64_t NumEntries = j - i + 1; 8849 8850 if (NumEntries == 1) 8851 Score += PartitionScores::SingleCase; 8852 else if (NumEntries <= SmallNumberOfEntries) 8853 Score += PartitionScores::FewCases; 8854 else if (NumEntries >= MinJumpTableEntries) 8855 Score += PartitionScores::Table; 8856 8857 // If this leads to fewer partitions, or to the same number of 8858 // partitions with better score, it is a better partitioning. 8859 if (NumPartitions < MinPartitions[i] || 8860 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8861 MinPartitions[i] = NumPartitions; 8862 LastElement[i] = j; 8863 PartitionsScore[i] = Score; 8864 } 8865 } 8866 } 8867 } 8868 8869 // Iterate over the partitions, replacing some with jump tables in-place. 8870 unsigned DstIndex = 0; 8871 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8872 Last = LastElement[First]; 8873 assert(Last >= First); 8874 assert(DstIndex <= First); 8875 unsigned NumClusters = Last - First + 1; 8876 8877 CaseCluster JTCluster; 8878 if (NumClusters >= MinJumpTableEntries && 8879 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8880 Clusters[DstIndex++] = JTCluster; 8881 } else { 8882 for (unsigned I = First; I <= Last; ++I) 8883 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8884 } 8885 } 8886 Clusters.resize(DstIndex); 8887 } 8888 8889 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8890 // FIXME: Using the pointer type doesn't seem ideal. 8891 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8892 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8893 return Range <= BW; 8894 } 8895 8896 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8897 unsigned NumCmps, 8898 const APInt &Low, 8899 const APInt &High) { 8900 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8901 // range of cases both require only one branch to lower. Just looking at the 8902 // number of clusters and destinations should be enough to decide whether to 8903 // build bit tests. 8904 8905 // To lower a range with bit tests, the range must fit the bitwidth of a 8906 // machine word. 8907 if (!rangeFitsInWord(Low, High)) 8908 return false; 8909 8910 // Decide whether it's profitable to lower this range with bit tests. Each 8911 // destination requires a bit test and branch, and there is an overall range 8912 // check branch. For a small number of clusters, separate comparisons might be 8913 // cheaper, and for many destinations, splitting the range might be better. 8914 return (NumDests == 1 && NumCmps >= 3) || 8915 (NumDests == 2 && NumCmps >= 5) || 8916 (NumDests == 3 && NumCmps >= 6); 8917 } 8918 8919 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8920 unsigned First, unsigned Last, 8921 const SwitchInst *SI, 8922 CaseCluster &BTCluster) { 8923 assert(First <= Last); 8924 if (First == Last) 8925 return false; 8926 8927 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8928 unsigned NumCmps = 0; 8929 for (int64_t I = First; I <= Last; ++I) { 8930 assert(Clusters[I].Kind == CC_Range); 8931 Dests.set(Clusters[I].MBB->getNumber()); 8932 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8933 } 8934 unsigned NumDests = Dests.count(); 8935 8936 APInt Low = Clusters[First].Low->getValue(); 8937 APInt High = Clusters[Last].High->getValue(); 8938 assert(Low.slt(High)); 8939 8940 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8941 return false; 8942 8943 APInt LowBound; 8944 APInt CmpRange; 8945 8946 const int BitWidth = DAG.getTargetLoweringInfo() 8947 .getPointerTy(DAG.getDataLayout()) 8948 .getSizeInBits(); 8949 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8950 8951 // Check if the clusters cover a contiguous range such that no value in the 8952 // range will jump to the default statement. 8953 bool ContiguousRange = true; 8954 for (int64_t I = First + 1; I <= Last; ++I) { 8955 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8956 ContiguousRange = false; 8957 break; 8958 } 8959 } 8960 8961 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8962 // Optimize the case where all the case values fit in a word without having 8963 // to subtract minValue. In this case, we can optimize away the subtraction. 