1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isInteger()) { 202 if (ValueVT.bitsLT(PartEVT)) { 203 // For a truncate, see if we have any information to 204 // indicate whether the truncated bits will always be 205 // zero or sign-extension. 206 if (AssertOp != ISD::DELETED_NODE) 207 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 208 DAG.getValueType(ValueVT)); 209 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 210 } 211 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 212 } 213 214 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 215 // FP_ROUND's are always exact here. 216 if (ValueVT.bitsLT(Val.getValueType())) 217 return DAG.getNode( 218 ISD::FP_ROUND, DL, ValueVT, Val, 219 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 220 221 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 222 } 223 224 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 225 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 226 227 llvm_unreachable("Unknown mismatch!"); 228 } 229 230 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 231 const Twine &ErrMsg) { 232 const Instruction *I = dyn_cast_or_null<Instruction>(V); 233 if (!V) 234 return Ctx.emitError(ErrMsg); 235 236 const char *AsmError = ", possible invalid constraint for vector type"; 237 if (const CallInst *CI = dyn_cast<CallInst>(I)) 238 if (isa<InlineAsm>(CI->getCalledValue())) 239 return Ctx.emitError(I, ErrMsg + AsmError); 240 241 return Ctx.emitError(I, ErrMsg); 242 } 243 244 /// getCopyFromPartsVector - Create a value that contains the specified legal 245 /// parts combined into the value they represent. If the parts combine to a 246 /// type larger then ValueVT then AssertOp can be used to specify whether the 247 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 248 /// ValueVT (ISD::AssertSext). 249 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 250 const SDValue *Parts, unsigned NumParts, 251 MVT PartVT, EVT ValueVT, const Value *V) { 252 assert(ValueVT.isVector() && "Not a vector value"); 253 assert(NumParts > 0 && "No parts to assemble!"); 254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 255 SDValue Val = Parts[0]; 256 257 // Handle a multi-element vector. 258 if (NumParts > 1) { 259 EVT IntermediateVT; 260 MVT RegisterVT; 261 unsigned NumIntermediates; 262 unsigned NumRegs = 263 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 264 NumIntermediates, RegisterVT); 265 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 266 NumParts = NumRegs; // Silence a compiler warning. 267 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 268 assert(RegisterVT.getSizeInBits() == 269 Parts[0].getSimpleValueType().getSizeInBits() && 270 "Part type sizes don't match!"); 271 272 // Assemble the parts into intermediate operands. 273 SmallVector<SDValue, 8> Ops(NumIntermediates); 274 if (NumIntermediates == NumParts) { 275 // If the register was not expanded, truncate or copy the value, 276 // as appropriate. 277 for (unsigned i = 0; i != NumParts; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 279 PartVT, IntermediateVT, V); 280 } else if (NumParts > 0) { 281 // If the intermediate type was expanded, build the intermediate 282 // operands from the parts. 283 assert(NumParts % NumIntermediates == 0 && 284 "Must expand into a divisible number of parts!"); 285 unsigned Factor = NumParts / NumIntermediates; 286 for (unsigned i = 0; i != NumIntermediates; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 288 PartVT, IntermediateVT, V); 289 } 290 291 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 292 // intermediate operands. 293 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 294 : ISD::BUILD_VECTOR, 295 DL, ValueVT, Ops); 296 } 297 298 // There is now one part, held in Val. Correct it to match ValueVT. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isVector()) { 305 // If the element type of the source/dest vectors are the same, but the 306 // parts vector has more elements than the value vector, then we have a 307 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 308 // elements we want. 309 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 310 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 311 "Cannot narrow, it would be a lossy transformation"); 312 return DAG.getNode( 313 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 314 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 315 } 316 317 // Vector/Vector bitcast. 318 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 322 "Cannot handle this kind of promotion"); 323 // Promoted vector extract 324 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) 343 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 368 "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (DAG.getDataLayout().isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (DAG.getDataLayout().isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode( 501 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 502 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 521 } else{ 522 // Vector -> scalar conversion. 523 assert(ValueVT.getVectorNumElements() == 1 && 524 "Only trivial vector-to-scalar conversions should get here!"); 525 Val = DAG.getNode( 526 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 527 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 528 529 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = 554 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy(DAG.getDataLayout()))); 557 else 558 Ops[i] = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 RegsForValue::RegsForValue() {} 582 583 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 584 EVT valuevt) 585 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 586 587 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 588 const DataLayout &DL, unsigned Reg, Type *Ty) { 589 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 590 591 for (EVT ValueVT : ValueVTs) { 592 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasOpaqueSPAdjustment()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = &DAG.getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall && 903 !isStatepoint(&I)) // statepoints handle their exports internally 904 CopyToExportRegsIfNeeded(&I); 905 906 CurInst = nullptr; 907 } 908 909 void SelectionDAGBuilder::visitPHI(const PHINode &) { 910 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 911 } 912 913 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 914 // Note: this doesn't use InstVisitor, because it has to work with 915 // ConstantExpr's in addition to instructions. 916 switch (Opcode) { 917 default: llvm_unreachable("Unknown instruction type encountered!"); 918 // Build the switch statement using the Instruction.def file. 919 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 920 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 921 #include "llvm/IR/Instruction.def" 922 } 923 } 924 925 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 926 // generate the debug data structures now that we've seen its definition. 927 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 928 SDValue Val) { 929 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 930 if (DDI.getDI()) { 931 const DbgValueInst *DI = DDI.getDI(); 932 DebugLoc dl = DDI.getdl(); 933 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 934 DILocalVariable *Variable = DI->getVariable(); 935 DIExpression *Expr = DI->getExpression(); 936 assert(Variable->isValidLocationForIntrinsic(dl) && 937 "Expected inlined-at fields to agree"); 938 uint64_t Offset = DI->getOffset(); 939 // A dbg.value for an alloca is always indirect. 940 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 941 SDDbgValue *SDV; 942 if (Val.getNode()) { 943 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 944 Val)) { 945 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 946 IsIndirect, Offset, dl, DbgSDNodeOrder); 947 DAG.AddDbgValue(SDV, Val.getNode(), false); 948 } 949 } else 950 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 951 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 952 } 953 } 954 955 /// getCopyFromRegs - If there was virtual register allocated for the value V 956 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 957 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 958 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 959 SDValue Result; 960 961 if (It != FuncInfo.ValueMap.end()) { 962 unsigned InReg = It->second; 963 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 964 DAG.getDataLayout(), InReg, Ty); 965 SDValue Chain = DAG.getEntryNode(); 966 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 967 resolveDanglingDebugInfo(V, Result); 968 } 969 970 return Result; 971 } 972 973 /// getValue - Return an SDValue for the given Value. 974 SDValue SelectionDAGBuilder::getValue(const Value *V) { 975 // If we already have an SDValue for this value, use it. It's important 976 // to do this first, so that we don't create a CopyFromReg if we already 977 // have a regular SDValue. 978 SDValue &N = NodeMap[V]; 979 if (N.getNode()) return N; 980 981 // If there's a virtual register allocated and initialized for this 982 // value, use it. 983 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 984 if (copyFromReg.getNode()) { 985 return copyFromReg; 986 } 987 988 // Otherwise create a new SDValue and remember it. 989 SDValue Val = getValueImpl(V); 990 NodeMap[V] = Val; 991 resolveDanglingDebugInfo(V, Val); 992 return Val; 993 } 994 995 // Return true if SDValue exists for the given Value 996 bool SelectionDAGBuilder::findValue(const Value *V) const { 997 return (NodeMap.find(V) != NodeMap.end()) || 998 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 999 } 1000 1001 /// getNonRegisterValue - Return an SDValue for the given Value, but 1002 /// don't look in FuncInfo.ValueMap for a virtual register. 1003 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1004 // If we already have an SDValue for this value, use it. 1005 SDValue &N = NodeMap[V]; 1006 if (N.getNode()) { 1007 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1008 // Remove the debug location from the node as the node is about to be used 1009 // in a location which may differ from the original debug location. This 1010 // is relevant to Constant and ConstantFP nodes because they can appear 1011 // as constant expressions inside PHI nodes. 1012 N->setDebugLoc(DebugLoc()); 1013 } 1014 return N; 1015 } 1016 1017 // Otherwise create a new SDValue and remember it. 1018 SDValue Val = getValueImpl(V); 1019 NodeMap[V] = Val; 1020 resolveDanglingDebugInfo(V, Val); 1021 return Val; 1022 } 1023 1024 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1025 /// Create an SDValue for the given value. 1026 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1028 1029 if (const Constant *C = dyn_cast<Constant>(V)) { 1030 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1031 1032 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1033 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1034 1035 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1036 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1037 1038 if (isa<ConstantPointerNull>(C)) { 1039 unsigned AS = V->getType()->getPointerAddressSpace(); 1040 return DAG.getConstant(0, getCurSDLoc(), 1041 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1042 } 1043 1044 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1045 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1046 1047 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1048 return DAG.getUNDEF(VT); 1049 1050 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1051 visit(CE->getOpcode(), *CE); 1052 SDValue N1 = NodeMap[V]; 1053 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1054 return N1; 1055 } 1056 1057 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1058 SmallVector<SDValue, 4> Constants; 1059 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1060 OI != OE; ++OI) { 1061 SDNode *Val = getValue(*OI).getNode(); 1062 // If the operand is an empty aggregate, there are no values. 1063 if (!Val) continue; 1064 // Add each leaf value from the operand to the Constants list 1065 // to form a flattened list of all the values. 1066 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1067 Constants.push_back(SDValue(Val, i)); 1068 } 1069 1070 return DAG.getMergeValues(Constants, getCurSDLoc()); 1071 } 1072 1073 if (const ConstantDataSequential *CDS = 1074 dyn_cast<ConstantDataSequential>(C)) { 1075 SmallVector<SDValue, 4> Ops; 1076 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1077 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Ops.push_back(SDValue(Val, i)); 1082 } 1083 1084 if (isa<ArrayType>(CDS->getType())) 1085 return DAG.getMergeValues(Ops, getCurSDLoc()); 1086 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1087 VT, Ops); 1088 } 1089 1090 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1091 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1092 "Unknown struct or array constant!"); 1093 1094 SmallVector<EVT, 4> ValueVTs; 1095 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1096 unsigned NumElts = ValueVTs.size(); 1097 if (NumElts == 0) 1098 return SDValue(); // empty struct 1099 SmallVector<SDValue, 4> Constants(NumElts); 1100 for (unsigned i = 0; i != NumElts; ++i) { 1101 EVT EltVT = ValueVTs[i]; 1102 if (isa<UndefValue>(C)) 1103 Constants[i] = DAG.getUNDEF(EltVT); 1104 else if (EltVT.isFloatingPoint()) 1105 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1106 else 1107 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1108 } 1109 1110 return DAG.getMergeValues(Constants, getCurSDLoc()); 1111 } 1112 1113 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1114 return DAG.getBlockAddress(BA, VT); 1115 1116 VectorType *VecTy = cast<VectorType>(V->getType()); 1117 unsigned NumElements = VecTy->getNumElements(); 1118 1119 // Now that we know the number and type of the elements, get that number of 1120 // elements into the Ops array based on what kind of constant it is. 1121 SmallVector<SDValue, 16> Ops; 1122 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1123 for (unsigned i = 0; i != NumElements; ++i) 1124 Ops.push_back(getValue(CV->getOperand(i))); 1125 } else { 1126 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1127 EVT EltVT = 1128 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1129 1130 SDValue Op; 1131 if (EltVT.isFloatingPoint()) 1132 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1133 else 1134 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1135 Ops.assign(NumElements, Op); 1136 } 1137 1138 // Create a BUILD_VECTOR node. 1139 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1140 } 1141 1142 // If this is a static alloca, generate it as the frameindex instead of 1143 // computation. 1144 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1145 DenseMap<const AllocaInst*, int>::iterator SI = 1146 FuncInfo.StaticAllocaMap.find(AI); 1147 if (SI != FuncInfo.StaticAllocaMap.end()) 1148 return DAG.getFrameIndex(SI->second, 1149 TLI.getPointerTy(DAG.getDataLayout())); 1150 } 1151 1152 // If this is an instruction which fast-isel has deferred, select it now. 1153 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1154 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1155 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1156 Inst->getType()); 1157 SDValue Chain = DAG.getEntryNode(); 1158 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1159 } 1160 1161 llvm_unreachable("Can't get register for value!"); 1162 } 1163 1164 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1165 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1166 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1167 bool IsSEH = isAsynchronousEHPersonality(Pers); 1168 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1169 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1170 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1171 if (IsMSVCCXX || IsCoreCLR) 1172 CatchPadMBB->setIsEHFuncletEntry(); 1173 1174 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1175 1176 // Update machine-CFG edge. 1177 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1178 1179 // CatchPads in SEH are not funclets, they are merely markers which indicate 1180 // where to insert register restoration code. 1181 if (IsSEH) { 1182 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1183 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1184 DAG.getBasicBlock(&FuncInfo.MF->front()))); 1185 return; 1186 } 1187 1188 // If this is not a fall-through branch or optimizations are switched off, 1189 // emit the branch. 1190 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1191 TM.getOptLevel() == CodeGenOpt::None) 1192 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1193 getControlRoot(), 1194 DAG.getBasicBlock(NormalDestMBB))); 1195 } 1196 1197 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1198 // Update machine-CFG edge. 1199 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1200 FuncInfo.MBB->addSuccessor(TargetMBB); 1201 1202 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1203 bool IsSEH = isAsynchronousEHPersonality(Pers); 1204 if (IsSEH) { 1205 // If this is not a fall-through branch or optimizations are switched off, 1206 // emit the branch. 1207 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1208 TM.getOptLevel() == CodeGenOpt::None) 1209 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1210 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1211 return; 1212 } 1213 1214 // Figure out the funclet membership for the catchret's successor. 1215 // This will be used by the FuncletLayout pass to determine how to order the 1216 // BB's. 1217 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1218 WinEHFuncInfo &EHInfo = 1219 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1220 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1221 assert(SuccessorColor && "No parent funclet for catchret!"); 1222 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1223 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1224 1225 // Create the terminator node. 1226 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1227 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1228 DAG.getBasicBlock(SuccessorColorMBB)); 1229 DAG.setRoot(Ret); 1230 } 1231 1232 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1233 llvm_unreachable("should never codegen catchendpads"); 1234 } 1235 1236 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1237 // Don't emit any special code for the cleanuppad instruction. It just marks 1238 // the start of a funclet. 1239 FuncInfo.MBB->setIsEHFuncletEntry(); 1240 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1241 } 1242 1243 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1244 /// many places it could ultimately go. In the IR, we have a single unwind 1245 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1246 /// This function skips over imaginary basic blocks that hold catchpad, 1247 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1248 /// basic block destinations. As those destinations may not be successors of 1249 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1250 /// passed-in Weight is the edge weight to EHPadBB. 1251 static void findUnwindDestinations( 1252 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1253 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1254 EHPersonality Personality = 1255 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1256 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1257 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1258 1259 while (EHPadBB) { 1260 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1261 BasicBlock *NewEHPadBB = nullptr; 1262 if (isa<LandingPadInst>(Pad)) { 1263 // Stop on landingpads. They are not funclets. 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1265 break; 1266 } else if (isa<CleanupPadInst>(Pad)) { 1267 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1268 // personalities. 1269 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 break; 1272 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1273 // Add the catchpad handler to the possible destinations. 1274 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1275 // In MSVC C++, catchblocks are funclets and need prologues. 1276 if (IsMSVCCXX || IsCoreCLR) 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 NewEHPadBB = CPI->getUnwindDest(); 1279 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1280 NewEHPadBB = CEPI->getUnwindDest(); 1281 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1282 NewEHPadBB = CEPI->getUnwindDest(); 1283 else 1284 continue; 1285 1286 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1287 if (BPI && NewEHPadBB) { 1288 // When BPI is available, the calculated weight cannot be zero as zero 1289 // will be turned to a default weight in MachineBlockFrequencyInfo. 1290 Weight = std::max<uint32_t>( 1291 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1292 } 1293 EHPadBB = NewEHPadBB; 1294 } 1295 } 1296 1297 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1298 // Update successor info. 1299 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1300 auto UnwindDest = I.getUnwindDest(); 1301 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1302 uint32_t UnwindDestWeight = 1303 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1304 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1305 for (auto &UnwindDest : UnwindDests) { 1306 UnwindDest.first->setIsEHPad(); 1307 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1308 } 1309 1310 // Create the terminator node. 1311 SDValue Ret = 1312 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1313 DAG.setRoot(Ret); 1314 } 1315 1316 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1317 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1318 } 1319 1320 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1321 report_fatal_error("visitTerminatePad not yet implemented!"); 1322 } 1323 1324 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1326 auto &DL = DAG.getDataLayout(); 1327 SDValue Chain = getControlRoot(); 1328 SmallVector<ISD::OutputArg, 8> Outs; 1329 SmallVector<SDValue, 8> OutVals; 1330 1331 if (!FuncInfo.CanLowerReturn) { 1332 unsigned DemoteReg = FuncInfo.DemoteRegister; 1333 const Function *F = I.getParent()->getParent(); 1334 1335 // Emit a store of the return value through the virtual register. 1336 // Leave Outs empty so that LowerReturn won't try to load return 1337 // registers the usual way. 1338 SmallVector<EVT, 1> PtrValueVTs; 1339 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1340 PtrValueVTs); 1341 1342 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1343 SDValue RetOp = getValue(I.getOperand(0)); 1344 1345 SmallVector<EVT, 4> ValueVTs; 1346 SmallVector<uint64_t, 4> Offsets; 1347 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1348 unsigned NumValues = ValueVTs.size(); 1349 1350 SmallVector<SDValue, 4> Chains(NumValues); 1351 for (unsigned i = 0; i != NumValues; ++i) { 1352 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1353 RetPtr.getValueType(), RetPtr, 1354 DAG.getIntPtrConstant(Offsets[i], 1355 getCurSDLoc())); 1356 Chains[i] = 1357 DAG.getStore(Chain, getCurSDLoc(), 1358 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1359 // FIXME: better loc info would be nice. 1360 Add, MachinePointerInfo(), false, false, 0); 1361 } 1362 1363 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1364 MVT::Other, Chains); 1365 } else if (I.getNumOperands() != 0) { 1366 SmallVector<EVT, 4> ValueVTs; 1367 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1368 unsigned NumValues = ValueVTs.size(); 1369 if (NumValues) { 1370 SDValue RetOp = getValue(I.getOperand(0)); 1371 1372 const Function *F = I.getParent()->getParent(); 1373 1374 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1375 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1376 Attribute::SExt)) 1377 ExtendKind = ISD::SIGN_EXTEND; 1378 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1379 Attribute::ZExt)) 1380 ExtendKind = ISD::ZERO_EXTEND; 1381 1382 LLVMContext &Context = F->getContext(); 1383 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::InReg); 1385 1386 for (unsigned j = 0; j != NumValues; ++j) { 1387 EVT VT = ValueVTs[j]; 1388 1389 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1390 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1391 1392 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1393 MVT PartVT = TLI.getRegisterType(Context, VT); 1394 SmallVector<SDValue, 4> Parts(NumParts); 1395 getCopyToParts(DAG, getCurSDLoc(), 1396 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1397 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1398 1399 // 'inreg' on function refers to return value 1400 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1401 if (RetInReg) 1402 Flags.setInReg(); 1403 1404 // Propagate extension type if any 1405 if (ExtendKind == ISD::SIGN_EXTEND) 1406 Flags.setSExt(); 1407 else if (ExtendKind == ISD::ZERO_EXTEND) 1408 Flags.setZExt(); 1409 1410 for (unsigned i = 0; i < NumParts; ++i) { 1411 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1412 VT, /*isfixed=*/true, 0, 0)); 1413 OutVals.push_back(Parts[i]); 1414 } 1415 } 1416 } 1417 } 1418 1419 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1420 CallingConv::ID CallConv = 1421 DAG.getMachineFunction().getFunction()->getCallingConv(); 1422 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1423 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1424 1425 // Verify that the target's LowerReturn behaved as expected. 1426 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1427 "LowerReturn didn't return a valid chain!"); 1428 1429 // Update the DAG with the new chain value resulting from return lowering. 1430 DAG.setRoot(Chain); 1431 } 1432 1433 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1434 /// created for it, emit nodes to copy the value into the virtual 1435 /// registers. 1436 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1437 // Skip empty types 1438 if (V->getType()->isEmptyTy()) 1439 return; 1440 1441 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1442 if (VMI != FuncInfo.ValueMap.end()) { 1443 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1444 CopyValueToVirtualRegister(V, VMI->second); 1445 } 1446 } 1447 1448 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1449 /// the current basic block, add it to ValueMap now so that we'll get a 1450 /// CopyTo/FromReg. 1451 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1452 // No need to export constants. 1453 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1454 1455 // Already exported? 1456 if (FuncInfo.isExportedInst(V)) return; 1457 1458 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1459 CopyValueToVirtualRegister(V, Reg); 1460 } 1461 1462 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1463 const BasicBlock *FromBB) { 1464 // The operands of the setcc have to be in this block. We don't know 1465 // how to export them from some other block. 1466 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1467 // Can export from current BB. 1468 if (VI->getParent() == FromBB) 1469 return true; 1470 1471 // Is already exported, noop. 1472 return FuncInfo.isExportedInst(V); 1473 } 1474 1475 // If this is an argument, we can export it if the BB is the entry block or 1476 // if it is already exported. 1477 if (isa<Argument>(V)) { 1478 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1479 return true; 1480 1481 // Otherwise, can only export this if it is already exported. 1482 return FuncInfo.isExportedInst(V); 1483 } 1484 1485 // Otherwise, constants can always be exported. 1486 return true; 1487 } 1488 1489 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1490 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1491 const MachineBasicBlock *Dst) const { 1492 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1493 if (!BPI) 1494 return 0; 1495 const BasicBlock *SrcBB = Src->getBasicBlock(); 1496 const BasicBlock *DstBB = Dst->getBasicBlock(); 1497 return BPI->getEdgeWeight(SrcBB, DstBB); 1498 } 1499 1500 void SelectionDAGBuilder:: 1501 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1502 uint32_t Weight /* = 0 */) { 1503 if (!FuncInfo.BPI) 1504 Src->addSuccessorWithoutWeight(Dst); 1505 else { 1506 if (!Weight) 1507 Weight = getEdgeWeight(Src, Dst); 1508 Src->addSuccessor(Dst, Weight); 1509 } 1510 } 1511 1512 1513 static bool InBlock(const Value *V, const BasicBlock *BB) { 1514 if (const Instruction *I = dyn_cast<Instruction>(V)) 1515 return I->getParent() == BB; 1516 return true; 1517 } 1518 1519 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1520 /// This function emits a branch and is used at the leaves of an OR or an 1521 /// AND operator tree. 1522 /// 1523 void 1524 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1525 MachineBasicBlock *TBB, 1526 MachineBasicBlock *FBB, 1527 MachineBasicBlock *CurBB, 1528 MachineBasicBlock *SwitchBB, 1529 uint32_t TWeight, 1530 uint32_t FWeight) { 1531 const BasicBlock *BB = CurBB->getBasicBlock(); 1532 1533 // If the leaf of the tree is a comparison, merge the condition into 1534 // the caseblock. 1535 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1536 // The operands of the cmp have to be in this block. We don't know 1537 // how to export them from some other block. If this is the first block 1538 // of the sequence, no exporting is needed. 1539 if (CurBB == SwitchBB || 1540 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1541 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1542 ISD::CondCode Condition; 1543 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1544 Condition = getICmpCondCode(IC->getPredicate()); 1545 } else { 1546 const FCmpInst *FC = cast<FCmpInst>(Cond); 1547 Condition = getFCmpCondCode(FC->getPredicate()); 1548 if (TM.Options.NoNaNsFPMath) 1549 Condition = getFCmpCodeWithoutNaN(Condition); 1550 } 1551 1552 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1553 TBB, FBB, CurBB, TWeight, FWeight); 1554 SwitchCases.push_back(CB); 1555 return; 1556 } 1557 } 1558 1559 // Create a CaseBlock record representing this branch. 1560 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1561 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1562 SwitchCases.push_back(CB); 1563 } 1564 1565 /// Scale down both weights to fit into uint32_t. 1566 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1567 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1568 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1569 NewTrue = NewTrue / Scale; 1570 NewFalse = NewFalse / Scale; 1571 } 1572 1573 /// FindMergedConditions - If Cond is an expression like 1574 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1575 MachineBasicBlock *TBB, 1576 MachineBasicBlock *FBB, 1577 MachineBasicBlock *CurBB, 1578 MachineBasicBlock *SwitchBB, 1579 Instruction::BinaryOps Opc, 1580 uint32_t TWeight, 1581 uint32_t FWeight) { 1582 // If this node is not part of the or/and tree, emit it as a branch. 1583 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1584 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1585 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1586 BOp->getParent() != CurBB->getBasicBlock() || 1587 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1588 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1589 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1590 TWeight, FWeight); 1591 return; 1592 } 1593 1594 // Create TmpBB after CurBB. 1595 MachineFunction::iterator BBI(CurBB); 1596 MachineFunction &MF = DAG.getMachineFunction(); 1597 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1598 CurBB->getParent()->insert(++BBI, TmpBB); 1599 1600 if (Opc == Instruction::Or) { 1601 // Codegen X | Y as: 1602 // BB1: 1603 // jmp_if_X TBB 1604 // jmp TmpBB 1605 // TmpBB: 1606 // jmp_if_Y TBB 1607 // jmp FBB 1608 // 1609 1610 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1611 // The requirement is that 1612 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1613 // = TrueProb for original BB. 1614 // Assuming the original weights are A and B, one choice is to set BB1's 1615 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1616 // assumes that 1617 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1618 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1619 // TmpBB, but the math is more complicated. 1620 1621 uint64_t NewTrueWeight = TWeight; 1622 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1623 ScaleWeights(NewTrueWeight, NewFalseWeight); 1624 // Emit the LHS condition. 1625 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1626 NewTrueWeight, NewFalseWeight); 1627 1628 NewTrueWeight = TWeight; 1629 NewFalseWeight = 2 * (uint64_t)FWeight; 1630 ScaleWeights(NewTrueWeight, NewFalseWeight); 1631 // Emit the RHS condition into TmpBB. 1632 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1633 NewTrueWeight, NewFalseWeight); 1634 } else { 1635 assert(Opc == Instruction::And && "Unknown merge op!"); 1636 // Codegen X & Y as: 1637 // BB1: 1638 // jmp_if_X TmpBB 1639 // jmp FBB 1640 // TmpBB: 1641 // jmp_if_Y TBB 1642 // jmp FBB 1643 // 1644 // This requires creation of TmpBB after CurBB. 1645 1646 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1647 // The requirement is that 1648 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1649 // = FalseProb for original BB. 1650 // Assuming the original weights are A and B, one choice is to set BB1's 1651 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1652 // assumes that 1653 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1654 1655 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1656 uint64_t NewFalseWeight = FWeight; 1657 ScaleWeights(NewTrueWeight, NewFalseWeight); 1658 // Emit the LHS condition. 1659 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1660 NewTrueWeight, NewFalseWeight); 1661 1662 NewTrueWeight = 2 * (uint64_t)TWeight; 1663 NewFalseWeight = FWeight; 1664 ScaleWeights(NewTrueWeight, NewFalseWeight); 1665 // Emit the RHS condition into TmpBB. 1666 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1667 NewTrueWeight, NewFalseWeight); 1668 } 1669 } 1670 1671 /// If the set of cases should be emitted as a series of branches, return true. 1672 /// If we should emit this as a bunch of and/or'd together conditions, return 1673 /// false. 1674 bool 1675 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1676 if (Cases.size() != 2) return true; 1677 1678 // If this is two comparisons of the same values or'd or and'd together, they 1679 // will get folded into a single comparison, so don't emit two blocks. 1680 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1681 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1682 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1683 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1684 return false; 1685 } 1686 1687 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1688 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1689 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1690 Cases[0].CC == Cases[1].CC && 1691 isa<Constant>(Cases[0].CmpRHS) && 1692 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1693 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1694 return false; 1695 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1696 return false; 1697 } 1698 1699 return true; 1700 } 1701 1702 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1703 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1704 1705 // Update machine-CFG edges. 1706 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1707 1708 if (I.isUnconditional()) { 1709 // Update machine-CFG edges. 