1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 else if (!Regs.empty() && 792 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 793 // Put the register class of the virtual registers in the flag word. That 794 // way, later passes can recompute register class constraints for inline 795 // assembly as well as normal instructions. 796 // Don't do this for tied operands that can use the regclass information 797 // from the def. 798 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 799 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 800 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 801 } 802 803 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 804 Ops.push_back(Res); 805 806 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 807 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 808 EVT RegisterVT = RegVTs[Value]; 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 811 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 812 } 813 } 814 } 815 816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 817 const TargetLibraryInfo *li) { 818 AA = &aa; 819 GFI = gfi; 820 LibInfo = li; 821 TD = DAG.getTarget().getTargetData(); 822 LPadToCallSiteMap.clear(); 823 } 824 825 /// clear - Clear out the current SelectionDAG and the associated 826 /// state and prepare this SelectionDAGBuilder object to be used 827 /// for a new block. This doesn't clear out information about 828 /// additional blocks that are needed to complete switch lowering 829 /// or PHI node updating; that information is cleared out as it is 830 /// consumed. 831 void SelectionDAGBuilder::clear() { 832 NodeMap.clear(); 833 UnusedArgNodeMap.clear(); 834 PendingLoads.clear(); 835 PendingExports.clear(); 836 CurDebugLoc = DebugLoc(); 837 HasTailCall = false; 838 } 839 840 /// clearDanglingDebugInfo - Clear the dangling debug information 841 /// map. This function is seperated from the clear so that debug 842 /// information that is dangling in a basic block can be properly 843 /// resolved in a different basic block. This allows the 844 /// SelectionDAG to resolve dangling debug information attached 845 /// to PHI nodes. 846 void SelectionDAGBuilder::clearDanglingDebugInfo() { 847 DanglingDebugInfoMap.clear(); 848 } 849 850 /// getRoot - Return the current virtual root of the Selection DAG, 851 /// flushing any PendingLoad items. This must be done before emitting 852 /// a store or any other node that may need to be ordered after any 853 /// prior load instructions. 854 /// 855 SDValue SelectionDAGBuilder::getRoot() { 856 if (PendingLoads.empty()) 857 return DAG.getRoot(); 858 859 if (PendingLoads.size() == 1) { 860 SDValue Root = PendingLoads[0]; 861 DAG.setRoot(Root); 862 PendingLoads.clear(); 863 return Root; 864 } 865 866 // Otherwise, we have to make a token factor node. 867 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 868 &PendingLoads[0], PendingLoads.size()); 869 PendingLoads.clear(); 870 DAG.setRoot(Root); 871 return Root; 872 } 873 874 /// getControlRoot - Similar to getRoot, but instead of flushing all the 875 /// PendingLoad items, flush all the PendingExports items. It is necessary 876 /// to do this before emitting a terminator instruction. 877 /// 878 SDValue SelectionDAGBuilder::getControlRoot() { 879 SDValue Root = DAG.getRoot(); 880 881 if (PendingExports.empty()) 882 return Root; 883 884 // Turn all of the CopyToReg chains into one factored node. 885 if (Root.getOpcode() != ISD::EntryToken) { 886 unsigned i = 0, e = PendingExports.size(); 887 for (; i != e; ++i) { 888 assert(PendingExports[i].getNode()->getNumOperands() > 1); 889 if (PendingExports[i].getNode()->getOperand(0) == Root) 890 break; // Don't add the root if we already indirectly depend on it. 891 } 892 893 if (i == e) 894 PendingExports.push_back(Root); 895 } 896 897 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 898 &PendingExports[0], 899 PendingExports.size()); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 906 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 907 DAG.AssignOrdering(Node, SDNodeOrder); 908 909 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 910 AssignOrderingToNode(Node->getOperand(I).getNode()); 911 } 912 913 void SelectionDAGBuilder::visit(const Instruction &I) { 914 // Set up outgoing PHI node register values before emitting the terminator. 915 if (isa<TerminatorInst>(&I)) 916 HandlePHINodesInSuccessorBlocks(I.getParent()); 917 918 CurDebugLoc = I.getDebugLoc(); 919 920 visit(I.getOpcode(), I); 921 922 if (!isa<TerminatorInst>(&I) && !HasTailCall) 923 CopyToExportRegsIfNeeded(&I); 924 925 CurDebugLoc = DebugLoc(); 926 } 927 928 void SelectionDAGBuilder::visitPHI(const PHINode &) { 929 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 930 } 931 932 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 933 // Note: this doesn't use InstVisitor, because it has to work with 934 // ConstantExpr's in addition to instructions. 935 switch (Opcode) { 936 default: llvm_unreachable("Unknown instruction type encountered!"); 937 // Build the switch statement using the Instruction.def file. 938 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 939 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 940 #include "llvm/Instruction.def" 941 } 942 943 // Assign the ordering to the freshly created DAG nodes. 944 if (NodeMap.count(&I)) { 945 ++SDNodeOrder; 946 AssignOrderingToNode(getValue(&I).getNode()); 947 } 948 } 949 950 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 951 // generate the debug data structures now that we've seen its definition. 952 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 953 SDValue Val) { 954 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 955 if (DDI.getDI()) { 956 const DbgValueInst *DI = DDI.getDI(); 957 DebugLoc dl = DDI.getdl(); 958 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 959 MDNode *Variable = DI->getVariable(); 960 uint64_t Offset = DI->getOffset(); 961 SDDbgValue *SDV; 962 if (Val.getNode()) { 963 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 964 SDV = DAG.getDbgValue(Variable, Val.getNode(), 965 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 966 DAG.AddDbgValue(SDV, Val.getNode(), false); 967 } 968 } else 969 DEBUG(dbgs() << "Dropping debug info for " << DI); 970 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 971 } 972 } 973 974 /// getValue - Return an SDValue for the given Value. 975 SDValue SelectionDAGBuilder::getValue(const Value *V) { 976 // If we already have an SDValue for this value, use it. It's important 977 // to do this first, so that we don't create a CopyFromReg if we already 978 // have a regular SDValue. 979 SDValue &N = NodeMap[V]; 980 if (N.getNode()) return N; 981 982 // If there's a virtual register allocated and initialized for this 983 // value, use it. 984 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 985 if (It != FuncInfo.ValueMap.end()) { 986 unsigned InReg = It->second; 987 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 988 SDValue Chain = DAG.getEntryNode(); 989 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 990 resolveDanglingDebugInfo(V, N); 991 return N; 992 } 993 994 // Otherwise create a new SDValue and remember it. 995 SDValue Val = getValueImpl(V); 996 NodeMap[V] = Val; 997 resolveDanglingDebugInfo(V, Val); 998 return Val; 999 } 1000 1001 /// getNonRegisterValue - Return an SDValue for the given Value, but 1002 /// don't look in FuncInfo.ValueMap for a virtual register. 1003 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1004 // If we already have an SDValue for this value, use it. 1005 SDValue &N = NodeMap[V]; 1006 if (N.getNode()) return N; 1007 1008 // Otherwise create a new SDValue and remember it. 1009 SDValue Val = getValueImpl(V); 1010 NodeMap[V] = Val; 1011 resolveDanglingDebugInfo(V, Val); 1012 return Val; 1013 } 1014 1015 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1016 /// Create an SDValue for the given value. 1017 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1018 if (const Constant *C = dyn_cast<Constant>(V)) { 1019 EVT VT = TLI.getValueType(V->getType(), true); 1020 1021 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1022 return DAG.getConstant(*CI, VT); 1023 1024 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1025 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1026 1027 if (isa<ConstantPointerNull>(C)) 1028 return DAG.getConstant(0, TLI.getPointerTy()); 1029 1030 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1031 return DAG.getConstantFP(*CFP, VT); 1032 1033 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1034 return DAG.getUNDEF(VT); 1035 1036 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1037 visit(CE->getOpcode(), *CE); 1038 SDValue N1 = NodeMap[V]; 1039 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1040 return N1; 1041 } 1042 1043 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1044 SmallVector<SDValue, 4> Constants; 1045 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1046 OI != OE; ++OI) { 1047 SDNode *Val = getValue(*OI).getNode(); 1048 // If the operand is an empty aggregate, there are no values. 1049 if (!Val) continue; 1050 // Add each leaf value from the operand to the Constants list 1051 // to form a flattened list of all the values. 1052 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1053 Constants.push_back(SDValue(Val, i)); 1054 } 1055 1056 return DAG.getMergeValues(&Constants[0], Constants.size(), 1057 getCurDebugLoc()); 1058 } 1059 1060 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1061 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1062 "Unknown struct or array constant!"); 1063 1064 SmallVector<EVT, 4> ValueVTs; 1065 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1066 unsigned NumElts = ValueVTs.size(); 1067 if (NumElts == 0) 1068 return SDValue(); // empty struct 1069 SmallVector<SDValue, 4> Constants(NumElts); 1070 for (unsigned i = 0; i != NumElts; ++i) { 1071 EVT EltVT = ValueVTs[i]; 1072 if (isa<UndefValue>(C)) 1073 Constants[i] = DAG.getUNDEF(EltVT); 1074 else if (EltVT.isFloatingPoint()) 1075 Constants[i] = DAG.getConstantFP(0, EltVT); 1076 else 1077 Constants[i] = DAG.getConstant(0, EltVT); 1078 } 1079 1080 return DAG.getMergeValues(&Constants[0], NumElts, 1081 getCurDebugLoc()); 1082 } 1083 1084 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1085 return DAG.getBlockAddress(BA, VT); 1086 1087 VectorType *VecTy = cast<VectorType>(V->getType()); 1088 unsigned NumElements = VecTy->getNumElements(); 1089 1090 // Now that we know the number and type of the elements, get that number of 1091 // elements into the Ops array based on what kind of constant it is. 1092 SmallVector<SDValue, 16> Ops; 1093 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1094 for (unsigned i = 0; i != NumElements; ++i) 1095 Ops.push_back(getValue(CP->getOperand(i))); 1096 } else { 1097 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1098 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1099 1100 SDValue Op; 1101 if (EltVT.isFloatingPoint()) 1102 Op = DAG.getConstantFP(0, EltVT); 1103 else 1104 Op = DAG.getConstant(0, EltVT); 1105 Ops.assign(NumElements, Op); 1106 } 1107 1108 // Create a BUILD_VECTOR node. 1109 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1110 VT, &Ops[0], Ops.size()); 1111 } 1112 1113 // If this is a static alloca, generate it as the frameindex instead of 1114 // computation. 1115 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1116 DenseMap<const AllocaInst*, int>::iterator SI = 1117 FuncInfo.StaticAllocaMap.find(AI); 1118 if (SI != FuncInfo.StaticAllocaMap.end()) 1119 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1120 } 1121 1122 // If this is an instruction which fast-isel has deferred, select it now. 1123 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1124 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1125 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1126 SDValue Chain = DAG.getEntryNode(); 1127 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1128 } 1129 1130 llvm_unreachable("Can't get register for value!"); 1131 return SDValue(); 1132 } 1133 1134 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1135 SDValue Chain = getControlRoot(); 1136 SmallVector<ISD::OutputArg, 8> Outs; 1137 SmallVector<SDValue, 8> OutVals; 1138 1139 if (!FuncInfo.CanLowerReturn) { 1140 unsigned DemoteReg = FuncInfo.DemoteRegister; 1141 const Function *F = I.getParent()->getParent(); 1142 1143 // Emit a store of the return value through the virtual register. 1144 // Leave Outs empty so that LowerReturn won't try to load return 1145 // registers the usual way. 1146 SmallVector<EVT, 1> PtrValueVTs; 1147 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1148 PtrValueVTs); 1149 1150 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1151 SDValue RetOp = getValue(I.getOperand(0)); 1152 1153 SmallVector<EVT, 4> ValueVTs; 1154 SmallVector<uint64_t, 4> Offsets; 1155 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1156 unsigned NumValues = ValueVTs.size(); 1157 1158 SmallVector<SDValue, 4> Chains(NumValues); 1159 for (unsigned i = 0; i != NumValues; ++i) { 1160 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1161 RetPtr.getValueType(), RetPtr, 1162 DAG.getIntPtrConstant(Offsets[i])); 1163 Chains[i] = 1164 DAG.getStore(Chain, getCurDebugLoc(), 1165 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1166 // FIXME: better loc info would be nice. 1167 Add, MachinePointerInfo(), false, false, 0); 1168 } 1169 1170 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1171 MVT::Other, &Chains[0], NumValues); 1172 } else if (I.getNumOperands() != 0) { 1173 SmallVector<EVT, 4> ValueVTs; 1174 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1175 unsigned NumValues = ValueVTs.size(); 1176 if (NumValues) { 1177 SDValue RetOp = getValue(I.getOperand(0)); 1178 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1179 EVT VT = ValueVTs[j]; 1180 1181 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1182 1183 const Function *F = I.getParent()->getParent(); 1184 if (F->paramHasAttr(0, Attribute::SExt)) 1185 ExtendKind = ISD::SIGN_EXTEND; 1186 else if (F->paramHasAttr(0, Attribute::ZExt)) 1187 ExtendKind = ISD::ZERO_EXTEND; 1188 1189 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1190 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1191 1192 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1193 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1194 SmallVector<SDValue, 4> Parts(NumParts); 1195 getCopyToParts(DAG, getCurDebugLoc(), 1196 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1197 &Parts[0], NumParts, PartVT, ExtendKind); 1198 1199 // 'inreg' on function refers to return value 1200 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1201 if (F->paramHasAttr(0, Attribute::InReg)) 1202 Flags.setInReg(); 1203 1204 // Propagate extension type if any 1205 if (ExtendKind == ISD::SIGN_EXTEND) 1206 Flags.setSExt(); 1207 else if (ExtendKind == ISD::ZERO_EXTEND) 1208 Flags.setZExt(); 1209 1210 for (unsigned i = 0; i < NumParts; ++i) { 1211 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1212 /*isfixed=*/true)); 1213 OutVals.push_back(Parts[i]); 1214 } 1215 } 1216 } 1217 } 1218 1219 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1220 CallingConv::ID CallConv = 1221 DAG.getMachineFunction().getFunction()->getCallingConv(); 1222 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1223 Outs, OutVals, getCurDebugLoc(), DAG); 1224 1225 // Verify that the target's LowerReturn behaved as expected. 