8964 LowBound = APInt::getNullValue(Low.getBitWidth()); 8965 CmpRange = High; 8966 ContiguousRange = false; 8967 } else { 8968 LowBound = Low; 8969 CmpRange = High - Low; 8970 } 8971 8972 CaseBitsVector CBV; 8973 auto TotalProb = BranchProbability::getZero(); 8974 for (unsigned i = First; i <= Last; ++i) { 8975 // Find the CaseBits for this destination. 8976 unsigned j; 8977 for (j = 0; j < CBV.size(); ++j) 8978 if (CBV[j].BB == Clusters[i].MBB) 8979 break; 8980 if (j == CBV.size()) 8981 CBV.push_back( 8982 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8983 CaseBits *CB = &CBV[j]; 8984 8985 // Update Mask, Bits and ExtraProb. 8986 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8987 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8988 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8989 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8990 CB->Bits += Hi - Lo + 1; 8991 CB->ExtraProb += Clusters[i].Prob; 8992 TotalProb += Clusters[i].Prob; 8993 } 8994 8995 BitTestInfo BTI; 8996 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8997 // Sort by probability first, number of bits second. 8998 if (a.ExtraProb != b.ExtraProb) 8999 return a.ExtraProb > b.ExtraProb; 9000 return a.Bits > b.Bits; 9001 }); 9002 9003 for (auto &CB : CBV) { 9004 MachineBasicBlock *BitTestBB = 9005 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9006 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9007 } 9008 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9009 SI->getCondition(), -1U, MVT::Other, false, 9010 ContiguousRange, nullptr, nullptr, std::move(BTI), 9011 TotalProb); 9012 9013 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9014 BitTestCases.size() - 1, TotalProb); 9015 return true; 9016 } 9017 9018 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9019 const SwitchInst *SI) { 9020 // Partition Clusters into as few subsets as possible, where each subset has a 9021 // range that fits in a machine word and has <= 3 unique destinations. 9022 9023 #ifndef NDEBUG 9024 // Clusters must be sorted and contain Range or JumpTable clusters. 9025 assert(!Clusters.empty()); 9026 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9027 for (const CaseCluster &C : Clusters) 9028 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9029 for (unsigned i = 1; i < Clusters.size(); ++i) 9030 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9031 #endif 9032 9033 // The algorithm below is not suitable for -O0. 9034 if (TM.getOptLevel() == CodeGenOpt::None) 9035 return; 9036 9037 // If target does not have legal shift left, do not emit bit tests at all. 9038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9039 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 9040 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9041 return; 9042 9043 int BitWidth = PTy.getSizeInBits(); 9044 const int64_t N = Clusters.size(); 9045 9046 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9047 SmallVector<unsigned, 8> MinPartitions(N); 9048 // LastElement[i] is the last element of the partition starting at i. 9049 SmallVector<unsigned, 8> LastElement(N); 9050 9051 // FIXME: This might not be the best algorithm for finding bit test clusters. 9052 9053 // Base case: There is only one way to partition Clusters[N-1]. 9054 MinPartitions[N - 1] = 1; 9055 LastElement[N - 1] = N - 1; 9056 9057 // Note: loop indexes are signed to avoid underflow. 9058 for (int64_t i = N - 2; i >= 0; --i) { 9059 // Find optimal partitioning of Clusters[i..N-1]. 9060 // Baseline: Put Clusters[i] into a partition on its own. 9061 MinPartitions[i] = MinPartitions[i + 1] + 1; 9062 LastElement[i] = i; 9063 9064 // Search for a solution that results in fewer partitions. 9065 // Note: the search is limited by BitWidth, reducing time complexity. 9066 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9067 // Try building a partition from Clusters[i..j]. 9068 9069 // Check the range. 9070 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 9071 Clusters[j].High->getValue())) 9072 continue; 9073 9074 // Check nbr of destinations and cluster types. 9075 // FIXME: This works, but doesn't seem very efficient. 9076 bool RangesOnly = true; 9077 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9078 for (int64_t k = i; k <= j; k++) { 9079 if (Clusters[k].Kind != CC_Range) { 9080 RangesOnly = false; 9081 break; 9082 } 9083 Dests.set(Clusters[k].MBB->getNumber()); 9084 } 9085 if (!RangesOnly || Dests.count() > 3) 9086 break; 9087 9088 // Check if it's a better partition. 