1710 BrMBB->addSuccessor(Succ0MBB); 1711 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1715 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1716 MVT::Other, getControlRoot(), 1717 DAG.getBasicBlock(Succ0MBB))); 1718 1719 return; 1720 } 1721 1722 // If this condition is one of the special cases we handle, do special stuff 1723 // now. 1724 const Value *CondVal = I.getCondition(); 1725 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1726 1727 // If this is a series of conditions that are or'd or and'd together, emit 1728 // this as a sequence of branches instead of setcc's with and/or operations. 1729 // As long as jumps are not expensive, this should improve performance. 1730 // For example, instead of something like: 1731 // cmp A, B 1732 // C = seteq 1733 // cmp D, E 1734 // F = setle 1735 // or C, F 1736 // jnz foo 1737 // Emit: 1738 // cmp A, B 1739 // je foo 1740 // cmp D, E 1741 // jle foo 1742 // 1743 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1744 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1745 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1746 !I.getMetadata(LLVMContext::MD_unpredictable) && 1747 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1748 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1749 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1750 getEdgeWeight(BrMBB, Succ1MBB)); 1751 // If the compares in later blocks need to use values not currently 1752 // exported from this block, export them now. This block should always 1753 // be the first entry. 1754 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1755 1756 // Allow some cases to be rejected. 1757 if (ShouldEmitAsBranches(SwitchCases)) { 1758 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1759 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1760 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1761 } 1762 1763 // Emit the branch for this block. 1764 visitSwitchCase(SwitchCases[0], BrMBB); 1765 SwitchCases.erase(SwitchCases.begin()); 1766 return; 1767 } 1768 1769 // Okay, we decided not to do this, remove any inserted MBB's and clear 1770 // SwitchCases. 1771 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1772 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1773 1774 SwitchCases.clear(); 1775 } 1776 } 1777 1778 // Create a CaseBlock record representing this branch. 1779 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1780 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1781 1782 // Use visitSwitchCase to actually insert the fast branch sequence for this 1783 // cond branch. 1784 visitSwitchCase(CB, BrMBB); 1785 } 1786 1787 /// visitSwitchCase - Emits the necessary code to represent a single node in 1788 /// the binary search tree resulting from lowering a switch instruction. 1789 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1790 MachineBasicBlock *SwitchBB) { 1791 SDValue Cond; 1792 SDValue CondLHS = getValue(CB.CmpLHS); 1793 SDLoc dl = getCurSDLoc(); 1794 1795 // Build the setcc now. 1796 if (!CB.CmpMHS) { 1797 // Fold "(X == true)" to X and "(X == false)" to !X to 1798 // handle common cases produced by branch lowering. 1799 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1800 CB.CC == ISD::SETEQ) 1801 Cond = CondLHS; 1802 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1803 CB.CC == ISD::SETEQ) { 1804 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1805 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1806 } else 1807 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1808 } else { 1809 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1810 1811 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1812 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1813 1814 SDValue CmpOp = getValue(CB.CmpMHS); 1815 EVT VT = CmpOp.getValueType(); 1816 1817 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1818 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1819 ISD::SETLE); 1820 } else { 1821 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1822 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1823 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1824 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1825 } 1826 } 1827 1828 // Update successor info 1829 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1830 // TrueBB and FalseBB are always different unless the incoming IR is 1831 // degenerate. This only happens when running llc on weird IR. 1832 if (CB.TrueBB != CB.FalseBB) 1833 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1834 1835 // If the lhs block is the next block, invert the condition so that we can 1836 // fall through to the lhs instead of the rhs block. 1837 if (CB.TrueBB == NextBlock(SwitchBB)) { 1838 std::swap(CB.TrueBB, CB.FalseBB); 1839 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1840 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1841 } 1842 1843 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1844 MVT::Other, getControlRoot(), Cond, 1845 DAG.getBasicBlock(CB.TrueBB)); 1846 1847 // Insert the false branch. Do this even if it's a fall through branch, 1848 // this makes it easier to do DAG optimizations which require inverting 1849 // the branch condition. 1850 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1851 DAG.getBasicBlock(CB.FalseBB)); 1852 1853 DAG.setRoot(BrCond); 1854 } 1855 1856 /// visitJumpTable - Emit JumpTable node in the current MBB 1857 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1858 // Emit the code for the jump table 1859 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1860 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1861 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1862 JT.Reg, PTy); 1863 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1864 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1865 MVT::Other, Index.getValue(1), 1866 Table, Index); 1867 DAG.setRoot(BrJumpTable); 1868 } 1869 1870 /// visitJumpTableHeader - This function emits necessary code to produce index 1871 /// in the JumpTable from switch case. 1872 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1873 JumpTableHeader &JTH, 1874 MachineBasicBlock *SwitchBB) { 1875 SDLoc dl = getCurSDLoc(); 1876 1877 // Subtract the lowest switch case value from the value being switched on and 1878 // conditional branch to default mbb if the result is greater than the 1879 // difference between smallest and largest cases. 1880 SDValue SwitchOp = getValue(JTH.SValue); 1881 EVT VT = SwitchOp.getValueType(); 1882 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1883 DAG.getConstant(JTH.First, dl, VT)); 1884 1885 // The SDNode we just created, which holds the value being switched on minus 1886 // the smallest case value, needs to be copied to a virtual register so it 1887 // can be used as an index into the jump table in a subsequent basic block. 1888 // This value may be smaller or larger than the target's pointer type, and 1889 // therefore require extension or truncating. 1890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1891 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1892 1893 unsigned JumpTableReg = 1894 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1895 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1896 JumpTableReg, SwitchOp); 1897 JT.Reg = JumpTableReg; 1898 1899 // Emit the range check for the jump table, and branch to the default block 1900 // for the switch statement if the value being switched on exceeds the largest 1901 // case in the switch. 1902 SDValue CMP = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1904 Sub.getValueType()), 1905 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1906 1907 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1908 MVT::Other, CopyTo, CMP, 1909 DAG.getBasicBlock(JT.Default)); 1910 1911 // Avoid emitting unnecessary branches to the next block. 1912 if (JT.MBB != NextBlock(SwitchBB)) 1913 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1914 DAG.getBasicBlock(JT.MBB)); 1915 1916 DAG.setRoot(BrCond); 1917 } 1918 1919 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1920 /// tail spliced into a stack protector check success bb. 1921 /// 1922 /// For a high level explanation of how this fits into the stack protector 1923 /// generation see the comment on the declaration of class 1924 /// StackProtectorDescriptor. 1925 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1926 MachineBasicBlock *ParentBB) { 1927 1928 // First create the loads to the guard/stack slot for the comparison. 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1931 1932 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1933 int FI = MFI->getStackProtectorIndex(); 1934 1935 const Value *IRGuard = SPD.getGuard(); 1936 SDValue GuardPtr = getValue(IRGuard); 1937 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1938 1939 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1940 1941 SDValue Guard; 1942 SDLoc dl = getCurSDLoc(); 1943 1944 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1945 // guard value from the virtual register holding the value. Otherwise, emit a 1946 // volatile load to retrieve the stack guard value. 1947 unsigned GuardReg = SPD.getGuardReg(); 1948 1949 if (GuardReg && TLI.useLoadStackGuardNode()) 1950 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1951 PtrTy); 1952 else 1953 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1954 GuardPtr, MachinePointerInfo(IRGuard, 0), 1955 true, false, false, Align); 1956 1957 SDValue StackSlot = DAG.getLoad( 1958 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1959 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1960 false, false, Align); 1961 1962 // Perform the comparison via a subtract/getsetcc. 1963 EVT VT = Guard.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1965 1966 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1967 *DAG.getContext(), 1968 Sub.getValueType()), 1969 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1970 1971 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1972 // branch to failure MBB. 1973 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1974 MVT::Other, StackSlot.getOperand(0), 1975 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1976 // Otherwise branch to success MBB. 1977 SDValue Br = DAG.getNode(ISD::BR, dl, 1978 MVT::Other, BrCond, 1979 DAG.getBasicBlock(SPD.getSuccessMBB())); 1980 1981 DAG.setRoot(Br); 1982 } 1983 1984 /// Codegen the failure basic block for a stack protector check. 1985 /// 1986 /// A failure stack protector machine basic block consists simply of a call to 1987 /// __stack_chk_fail(). 1988 /// 1989 /// For a high level explanation of how this fits into the stack protector 1990 /// generation see the comment on the declaration of class 1991 /// StackProtectorDescriptor. 1992 void 1993 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1995 SDValue Chain = 1996 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1997 None, false, getCurSDLoc(), false, false).second; 1998 DAG.setRoot(Chain); 1999 } 2000 2001 /// visitBitTestHeader - This function emits necessary code to produce value 2002 /// suitable for "bit tests" 2003 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2004 MachineBasicBlock *SwitchBB) { 2005 SDLoc dl = getCurSDLoc(); 2006 2007 // Subtract the minimum value 2008 SDValue SwitchOp = getValue(B.SValue); 2009 EVT VT = SwitchOp.getValueType(); 2010 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2011 DAG.getConstant(B.First, dl, VT)); 2012 2013 // Check range 2014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2015 SDValue RangeCmp = DAG.getSetCC( 2016 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2017 Sub.getValueType()), 2018 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2019 2020 // Determine the type of the test operands. 2021 bool UsePtrType = false; 2022 if (!TLI.isTypeLegal(VT)) 2023 UsePtrType = true; 2024 else { 2025 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2026 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2027 // Switch table case range are encoded into series of masks. 2028 // Just use pointer type, it's guaranteed to fit. 2029 UsePtrType = true; 2030 break; 2031 } 2032 } 2033 if (UsePtrType) { 2034 VT = TLI.getPointerTy(DAG.getDataLayout()); 2035 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2036 } 2037 2038 B.RegVT = VT.getSimpleVT(); 2039 B.Reg = FuncInfo.CreateReg(B.RegVT); 2040 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2041 2042 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2043 2044 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2045 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2046 2047 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2048 MVT::Other, CopyTo, RangeCmp, 2049 DAG.getBasicBlock(B.Default)); 2050 2051 // Avoid emitting unnecessary branches to the next block. 2052 if (MBB != NextBlock(SwitchBB)) 2053 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2054 DAG.getBasicBlock(MBB)); 2055 2056 DAG.setRoot(BrRange); 2057 } 2058 2059 /// visitBitTestCase - this function produces one "bit test" 2060 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2061 MachineBasicBlock* NextMBB, 2062 uint32_t BranchWeightToNext, 2063 unsigned Reg, 2064 BitTestCase &B, 2065 MachineBasicBlock *SwitchBB) { 2066 SDLoc dl = getCurSDLoc(); 2067 MVT VT = BB.RegVT; 2068 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2069 SDValue Cmp; 2070 unsigned PopCount = countPopulation(B.Mask); 2071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2072 if (PopCount == 1) { 2073 // Testing for a single bit; just compare the shift count with what it 2074 // would need to be to shift a 1 bit in that position. 2075 Cmp = DAG.getSetCC( 2076 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2077 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2078 ISD::SETEQ); 2079 } else if (PopCount == BB.Range) { 2080 // There is only one zero bit in the range, test for it directly. 2081 Cmp = DAG.getSetCC( 2082 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2083 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2084 ISD::SETNE); 2085 } else { 2086 // Make desired shift 2087 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2088 DAG.getConstant(1, dl, VT), ShiftOp); 2089 2090 // Emit bit tests and jumps 2091 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2092 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2093 Cmp = DAG.getSetCC( 2094 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2095 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2096 } 2097 2098 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2099 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2100 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2101 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2102 2103 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2104 MVT::Other, getControlRoot(), 2105 Cmp, DAG.getBasicBlock(B.TargetBB)); 2106 2107 // Avoid emitting unnecessary branches to the next block. 2108 if (NextMBB != NextBlock(SwitchBB)) 2109 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2110 DAG.getBasicBlock(NextMBB)); 2111 2112 DAG.setRoot(BrAnd); 2113 } 2114 2115 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2116 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2117 2118 // Retrieve successors. Look through artificial IR level blocks like catchpads 2119 // and catchendpads for successors. 2120 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2121 const BasicBlock *EHPadBB = I.getSuccessor(1); 2122 2123 const Value *Callee(I.getCalledValue()); 2124 const Function *Fn = dyn_cast<Function>(Callee); 2125 if (isa<InlineAsm>(Callee)) 2126 visitInlineAsm(&I); 2127 else if (Fn && Fn->isIntrinsic()) { 2128 switch (Fn->getIntrinsicID()) { 2129 default: 2130 llvm_unreachable("Cannot invoke this intrinsic"); 2131 case Intrinsic::donothing: 2132 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2133 break; 2134 case Intrinsic::experimental_patchpoint_void: 2135 case Intrinsic::experimental_patchpoint_i64: 2136 visitPatchpoint(&I, EHPadBB); 2137 break; 2138 case Intrinsic::experimental_gc_statepoint: 2139 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2140 break; 2141 } 2142 } else 2143 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2144 2145 // If the value of the invoke is used outside of its defining block, make it 2146 // available as a virtual register. 2147 // We already took care of the exported value for the statepoint instruction 2148 // during call to the LowerStatepoint. 2149 if (!isStatepoint(I)) { 2150 CopyToExportRegsIfNeeded(&I); 2151 } 2152 2153 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2154 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2155 uint32_t EHPadBBWeight = 2156 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2157 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2158 2159 // Update successor info. 2160 addSuccessorWithWeight(InvokeMBB, Return); 2161 for (auto &UnwindDest : UnwindDests) { 2162 UnwindDest.first->setIsEHPad(); 2163 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2164 } 2165 2166 // Drop into normal successor. 2167 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2168 MVT::Other, getControlRoot(), 2169 DAG.getBasicBlock(Return))); 2170 } 2171 2172 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2173 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2174 } 2175 2176 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2177 assert(FuncInfo.MBB->isEHPad() && 2178 "Call to landingpad not in landing pad!"); 2179 2180 MachineBasicBlock *MBB = FuncInfo.MBB; 2181 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2182 AddLandingPadInfo(LP, MMI, MBB); 2183 2184 // If there aren't registers to copy the values into (e.g., during SjLj 2185 // exceptions), then don't bother to create these DAG nodes. 2186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2187 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2188 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2189 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2190 return; 2191 2192 SmallVector<EVT, 2> ValueVTs; 2193 SDLoc dl = getCurSDLoc(); 2194 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2195 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2196 2197 // Get the two live-in registers as SDValues. The physregs have already been 2198 // copied into virtual registers. 2199 SDValue Ops[2]; 2200 if (FuncInfo.ExceptionPointerVirtReg) { 2201 Ops[0] = DAG.getZExtOrTrunc( 2202 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2203 FuncInfo.ExceptionPointerVirtReg, 2204 TLI.getPointerTy(DAG.getDataLayout())), 2205 dl, ValueVTs[0]); 2206 } else { 2207 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2208 } 2209 Ops[1] = DAG.getZExtOrTrunc( 2210 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2211 FuncInfo.ExceptionSelectorVirtReg, 2212 TLI.getPointerTy(DAG.getDataLayout())), 2213 dl, ValueVTs[1]); 2214 2215 // Merge into one. 2216 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2217 DAG.getVTList(ValueVTs), Ops); 2218 setValue(&LP, Res); 2219 } 2220 2221 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2222 #ifndef NDEBUG 2223 for (const CaseCluster &CC : Clusters) 2224 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2225 #endif 2226 2227 std::sort(Clusters.begin(), Clusters.end(), 2228 [](const CaseCluster &a, const CaseCluster &b) { 2229 return a.Low->getValue().slt(b.Low->getValue()); 2230 }); 2231 2232 // Merge adjacent clusters with the same destination. 2233 const unsigned N = Clusters.size(); 2234 unsigned DstIndex = 0; 2235 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2236 CaseCluster &CC = Clusters[SrcIndex]; 2237 const ConstantInt *CaseVal = CC.Low; 2238 MachineBasicBlock *Succ = CC.MBB; 2239 2240 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2241 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2242 // If this case has the same successor and is a neighbour, merge it into 2243 // the previous cluster. 2244 Clusters[DstIndex - 1].High = CaseVal; 2245 Clusters[DstIndex - 1].Weight += CC.Weight; 2246 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2247 } else { 2248 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2249 sizeof(Clusters[SrcIndex])); 2250 } 2251 } 2252 Clusters.resize(DstIndex); 2253 } 2254 2255 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2256 MachineBasicBlock *Last) { 2257 // Update JTCases. 2258 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2259 if (JTCases[i].first.HeaderBB == First) 2260 JTCases[i].first.HeaderBB = Last; 2261 2262 // Update BitTestCases. 2263 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2264 if (BitTestCases[i].Parent == First) 2265 BitTestCases[i].Parent = Last; 2266 } 2267 2268 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2269 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2270 2271 // Update machine-CFG edges with unique successors. 2272 SmallSet<BasicBlock*, 32> Done; 2273 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2274 BasicBlock *BB = I.getSuccessor(i); 2275 bool Inserted = Done.insert(BB).second; 2276 if (!Inserted) 2277 continue; 2278 2279 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2280 addSuccessorWithWeight(IndirectBrMBB, Succ); 2281 } 2282 2283 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2284 MVT::Other, getControlRoot(), 2285 getValue(I.getAddress()))); 2286 } 2287 2288 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2289 if (DAG.getTarget().Options.TrapUnreachable) 2290 DAG.setRoot( 2291 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2292 } 2293 2294 void SelectionDAGBuilder::visitFSub(const User &I) { 2295 // -0.0 - X --> fneg 2296 Type *Ty = I.getType(); 2297 if (isa<Constant>(I.getOperand(0)) && 2298 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2299 SDValue Op2 = getValue(I.getOperand(1)); 2300 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2301 Op2.getValueType(), Op2)); 2302 return; 2303 } 2304 2305 visitBinary(I, ISD::FSUB); 2306 } 2307 2308 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2309 SDValue Op1 = getValue(I.getOperand(0)); 2310 SDValue Op2 = getValue(I.getOperand(1)); 2311 2312 bool nuw = false; 2313 bool nsw = false; 2314 bool exact = false; 2315 FastMathFlags FMF; 2316 2317 if (const OverflowingBinaryOperator *OFBinOp = 2318 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2319 nuw = OFBinOp->hasNoUnsignedWrap(); 2320 nsw = OFBinOp->hasNoSignedWrap(); 2321 } 2322 if (const PossiblyExactOperator *ExactOp = 2323 dyn_cast<const PossiblyExactOperator>(&I)) 2324 exact = ExactOp->isExact(); 2325 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2326 FMF = FPOp->getFastMathFlags(); 2327 2328 SDNodeFlags Flags; 2329 Flags.setExact(exact); 2330 Flags.setNoSignedWrap(nsw); 2331 Flags.setNoUnsignedWrap(nuw); 2332 if (EnableFMFInDAG) { 2333 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2334 Flags.setNoInfs(FMF.noInfs()); 2335 Flags.setNoNaNs(FMF.noNaNs()); 2336 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2337 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2338 } 2339 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2340 Op1, Op2, &Flags); 2341 setValue(&I, BinNodeValue); 2342 } 2343 2344 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2345 SDValue Op1 = getValue(I.getOperand(0)); 2346 SDValue Op2 = getValue(I.getOperand(1)); 2347 2348 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2349 Op2.getValueType(), DAG.getDataLayout()); 2350 2351 // Coerce the shift amount to the right type if we can. 2352 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2353 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2354 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2355 SDLoc DL = getCurSDLoc(); 2356 2357 // If the operand is smaller than the shift count type, promote it. 2358 if (ShiftSize > Op2Size) 2359 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2360 2361 // If the operand is larger than the shift count type but the shift 2362 // count type has enough bits to represent any shift value, truncate 2363 // it now. This is a common case and it exposes the truncate to 2364 // optimization early. 2365 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2366 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2367 // Otherwise we'll need to temporarily settle for some other convenient 2368 // type. Type legalization will make adjustments once the shiftee is split. 2369 else 2370 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2371 } 2372 2373 bool nuw = false; 2374 bool nsw = false; 2375 bool exact = false; 2376 2377 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2378 2379 if (const OverflowingBinaryOperator *OFBinOp = 2380 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2381 nuw = OFBinOp->hasNoUnsignedWrap(); 2382 nsw = OFBinOp->hasNoSignedWrap(); 2383 } 2384 if (const PossiblyExactOperator *ExactOp = 2385 dyn_cast<const PossiblyExactOperator>(&I)) 2386 exact = ExactOp->isExact(); 2387 } 2388 SDNodeFlags Flags; 2389 Flags.setExact(exact); 2390 Flags.setNoSignedWrap(nsw); 2391 Flags.setNoUnsignedWrap(nuw); 2392 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2393 &Flags); 2394 setValue(&I, Res); 2395 } 2396 2397 void SelectionDAGBuilder::visitSDiv(const User &I) { 2398 SDValue Op1 = getValue(I.getOperand(0)); 2399 SDValue Op2 = getValue(I.getOperand(1)); 2400 2401 SDNodeFlags Flags; 2402 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2403 cast<PossiblyExactOperator>(&I)->isExact()); 2404 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2405 Op2, &Flags)); 2406 } 2407 2408 void SelectionDAGBuilder::visitICmp(const User &I) { 2409 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2410 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2411 predicate = IC->getPredicate(); 2412 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2413 predicate = ICmpInst::Predicate(IC->getPredicate()); 2414 SDValue Op1 = getValue(I.getOperand(0)); 2415 SDValue Op2 = getValue(I.getOperand(1)); 2416 ISD::CondCode Opcode = getICmpCondCode(predicate); 2417 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2419 I.getType()); 2420 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2421 } 2422 2423 void SelectionDAGBuilder::visitFCmp(const User &I) { 2424 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2425 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2426 predicate = FC->getPredicate(); 2427 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2428 predicate = FCmpInst::Predicate(FC->getPredicate()); 2429 SDValue Op1 = getValue(I.getOperand(0)); 2430 SDValue Op2 = getValue(I.getOperand(1)); 2431 ISD::CondCode Condition = getFCmpCondCode(predicate); 2432 2433 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2434 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2435 // further optimization, but currently FMF is only applicable to binary nodes. 2436 if (TM.Options.NoNaNsFPMath) 2437 Condition = getFCmpCodeWithoutNaN(Condition); 2438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2439 I.getType()); 2440 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2441 } 2442 2443 void SelectionDAGBuilder::visitSelect(const User &I) { 2444 SmallVector<EVT, 4> ValueVTs; 2445 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2446 ValueVTs); 2447 unsigned NumValues = ValueVTs.size(); 2448 if (NumValues == 0) return; 2449 2450 SmallVector<SDValue, 4> Values(NumValues); 2451 SDValue Cond = getValue(I.getOperand(0)); 2452 SDValue LHSVal = getValue(I.getOperand(1)); 2453 SDValue RHSVal = getValue(I.getOperand(2)); 2454 auto BaseOps = {Cond}; 2455 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2456 ISD::VSELECT : ISD::SELECT; 2457 2458 // Min/max matching is only viable if all output VTs are the same. 2459 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2460 EVT VT = ValueVTs[0]; 2461 LLVMContext &Ctx = *DAG.getContext(); 2462 auto &TLI = DAG.getTargetLoweringInfo(); 2463 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2464 VT = TLI.getTypeToTransformTo(Ctx, VT); 2465 2466 Value *LHS, *RHS; 2467 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2468 ISD::NodeType Opc = ISD::DELETED_NODE; 2469 switch (SPR.Flavor) { 2470 case SPF_UMAX: Opc = ISD::UMAX; break; 2471 case SPF_UMIN: Opc = ISD::UMIN; break; 2472 case SPF_SMAX: Opc = ISD::SMAX; break; 2473 case SPF_SMIN: Opc = ISD::SMIN; break; 2474 case SPF_FMINNUM: 2475 switch (SPR.NaNBehavior) { 2476 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2477 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2478 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2479 case SPNB_RETURNS_ANY: 2480 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2481 : ISD::FMINNAN; 2482 break; 2483 } 2484 break; 2485 case SPF_FMAXNUM: 2486 switch (SPR.NaNBehavior) { 2487 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2488 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2489 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2490 case SPNB_RETURNS_ANY: 2491 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2492 : ISD::FMAXNAN; 2493 break; 2494 } 2495 break; 2496 default: break; 2497 } 2498 2499 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2500 // If the underlying comparison instruction is used by any other instruction, 2501 // the consumed instructions won't be destroyed, so it is not profitable 2502 // to convert to a min/max. 2503 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2504 OpCode = Opc; 2505 LHSVal = getValue(LHS); 2506 RHSVal = getValue(RHS); 2507 BaseOps = {}; 2508 } 2509 } 2510 2511 for (unsigned i = 0; i != NumValues; ++i) { 2512 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2513 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2514 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2515 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2516 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2517 Ops); 2518 } 2519 2520 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2521 DAG.getVTList(ValueVTs), Values)); 2522 } 2523 2524 void SelectionDAGBuilder::visitTrunc(const User &I) { 2525 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2526 SDValue N = getValue(I.getOperand(0)); 2527 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2528 I.getType()); 2529 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2530 } 2531 2532 void SelectionDAGBuilder::visitZExt(const User &I) { 2533 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2534 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2535 SDValue N = getValue(I.getOperand(0)); 2536 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2537 I.getType()); 2538 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2539 } 2540 2541 void SelectionDAGBuilder::visitSExt(const User &I) { 2542 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2543 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2544 SDValue N = getValue(I.getOperand(0)); 2545 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2546 I.getType()); 2547 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2548 } 2549 2550 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2551 // FPTrunc is never a no-op cast, no need to check 2552 SDValue N = getValue(I.getOperand(0)); 2553 SDLoc dl = getCurSDLoc(); 2554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2555 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2556 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2557 DAG.getTargetConstant( 2558 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2559 } 2560 2561 void SelectionDAGBuilder::visitFPExt(const User &I) { 2562 // FPExt is never a no-op cast, no need to check 2563 SDValue N = getValue(I.getOperand(0)); 2564 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2565 I.getType()); 2566 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2567 } 2568 2569 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2570 // FPToUI is never a no-op cast, no need to check 2571 SDValue N = getValue(I.getOperand(0)); 2572 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2573 I.getType()); 2574 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2575 } 2576 2577 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2578 // FPToSI is never a no-op cast, no need to check 2579 SDValue N = getValue(I.getOperand(0)); 2580 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2581 I.getType()); 2582 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2583 } 2584 2585 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2586 // UIToFP is never a no-op cast, no need to check 2587 SDValue N = getValue(I.getOperand(0)); 2588 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2589 I.getType()); 2590 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2591 } 2592 2593 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2594 // SIToFP is never a no-op cast, no need to check 2595 SDValue N = getValue(I.getOperand(0)); 2596 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2597 I.getType()); 2598 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2599 } 2600 2601 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2602 // What to do depends on the size of the integer and the size of the pointer. 2603 // We can either truncate, zero extend, or no-op, accordingly. 2604 SDValue N = getValue(I.getOperand(0)); 2605 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2606 I.getType()); 2607 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2608 } 2609 2610 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2611 // What to do depends on the size of the integer and the size of the pointer. 2612 // We can either truncate, zero extend, or no-op, accordingly. 2613 SDValue N = getValue(I.getOperand(0)); 2614 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2615 I.getType()); 2616 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2617 } 2618 2619 void SelectionDAGBuilder::visitBitCast(const User &I) { 2620 SDValue N = getValue(I.getOperand(0)); 2621 SDLoc dl = getCurSDLoc(); 2622 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2623 I.getType()); 2624 2625 // BitCast assures us that source and destination are the same size so this is 2626 // either a BITCAST or a no-op. 2627 if (DestVT != N.getValueType()) 2628 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2629 DestVT, N)); // convert types. 2630 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2631 // might fold any kind of constant expression to an integer constant and that 2632 // is not what we are looking for. Only regcognize a bitcast of a genuine 2633 // constant integer as an opaque constant. 2634 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2635 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2636 /*isOpaque*/true)); 2637 else 2638 setValue(&I, N); // noop cast. 2639 } 2640 2641 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2643 const Value *SV = I.getOperand(0); 2644 SDValue N = getValue(SV); 2645 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2646 2647 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2648 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2649 2650 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2651 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2652 2653 setValue(&I, N); 2654 } 2655 2656 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 SDValue InVec = getValue(I.getOperand(0)); 2659 SDValue InVal = getValue(I.getOperand(1)); 2660 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2661 TLI.getVectorIdxTy(DAG.getDataLayout())); 2662 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2663 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2664 InVec, InVal, InIdx)); 2665 } 2666 2667 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2669 SDValue InVec = getValue(I.getOperand(0)); 2670 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2671 TLI.getVectorIdxTy(DAG.getDataLayout())); 2672 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2673 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2674 InVec, InIdx)); 2675 } 2676 2677 // Utility for visitShuffleVector - Return true if every element in Mask, 2678 // beginning from position Pos and ending in Pos+Size, falls within the 2679 // specified sequential range [L, L+Pos). or is undef. 