1226 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1227 "LowerReturn didn't return a valid chain!"); 1228 1229 // Update the DAG with the new chain value resulting from return lowering. 1230 DAG.setRoot(Chain); 1231 } 1232 1233 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1234 /// created for it, emit nodes to copy the value into the virtual 1235 /// registers. 1236 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1237 // Skip empty types 1238 if (V->getType()->isEmptyTy()) 1239 return; 1240 1241 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1242 if (VMI != FuncInfo.ValueMap.end()) { 1243 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1244 CopyValueToVirtualRegister(V, VMI->second); 1245 } 1246 } 1247 1248 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1249 /// the current basic block, add it to ValueMap now so that we'll get a 1250 /// CopyTo/FromReg. 1251 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1252 // No need to export constants. 1253 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1254 1255 // Already exported? 1256 if (FuncInfo.isExportedInst(V)) return; 1257 1258 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1259 CopyValueToVirtualRegister(V, Reg); 1260 } 1261 1262 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1263 const BasicBlock *FromBB) { 1264 // The operands of the setcc have to be in this block. We don't know 1265 // how to export them from some other block. 1266 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1267 // Can export from current BB. 1268 if (VI->getParent() == FromBB) 1269 return true; 1270 1271 // Is already exported, noop. 1272 return FuncInfo.isExportedInst(V); 1273 } 1274 1275 // If this is an argument, we can export it if the BB is the entry block or 1276 // if it is already exported. 1277 if (isa<Argument>(V)) { 1278 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1279 return true; 1280 1281 // Otherwise, can only export this if it is already exported. 1282 return FuncInfo.isExportedInst(V); 1283 } 1284 1285 // Otherwise, constants can always be exported. 1286 return true; 1287 } 1288 1289 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1290 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1291 const MachineBasicBlock *Dst) const { 1292 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1293 if (!BPI) 1294 return 0; 1295 const BasicBlock *SrcBB = Src->getBasicBlock(); 1296 const BasicBlock *DstBB = Dst->getBasicBlock(); 1297 return BPI->getEdgeWeight(SrcBB, DstBB); 1298 } 1299 1300 void SelectionDAGBuilder:: 1301 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1302 uint32_t Weight /* = 0 */) { 1303 if (!Weight) 1304 Weight = getEdgeWeight(Src, Dst); 1305 Src->addSuccessor(Dst, Weight); 1306 } 1307 1308 1309 static bool InBlock(const Value *V, const BasicBlock *BB) { 1310 if (const Instruction *I = dyn_cast<Instruction>(V)) 1311 return I->getParent() == BB; 1312 return true; 1313 } 1314 1315 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1316 /// This function emits a branch and is used at the leaves of an OR or an 1317 /// AND operator tree. 1318 /// 1319 void 1320 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1321 MachineBasicBlock *TBB, 1322 MachineBasicBlock *FBB, 1323 MachineBasicBlock *CurBB, 1324 MachineBasicBlock *SwitchBB) { 1325 const BasicBlock *BB = CurBB->getBasicBlock(); 1326 1327 // If the leaf of the tree is a comparison, merge the condition into 1328 // the caseblock. 1329 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1330 // The operands of the cmp have to be in this block. We don't know 1331 // how to export them from some other block. If this is the first block 1332 // of the sequence, no exporting is needed. 1333 if (CurBB == SwitchBB || 1334 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1335 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1336 ISD::CondCode Condition; 1337 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1338 Condition = getICmpCondCode(IC->getPredicate()); 1339 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1340 Condition = getFCmpCondCode(FC->getPredicate()); 1341 if (TM.Options.NoNaNsFPMath) 1342 Condition = getFCmpCodeWithoutNaN(Condition); 1343 } else { 1344 Condition = ISD::SETEQ; // silence warning. 1345 llvm_unreachable("Unknown compare instruction"); 1346 } 1347 1348 CaseBlock CB(Condition, BOp->getOperand(0), 1349 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1350 SwitchCases.push_back(CB); 1351 return; 1352 } 1353 } 1354 1355 // Create a CaseBlock record representing this branch. 1356 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1357 NULL, TBB, FBB, CurBB); 1358 SwitchCases.push_back(CB); 1359 } 1360 1361 /// FindMergedConditions - If Cond is an expression like 1362 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1363 MachineBasicBlock *TBB, 1364 MachineBasicBlock *FBB, 1365 MachineBasicBlock *CurBB, 1366 MachineBasicBlock *SwitchBB, 1367 unsigned Opc) { 1368 // If this node is not part of the or/and tree, emit it as a branch. 1369 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1370 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1371 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1372 BOp->getParent() != CurBB->getBasicBlock() || 1373 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1374 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1375 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1376 return; 1377 } 1378 1379 // Create TmpBB after CurBB. 1380 MachineFunction::iterator BBI = CurBB; 1381 MachineFunction &MF = DAG.getMachineFunction(); 1382 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1383 CurBB->getParent()->insert(++BBI, TmpBB); 1384 1385 if (Opc == Instruction::Or) { 1386 // Codegen X | Y as: 1387 // jmp_if_X TBB 1388 // jmp TmpBB 1389 // TmpBB: 1390 // jmp_if_Y TBB 1391 // jmp FBB 1392 // 1393 1394 // Emit the LHS condition. 1395 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1396 1397 // Emit the RHS condition into TmpBB. 1398 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1399 } else { 1400 assert(Opc == Instruction::And && "Unknown merge op!"); 1401 // Codegen X & Y as: 1402 // jmp_if_X TmpBB 1403 // jmp FBB 1404 // TmpBB: 1405 // jmp_if_Y TBB 1406 // jmp FBB 1407 // 1408 // This requires creation of TmpBB after CurBB. 1409 1410 // Emit the LHS condition. 1411 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1412 1413 // Emit the RHS condition into TmpBB. 1414 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1415 } 1416 } 1417 1418 /// If the set of cases should be emitted as a series of branches, return true. 1419 /// If we should emit this as a bunch of and/or'd together conditions, return 1420 /// false. 1421 bool 1422 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1423 if (Cases.size() != 2) return true; 1424 1425 // If this is two comparisons of the same values or'd or and'd together, they 1426 // will get folded into a single comparison, so don't emit two blocks. 1427 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1428 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1429 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1430 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1431 return false; 1432 } 1433 1434 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1435 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1436 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1437 Cases[0].CC == Cases[1].CC && 1438 isa<Constant>(Cases[0].CmpRHS) && 1439 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1440 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1441 return false; 1442 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1443 return false; 1444 } 1445 1446 return true; 1447 } 1448 1449 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1450 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1451 1452 // Update machine-CFG edges. 1453 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1454 1455 // Figure out which block is immediately after the current one. 1456 MachineBasicBlock *NextBlock = 0; 1457 MachineFunction::iterator BBI = BrMBB; 1458 if (++BBI != FuncInfo.MF->end()) 1459 NextBlock = BBI; 1460 1461 if (I.isUnconditional()) { 1462 // Update machine-CFG edges. 1463 BrMBB->addSuccessor(Succ0MBB); 1464 1465 // If this is not a fall-through branch, emit the branch. 1466 if (Succ0MBB != NextBlock) 1467 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1468 MVT::Other, getControlRoot(), 1469 DAG.getBasicBlock(Succ0MBB))); 1470 1471 return; 1472 } 1473 1474 // If this condition is one of the special cases we handle, do special stuff 1475 // now. 1476 const Value *CondVal = I.getCondition(); 1477 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1478 1479 // If this is a series of conditions that are or'd or and'd together, emit 1480 // this as a sequence of branches instead of setcc's with and/or operations. 1481 // As long as jumps are not expensive, this should improve performance. 1482 // For example, instead of something like: 1483 // cmp A, B 1484 // C = seteq 1485 // cmp D, E 1486 // F = setle 1487 // or C, F 1488 // jnz foo 1489 // Emit: 1490 // cmp A, B 1491 // je foo 1492 // cmp D, E 1493 // jle foo 1494 // 1495 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1496 if (!TLI.isJumpExpensive() && 1497 BOp->hasOneUse() && 1498 (BOp->getOpcode() == Instruction::And || 1499 BOp->getOpcode() == Instruction::Or)) { 1500 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1501 BOp->getOpcode()); 1502 // If the compares in later blocks need to use values not currently 1503 // exported from this block, export them now. This block should always 1504 // be the first entry. 1505 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1506 1507 // Allow some cases to be rejected. 1508 if (ShouldEmitAsBranches(SwitchCases)) { 1509 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1510 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1511 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1512 } 1513 1514 // Emit the branch for this block. 1515 visitSwitchCase(SwitchCases[0], BrMBB); 1516 SwitchCases.erase(SwitchCases.begin()); 1517 return; 1518 } 1519 1520 // Okay, we decided not to do this, remove any inserted MBB's and clear 1521 // SwitchCases. 1522 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1523 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1524 1525 SwitchCases.clear(); 1526 } 1527 } 1528 1529 // Create a CaseBlock record representing this branch. 1530 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1531 NULL, Succ0MBB, Succ1MBB, BrMBB); 1532 1533 // Use visitSwitchCase to actually insert the fast branch sequence for this 1534 // cond branch. 1535 visitSwitchCase(CB, BrMBB); 1536 } 1537 1538 /// visitSwitchCase - Emits the necessary code to represent a single node in 1539 /// the binary search tree resulting from lowering a switch instruction. 1540 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1541 MachineBasicBlock *SwitchBB) { 1542 SDValue Cond; 1543 SDValue CondLHS = getValue(CB.CmpLHS); 1544 DebugLoc dl = getCurDebugLoc(); 1545 1546 // Build the setcc now. 1547 if (CB.CmpMHS == NULL) { 1548 // Fold "(X == true)" to X and "(X == false)" to !X to 1549 // handle common cases produced by branch lowering. 1550 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1551 CB.CC == ISD::SETEQ) 1552 Cond = CondLHS; 1553 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1554 CB.CC == ISD::SETEQ) { 1555 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1556 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1557 } else 1558 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1559 } else { 1560 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1561 1562 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1563 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1564 1565 SDValue CmpOp = getValue(CB.CmpMHS); 1566 EVT VT = CmpOp.getValueType(); 1567 1568 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1569 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1570 ISD::SETLE); 1571 } else { 1572 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1573 VT, CmpOp, DAG.getConstant(Low, VT)); 1574 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1575 DAG.getConstant(High-Low, VT), ISD::SETULE); 1576 } 1577 } 1578 1579 // Update successor info 1580 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1581 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1582 1583 // Set NextBlock to be the MBB immediately after the current one, if any. 1584 // This is used to avoid emitting unnecessary branches to the next block. 1585 MachineBasicBlock *NextBlock = 0; 1586 MachineFunction::iterator BBI = SwitchBB; 1587 if (++BBI != FuncInfo.MF->end()) 1588 NextBlock = BBI; 1589 1590 // If the lhs block is the next block, invert the condition so that we can 1591 // fall through to the lhs instead of the rhs block. 1592 if (CB.TrueBB == NextBlock) { 1593 std::swap(CB.TrueBB, CB.FalseBB); 1594 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1595 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1596 } 1597 1598 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1599 MVT::Other, getControlRoot(), Cond, 1600 DAG.getBasicBlock(CB.TrueBB)); 1601 1602 // Insert the false branch. Do this even if it's a fall through branch, 1603 // this makes it easier to do DAG optimizations which require inverting 1604 // the branch condition. 