9089 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9090 if (NumPartitions < MinPartitions[i]) { 9091 // Found a better partition. 9092 MinPartitions[i] = NumPartitions; 9093 LastElement[i] = j; 9094 } 9095 } 9096 } 9097 9098 // Iterate over the partitions, replacing with bit-test clusters in-place. 9099 unsigned DstIndex = 0; 9100 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9101 Last = LastElement[First]; 9102 assert(First <= Last); 9103 assert(DstIndex <= First); 9104 9105 CaseCluster BitTestCluster; 9106 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9107 Clusters[DstIndex++] = BitTestCluster; 9108 } else { 9109 size_t NumClusters = Last - First + 1; 9110 std::memmove(&Clusters[DstIndex], &Clusters[First], 9111 sizeof(Clusters[0]) * NumClusters); 9112 DstIndex += NumClusters; 9113 } 9114 } 9115 Clusters.resize(DstIndex); 9116 } 9117 9118 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9119 MachineBasicBlock *SwitchMBB, 9120 MachineBasicBlock *DefaultMBB) { 9121 MachineFunction *CurMF = FuncInfo.MF; 9122 MachineBasicBlock *NextMBB = nullptr; 9123 MachineFunction::iterator BBI(W.MBB); 9124 if (++BBI != FuncInfo.MF->end()) 9125 NextMBB = &*BBI; 9126 9127 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9128 9129 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9130 9131 if (Size == 2 && W.MBB == SwitchMBB) { 9132 // If any two of the cases has the same destination, and if one value 9133 // is the same as the other, but has one bit unset that the other has set, 9134 // use bit manipulation to do two compares at once. For example: 9135 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9136 // TODO: This could be extended to merge any 2 cases in switches with 3 9137 // cases. 9138 // TODO: Handle cases where W.CaseBB != SwitchBB. 9139 CaseCluster &Small = *W.FirstCluster; 9140 CaseCluster &Big = *W.LastCluster; 9141 9142 if (Small.Low == Small.High && Big.Low == Big.High && 9143 Small.MBB == Big.MBB) { 9144 const APInt &SmallValue = Small.Low->getValue(); 9145 const APInt &BigValue = Big.Low->getValue(); 9146 9147 // Check that there is only one bit different. 9148 APInt CommonBit = BigValue ^ SmallValue; 9149 if (CommonBit.isPowerOf2()) { 9150 SDValue CondLHS = getValue(Cond); 9151 EVT VT = CondLHS.getValueType(); 9152 SDLoc DL = getCurSDLoc(); 9153 9154 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9155 DAG.getConstant(CommonBit, DL, VT)); 9156 SDValue Cond = DAG.getSetCC( 9157 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9158 ISD::SETEQ); 9159 9160 // Update successor info. 9161 // Both Small and Big will jump to Small.BB, so we sum up the 9162 // probabilities. 9163 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9164 if (BPI) 9165 addSuccessorWithProb( 9166 SwitchMBB, DefaultMBB, 9167 // The default destination is the first successor in IR. 9168 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9169 else 9170 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9171 9172 // Insert the true branch. 9173 SDValue BrCond = 9174 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9175 DAG.getBasicBlock(Small.MBB)); 9176 // Insert the false branch. 9177 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9178 DAG.getBasicBlock(DefaultMBB)); 9179 9180 DAG.setRoot(BrCond); 9181 return; 9182 } 9183 } 9184 } 9185 9186 if (TM.getOptLevel() != CodeGenOpt::None) { 9187 // Order cases by probability so the most likely case will be checked first. 9188 std::sort(W.FirstCluster, W.LastCluster + 1, 9189 [](const CaseCluster &a, const CaseCluster &b) { 9190 return a.Prob > b.Prob; 9191 }); 9192 9193 // Rearrange the case blocks so that the last one falls through if possible 9194 // without without changing the order of probabilities. 9195 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9196 --I; 9197 if (I->Prob > W.LastCluster->Prob) 9198 break; 9199 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9200 std::swap(*I, *W.LastCluster); 9201 break; 9202 } 9203 } 9204 } 9205 9206 // Compute total probability. 9207 BranchProbability DefaultProb = W.DefaultProb; 9208 BranchProbability UnhandledProbs = DefaultProb; 9209 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9210 UnhandledProbs += I->Prob; 9211 9212 MachineBasicBlock *CurMBB = W.MBB; 9213 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9214 MachineBasicBlock *Fallthrough; 9215 if (I == W.LastCluster) { 9216 // For the last cluster, fall through to the default destination. 