2680 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2681 unsigned Pos, unsigned Size, int Low) { 2682 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2683 if (Mask[i] >= 0 && Mask[i] != Low) 2684 return false; 2685 return true; 2686 } 2687 2688 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2689 SDValue Src1 = getValue(I.getOperand(0)); 2690 SDValue Src2 = getValue(I.getOperand(1)); 2691 2692 SmallVector<int, 8> Mask; 2693 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2694 unsigned MaskNumElts = Mask.size(); 2695 2696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2697 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2698 EVT SrcVT = Src1.getValueType(); 2699 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2700 2701 if (SrcNumElts == MaskNumElts) { 2702 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2703 &Mask[0])); 2704 return; 2705 } 2706 2707 // Normalize the shuffle vector since mask and vector length don't match. 2708 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2709 // Mask is longer than the source vectors and is a multiple of the source 2710 // vectors. We can use concatenate vector to make the mask and vectors 2711 // lengths match. 2712 if (SrcNumElts*2 == MaskNumElts) { 2713 // First check for Src1 in low and Src2 in high 2714 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2715 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2716 // The shuffle is concatenating two vectors together. 2717 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2718 VT, Src1, Src2)); 2719 return; 2720 } 2721 // Then check for Src2 in low and Src1 in high 2722 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2723 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2724 // The shuffle is concatenating two vectors together. 2725 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2726 VT, Src2, Src1)); 2727 return; 2728 } 2729 } 2730 2731 // Pad both vectors with undefs to make them the same length as the mask. 2732 unsigned NumConcat = MaskNumElts / SrcNumElts; 2733 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2734 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2735 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2736 2737 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2738 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2739 MOps1[0] = Src1; 2740 MOps2[0] = Src2; 2741 2742 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2743 getCurSDLoc(), VT, MOps1); 2744 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2745 getCurSDLoc(), VT, MOps2); 2746 2747 // Readjust mask for new input vector length. 2748 SmallVector<int, 8> MappedOps; 2749 for (unsigned i = 0; i != MaskNumElts; ++i) { 2750 int Idx = Mask[i]; 2751 if (Idx >= (int)SrcNumElts) 2752 Idx -= SrcNumElts - MaskNumElts; 2753 MappedOps.push_back(Idx); 2754 } 2755 2756 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2757 &MappedOps[0])); 2758 return; 2759 } 2760 2761 if (SrcNumElts > MaskNumElts) { 2762 // Analyze the access pattern of the vector to see if we can extract 2763 // two subvectors and do the shuffle. The analysis is done by calculating 2764 // the range of elements the mask access on both vectors. 2765 int MinRange[2] = { static_cast<int>(SrcNumElts), 2766 static_cast<int>(SrcNumElts)}; 2767 int MaxRange[2] = {-1, -1}; 2768 2769 for (unsigned i = 0; i != MaskNumElts; ++i) { 2770 int Idx = Mask[i]; 2771 unsigned Input = 0; 2772 if (Idx < 0) 2773 continue; 2774 2775 if (Idx >= (int)SrcNumElts) { 2776 Input = 1; 2777 Idx -= SrcNumElts; 2778 } 2779 if (Idx > MaxRange[Input]) 2780 MaxRange[Input] = Idx; 2781 if (Idx < MinRange[Input]) 2782 MinRange[Input] = Idx; 2783 } 2784 2785 // Check if the access is smaller than the vector size and can we find 2786 // a reasonable extract index. 2787 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2788 // Extract. 2789 int StartIdx[2]; // StartIdx to extract from 2790 for (unsigned Input = 0; Input < 2; ++Input) { 2791 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2792 RangeUse[Input] = 0; // Unused 2793 StartIdx[Input] = 0; 2794 continue; 2795 } 2796 2797 // Find a good start index that is a multiple of the mask length. Then 2798 // see if the rest of the elements are in range. 2799 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2800 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2801 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2802 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2803 } 2804 2805 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2806 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2807 return; 2808 } 2809 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2810 // Extract appropriate subvector and generate a vector shuffle 2811 for (unsigned Input = 0; Input < 2; ++Input) { 2812 SDValue &Src = Input == 0 ? Src1 : Src2; 2813 if (RangeUse[Input] == 0) 2814 Src = DAG.getUNDEF(VT); 2815 else { 2816 SDLoc dl = getCurSDLoc(); 2817 Src = DAG.getNode( 2818 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2819 DAG.getConstant(StartIdx[Input], dl, 2820 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2821 } 2822 } 2823 2824 // Calculate new mask. 2825 SmallVector<int, 8> MappedOps; 2826 for (unsigned i = 0; i != MaskNumElts; ++i) { 2827 int Idx = Mask[i]; 2828 if (Idx >= 0) { 2829 if (Idx < (int)SrcNumElts) 2830 Idx -= StartIdx[0]; 2831 else 2832 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2833 } 2834 MappedOps.push_back(Idx); 2835 } 2836 2837 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2838 &MappedOps[0])); 2839 return; 2840 } 2841 } 2842 2843 // We can't use either concat vectors or extract subvectors so fall back to 2844 // replacing the shuffle with extract and build vector. 2845 // to insert and build vector. 2846 EVT EltVT = VT.getVectorElementType(); 2847 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2848 SDLoc dl = getCurSDLoc(); 2849 SmallVector<SDValue,8> Ops; 2850 for (unsigned i = 0; i != MaskNumElts; ++i) { 2851 int Idx = Mask[i]; 2852 SDValue Res; 2853 2854 if (Idx < 0) { 2855 Res = DAG.getUNDEF(EltVT); 2856 } else { 2857 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2858 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2859 2860 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2861 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2862 } 2863 2864 Ops.push_back(Res); 2865 } 2866 2867 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2868 } 2869 2870 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2871 const Value *Op0 = I.getOperand(0); 2872 const Value *Op1 = I.getOperand(1); 2873 Type *AggTy = I.getType(); 2874 Type *ValTy = Op1->getType(); 2875 bool IntoUndef = isa<UndefValue>(Op0); 2876 bool FromUndef = isa<UndefValue>(Op1); 2877 2878 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2879 2880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2881 SmallVector<EVT, 4> AggValueVTs; 2882 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2883 SmallVector<EVT, 4> ValValueVTs; 2884 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2885 2886 unsigned NumAggValues = AggValueVTs.size(); 2887 unsigned NumValValues = ValValueVTs.size(); 2888 SmallVector<SDValue, 4> Values(NumAggValues); 2889 2890 // Ignore an insertvalue that produces an empty object 2891 if (!NumAggValues) { 2892 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2893 return; 2894 } 2895 2896 SDValue Agg = getValue(Op0); 2897 unsigned i = 0; 2898 // Copy the beginning value(s) from the original aggregate. 2899 for (; i != LinearIndex; ++i) 2900 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2901 SDValue(Agg.getNode(), Agg.getResNo() + i); 2902 // Copy values from the inserted value(s). 2903 if (NumValValues) { 2904 SDValue Val = getValue(Op1); 2905 for (; i != LinearIndex + NumValValues; ++i) 2906 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2907 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2908 } 2909 // Copy remaining value(s) from the original aggregate. 2910 for (; i != NumAggValues; ++i) 2911 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2912 SDValue(Agg.getNode(), Agg.getResNo() + i); 2913 2914 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2915 DAG.getVTList(AggValueVTs), Values)); 2916 } 2917 2918 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2919 const Value *Op0 = I.getOperand(0); 2920 Type *AggTy = Op0->getType(); 2921 Type *ValTy = I.getType(); 2922 bool OutOfUndef = isa<UndefValue>(Op0); 2923 2924 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2925 2926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2927 SmallVector<EVT, 4> ValValueVTs; 2928 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2929 2930 unsigned NumValValues = ValValueVTs.size(); 2931 2932 // Ignore a extractvalue that produces an empty object 2933 if (!NumValValues) { 2934 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2935 return; 2936 } 2937 2938 SmallVector<SDValue, 4> Values(NumValValues); 2939 2940 SDValue Agg = getValue(Op0); 2941 // Copy out the selected value(s). 2942 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2943 Values[i - LinearIndex] = 2944 OutOfUndef ? 2945 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2946 SDValue(Agg.getNode(), Agg.getResNo() + i); 2947 2948 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2949 DAG.getVTList(ValValueVTs), Values)); 2950 } 2951 2952 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2953 Value *Op0 = I.getOperand(0); 2954 // Note that the pointer operand may be a vector of pointers. Take the scalar 2955 // element which holds a pointer. 2956 Type *Ty = Op0->getType()->getScalarType(); 2957 unsigned AS = Ty->getPointerAddressSpace(); 2958 SDValue N = getValue(Op0); 2959 SDLoc dl = getCurSDLoc(); 2960 2961 // Normalize Vector GEP - all scalar operands should be converted to the 2962 // splat vector. 2963 unsigned VectorWidth = I.getType()->isVectorTy() ? 2964 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2965 2966 if (VectorWidth && !N.getValueType().isVector()) { 2967 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2968 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2969 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2970 } 2971 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2972 OI != E; ++OI) { 2973 const Value *Idx = *OI; 2974 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2975 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2976 if (Field) { 2977 // N = N + Offset 2978 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2979 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2980 DAG.getConstant(Offset, dl, N.getValueType())); 2981 } 2982 2983 Ty = StTy->getElementType(Field); 2984 } else { 2985 Ty = cast<SequentialType>(Ty)->getElementType(); 2986 MVT PtrTy = 2987 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2988 unsigned PtrSize = PtrTy.getSizeInBits(); 2989 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2990 2991 // If this is a scalar constant or a splat vector of constants, 2992 // handle it quickly. 2993 const auto *CI = dyn_cast<ConstantInt>(Idx); 2994 if (!CI && isa<ConstantDataVector>(Idx) && 2995 cast<ConstantDataVector>(Idx)->getSplatValue()) 2996 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2997 2998 if (CI) { 2999 if (CI->isZero()) 3000 continue; 3001 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3002 SDValue OffsVal = VectorWidth ? 3003 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3004 DAG.getConstant(Offs, dl, PtrTy); 3005 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3006 continue; 3007 } 3008 3009 // N = N + Idx * ElementSize; 3010 SDValue IdxN = getValue(Idx); 3011 3012 if (!IdxN.getValueType().isVector() && VectorWidth) { 3013 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3014 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3015 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3016 } 3017 // If the index is smaller or larger than intptr_t, truncate or extend 3018 // it. 3019 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3020 3021 // If this is a multiply by a power of two, turn it into a shl 3022 // immediately. This is a very common case. 3023 if (ElementSize != 1) { 3024 if (ElementSize.isPowerOf2()) { 3025 unsigned Amt = ElementSize.logBase2(); 3026 IdxN = DAG.getNode(ISD::SHL, dl, 3027 N.getValueType(), IdxN, 3028 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3029 } else { 3030 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3031 IdxN = DAG.getNode(ISD::MUL, dl, 3032 N.getValueType(), IdxN, Scale); 3033 } 3034 } 3035 3036 N = DAG.getNode(ISD::ADD, dl, 3037 N.getValueType(), N, IdxN); 3038 } 3039 } 3040 3041 setValue(&I, N); 3042 } 3043 3044 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3045 // If this is a fixed sized alloca in the entry block of the function, 3046 // allocate it statically on the stack. 3047 if (FuncInfo.StaticAllocaMap.count(&I)) 3048 return; // getValue will auto-populate this. 3049 3050 SDLoc dl = getCurSDLoc(); 3051 Type *Ty = I.getAllocatedType(); 3052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3053 auto &DL = DAG.getDataLayout(); 3054 uint64_t TySize = DL.getTypeAllocSize(Ty); 3055 unsigned Align = 3056 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3057 3058 SDValue AllocSize = getValue(I.getArraySize()); 3059 3060 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3061 if (AllocSize.getValueType() != IntPtr) 3062 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3063 3064 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3065 AllocSize, 3066 DAG.getConstant(TySize, dl, IntPtr)); 3067 3068 // Handle alignment. If the requested alignment is less than or equal to 3069 // the stack alignment, ignore it. If the size is greater than or equal to 3070 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3071 unsigned StackAlign = 3072 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3073 if (Align <= StackAlign) 3074 Align = 0; 3075 3076 // Round the size of the allocation up to the stack alignment size 3077 // by add SA-1 to the size. 3078 AllocSize = DAG.getNode(ISD::ADD, dl, 3079 AllocSize.getValueType(), AllocSize, 3080 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3081 3082 // Mask out the low bits for alignment purposes. 3083 AllocSize = DAG.getNode(ISD::AND, dl, 3084 AllocSize.getValueType(), AllocSize, 3085 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3086 dl)); 3087 3088 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3089 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3090 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3091 setValue(&I, DSA); 3092 DAG.setRoot(DSA.getValue(1)); 3093 3094 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3095 } 3096 3097 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3098 if (I.isAtomic()) 3099 return visitAtomicLoad(I); 3100 3101 const Value *SV = I.getOperand(0); 3102 SDValue Ptr = getValue(SV); 3103 3104 Type *Ty = I.getType(); 3105 3106 bool isVolatile = I.isVolatile(); 3107 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3108 3109 // The IR notion of invariant_load only guarantees that all *non-faulting* 3110 // invariant loads result in the same value. The MI notion of invariant load 3111 // guarantees that the load can be legally moved to any location within its 3112 // containing function. The MI notion of invariant_load is stronger than the 3113 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3114 // with a guarantee that the location being loaded from is dereferenceable 3115 // throughout the function's lifetime. 3116 3117 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3118 isDereferenceablePointer(SV, DAG.getDataLayout()); 3119 unsigned Alignment = I.getAlignment(); 3120 3121 AAMDNodes AAInfo; 3122 I.getAAMetadata(AAInfo); 3123 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3124 3125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3126 SmallVector<EVT, 4> ValueVTs; 3127 SmallVector<uint64_t, 4> Offsets; 3128 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3129 unsigned NumValues = ValueVTs.size(); 3130 if (NumValues == 0) 3131 return; 3132 3133 SDValue Root; 3134 bool ConstantMemory = false; 3135 if (isVolatile || NumValues > MaxParallelChains) 3136 // Serialize volatile loads with other side effects. 3137 Root = getRoot(); 3138 else if (AA->pointsToConstantMemory(MemoryLocation( 3139 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3140 // Do not serialize (non-volatile) loads of constant memory with anything. 3141 Root = DAG.getEntryNode(); 3142 ConstantMemory = true; 3143 } else { 3144 // Do not serialize non-volatile loads against each other. 3145 Root = DAG.getRoot(); 3146 } 3147 3148 SDLoc dl = getCurSDLoc(); 3149 3150 if (isVolatile) 3151 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3152 3153 SmallVector<SDValue, 4> Values(NumValues); 3154 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3155 EVT PtrVT = Ptr.getValueType(); 3156 unsigned ChainI = 0; 3157 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3158 // Serializing loads here may result in excessive register pressure, and 3159 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3160 // could recover a bit by hoisting nodes upward in the chain by recognizing 3161 // they are side-effect free or do not alias. The optimizer should really 3162 // avoid this case by converting large object/array copies to llvm.memcpy 3163 // (MaxParallelChains should always remain as failsafe). 3164 if (ChainI == MaxParallelChains) { 3165 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3166 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3167 makeArrayRef(Chains.data(), ChainI)); 3168 Root = Chain; 3169 ChainI = 0; 3170 } 3171 SDValue A = DAG.getNode(ISD::ADD, dl, 3172 PtrVT, Ptr, 3173 DAG.getConstant(Offsets[i], dl, PtrVT)); 3174 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3175 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3176 isNonTemporal, isInvariant, Alignment, AAInfo, 3177 Ranges); 3178 3179 Values[i] = L; 3180 Chains[ChainI] = L.getValue(1); 3181 } 3182 3183 if (!ConstantMemory) { 3184 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3185 makeArrayRef(Chains.data(), ChainI)); 3186 if (isVolatile) 3187 DAG.setRoot(Chain); 3188 else 3189 PendingLoads.push_back(Chain); 3190 } 3191 3192 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3193 DAG.getVTList(ValueVTs), Values)); 3194 } 3195 3196 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3197 if (I.isAtomic()) 3198 return visitAtomicStore(I); 3199 3200 const Value *SrcV = I.getOperand(0); 3201 const Value *PtrV = I.getOperand(1); 3202 3203 SmallVector<EVT, 4> ValueVTs; 3204 SmallVector<uint64_t, 4> Offsets; 3205 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3206 SrcV->getType(), ValueVTs, &Offsets); 3207 unsigned NumValues = ValueVTs.size(); 3208 if (NumValues == 0) 3209 return; 3210 3211 // Get the lowered operands. Note that we do this after 3212 // checking if NumResults is zero, because with zero results 3213 // the operands won't have values in the map. 3214 SDValue Src = getValue(SrcV); 3215 SDValue Ptr = getValue(PtrV); 3216 3217 SDValue Root = getRoot(); 3218 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3219 EVT PtrVT = Ptr.getValueType(); 3220 bool isVolatile = I.isVolatile(); 3221 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3222 unsigned Alignment = I.getAlignment(); 3223 SDLoc dl = getCurSDLoc(); 3224 3225 AAMDNodes AAInfo; 3226 I.getAAMetadata(AAInfo); 3227 3228 unsigned ChainI = 0; 3229 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3230 // See visitLoad comments. 3231 if (ChainI == MaxParallelChains) { 3232 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3233 makeArrayRef(Chains.data(), ChainI)); 3234 Root = Chain; 3235 ChainI = 0; 3236 } 3237 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3238 DAG.getConstant(Offsets[i], dl, PtrVT)); 3239 SDValue St = DAG.getStore(Root, dl, 3240 SDValue(Src.getNode(), Src.getResNo() + i), 3241 Add, MachinePointerInfo(PtrV, Offsets[i]), 3242 isVolatile, isNonTemporal, Alignment, AAInfo); 3243 Chains[ChainI] = St; 3244 } 3245 3246 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3247 makeArrayRef(Chains.data(), ChainI)); 3248 DAG.setRoot(StoreNode); 3249 } 3250 3251 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3252 SDLoc sdl = getCurSDLoc(); 3253 3254 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3255 Value *PtrOperand = I.getArgOperand(1); 3256 SDValue Ptr = getValue(PtrOperand); 3257 SDValue Src0 = getValue(I.getArgOperand(0)); 3258 SDValue Mask = getValue(I.getArgOperand(3)); 3259 EVT VT = Src0.getValueType(); 3260 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3261 if (!Alignment) 3262 Alignment = DAG.getEVTAlignment(VT); 3263 3264 AAMDNodes AAInfo; 3265 I.getAAMetadata(AAInfo); 3266 3267 MachineMemOperand *MMO = 3268 DAG.getMachineFunction(). 3269 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3270 MachineMemOperand::MOStore, VT.getStoreSize(), 3271 Alignment, AAInfo); 3272 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3273 MMO, false); 3274 DAG.setRoot(StoreNode); 3275 setValue(&I, StoreNode); 3276 } 3277 3278 // Get a uniform base for the Gather/Scatter intrinsic. 3279 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3280 // We try to represent it as a base pointer + vector of indices. 3281 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3282 // The first operand of the GEP may be a single pointer or a vector of pointers 3283 // Example: 3284 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3285 // or 3286 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3287 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3288 // 3289 // When the first GEP operand is a single pointer - it is the uniform base we 3290 // are looking for. If first operand of the GEP is a splat vector - we 3291 // extract the spalt value and use it as a uniform base. 3292 // In all other cases the function returns 'false'. 3293 // 3294 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3295 SelectionDAGBuilder* SDB) { 3296 3297 SelectionDAG& DAG = SDB->DAG; 3298 LLVMContext &Context = *DAG.getContext(); 3299 3300 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3301 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3302 if (!GEP || GEP->getNumOperands() > 2) 3303 return false; 3304 3305 Value *GEPPtr = GEP->getPointerOperand(); 3306 if (!GEPPtr->getType()->isVectorTy()) 3307 Ptr = GEPPtr; 3308 else if (!(Ptr = getSplatValue(GEPPtr))) 3309 return false; 3310 3311 Value *IndexVal = GEP->getOperand(1); 3312 3313 // The operands of the GEP may be defined in another basic block. 3314 // In this case we'll not find nodes for the operands. 3315 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3316 return false; 3317 3318 Base = SDB->getValue(Ptr); 3319 Index = SDB->getValue(IndexVal); 3320 3321 // Suppress sign extension. 3322 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3323 if (SDB->findValue(Sext->getOperand(0))) { 3324 IndexVal = Sext->getOperand(0); 3325 Index = SDB->getValue(IndexVal); 3326 } 3327 } 3328 if (!Index.getValueType().isVector()) { 3329 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3330 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3331 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3332 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3333 } 3334 return true; 3335 } 3336 3337 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3338 SDLoc sdl = getCurSDLoc(); 3339 3340 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3341 Value *Ptr = I.getArgOperand(1); 3342 SDValue Src0 = getValue(I.getArgOperand(0)); 3343 SDValue Mask = getValue(I.getArgOperand(3)); 3344 EVT VT = Src0.getValueType(); 3345 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3346 if (!Alignment) 3347 Alignment = DAG.getEVTAlignment(VT); 3348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3349 3350 AAMDNodes AAInfo; 3351 I.getAAMetadata(AAInfo); 3352 3353 SDValue Base; 3354 SDValue Index; 3355 Value *BasePtr = Ptr; 3356 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3357 3358 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3359 MachineMemOperand *MMO = DAG.getMachineFunction(). 3360 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3361 MachineMemOperand::MOStore, VT.getStoreSize(), 3362 Alignment, AAInfo); 3363 if (!UniformBase) { 3364 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3365 Index = getValue(Ptr); 3366 } 3367 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3368 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3369 Ops, MMO); 3370 DAG.setRoot(Scatter); 3371 setValue(&I, Scatter); 3372 } 3373 3374 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3375 SDLoc sdl = getCurSDLoc(); 3376 3377 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3378 Value *PtrOperand = I.getArgOperand(0); 3379 SDValue Ptr = getValue(PtrOperand); 3380 SDValue Src0 = getValue(I.getArgOperand(3)); 3381 SDValue Mask = getValue(I.getArgOperand(2)); 3382 3383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3384 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3385 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3386 if (!Alignment) 3387 Alignment = DAG.getEVTAlignment(VT); 3388 3389 AAMDNodes AAInfo; 3390 I.getAAMetadata(AAInfo); 3391 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3392 3393 SDValue InChain = DAG.getRoot(); 3394 if (AA->pointsToConstantMemory(MemoryLocation( 3395 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3396 AAInfo))) { 3397 // Do not serialize (non-volatile) loads of constant memory with anything. 3398 InChain = DAG.getEntryNode(); 3399 } 3400 3401 MachineMemOperand *MMO = 3402 DAG.getMachineFunction(). 3403 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3404 MachineMemOperand::MOLoad, VT.getStoreSize(), 3405 Alignment, AAInfo, Ranges); 3406 3407 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3408 ISD::NON_EXTLOAD); 3409 SDValue OutChain = Load.getValue(1); 3410 DAG.setRoot(OutChain); 3411 setValue(&I, Load); 3412 } 3413 3414 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3415 SDLoc sdl = getCurSDLoc(); 3416 3417 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3418 Value *Ptr = I.getArgOperand(0); 3419 SDValue Src0 = getValue(I.getArgOperand(3)); 3420 SDValue Mask = getValue(I.getArgOperand(2)); 3421 3422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3423 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3424 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3425 if (!Alignment) 3426 Alignment = DAG.getEVTAlignment(VT); 3427 3428 AAMDNodes AAInfo; 3429 I.getAAMetadata(AAInfo); 3430 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3431 3432 SDValue Root = DAG.getRoot(); 3433 SDValue Base; 3434 SDValue Index; 3435 Value *BasePtr = Ptr; 3436 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3437 bool ConstantMemory = false; 3438 if (UniformBase && 3439 AA->pointsToConstantMemory(MemoryLocation( 3440 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3441 AAInfo))) { 3442 // Do not serialize (non-volatile) loads of constant memory with anything. 3443 Root = DAG.getEntryNode(); 3444 ConstantMemory = true; 3445 } 3446 3447 MachineMemOperand *MMO = 3448 DAG.getMachineFunction(). 3449 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3450 MachineMemOperand::MOLoad, VT.getStoreSize(), 3451 Alignment, AAInfo, Ranges); 3452 3453 if (!UniformBase) { 3454 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3455 Index = getValue(Ptr); 3456 } 3457 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3458 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3459 Ops, MMO); 3460 3461 SDValue OutChain = Gather.getValue(1); 3462 if (!ConstantMemory) 3463 PendingLoads.push_back(OutChain); 3464 setValue(&I, Gather); 3465 } 3466 3467 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3468 SDLoc dl = getCurSDLoc(); 3469 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3470 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3471 SynchronizationScope Scope = I.getSynchScope(); 3472 3473 SDValue InChain = getRoot(); 3474 3475 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3476 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3477 SDValue L = DAG.getAtomicCmpSwap( 3478 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3479 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3480 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3481 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3482 3483 SDValue OutChain = L.getValue(2); 3484 3485 setValue(&I, L); 3486 DAG.setRoot(OutChain); 3487 } 3488 3489 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3490 SDLoc dl = getCurSDLoc(); 3491 ISD::NodeType NT; 3492 switch (I.getOperation()) { 3493 default: llvm_unreachable("Unknown atomicrmw operation"); 3494 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3495 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3496 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3497 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3498 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3499 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3500 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3501 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3502 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3503 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3504 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3505 } 3506 AtomicOrdering Order = I.getOrdering(); 3507 SynchronizationScope Scope = I.getSynchScope(); 3508 3509 SDValue InChain = getRoot(); 3510 3511 SDValue L = 3512 DAG.getAtomic(NT, dl, 3513 getValue(I.getValOperand()).getSimpleValueType(), 3514 InChain, 3515 getValue(I.getPointerOperand()), 3516 getValue(I.getValOperand()), 3517 I.getPointerOperand(), 3518 /* Alignment=*/ 0, Order, Scope); 3519 3520 SDValue OutChain = L.getValue(1); 3521 3522 setValue(&I, L); 3523 DAG.setRoot(OutChain); 3524 } 3525 3526 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3527 SDLoc dl = getCurSDLoc(); 3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3529 SDValue Ops[3]; 3530 Ops[0] = getRoot(); 3531 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3532 TLI.getPointerTy(DAG.getDataLayout())); 3533 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3534 TLI.getPointerTy(DAG.getDataLayout())); 3535 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3536 } 3537 3538 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3539 SDLoc dl = getCurSDLoc(); 3540 AtomicOrdering Order = I.getOrdering(); 3541 SynchronizationScope Scope = I.getSynchScope(); 3542 3543 SDValue InChain = getRoot(); 3544 3545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3546 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3547 3548 if (I.getAlignment() < VT.getSizeInBits() / 8) 3549 report_fatal_error("Cannot generate unaligned atomic load"); 3550 3551 MachineMemOperand *MMO = 3552 DAG.getMachineFunction(). 3553 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3554 MachineMemOperand::MOVolatile | 3555 MachineMemOperand::MOLoad, 3556 VT.getStoreSize(), 3557 I.getAlignment() ? I.getAlignment() : 3558 DAG.getEVTAlignment(VT)); 3559 3560 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3561 SDValue L = 3562 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3563 getValue(I.getPointerOperand()), MMO, 3564 Order, Scope); 3565 3566 SDValue OutChain = L.getValue(1); 3567 3568 setValue(&I, L); 3569 DAG.setRoot(OutChain); 3570 } 3571 3572 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3573 SDLoc dl = getCurSDLoc(); 3574 3575 AtomicOrdering Order = I.getOrdering(); 3576 SynchronizationScope Scope = I.getSynchScope(); 3577 3578 SDValue InChain = getRoot(); 3579 3580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3581 EVT VT = 3582 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3583 3584 if (I.getAlignment() < VT.getSizeInBits() / 8) 3585 report_fatal_error("Cannot generate unaligned atomic store"); 3586 3587 SDValue OutChain = 3588 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3589 InChain, 3590 getValue(I.getPointerOperand()), 3591 getValue(I.getValueOperand()), 3592 I.getPointerOperand(), I.getAlignment(), 3593 Order, Scope); 3594 3595 DAG.setRoot(OutChain); 3596 } 3597 3598 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3599 /// node. 3600 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3601 unsigned Intrinsic) { 3602 bool HasChain = !I.doesNotAccessMemory(); 3603 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3604 3605 // Build the operand list. 3606 SmallVector<SDValue, 8> Ops; 3607 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3608 if (OnlyLoad) { 3609 // We don't need to serialize loads against other loads. 3610 Ops.push_back(DAG.getRoot()); 3611 } else { 3612 Ops.push_back(getRoot()); 3613 } 3614 } 3615 3616 // Info is set by getTgtMemInstrinsic 3617 TargetLowering::IntrinsicInfo Info; 3618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3619 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3620 3621 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3622 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3623 Info.opc == ISD::INTRINSIC_W_CHAIN) 3624 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3625 TLI.getPointerTy(DAG.getDataLayout()))); 3626 3627 // Add all operands of the call to the operand list. 3628 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3629 SDValue Op = getValue(I.getArgOperand(i)); 3630 Ops.push_back(Op); 3631 } 3632 3633 SmallVector<EVT, 4> ValueVTs; 3634 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3635 3636 if (HasChain) 3637 ValueVTs.push_back(MVT::Other); 3638 3639 SDVTList VTs = DAG.getVTList(ValueVTs); 3640 3641 // Create the node. 3642 SDValue Result; 3643 if (IsTgtIntrinsic) { 3644 // This is target intrinsic that touches memory 3645 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3646 VTs, Ops, Info.memVT, 3647 MachinePointerInfo(Info.ptrVal, Info.offset), 3648 Info.align, Info.vol, 3649 Info.readMem, Info.writeMem, Info.size); 3650 } else if (!HasChain) { 3651 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3652 } else if (!I.getType()->isVoidTy()) { 3653 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3654 } else { 3655 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3656 } 3657 3658 if (HasChain) { 3659 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3660 if (OnlyLoad) 3661 PendingLoads.push_back(Chain); 3662 else 3663 DAG.setRoot(Chain); 3664 } 3665 3666 if (!I.getType()->isVoidTy()) { 3667 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3668 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3669 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3670 } 3671 3672 setValue(&I, Result); 3673 } 3674 } 3675 3676 /// GetSignificand - Get the significand and build it into a floating-point 3677 /// number with exponent of 1: 3678 /// 3679 /// Op = (Op & 0x007fffff) | 0x3f800000; 3680 /// 3681 /// where Op is the hexadecimal representation of floating point value. 