1605 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1606 DAG.getBasicBlock(CB.FalseBB)); 1607 1608 DAG.setRoot(BrCond); 1609 } 1610 1611 /// visitJumpTable - Emit JumpTable node in the current MBB 1612 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1613 // Emit the code for the jump table 1614 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1615 EVT PTy = TLI.getPointerTy(); 1616 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1617 JT.Reg, PTy); 1618 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1619 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1620 MVT::Other, Index.getValue(1), 1621 Table, Index); 1622 DAG.setRoot(BrJumpTable); 1623 } 1624 1625 /// visitJumpTableHeader - This function emits necessary code to produce index 1626 /// in the JumpTable from switch case. 1627 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1628 JumpTableHeader &JTH, 1629 MachineBasicBlock *SwitchBB) { 1630 // Subtract the lowest switch case value from the value being switched on and 1631 // conditional branch to default mbb if the result is greater than the 1632 // difference between smallest and largest cases. 1633 SDValue SwitchOp = getValue(JTH.SValue); 1634 EVT VT = SwitchOp.getValueType(); 1635 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1636 DAG.getConstant(JTH.First, VT)); 1637 1638 // The SDNode we just created, which holds the value being switched on minus 1639 // the smallest case value, needs to be copied to a virtual register so it 1640 // can be used as an index into the jump table in a subsequent basic block. 1641 // This value may be smaller or larger than the target's pointer type, and 1642 // therefore require extension or truncating. 1643 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1644 1645 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1646 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1647 JumpTableReg, SwitchOp); 1648 JT.Reg = JumpTableReg; 1649 1650 // Emit the range check for the jump table, and branch to the default block 1651 // for the switch statement if the value being switched on exceeds the largest 1652 // case in the switch. 1653 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1654 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1655 DAG.getConstant(JTH.Last-JTH.First,VT), 1656 ISD::SETUGT); 1657 1658 // Set NextBlock to be the MBB immediately after the current one, if any. 1659 // This is used to avoid emitting unnecessary branches to the next block. 1660 MachineBasicBlock *NextBlock = 0; 1661 MachineFunction::iterator BBI = SwitchBB; 1662 1663 if (++BBI != FuncInfo.MF->end()) 1664 NextBlock = BBI; 1665 1666 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1667 MVT::Other, CopyTo, CMP, 1668 DAG.getBasicBlock(JT.Default)); 1669 1670 if (JT.MBB != NextBlock) 1671 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1672 DAG.getBasicBlock(JT.MBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitBitTestHeader - This function emits necessary code to produce value 1678 /// suitable for "bit tests" 1679 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1680 MachineBasicBlock *SwitchBB) { 1681 // Subtract the minimum value 1682 SDValue SwitchOp = getValue(B.SValue); 1683 EVT VT = SwitchOp.getValueType(); 1684 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1685 DAG.getConstant(B.First, VT)); 1686 1687 // Check range 1688 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1689 TLI.getSetCCResultType(Sub.getValueType()), 1690 Sub, DAG.getConstant(B.Range, VT), 1691 ISD::SETUGT); 1692 1693 // Determine the type of the test operands. 1694 bool UsePtrType = false; 1695 if (!TLI.isTypeLegal(VT)) 1696 UsePtrType = true; 1697 else { 1698 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1699 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1700 // Switch table case range are encoded into series of masks. 1701 // Just use pointer type, it's guaranteed to fit. 1702 UsePtrType = true; 1703 break; 1704 } 1705 } 1706 if (UsePtrType) { 1707 VT = TLI.getPointerTy(); 1708 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1709 } 1710 1711 B.RegVT = VT; 1712 B.Reg = FuncInfo.CreateReg(VT); 1713 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1714 B.Reg, Sub); 1715 1716 // Set NextBlock to be the MBB immediately after the current one, if any. 1717 // This is used to avoid emitting unnecessary branches to the next block. 1718 MachineBasicBlock *NextBlock = 0; 1719 MachineFunction::iterator BBI = SwitchBB; 1720 if (++BBI != FuncInfo.MF->end()) 1721 NextBlock = BBI; 1722 1723 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1724 1725 addSuccessorWithWeight(SwitchBB, B.Default); 1726 addSuccessorWithWeight(SwitchBB, MBB); 1727 1728 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1729 MVT::Other, CopyTo, RangeCmp, 1730 DAG.getBasicBlock(B.Default)); 1731 1732 if (MBB != NextBlock) 1733 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1734 DAG.getBasicBlock(MBB)); 1735 1736 DAG.setRoot(BrRange); 1737 } 1738 1739 /// visitBitTestCase - this function produces one "bit test" 1740 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1741 MachineBasicBlock* NextMBB, 1742 unsigned Reg, 1743 BitTestCase &B, 1744 MachineBasicBlock *SwitchBB) { 1745 EVT VT = BB.RegVT; 1746 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1747 Reg, VT); 1748 SDValue Cmp; 1749 unsigned PopCount = CountPopulation_64(B.Mask); 1750 if (PopCount == 1) { 1751 // Testing for a single bit; just compare the shift count with what it 1752 // would need to be to shift a 1 bit in that position. 1753 Cmp = DAG.getSetCC(getCurDebugLoc(), 1754 TLI.getSetCCResultType(VT), 1755 ShiftOp, 1756 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1757 ISD::SETEQ); 1758 } else if (PopCount == BB.Range) { 1759 // There is only one zero bit in the range, test for it directly. 1760 Cmp = DAG.getSetCC(getCurDebugLoc(), 1761 TLI.getSetCCResultType(VT), 1762 ShiftOp, 1763 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1764 ISD::SETNE); 1765 } else { 1766 // Make desired shift 1767 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1768 DAG.getConstant(1, VT), ShiftOp); 1769 1770 // Emit bit tests and jumps 1771 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1772 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1773 Cmp = DAG.getSetCC(getCurDebugLoc(), 1774 TLI.getSetCCResultType(VT), 1775 AndOp, DAG.getConstant(0, VT), 1776 ISD::SETNE); 1777 } 1778 1779 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1780 addSuccessorWithWeight(SwitchBB, NextMBB); 1781 1782 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1783 MVT::Other, getControlRoot(), 1784 Cmp, DAG.getBasicBlock(B.TargetBB)); 1785 1786 // Set NextBlock to be the MBB immediately after the current one, if any. 1787 // This is used to avoid emitting unnecessary branches to the next block. 1788 MachineBasicBlock *NextBlock = 0; 1789 MachineFunction::iterator BBI = SwitchBB; 1790 if (++BBI != FuncInfo.MF->end()) 1791 NextBlock = BBI; 1792 1793 if (NextMBB != NextBlock) 1794 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1795 DAG.getBasicBlock(NextMBB)); 1796 1797 DAG.setRoot(BrAnd); 1798 } 1799 1800 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1801 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1802 1803 // Retrieve successors. 1804 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1805 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1806 1807 const Value *Callee(I.getCalledValue()); 1808 if (isa<InlineAsm>(Callee)) 1809 visitInlineAsm(&I); 1810 else 1811 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1812 1813 // If the value of the invoke is used outside of its defining block, make it 1814 // available as a virtual register. 1815 CopyToExportRegsIfNeeded(&I); 1816 1817 // Update successor info 1818 addSuccessorWithWeight(InvokeMBB, Return); 1819 addSuccessorWithWeight(InvokeMBB, LandingPad); 1820 1821 // Drop into normal successor. 1822 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1823 MVT::Other, getControlRoot(), 1824 DAG.getBasicBlock(Return))); 1825 } 1826 1827 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1828 } 1829 1830 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1831 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1832 } 1833 1834 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1835 assert(FuncInfo.MBB->isLandingPad() && 1836 "Call to landingpad not in landing pad!"); 1837 1838 MachineBasicBlock *MBB = FuncInfo.MBB; 1839 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1840 AddLandingPadInfo(LP, MMI, MBB); 1841 1842 SmallVector<EVT, 2> ValueVTs; 1843 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1844 1845 // Insert the EXCEPTIONADDR instruction. 1846 assert(FuncInfo.MBB->isLandingPad() && 1847 "Call to eh.exception not in landing pad!"); 1848 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1849 SDValue Ops[2]; 1850 Ops[0] = DAG.getRoot(); 1851 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1852 SDValue Chain = Op1.getValue(1); 1853 1854 // Insert the EHSELECTION instruction. 1855 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1856 Ops[0] = Op1; 1857 Ops[1] = Chain; 1858 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1859 Chain = Op2.getValue(1); 1860 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1861 1862 Ops[0] = Op1; 1863 Ops[1] = Op2; 1864 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1865 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1866 &Ops[0], 2); 1867 1868 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1869 setValue(&LP, RetPair.first); 1870 DAG.setRoot(RetPair.second); 1871 } 1872 1873 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1874 /// small case ranges). 1875 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1876 CaseRecVector& WorkList, 1877 const Value* SV, 1878 MachineBasicBlock *Default, 1879 MachineBasicBlock *SwitchBB) { 1880 Case& BackCase = *(CR.Range.second-1); 1881 1882 // Size is the number of Cases represented by this range. 1883 size_t Size = CR.Range.second - CR.Range.first; 1884 if (Size > 3) 1885 return false; 1886 1887 // Get the MachineFunction which holds the current MBB. This is used when 1888 // inserting any additional MBBs necessary to represent the switch. 1889 MachineFunction *CurMF = FuncInfo.MF; 1890 1891 // Figure out which block is immediately after the current one. 1892 MachineBasicBlock *NextBlock = 0; 1893 MachineFunction::iterator BBI = CR.CaseBB; 1894 1895 if (++BBI != FuncInfo.MF->end()) 1896 NextBlock = BBI; 1897 1898 // If any two of the cases has the same destination, and if one value 1899 // is the same as the other, but has one bit unset that the other has set, 1900 // use bit manipulation to do two compares at once. For example: 1901 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1902 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1903 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1904 if (Size == 2 && CR.CaseBB == SwitchBB) { 1905 Case &Small = *CR.Range.first; 1906 Case &Big = *(CR.Range.second-1); 1907 1908 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1909 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1910 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1911 1912 // Check that there is only one bit different. 1913 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1914 (SmallValue | BigValue) == BigValue) { 1915 // Isolate the common bit. 1916 APInt CommonBit = BigValue & ~SmallValue; 1917 assert((SmallValue | CommonBit) == BigValue && 1918 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1919 1920 SDValue CondLHS = getValue(SV); 1921 EVT VT = CondLHS.getValueType(); 1922 DebugLoc DL = getCurDebugLoc(); 1923 1924 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1925 DAG.getConstant(CommonBit, VT)); 1926 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1927 Or, DAG.getConstant(BigValue, VT), 1928 ISD::SETEQ); 1929 1930 // Update successor info. 1931 addSuccessorWithWeight(SwitchBB, Small.BB); 1932 addSuccessorWithWeight(SwitchBB, Default); 1933 1934 // Insert the true branch. 1935 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1936 getControlRoot(), Cond, 1937 DAG.getBasicBlock(Small.BB)); 1938 1939 // Insert the false branch. 1940 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1941 DAG.getBasicBlock(Default)); 1942 1943 DAG.setRoot(BrCond); 1944 return true; 1945 } 1946 } 1947 } 1948 1949 // Rearrange the case blocks so that the last one falls through if possible. 1950 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1951 // The last case block won't fall through into 'NextBlock' if we emit the 1952 // branches in this order. See if rearranging a case value would help. 1953 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1954 if (I->BB == NextBlock) { 1955 std::swap(*I, BackCase); 1956 break; 1957 } 1958 } 1959 } 1960 1961 // Create a CaseBlock record representing a conditional branch to 1962 // the Case's target mbb if the value being switched on SV is equal 1963 // to C. 1964 MachineBasicBlock *CurBlock = CR.CaseBB; 1965 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1966 MachineBasicBlock *FallThrough; 1967 if (I != E-1) { 1968 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1969 CurMF->insert(BBI, FallThrough); 1970 1971 // Put SV in a virtual register to make it available from the new blocks. 1972 ExportFromCurrentBlock(SV); 1973 } else { 1974 // If the last case doesn't match, go to the default block. 1975 FallThrough = Default; 1976 } 1977 1978 const Value *RHS, *LHS, *MHS; 1979 ISD::CondCode CC; 1980 if (I->High == I->Low) { 1981 // This is just small small case range :) containing exactly 1 case 1982 CC = ISD::SETEQ; 1983 LHS = SV; RHS = I->High; MHS = NULL; 1984 } else { 1985 CC = ISD::SETLE; 1986 LHS = I->Low; MHS = SV; RHS = I->High; 1987 } 1988 1989 uint32_t ExtraWeight = I->ExtraWeight; 1990 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1991 /* me */ CurBlock, 1992 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1993 1994 // If emitting the first comparison, just call visitSwitchCase to emit the 1995 // code into the current block. Otherwise, push the CaseBlock onto the 1996 // vector to be later processed by SDISel, and insert the node's MBB 1997 // before the next MBB. 1998 if (CurBlock == SwitchBB) 1999 visitSwitchCase(CB, SwitchBB); 2000 else 2001 SwitchCases.push_back(CB); 2002 2003 CurBlock = FallThrough; 2004 } 2005 2006 return true; 2007 } 2008 2009 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2010 return !TLI.getTargetMachine().Options.DisableJumpTables && 2011 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2012 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2013 } 2014 2015 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2016 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2017 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2018 return (LastExt - FirstExt + 1ULL); 2019 } 2020 2021 /// handleJTSwitchCase - Emit jumptable for current switch case range 2022 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2023 CaseRecVector &WorkList, 2024 const Value *SV, 2025 MachineBasicBlock *Default, 2026 MachineBasicBlock *SwitchBB) { 2027 Case& FrontCase = *CR.Range.first; 2028 Case& BackCase = *(CR.Range.second-1); 2029 2030 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2031 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2032 2033 APInt TSize(First.getBitWidth(), 0); 2034 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2035 TSize += I->size(); 2036 2037 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2038 return false; 2039 2040 APInt Range = ComputeRange(First, Last); 2041 // The density is TSize / Range. Require at least 40%. 