9217 Fallthrough = DefaultMBB; 9218 } else { 9219 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9220 CurMF->insert(BBI, Fallthrough); 9221 // Put Cond in a virtual register to make it available from the new blocks. 9222 ExportFromCurrentBlock(Cond); 9223 } 9224 UnhandledProbs -= I->Prob; 9225 9226 switch (I->Kind) { 9227 case CC_JumpTable: { 9228 // FIXME: Optimize away range check based on pivot comparisons. 9229 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9230 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9231 9232 // The jump block hasn't been inserted yet; insert it here. 9233 MachineBasicBlock *JumpMBB = JT->MBB; 9234 CurMF->insert(BBI, JumpMBB); 9235 9236 auto JumpProb = I->Prob; 9237 auto FallthroughProb = UnhandledProbs; 9238 9239 // If the default statement is a target of the jump table, we evenly 9240 // distribute the default probability to successors of CurMBB. Also 9241 // update the probability on the edge from JumpMBB to Fallthrough. 9242 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9243 SE = JumpMBB->succ_end(); 9244 SI != SE; ++SI) { 9245 if (*SI == DefaultMBB) { 9246 JumpProb += DefaultProb / 2; 9247 FallthroughProb -= DefaultProb / 2; 9248 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9249 JumpMBB->normalizeSuccProbs(); 9250 break; 9251 } 9252 } 9253 9254 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9255 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9256 CurMBB->normalizeSuccProbs(); 9257 9258 // The jump table header will be inserted in our current block, do the 9259 // range check, and fall through to our fallthrough block. 9260 JTH->HeaderBB = CurMBB; 9261 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9262 9263 // If we're in the right place, emit the jump table header right now. 9264 if (CurMBB == SwitchMBB) { 9265 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9266 JTH->Emitted = true; 9267 } 9268 break; 9269 } 9270 case CC_BitTests: { 9271 // FIXME: Optimize away range check based on pivot comparisons. 9272 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9273 9274 // The bit test blocks haven't been inserted yet; insert them here. 9275 for (BitTestCase &BTC : BTB->Cases) 9276 CurMF->insert(BBI, BTC.ThisBB); 9277 9278 // Fill in fields of the BitTestBlock. 9279 BTB->Parent = CurMBB; 9280 BTB->Default = Fallthrough; 9281 9282 BTB->DefaultProb = UnhandledProbs; 9283 // If the cases in bit test don't form a contiguous range, we evenly 9284 // distribute the probability on the edge to Fallthrough to two 9285 // successors of CurMBB. 9286 if (!BTB->ContiguousRange) { 9287 BTB->Prob += DefaultProb / 2; 9288 BTB->DefaultProb -= DefaultProb / 2; 9289 } 9290 9291 // If we're in the right place, emit the bit test header right now. 9292 if (CurMBB == SwitchMBB) { 9293 visitBitTestHeader(*BTB, SwitchMBB); 9294 BTB->Emitted = true; 9295 } 9296 break; 9297 } 9298 case CC_Range: { 9299 const Value *RHS, *LHS, *MHS; 9300 ISD::CondCode CC; 9301 if (I->Low == I->High) { 9302 // Check Cond == I->Low. 9303 CC = ISD::SETEQ; 9304 LHS = Cond; 9305 RHS=I->Low; 9306 MHS = nullptr; 9307 } else { 9308 // Check I->Low <= Cond <= I->High. 9309 CC = ISD::SETLE; 9310 LHS = I->Low; 9311 MHS = Cond; 9312 RHS = I->High; 9313 } 9314 9315 // The false probability is the sum of all unhandled cases. 9316 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9317 UnhandledProbs); 9318 9319 if (CurMBB == SwitchMBB) 9320 visitSwitchCase(CB, SwitchMBB); 9321 else 9322 SwitchCases.push_back(CB); 9323 9324 break; 9325 } 9326 } 9327 CurMBB = Fallthrough; 9328 } 9329 } 9330 9331 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9332 CaseClusterIt First, 9333 CaseClusterIt Last) { 9334 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9335 if (X.Prob != CC.Prob) 9336 return X.Prob > CC.Prob; 9337 9338 // Ties are broken by comparing the case value. 