3682 static SDValue 3683 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3684 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3685 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3686 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3687 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3688 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3689 } 3690 3691 /// GetExponent - Get the exponent: 3692 /// 3693 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3694 /// 3695 /// where Op is the hexadecimal representation of floating point value. 3696 static SDValue 3697 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3698 SDLoc dl) { 3699 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3700 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3701 SDValue t1 = DAG.getNode( 3702 ISD::SRL, dl, MVT::i32, t0, 3703 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3704 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3705 DAG.getConstant(127, dl, MVT::i32)); 3706 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3707 } 3708 3709 /// getF32Constant - Get 32-bit floating point constant. 3710 static SDValue 3711 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3712 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3713 MVT::f32); 3714 } 3715 3716 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3717 SelectionDAG &DAG) { 3718 // TODO: What fast-math-flags should be set on the floating-point nodes? 3719 3720 // IntegerPartOfX = ((int32_t)(t0); 3721 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3722 3723 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3724 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3725 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3726 3727 // IntegerPartOfX <<= 23; 3728 IntegerPartOfX = DAG.getNode( 3729 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3730 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3731 DAG.getDataLayout()))); 3732 3733 SDValue TwoToFractionalPartOfX; 3734 if (LimitFloatPrecision <= 6) { 3735 // For floating-point precision of 6: 3736 // 3737 // TwoToFractionalPartOfX = 3738 // 0.997535578f + 3739 // (0.735607626f + 0.252464424f * x) * x; 3740 // 3741 // error 0.0144103317, which is 6 bits 3742 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3743 getF32Constant(DAG, 0x3e814304, dl)); 3744 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3745 getF32Constant(DAG, 0x3f3c50c8, dl)); 3746 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3747 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3748 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3749 } else if (LimitFloatPrecision <= 12) { 3750 // For floating-point precision of 12: 3751 // 3752 // TwoToFractionalPartOfX = 3753 // 0.999892986f + 3754 // (0.696457318f + 3755 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3756 // 3757 // error 0.000107046256, which is 13 to 14 bits 3758 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3759 getF32Constant(DAG, 0x3da235e3, dl)); 3760 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3761 getF32Constant(DAG, 0x3e65b8f3, dl)); 3762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3763 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3764 getF32Constant(DAG, 0x3f324b07, dl)); 3765 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3766 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3767 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3768 } else { // LimitFloatPrecision <= 18 3769 // For floating-point precision of 18: 3770 // 3771 // TwoToFractionalPartOfX = 3772 // 0.999999982f + 3773 // (0.693148872f + 3774 // (0.240227044f + 3775 // (0.554906021e-1f + 3776 // (0.961591928e-2f + 3777 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3778 // error 2.47208000*10^(-7), which is better than 18 bits 3779 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3780 getF32Constant(DAG, 0x3924b03e, dl)); 3781 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3782 getF32Constant(DAG, 0x3ab24b87, dl)); 3783 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3784 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3785 getF32Constant(DAG, 0x3c1d8c17, dl)); 3786 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3787 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3788 getF32Constant(DAG, 0x3d634a1d, dl)); 3789 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3790 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3791 getF32Constant(DAG, 0x3e75fe14, dl)); 3792 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3793 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3794 getF32Constant(DAG, 0x3f317234, dl)); 3795 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3796 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3797 getF32Constant(DAG, 0x3f800000, dl)); 3798 } 3799 3800 // Add the exponent into the result in integer domain. 3801 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3802 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3803 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3804 } 3805 3806 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3807 /// limited-precision mode. 3808 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3809 const TargetLowering &TLI) { 3810 if (Op.getValueType() == MVT::f32 && 3811 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3812 3813 // Put the exponent in the right bit position for later addition to the 3814 // final result: 3815 // 3816 // #define LOG2OFe 1.4426950f 3817 // t0 = Op * LOG2OFe 3818 3819 // TODO: What fast-math-flags should be set here? 3820 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3821 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3822 return getLimitedPrecisionExp2(t0, dl, DAG); 3823 } 3824 3825 // No special expansion. 3826 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3827 } 3828 3829 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3830 /// limited-precision mode. 3831 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3832 const TargetLowering &TLI) { 3833 3834 // TODO: What fast-math-flags should be set on the floating-point nodes? 3835 3836 if (Op.getValueType() == MVT::f32 && 3837 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3838 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3839 3840 // Scale the exponent by log(2) [0.69314718f]. 3841 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3842 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3843 getF32Constant(DAG, 0x3f317218, dl)); 3844 3845 // Get the significand and build it into a floating-point number with 3846 // exponent of 1. 3847 SDValue X = GetSignificand(DAG, Op1, dl); 3848 3849 SDValue LogOfMantissa; 3850 if (LimitFloatPrecision <= 6) { 3851 // For floating-point precision of 6: 3852 // 3853 // LogofMantissa = 3854 // -1.1609546f + 3855 // (1.4034025f - 0.23903021f * x) * x; 3856 // 3857 // error 0.0034276066, which is better than 8 bits 3858 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3859 getF32Constant(DAG, 0xbe74c456, dl)); 3860 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3861 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3862 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3863 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3864 getF32Constant(DAG, 0x3f949a29, dl)); 3865 } else if (LimitFloatPrecision <= 12) { 3866 // For floating-point precision of 12: 3867 // 3868 // LogOfMantissa = 3869 // -1.7417939f + 3870 // (2.8212026f + 3871 // (-1.4699568f + 3872 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3873 // 3874 // error 0.000061011436, which is 14 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0xbd67b6d6, dl)); 3877 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3fbc278b, dl)); 3882 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3883 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3884 getF32Constant(DAG, 0x40348e95, dl)); 3885 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3886 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3887 getF32Constant(DAG, 0x3fdef31a, dl)); 3888 } else { // LimitFloatPrecision <= 18 3889 // For floating-point precision of 18: 3890 // 3891 // LogOfMantissa = 3892 // -2.1072184f + 3893 // (4.2372794f + 3894 // (-3.7029485f + 3895 // (2.2781945f + 3896 // (-0.87823314f + 3897 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3898 // 3899 // error 0.0000023660568, which is better than 18 bits 3900 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3901 getF32Constant(DAG, 0xbc91e5ac, dl)); 3902 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3903 getF32Constant(DAG, 0x3e4350aa, dl)); 3904 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3905 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3906 getF32Constant(DAG, 0x3f60d3e3, dl)); 3907 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3908 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3909 getF32Constant(DAG, 0x4011cdf0, dl)); 3910 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3911 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3912 getF32Constant(DAG, 0x406cfd1c, dl)); 3913 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3914 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3915 getF32Constant(DAG, 0x408797cb, dl)); 3916 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3917 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3918 getF32Constant(DAG, 0x4006dcab, dl)); 3919 } 3920 3921 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3922 } 3923 3924 // No special expansion. 3925 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3926 } 3927 3928 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3929 /// limited-precision mode. 3930 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3931 const TargetLowering &TLI) { 3932 3933 // TODO: What fast-math-flags should be set on the floating-point nodes? 3934 3935 if (Op.getValueType() == MVT::f32 && 3936 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3937 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3938 3939 // Get the exponent. 3940 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3941 3942 // Get the significand and build it into a floating-point number with 3943 // exponent of 1. 3944 SDValue X = GetSignificand(DAG, Op1, dl); 3945 3946 // Different possible minimax approximations of significand in 3947 // floating-point for various degrees of accuracy over [1,2]. 3948 SDValue Log2ofMantissa; 3949 if (LimitFloatPrecision <= 6) { 3950 // For floating-point precision of 6: 3951 // 3952 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3953 // 3954 // error 0.0049451742, which is more than 7 bits 3955 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3956 getF32Constant(DAG, 0xbeb08fe0, dl)); 3957 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3958 getF32Constant(DAG, 0x40019463, dl)); 3959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3960 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3961 getF32Constant(DAG, 0x3fd6633d, dl)); 3962 } else if (LimitFloatPrecision <= 12) { 3963 // For floating-point precision of 12: 3964 // 3965 // Log2ofMantissa = 3966 // -2.51285454f + 3967 // (4.07009056f + 3968 // (-2.12067489f + 3969 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3970 // 3971 // error 0.0000876136000, which is better than 13 bits 3972 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3973 getF32Constant(DAG, 0xbda7262e, dl)); 3974 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3975 getF32Constant(DAG, 0x3f25280b, dl)); 3976 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3977 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3978 getF32Constant(DAG, 0x4007b923, dl)); 3979 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3980 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3981 getF32Constant(DAG, 0x40823e2f, dl)); 3982 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3983 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3984 getF32Constant(DAG, 0x4020d29c, dl)); 3985 } else { // LimitFloatPrecision <= 18 3986 // For floating-point precision of 18: 3987 // 3988 // Log2ofMantissa = 3989 // -3.0400495f + 3990 // (6.1129976f + 3991 // (-5.3420409f + 3992 // (3.2865683f + 3993 // (-1.2669343f + 3994 // (0.27515199f - 3995 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3996 // 3997 // error 0.0000018516, which is better than 18 bits 3998 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3999 getF32Constant(DAG, 0xbcd2769e, dl)); 4000 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4001 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4002 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4003 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4004 getF32Constant(DAG, 0x3fa22ae7, dl)); 4005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4007 getF32Constant(DAG, 0x40525723, dl)); 4008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4009 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4010 getF32Constant(DAG, 0x40aaf200, dl)); 4011 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4012 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4013 getF32Constant(DAG, 0x40c39dad, dl)); 4014 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4015 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4016 getF32Constant(DAG, 0x4042902c, dl)); 4017 } 4018 4019 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4020 } 4021 4022 // No special expansion. 4023 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4024 } 4025 4026 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4027 /// limited-precision mode. 4028 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4029 const TargetLowering &TLI) { 4030 4031 // TODO: What fast-math-flags should be set on the floating-point nodes? 4032 4033 if (Op.getValueType() == MVT::f32 && 4034 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4035 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4036 4037 // Scale the exponent by log10(2) [0.30102999f]. 4038 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4039 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4040 getF32Constant(DAG, 0x3e9a209a, dl)); 4041 4042 // Get the significand and build it into a floating-point number with 4043 // exponent of 1. 4044 SDValue X = GetSignificand(DAG, Op1, dl); 4045 4046 SDValue Log10ofMantissa; 4047 if (LimitFloatPrecision <= 6) { 4048 // For floating-point precision of 6: 4049 // 4050 // Log10ofMantissa = 4051 // -0.50419619f + 4052 // (0.60948995f - 0.10380950f * x) * x; 4053 // 4054 // error 0.0014886165, which is 6 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0xbdd49a13, dl)); 4057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3f1c0789, dl)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3f011300, dl)); 4062 } else if (LimitFloatPrecision <= 12) { 4063 // For floating-point precision of 12: 4064 // 4065 // Log10ofMantissa = 4066 // -0.64831180f + 4067 // (0.91751397f + 4068 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4069 // 4070 // error 0.00019228036, which is better than 12 bits 4071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4072 getF32Constant(DAG, 0x3d431f31, dl)); 4073 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4074 getF32Constant(DAG, 0x3ea21fb2, dl)); 4075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4076 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4077 getF32Constant(DAG, 0x3f6ae232, dl)); 4078 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4079 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4080 getF32Constant(DAG, 0x3f25f7c3, dl)); 4081 } else { // LimitFloatPrecision <= 18 4082 // For floating-point precision of 18: 4083 // 4084 // Log10ofMantissa = 4085 // -0.84299375f + 4086 // (1.5327582f + 4087 // (-1.0688956f + 4088 // (0.49102474f + 4089 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4090 // 4091 // error 0.0000037995730, which is better than 18 bits 4092 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4093 getF32Constant(DAG, 0x3c5d51ce, dl)); 4094 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4095 getF32Constant(DAG, 0x3e00685a, dl)); 4096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4097 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4098 getF32Constant(DAG, 0x3efb6798, dl)); 4099 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4100 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4101 getF32Constant(DAG, 0x3f88d192, dl)); 4102 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4103 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4104 getF32Constant(DAG, 0x3fc4316c, dl)); 4105 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4106 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4107 getF32Constant(DAG, 0x3f57ce70, dl)); 4108 } 4109 4110 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4111 } 4112 4113 // No special expansion. 4114 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4115 } 4116 4117 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4118 /// limited-precision mode. 4119 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4120 const TargetLowering &TLI) { 4121 if (Op.getValueType() == MVT::f32 && 4122 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4123 return getLimitedPrecisionExp2(Op, dl, DAG); 4124 4125 // No special expansion. 4126 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4127 } 4128 4129 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4130 /// limited-precision mode with x == 10.0f. 4131 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4132 SelectionDAG &DAG, const TargetLowering &TLI) { 4133 bool IsExp10 = false; 4134 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4135 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4136 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4137 APFloat Ten(10.0f); 4138 IsExp10 = LHSC->isExactlyValue(Ten); 4139 } 4140 } 4141 4142 // TODO: What fast-math-flags should be set on the FMUL node? 4143 if (IsExp10) { 4144 // Put the exponent in the right bit position for later addition to the 4145 // final result: 4146 // 4147 // #define LOG2OF10 3.3219281f 4148 // t0 = Op * LOG2OF10; 4149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4150 getF32Constant(DAG, 0x40549a78, dl)); 4151 return getLimitedPrecisionExp2(t0, dl, DAG); 4152 } 4153 4154 // No special expansion. 4155 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4156 } 4157 4158 4159 /// ExpandPowI - Expand a llvm.powi intrinsic. 4160 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4161 SelectionDAG &DAG) { 4162 // If RHS is a constant, we can expand this out to a multiplication tree, 4163 // otherwise we end up lowering to a call to __powidf2 (for example). When 4164 // optimizing for size, we only want to do this if the expansion would produce 4165 // a small number of multiplies, otherwise we do the full expansion. 4166 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4167 // Get the exponent as a positive value. 4168 unsigned Val = RHSC->getSExtValue(); 4169 if ((int)Val < 0) Val = -Val; 4170 4171 // powi(x, 0) -> 1.0 4172 if (Val == 0) 4173 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4174 4175 const Function *F = DAG.getMachineFunction().getFunction(); 4176 if (!F->optForSize() || 4177 // If optimizing for size, don't insert too many multiplies. 4178 // This inserts up to 5 multiplies. 4179 countPopulation(Val) + Log2_32(Val) < 7) { 4180 // We use the simple binary decomposition method to generate the multiply 4181 // sequence. There are more optimal ways to do this (for example, 4182 // powi(x,15) generates one more multiply than it should), but this has 4183 // the benefit of being both really simple and much better than a libcall. 4184 SDValue Res; // Logically starts equal to 1.0 4185 SDValue CurSquare = LHS; 4186 // TODO: Intrinsics should have fast-math-flags that propagate to these 4187 // nodes. 4188 while (Val) { 4189 if (Val & 1) { 4190 if (Res.getNode()) 4191 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4192 else 4193 Res = CurSquare; // 1.0*CurSquare. 4194 } 4195 4196 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4197 CurSquare, CurSquare); 4198 Val >>= 1; 4199 } 4200 4201 // If the original was negative, invert the result, producing 1/(x*x*x). 4202 if (RHSC->getSExtValue() < 0) 4203 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4204 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4205 return Res; 4206 } 4207 } 4208 4209 // Otherwise, expand to a libcall. 4210 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4211 } 4212 4213 // getUnderlyingArgReg - Find underlying register used for a truncated or 4214 // bitcasted argument. 4215 static unsigned getUnderlyingArgReg(const SDValue &N) { 4216 switch (N.getOpcode()) { 4217 case ISD::CopyFromReg: 4218 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4219 case ISD::BITCAST: 4220 case ISD::AssertZext: 4221 case ISD::AssertSext: 4222 case ISD::TRUNCATE: 4223 return getUnderlyingArgReg(N.getOperand(0)); 4224 default: 4225 return 0; 4226 } 4227 } 4228 4229 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4230 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4231 /// At the end of instruction selection, they will be inserted to the entry BB. 4232 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4233 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4234 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4235 const Argument *Arg = dyn_cast<Argument>(V); 4236 if (!Arg) 4237 return false; 4238 4239 MachineFunction &MF = DAG.getMachineFunction(); 4240 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4241 4242 // Ignore inlined function arguments here. 4243 // 4244 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4245 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4246 return false; 4247 4248 Optional<MachineOperand> Op; 4249 // Some arguments' frame index is recorded during argument lowering. 4250 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4251 Op = MachineOperand::CreateFI(FI); 4252 4253 if (!Op && N.getNode()) { 4254 unsigned Reg = getUnderlyingArgReg(N); 4255 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4256 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4257 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4258 if (PR) 4259 Reg = PR; 4260 } 4261 if (Reg) 4262 Op = MachineOperand::CreateReg(Reg, false); 4263 } 4264 4265 if (!Op) { 4266 // Check if ValueMap has reg number. 4267 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4268 if (VMI != FuncInfo.ValueMap.end()) 4269 Op = MachineOperand::CreateReg(VMI->second, false); 4270 } 4271 4272 if (!Op && N.getNode()) 4273 // Check if frame index is available. 4274 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4275 if (FrameIndexSDNode *FINode = 4276 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4277 Op = MachineOperand::CreateFI(FINode->getIndex()); 4278 4279 if (!Op) 4280 return false; 4281 4282 assert(Variable->isValidLocationForIntrinsic(DL) && 4283 "Expected inlined-at fields to agree"); 4284 if (Op->isReg()) 4285 FuncInfo.ArgDbgValues.push_back( 4286 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4287 Op->getReg(), Offset, Variable, Expr)); 4288 else 4289 FuncInfo.ArgDbgValues.push_back( 4290 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4291 .addOperand(*Op) 4292 .addImm(Offset) 4293 .addMetadata(Variable) 4294 .addMetadata(Expr)); 4295 4296 return true; 4297 } 4298 4299 // VisualStudio defines setjmp as _setjmp 4300 #if defined(_MSC_VER) && defined(setjmp) && \ 4301 !defined(setjmp_undefined_for_msvc) 4302 # pragma push_macro("setjmp") 4303 # undef setjmp 4304 # define setjmp_undefined_for_msvc 4305 #endif 4306 4307 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4308 /// we want to emit this as a call to a named external function, return the name 4309 /// otherwise lower it and return null. 4310 const char * 4311 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4313 SDLoc sdl = getCurSDLoc(); 4314 DebugLoc dl = getCurDebugLoc(); 4315 SDValue Res; 4316 4317 switch (Intrinsic) { 4318 default: 4319 // By default, turn this into a target intrinsic node. 4320 visitTargetIntrinsic(I, Intrinsic); 4321 return nullptr; 4322 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4323 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4324 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4325 case Intrinsic::returnaddress: 4326 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4327 TLI.getPointerTy(DAG.getDataLayout()), 4328 getValue(I.getArgOperand(0)))); 4329 return nullptr; 4330 case Intrinsic::frameaddress: 4331 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4332 TLI.getPointerTy(DAG.getDataLayout()), 4333 getValue(I.getArgOperand(0)))); 4334 return nullptr; 4335 case Intrinsic::read_register: { 4336 Value *Reg = I.getArgOperand(0); 4337 SDValue Chain = getRoot(); 4338 SDValue RegName = 4339 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4340 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4341 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4342 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4343 setValue(&I, Res); 4344 DAG.setRoot(Res.getValue(1)); 4345 return nullptr; 4346 } 4347 case Intrinsic::write_register: { 4348 Value *Reg = I.getArgOperand(0); 4349 Value *RegValue = I.getArgOperand(1); 4350 SDValue Chain = getRoot(); 4351 SDValue RegName = 4352 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4353 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4354 RegName, getValue(RegValue))); 4355 return nullptr; 4356 } 4357 case Intrinsic::setjmp: 4358 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4359 case Intrinsic::longjmp: 4360 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4361 case Intrinsic::memcpy: { 4362 // FIXME: this definition of "user defined address space" is x86-specific 4363 // Assert for address < 256 since we support only user defined address 4364 // spaces. 4365 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4366 < 256 && 4367 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4368 < 256 && 4369 "Unknown address space"); 4370 SDValue Op1 = getValue(I.getArgOperand(0)); 4371 SDValue Op2 = getValue(I.getArgOperand(1)); 4372 SDValue Op3 = getValue(I.getArgOperand(2)); 4373 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4374 if (!Align) 4375 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4376 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4377 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4378 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4379 false, isTC, 4380 MachinePointerInfo(I.getArgOperand(0)), 4381 MachinePointerInfo(I.getArgOperand(1))); 4382 updateDAGForMaybeTailCall(MC); 4383 return nullptr; 4384 } 4385 case Intrinsic::memset: { 4386 // FIXME: this definition of "user defined address space" is x86-specific 4387 // Assert for address < 256 since we support only user defined address 4388 // spaces. 4389 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4390 < 256 && 4391 "Unknown address space"); 4392 SDValue Op1 = getValue(I.getArgOperand(0)); 4393 SDValue Op2 = getValue(I.getArgOperand(1)); 4394 SDValue Op3 = getValue(I.getArgOperand(2)); 4395 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4396 if (!Align) 4397 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4398 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4399 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4400 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4401 isTC, MachinePointerInfo(I.getArgOperand(0))); 4402 updateDAGForMaybeTailCall(MS); 4403 return nullptr; 4404 } 4405 case Intrinsic::memmove: { 4406 // FIXME: this definition of "user defined address space" is x86-specific 4407 // Assert for address < 256 since we support only user defined address 4408 // spaces. 4409 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4410 < 256 && 4411 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4412 < 256 && 4413 "Unknown address space"); 4414 SDValue Op1 = getValue(I.getArgOperand(0)); 4415 SDValue Op2 = getValue(I.getArgOperand(1)); 4416 SDValue Op3 = getValue(I.getArgOperand(2)); 4417 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4418 if (!Align) 4419 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4420 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4421 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4422 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4423 isTC, MachinePointerInfo(I.getArgOperand(0)), 4424 MachinePointerInfo(I.getArgOperand(1))); 4425 updateDAGForMaybeTailCall(MM); 4426 return nullptr; 4427 } 4428 case Intrinsic::dbg_declare: { 4429 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4430 DILocalVariable *Variable = DI.getVariable(); 4431 DIExpression *Expression = DI.getExpression(); 4432 const Value *Address = DI.getAddress(); 4433 assert(Variable && "Missing variable"); 4434 if (!Address) { 4435 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4436 return nullptr; 4437 } 4438 4439 // Check if address has undef value. 4440 if (isa<UndefValue>(Address) || 4441 (Address->use_empty() && !isa<Argument>(Address))) { 4442 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4443 return nullptr; 4444 } 4445 4446 SDValue &N = NodeMap[Address]; 4447 if (!N.getNode() && isa<Argument>(Address)) 4448 // Check unused arguments map. 4449 N = UnusedArgNodeMap[Address]; 4450 SDDbgValue *SDV; 4451 if (N.getNode()) { 4452 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4453 Address = BCI->getOperand(0); 4454 // Parameters are handled specially. 4455 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4456 4457 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4458 4459 if (isParameter && !AI) { 4460 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4461 if (FINode) 4462 // Byval parameter. We have a frame index at this point. 4463 SDV = DAG.getFrameIndexDbgValue( 4464 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4465 else { 4466 // Address is an argument, so try to emit its dbg value using 4467 // virtual register info from the FuncInfo.ValueMap. 4468 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4469 N); 4470 return nullptr; 4471 } 4472 } else { 4473 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4474 true, 0, dl, SDNodeOrder); 4475 } 4476 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4477 } else { 4478 // If Address is an argument then try to emit its dbg value using 4479 // virtual register info from the FuncInfo.ValueMap. 4480 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4481 N)) { 4482 // If variable is pinned by a alloca in dominating bb then 4483 // use StaticAllocaMap. 4484 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4485 if (AI->getParent() != DI.getParent()) { 4486 DenseMap<const AllocaInst*, int>::iterator SI = 4487 FuncInfo.StaticAllocaMap.find(AI); 4488 if (SI != FuncInfo.StaticAllocaMap.end()) { 4489 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4490 0, dl, SDNodeOrder); 4491 DAG.AddDbgValue(SDV, nullptr, false); 4492 return nullptr; 4493 } 4494 } 4495 } 4496 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4497 } 4498 } 4499 return nullptr; 4500 } 4501 case Intrinsic::dbg_value: { 4502 const DbgValueInst &DI = cast<DbgValueInst>(I); 4503 assert(DI.getVariable() && "Missing variable"); 4504 4505 DILocalVariable *Variable = DI.getVariable(); 4506 DIExpression *Expression = DI.getExpression(); 4507 uint64_t Offset = DI.getOffset(); 4508 const Value *V = DI.getValue(); 4509 if (!V) 4510 return nullptr; 4511 4512 SDDbgValue *SDV; 4513 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4514 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4515 SDNodeOrder); 4516 DAG.AddDbgValue(SDV, nullptr, false); 4517 } else { 4518 // Do not use getValue() in here; we don't want to generate code at 4519 // this point if it hasn't been done yet. 4520 SDValue N = NodeMap[V]; 4521 if (!N.getNode() && isa<Argument>(V)) 4522 // Check unused arguments map. 4523 N = UnusedArgNodeMap[V]; 4524 if (N.getNode()) { 4525 // A dbg.value for an alloca is always indirect. 4526 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4527 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4528 IsIndirect, N)) { 4529 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4530 IsIndirect, Offset, dl, SDNodeOrder); 4531 DAG.AddDbgValue(SDV, N.getNode(), false); 4532 } 4533 } else if (!V->use_empty() ) { 4534 // Do not call getValue(V) yet, as we don't want to generate code. 4535 // Remember it for later. 4536 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4537 DanglingDebugInfoMap[V] = DDI; 4538 } else { 4539 // We may expand this to cover more cases. One case where we have no 4540 // data available is an unreferenced parameter. 4541 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4542 } 4543 } 4544 4545 // Build a debug info table entry. 4546 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4547 V = BCI->getOperand(0); 4548 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4549 // Don't handle byval struct arguments or VLAs, for example. 4550 if (!AI) { 4551 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4552 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4553 return nullptr; 4554 } 4555 DenseMap<const AllocaInst*, int>::iterator SI = 4556 FuncInfo.StaticAllocaMap.find(AI); 4557 if (SI == FuncInfo.StaticAllocaMap.end()) 4558 return nullptr; // VLAs. 4559 return nullptr; 4560 } 4561 4562 case Intrinsic::eh_typeid_for: { 4563 // Find the type id for the given typeinfo. 4564 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4565 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4566 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4567 setValue(&I, Res); 4568 return nullptr; 4569 } 4570 4571 case Intrinsic::eh_return_i32: 4572 case Intrinsic::eh_return_i64: 4573 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4574 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4575 MVT::Other, 4576 getControlRoot(), 4577 getValue(I.getArgOperand(0)), 4578 getValue(I.getArgOperand(1)))); 4579 return nullptr; 4580 case Intrinsic::eh_unwind_init: 4581 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4582 return nullptr; 4583 case Intrinsic::eh_dwarf_cfa: { 4584 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4585 TLI.getPointerTy(DAG.getDataLayout())); 4586 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4587 CfaArg.getValueType(), 4588 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4589 CfaArg.getValueType()), 4590 CfaArg); 4591 SDValue FA = DAG.getNode( 4592 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4593 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4594 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4595 FA, Offset)); 4596 return nullptr; 4597 } 4598 case Intrinsic::eh_sjlj_callsite: { 4599 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4600 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4601 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4602 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4603 4604 MMI.setCurrentCallSite(CI->getZExtValue()); 4605 return nullptr; 4606 } 4607 case Intrinsic::eh_sjlj_functioncontext: { 4608 // Get and store the index of the function context. 