2042 // It should not be possible for IntTSize to saturate for sane code, but make 2043 // sure we handle Range saturation correctly. 2044 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2045 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2046 if (IntTSize * 10 < IntRange * 4) 2047 return false; 2048 2049 DEBUG(dbgs() << "Lowering jump table\n" 2050 << "First entry: " << First << ". Last entry: " << Last << '\n' 2051 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2052 2053 // Get the MachineFunction which holds the current MBB. This is used when 2054 // inserting any additional MBBs necessary to represent the switch. 2055 MachineFunction *CurMF = FuncInfo.MF; 2056 2057 // Figure out which block is immediately after the current one. 2058 MachineFunction::iterator BBI = CR.CaseBB; 2059 ++BBI; 2060 2061 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2062 2063 // Create a new basic block to hold the code for loading the address 2064 // of the jump table, and jumping to it. Update successor information; 2065 // we will either branch to the default case for the switch, or the jump 2066 // table. 2067 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2068 CurMF->insert(BBI, JumpTableBB); 2069 2070 addSuccessorWithWeight(CR.CaseBB, Default); 2071 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2072 2073 // Build a vector of destination BBs, corresponding to each target 2074 // of the jump table. If the value of the jump table slot corresponds to 2075 // a case statement, push the case's BB onto the vector, otherwise, push 2076 // the default BB. 2077 std::vector<MachineBasicBlock*> DestBBs; 2078 APInt TEI = First; 2079 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2080 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2081 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2082 2083 if (Low.sle(TEI) && TEI.sle(High)) { 2084 DestBBs.push_back(I->BB); 2085 if (TEI==High) 2086 ++I; 2087 } else { 2088 DestBBs.push_back(Default); 2089 } 2090 } 2091 2092 // Update successor info. Add one edge to each unique successor. 2093 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2094 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2095 E = DestBBs.end(); I != E; ++I) { 2096 if (!SuccsHandled[(*I)->getNumber()]) { 2097 SuccsHandled[(*I)->getNumber()] = true; 2098 addSuccessorWithWeight(JumpTableBB, *I); 2099 } 2100 } 2101 2102 // Create a jump table index for this jump table. 2103 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2104 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2105 ->createJumpTableIndex(DestBBs); 2106 2107 // Set the jump table information so that we can codegen it as a second 2108 // MachineBasicBlock 2109 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2110 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2111 if (CR.CaseBB == SwitchBB) 2112 visitJumpTableHeader(JT, JTH, SwitchBB); 2113 2114 JTCases.push_back(JumpTableBlock(JTH, JT)); 2115 return true; 2116 } 2117 2118 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2119 /// 2 subtrees. 2120 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2121 CaseRecVector& WorkList, 2122 const Value* SV, 2123 MachineBasicBlock *Default, 2124 MachineBasicBlock *SwitchBB) { 2125 // Get the MachineFunction which holds the current MBB. This is used when 2126 // inserting any additional MBBs necessary to represent the switch. 2127 MachineFunction *CurMF = FuncInfo.MF; 2128 2129 // Figure out which block is immediately after the current one. 2130 MachineFunction::iterator BBI = CR.CaseBB; 2131 ++BBI; 2132 2133 Case& FrontCase = *CR.Range.first; 2134 Case& BackCase = *(CR.Range.second-1); 2135 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2136 2137 // Size is the number of Cases represented by this range. 2138 unsigned Size = CR.Range.second - CR.Range.first; 2139 2140 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2141 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2142 double FMetric = 0; 2143 CaseItr Pivot = CR.Range.first + Size/2; 2144 2145 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2146 // (heuristically) allow us to emit JumpTable's later. 2147 APInt TSize(First.getBitWidth(), 0); 2148 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2149 I!=E; ++I) 2150 TSize += I->size(); 2151 2152 APInt LSize = FrontCase.size(); 2153 APInt RSize = TSize-LSize; 2154 DEBUG(dbgs() << "Selecting best pivot: \n" 2155 << "First: " << First << ", Last: " << Last <<'\n' 2156 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2157 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2158 J!=E; ++I, ++J) { 2159 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2160 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2161 APInt Range = ComputeRange(LEnd, RBegin); 2162 assert((Range - 2ULL).isNonNegative() && 2163 "Invalid case distance"); 2164 // Use volatile double here to avoid excess precision issues on some hosts, 2165 // e.g. that use 80-bit X87 registers. 2166 volatile double LDensity = 2167 (double)LSize.roundToDouble() / 2168 (LEnd - First + 1ULL).roundToDouble(); 2169 volatile double RDensity = 2170 (double)RSize.roundToDouble() / 2171 (Last - RBegin + 1ULL).roundToDouble(); 2172 double Metric = Range.logBase2()*(LDensity+RDensity); 2173 // Should always split in some non-trivial place 2174 DEBUG(dbgs() <<"=>Step\n" 2175 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2176 << "LDensity: " << LDensity 2177 << ", RDensity: " << RDensity << '\n' 2178 << "Metric: " << Metric << '\n'); 2179 if (FMetric < Metric) { 2180 Pivot = J; 2181 FMetric = Metric; 2182 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2183 } 2184 2185 LSize += J->size(); 2186 RSize -= J->size(); 2187 } 2188 if (areJTsAllowed(TLI)) { 2189 // If our case is dense we *really* should handle it earlier! 2190 assert((FMetric > 0) && "Should handle dense range earlier!"); 2191 } else { 2192 Pivot = CR.Range.first + Size/2; 2193 } 2194 2195 CaseRange LHSR(CR.Range.first, Pivot); 2196 CaseRange RHSR(Pivot, CR.Range.second); 2197 Constant *C = Pivot->Low; 2198 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2199 2200 // We know that we branch to the LHS if the Value being switched on is 2201 // less than the Pivot value, C. We use this to optimize our binary 2202 // tree a bit, by recognizing that if SV is greater than or equal to the 2203 // LHS's Case Value, and that Case Value is exactly one less than the 2204 // Pivot's Value, then we can branch directly to the LHS's Target, 2205 // rather than creating a leaf node for it. 2206 if ((LHSR.second - LHSR.first) == 1 && 2207 LHSR.first->High == CR.GE && 2208 cast<ConstantInt>(C)->getValue() == 2209 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2210 TrueBB = LHSR.first->BB; 2211 } else { 2212 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2213 CurMF->insert(BBI, TrueBB); 2214 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2215 2216 // Put SV in a virtual register to make it available from the new blocks. 2217 ExportFromCurrentBlock(SV); 2218 } 2219 2220 // Similar to the optimization above, if the Value being switched on is 2221 // known to be less than the Constant CR.LT, and the current Case Value 2222 // is CR.LT - 1, then we can branch directly to the target block for 2223 // the current Case Value, rather than emitting a RHS leaf node for it. 2224 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2225 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2226 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2227 FalseBB = RHSR.first->BB; 2228 } else { 2229 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2230 CurMF->insert(BBI, FalseBB); 2231 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2232 2233 // Put SV in a virtual register to make it available from the new blocks. 2234 ExportFromCurrentBlock(SV); 2235 } 2236 2237 // Create a CaseBlock record representing a conditional branch to 2238 // the LHS node if the value being switched on SV is less than C. 2239 // Otherwise, branch to LHS. 2240 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2241 2242 if (CR.CaseBB == SwitchBB) 2243 visitSwitchCase(CB, SwitchBB); 2244 else 2245 SwitchCases.push_back(CB); 2246 2247 return true; 2248 } 2249 2250 /// handleBitTestsSwitchCase - if current case range has few destination and 2251 /// range span less, than machine word bitwidth, encode case range into series 2252 /// of masks and emit bit tests with these masks. 2253 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2254 CaseRecVector& WorkList, 2255 const Value* SV, 2256 MachineBasicBlock* Default, 2257 MachineBasicBlock *SwitchBB){ 2258 EVT PTy = TLI.getPointerTy(); 2259 unsigned IntPtrBits = PTy.getSizeInBits(); 2260 2261 Case& FrontCase = *CR.Range.first; 2262 Case& BackCase = *(CR.Range.second-1); 2263 2264 // Get the MachineFunction which holds the current MBB. This is used when 2265 // inserting any additional MBBs necessary to represent the switch. 2266 MachineFunction *CurMF = FuncInfo.MF; 2267 2268 // If target does not have legal shift left, do not emit bit tests at all. 2269 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2270 return false; 2271 2272 size_t numCmps = 0; 2273 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2274 I!=E; ++I) { 2275 // Single case counts one, case range - two. 2276 numCmps += (I->Low == I->High ? 1 : 2); 2277 } 2278 2279 // Count unique destinations 2280 SmallSet<MachineBasicBlock*, 4> Dests; 2281 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2282 Dests.insert(I->BB); 2283 if (Dests.size() > 3) 2284 // Don't bother the code below, if there are too much unique destinations 2285 return false; 2286 } 2287 DEBUG(dbgs() << "Total number of unique destinations: " 2288 << Dests.size() << '\n' 2289 << "Total number of comparisons: " << numCmps << '\n'); 2290 2291 // Compute span of values. 2292 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2293 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2294 APInt cmpRange = maxValue - minValue; 2295 2296 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2297 << "Low bound: " << minValue << '\n' 2298 << "High bound: " << maxValue << '\n'); 2299 2300 if (cmpRange.uge(IntPtrBits) || 2301 (!(Dests.size() == 1 && numCmps >= 3) && 2302 !(Dests.size() == 2 && numCmps >= 5) && 2303 !(Dests.size() >= 3 && numCmps >= 6))) 2304 return false; 2305 2306 DEBUG(dbgs() << "Emitting bit tests\n"); 2307 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2308 2309 // Optimize the case where all the case values fit in a 2310 // word without having to subtract minValue. In this case, 2311 // we can optimize away the subtraction. 2312 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2313 cmpRange = maxValue; 2314 } else { 2315 lowBound = minValue; 2316 } 2317 2318 CaseBitsVector CasesBits; 2319 unsigned i, count = 0; 2320 2321 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2322 MachineBasicBlock* Dest = I->BB; 2323 for (i = 0; i < count; ++i) 2324 if (Dest == CasesBits[i].BB) 2325 break; 2326 2327 if (i == count) { 2328 assert((count < 3) && "Too much destinations to test!"); 2329 CasesBits.push_back(CaseBits(0, Dest, 0)); 2330 count++; 2331 } 2332 2333 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2334 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2335 2336 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2337 uint64_t hi = (highValue - lowBound).getZExtValue(); 2338 2339 for (uint64_t j = lo; j <= hi; j++) { 2340 CasesBits[i].Mask |= 1ULL << j; 2341 CasesBits[i].Bits++; 2342 } 2343 2344 } 2345 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2346 2347 BitTestInfo BTC; 2348 2349 // Figure out which block is immediately after the current one. 2350 MachineFunction::iterator BBI = CR.CaseBB; 2351 ++BBI; 2352 2353 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2354 2355 DEBUG(dbgs() << "Cases:\n"); 2356 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2357 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2358 << ", Bits: " << CasesBits[i].Bits 2359 << ", BB: " << CasesBits[i].BB << '\n'); 2360 2361 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2362 CurMF->insert(BBI, CaseBB); 2363 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2364 CaseBB, 2365 CasesBits[i].BB)); 2366 2367 // Put SV in a virtual register to make it available from the new blocks. 2368 ExportFromCurrentBlock(SV); 2369 } 2370 2371 BitTestBlock BTB(lowBound, cmpRange, SV, 2372 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2373 CR.CaseBB, Default, BTC); 2374 2375 if (CR.CaseBB == SwitchBB) 2376 visitBitTestHeader(BTB, SwitchBB); 2377 2378 BitTestCases.push_back(BTB); 2379 2380 return true; 2381 } 2382 2383 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2384 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2385 const SwitchInst& SI) { 2386 size_t numCmps = 0; 2387 2388 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2389 // Start with "simple" cases 2390 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2391 BasicBlock *SuccBB = SI.getSuccessor(i); 2392 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2393 2394 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2395 2396 Cases.push_back(Case(SI.getSuccessorValue(i), 2397 SI.getSuccessorValue(i), 2398 SMBB, ExtraWeight)); 2399 } 2400 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2401 2402 // Merge case into clusters 2403 if (Cases.size() >= 2) 2404 // Must recompute end() each iteration because it may be 2405 // invalidated by erase if we hold on to it 2406 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2407 J != Cases.end(); ) { 2408 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2409 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2410 MachineBasicBlock* nextBB = J->BB; 2411 MachineBasicBlock* currentBB = I->BB; 2412 2413 // If the two neighboring cases go to the same destination, merge them 2414 // into a single case. 2415 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2416 I->High = J->High; 2417 J = Cases.erase(J); 2418 2419 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2420 uint32_t CurWeight = currentBB->getBasicBlock() ? 