9339 return X.Low->getValue().slt(CC.Low->getValue()); 9340 }); 9341 } 9342 9343 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9344 const SwitchWorkListItem &W, 9345 Value *Cond, 9346 MachineBasicBlock *SwitchMBB) { 9347 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9348 "Clusters not sorted?"); 9349 9350 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9351 9352 // Balance the tree based on branch probabilities to create a near-optimal (in 9353 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9354 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9355 CaseClusterIt LastLeft = W.FirstCluster; 9356 CaseClusterIt FirstRight = W.LastCluster; 9357 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9358 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9359 9360 // Move LastLeft and FirstRight towards each other from opposite directions to 9361 // find a partitioning of the clusters which balances the probability on both 9362 // sides. If LeftProb and RightProb are equal, alternate which side is 9363 // taken to ensure 0-probability nodes are distributed evenly. 9364 unsigned I = 0; 9365 while (LastLeft + 1 < FirstRight) { 9366 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9367 LeftProb += (++LastLeft)->Prob; 9368 else 9369 RightProb += (--FirstRight)->Prob; 9370 I++; 9371 } 9372 9373 for (;;) { 9374 // Our binary search tree differs from a typical BST in that ours can have up 9375 // to three values in each leaf. The pivot selection above doesn't take that 9376 // into account, which means the tree might require more nodes and be less 9377 // efficient. We compensate for this here. 9378 9379 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9380 unsigned NumRight = W.LastCluster - FirstRight + 1; 9381 9382 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9383 // If one side has less than 3 clusters, and the other has more than 3, 9384 // consider taking a cluster from the other side. 9385 9386 if (NumLeft < NumRight) { 9387 // Consider moving the first cluster on the right to the left side. 9388 CaseCluster &CC = *FirstRight; 9389 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9390 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9391 if (LeftSideRank <= RightSideRank) { 9392 // Moving the cluster to the left does not demote it. 9393 ++LastLeft; 9394 ++FirstRight; 9395 continue; 9396 } 9397 } else { 9398 assert(NumRight < NumLeft); 9399 // Consider moving the last element on the left to the right side. 9400 CaseCluster &CC = *LastLeft; 9401 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9402 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9403 if (RightSideRank <= LeftSideRank) { 9404 // Moving the cluster to the right does not demot it. 9405 --LastLeft; 9406 --FirstRight; 9407 continue; 9408 } 9409 } 9410 } 9411 break; 9412 } 9413 9414 assert(LastLeft + 1 == FirstRight); 9415 assert(LastLeft >= W.FirstCluster); 9416 assert(FirstRight <= W.LastCluster); 9417 9418 // Use the first element on the right as pivot since we will make less-than 9419 // comparisons against it. 9420 CaseClusterIt PivotCluster = FirstRight; 9421 assert(PivotCluster > W.FirstCluster); 9422 assert(PivotCluster <= W.LastCluster); 9423 9424 CaseClusterIt FirstLeft = W.FirstCluster; 9425 CaseClusterIt LastRight = W.LastCluster; 9426 9427 const ConstantInt *Pivot = PivotCluster->Low; 9428 9429 // New blocks will be inserted immediately after the current one. 9430 MachineFunction::iterator BBI(W.MBB); 9431 ++BBI; 9432 9433 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9434 // we can branch to its destination directly if it's squeezed exactly in 9435 // between the known lower bound and Pivot - 1. 9436 MachineBasicBlock *LeftMBB; 9437 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9438 FirstLeft->Low == W.GE && 9439 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9440 LeftMBB = FirstLeft->MBB; 9441 } else { 9442 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9443 FuncInfo.MF->insert(BBI, LeftMBB); 9444 WorkList.push_back( 9445 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9446 // Put Cond in a virtual register to make it available from the new blocks. 9447 ExportFromCurrentBlock(Cond); 9448 } 9449 9450 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9451 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9452 // directly if RHS.High equals the current upper bound. 