4609 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4610 AllocaInst *FnCtx = 4611 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4612 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4613 MFI->setFunctionContextIndex(FI); 4614 return nullptr; 4615 } 4616 case Intrinsic::eh_sjlj_setjmp: { 4617 SDValue Ops[2]; 4618 Ops[0] = getRoot(); 4619 Ops[1] = getValue(I.getArgOperand(0)); 4620 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4621 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4622 setValue(&I, Op.getValue(0)); 4623 DAG.setRoot(Op.getValue(1)); 4624 return nullptr; 4625 } 4626 case Intrinsic::eh_sjlj_longjmp: { 4627 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4628 getRoot(), getValue(I.getArgOperand(0)))); 4629 return nullptr; 4630 } 4631 case Intrinsic::eh_sjlj_setup_dispatch: { 4632 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4633 getRoot())); 4634 return nullptr; 4635 } 4636 4637 case Intrinsic::masked_gather: 4638 visitMaskedGather(I); 4639 return nullptr; 4640 case Intrinsic::masked_load: 4641 visitMaskedLoad(I); 4642 return nullptr; 4643 case Intrinsic::masked_scatter: 4644 visitMaskedScatter(I); 4645 return nullptr; 4646 case Intrinsic::masked_store: 4647 visitMaskedStore(I); 4648 return nullptr; 4649 case Intrinsic::x86_mmx_pslli_w: 4650 case Intrinsic::x86_mmx_pslli_d: 4651 case Intrinsic::x86_mmx_pslli_q: 4652 case Intrinsic::x86_mmx_psrli_w: 4653 case Intrinsic::x86_mmx_psrli_d: 4654 case Intrinsic::x86_mmx_psrli_q: 4655 case Intrinsic::x86_mmx_psrai_w: 4656 case Intrinsic::x86_mmx_psrai_d: { 4657 SDValue ShAmt = getValue(I.getArgOperand(1)); 4658 if (isa<ConstantSDNode>(ShAmt)) { 4659 visitTargetIntrinsic(I, Intrinsic); 4660 return nullptr; 4661 } 4662 unsigned NewIntrinsic = 0; 4663 EVT ShAmtVT = MVT::v2i32; 4664 switch (Intrinsic) { 4665 case Intrinsic::x86_mmx_pslli_w: 4666 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4667 break; 4668 case Intrinsic::x86_mmx_pslli_d: 4669 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4670 break; 4671 case Intrinsic::x86_mmx_pslli_q: 4672 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4673 break; 4674 case Intrinsic::x86_mmx_psrli_w: 4675 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4676 break; 4677 case Intrinsic::x86_mmx_psrli_d: 4678 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4679 break; 4680 case Intrinsic::x86_mmx_psrli_q: 4681 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4682 break; 4683 case Intrinsic::x86_mmx_psrai_w: 4684 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4685 break; 4686 case Intrinsic::x86_mmx_psrai_d: 4687 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4688 break; 4689 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4690 } 4691 4692 // The vector shift intrinsics with scalars uses 32b shift amounts but 4693 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4694 // to be zero. 4695 // We must do this early because v2i32 is not a legal type. 4696 SDValue ShOps[2]; 4697 ShOps[0] = ShAmt; 4698 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4699 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4700 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4701 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4702 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4703 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4704 getValue(I.getArgOperand(0)), ShAmt); 4705 setValue(&I, Res); 4706 return nullptr; 4707 } 4708 case Intrinsic::convertff: 4709 case Intrinsic::convertfsi: 4710 case Intrinsic::convertfui: 4711 case Intrinsic::convertsif: 4712 case Intrinsic::convertuif: 4713 case Intrinsic::convertss: 4714 case Intrinsic::convertsu: 4715 case Intrinsic::convertus: 4716 case Intrinsic::convertuu: { 4717 ISD::CvtCode Code = ISD::CVT_INVALID; 4718 switch (Intrinsic) { 4719 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4720 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4721 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4722 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4723 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4724 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4725 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4726 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4727 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4728 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4729 } 4730 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4731 const Value *Op1 = I.getArgOperand(0); 4732 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4733 DAG.getValueType(DestVT), 4734 DAG.getValueType(getValue(Op1).getValueType()), 4735 getValue(I.getArgOperand(1)), 4736 getValue(I.getArgOperand(2)), 4737 Code); 4738 setValue(&I, Res); 4739 return nullptr; 4740 } 4741 case Intrinsic::powi: 4742 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4743 getValue(I.getArgOperand(1)), DAG)); 4744 return nullptr; 4745 case Intrinsic::log: 4746 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4747 return nullptr; 4748 case Intrinsic::log2: 4749 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4750 return nullptr; 4751 case Intrinsic::log10: 4752 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4753 return nullptr; 4754 case Intrinsic::exp: 4755 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4756 return nullptr; 4757 case Intrinsic::exp2: 4758 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4759 return nullptr; 4760 case Intrinsic::pow: 4761 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4762 getValue(I.getArgOperand(1)), DAG, TLI)); 4763 return nullptr; 4764 case Intrinsic::sqrt: 4765 case Intrinsic::fabs: 4766 case Intrinsic::sin: 4767 case Intrinsic::cos: 4768 case Intrinsic::floor: 4769 case Intrinsic::ceil: 4770 case Intrinsic::trunc: 4771 case Intrinsic::rint: 4772 case Intrinsic::nearbyint: 4773 case Intrinsic::round: { 4774 unsigned Opcode; 4775 switch (Intrinsic) { 4776 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4777 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4778 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4779 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4780 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4781 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4782 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4783 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4784 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4785 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4786 case Intrinsic::round: Opcode = ISD::FROUND; break; 4787 } 4788 4789 setValue(&I, DAG.getNode(Opcode, sdl, 4790 getValue(I.getArgOperand(0)).getValueType(), 4791 getValue(I.getArgOperand(0)))); 4792 return nullptr; 4793 } 4794 case Intrinsic::minnum: 4795 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4796 getValue(I.getArgOperand(0)).getValueType(), 4797 getValue(I.getArgOperand(0)), 4798 getValue(I.getArgOperand(1)))); 4799 return nullptr; 4800 case Intrinsic::maxnum: 4801 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4802 getValue(I.getArgOperand(0)).getValueType(), 4803 getValue(I.getArgOperand(0)), 4804 getValue(I.getArgOperand(1)))); 4805 return nullptr; 4806 case Intrinsic::copysign: 4807 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4808 getValue(I.getArgOperand(0)).getValueType(), 4809 getValue(I.getArgOperand(0)), 4810 getValue(I.getArgOperand(1)))); 4811 return nullptr; 4812 case Intrinsic::fma: 4813 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4814 getValue(I.getArgOperand(0)).getValueType(), 4815 getValue(I.getArgOperand(0)), 4816 getValue(I.getArgOperand(1)), 4817 getValue(I.getArgOperand(2)))); 4818 return nullptr; 4819 case Intrinsic::fmuladd: { 4820 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4821 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4822 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4823 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 getValue(I.getArgOperand(0)), 4826 getValue(I.getArgOperand(1)), 4827 getValue(I.getArgOperand(2)))); 4828 } else { 4829 // TODO: Intrinsic calls should have fast-math-flags. 4830 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1))); 4834 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4835 getValue(I.getArgOperand(0)).getValueType(), 4836 Mul, 4837 getValue(I.getArgOperand(2))); 4838 setValue(&I, Add); 4839 } 4840 return nullptr; 4841 } 4842 case Intrinsic::convert_to_fp16: 4843 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4844 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4845 getValue(I.getArgOperand(0)), 4846 DAG.getTargetConstant(0, sdl, 4847 MVT::i32)))); 4848 return nullptr; 4849 case Intrinsic::convert_from_fp16: 4850 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4851 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4852 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4853 getValue(I.getArgOperand(0))))); 4854 return nullptr; 4855 case Intrinsic::pcmarker: { 4856 SDValue Tmp = getValue(I.getArgOperand(0)); 4857 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4858 return nullptr; 4859 } 4860 case Intrinsic::readcyclecounter: { 4861 SDValue Op = getRoot(); 4862 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4863 DAG.getVTList(MVT::i64, MVT::Other), Op); 4864 setValue(&I, Res); 4865 DAG.setRoot(Res.getValue(1)); 4866 return nullptr; 4867 } 4868 case Intrinsic::bswap: 4869 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4870 getValue(I.getArgOperand(0)).getValueType(), 4871 getValue(I.getArgOperand(0)))); 4872 return nullptr; 4873 case Intrinsic::uabsdiff: 4874 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4875 getValue(I.getArgOperand(0)).getValueType(), 4876 getValue(I.getArgOperand(0)), 4877 getValue(I.getArgOperand(1)))); 4878 return nullptr; 4879 case Intrinsic::sabsdiff: 4880 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4881 getValue(I.getArgOperand(0)).getValueType(), 4882 getValue(I.getArgOperand(0)), 4883 getValue(I.getArgOperand(1)))); 4884 return nullptr; 4885 case Intrinsic::cttz: { 4886 SDValue Arg = getValue(I.getArgOperand(0)); 4887 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4888 EVT Ty = Arg.getValueType(); 4889 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4890 sdl, Ty, Arg)); 4891 return nullptr; 4892 } 4893 case Intrinsic::ctlz: { 4894 SDValue Arg = getValue(I.getArgOperand(0)); 4895 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4896 EVT Ty = Arg.getValueType(); 4897 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4898 sdl, Ty, Arg)); 4899 return nullptr; 4900 } 4901 case Intrinsic::ctpop: { 4902 SDValue Arg = getValue(I.getArgOperand(0)); 4903 EVT Ty = Arg.getValueType(); 4904 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4905 return nullptr; 4906 } 4907 case Intrinsic::stacksave: { 4908 SDValue Op = getRoot(); 4909 Res = DAG.getNode( 4910 ISD::STACKSAVE, sdl, 4911 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4912 setValue(&I, Res); 4913 DAG.setRoot(Res.getValue(1)); 4914 return nullptr; 4915 } 4916 case Intrinsic::stackrestore: { 4917 Res = getValue(I.getArgOperand(0)); 4918 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4919 return nullptr; 4920 } 4921 case Intrinsic::stackprotector: { 4922 // Emit code into the DAG to store the stack guard onto the stack. 4923 MachineFunction &MF = DAG.getMachineFunction(); 4924 MachineFrameInfo *MFI = MF.getFrameInfo(); 4925 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4926 SDValue Src, Chain = getRoot(); 4927 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4928 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4929 4930 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4931 // global variable __stack_chk_guard. 4932 if (!GV) 4933 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4934 if (BC->getOpcode() == Instruction::BitCast) 4935 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4936 4937 if (GV && TLI.useLoadStackGuardNode()) { 4938 // Emit a LOAD_STACK_GUARD node. 4939 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4940 sdl, PtrTy, Chain); 4941 MachinePointerInfo MPInfo(GV); 4942 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4943 unsigned Flags = MachineMemOperand::MOLoad | 4944 MachineMemOperand::MOInvariant; 4945 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4946 PtrTy.getSizeInBits() / 8, 4947 DAG.getEVTAlignment(PtrTy)); 4948 Node->setMemRefs(MemRefs, MemRefs + 1); 4949 4950 // Copy the guard value to a virtual register so that it can be 4951 // retrieved in the epilogue. 4952 Src = SDValue(Node, 0); 4953 const TargetRegisterClass *RC = 4954 TLI.getRegClassFor(Src.getSimpleValueType()); 4955 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4956 4957 SPDescriptor.setGuardReg(Reg); 4958 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4959 } else { 4960 Src = getValue(I.getArgOperand(0)); // The guard's value. 4961 } 4962 4963 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4964 4965 int FI = FuncInfo.StaticAllocaMap[Slot]; 4966 MFI->setStackProtectorIndex(FI); 4967 4968 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4969 4970 // Store the stack protector onto the stack. 4971 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4972 DAG.getMachineFunction(), FI), 4973 true, false, 0); 4974 setValue(&I, Res); 4975 DAG.setRoot(Res); 4976 return nullptr; 4977 } 4978 case Intrinsic::objectsize: { 4979 // If we don't know by now, we're never going to know. 4980 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4981 4982 assert(CI && "Non-constant type in __builtin_object_size?"); 4983 4984 SDValue Arg = getValue(I.getCalledValue()); 4985 EVT Ty = Arg.getValueType(); 4986 4987 if (CI->isZero()) 4988 Res = DAG.getConstant(-1ULL, sdl, Ty); 4989 else 4990 Res = DAG.getConstant(0, sdl, Ty); 4991 4992 setValue(&I, Res); 4993 return nullptr; 4994 } 4995 case Intrinsic::annotation: 4996 case Intrinsic::ptr_annotation: 4997 // Drop the intrinsic, but forward the value 4998 setValue(&I, getValue(I.getOperand(0))); 4999 return nullptr; 5000 case Intrinsic::assume: 5001 case Intrinsic::var_annotation: 5002 // Discard annotate attributes and assumptions 5003 return nullptr; 5004 5005 case Intrinsic::init_trampoline: { 5006 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5007 5008 SDValue Ops[6]; 5009 Ops[0] = getRoot(); 5010 Ops[1] = getValue(I.getArgOperand(0)); 5011 Ops[2] = getValue(I.getArgOperand(1)); 5012 Ops[3] = getValue(I.getArgOperand(2)); 5013 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5014 Ops[5] = DAG.getSrcValue(F); 5015 5016 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5017 5018 DAG.setRoot(Res); 5019 return nullptr; 5020 } 5021 case Intrinsic::adjust_trampoline: { 5022 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5023 TLI.getPointerTy(DAG.getDataLayout()), 5024 getValue(I.getArgOperand(0)))); 5025 return nullptr; 5026 } 5027 case Intrinsic::gcroot: 5028 if (GFI) { 5029 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5030 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5031 5032 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5033 GFI->addStackRoot(FI->getIndex(), TypeMap); 5034 } 5035 return nullptr; 5036 case Intrinsic::gcread: 5037 case Intrinsic::gcwrite: 5038 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5039 case Intrinsic::flt_rounds: 5040 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5041 return nullptr; 5042 5043 case Intrinsic::expect: { 5044 // Just replace __builtin_expect(exp, c) with EXP. 5045 setValue(&I, getValue(I.getArgOperand(0))); 5046 return nullptr; 5047 } 5048 5049 case Intrinsic::debugtrap: 5050 case Intrinsic::trap: { 5051 StringRef TrapFuncName = 5052 I.getAttributes() 5053 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5054 .getValueAsString(); 5055 if (TrapFuncName.empty()) { 5056 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5057 ISD::TRAP : ISD::DEBUGTRAP; 5058 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5059 return nullptr; 5060 } 5061 TargetLowering::ArgListTy Args; 5062 5063 TargetLowering::CallLoweringInfo CLI(DAG); 5064 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5065 CallingConv::C, I.getType(), 5066 DAG.getExternalSymbol(TrapFuncName.data(), 5067 TLI.getPointerTy(DAG.getDataLayout())), 5068 std::move(Args), 0); 5069 5070 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5071 DAG.setRoot(Result.second); 5072 return nullptr; 5073 } 5074 5075 case Intrinsic::uadd_with_overflow: 5076 case Intrinsic::sadd_with_overflow: 5077 case Intrinsic::usub_with_overflow: 5078 case Intrinsic::ssub_with_overflow: 5079 case Intrinsic::umul_with_overflow: 5080 case Intrinsic::smul_with_overflow: { 5081 ISD::NodeType Op; 5082 switch (Intrinsic) { 5083 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5084 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5085 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5086 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5087 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5088 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5089 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5090 } 5091 SDValue Op1 = getValue(I.getArgOperand(0)); 5092 SDValue Op2 = getValue(I.getArgOperand(1)); 5093 5094 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5095 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5096 return nullptr; 5097 } 5098 case Intrinsic::prefetch: { 5099 SDValue Ops[5]; 5100 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5101 Ops[0] = getRoot(); 5102 Ops[1] = getValue(I.getArgOperand(0)); 5103 Ops[2] = getValue(I.getArgOperand(1)); 5104 Ops[3] = getValue(I.getArgOperand(2)); 5105 Ops[4] = getValue(I.getArgOperand(3)); 5106 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5107 DAG.getVTList(MVT::Other), Ops, 5108 EVT::getIntegerVT(*Context, 8), 5109 MachinePointerInfo(I.getArgOperand(0)), 5110 0, /* align */ 5111 false, /* volatile */ 5112 rw==0, /* read */ 5113 rw==1)); /* write */ 5114 return nullptr; 5115 } 5116 case Intrinsic::lifetime_start: 5117 case Intrinsic::lifetime_end: { 5118 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5119 // Stack coloring is not enabled in O0, discard region information. 5120 if (TM.getOptLevel() == CodeGenOpt::None) 5121 return nullptr; 5122 5123 SmallVector<Value *, 4> Allocas; 5124 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5125 5126 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5127 E = Allocas.end(); Object != E; ++Object) { 5128 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5129 5130 // Could not find an Alloca. 5131 if (!LifetimeObject) 5132 continue; 5133 5134 // First check that the Alloca is static, otherwise it won't have a 5135 // valid frame index. 5136 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5137 if (SI == FuncInfo.StaticAllocaMap.end()) 5138 return nullptr; 5139 5140 int FI = SI->second; 5141 5142 SDValue Ops[2]; 5143 Ops[0] = getRoot(); 5144 Ops[1] = 5145 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5146 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5147 5148 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5149 DAG.setRoot(Res); 5150 } 5151 return nullptr; 5152 } 5153 case Intrinsic::invariant_start: 5154 // Discard region information. 5155 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5156 return nullptr; 5157 case Intrinsic::invariant_end: 5158 // Discard region information. 5159 return nullptr; 5160 case Intrinsic::stackprotectorcheck: { 5161 // Do not actually emit anything for this basic block. Instead we initialize 5162 // the stack protector descriptor and export the guard variable so we can 5163 // access it in FinishBasicBlock. 5164 const BasicBlock *BB = I.getParent(); 5165 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5166 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5167 5168 // Flush our exports since we are going to process a terminator. 5169 (void)getControlRoot(); 5170 return nullptr; 5171 } 5172 case Intrinsic::clear_cache: 5173 return TLI.getClearCacheBuiltinName(); 5174 case Intrinsic::donothing: 5175 // ignore 5176 return nullptr; 5177 case Intrinsic::experimental_stackmap: { 5178 visitStackmap(I); 5179 return nullptr; 5180 } 5181 case Intrinsic::experimental_patchpoint_void: 5182 case Intrinsic::experimental_patchpoint_i64: { 5183 visitPatchpoint(&I); 5184 return nullptr; 5185 } 5186 case Intrinsic::experimental_gc_statepoint: { 5187 visitStatepoint(I); 5188 return nullptr; 5189 } 5190 case Intrinsic::experimental_gc_result_int: 5191 case Intrinsic::experimental_gc_result_float: 5192 case Intrinsic::experimental_gc_result_ptr: 5193 case Intrinsic::experimental_gc_result: { 5194 visitGCResult(I); 5195 return nullptr; 5196 } 5197 case Intrinsic::experimental_gc_relocate: { 5198 visitGCRelocate(I); 5199 return nullptr; 5200 } 5201 case Intrinsic::instrprof_increment: 5202 llvm_unreachable("instrprof failed to lower an increment"); 5203 5204 case Intrinsic::localescape: { 5205 MachineFunction &MF = DAG.getMachineFunction(); 5206 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5207 5208 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5209 // is the same on all targets. 5210 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5211 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5212 if (isa<ConstantPointerNull>(Arg)) 5213 continue; // Skip null pointers. They represent a hole in index space. 5214 AllocaInst *Slot = cast<AllocaInst>(Arg); 5215 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5216 "can only escape static allocas"); 5217 int FI = FuncInfo.StaticAllocaMap[Slot]; 5218 MCSymbol *FrameAllocSym = 5219 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5220 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5222 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5223 .addSym(FrameAllocSym) 5224 .addFrameIndex(FI); 5225 } 5226 5227 return nullptr; 5228 } 5229 5230 case Intrinsic::localrecover: { 5231 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5232 MachineFunction &MF = DAG.getMachineFunction(); 5233 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5234 5235 // Get the symbol that defines the frame offset. 5236 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5237 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5238 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5239 MCSymbol *FrameAllocSym = 5240 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5241 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5242 5243 // Create a MCSymbol for the label to avoid any target lowering 5244 // that would make this PC relative. 5245 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5246 SDValue OffsetVal = 5247 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5248 5249 // Add the offset to the FP. 5250 Value *FP = I.getArgOperand(1); 5251 SDValue FPVal = getValue(FP); 5252 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5253 setValue(&I, Add); 5254 5255 return nullptr; 5256 } 5257 5258 case Intrinsic::eh_exceptionpointer: 5259 case Intrinsic::eh_exceptioncode: { 5260 // Get the exception pointer vreg, copy from it, and resize it to fit. 5261 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5262 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5263 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5264 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5265 SDValue N = 5266 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5267 if (Intrinsic == Intrinsic::eh_exceptioncode) 5268 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5269 setValue(&I, N); 5270 return nullptr; 5271 } 5272 } 5273 } 5274 5275 std::pair<SDValue, SDValue> 5276 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5277 const BasicBlock *EHPadBB) { 5278 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5279 MCSymbol *BeginLabel = nullptr; 5280 5281 if (EHPadBB) { 5282 // Insert a label before the invoke call to mark the try range. This can be 5283 // used to detect deletion of the invoke via the MachineModuleInfo. 5284 BeginLabel = MMI.getContext().createTempSymbol(); 5285 5286 // For SjLj, keep track of which landing pads go with which invokes 5287 // so as to maintain the ordering of pads in the LSDA. 5288 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5289 if (CallSiteIndex) { 5290 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5291 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5292 5293 // Now that the call site is handled, stop tracking it. 5294 MMI.setCurrentCallSite(0); 5295 } 5296 5297 // Both PendingLoads and PendingExports must be flushed here; 5298 // this call might not return. 5299 (void)getRoot(); 5300 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5301 5302 CLI.setChain(getRoot()); 5303 } 5304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5305 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5306 5307 assert((CLI.IsTailCall || Result.second.getNode()) && 5308 "Non-null chain expected with non-tail call!"); 5309 assert((Result.second.getNode() || !Result.first.getNode()) && 5310 "Null value expected with tail call!"); 5311 5312 if (!Result.second.getNode()) { 5313 // As a special case, a null chain means that a tail call has been emitted 5314 // and the DAG root is already updated. 5315 HasTailCall = true; 5316 5317 // Since there's no actual continuation from this block, nothing can be 5318 // relying on us setting vregs for them. 5319 PendingExports.clear(); 5320 } else { 5321 DAG.setRoot(Result.second); 5322 } 5323 5324 if (EHPadBB) { 5325 // Insert a label at the end of the invoke call to mark the try range. This 5326 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5327 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5328 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5329 5330 // Inform MachineModuleInfo of range. 5331 if (MMI.hasEHFunclets()) { 5332 WinEHFuncInfo &EHInfo = 5333 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5334 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5335 } else { 5336 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5337 } 5338 } 5339 5340 return Result; 5341 } 5342 5343 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5344 bool isTailCall, 5345 const BasicBlock *EHPadBB) { 5346 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5347 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5348 Type *RetTy = FTy->getReturnType(); 5349 5350 TargetLowering::ArgListTy Args; 5351 TargetLowering::ArgListEntry Entry; 5352 Args.reserve(CS.arg_size()); 5353 5354 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5355 i != e; ++i) { 5356 const Value *V = *i; 5357 5358 // Skip empty types 5359 if (V->getType()->isEmptyTy()) 5360 continue; 5361 5362 SDValue ArgNode = getValue(V); 5363 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5364 5365 // Skip the first return-type Attribute to get to params. 5366 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5367 Args.push_back(Entry); 5368 5369 // If we have an explicit sret argument that is an Instruction, (i.e., it 5370 // might point to function-local memory), we can't meaningfully tail-call. 5371 if (Entry.isSRet && isa<Instruction>(V)) 5372 isTailCall = false; 5373 } 5374 5375 // Check if target-independent constraints permit a tail call here. 5376 // Target-dependent constraints are checked within TLI->LowerCallTo. 5377 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5378 isTailCall = false; 5379 5380 TargetLowering::CallLoweringInfo CLI(DAG); 5381 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5382 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5383 .setTailCall(isTailCall); 5384 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5385 5386 if (Result.first.getNode()) 5387 setValue(CS.getInstruction(), Result.first); 5388 } 5389 5390 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5391 /// value is equal or not-equal to zero. 5392 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5393 for (const User *U : V->users()) { 5394 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5395 if (IC->isEquality()) 5396 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5397 if (C->isNullValue()) 5398 continue; 5399 // Unknown instruction. 5400 return false; 5401 } 5402 return true; 5403 } 5404 5405 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5406 Type *LoadTy, 5407 SelectionDAGBuilder &Builder) { 5408 5409 // Check to see if this load can be trivially constant folded, e.g. if the 5410 // input is from a string literal. 5411 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5412 // Cast pointer to the type we really want to load. 5413 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5414 PointerType::getUnqual(LoadTy)); 5415 5416 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5417 const_cast<Constant *>(LoadInput), *Builder.DL)) 5418 return Builder.getValue(LoadCst); 5419 } 5420 5421 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5422 // still constant memory, the input chain can be the entry node. 5423 SDValue Root; 5424 bool ConstantMemory = false; 5425 5426 // Do not serialize (non-volatile) loads of constant memory with anything. 5427 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5428 Root = Builder.DAG.getEntryNode(); 5429 ConstantMemory = true; 5430 } else { 5431 // Do not serialize non-volatile loads against each other. 5432 Root = Builder.DAG.getRoot(); 5433 } 5434 5435 SDValue Ptr = Builder.getValue(PtrVal); 5436 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5437 Ptr, MachinePointerInfo(PtrVal), 5438 false /*volatile*/, 5439 false /*nontemporal*/, 5440 false /*isinvariant*/, 1 /* align=1 */); 5441 5442 if (!ConstantMemory) 5443 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5444 return LoadVal; 5445 } 5446 5447 /// processIntegerCallValue - Record the value for an instruction that 5448 /// produces an integer result, converting the type where necessary. 5449 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5450 SDValue Value, 5451 bool IsSigned) { 5452 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5453 I.getType(), true); 5454 if (IsSigned) 5455 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5456 else 5457 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5458 setValue(&I, Value); 5459 } 5460 5461 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5462 /// If so, return true and lower it, otherwise return false and it will be 5463 /// lowered like a normal call. 5464 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5465 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5466 if (I.getNumArgOperands() != 3) 5467 return false; 5468 5469 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5470 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5471 !I.getArgOperand(2)->getType()->isIntegerTy() || 5472 !I.getType()->isIntegerTy()) 5473 return false; 5474 5475 const Value *Size = I.getArgOperand(2); 5476 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5477 if (CSize && CSize->getZExtValue() == 0) { 5478 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5479 I.getType(), true); 5480 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5481 return true; 5482 } 5483 5484 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5485 std::pair<SDValue, SDValue> Res = 5486 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5487 getValue(LHS), getValue(RHS), getValue(Size), 5488 MachinePointerInfo(LHS), 5489 MachinePointerInfo(RHS)); 5490 if (Res.first.getNode()) { 5491 processIntegerCallValue(I, Res.first, true); 5492 PendingLoads.push_back(Res.second); 5493 return true; 5494 } 5495 5496 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5497 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5498 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5499 bool ActuallyDoIt = true; 5500 MVT LoadVT; 5501 Type *LoadTy; 5502 switch (CSize->getZExtValue()) { 5503 default: 5504 LoadVT = MVT::Other; 5505 LoadTy = nullptr; 5506 ActuallyDoIt = false; 5507 break; 5508 case 2: 5509 LoadVT = MVT::i16; 5510 LoadTy = Type::getInt16Ty(CSize->getContext()); 5511 break; 5512 case 4: 5513 LoadVT = MVT::i32; 5514 LoadTy = Type::getInt32Ty(CSize->getContext()); 5515 break; 5516 case 8: 5517 LoadVT = MVT::i64; 5518 LoadTy = Type::getInt64Ty(CSize->getContext()); 5519 break; 5520 /* 5521 case 16: 5522 LoadVT = MVT::v4i32; 5523 LoadTy = Type::getInt32Ty(CSize->getContext()); 5524 LoadTy = VectorType::get(LoadTy, 4); 5525 break; 5526 */ 5527 } 5528 5529 // This turns into unaligned loads. We only do this if the target natively 5530 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5531 // we'll only produce a small number of byte loads. 