2421 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2422 uint32_t NextWeight = nextBB->getBasicBlock() ? 2423 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2424 2425 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2426 CurWeight + NextWeight); 2427 } 2428 } else { 2429 I = J++; 2430 } 2431 } 2432 2433 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2434 if (I->Low != I->High) 2435 // A range counts double, since it requires two compares. 2436 ++numCmps; 2437 } 2438 2439 return numCmps; 2440 } 2441 2442 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2443 MachineBasicBlock *Last) { 2444 // Update JTCases. 2445 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2446 if (JTCases[i].first.HeaderBB == First) 2447 JTCases[i].first.HeaderBB = Last; 2448 2449 // Update BitTestCases. 2450 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2451 if (BitTestCases[i].Parent == First) 2452 BitTestCases[i].Parent = Last; 2453 } 2454 2455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2456 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2457 2458 // Figure out which block is immediately after the current one. 2459 MachineBasicBlock *NextBlock = 0; 2460 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2461 2462 // If there is only the default destination, branch to it if it is not the 2463 // next basic block. Otherwise, just fall through. 2464 if (SI.getNumCases() == 1) { 2465 // Update machine-CFG edges. 2466 2467 // If this is not a fall-through branch, emit the branch. 2468 SwitchMBB->addSuccessor(Default); 2469 if (Default != NextBlock) 2470 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2471 MVT::Other, getControlRoot(), 2472 DAG.getBasicBlock(Default))); 2473 2474 return; 2475 } 2476 2477 // If there are any non-default case statements, create a vector of Cases 2478 // representing each one, and sort the vector so that we can efficiently 2479 // create a binary search tree from them. 2480 CaseVector Cases; 2481 size_t numCmps = Clusterify(Cases, SI); 2482 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2483 << ". Total compares: " << numCmps << '\n'); 2484 (void)numCmps; 2485 2486 // Get the Value to be switched on and default basic blocks, which will be 2487 // inserted into CaseBlock records, representing basic blocks in the binary 2488 // search tree. 2489 const Value *SV = SI.getCondition(); 2490 2491 // Push the initial CaseRec onto the worklist 2492 CaseRecVector WorkList; 2493 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2494 CaseRange(Cases.begin(),Cases.end()))); 2495 2496 while (!WorkList.empty()) { 2497 // Grab a record representing a case range to process off the worklist 2498 CaseRec CR = WorkList.back(); 2499 WorkList.pop_back(); 2500 2501 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2502 continue; 2503 2504 // If the range has few cases (two or less) emit a series of specific 2505 // tests. 2506 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2507 continue; 2508 2509 // If the switch has more than 5 blocks, and at least 40% dense, and the 2510 // target supports indirect branches, then emit a jump table rather than 2511 // lowering the switch to a binary tree of conditional branches. 2512 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2513 continue; 2514 2515 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2516 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2517 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2518 } 2519 } 2520 2521 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2522 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2523 2524 // Update machine-CFG edges with unique successors. 2525 SmallVector<BasicBlock*, 32> succs; 2526 succs.reserve(I.getNumSuccessors()); 2527 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2528 succs.push_back(I.getSuccessor(i)); 2529 array_pod_sort(succs.begin(), succs.end()); 2530 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2531 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2532 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2533 addSuccessorWithWeight(IndirectBrMBB, Succ); 2534 } 2535 2536 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2537 MVT::Other, getControlRoot(), 2538 getValue(I.getAddress()))); 2539 } 2540 2541 void SelectionDAGBuilder::visitFSub(const User &I) { 2542 // -0.0 - X --> fneg 2543 Type *Ty = I.getType(); 2544 if (isa<Constant>(I.getOperand(0)) && 2545 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2546 SDValue Op2 = getValue(I.getOperand(1)); 2547 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2548 Op2.getValueType(), Op2)); 2549 return; 2550 } 2551 2552 visitBinary(I, ISD::FSUB); 2553 } 2554 2555 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2556 SDValue Op1 = getValue(I.getOperand(0)); 2557 SDValue Op2 = getValue(I.getOperand(1)); 2558 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2559 Op1.getValueType(), Op1, Op2)); 2560 } 2561 2562 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2563 SDValue Op1 = getValue(I.getOperand(0)); 2564 SDValue Op2 = getValue(I.getOperand(1)); 2565 2566 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2567 2568 // Coerce the shift amount to the right type if we can. 2569 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2570 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2571 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2572 DebugLoc DL = getCurDebugLoc(); 2573 2574 // If the operand is smaller than the shift count type, promote it. 2575 if (ShiftSize > Op2Size) 2576 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2577 2578 // If the operand is larger than the shift count type but the shift 2579 // count type has enough bits to represent any shift value, truncate 2580 // it now. This is a common case and it exposes the truncate to 2581 // optimization early. 2582 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2583 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2584 // Otherwise we'll need to temporarily settle for some other convenient 2585 // type. Type legalization will make adjustments once the shiftee is split. 2586 else 2587 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2588 } 2589 2590 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2591 Op1.getValueType(), Op1, Op2)); 2592 } 2593 2594 void SelectionDAGBuilder::visitSDiv(const User &I) { 2595 SDValue Op1 = getValue(I.getOperand(0)); 2596 SDValue Op2 = getValue(I.getOperand(1)); 2597 2598 // Turn exact SDivs into multiplications. 2599 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2600 // exact bit. 2601 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2602 !isa<ConstantSDNode>(Op1) && 2603 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2604 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2605 else 2606 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2607 Op1, Op2)); 2608 } 2609 2610 void SelectionDAGBuilder::visitICmp(const User &I) { 2611 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2612 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2613 predicate = IC->getPredicate(); 2614 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2615 predicate = ICmpInst::Predicate(IC->getPredicate()); 2616 SDValue Op1 = getValue(I.getOperand(0)); 2617 SDValue Op2 = getValue(I.getOperand(1)); 2618 ISD::CondCode Opcode = getICmpCondCode(predicate); 2619 2620 EVT DestVT = TLI.getValueType(I.getType()); 2621 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2622 } 2623 2624 void SelectionDAGBuilder::visitFCmp(const User &I) { 2625 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2626 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2627 predicate = FC->getPredicate(); 2628 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2629 predicate = FCmpInst::Predicate(FC->getPredicate()); 2630 SDValue Op1 = getValue(I.getOperand(0)); 2631 SDValue Op2 = getValue(I.getOperand(1)); 2632 ISD::CondCode Condition = getFCmpCondCode(predicate); 2633 if (TM.Options.NoNaNsFPMath) 2634 Condition = getFCmpCodeWithoutNaN(Condition); 2635 EVT DestVT = TLI.getValueType(I.getType()); 2636 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2637 } 2638 2639 void SelectionDAGBuilder::visitSelect(const User &I) { 2640 SmallVector<EVT, 4> ValueVTs; 2641 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2642 unsigned NumValues = ValueVTs.size(); 2643 if (NumValues == 0) return; 2644 2645 SmallVector<SDValue, 4> Values(NumValues); 2646 SDValue Cond = getValue(I.getOperand(0)); 2647 SDValue TrueVal = getValue(I.getOperand(1)); 2648 SDValue FalseVal = getValue(I.getOperand(2)); 2649 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2650 ISD::VSELECT : ISD::SELECT; 2651 2652 for (unsigned i = 0; i != NumValues; ++i) 2653 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2654 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2655 Cond, 2656 SDValue(TrueVal.getNode(), 2657 TrueVal.getResNo() + i), 2658 SDValue(FalseVal.getNode(), 2659 FalseVal.getResNo() + i)); 2660 2661 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2662 DAG.getVTList(&ValueVTs[0], NumValues), 2663 &Values[0], NumValues)); 2664 } 2665 2666 void SelectionDAGBuilder::visitTrunc(const User &I) { 2667 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2668 SDValue N = getValue(I.getOperand(0)); 2669 EVT DestVT = TLI.getValueType(I.getType()); 2670 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2671 } 2672 2673 void SelectionDAGBuilder::visitZExt(const User &I) { 2674 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2675 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2676 SDValue N = getValue(I.getOperand(0)); 2677 EVT DestVT = TLI.getValueType(I.getType()); 2678 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2679 } 2680 2681 void SelectionDAGBuilder::visitSExt(const User &I) { 2682 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2683 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2684 SDValue N = getValue(I.getOperand(0)); 2685 EVT DestVT = TLI.getValueType(I.getType()); 2686 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2687 } 2688 2689 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2690 // FPTrunc is never a no-op cast, no need to check 2691 SDValue N = getValue(I.getOperand(0)); 2692 EVT DestVT = TLI.getValueType(I.getType()); 2693 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2694 DestVT, N, DAG.getIntPtrConstant(0))); 2695 } 2696 2697 void SelectionDAGBuilder::visitFPExt(const User &I){ 2698 // FPExt is never a no-op cast, no need to check 2699 SDValue N = getValue(I.getOperand(0)); 2700 EVT DestVT = TLI.getValueType(I.getType()); 2701 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2702 } 2703 2704 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2705 // FPToUI is never a no-op cast, no need to check 2706 SDValue N = getValue(I.getOperand(0)); 2707 EVT DestVT = TLI.getValueType(I.getType()); 2708 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2709 } 2710 2711 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2712 // FPToSI is never a no-op cast, no need to check 2713 SDValue N = getValue(I.getOperand(0)); 2714 EVT DestVT = TLI.getValueType(I.getType()); 2715 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2716 } 2717 2718 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2719 // UIToFP is never a no-op cast, no need to check 2720 SDValue N = getValue(I.getOperand(0)); 2721 EVT DestVT = TLI.getValueType(I.getType()); 2722 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2723 } 2724 2725 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2726 // SIToFP is never a no-op cast, no need to check 2727 SDValue N = getValue(I.getOperand(0)); 2728 EVT DestVT = TLI.getValueType(I.getType()); 2729 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2730 } 2731 2732 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2733 // What to do depends on the size of the integer and the size of the pointer. 2734 // We can either truncate, zero extend, or no-op, accordingly. 2735 SDValue N = getValue(I.getOperand(0)); 2736 EVT DestVT = TLI.getValueType(I.getType()); 2737 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2738 } 2739 2740 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2741 // What to do depends on the size of the integer and the size of the pointer. 2742 // We can either truncate, zero extend, or no-op, accordingly. 2743 SDValue N = getValue(I.getOperand(0)); 2744 EVT DestVT = TLI.getValueType(I.getType()); 2745 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2746 } 2747 2748 void SelectionDAGBuilder::visitBitCast(const User &I) { 2749 SDValue N = getValue(I.getOperand(0)); 2750 EVT DestVT = TLI.getValueType(I.getType()); 2751 2752 // BitCast assures us that source and destination are the same size so this is 2753 // either a BITCAST or a no-op. 2754 if (DestVT != N.getValueType()) 2755 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2756 DestVT, N)); // convert types. 2757 else 2758 setValue(&I, N); // noop cast. 2759 } 2760 2761 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2762 SDValue InVec = getValue(I.getOperand(0)); 2763 SDValue InVal = getValue(I.getOperand(1)); 2764 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2765 TLI.getPointerTy(), 2766 getValue(I.getOperand(2))); 2767 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2768 TLI.getValueType(I.getType()), 2769 InVec, InVal, InIdx)); 2770 } 2771 2772 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2773 SDValue InVec = getValue(I.getOperand(0)); 2774 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2775 TLI.getPointerTy(), 2776 getValue(I.getOperand(1))); 2777 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2778 TLI.getValueType(I.getType()), InVec, InIdx)); 2779 } 2780 2781 // Utility for visitShuffleVector - Return true if every element in Mask, 2782 // begining // from position Pos and ending in Pos+Size, falls within the 2783 // specified sequential range [L, L+Pos). or is undef. 