9453 MachineBasicBlock *RightMBB; 9454 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9455 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9456 RightMBB = FirstRight->MBB; 9457 } else { 9458 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9459 FuncInfo.MF->insert(BBI, RightMBB); 9460 WorkList.push_back( 9461 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9462 // Put Cond in a virtual register to make it available from the new blocks. 9463 ExportFromCurrentBlock(Cond); 9464 } 9465 9466 // Create the CaseBlock record that will be used to lower the branch. 9467 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9468 LeftProb, RightProb); 9469 9470 if (W.MBB == SwitchMBB) 9471 visitSwitchCase(CB, SwitchMBB); 9472 else 9473 SwitchCases.push_back(CB); 9474 } 9475 9476 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9477 // Extract cases from the switch. 9478 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9479 CaseClusterVector Clusters; 9480 Clusters.reserve(SI.getNumCases()); 9481 for (auto I : SI.cases()) { 9482 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9483 const ConstantInt *CaseVal = I.getCaseValue(); 9484 BranchProbability Prob = 9485 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9486 : BranchProbability(1, SI.getNumCases() + 1); 9487 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9488 } 9489 9490 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9491 9492 // Cluster adjacent cases with the same destination. We do this at all 9493 // optimization levels because it's cheap to do and will make codegen faster 9494 // if there are many clusters. 9495 sortAndRangeify(Clusters); 9496 9497 if (TM.getOptLevel() != CodeGenOpt::None) { 9498 // Replace an unreachable default with the most popular destination. 9499 // FIXME: Exploit unreachable default more aggressively. 9500 bool UnreachableDefault = 9501 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9502 if (UnreachableDefault && !Clusters.empty()) { 9503 DenseMap<const BasicBlock *, unsigned> Popularity; 9504 unsigned MaxPop = 0; 9505 const BasicBlock *MaxBB = nullptr; 9506 for (auto I : SI.cases()) { 9507 const BasicBlock *BB = I.getCaseSuccessor(); 9508 if (++Popularity[BB] > MaxPop) { 9509 MaxPop = Popularity[BB]; 9510 MaxBB = BB; 9511 } 9512 } 9513 // Set new default. 9514 assert(MaxPop > 0 && MaxBB); 9515 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9516 9517 // Remove cases that were pointing to the destination that is now the 9518 // default. 9519 CaseClusterVector New; 9520 New.reserve(Clusters.size()); 9521 for (CaseCluster &CC : Clusters) { 9522 if (CC.MBB != DefaultMBB) 9523 New.push_back(CC); 9524 } 9525 Clusters = std::move(New); 9526 } 9527 } 9528 9529 // If there is only the default destination, jump there directly. 9530 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9531 if (Clusters.empty()) { 9532 SwitchMBB->addSuccessor(DefaultMBB); 9533 if (DefaultMBB != NextBlock(SwitchMBB)) { 9534 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9535 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9536 } 9537 return; 9538 } 9539 9540 findJumpTables(Clusters, &SI, DefaultMBB); 9541 findBitTestClusters(Clusters, &SI); 9542 9543 DEBUG({ 9544 dbgs() << "Case clusters: "; 9545 for (const CaseCluster &C : Clusters) { 9546 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9547 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9548 9549 C.Low->getValue().print(dbgs(), true); 9550 if (C.Low != C.High) { 9551 dbgs() << '-'; 9552 C.High->getValue().print(dbgs(), true); 9553 } 9554 dbgs() << ' '; 9555 } 9556 dbgs() << '\n'; 9557 }); 9558 9559 assert(!Clusters.empty()); 9560 SwitchWorkList WorkList; 9561 CaseClusterIt First = Clusters.begin(); 9562 CaseClusterIt Last = Clusters.end() - 1; 9563 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9564 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9565 9566 while (!WorkList.empty()) { 9567 SwitchWorkListItem W = WorkList.back(); 9568 WorkList.pop_back(); 9569 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9570 9571 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9572 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9573 // For optimized builds, lower large range as a balanced binary tree. 9574 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9575 continue; 9576 } 9577 9578 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9579 } 9580 } 9581