5532 5533 // Require that we can find a legal MVT, and only do this if the target 5534 // supports unaligned loads of that type. Expanding into byte loads would 5535 // bloat the code. 5536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5537 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5538 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5539 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5540 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5541 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5542 // TODO: Check alignment of src and dest ptrs. 5543 if (!TLI.isTypeLegal(LoadVT) || 5544 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5545 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5546 ActuallyDoIt = false; 5547 } 5548 5549 if (ActuallyDoIt) { 5550 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5551 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5552 5553 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5554 ISD::SETNE); 5555 processIntegerCallValue(I, Res, false); 5556 return true; 5557 } 5558 } 5559 5560 5561 return false; 5562 } 5563 5564 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5565 /// form. If so, return true and lower it, otherwise return false and it 5566 /// will be lowered like a normal call. 5567 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5568 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5569 if (I.getNumArgOperands() != 3) 5570 return false; 5571 5572 const Value *Src = I.getArgOperand(0); 5573 const Value *Char = I.getArgOperand(1); 5574 const Value *Length = I.getArgOperand(2); 5575 if (!Src->getType()->isPointerTy() || 5576 !Char->getType()->isIntegerTy() || 5577 !Length->getType()->isIntegerTy() || 5578 !I.getType()->isPointerTy()) 5579 return false; 5580 5581 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5582 std::pair<SDValue, SDValue> Res = 5583 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5584 getValue(Src), getValue(Char), getValue(Length), 5585 MachinePointerInfo(Src)); 5586 if (Res.first.getNode()) { 5587 setValue(&I, Res.first); 5588 PendingLoads.push_back(Res.second); 5589 return true; 5590 } 5591 5592 return false; 5593 } 5594 5595 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5596 /// optimized form. If so, return true and lower it, otherwise return false 5597 /// and it will be lowered like a normal call. 5598 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5599 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5600 if (I.getNumArgOperands() != 2) 5601 return false; 5602 5603 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5604 if (!Arg0->getType()->isPointerTy() || 5605 !Arg1->getType()->isPointerTy() || 5606 !I.getType()->isPointerTy()) 5607 return false; 5608 5609 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5610 std::pair<SDValue, SDValue> Res = 5611 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5612 getValue(Arg0), getValue(Arg1), 5613 MachinePointerInfo(Arg0), 5614 MachinePointerInfo(Arg1), isStpcpy); 5615 if (Res.first.getNode()) { 5616 setValue(&I, Res.first); 5617 DAG.setRoot(Res.second); 5618 return true; 5619 } 5620 5621 return false; 5622 } 5623 5624 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5625 /// If so, return true and lower it, otherwise return false and it will be 5626 /// lowered like a normal call. 5627 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5628 // Verify that the prototype makes sense. int strcmp(void*,void*) 5629 if (I.getNumArgOperands() != 2) 5630 return false; 5631 5632 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5633 if (!Arg0->getType()->isPointerTy() || 5634 !Arg1->getType()->isPointerTy() || 5635 !I.getType()->isIntegerTy()) 5636 return false; 5637 5638 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5639 std::pair<SDValue, SDValue> Res = 5640 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5641 getValue(Arg0), getValue(Arg1), 5642 MachinePointerInfo(Arg0), 5643 MachinePointerInfo(Arg1)); 5644 if (Res.first.getNode()) { 5645 processIntegerCallValue(I, Res.first, true); 5646 PendingLoads.push_back(Res.second); 5647 return true; 5648 } 5649 5650 return false; 5651 } 5652 5653 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5654 /// form. If so, return true and lower it, otherwise return false and it 5655 /// will be lowered like a normal call. 5656 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5657 // Verify that the prototype makes sense. size_t strlen(char *) 5658 if (I.getNumArgOperands() != 1) 5659 return false; 5660 5661 const Value *Arg0 = I.getArgOperand(0); 5662 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5663 return false; 5664 5665 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5666 std::pair<SDValue, SDValue> Res = 5667 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5668 getValue(Arg0), MachinePointerInfo(Arg0)); 5669 if (Res.first.getNode()) { 5670 processIntegerCallValue(I, Res.first, false); 5671 PendingLoads.push_back(Res.second); 5672 return true; 5673 } 5674 5675 return false; 5676 } 5677 5678 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5679 /// form. If so, return true and lower it, otherwise return false and it 5680 /// will be lowered like a normal call. 5681 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5682 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5683 if (I.getNumArgOperands() != 2) 5684 return false; 5685 5686 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5687 if (!Arg0->getType()->isPointerTy() || 5688 !Arg1->getType()->isIntegerTy() || 5689 !I.getType()->isIntegerTy()) 5690 return false; 5691 5692 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5693 std::pair<SDValue, SDValue> Res = 5694 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5695 getValue(Arg0), getValue(Arg1), 5696 MachinePointerInfo(Arg0)); 5697 if (Res.first.getNode()) { 5698 processIntegerCallValue(I, Res.first, false); 5699 PendingLoads.push_back(Res.second); 5700 return true; 5701 } 5702 5703 return false; 5704 } 5705 5706 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5707 /// operation (as expected), translate it to an SDNode with the specified opcode 5708 /// and return true. 5709 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5710 unsigned Opcode) { 5711 // Sanity check that it really is a unary floating-point call. 5712 if (I.getNumArgOperands() != 1 || 5713 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5714 I.getType() != I.getArgOperand(0)->getType() || 5715 !I.onlyReadsMemory()) 5716 return false; 5717 5718 SDValue Tmp = getValue(I.getArgOperand(0)); 5719 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5720 return true; 5721 } 5722 5723 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5724 /// operation (as expected), translate it to an SDNode with the specified opcode 5725 /// and return true. 5726 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5727 unsigned Opcode) { 5728 // Sanity check that it really is a binary floating-point call. 5729 if (I.getNumArgOperands() != 2 || 5730 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5731 I.getType() != I.getArgOperand(0)->getType() || 5732 I.getType() != I.getArgOperand(1)->getType() || 5733 !I.onlyReadsMemory()) 5734 return false; 5735 5736 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5737 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5738 EVT VT = Tmp0.getValueType(); 5739 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5740 return true; 5741 } 5742 5743 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5744 // Handle inline assembly differently. 5745 if (isa<InlineAsm>(I.getCalledValue())) { 5746 visitInlineAsm(&I); 5747 return; 5748 } 5749 5750 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5751 ComputeUsesVAFloatArgument(I, &MMI); 5752 5753 const char *RenameFn = nullptr; 5754 if (Function *F = I.getCalledFunction()) { 5755 if (F->isDeclaration()) { 5756 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5757 if (unsigned IID = II->getIntrinsicID(F)) { 5758 RenameFn = visitIntrinsicCall(I, IID); 5759 if (!RenameFn) 5760 return; 5761 } 5762 } 5763 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5764 RenameFn = visitIntrinsicCall(I, IID); 5765 if (!RenameFn) 5766 return; 5767 } 5768 } 5769 5770 // Check for well-known libc/libm calls. If the function is internal, it 5771 // can't be a library call. 5772 LibFunc::Func Func; 5773 if (!F->hasLocalLinkage() && F->hasName() && 5774 LibInfo->getLibFunc(F->getName(), Func) && 5775 LibInfo->hasOptimizedCodeGen(Func)) { 5776 switch (Func) { 5777 default: break; 5778 case LibFunc::copysign: 5779 case LibFunc::copysignf: 5780 case LibFunc::copysignl: 5781 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5782 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5783 I.getType() == I.getArgOperand(0)->getType() && 5784 I.getType() == I.getArgOperand(1)->getType() && 5785 I.onlyReadsMemory()) { 5786 SDValue LHS = getValue(I.getArgOperand(0)); 5787 SDValue RHS = getValue(I.getArgOperand(1)); 5788 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5789 LHS.getValueType(), LHS, RHS)); 5790 return; 5791 } 5792 break; 5793 case LibFunc::fabs: 5794 case LibFunc::fabsf: 5795 case LibFunc::fabsl: 5796 if (visitUnaryFloatCall(I, ISD::FABS)) 5797 return; 5798 break; 5799 case LibFunc::fmin: 5800 case LibFunc::fminf: 5801 case LibFunc::fminl: 5802 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5803 return; 5804 break; 5805 case LibFunc::fmax: 5806 case LibFunc::fmaxf: 5807 case LibFunc::fmaxl: 5808 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5809 return; 5810 break; 5811 case LibFunc::sin: 5812 case LibFunc::sinf: 5813 case LibFunc::sinl: 5814 if (visitUnaryFloatCall(I, ISD::FSIN)) 5815 return; 5816 break; 5817 case LibFunc::cos: 5818 case LibFunc::cosf: 5819 case LibFunc::cosl: 5820 if (visitUnaryFloatCall(I, ISD::FCOS)) 5821 return; 5822 break; 5823 case LibFunc::sqrt: 5824 case LibFunc::sqrtf: 5825 case LibFunc::sqrtl: 5826 case LibFunc::sqrt_finite: 5827 case LibFunc::sqrtf_finite: 5828 case LibFunc::sqrtl_finite: 5829 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5830 return; 5831 break; 5832 case LibFunc::floor: 5833 case LibFunc::floorf: 5834 case LibFunc::floorl: 5835 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5836 return; 5837 break; 5838 case LibFunc::nearbyint: 5839 case LibFunc::nearbyintf: 5840 case LibFunc::nearbyintl: 5841 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5842 return; 5843 break; 5844 case LibFunc::ceil: 5845 case LibFunc::ceilf: 5846 case LibFunc::ceill: 5847 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5848 return; 5849 break; 5850 case LibFunc::rint: 5851 case LibFunc::rintf: 5852 case LibFunc::rintl: 5853 if (visitUnaryFloatCall(I, ISD::FRINT)) 5854 return; 5855 break; 5856 case LibFunc::round: 5857 case LibFunc::roundf: 5858 case LibFunc::roundl: 5859 if (visitUnaryFloatCall(I, ISD::FROUND)) 5860 return; 5861 break; 5862 case LibFunc::trunc: 5863 case LibFunc::truncf: 5864 case LibFunc::truncl: 5865 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5866 return; 5867 break; 5868 case LibFunc::log2: 5869 case LibFunc::log2f: 5870 case LibFunc::log2l: 5871 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5872 return; 5873 break; 5874 case LibFunc::exp2: 5875 case LibFunc::exp2f: 5876 case LibFunc::exp2l: 5877 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5878 return; 5879 break; 5880 case LibFunc::memcmp: 5881 if (visitMemCmpCall(I)) 5882 return; 5883 break; 5884 case LibFunc::memchr: 5885 if (visitMemChrCall(I)) 5886 return; 5887 break; 5888 case LibFunc::strcpy: 5889 if (visitStrCpyCall(I, false)) 5890 return; 5891 break; 5892 case LibFunc::stpcpy: 5893 if (visitStrCpyCall(I, true)) 5894 return; 5895 break; 5896 case LibFunc::strcmp: 5897 if (visitStrCmpCall(I)) 5898 return; 5899 break; 5900 case LibFunc::strlen: 5901 if (visitStrLenCall(I)) 5902 return; 5903 break; 5904 case LibFunc::strnlen: 5905 if (visitStrNLenCall(I)) 5906 return; 5907 break; 5908 } 5909 } 5910 } 5911 5912 SDValue Callee; 5913 if (!RenameFn) 5914 Callee = getValue(I.getCalledValue()); 5915 else 5916 Callee = DAG.getExternalSymbol( 5917 RenameFn, 5918 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5919 5920 // Check if we can potentially perform a tail call. More detailed checking is 5921 // be done within LowerCallTo, after more information about the call is known. 5922 LowerCallTo(&I, Callee, I.isTailCall()); 5923 } 5924 5925 namespace { 5926 5927 /// AsmOperandInfo - This contains information for each constraint that we are 5928 /// lowering. 5929 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5930 public: 5931 /// CallOperand - If this is the result output operand or a clobber 5932 /// this is null, otherwise it is the incoming operand to the CallInst. 5933 /// This gets modified as the asm is processed. 5934 SDValue CallOperand; 5935 5936 /// AssignedRegs - If this is a register or register class operand, this 5937 /// contains the set of register corresponding to the operand. 5938 RegsForValue AssignedRegs; 5939 5940 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5941 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5942 } 5943 5944 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5945 /// corresponds to. If there is no Value* for this operand, it returns 5946 /// MVT::Other. 5947 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5948 const DataLayout &DL) const { 5949 if (!CallOperandVal) return MVT::Other; 5950 5951 if (isa<BasicBlock>(CallOperandVal)) 5952 return TLI.getPointerTy(DL); 5953 5954 llvm::Type *OpTy = CallOperandVal->getType(); 5955 5956 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5957 // If this is an indirect operand, the operand is a pointer to the 5958 // accessed type. 5959 if (isIndirect) { 5960 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5961 if (!PtrTy) 5962 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5963 OpTy = PtrTy->getElementType(); 5964 } 5965 5966 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5967 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5968 if (STy->getNumElements() == 1) 5969 OpTy = STy->getElementType(0); 5970 5971 // If OpTy is not a single value, it may be a struct/union that we 5972 // can tile with integers. 5973 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5974 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5975 switch (BitSize) { 5976 default: break; 5977 case 1: 5978 case 8: 5979 case 16: 5980 case 32: 5981 case 64: 5982 case 128: 5983 OpTy = IntegerType::get(Context, BitSize); 5984 break; 5985 } 5986 } 5987 5988 return TLI.getValueType(DL, OpTy, true); 5989 } 5990 }; 5991 5992 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5993 5994 } // end anonymous namespace 5995 5996 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5997 /// specified operand. We prefer to assign virtual registers, to allow the 5998 /// register allocator to handle the assignment process. However, if the asm 5999 /// uses features that we can't model on machineinstrs, we have SDISel do the 6000 /// allocation. This produces generally horrible, but correct, code. 6001 /// 6002 /// OpInfo describes the operand. 6003 /// 6004 static void GetRegistersForValue(SelectionDAG &DAG, 6005 const TargetLowering &TLI, 6006 SDLoc DL, 6007 SDISelAsmOperandInfo &OpInfo) { 6008 LLVMContext &Context = *DAG.getContext(); 6009 6010 MachineFunction &MF = DAG.getMachineFunction(); 6011 SmallVector<unsigned, 4> Regs; 6012 6013 // If this is a constraint for a single physreg, or a constraint for a 6014 // register class, find it. 6015 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6016 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6017 OpInfo.ConstraintCode, 6018 OpInfo.ConstraintVT); 6019 6020 unsigned NumRegs = 1; 6021 if (OpInfo.ConstraintVT != MVT::Other) { 6022 // If this is a FP input in an integer register (or visa versa) insert a bit 6023 // cast of the input value. More generally, handle any case where the input 6024 // value disagrees with the register class we plan to stick this in. 6025 if (OpInfo.Type == InlineAsm::isInput && 6026 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6027 // Try to convert to the first EVT that the reg class contains. If the 6028 // types are identical size, use a bitcast to convert (e.g. two differing 6029 // vector types). 6030 MVT RegVT = *PhysReg.second->vt_begin(); 6031 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6032 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6033 RegVT, OpInfo.CallOperand); 6034 OpInfo.ConstraintVT = RegVT; 6035 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6036 // If the input is a FP value and we want it in FP registers, do a 6037 // bitcast to the corresponding integer type. This turns an f64 value 6038 // into i64, which can be passed with two i32 values on a 32-bit 6039 // machine. 6040 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6041 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6042 RegVT, OpInfo.CallOperand); 6043 OpInfo.ConstraintVT = RegVT; 6044 } 6045 } 6046 6047 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6048 } 6049 6050 MVT RegVT; 6051 EVT ValueVT = OpInfo.ConstraintVT; 6052 6053 // If this is a constraint for a specific physical register, like {r17}, 6054 // assign it now. 6055 if (unsigned AssignedReg = PhysReg.first) { 6056 const TargetRegisterClass *RC = PhysReg.second; 6057 if (OpInfo.ConstraintVT == MVT::Other) 6058 ValueVT = *RC->vt_begin(); 6059 6060 // Get the actual register value type. This is important, because the user 6061 // may have asked for (e.g.) the AX register in i32 type. We need to 6062 // remember that AX is actually i16 to get the right extension. 6063 RegVT = *RC->vt_begin(); 6064 6065 // This is a explicit reference to a physical register. 6066 Regs.push_back(AssignedReg); 6067 6068 // If this is an expanded reference, add the rest of the regs to Regs. 6069 if (NumRegs != 1) { 6070 TargetRegisterClass::iterator I = RC->begin(); 6071 for (; *I != AssignedReg; ++I) 6072 assert(I != RC->end() && "Didn't find reg!"); 6073 6074 // Already added the first reg. 6075 --NumRegs; ++I; 6076 for (; NumRegs; --NumRegs, ++I) { 6077 assert(I != RC->end() && "Ran out of registers to allocate!"); 6078 Regs.push_back(*I); 6079 } 6080 } 6081 6082 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6083 return; 6084 } 6085 6086 // Otherwise, if this was a reference to an LLVM register class, create vregs 6087 // for this reference. 6088 if (const TargetRegisterClass *RC = PhysReg.second) { 6089 RegVT = *RC->vt_begin(); 6090 if (OpInfo.ConstraintVT == MVT::Other) 6091 ValueVT = RegVT; 6092 6093 // Create the appropriate number of virtual registers. 6094 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6095 for (; NumRegs; --NumRegs) 6096 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6097 6098 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6099 return; 6100 } 6101 6102 // Otherwise, we couldn't allocate enough registers for this. 6103 } 6104 6105 /// visitInlineAsm - Handle a call to an InlineAsm object. 6106 /// 6107 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6108 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6109 6110 /// ConstraintOperands - Information about all of the constraints. 6111 SDISelAsmOperandInfoVector ConstraintOperands; 6112 6113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6114 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6115 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6116 6117 bool hasMemory = false; 6118 6119 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6120 unsigned ResNo = 0; // ResNo - The result number of the next output. 6121 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6122 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6123 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6124 6125 MVT OpVT = MVT::Other; 6126 6127 // Compute the value type for each operand. 6128 switch (OpInfo.Type) { 6129 case InlineAsm::isOutput: 6130 // Indirect outputs just consume an argument. 6131 if (OpInfo.isIndirect) { 6132 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6133 break; 6134 } 6135 6136 // The return value of the call is this value. As such, there is no 6137 // corresponding argument. 6138 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6139 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6140 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6141 STy->getElementType(ResNo)); 6142 } else { 6143 assert(ResNo == 0 && "Asm only has one result!"); 6144 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6145 } 6146 ++ResNo; 6147 break; 6148 case InlineAsm::isInput: 6149 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6150 break; 6151 case InlineAsm::isClobber: 6152 // Nothing to do. 6153 break; 6154 } 6155 6156 // If this is an input or an indirect output, process the call argument. 6157 // BasicBlocks are labels, currently appearing only in asm's. 6158 if (OpInfo.CallOperandVal) { 6159 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6160 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6161 } else { 6162 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6163 } 6164 6165 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6166 DAG.getDataLayout()).getSimpleVT(); 6167 } 6168 6169 OpInfo.ConstraintVT = OpVT; 6170 6171 // Indirect operand accesses access memory. 6172 if (OpInfo.isIndirect) 6173 hasMemory = true; 6174 else { 6175 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6176 TargetLowering::ConstraintType 6177 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6178 if (CType == TargetLowering::C_Memory) { 6179 hasMemory = true; 6180 break; 6181 } 6182 } 6183 } 6184 } 6185 6186 SDValue Chain, Flag; 6187 6188 // We won't need to flush pending loads if this asm doesn't touch 6189 // memory and is nonvolatile. 6190 if (hasMemory || IA->hasSideEffects()) 6191 Chain = getRoot(); 6192 else 6193 Chain = DAG.getRoot(); 6194 6195 // Second pass over the constraints: compute which constraint option to use 6196 // and assign registers to constraints that want a specific physreg. 6197 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6198 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6199 6200 // If this is an output operand with a matching input operand, look up the 6201 // matching input. If their types mismatch, e.g. one is an integer, the 6202 // other is floating point, or their sizes are different, flag it as an 6203 // error. 6204 if (OpInfo.hasMatchingInput()) { 6205 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6206 6207 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6208 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6209 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6210 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6211 OpInfo.ConstraintVT); 6212 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6213 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6214 Input.ConstraintVT); 6215 if ((OpInfo.ConstraintVT.isInteger() != 6216 Input.ConstraintVT.isInteger()) || 6217 (MatchRC.second != InputRC.second)) { 6218 report_fatal_error("Unsupported asm: input constraint" 6219 " with a matching output constraint of" 6220 " incompatible type!"); 6221 } 6222 Input.ConstraintVT = OpInfo.ConstraintVT; 6223 } 6224 } 6225 6226 // Compute the constraint code and ConstraintType to use. 6227 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6228 6229 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6230 OpInfo.Type == InlineAsm::isClobber) 6231 continue; 6232 6233 // If this is a memory input, and if the operand is not indirect, do what we 6234 // need to to provide an address for the memory input. 6235 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6236 !OpInfo.isIndirect) { 6237 assert((OpInfo.isMultipleAlternative || 6238 (OpInfo.Type == InlineAsm::isInput)) && 6239 "Can only indirectify direct input operands!"); 6240 6241 // Memory operands really want the address of the value. If we don't have 6242 // an indirect input, put it in the constpool if we can, otherwise spill 6243 // it to a stack slot. 6244 // TODO: This isn't quite right. We need to handle these according to 6245 // the addressing mode that the constraint wants. Also, this may take 6246 // an additional register for the computation and we don't want that 6247 // either. 6248 6249 // If the operand is a float, integer, or vector constant, spill to a 6250 // constant pool entry to get its address. 6251 const Value *OpVal = OpInfo.CallOperandVal; 6252 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6253 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6254 OpInfo.CallOperand = DAG.getConstantPool( 6255 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6256 } else { 6257 // Otherwise, create a stack slot and emit a store to it before the 6258 // asm. 6259 Type *Ty = OpVal->getType(); 6260 auto &DL = DAG.getDataLayout(); 6261 uint64_t TySize = DL.getTypeAllocSize(Ty); 6262 unsigned Align = DL.getPrefTypeAlignment(Ty); 6263 MachineFunction &MF = DAG.getMachineFunction(); 6264 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6265 SDValue StackSlot = 6266 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6267 Chain = DAG.getStore( 6268 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6269 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6270 false, false, 0); 6271 OpInfo.CallOperand = StackSlot; 6272 } 6273 6274 // There is no longer a Value* corresponding to this operand. 6275 OpInfo.CallOperandVal = nullptr; 6276 6277 // It is now an indirect operand. 6278 OpInfo.isIndirect = true; 6279 } 6280 6281 // If this constraint is for a specific register, allocate it before 6282 // anything else. 6283 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6284 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6285 } 6286 6287 // Second pass - Loop over all of the operands, assigning virtual or physregs 6288 // to register class operands. 6289 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6290 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6291 6292 // C_Register operands have already been allocated, Other/Memory don't need 6293 // to be. 6294 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6295 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6296 } 6297 6298 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6299 std::vector<SDValue> AsmNodeOperands; 6300 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6301 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6302 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6303 6304 // If we have a !srcloc metadata node associated with it, we want to attach 6305 // this to the ultimately generated inline asm machineinstr. To do this, we 6306 // pass in the third operand as this (potentially null) inline asm MDNode. 6307 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6308 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6309 6310 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6311 // bits as operand 3. 6312 unsigned ExtraInfo = 0; 6313 if (IA->hasSideEffects()) 6314 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6315 if (IA->isAlignStack()) 6316 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6317 // Set the asm dialect. 6318 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6319 6320 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6321 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6322 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6323 6324 // Compute the constraint code and ConstraintType to use. 6325 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6326 6327 // Ideally, we would only check against memory constraints. However, the 6328 // meaning of an other constraint can be target-specific and we can't easily 6329 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6330 // for other constriants as well. 6331 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6332 OpInfo.ConstraintType == TargetLowering::C_Other) { 6333 if (OpInfo.Type == InlineAsm::isInput) 6334 ExtraInfo |= InlineAsm::Extra_MayLoad; 6335 else if (OpInfo.Type == InlineAsm::isOutput) 6336 ExtraInfo |= InlineAsm::Extra_MayStore; 6337 else if (OpInfo.Type == InlineAsm::isClobber) 6338 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6339 } 6340 } 6341 6342 AsmNodeOperands.push_back(DAG.getTargetConstant( 6343 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6344 6345 // Loop over all of the inputs, copying the operand values into the 6346 // appropriate registers and processing the output regs. 6347 RegsForValue RetValRegs; 6348 6349 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6350 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6351 6352 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6353 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6354 6355 switch (OpInfo.Type) { 6356 case InlineAsm::isOutput: { 6357 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6358 OpInfo.ConstraintType != TargetLowering::C_Register) { 6359 // Memory output, or 'other' output (e.g. 'X' constraint). 6360 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6361 6362 unsigned ConstraintID = 6363 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6364 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6365 "Failed to convert memory constraint code to constraint id."); 6366 6367 // Add information to the INLINEASM node to know about this output. 6368 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6369 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6370 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6371 MVT::i32)); 6372 AsmNodeOperands.push_back(OpInfo.CallOperand); 6373 break; 6374 } 6375 6376 // Otherwise, this is a register or register class output. 6377 6378 // Copy the output from the appropriate register. Find a register that 6379 // we can use. 6380 if (OpInfo.AssignedRegs.Regs.empty()) { 6381 LLVMContext &Ctx = *DAG.getContext(); 6382 Ctx.emitError(CS.getInstruction(), 6383 "couldn't allocate output register for constraint '" + 6384 Twine(OpInfo.ConstraintCode) + "'"); 6385 return; 6386 } 6387 6388 // If this is an indirect operand, store through the pointer after the 6389 // asm. 6390 if (OpInfo.isIndirect) { 6391 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6392 OpInfo.CallOperandVal)); 6393 } else { 6394 // This is the result value of the call. 6395 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6396 // Concatenate this output onto the outputs list. 6397 RetValRegs.append(OpInfo.AssignedRegs); 6398 } 6399 6400 // Add information to the INLINEASM node to know that this register is 6401 // set. 6402 OpInfo.AssignedRegs 6403 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6404 ? InlineAsm::Kind_RegDefEarlyClobber 6405 : InlineAsm::Kind_RegDef, 6406 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6407 break; 6408 } 6409 case InlineAsm::isInput: { 6410 SDValue InOperandVal = OpInfo.CallOperand; 6411 6412 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6413 // If this is required to match an output register we have already set, 6414 // just use its register. 6415 unsigned OperandNo = OpInfo.getMatchedOperand(); 6416 6417 // Scan until we find the definition we already emitted of this operand. 6418 // When we find it, create a RegsForValue operand. 6419 unsigned CurOp = InlineAsm::Op_FirstOperand; 6420 for (; OperandNo; --OperandNo) { 6421 // Advance to the next operand. 6422 unsigned OpFlag = 6423 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6424 assert((InlineAsm::isRegDefKind(OpFlag) || 6425 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6426 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6427 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6428 } 6429 6430 unsigned OpFlag = 6431 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6432 if (InlineAsm::isRegDefKind(OpFlag) || 6433 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6434 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6435 if (OpInfo.isIndirect) { 6436 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6437 LLVMContext &Ctx = *DAG.getContext(); 6438 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6439 " don't know how to handle tied " 6440 "indirect register inputs"); 6441 return; 6442 } 6443 6444 RegsForValue MatchedRegs; 6445 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6446 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6447 MatchedRegs.RegVTs.push_back(RegVT); 6448 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6449 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6450 i != e; ++i) { 6451 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6452 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6453 else { 6454 LLVMContext &Ctx = *DAG.getContext(); 6455 Ctx.emitError(CS.getInstruction(), 6456 "inline asm error: This value" 6457 " type register class is not natively supported!"); 6458 return; 6459 } 6460 } 6461 SDLoc dl = getCurSDLoc(); 6462 // Use the produced MatchedRegs object to 6463 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6464 Chain, &Flag, CS.getInstruction()); 6465 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6466 true, OpInfo.getMatchedOperand(), dl, 6467 DAG, AsmNodeOperands); 6468 break; 6469 } 6470 6471 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6472 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6473 "Unexpected number of operands"); 6474 // Add information to the INLINEASM node to know about this input. 6475 // See InlineAsm.h isUseOperandTiedToDef. 6476 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6477 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6478 OpInfo.getMatchedOperand()); 6479 AsmNodeOperands.push_back(DAG.getTargetConstant( 6480 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6481 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6482 break; 6483 } 6484 6485 // Treat indirect 'X' constraint as memory. 6486 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6487 OpInfo.isIndirect) 6488 OpInfo.ConstraintType = TargetLowering::C_Memory; 6489 6490 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6491 std::vector<SDValue> Ops; 6492 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6493 Ops, DAG); 6494 if (Ops.empty()) { 6495 LLVMContext &Ctx = *DAG.getContext(); 6496 Ctx.emitError(CS.getInstruction(), 6497 "invalid operand for inline asm constraint '" + 6498 Twine(OpInfo.ConstraintCode) + "'"); 6499 return; 6500 } 6501 6502 // Add information to the INLINEASM node to know about this input. 6503 unsigned ResOpType = 6504 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6505 AsmNodeOperands.push_back(DAG.getTargetConstant( 6506 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6507 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6508 break; 6509 } 6510 6511 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6512 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6513 assert(InOperandVal.getValueType() == 6514 TLI.getPointerTy(DAG.getDataLayout()) && 6515 "Memory operands expect pointer values"); 6516 6517 unsigned ConstraintID = 6518 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6519 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6520 "Failed to convert memory constraint code to constraint id."); 6521 6522 // Add information to the INLINEASM node to know about this input. 6523 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6524 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6525 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6526 getCurSDLoc(), 6527 MVT::i32)); 6528 AsmNodeOperands.push_back(InOperandVal); 6529 break; 6530 } 6531 6532 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6533 OpInfo.ConstraintType == TargetLowering::C_Register) && 6534 "Unknown constraint type!"); 6535 6536 // TODO: Support this. 6537 if (OpInfo.isIndirect) { 6538 LLVMContext &Ctx = *DAG.getContext(); 6539 Ctx.emitError(CS.getInstruction(), 6540 "Don't know how to handle indirect register inputs yet " 6541 "for constraint '" + 6542 Twine(OpInfo.ConstraintCode) + "'"); 6543 return; 6544 } 6545 6546 // Copy the input into the appropriate registers. 6547 if (OpInfo.AssignedRegs.Regs.empty()) { 6548 LLVMContext &Ctx = *DAG.getContext(); 6549 Ctx.emitError(CS.getInstruction(), 6550 "couldn't allocate input reg for constraint '" + 6551 Twine(OpInfo.ConstraintCode) + "'"); 6552 return; 6553 } 6554 6555 SDLoc dl = getCurSDLoc(); 6556 6557 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6558 Chain, &Flag, CS.getInstruction()); 6559 6560 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6561 dl, DAG, AsmNodeOperands); 6562 break; 6563 } 6564 case InlineAsm::isClobber: { 6565 // Add the clobbered value to the operand list, so that the register 6566 // allocator is aware that the physreg got clobbered. 6567 if (!OpInfo.AssignedRegs.Regs.empty()) 6568 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6569 false, 0, getCurSDLoc(), DAG, 6570 AsmNodeOperands); 6571 break; 6572 } 6573 } 6574 } 6575 6576 // Finish up input operands. Set the input chain and add the flag last. 6577 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6578 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6579 6580 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6581 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6582 Flag = Chain.getValue(1); 6583 6584 // If this asm returns a register value, copy the result from that register 6585 // and set it as the value of the call. 6586 if (!RetValRegs.Regs.empty()) { 6587 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6588 Chain, &Flag, CS.getInstruction()); 6589 6590 // FIXME: Why don't we do this for inline asms with MRVs? 6591 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6592 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6593 6594 // If any of the results of the inline asm is a vector, it may have the 6595 // wrong width/num elts. This can happen for register classes that can 6596 // contain multiple different value types. The preg or vreg allocated may 6597 // not have the same VT as was expected. Convert it to the right type 6598 // with bit_convert. 6599 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6600 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6601 ResultType, Val); 6602 6603 } else if (ResultType != Val.getValueType() && 6604 ResultType.isInteger() && Val.getValueType().isInteger()) { 6605 // If a result value was tied to an input value, the computed result may 6606 // have a wider width than the expected result. Extract the relevant 6607 // portion. 6608 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6609 } 6610 6611 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6612 } 6613 6614 setValue(CS.getInstruction(), Val); 6615 // Don't need to use this as a chain in this case. 6616 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6617 return; 6618 } 6619 6620 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6621 6622 // Process indirect outputs, first output all of the flagged copies out of 6623 // physregs. 6624 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6625 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6626 const Value *Ptr = IndirectStoresToEmit[i].second; 6627 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6628 Chain, &Flag, IA); 6629 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6630 } 6631 6632 // Emit the non-flagged stores from the physregs. 