2784 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2785 int Pos, int Size, int Low) { 2786 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2787 if (Mask[i] >= 0 && Mask[i] != Low) 2788 return false; 2789 return true; 2790 } 2791 2792 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2793 SmallVector<int, 8> Mask; 2794 SDValue Src1 = getValue(I.getOperand(0)); 2795 SDValue Src2 = getValue(I.getOperand(1)); 2796 2797 // Convert the ConstantVector mask operand into an array of ints, with -1 2798 // representing undef values. 2799 SmallVector<Constant*, 8> MaskElts; 2800 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2801 unsigned MaskNumElts = MaskElts.size(); 2802 for (unsigned i = 0; i != MaskNumElts; ++i) { 2803 if (isa<UndefValue>(MaskElts[i])) 2804 Mask.push_back(-1); 2805 else 2806 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2807 } 2808 2809 EVT VT = TLI.getValueType(I.getType()); 2810 EVT SrcVT = Src1.getValueType(); 2811 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2812 2813 if (SrcNumElts == MaskNumElts) { 2814 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2815 &Mask[0])); 2816 return; 2817 } 2818 2819 // Normalize the shuffle vector since mask and vector length don't match. 2820 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2821 // Mask is longer than the source vectors and is a multiple of the source 2822 // vectors. We can use concatenate vector to make the mask and vectors 2823 // lengths match. 2824 if (SrcNumElts*2 == MaskNumElts) { 2825 // First check for Src1 in low and Src2 in high 2826 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2827 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2828 // The shuffle is concatenating two vectors together. 2829 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2830 VT, Src1, Src2)); 2831 return; 2832 } 2833 // Then check for Src2 in low and Src1 in high 2834 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2835 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2836 // The shuffle is concatenating two vectors together. 2837 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2838 VT, Src2, Src1)); 2839 return; 2840 } 2841 } 2842 2843 // Pad both vectors with undefs to make them the same length as the mask. 2844 unsigned NumConcat = MaskNumElts / SrcNumElts; 2845 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2846 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2847 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2848 2849 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2850 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2851 MOps1[0] = Src1; 2852 MOps2[0] = Src2; 2853 2854 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2855 getCurDebugLoc(), VT, 2856 &MOps1[0], NumConcat); 2857 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2858 getCurDebugLoc(), VT, 2859 &MOps2[0], NumConcat); 2860 2861 // Readjust mask for new input vector length. 2862 SmallVector<int, 8> MappedOps; 2863 for (unsigned i = 0; i != MaskNumElts; ++i) { 2864 int Idx = Mask[i]; 2865 if (Idx < (int)SrcNumElts) 2866 MappedOps.push_back(Idx); 2867 else 2868 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2869 } 2870 2871 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2872 &MappedOps[0])); 2873 return; 2874 } 2875 2876 if (SrcNumElts > MaskNumElts) { 2877 // Analyze the access pattern of the vector to see if we can extract 2878 // two subvectors and do the shuffle. The analysis is done by calculating 2879 // the range of elements the mask access on both vectors. 2880 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2881 static_cast<int>(SrcNumElts+1)}; 2882 int MaxRange[2] = {-1, -1}; 2883 2884 for (unsigned i = 0; i != MaskNumElts; ++i) { 2885 int Idx = Mask[i]; 2886 int Input = 0; 2887 if (Idx < 0) 2888 continue; 2889 2890 if (Idx >= (int)SrcNumElts) { 2891 Input = 1; 2892 Idx -= SrcNumElts; 2893 } 2894 if (Idx > MaxRange[Input]) 2895 MaxRange[Input] = Idx; 2896 if (Idx < MinRange[Input]) 2897 MinRange[Input] = Idx; 2898 } 2899 2900 // Check if the access is smaller than the vector size and can we find 2901 // a reasonable extract index. 2902 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2903 // Extract. 2904 int StartIdx[2]; // StartIdx to extract from 2905 for (int Input=0; Input < 2; ++Input) { 2906 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2907 RangeUse[Input] = 0; // Unused 2908 StartIdx[Input] = 0; 2909 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2910 // Fits within range but we should see if we can find a good 2911 // start index that is a multiple of the mask length. 2912 if (MaxRange[Input] < (int)MaskNumElts) { 2913 RangeUse[Input] = 1; // Extract from beginning of the vector 2914 StartIdx[Input] = 0; 2915 } else { 2916 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2917 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2918 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2919 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2920 } 2921 } 2922 } 2923 2924 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2925 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2926 return; 2927 } 2928 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2929 // Extract appropriate subvector and generate a vector shuffle 2930 for (int Input=0; Input < 2; ++Input) { 2931 SDValue &Src = Input == 0 ? Src1 : Src2; 2932 if (RangeUse[Input] == 0) 2933 Src = DAG.getUNDEF(VT); 2934 else 2935 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2936 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2937 } 2938 2939 // Calculate new mask. 2940 SmallVector<int, 8> MappedOps; 2941 for (unsigned i = 0; i != MaskNumElts; ++i) { 2942 int Idx = Mask[i]; 2943 if (Idx < 0) 2944 MappedOps.push_back(Idx); 2945 else if (Idx < (int)SrcNumElts) 2946 MappedOps.push_back(Idx - StartIdx[0]); 2947 else 2948 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2949 } 2950 2951 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2952 &MappedOps[0])); 2953 return; 2954 } 2955 } 2956 2957 // We can't use either concat vectors or extract subvectors so fall back to 2958 // replacing the shuffle with extract and build vector. 2959 // to insert and build vector. 2960 EVT EltVT = VT.getVectorElementType(); 2961 EVT PtrVT = TLI.getPointerTy(); 2962 SmallVector<SDValue,8> Ops; 2963 for (unsigned i = 0; i != MaskNumElts; ++i) { 2964 if (Mask[i] < 0) { 2965 Ops.push_back(DAG.getUNDEF(EltVT)); 2966 } else { 2967 int Idx = Mask[i]; 2968 SDValue Res; 2969 2970 if (Idx < (int)SrcNumElts) 2971 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2972 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2973 else 2974 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2975 EltVT, Src2, 2976 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2977 2978 Ops.push_back(Res); 2979 } 2980 } 2981 2982 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2983 VT, &Ops[0], Ops.size())); 2984 } 2985 2986 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2987 const Value *Op0 = I.getOperand(0); 2988 const Value *Op1 = I.getOperand(1); 2989 Type *AggTy = I.getType(); 2990 Type *ValTy = Op1->getType(); 2991 bool IntoUndef = isa<UndefValue>(Op0); 2992 bool FromUndef = isa<UndefValue>(Op1); 2993 2994 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2995 2996 SmallVector<EVT, 4> AggValueVTs; 2997 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2998 SmallVector<EVT, 4> ValValueVTs; 2999 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3000 3001 unsigned NumAggValues = AggValueVTs.size(); 3002 unsigned NumValValues = ValValueVTs.size(); 3003 SmallVector<SDValue, 4> Values(NumAggValues); 3004 3005 SDValue Agg = getValue(Op0); 3006 unsigned i = 0; 3007 // Copy the beginning value(s) from the original aggregate. 3008 for (; i != LinearIndex; ++i) 3009 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3010 SDValue(Agg.getNode(), Agg.getResNo() + i); 3011 // Copy values from the inserted value(s). 3012 if (NumValValues) { 3013 SDValue Val = getValue(Op1); 3014 for (; i != LinearIndex + NumValValues; ++i) 3015 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3016 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3017 } 3018 // Copy remaining value(s) from the original aggregate. 3019 for (; i != NumAggValues; ++i) 3020 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3021 SDValue(Agg.getNode(), Agg.getResNo() + i); 3022 3023 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3024 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3025 &Values[0], NumAggValues)); 3026 } 3027 3028 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3029 const Value *Op0 = I.getOperand(0); 3030 Type *AggTy = Op0->getType(); 3031 Type *ValTy = I.getType(); 3032 bool OutOfUndef = isa<UndefValue>(Op0); 3033 3034 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3035 3036 SmallVector<EVT, 4> ValValueVTs; 3037 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3038 3039 unsigned NumValValues = ValValueVTs.size(); 3040 3041 // Ignore a extractvalue that produces an empty object 3042 if (!NumValValues) { 3043 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3044 return; 3045 } 3046 3047 SmallVector<SDValue, 4> Values(NumValValues); 3048 3049 SDValue Agg = getValue(Op0); 3050 // Copy out the selected value(s). 3051 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3052 Values[i - LinearIndex] = 3053 OutOfUndef ? 3054 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3055 SDValue(Agg.getNode(), Agg.getResNo() + i); 3056 3057 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3058 DAG.getVTList(&ValValueVTs[0], NumValValues), 3059 &Values[0], NumValValues)); 3060 } 3061 3062 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3063 SDValue N = getValue(I.getOperand(0)); 3064 Type *Ty = I.getOperand(0)->getType(); 3065 3066 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3067 OI != E; ++OI) { 3068 const Value *Idx = *OI; 3069 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3070 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3071 if (Field) { 3072 // N = N + Offset 3073 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3074 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3075 DAG.getIntPtrConstant(Offset)); 3076 } 3077 3078 Ty = StTy->getElementType(Field); 3079 } else { 3080 Ty = cast<SequentialType>(Ty)->getElementType(); 3081 3082 // If this is a constant subscript, handle it quickly. 3083 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3084 if (CI->isZero()) continue; 3085 uint64_t Offs = 3086 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3087 SDValue OffsVal; 3088 EVT PTy = TLI.getPointerTy(); 3089 unsigned PtrBits = PTy.getSizeInBits(); 3090 if (PtrBits < 64) 3091 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3092 TLI.getPointerTy(), 3093 DAG.getConstant(Offs, MVT::i64)); 3094 else 3095 OffsVal = DAG.getIntPtrConstant(Offs); 3096 3097 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3098 OffsVal); 3099 continue; 3100 } 3101 3102 // N = N + Idx * ElementSize; 3103 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3104 TD->getTypeAllocSize(Ty)); 3105 SDValue IdxN = getValue(Idx); 3106 3107 // If the index is smaller or larger than intptr_t, truncate or extend 3108 // it. 3109 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3110 3111 // If this is a multiply by a power of two, turn it into a shl 3112 // immediately. This is a very common case. 3113 if (ElementSize != 1) { 3114 if (ElementSize.isPowerOf2()) { 3115 unsigned Amt = ElementSize.logBase2(); 3116 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3117 N.getValueType(), IdxN, 3118 DAG.getConstant(Amt, IdxN.getValueType())); 3119 } else { 3120 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3121 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3122 N.getValueType(), IdxN, Scale); 3123 } 3124 } 3125 3126 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3127 N.getValueType(), N, IdxN); 3128 } 3129 } 3130 3131 setValue(&I, N); 3132 } 3133 3134 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3135 // If this is a fixed sized alloca in the entry block of the function, 3136 // allocate it statically on the stack. 3137 if (FuncInfo.StaticAllocaMap.count(&I)) 3138 return; // getValue will auto-populate this. 3139 3140 Type *Ty = I.getAllocatedType(); 3141 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3142 unsigned Align = 3143 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3144 I.getAlignment()); 3145 3146 SDValue AllocSize = getValue(I.getArraySize()); 3147 3148 EVT IntPtr = TLI.getPointerTy(); 3149 if (AllocSize.getValueType() != IntPtr) 3150 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3151 3152 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3153 AllocSize, 3154 DAG.getConstant(TySize, IntPtr)); 3155 3156 // Handle alignment. If the requested alignment is less than or equal to 3157 // the stack alignment, ignore it. If the size is greater than or equal to 3158 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3159 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3160 if (Align <= StackAlign) 3161 Align = 0; 3162 3163 // Round the size of the allocation up to the stack alignment size 3164 // by add SA-1 to the size. 3165 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3166 AllocSize.getValueType(), AllocSize, 3167 DAG.getIntPtrConstant(StackAlign-1)); 3168 3169 // Mask out the low bits for alignment purposes. 3170 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3171 AllocSize.getValueType(), AllocSize, 3172 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3173 3174 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3175 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3176 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3177 VTs, Ops, 3); 3178 setValue(&I, DSA); 3179 DAG.setRoot(DSA.getValue(1)); 3180 3181 // Inform the Frame Information that we have just allocated a variable-sized 3182 // object. 