6633 SmallVector<SDValue, 8> OutChains; 6634 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6635 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6636 StoresToEmit[i].first, 6637 getValue(StoresToEmit[i].second), 6638 MachinePointerInfo(StoresToEmit[i].second), 6639 false, false, 0); 6640 OutChains.push_back(Val); 6641 } 6642 6643 if (!OutChains.empty()) 6644 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6645 6646 DAG.setRoot(Chain); 6647 } 6648 6649 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6650 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6651 MVT::Other, getRoot(), 6652 getValue(I.getArgOperand(0)), 6653 DAG.getSrcValue(I.getArgOperand(0)))); 6654 } 6655 6656 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6658 const DataLayout &DL = DAG.getDataLayout(); 6659 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6660 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6661 DAG.getSrcValue(I.getOperand(0)), 6662 DL.getABITypeAlignment(I.getType())); 6663 setValue(&I, V); 6664 DAG.setRoot(V.getValue(1)); 6665 } 6666 6667 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6668 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6669 MVT::Other, getRoot(), 6670 getValue(I.getArgOperand(0)), 6671 DAG.getSrcValue(I.getArgOperand(0)))); 6672 } 6673 6674 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6675 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6676 MVT::Other, getRoot(), 6677 getValue(I.getArgOperand(0)), 6678 getValue(I.getArgOperand(1)), 6679 DAG.getSrcValue(I.getArgOperand(0)), 6680 DAG.getSrcValue(I.getArgOperand(1)))); 6681 } 6682 6683 /// \brief Lower an argument list according to the target calling convention. 6684 /// 6685 /// \return A tuple of <return-value, token-chain> 6686 /// 6687 /// This is a helper for lowering intrinsics that follow a target calling 6688 /// convention or require stack pointer adjustment. Only a subset of the 6689 /// intrinsic's operands need to participate in the calling convention. 6690 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6691 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6692 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6693 TargetLowering::ArgListTy Args; 6694 Args.reserve(NumArgs); 6695 6696 // Populate the argument list. 6697 // Attributes for args start at offset 1, after the return attribute. 6698 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6699 ArgI != ArgE; ++ArgI) { 6700 const Value *V = CS->getOperand(ArgI); 6701 6702 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6703 6704 TargetLowering::ArgListEntry Entry; 6705 Entry.Node = getValue(V); 6706 Entry.Ty = V->getType(); 6707 Entry.setAttributes(&CS, AttrI); 6708 Args.push_back(Entry); 6709 } 6710 6711 TargetLowering::CallLoweringInfo CLI(DAG); 6712 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6713 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6714 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6715 6716 return lowerInvokable(CLI, EHPadBB); 6717 } 6718 6719 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6720 /// or patchpoint target node's operand list. 6721 /// 6722 /// Constants are converted to TargetConstants purely as an optimization to 6723 /// avoid constant materialization and register allocation. 6724 /// 6725 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6726 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6727 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6728 /// address materialization and register allocation, but may also be required 6729 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6730 /// alloca in the entry block, then the runtime may assume that the alloca's 6731 /// StackMap location can be read immediately after compilation and that the 6732 /// location is valid at any point during execution (this is similar to the 6733 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6734 /// only available in a register, then the runtime would need to trap when 6735 /// execution reaches the StackMap in order to read the alloca's location. 6736 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6737 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6738 SelectionDAGBuilder &Builder) { 6739 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6740 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6741 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6742 Ops.push_back( 6743 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6744 Ops.push_back( 6745 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6746 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6747 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6748 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6749 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6750 } else 6751 Ops.push_back(OpVal); 6752 } 6753 } 6754 6755 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6756 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6757 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6758 // [live variables...]) 6759 6760 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6761 6762 SDValue Chain, InFlag, Callee, NullPtr; 6763 SmallVector<SDValue, 32> Ops; 6764 6765 SDLoc DL = getCurSDLoc(); 6766 Callee = getValue(CI.getCalledValue()); 6767 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6768 6769 // The stackmap intrinsic only records the live variables (the arguemnts 6770 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6771 // intrinsic, this won't be lowered to a function call. This means we don't 6772 // have to worry about calling conventions and target specific lowering code. 6773 // Instead we perform the call lowering right here. 6774 // 6775 // chain, flag = CALLSEQ_START(chain, 0) 6776 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6777 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6778 // 6779 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6780 InFlag = Chain.getValue(1); 6781 6782 // Add the <id> and <numBytes> constants. 6783 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6784 Ops.push_back(DAG.getTargetConstant( 6785 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6786 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6787 Ops.push_back(DAG.getTargetConstant( 6788 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6789 MVT::i32)); 6790 6791 // Push live variables for the stack map. 6792 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6793 6794 // We are not pushing any register mask info here on the operands list, 6795 // because the stackmap doesn't clobber anything. 6796 6797 // Push the chain and the glue flag. 6798 Ops.push_back(Chain); 6799 Ops.push_back(InFlag); 6800 6801 // Create the STACKMAP node. 6802 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6803 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6804 Chain = SDValue(SM, 0); 6805 InFlag = Chain.getValue(1); 6806 6807 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6808 6809 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6810 6811 // Set the root to the target-lowered call chain. 6812 DAG.setRoot(Chain); 6813 6814 // Inform the Frame Information that we have a stackmap in this function. 6815 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6816 } 6817 6818 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6819 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6820 const BasicBlock *EHPadBB) { 6821 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6822 // i32 <numBytes>, 6823 // i8* <target>, 6824 // i32 <numArgs>, 6825 // [Args...], 6826 // [live variables...]) 6827 6828 CallingConv::ID CC = CS.getCallingConv(); 6829 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6830 bool HasDef = !CS->getType()->isVoidTy(); 6831 SDLoc dl = getCurSDLoc(); 6832 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6833 6834 // Handle immediate and symbolic callees. 6835 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6836 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6837 /*isTarget=*/true); 6838 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6839 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6840 SDLoc(SymbolicCallee), 6841 SymbolicCallee->getValueType(0)); 6842 6843 // Get the real number of arguments participating in the call <numArgs> 6844 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6845 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6846 6847 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6848 // Intrinsics include all meta-operands up to but not including CC. 6849 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6850 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6851 "Not enough arguments provided to the patchpoint intrinsic"); 6852 6853 // For AnyRegCC the arguments are lowered later on manually. 6854 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6855 Type *ReturnTy = 6856 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6857 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6858 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6859 6860 SDNode *CallEnd = Result.second.getNode(); 6861 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6862 CallEnd = CallEnd->getOperand(0).getNode(); 6863 6864 /// Get a call instruction from the call sequence chain. 6865 /// Tail calls are not allowed. 6866 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6867 "Expected a callseq node."); 6868 SDNode *Call = CallEnd->getOperand(0).getNode(); 6869 bool HasGlue = Call->getGluedNode(); 6870 6871 // Replace the target specific call node with the patchable intrinsic. 6872 SmallVector<SDValue, 8> Ops; 6873 6874 // Add the <id> and <numBytes> constants. 6875 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6876 Ops.push_back(DAG.getTargetConstant( 6877 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6878 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6879 Ops.push_back(DAG.getTargetConstant( 6880 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6881 MVT::i32)); 6882 6883 // Add the callee. 6884 Ops.push_back(Callee); 6885 6886 // Adjust <numArgs> to account for any arguments that have been passed on the 6887 // stack instead. 6888 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6889 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6890 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6891 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6892 6893 // Add the calling convention 6894 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6895 6896 // Add the arguments we omitted previously. The register allocator should 6897 // place these in any free register. 6898 if (IsAnyRegCC) 6899 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6900 Ops.push_back(getValue(CS.getArgument(i))); 6901 6902 // Push the arguments from the call instruction up to the register mask. 6903 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6904 Ops.append(Call->op_begin() + 2, e); 6905 6906 // Push live variables for the stack map. 6907 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6908 6909 // Push the register mask info. 6910 if (HasGlue) 6911 Ops.push_back(*(Call->op_end()-2)); 6912 else 6913 Ops.push_back(*(Call->op_end()-1)); 6914 6915 // Push the chain (this is originally the first operand of the call, but 6916 // becomes now the last or second to last operand). 6917 Ops.push_back(*(Call->op_begin())); 6918 6919 // Push the glue flag (last operand). 6920 if (HasGlue) 6921 Ops.push_back(*(Call->op_end()-1)); 6922 6923 SDVTList NodeTys; 6924 if (IsAnyRegCC && HasDef) { 6925 // Create the return types based on the intrinsic definition 6926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6927 SmallVector<EVT, 3> ValueVTs; 6928 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6929 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6930 6931 // There is always a chain and a glue type at the end 6932 ValueVTs.push_back(MVT::Other); 6933 ValueVTs.push_back(MVT::Glue); 6934 NodeTys = DAG.getVTList(ValueVTs); 6935 } else 6936 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6937 6938 // Replace the target specific call node with a PATCHPOINT node. 6939 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6940 dl, NodeTys, Ops); 6941 6942 // Update the NodeMap. 6943 if (HasDef) { 6944 if (IsAnyRegCC) 6945 setValue(CS.getInstruction(), SDValue(MN, 0)); 6946 else 6947 setValue(CS.getInstruction(), Result.first); 6948 } 6949 6950 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6951 // call sequence. Furthermore the location of the chain and glue can change 6952 // when the AnyReg calling convention is used and the intrinsic returns a 6953 // value. 6954 if (IsAnyRegCC && HasDef) { 6955 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6956 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6957 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6958 } else 6959 DAG.ReplaceAllUsesWith(Call, MN); 6960 DAG.DeleteNode(Call); 6961 6962 // Inform the Frame Information that we have a patchpoint in this function. 6963 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6964 } 6965 6966 /// Returns an AttributeSet representing the attributes applied to the return 6967 /// value of the given call. 6968 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6969 SmallVector<Attribute::AttrKind, 2> Attrs; 6970 if (CLI.RetSExt) 6971 Attrs.push_back(Attribute::SExt); 6972 if (CLI.RetZExt) 6973 Attrs.push_back(Attribute::ZExt); 6974 if (CLI.IsInReg) 6975 Attrs.push_back(Attribute::InReg); 6976 6977 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6978 Attrs); 6979 } 6980 6981 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6982 /// implementation, which just calls LowerCall. 6983 /// FIXME: When all targets are 6984 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6985 std::pair<SDValue, SDValue> 6986 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6987 // Handle the incoming return values from the call. 6988 CLI.Ins.clear(); 6989 Type *OrigRetTy = CLI.RetTy; 6990 SmallVector<EVT, 4> RetTys; 6991 SmallVector<uint64_t, 4> Offsets; 6992 auto &DL = CLI.DAG.getDataLayout(); 6993 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6994 6995 SmallVector<ISD::OutputArg, 4> Outs; 6996 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6997 6998 bool CanLowerReturn = 6999 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7000 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7001 7002 SDValue DemoteStackSlot; 7003 int DemoteStackIdx = -100; 7004 if (!CanLowerReturn) { 7005 // FIXME: equivalent assert? 7006 // assert(!CS.hasInAllocaArgument() && 7007 // "sret demotion is incompatible with inalloca"); 7008 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7009 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7010 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7011 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7012 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7013 7014 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7015 ArgListEntry Entry; 7016 Entry.Node = DemoteStackSlot; 7017 Entry.Ty = StackSlotPtrType; 7018 Entry.isSExt = false; 7019 Entry.isZExt = false; 7020 Entry.isInReg = false; 7021 Entry.isSRet = true; 7022 Entry.isNest = false; 7023 Entry.isByVal = false; 7024 Entry.isReturned = false; 7025 Entry.Alignment = Align; 7026 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7027 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7028 7029 // sret demotion isn't compatible with tail-calls, since the sret argument 7030 // points into the callers stack frame. 7031 CLI.IsTailCall = false; 7032 } else { 7033 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7034 EVT VT = RetTys[I]; 7035 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7036 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7037 for (unsigned i = 0; i != NumRegs; ++i) { 7038 ISD::InputArg MyFlags; 7039 MyFlags.VT = RegisterVT; 7040 MyFlags.ArgVT = VT; 7041 MyFlags.Used = CLI.IsReturnValueUsed; 7042 if (CLI.RetSExt) 7043 MyFlags.Flags.setSExt(); 7044 if (CLI.RetZExt) 7045 MyFlags.Flags.setZExt(); 7046 if (CLI.IsInReg) 7047 MyFlags.Flags.setInReg(); 7048 CLI.Ins.push_back(MyFlags); 7049 } 7050 } 7051 } 7052 7053 // Handle all of the outgoing arguments. 7054 CLI.Outs.clear(); 7055 CLI.OutVals.clear(); 7056 ArgListTy &Args = CLI.getArgs(); 7057 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7058 SmallVector<EVT, 4> ValueVTs; 7059 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7060 Type *FinalType = Args[i].Ty; 7061 if (Args[i].isByVal) 7062 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7063 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7064 FinalType, CLI.CallConv, CLI.IsVarArg); 7065 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7066 ++Value) { 7067 EVT VT = ValueVTs[Value]; 7068 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7069 SDValue Op = SDValue(Args[i].Node.getNode(), 7070 Args[i].Node.getResNo() + Value); 7071 ISD::ArgFlagsTy Flags; 7072 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7073 7074 if (Args[i].isZExt) 7075 Flags.setZExt(); 7076 if (Args[i].isSExt) 7077 Flags.setSExt(); 7078 if (Args[i].isInReg) 7079 Flags.setInReg(); 7080 if (Args[i].isSRet) 7081 Flags.setSRet(); 7082 if (Args[i].isByVal) 7083 Flags.setByVal(); 7084 if (Args[i].isInAlloca) { 7085 Flags.setInAlloca(); 7086 // Set the byval flag for CCAssignFn callbacks that don't know about 7087 // inalloca. This way we can know how many bytes we should've allocated 7088 // and how many bytes a callee cleanup function will pop. If we port 7089 // inalloca to more targets, we'll have to add custom inalloca handling 7090 // in the various CC lowering callbacks. 7091 Flags.setByVal(); 7092 } 7093 if (Args[i].isByVal || Args[i].isInAlloca) { 7094 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7095 Type *ElementTy = Ty->getElementType(); 7096 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7097 // For ByVal, alignment should come from FE. BE will guess if this 7098 // info is not there but there are cases it cannot get right. 7099 unsigned FrameAlign; 7100 if (Args[i].Alignment) 7101 FrameAlign = Args[i].Alignment; 7102 else 7103 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7104 Flags.setByValAlign(FrameAlign); 7105 } 7106 if (Args[i].isNest) 7107 Flags.setNest(); 7108 if (NeedsRegBlock) 7109 Flags.setInConsecutiveRegs(); 7110 Flags.setOrigAlign(OriginalAlignment); 7111 7112 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7113 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7114 SmallVector<SDValue, 4> Parts(NumParts); 7115 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7116 7117 if (Args[i].isSExt) 7118 ExtendKind = ISD::SIGN_EXTEND; 7119 else if (Args[i].isZExt) 7120 ExtendKind = ISD::ZERO_EXTEND; 7121 7122 // Conservatively only handle 'returned' on non-vectors for now 7123 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7124 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7125 "unexpected use of 'returned'"); 7126 // Before passing 'returned' to the target lowering code, ensure that 7127 // either the register MVT and the actual EVT are the same size or that 7128 // the return value and argument are extended in the same way; in these 7129 // cases it's safe to pass the argument register value unchanged as the 7130 // return register value (although it's at the target's option whether 7131 // to do so) 7132 // TODO: allow code generation to take advantage of partially preserved 7133 // registers rather than clobbering the entire register when the 7134 // parameter extension method is not compatible with the return 7135 // extension method 7136 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7137 (ExtendKind != ISD::ANY_EXTEND && 7138 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7139 Flags.setReturned(); 7140 } 7141 7142 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7143 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7144 7145 for (unsigned j = 0; j != NumParts; ++j) { 7146 // if it isn't first piece, alignment must be 1 7147 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7148 i < CLI.NumFixedArgs, 7149 i, j*Parts[j].getValueType().getStoreSize()); 7150 if (NumParts > 1 && j == 0) 7151 MyFlags.Flags.setSplit(); 7152 else if (j != 0) 7153 MyFlags.Flags.setOrigAlign(1); 7154 7155 CLI.Outs.push_back(MyFlags); 7156 CLI.OutVals.push_back(Parts[j]); 7157 } 7158 7159 if (NeedsRegBlock && Value == NumValues - 1) 7160 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7161 } 7162 } 7163 7164 SmallVector<SDValue, 4> InVals; 7165 CLI.Chain = LowerCall(CLI, InVals); 7166 7167 // Verify that the target's LowerCall behaved as expected. 7168 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7169 "LowerCall didn't return a valid chain!"); 7170 assert((!CLI.IsTailCall || InVals.empty()) && 7171 "LowerCall emitted a return value for a tail call!"); 7172 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7173 "LowerCall didn't emit the correct number of values!"); 7174 7175 // For a tail call, the return value is merely live-out and there aren't 7176 // any nodes in the DAG representing it. Return a special value to 7177 // indicate that a tail call has been emitted and no more Instructions 7178 // should be processed in the current block. 7179 if (CLI.IsTailCall) { 7180 CLI.DAG.setRoot(CLI.Chain); 7181 return std::make_pair(SDValue(), SDValue()); 7182 } 7183 7184 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7185 assert(InVals[i].getNode() && 7186 "LowerCall emitted a null value!"); 7187 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7188 "LowerCall emitted a value with the wrong type!"); 7189 }); 7190 7191 SmallVector<SDValue, 4> ReturnValues; 7192 if (!CanLowerReturn) { 7193 // The instruction result is the result of loading from the 7194 // hidden sret parameter. 7195 SmallVector<EVT, 1> PVTs; 7196 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7197 7198 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7199 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7200 EVT PtrVT = PVTs[0]; 7201 7202 unsigned NumValues = RetTys.size(); 7203 ReturnValues.resize(NumValues); 7204 SmallVector<SDValue, 4> Chains(NumValues); 7205 7206 for (unsigned i = 0; i < NumValues; ++i) { 7207 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7208 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7209 PtrVT)); 7210 SDValue L = CLI.DAG.getLoad( 7211 RetTys[i], CLI.DL, CLI.Chain, Add, 7212 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7213 DemoteStackIdx, Offsets[i]), 7214 false, false, false, 1); 7215 ReturnValues[i] = L; 7216 Chains[i] = L.getValue(1); 7217 } 7218 7219 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7220 } else { 7221 // Collect the legal value parts into potentially illegal values 7222 // that correspond to the original function's return values. 7223 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7224 if (CLI.RetSExt) 7225 AssertOp = ISD::AssertSext; 7226 else if (CLI.RetZExt) 7227 AssertOp = ISD::AssertZext; 7228 unsigned CurReg = 0; 7229 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7230 EVT VT = RetTys[I]; 7231 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7232 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7233 7234 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7235 NumRegs, RegisterVT, VT, nullptr, 7236 AssertOp)); 7237 CurReg += NumRegs; 7238 } 7239 7240 // For a function returning void, there is no return value. We can't create 7241 // such a node, so we just return a null return value in that case. In 7242 // that case, nothing will actually look at the value. 7243 if (ReturnValues.empty()) 7244 return std::make_pair(SDValue(), CLI.Chain); 7245 } 7246 7247 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7248 CLI.DAG.getVTList(RetTys), ReturnValues); 7249 return std::make_pair(Res, CLI.Chain); 7250 } 7251 7252 void TargetLowering::LowerOperationWrapper(SDNode *N, 7253 SmallVectorImpl<SDValue> &Results, 7254 SelectionDAG &DAG) const { 7255 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7256 if (Res.getNode()) 7257 Results.push_back(Res); 7258 } 7259 7260 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7261 llvm_unreachable("LowerOperation not implemented for this target!"); 7262 } 7263 7264 void 7265 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7266 SDValue Op = getNonRegisterValue(V); 7267 assert((Op.getOpcode() != ISD::CopyFromReg || 7268 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7269 "Copy from a reg to the same reg!"); 7270 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7271 7272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7273 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7274 V->getType()); 7275 SDValue Chain = DAG.getEntryNode(); 7276 7277 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7278 FuncInfo.PreferredExtendType.end()) 7279 ? ISD::ANY_EXTEND 7280 : FuncInfo.PreferredExtendType[V]; 7281 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7282 PendingExports.push_back(Chain); 7283 } 7284 7285 #include "llvm/CodeGen/SelectionDAGISel.h" 7286 7287 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7288 /// entry block, return true. This includes arguments used by switches, since 7289 /// the switch may expand into multiple basic blocks. 7290 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7291 // With FastISel active, we may be splitting blocks, so force creation 7292 // of virtual registers for all non-dead arguments. 7293 if (FastISel) 7294 return A->use_empty(); 7295 7296 const BasicBlock &Entry = A->getParent()->front(); 7297 for (const User *U : A->users()) 7298 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7299 return false; // Use not in entry block. 7300 7301 return true; 7302 } 7303 7304 void SelectionDAGISel::LowerArguments(const Function &F) { 7305 SelectionDAG &DAG = SDB->DAG; 7306 SDLoc dl = SDB->getCurSDLoc(); 7307 const DataLayout &DL = DAG.getDataLayout(); 7308 SmallVector<ISD::InputArg, 16> Ins; 7309 7310 if (!FuncInfo->CanLowerReturn) { 7311 // Put in an sret pointer parameter before all the other parameters. 7312 SmallVector<EVT, 1> ValueVTs; 7313 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7314 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7315 7316 // NOTE: Assuming that a pointer will never break down to more than one VT 7317 // or one register. 7318 ISD::ArgFlagsTy Flags; 7319 Flags.setSRet(); 7320 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7321 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7322 ISD::InputArg::NoArgIndex, 0); 7323 Ins.push_back(RetArg); 7324 } 7325 7326 // Set up the incoming argument description vector. 7327 unsigned Idx = 1; 7328 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7329 I != E; ++I, ++Idx) { 7330 SmallVector<EVT, 4> ValueVTs; 7331 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7332 bool isArgValueUsed = !I->use_empty(); 7333 unsigned PartBase = 0; 7334 Type *FinalType = I->getType(); 7335 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7336 FinalType = cast<PointerType>(FinalType)->getElementType(); 7337 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7338 FinalType, F.getCallingConv(), F.isVarArg()); 7339 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7340 Value != NumValues; ++Value) { 7341 EVT VT = ValueVTs[Value]; 7342 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7343 ISD::ArgFlagsTy Flags; 7344 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7345 7346 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7347 Flags.setZExt(); 7348 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7349 Flags.setSExt(); 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7351 Flags.setInReg(); 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7353 Flags.setSRet(); 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7355 Flags.setByVal(); 7356 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7357 Flags.setInAlloca(); 7358 // Set the byval flag for CCAssignFn callbacks that don't know about 7359 // inalloca. This way we can know how many bytes we should've allocated 7360 // and how many bytes a callee cleanup function will pop. If we port 7361 // inalloca to more targets, we'll have to add custom inalloca handling 7362 // in the various CC lowering callbacks. 7363 Flags.setByVal(); 7364 } 7365 if (Flags.isByVal() || Flags.isInAlloca()) { 7366 PointerType *Ty = cast<PointerType>(I->getType()); 7367 Type *ElementTy = Ty->getElementType(); 7368 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7369 // For ByVal, alignment should be passed from FE. BE will guess if 7370 // this info is not there but there are cases it cannot get right. 7371 unsigned FrameAlign; 7372 if (F.getParamAlignment(Idx)) 7373 FrameAlign = F.getParamAlignment(Idx); 7374 else 7375 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7376 Flags.setByValAlign(FrameAlign); 7377 } 7378 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7379 Flags.setNest(); 7380 if (NeedsRegBlock) 7381 Flags.setInConsecutiveRegs(); 7382 Flags.setOrigAlign(OriginalAlignment); 7383 7384 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7385 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7386 for (unsigned i = 0; i != NumRegs; ++i) { 7387 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7388 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7389 if (NumRegs > 1 && i == 0) 7390 MyFlags.Flags.setSplit(); 7391 // if it isn't first piece, alignment must be 1 7392 else if (i > 0) 7393 MyFlags.Flags.setOrigAlign(1); 7394 Ins.push_back(MyFlags); 7395 } 7396 if (NeedsRegBlock && Value == NumValues - 1) 7397 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7398 PartBase += VT.getStoreSize(); 7399 } 7400 } 7401 7402 // Call the target to set up the argument values. 7403 SmallVector<SDValue, 8> InVals; 7404 SDValue NewRoot = TLI->LowerFormalArguments( 7405 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7406 7407 // Verify that the target's LowerFormalArguments behaved as expected. 7408 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7409 "LowerFormalArguments didn't return a valid chain!"); 7410 assert(InVals.size() == Ins.size() && 7411 "LowerFormalArguments didn't emit the correct number of values!"); 7412 DEBUG({ 7413 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7414 assert(InVals[i].getNode() && 7415 "LowerFormalArguments emitted a null value!"); 7416 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7417 "LowerFormalArguments emitted a value with the wrong type!"); 7418 } 7419 }); 7420 7421 // Update the DAG with the new chain value resulting from argument lowering. 7422 DAG.setRoot(NewRoot); 7423 7424 // Set up the argument values. 7425 unsigned i = 0; 7426 Idx = 1; 7427 if (!FuncInfo->CanLowerReturn) { 7428 // Create a virtual register for the sret pointer, and put in a copy 7429 // from the sret argument into it. 7430 SmallVector<EVT, 1> ValueVTs; 7431 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7432 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7433 MVT VT = ValueVTs[0].getSimpleVT(); 7434 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7435 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7436 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7437 RegVT, VT, nullptr, AssertOp); 7438 7439 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7440 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7441 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7442 FuncInfo->DemoteRegister = SRetReg; 7443 NewRoot = 7444 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7445 DAG.setRoot(NewRoot); 7446 7447 // i indexes lowered arguments. Bump it past the hidden sret argument. 7448 // Idx indexes LLVM arguments. Don't touch it. 7449 ++i; 7450 } 7451 7452 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7453 ++I, ++Idx) { 7454 SmallVector<SDValue, 4> ArgValues; 7455 SmallVector<EVT, 4> ValueVTs; 7456 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7457 unsigned NumValues = ValueVTs.size(); 7458 7459 // If this argument is unused then remember its value. It is used to generate 7460 // debugging information. 7461 if (I->use_empty() && NumValues) { 7462 SDB->setUnusedArgValue(&*I, InVals[i]); 7463 7464 // Also remember any frame index for use in FastISel. 7465 if (FrameIndexSDNode *FI = 7466 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7467 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7468 } 7469 7470 for (unsigned Val = 0; Val != NumValues; ++Val) { 7471 EVT VT = ValueVTs[Val]; 7472 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7473 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7474 7475 if (!I->use_empty()) { 7476 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7478 AssertOp = ISD::AssertSext; 7479 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7480 AssertOp = ISD::AssertZext; 7481 7482 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7483 NumParts, PartVT, VT, 7484 nullptr, AssertOp)); 7485 } 7486 7487 i += NumParts; 7488 } 7489 7490 // We don't need to do anything else for unused arguments. 7491 if (ArgValues.empty()) 7492 continue; 7493 7494 // Note down frame index. 7495 if (FrameIndexSDNode *FI = 7496 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7497 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7498 7499 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7500 SDB->getCurSDLoc()); 7501 7502 SDB->setValue(&*I, Res); 7503 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7504 if (LoadSDNode *LNode = 7505 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7506 if (FrameIndexSDNode *FI = 7507 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7508 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7509 } 7510 7511 // If this argument is live outside of the entry block, insert a copy from 7512 // wherever we got it to the vreg that other BB's will reference it as. 7513 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7514 // If we can, though, try to skip creating an unnecessary vreg. 7515 // FIXME: This isn't very clean... it would be nice to make this more 7516 // general. It's also subtly incompatible with the hacks FastISel 7517 // uses with vregs. 7518 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7519 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7520 FuncInfo->ValueMap[&*I] = Reg; 7521 continue; 7522 } 7523 } 7524 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7525 FuncInfo->InitializeRegForValue(&*I); 7526 SDB->CopyToExportRegsIfNeeded(&*I); 7527 } 7528 } 7529 7530 assert(i == InVals.size() && "Argument register count mismatch!"); 7531 7532 // Finally, if the target has anything special to do, allow it to do so. 7533 EmitFunctionEntryCode(); 7534 } 7535 7536 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7537 /// ensure constants are generated when needed. Remember the virtual registers 7538 /// that need to be added to the Machine PHI nodes as input. We cannot just 7539 /// directly add them, because expansion might result in multiple MBB's for one 7540 /// BB. As such, the start of the BB might correspond to a different MBB than 7541 /// the end. 7542 /// 7543 void 7544 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7545 const TerminatorInst *TI = LLVMBB->getTerminator(); 7546 7547 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7548 7549 // Check PHI nodes in successors that expect a value to be available from this 7550 // block. 7551 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7552 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7553 if (!isa<PHINode>(SuccBB->begin())) continue; 7554 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7555 7556 // If this terminator has multiple identical successors (common for 7557 // switches), only handle each succ once. 7558 if (!SuccsHandled.insert(SuccMBB).second) 7559 continue; 7560 7561 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7562 7563 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7564 // nodes and Machine PHI nodes, but the incoming operands have not been 7565 // emitted yet. 7566 for (BasicBlock::const_iterator I = SuccBB->begin(); 7567 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7568 // Ignore dead phi's. 7569 if (PN->use_empty()) continue; 7570 7571 // Skip empty types 7572 if (PN->getType()->isEmptyTy()) 7573 continue; 7574 7575 unsigned Reg; 7576 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7577 7578 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7579 unsigned &RegOut = ConstantsOut[C]; 7580 if (RegOut == 0) { 7581 RegOut = FuncInfo.CreateRegs(C->getType()); 7582 CopyValueToVirtualRegister(C, RegOut); 7583 } 7584 Reg = RegOut; 7585 } else { 7586 DenseMap<const Value *, unsigned>::iterator I = 7587 FuncInfo.ValueMap.find(PHIOp); 7588 if (I != FuncInfo.ValueMap.end()) 7589 Reg = I->second; 7590 else { 7591 assert(isa<AllocaInst>(PHIOp) && 7592 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7593 "Didn't codegen value into a register!??"); 7594 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7595 CopyValueToVirtualRegister(PHIOp, Reg); 7596 } 7597 } 7598 7599 // Remember that this register needs to added to the machine PHI node as 7600 // the input for this MBB. 7601 SmallVector<EVT, 4> ValueVTs; 7602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7603 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7604 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7605 EVT VT = ValueVTs[vti]; 7606 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7607 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7608 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7609 Reg += NumRegisters; 7610 } 7611 } 7612 } 7613 7614 ConstantsOut.clear(); 7615 } 7616 7617 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7618 /// is 0. 7619 MachineBasicBlock * 7620 SelectionDAGBuilder::StackProtectorDescriptor:: 7621 AddSuccessorMBB(const BasicBlock *BB, 7622 MachineBasicBlock *ParentMBB, 7623 bool IsLikely, 7624 MachineBasicBlock *SuccMBB) { 7625 // If SuccBB has not been created yet, create it. 7626 if (!SuccMBB) { 7627 MachineFunction *MF = ParentMBB->getParent(); 7628 MachineFunction::iterator BBI(ParentMBB); 7629 SuccMBB = MF->CreateMachineBasicBlock(BB); 7630 MF->insert(++BBI, SuccMBB); 7631 } 7632 // Add it as a successor of ParentMBB. 7633 ParentMBB->addSuccessor( 7634 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7635 return SuccMBB; 7636 } 7637 7638 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7639 MachineFunction::iterator I(MBB); 7640 if (++I == FuncInfo.MF->end()) 7641 return nullptr; 7642 return &*I; 7643 } 7644 7645 /// During lowering new call nodes can be created (such as memset, etc.). 7646 /// Those will become new roots of the current DAG, but complications arise 7647 /// when they are tail calls. In such cases, the call lowering will update 7648 /// the root, but the builder still needs to know that a tail call has been 7649 /// lowered in order to avoid generating an additional return. 7650 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7651 // If the node is null, we do have a tail call. 7652 if (MaybeTC.getNode() != nullptr) 7653 DAG.setRoot(MaybeTC); 7654 else 7655 HasTailCall = true; 7656 } 7657 7658 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7659 unsigned *TotalCases, unsigned First, 7660 unsigned Last) { 7661 assert(Last >= First); 7662 assert(TotalCases[Last] >= TotalCases[First]); 7663 7664 APInt LowCase = Clusters[First].Low->getValue(); 7665 APInt HighCase = Clusters[Last].High->getValue(); 7666 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7667 7668 // FIXME: A range of consecutive cases has 100% density, but only requires one 7669 // comparison to lower. We should discriminate against such consecutive ranges 7670 // in jump tables. 7671 7672 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7673 uint64_t Range = Diff + 1; 7674 7675 uint64_t NumCases = 7676 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7677 7678 assert(NumCases < UINT64_MAX / 100); 7679 assert(Range >= NumCases); 7680 7681 return NumCases * 100 >= Range * MinJumpTableDensity; 7682 } 7683 7684 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7685 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7686 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7687 } 7688 7689 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7690 unsigned First, unsigned Last, 7691 const SwitchInst *SI, 7692 MachineBasicBlock *DefaultMBB, 7693 CaseCluster &JTCluster) { 7694 assert(First <= Last); 7695 7696 uint32_t Weight = 0; 7697 unsigned NumCmps = 0; 7698 std::vector<MachineBasicBlock*> Table; 7699 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7700 for (unsigned I = First; I <= Last; ++I) { 7701 assert(Clusters[I].Kind == CC_Range); 7702 Weight += Clusters[I].Weight; 7703 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7704 APInt Low = Clusters[I].Low->getValue(); 7705 APInt High = Clusters[I].High->getValue(); 7706 NumCmps += (Low == High) ? 1 : 2; 7707 if (I != First) { 7708 // Fill the gap between this and the previous cluster. 7709 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7710 assert(PreviousHigh.slt(Low)); 7711 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7712 for (uint64_t J = 0; J < Gap; J++) 7713 Table.push_back(DefaultMBB); 7714 } 7715 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7716 for (uint64_t J = 0; J < ClusterSize; ++J) 7717 Table.push_back(Clusters[I].MBB); 7718 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7719 } 7720 7721 unsigned NumDests = JTWeights.size(); 7722 if (isSuitableForBitTests(NumDests, NumCmps, 7723 Clusters[First].Low->getValue(), 7724 Clusters[Last].High->getValue())) { 7725 // Clusters[First..Last] should be lowered as bit tests instead. 7726 return false; 7727 } 7728 7729 // Create the MBB that will load from and jump through the table. 7730 // Note: We create it here, but it's not inserted into the function yet. 7731 MachineFunction *CurMF = FuncInfo.MF; 7732 MachineBasicBlock *JumpTableMBB = 7733 CurMF->CreateMachineBasicBlock(SI->getParent()); 7734 7735 // Add successors. Note: use table order for determinism. 7736 SmallPtrSet<MachineBasicBlock *, 8> Done; 7737 for (MachineBasicBlock *Succ : Table) { 7738 if (Done.count(Succ)) 7739 continue; 7740 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7741 Done.insert(Succ); 7742 } 7743 7744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7745 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7746 ->createJumpTableIndex(Table); 7747 7748 // Set up the jump table info. 7749 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7750 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7751 Clusters[Last].High->getValue(), SI->getCondition(), 7752 nullptr, false); 7753 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7754 7755 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7756 JTCases.size() - 1, Weight); 7757 return true; 7758 } 7759 7760 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7761 const SwitchInst *SI, 7762 MachineBasicBlock *DefaultMBB) { 7763 #ifndef NDEBUG 7764 // Clusters must be non-empty, sorted, and only contain Range clusters. 7765 assert(!Clusters.empty()); 7766 for (CaseCluster &C : Clusters) 7767 assert(C.Kind == CC_Range); 7768 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7769 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7770 #endif 7771 7772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7773 if (!areJTsAllowed(TLI)) 7774 return; 7775 7776 const int64_t N = Clusters.size(); 7777 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7778 7779 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7780 SmallVector<unsigned, 8> TotalCases(N); 7781 7782 for (unsigned i = 0; i < N; ++i) { 7783 APInt Hi = Clusters[i].High->getValue(); 7784 APInt Lo = Clusters[i].Low->getValue(); 7785 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7786 if (i != 0) 7787 TotalCases[i] += TotalCases[i - 1]; 7788 } 7789 7790 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7791 // Cheap case: the whole range might be suitable for jump table. 7792 CaseCluster JTCluster; 7793 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7794 Clusters[0] = JTCluster; 7795 Clusters.resize(1); 7796 return; 7797 } 7798 } 7799 7800 // The algorithm below is not suitable for -O0. 7801 if (TM.getOptLevel() == CodeGenOpt::None) 7802 return; 7803 7804 // Split Clusters into minimum number of dense partitions. The algorithm uses 7805 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7806 // for the Case Statement'" (1994), but builds the MinPartitions array in 7807 // reverse order to make it easier to reconstruct the partitions in ascending 7808 // order. In the choice between two optimal partitionings, it picks the one 7809 // which yields more jump tables. 7810 7811 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7812 SmallVector<unsigned, 8> MinPartitions(N); 7813 // LastElement[i] is the last element of the partition starting at i. 7814 SmallVector<unsigned, 8> LastElement(N); 7815 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7816 SmallVector<unsigned, 8> NumTables(N); 7817 7818 // Base case: There is only one way to partition Clusters[N-1]. 7819 MinPartitions[N - 1] = 1; 7820 LastElement[N - 1] = N - 1; 7821 assert(MinJumpTableSize > 1); 7822 NumTables[N - 1] = 0; 7823 7824 // Note: loop indexes are signed to avoid underflow. 7825 for (int64_t i = N - 2; i >= 0; i--) { 7826 // Find optimal partitioning of Clusters[i..N-1]. 7827 // Baseline: Put Clusters[i] into a partition on its own. 7828 MinPartitions[i] = MinPartitions[i + 1] + 1; 7829 LastElement[i] = i; 7830 NumTables[i] = NumTables[i + 1]; 7831 7832 // Search for a solution that results in fewer partitions. 7833 for (int64_t j = N - 1; j > i; j--) { 7834 // Try building a partition from Clusters[i..j]. 7835 if (isDense(Clusters, &TotalCases[0], i, j)) { 7836 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7837 bool IsTable = j - i + 1 >= MinJumpTableSize; 7838 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7839 7840 // If this j leads to fewer partitions, or same number of partitions 7841 // with more lookup tables, it is a better partitioning. 7842 if (NumPartitions < MinPartitions[i] || 7843 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7844 MinPartitions[i] = NumPartitions; 7845 LastElement[i] = j; 7846 NumTables[i] = Tables; 7847 } 7848 } 7849 } 7850 } 7851 7852 // Iterate over the partitions, replacing some with jump tables in-place. 7853 unsigned DstIndex = 0; 7854 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7855 Last = LastElement[First]; 7856 assert(Last >= First); 7857 assert(DstIndex <= First); 7858 unsigned NumClusters = Last - First + 1; 7859 7860 CaseCluster JTCluster; 7861 if (NumClusters >= MinJumpTableSize && 7862 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7863 Clusters[DstIndex++] = JTCluster; 7864 } else { 7865 for (unsigned I = First; I <= Last; ++I) 7866 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7867 } 7868 } 7869 Clusters.resize(DstIndex); 7870 } 7871 7872 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7873 // FIXME: Using the pointer type doesn't seem ideal. 7874 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7875 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7876 return Range <= BW; 7877 } 7878 7879 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7880 unsigned NumCmps, 7881 const APInt &Low, 7882 const APInt &High) { 7883 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7884 // range of cases both require only one branch to lower. Just looking at the 7885 // number of clusters and destinations should be enough to decide whether to 7886 // build bit tests. 7887 7888 // To lower a range with bit tests, the range must fit the bitwidth of a 7889 // machine word. 7890 if (!rangeFitsInWord(Low, High)) 7891 return false; 7892 7893 // Decide whether it's profitable to lower this range with bit tests. Each 7894 // destination requires a bit test and branch, and there is an overall range 7895 // check branch. For a small number of clusters, separate comparisons might be 7896 // cheaper, and for many destinations, splitting the range might be better. 7897 return (NumDests == 1 && NumCmps >= 3) || 7898 (NumDests == 2 && NumCmps >= 5) || 7899 (NumDests == 3 && NumCmps >= 6); 7900 } 7901 7902 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7903 unsigned First, unsigned Last, 7904 const SwitchInst *SI, 7905 CaseCluster &BTCluster) { 7906 assert(First <= Last); 7907 if (First == Last) 7908 return false; 7909 7910 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7911 unsigned NumCmps = 0; 7912 for (int64_t I = First; I <= Last; ++I) { 7913 assert(Clusters[I].Kind == CC_Range); 7914 Dests.set(Clusters[I].MBB->getNumber()); 7915 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7916 } 7917 unsigned NumDests = Dests.count(); 7918 7919 APInt Low = Clusters[First].Low->getValue(); 7920 APInt High = Clusters[Last].High->getValue(); 7921 assert(Low.slt(High)); 7922 7923 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7924 return false; 7925 7926 APInt LowBound; 7927 APInt CmpRange; 7928 7929 const int BitWidth = DAG.getTargetLoweringInfo() 7930 .getPointerTy(DAG.getDataLayout()) 7931 .getSizeInBits(); 7932 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7933 7934 // Check if the clusters cover a contiguous range such that no value in the 7935 // range will jump to the default statement. 7936 bool ContiguousRange = true; 7937 for (int64_t I = First + 1; I <= Last; ++I) { 7938 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7939 ContiguousRange = false; 7940 break; 7941 } 7942 } 7943 7944 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7945 // Optimize the case where all the case values fit in a word without having 7946 // to subtract minValue. In this case, we can optimize away the subtraction. 7947 LowBound = APInt::getNullValue(Low.getBitWidth()); 7948 CmpRange = High; 7949 ContiguousRange = false; 7950 } else { 7951 LowBound = Low; 7952 CmpRange = High - Low; 7953 } 7954 7955 CaseBitsVector CBV; 7956 uint32_t TotalWeight = 0; 7957 for (unsigned i = First; i <= Last; ++i) { 7958 // Find the CaseBits for this destination. 7959 unsigned j; 7960 for (j = 0; j < CBV.size(); ++j) 7961 if (CBV[j].BB == Clusters[i].MBB) 7962 break; 7963 if (j == CBV.size()) 7964 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7965 CaseBits *CB = &CBV[j]; 7966 7967 // Update Mask, Bits and ExtraWeight. 7968 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7969 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7970 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7971 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7972 CB->Bits += Hi - Lo + 1; 7973 CB->ExtraWeight += Clusters[i].Weight; 7974 TotalWeight += Clusters[i].Weight; 7975 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7976 } 7977 7978 BitTestInfo BTI; 7979 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7980 // Sort by weight first, number of bits second. 7981 if (a.ExtraWeight != b.ExtraWeight) 7982 return a.ExtraWeight > b.ExtraWeight; 7983 return a.Bits > b.Bits; 7984 }); 7985 7986 for (auto &CB : CBV) { 7987 MachineBasicBlock *BitTestBB = 7988 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7989 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7990 } 7991 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7992 SI->getCondition(), -1U, MVT::Other, false, 7993 ContiguousRange, nullptr, nullptr, std::move(BTI), 7994 TotalWeight); 7995 7996 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7997 BitTestCases.size() - 1, TotalWeight); 7998 return true; 7999 } 8000 8001 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8002 const SwitchInst *SI) { 8003 // Partition Clusters into as few subsets as possible, where each subset has a 8004 // range that fits in a machine word and has <= 3 unique destinations. 8005 8006 #ifndef NDEBUG 8007 // Clusters must be sorted and contain Range or JumpTable clusters. 8008 assert(!Clusters.empty()); 8009 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8010 for (const CaseCluster &C : Clusters) 8011 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8012 for (unsigned i = 1; i < Clusters.size(); ++i) 8013 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8014 #endif 8015 8016 // The algorithm below is not suitable for -O0. 8017 if (TM.getOptLevel() == CodeGenOpt::None) 8018 return; 8019 8020 // If target does not have legal shift left, do not emit bit tests at all. 8021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8022 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8023 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8024 return; 8025 8026 int BitWidth = PTy.getSizeInBits(); 8027 const int64_t N = Clusters.size(); 8028 8029 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8030 SmallVector<unsigned, 8> MinPartitions(N); 8031 // LastElement[i] is the last element of the partition starting at i. 8032 SmallVector<unsigned, 8> LastElement(N); 8033 8034 // FIXME: This might not be the best algorithm for finding bit test clusters. 8035 8036 // Base case: There is only one way to partition Clusters[N-1]. 8037 MinPartitions[N - 1] = 1; 8038 LastElement[N - 1] = N - 1; 8039 8040 // Note: loop indexes are signed to avoid underflow. 8041 for (int64_t i = N - 2; i >= 0; --i) { 8042 // Find optimal partitioning of Clusters[i..N-1]. 8043 // Baseline: Put Clusters[i] into a partition on its own. 8044 MinPartitions[i] = MinPartitions[i + 1] + 1; 8045 LastElement[i] = i; 8046 8047 // Search for a solution that results in fewer partitions. 8048 // Note: the search is limited by BitWidth, reducing time complexity. 8049 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8050 // Try building a partition from Clusters[i..j]. 8051 8052 // Check the range. 8053 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8054 Clusters[j].High->getValue())) 8055 continue; 8056 8057 // Check nbr of destinations and cluster types. 8058 // FIXME: This works, but doesn't seem very efficient. 8059 bool RangesOnly = true; 8060 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8061 for (int64_t k = i; k <= j; k++) { 8062 if (Clusters[k].Kind != CC_Range) { 8063 RangesOnly = false; 8064 break; 8065 } 8066 Dests.set(Clusters[k].MBB->getNumber()); 8067 } 8068 if (!RangesOnly || Dests.count() > 3) 8069 break; 8070 8071 // Check if it's a better partition. 8072 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8073 if (NumPartitions < MinPartitions[i]) { 8074 // Found a better partition. 8075 MinPartitions[i] = NumPartitions; 8076 LastElement[i] = j; 8077 } 8078 } 8079 } 8080 8081 // Iterate over the partitions, replacing with bit-test clusters in-place. 8082 unsigned DstIndex = 0; 8083 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8084 Last = LastElement[First]; 8085 assert(First <= Last); 8086 assert(DstIndex <= First); 8087 8088 CaseCluster BitTestCluster; 8089 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8090 Clusters[DstIndex++] = BitTestCluster; 8091 } else { 8092 size_t NumClusters = Last - First + 1; 8093 std::memmove(&Clusters[DstIndex], &Clusters[First], 8094 sizeof(Clusters[0]) * NumClusters); 8095 DstIndex += NumClusters; 8096 } 8097 } 8098 Clusters.resize(DstIndex); 8099 } 8100 8101 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8102 MachineBasicBlock *SwitchMBB, 8103 MachineBasicBlock *DefaultMBB) { 8104 MachineFunction *CurMF = FuncInfo.MF; 8105 MachineBasicBlock *NextMBB = nullptr; 8106 MachineFunction::iterator BBI(W.MBB); 8107 if (++BBI != FuncInfo.MF->end()) 8108 NextMBB = &*BBI; 8109 8110 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8111 8112 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8113 8114 if (Size == 2 && W.MBB == SwitchMBB) { 8115 // If any two of the cases has the same destination, and if one value 8116 // is the same as the other, but has one bit unset that the other has set, 8117 // use bit manipulation to do two compares at once. For example: 8118 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8119 // TODO: This could be extended to merge any 2 cases in switches with 3 8120 // cases. 8121 // TODO: Handle cases where W.CaseBB != SwitchBB. 8122 CaseCluster &Small = *W.FirstCluster; 8123 CaseCluster &Big = *W.LastCluster; 8124 8125 if (Small.Low == Small.High && Big.Low == Big.High && 8126 Small.MBB == Big.MBB) { 8127 const APInt &SmallValue = Small.Low->getValue(); 8128 const APInt &BigValue = Big.Low->getValue(); 8129 8130 // Check that there is only one bit different. 8131 APInt CommonBit = BigValue ^ SmallValue; 8132 if (CommonBit.isPowerOf2()) { 8133 SDValue CondLHS = getValue(Cond); 8134 EVT VT = CondLHS.getValueType(); 8135 SDLoc DL = getCurSDLoc(); 8136 8137 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8138 DAG.getConstant(CommonBit, DL, VT)); 8139 SDValue Cond = DAG.getSetCC( 8140 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8141 ISD::SETEQ); 8142 8143 // Update successor info. 8144 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8145 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8146 addSuccessorWithWeight( 8147 SwitchMBB, DefaultMBB, 8148 // The default destination is the first successor in IR. 8149 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8150 : 0); 8151 8152 // Insert the true branch. 8153 SDValue BrCond = 8154 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8155 DAG.getBasicBlock(Small.MBB)); 8156 // Insert the false branch. 8157 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8158 DAG.getBasicBlock(DefaultMBB)); 8159 8160 DAG.setRoot(BrCond); 8161 return; 8162 } 8163 } 8164 } 8165 8166 if (TM.getOptLevel() != CodeGenOpt::None) { 8167 // Order cases by weight so the most likely case will be checked first. 8168 std::sort(W.FirstCluster, W.LastCluster + 1, 8169 [](const CaseCluster &a, const CaseCluster &b) { 8170 return a.Weight > b.Weight; 8171 }); 8172 8173 // Rearrange the case blocks so that the last one falls through if possible 8174 // without without changing the order of weights. 8175 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8176 --I; 8177 if (I->Weight > W.LastCluster->Weight) 8178 break; 8179 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8180 std::swap(*I, *W.LastCluster); 8181 break; 8182 } 8183 } 8184 } 8185 8186 // Compute total weight. 8187 uint32_t DefaultWeight = W.DefaultWeight; 8188 uint32_t UnhandledWeights = DefaultWeight; 8189 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8190 UnhandledWeights += I->Weight; 8191 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8192 } 8193 8194 MachineBasicBlock *CurMBB = W.MBB; 8195 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8196 MachineBasicBlock *Fallthrough; 8197 if (I == W.LastCluster) { 8198 // For the last cluster, fall through to the default destination. 8199 Fallthrough = DefaultMBB; 8200 } else { 8201 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8202 CurMF->insert(BBI, Fallthrough); 8203 // Put Cond in a virtual register to make it available from the new blocks. 8204 ExportFromCurrentBlock(Cond); 8205 } 8206 UnhandledWeights -= I->Weight; 8207 8208 switch (I->Kind) { 8209 case CC_JumpTable: { 8210 // FIXME: Optimize away range check based on pivot comparisons. 8211 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8212 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8213 8214 // The jump block hasn't been inserted yet; insert it here. 8215 MachineBasicBlock *JumpMBB = JT->MBB; 8216 CurMF->insert(BBI, JumpMBB); 8217 8218 uint32_t JumpWeight = I->Weight; 8219 uint32_t FallthroughWeight = UnhandledWeights; 8220 8221 // If the default statement is a target of the jump table, we evenly 8222 // distribute the default weight to successors of CurMBB. Also update 8223 // the weight on the edge from JumpMBB to Fallthrough. 8224 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8225 SE = JumpMBB->succ_end(); 8226 SI != SE; ++SI) { 8227 if (*SI == DefaultMBB) { 8228 JumpWeight += DefaultWeight / 2; 8229 FallthroughWeight -= DefaultWeight / 2; 8230 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8231 break; 8232 } 8233 } 8234 8235 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8236 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8237 8238 // The jump table header will be inserted in our current block, do the 8239 // range check, and fall through to our fallthrough block. 8240 JTH->HeaderBB = CurMBB; 8241 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8242 8243 // If we're in the right place, emit the jump table header right now. 8244 if (CurMBB == SwitchMBB) { 8245 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8246 JTH->Emitted = true; 8247 } 8248 break; 8249 } 8250 case CC_BitTests: { 8251 // FIXME: Optimize away range check based on pivot comparisons. 8252 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8253 8254 // The bit test blocks haven't been inserted yet; insert them here. 8255 for (BitTestCase &BTC : BTB->Cases) 8256 CurMF->insert(BBI, BTC.ThisBB); 8257 8258 // Fill in fields of the BitTestBlock. 8259 BTB->Parent = CurMBB; 8260 BTB->Default = Fallthrough; 8261 8262 BTB->DefaultWeight = UnhandledWeights; 8263 // If the cases in bit test don't form a contiguous range, we evenly 8264 // distribute the weight on the edge to Fallthrough to two successors 8265 // of CurMBB. 8266 if (!BTB->ContiguousRange) { 8267 BTB->Weight += DefaultWeight / 2; 8268 BTB->DefaultWeight -= DefaultWeight / 2; 8269 } 8270 8271 // If we're in the right place, emit the bit test header right now. 8272 if (CurMBB == SwitchMBB) { 8273 visitBitTestHeader(*BTB, SwitchMBB); 8274 BTB->Emitted = true; 8275 } 8276 break; 8277 } 8278 case CC_Range: { 8279 const Value *RHS, *LHS, *MHS; 8280 ISD::CondCode CC; 8281 if (I->Low == I->High) { 8282 // Check Cond == I->Low. 8283 CC = ISD::SETEQ; 8284 LHS = Cond; 8285 RHS=I->Low; 8286 MHS = nullptr; 8287 } else { 8288 // Check I->Low <= Cond <= I->High. 8289 CC = ISD::SETLE; 8290 LHS = I->Low; 8291 MHS = Cond; 8292 RHS = I->High; 8293 } 8294 8295 // The false weight is the sum of all unhandled cases. 8296 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8297 UnhandledWeights); 8298 8299 if (CurMBB == SwitchMBB) 8300 visitSwitchCase(CB, SwitchMBB); 8301 else 8302 SwitchCases.push_back(CB); 8303 8304 break; 8305 } 8306 } 8307 CurMBB = Fallthrough; 8308 } 8309 } 8310 8311 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8312 CaseClusterIt First, 8313 CaseClusterIt Last) { 8314 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8315 if (X.Weight != CC.Weight) 8316 return X.Weight > CC.Weight; 8317 8318 // Ties are broken by comparing the case value. 8319 return X.Low->getValue().slt(CC.Low->getValue()); 8320 }); 8321 } 8322 8323 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8324 const SwitchWorkListItem &W, 8325 Value *Cond, 8326 MachineBasicBlock *SwitchMBB) { 8327 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8328 "Clusters not sorted?"); 8329 8330 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8331 8332 // Balance the tree based on branch weights to create a near-optimal (in terms 8333 // of search time given key frequency) binary search tree. See e.g. Kurt 8334 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8335 CaseClusterIt LastLeft = W.FirstCluster; 8336 CaseClusterIt FirstRight = W.LastCluster; 8337 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8338 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8339 8340 // Move LastLeft and FirstRight towards each other from opposite directions to 8341 // find a partitioning of the clusters which balances the weight on both 8342 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8343 // taken to ensure 0-weight nodes are distributed evenly. 8344 unsigned I = 0; 8345 while (LastLeft + 1 < FirstRight) { 8346 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8347 LeftWeight += (++LastLeft)->Weight; 8348 else 8349 RightWeight += (--FirstRight)->Weight; 8350 I++; 8351 } 8352 8353 for (;;) { 8354 // Our binary search tree differs from a typical BST in that ours can have up 8355 // to three values in each leaf. The pivot selection above doesn't take that 8356 // into account, which means the tree might require more nodes and be less 8357 // efficient. We compensate for this here. 8358 8359 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8360 unsigned NumRight = W.LastCluster - FirstRight + 1; 8361 8362 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8363 // If one side has less than 3 clusters, and the other has more than 3, 8364 // consider taking a cluster from the other side. 8365 8366 if (NumLeft < NumRight) { 8367 // Consider moving the first cluster on the right to the left side. 8368 CaseCluster &CC = *FirstRight; 8369 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8370 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8371 if (LeftSideRank <= RightSideRank) { 8372 // Moving the cluster to the left does not demote it. 8373 ++LastLeft; 8374 ++FirstRight; 8375 continue; 8376 } 8377 } else { 8378 assert(NumRight < NumLeft); 8379 // Consider moving the last element on the left to the right side. 8380 CaseCluster &CC = *LastLeft; 8381 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8382 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8383 if (RightSideRank <= LeftSideRank) { 8384 // Moving the cluster to the right does not demot it. 8385 --LastLeft; 8386 --FirstRight; 8387 continue; 8388 } 8389 } 8390 } 8391 break; 8392 } 8393 8394 assert(LastLeft + 1 == FirstRight); 8395 assert(LastLeft >= W.FirstCluster); 8396 assert(FirstRight <= W.LastCluster); 8397 8398 // Use the first element on the right as pivot since we will make less-than 8399 // comparisons against it. 8400 CaseClusterIt PivotCluster = FirstRight; 8401 assert(PivotCluster > W.FirstCluster); 8402 assert(PivotCluster <= W.LastCluster); 8403 8404 CaseClusterIt FirstLeft = W.FirstCluster; 8405 CaseClusterIt LastRight = W.LastCluster; 8406 8407 const ConstantInt *Pivot = PivotCluster->Low; 8408 8409 // New blocks will be inserted immediately after the current one. 8410 MachineFunction::iterator BBI(W.MBB); 8411 ++BBI; 8412 8413 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8414 // we can branch to its destination directly if it's squeezed exactly in 8415 // between the known lower bound and Pivot - 1. 8416 MachineBasicBlock *LeftMBB; 8417 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8418 FirstLeft->Low == W.GE && 8419 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8420 LeftMBB = FirstLeft->MBB; 8421 } else { 8422 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8423 FuncInfo.MF->insert(BBI, LeftMBB); 8424 WorkList.push_back( 8425 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8426 // Put Cond in a virtual register to make it available from the new blocks. 8427 ExportFromCurrentBlock(Cond); 8428 } 8429 8430 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8431 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8432 // directly if RHS.High equals the current upper bound. 8433 MachineBasicBlock *RightMBB; 8434 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8435 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8436 RightMBB = FirstRight->MBB; 8437 } else { 8438 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8439 FuncInfo.MF->insert(BBI, RightMBB); 8440 WorkList.push_back( 8441 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8442 // Put Cond in a virtual register to make it available from the new blocks. 8443 ExportFromCurrentBlock(Cond); 8444 } 8445 8446 // Create the CaseBlock record that will be used to lower the branch. 8447 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8448 LeftWeight, RightWeight); 8449 8450 if (W.MBB == SwitchMBB) 8451 visitSwitchCase(CB, SwitchMBB); 8452 else 8453 SwitchCases.push_back(CB); 8454 } 8455 8456 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8457 // Extract cases from the switch. 8458 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8459 CaseClusterVector Clusters; 8460 Clusters.reserve(SI.getNumCases()); 8461 for (auto I : SI.cases()) { 8462 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8463 const ConstantInt *CaseVal = I.getCaseValue(); 8464 uint32_t Weight = 8465 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8466 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8467 } 8468 8469 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8470 8471 // Cluster adjacent cases with the same destination. We do this at all 8472 // optimization levels because it's cheap to do and will make codegen faster 8473 // if there are many clusters. 8474 sortAndRangeify(Clusters); 8475 8476 if (TM.getOptLevel() != CodeGenOpt::None) { 8477 // Replace an unreachable default with the most popular destination. 8478 // FIXME: Exploit unreachable default more aggressively. 8479 bool UnreachableDefault = 8480 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8481 if (UnreachableDefault && !Clusters.empty()) { 8482 DenseMap<const BasicBlock *, unsigned> Popularity; 8483 unsigned MaxPop = 0; 8484 const BasicBlock *MaxBB = nullptr; 8485 for (auto I : SI.cases()) { 8486 const BasicBlock *BB = I.getCaseSuccessor(); 8487 if (++Popularity[BB] > MaxPop) { 8488 MaxPop = Popularity[BB]; 8489 MaxBB = BB; 8490 } 8491 } 8492 // Set new default. 8493 assert(MaxPop > 0 && MaxBB); 8494 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8495 8496 // Remove cases that were pointing to the destination that is now the 8497 // default. 8498 CaseClusterVector New; 8499 New.reserve(Clusters.size()); 8500 for (CaseCluster &CC : Clusters) { 8501 if (CC.MBB != DefaultMBB) 8502 New.push_back(CC); 8503 } 8504 Clusters = std::move(New); 8505 } 8506 } 8507 8508 // If there is only the default destination, jump there directly. 8509 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8510 if (Clusters.empty()) { 8511 SwitchMBB->addSuccessor(DefaultMBB); 8512 if (DefaultMBB != NextBlock(SwitchMBB)) { 8513 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8514 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8515 } 8516 return; 8517 } 8518 8519 findJumpTables(Clusters, &SI, DefaultMBB); 8520 findBitTestClusters(Clusters, &SI); 8521 8522 DEBUG({ 8523 dbgs() << "Case clusters: "; 8524 for (const CaseCluster &C : Clusters) { 8525 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8526 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8527 8528 C.Low->getValue().print(dbgs(), true); 8529 if (C.Low != C.High) { 8530 dbgs() << '-'; 8531 C.High->getValue().print(dbgs(), true); 8532 } 8533 dbgs() << ' '; 8534 } 8535 dbgs() << '\n'; 8536 }); 8537 8538 assert(!Clusters.empty()); 8539 SwitchWorkList WorkList; 8540 CaseClusterIt First = Clusters.begin(); 8541 CaseClusterIt Last = Clusters.end() - 1; 8542 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8543 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8544 8545 while (!WorkList.empty()) { 8546 SwitchWorkListItem W = WorkList.back(); 8547 WorkList.pop_back(); 8548 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8549 8550 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8551 // For optimized builds, lower large range as a balanced binary tree. 8552 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8553 continue; 8554 } 8555 8556 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8557 } 8558 } 8559