3183 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3184 } 3185 3186 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3187 if (I.isAtomic()) 3188 return visitAtomicLoad(I); 3189 3190 const Value *SV = I.getOperand(0); 3191 SDValue Ptr = getValue(SV); 3192 3193 Type *Ty = I.getType(); 3194 3195 bool isVolatile = I.isVolatile(); 3196 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3197 bool isInvariant = I.getMetadata("invariant.load") != 0; 3198 unsigned Alignment = I.getAlignment(); 3199 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3200 3201 SmallVector<EVT, 4> ValueVTs; 3202 SmallVector<uint64_t, 4> Offsets; 3203 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3204 unsigned NumValues = ValueVTs.size(); 3205 if (NumValues == 0) 3206 return; 3207 3208 SDValue Root; 3209 bool ConstantMemory = false; 3210 if (I.isVolatile() || NumValues > MaxParallelChains) 3211 // Serialize volatile loads with other side effects. 3212 Root = getRoot(); 3213 else if (AA->pointsToConstantMemory( 3214 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3215 // Do not serialize (non-volatile) loads of constant memory with anything. 3216 Root = DAG.getEntryNode(); 3217 ConstantMemory = true; 3218 } else { 3219 // Do not serialize non-volatile loads against each other. 3220 Root = DAG.getRoot(); 3221 } 3222 3223 SmallVector<SDValue, 4> Values(NumValues); 3224 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3225 NumValues)); 3226 EVT PtrVT = Ptr.getValueType(); 3227 unsigned ChainI = 0; 3228 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3229 // Serializing loads here may result in excessive register pressure, and 3230 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3231 // could recover a bit by hoisting nodes upward in the chain by recognizing 3232 // they are side-effect free or do not alias. The optimizer should really 3233 // avoid this case by converting large object/array copies to llvm.memcpy 3234 // (MaxParallelChains should always remain as failsafe). 3235 if (ChainI == MaxParallelChains) { 3236 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3237 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3238 MVT::Other, &Chains[0], ChainI); 3239 Root = Chain; 3240 ChainI = 0; 3241 } 3242 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3243 PtrVT, Ptr, 3244 DAG.getConstant(Offsets[i], PtrVT)); 3245 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3246 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3247 isNonTemporal, isInvariant, Alignment, TBAAInfo); 3248 3249 Values[i] = L; 3250 Chains[ChainI] = L.getValue(1); 3251 } 3252 3253 if (!ConstantMemory) { 3254 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3255 MVT::Other, &Chains[0], ChainI); 3256 if (isVolatile) 3257 DAG.setRoot(Chain); 3258 else 3259 PendingLoads.push_back(Chain); 3260 } 3261 3262 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3263 DAG.getVTList(&ValueVTs[0], NumValues), 3264 &Values[0], NumValues)); 3265 } 3266 3267 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3268 if (I.isAtomic()) 3269 return visitAtomicStore(I); 3270 3271 const Value *SrcV = I.getOperand(0); 3272 const Value *PtrV = I.getOperand(1); 3273 3274 SmallVector<EVT, 4> ValueVTs; 3275 SmallVector<uint64_t, 4> Offsets; 3276 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3277 unsigned NumValues = ValueVTs.size(); 3278 if (NumValues == 0) 3279 return; 3280 3281 // Get the lowered operands. Note that we do this after 3282 // checking if NumResults is zero, because with zero results 3283 // the operands won't have values in the map. 3284 SDValue Src = getValue(SrcV); 3285 SDValue Ptr = getValue(PtrV); 3286 3287 SDValue Root = getRoot(); 3288 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3289 NumValues)); 3290 EVT PtrVT = Ptr.getValueType(); 3291 bool isVolatile = I.isVolatile(); 3292 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3293 unsigned Alignment = I.getAlignment(); 3294 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3295 3296 unsigned ChainI = 0; 3297 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3298 // See visitLoad comments. 3299 if (ChainI == MaxParallelChains) { 3300 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3301 MVT::Other, &Chains[0], ChainI); 3302 Root = Chain; 3303 ChainI = 0; 3304 } 3305 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3306 DAG.getConstant(Offsets[i], PtrVT)); 3307 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3308 SDValue(Src.getNode(), Src.getResNo() + i), 3309 Add, MachinePointerInfo(PtrV, Offsets[i]), 3310 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3311 Chains[ChainI] = St; 3312 } 3313 3314 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3315 MVT::Other, &Chains[0], ChainI); 3316 ++SDNodeOrder; 3317 AssignOrderingToNode(StoreNode.getNode()); 3318 DAG.setRoot(StoreNode); 3319 } 3320 3321 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3322 SynchronizationScope Scope, 3323 bool Before, DebugLoc dl, 3324 SelectionDAG &DAG, 3325 const TargetLowering &TLI) { 3326 // Fence, if necessary 3327 if (Before) { 3328 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3329 Order = Release; 3330 else if (Order == Acquire || Order == Monotonic) 3331 return Chain; 3332 } else { 3333 if (Order == AcquireRelease) 3334 Order = Acquire; 3335 else if (Order == Release || Order == Monotonic) 3336 return Chain; 3337 } 3338 SDValue Ops[3]; 3339 Ops[0] = Chain; 3340 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3341 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3342 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3343 } 3344 3345 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3346 DebugLoc dl = getCurDebugLoc(); 3347 AtomicOrdering Order = I.getOrdering(); 3348 SynchronizationScope Scope = I.getSynchScope(); 3349 3350 SDValue InChain = getRoot(); 3351 3352 if (TLI.getInsertFencesForAtomic()) 3353 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3354 DAG, TLI); 3355 3356 SDValue L = 3357 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3358 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3359 InChain, 3360 getValue(I.getPointerOperand()), 3361 getValue(I.getCompareOperand()), 3362 getValue(I.getNewValOperand()), 3363 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3364 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3365 Scope); 3366 3367 SDValue OutChain = L.getValue(1); 3368 3369 if (TLI.getInsertFencesForAtomic()) 3370 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3371 DAG, TLI); 3372 3373 setValue(&I, L); 3374 DAG.setRoot(OutChain); 3375 } 3376 3377 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3378 DebugLoc dl = getCurDebugLoc(); 3379 ISD::NodeType NT; 3380 switch (I.getOperation()) { 3381 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3382 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3383 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3384 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3385 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3386 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3387 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3388 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3389 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3390 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3391 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3392 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3393 } 3394 AtomicOrdering Order = I.getOrdering(); 3395 SynchronizationScope Scope = I.getSynchScope(); 3396 3397 SDValue InChain = getRoot(); 3398 3399 if (TLI.getInsertFencesForAtomic()) 3400 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3401 DAG, TLI); 3402 3403 SDValue L = 3404 DAG.getAtomic(NT, dl, 3405 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3406 InChain, 3407 getValue(I.getPointerOperand()), 3408 getValue(I.getValOperand()), 3409 I.getPointerOperand(), 0 /* Alignment */, 3410 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3411 Scope); 3412 3413 SDValue OutChain = L.getValue(1); 3414 3415 if (TLI.getInsertFencesForAtomic()) 3416 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3417 DAG, TLI); 3418 3419 setValue(&I, L); 3420 DAG.setRoot(OutChain); 3421 } 3422 3423 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3424 DebugLoc dl = getCurDebugLoc(); 3425 SDValue Ops[3]; 3426 Ops[0] = getRoot(); 3427 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3428 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3429 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3430 } 3431 3432 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3433 DebugLoc dl = getCurDebugLoc(); 3434 AtomicOrdering Order = I.getOrdering(); 3435 SynchronizationScope Scope = I.getSynchScope(); 3436 3437 SDValue InChain = getRoot(); 3438 3439 EVT VT = EVT::getEVT(I.getType()); 3440 3441 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3442 report_fatal_error("Cannot generate unaligned atomic load"); 3443 3444 SDValue L = 3445 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3446 getValue(I.getPointerOperand()), 3447 I.getPointerOperand(), I.getAlignment(), 3448 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3449 Scope); 3450 3451 SDValue OutChain = L.getValue(1); 3452 3453 if (TLI.getInsertFencesForAtomic()) 3454 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3455 DAG, TLI); 3456 3457 setValue(&I, L); 3458 DAG.setRoot(OutChain); 3459 } 3460 3461 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3462 DebugLoc dl = getCurDebugLoc(); 3463 3464 AtomicOrdering Order = I.getOrdering(); 3465 SynchronizationScope Scope = I.getSynchScope(); 3466 3467 SDValue InChain = getRoot(); 3468 3469 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3470 3471 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3472 report_fatal_error("Cannot generate unaligned atomic store"); 3473 3474 if (TLI.getInsertFencesForAtomic()) 3475 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3476 DAG, TLI); 3477 3478 SDValue OutChain = 3479 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3480 InChain, 3481 getValue(I.getPointerOperand()), 3482 getValue(I.getValueOperand()), 3483 I.getPointerOperand(), I.getAlignment(), 3484 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3485 Scope); 3486 3487 if (TLI.getInsertFencesForAtomic()) 3488 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3489 DAG, TLI); 3490 3491 DAG.setRoot(OutChain); 3492 } 3493 3494 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3495 /// node. 3496 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3497 unsigned Intrinsic) { 3498 bool HasChain = !I.doesNotAccessMemory(); 3499 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3500 3501 // Build the operand list. 3502 SmallVector<SDValue, 8> Ops; 3503 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3504 if (OnlyLoad) { 3505 // We don't need to serialize loads against other loads. 3506 Ops.push_back(DAG.getRoot()); 3507 } else { 3508 Ops.push_back(getRoot()); 3509 } 3510 } 3511 3512 // Info is set by getTgtMemInstrinsic 3513 TargetLowering::IntrinsicInfo Info; 3514 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3515 3516 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3517 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3518 Info.opc == ISD::INTRINSIC_W_CHAIN) 3519 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3520 3521 // Add all operands of the call to the operand list. 3522 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3523 SDValue Op = getValue(I.getArgOperand(i)); 3524 Ops.push_back(Op); 3525 } 3526 3527 SmallVector<EVT, 4> ValueVTs; 3528 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3529 3530 if (HasChain) 3531 ValueVTs.push_back(MVT::Other); 3532 3533 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3534 3535 // Create the node. 3536 SDValue Result; 3537 if (IsTgtIntrinsic) { 3538 // This is target intrinsic that touches memory 3539 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3540 VTs, &Ops[0], Ops.size(), 3541 Info.memVT, 3542 MachinePointerInfo(Info.ptrVal, Info.offset), 3543 Info.align, Info.vol, 3544 Info.readMem, Info.writeMem); 3545 } else if (!HasChain) { 3546 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3547 VTs, &Ops[0], Ops.size()); 3548 } else if (!I.getType()->isVoidTy()) { 3549 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3550 VTs, &Ops[0], Ops.size()); 3551 } else { 3552 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3553 VTs, &Ops[0], Ops.size()); 3554 } 3555 3556 if (HasChain) { 3557 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3558 if (OnlyLoad) 3559 PendingLoads.push_back(Chain); 3560 else 3561 DAG.setRoot(Chain); 3562 } 3563 3564 if (!I.getType()->isVoidTy()) { 3565 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3566 EVT VT = TLI.getValueType(PTy); 3567 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3568 } 3569 3570 setValue(&I, Result); 3571 } 3572 } 3573 3574 /// GetSignificand - Get the significand and build it into a floating-point 3575 /// number with exponent of 1: 3576 /// 3577 /// Op = (Op & 0x007fffff) | 0x3f800000; 3578 /// 3579 /// where Op is the hexidecimal representation of floating point value. 3580 static SDValue 3581 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3582 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3583 DAG.getConstant(0x007fffff, MVT::i32)); 3584 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3585 DAG.getConstant(0x3f800000, MVT::i32)); 3586 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3587 } 3588 3589 /// GetExponent - Get the exponent: 3590 /// 3591 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3592 /// 3593 /// where Op is the hexidecimal representation of floating point value. 3594 static SDValue 3595 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3596 DebugLoc dl) { 3597 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3598 DAG.getConstant(0x7f800000, MVT::i32)); 3599 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3600 DAG.getConstant(23, TLI.getPointerTy())); 3601 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3602 DAG.getConstant(127, MVT::i32)); 3603 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3604 } 3605 3606 /// getF32Constant - Get 32-bit floating point constant. 3607 static SDValue 3608 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3609 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3610 } 3611 3612 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3613 const char * 3614 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3615 SDValue Op1 = getValue(I.getArgOperand(0)); 3616 SDValue Op2 = getValue(I.getArgOperand(1)); 3617 3618 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3619 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3620 return 0; 3621 } 3622 3623 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3624 /// limited-precision mode. 3625 void 3626 SelectionDAGBuilder::visitExp(const CallInst &I) { 3627 SDValue result; 3628 DebugLoc dl = getCurDebugLoc(); 3629 3630 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3631 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3632 SDValue Op = getValue(I.getArgOperand(0)); 3633 3634 // Put the exponent in the right bit position for later addition to the 3635 // final result: 3636 // 3637 // #define LOG2OFe 1.4426950f 3638 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3639 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3640 getF32Constant(DAG, 0x3fb8aa3b)); 3641 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3642 3643 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3644 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3645 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3646 3647 // IntegerPartOfX <<= 23; 3648 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3649 DAG.getConstant(23, TLI.getPointerTy())); 3650 3651 if (LimitFloatPrecision <= 6) { 3652 // For floating-point precision of 6: 3653 // 3654 // TwoToFractionalPartOfX = 3655 // 0.997535578f + 3656 // (0.735607626f + 0.252464424f * x) * x; 3657 // 3658 // error 0.0144103317, which is 6 bits 3659 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3660 getF32Constant(DAG, 0x3e814304)); 3661 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3662 getF32Constant(DAG, 0x3f3c50c8)); 3663 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3664 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3665 getF32Constant(DAG, 0x3f7f5e7e)); 3666 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3667 3668 // Add the exponent into the result in integer domain. 3669 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3670 TwoToFracPartOfX, IntegerPartOfX); 3671 3672 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3673 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3674 // For floating-point precision of 12: 3675 // 3676 // TwoToFractionalPartOfX = 3677 // 0.999892986f + 3678 // (0.696457318f + 3679 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3680 // 3681 // 0.000107046256 error, which is 13 to 14 bits 3682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3683 getF32Constant(DAG, 0x3da235e3)); 3684 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3685 getF32Constant(DAG, 0x3e65b8f3)); 3686 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3687 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3688 getF32Constant(DAG, 0x3f324b07)); 3689 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3690 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3691 getF32Constant(DAG, 0x3f7ff8fd)); 3692 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3693 3694 // Add the exponent into the result in integer domain. 3695 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3696 TwoToFracPartOfX, IntegerPartOfX); 3697 3698 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3699 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3700 // For floating-point precision of 18: 3701 // 3702 // TwoToFractionalPartOfX = 3703 // 0.999999982f + 3704 // (0.693148872f + 3705 // (0.240227044f + 3706 // (0.554906021e-1f + 3707 // (0.961591928e-2f + 3708 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3709 // 3710 // error 2.47208000*10^(-7), which is better than 18 bits 3711 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3712 getF32Constant(DAG, 0x3924b03e)); 3713 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3714 getF32Constant(DAG, 0x3ab24b87)); 3715 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3716 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3717 getF32Constant(DAG, 0x3c1d8c17)); 3718 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3719 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3720 getF32Constant(DAG, 0x3d634a1d)); 3721 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3722 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3723 getF32Constant(DAG, 0x3e75fe14)); 3724 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3725 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3726 getF32Constant(DAG, 0x3f317234)); 3727 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3728 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3729 getF32Constant(DAG, 0x3f800000)); 3730 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3731 MVT::i32, t13); 3732 3733 // Add the exponent into the result in integer domain. 3734 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3735 TwoToFracPartOfX, IntegerPartOfX); 3736 3737 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3738 } 3739 } else { 3740 // No special expansion. 3741 result = DAG.getNode(ISD::FEXP, dl, 3742 getValue(I.getArgOperand(0)).getValueType(), 3743 getValue(I.getArgOperand(0))); 3744 } 3745 3746 setValue(&I, result); 3747 } 3748 3749 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3750 /// limited-precision mode. 3751 void 3752 SelectionDAGBuilder::visitLog(const CallInst &I) { 3753 SDValue result; 3754 DebugLoc dl = getCurDebugLoc(); 3755 3756 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3757 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3758 SDValue Op = getValue(I.getArgOperand(0)); 3759 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3760 3761 // Scale the exponent by log(2) [0.69314718f]. 3762 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3763 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3764 getF32Constant(DAG, 0x3f317218)); 3765 3766 // Get the significand and build it into a floating-point number with 3767 // exponent of 1. 3768 SDValue X = GetSignificand(DAG, Op1, dl); 3769 3770 if (LimitFloatPrecision <= 6) { 3771 // For floating-point precision of 6: 3772 // 3773 // LogofMantissa = 3774 // -1.1609546f + 3775 // (1.4034025f - 0.23903021f * x) * x; 3776 // 3777 // error 0.0034276066, which is better than 8 bits 3778 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0xbe74c456)); 3780 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3781 getF32Constant(DAG, 0x3fb3a2b1)); 3782 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3783 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3784 getF32Constant(DAG, 0x3f949a29)); 3785 3786 result = DAG.getNode(ISD::FADD, dl, 3787 MVT::f32, LogOfExponent, LogOfMantissa); 3788 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3789 // For floating-point precision of 12: 3790 // 3791 // LogOfMantissa = 3792 // -1.7417939f + 3793 // (2.8212026f + 3794 // (-1.4699568f + 3795 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3796 // 3797 // error 0.000061011436, which is 14 bits 3798 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3799 getF32Constant(DAG, 0xbd67b6d6)); 3800 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3801 getF32Constant(DAG, 0x3ee4f4b8)); 3802 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3803 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3804 getF32Constant(DAG, 0x3fbc278b)); 3805 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3806 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3807 getF32Constant(DAG, 0x40348e95)); 3808 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3809 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3810 getF32Constant(DAG, 0x3fdef31a)); 3811 3812 result = DAG.getNode(ISD::FADD, dl, 3813 MVT::f32, LogOfExponent, LogOfMantissa); 3814 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3815 // For floating-point precision of 18: 3816 // 3817 // LogOfMantissa = 3818 // -2.1072184f + 3819 // (4.2372794f + 3820 // (-3.7029485f + 3821 // (2.2781945f + 3822 // (-0.87823314f + 3823 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3824 // 3825 // error 0.0000023660568, which is better than 18 bits 3826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3827 getF32Constant(DAG, 0xbc91e5ac)); 3828 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3829 getF32Constant(DAG, 0x3e4350aa)); 3830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3831 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3832 getF32Constant(DAG, 0x3f60d3e3)); 3833 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3834 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3835 getF32Constant(DAG, 0x4011cdf0)); 3836 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3837 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3838 getF32Constant(DAG, 0x406cfd1c)); 3839 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3840 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3841 getF32Constant(DAG, 0x408797cb)); 3842 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3843 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3844 getF32Constant(DAG, 0x4006dcab)); 3845 3846 result = DAG.getNode(ISD::FADD, dl, 3847 MVT::f32, LogOfExponent, LogOfMantissa); 3848 } 3849 } else { 3850 // No special expansion. 3851 result = DAG.getNode(ISD::FLOG, dl, 3852 getValue(I.getArgOperand(0)).getValueType(), 3853 getValue(I.getArgOperand(0))); 3854 } 3855 3856 setValue(&I, result); 3857 } 3858 3859 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3860 /// limited-precision mode. 3861 void 3862 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3863 SDValue result; 3864 DebugLoc dl = getCurDebugLoc(); 3865 3866 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3867 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3868 SDValue Op = getValue(I.getArgOperand(0)); 3869 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3870 3871 // Get the exponent. 3872 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3873 3874 // Get the significand and build it into a floating-point number with 3875 // exponent of 1. 3876 SDValue X = GetSignificand(DAG, Op1, dl); 3877 3878 // Different possible minimax approximations of significand in 3879 // floating-point for various degrees of accuracy over [1,2]. 3880 if (LimitFloatPrecision <= 6) { 3881 // For floating-point precision of 6: 3882 // 3883 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3884 // 3885 // error 0.0049451742, which is more than 7 bits 3886 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3887 getF32Constant(DAG, 0xbeb08fe0)); 3888 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3889 getF32Constant(DAG, 0x40019463)); 3890 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3891 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3892 getF32Constant(DAG, 0x3fd6633d)); 3893 3894 result = DAG.getNode(ISD::FADD, dl, 3895 MVT::f32, LogOfExponent, Log2ofMantissa); 3896 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3897 // For floating-point precision of 12: 3898 // 3899 // Log2ofMantissa = 3900 // -2.51285454f + 3901 // (4.07009056f + 3902 // (-2.12067489f + 3903 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3904 // 3905 // error 0.0000876136000, which is better than 13 bits 3906 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3907 getF32Constant(DAG, 0xbda7262e)); 3908 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3909 getF32Constant(DAG, 0x3f25280b)); 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3911 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x4007b923)); 3913 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3914 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3915 getF32Constant(DAG, 0x40823e2f)); 3916 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3917 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3918 getF32Constant(DAG, 0x4020d29c)); 3919 3920 result = DAG.getNode(ISD::FADD, dl, 3921 MVT::f32, LogOfExponent, Log2ofMantissa); 3922 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3923 // For floating-point precision of 18: 3924 // 3925 // Log2ofMantissa = 3926 // -3.0400495f + 3927 // (6.1129976f + 3928 // (-5.3420409f + 3929 // (3.2865683f + 3930 // (-1.2669343f + 3931 // (0.27515199f - 3932 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3933 // 3934 // error 0.0000018516, which is better than 18 bits 3935 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3936 getF32Constant(DAG, 0xbcd2769e)); 3937 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3938 getF32Constant(DAG, 0x3e8ce0b9)); 3939 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3940 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3941 getF32Constant(DAG, 0x3fa22ae7)); 3942 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3943 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3944 getF32Constant(DAG, 0x40525723)); 3945 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3946 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3947 getF32Constant(DAG, 0x40aaf200)); 3948 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3949 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3950 getF32Constant(DAG, 0x40c39dad)); 3951 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3952 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3953 getF32Constant(DAG, 0x4042902c)); 3954 3955 result = DAG.getNode(ISD::FADD, dl, 3956 MVT::f32, LogOfExponent, Log2ofMantissa); 3957 } 3958 } else { 3959 // No special expansion. 3960 result = DAG.getNode(ISD::FLOG2, dl, 3961 getValue(I.getArgOperand(0)).getValueType(), 3962 getValue(I.getArgOperand(0))); 3963 } 3964 3965 setValue(&I, result); 3966 } 3967 3968 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3969 /// limited-precision mode. 3970 void 3971 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3972 SDValue result; 3973 DebugLoc dl = getCurDebugLoc(); 3974 3975 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3976 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3977 SDValue Op = getValue(I.getArgOperand(0)); 3978 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3979 3980 // Scale the exponent by log10(2) [0.30102999f]. 3981 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3982 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3983 getF32Constant(DAG, 0x3e9a209a)); 3984 3985 // Get the significand and build it into a floating-point number with 3986 // exponent of 1. 3987 SDValue X = GetSignificand(DAG, Op1, dl); 3988 3989 if (LimitFloatPrecision <= 6) { 3990 // For floating-point precision of 6: 3991 // 3992 // Log10ofMantissa = 3993 // -0.50419619f + 3994 // (0.60948995f - 0.10380950f * x) * x; 3995 // 3996 // error 0.0014886165, which is 6 bits 3997 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3998 getF32Constant(DAG, 0xbdd49a13)); 3999 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4000 getF32Constant(DAG, 0x3f1c0789)); 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4002 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4003 getF32Constant(DAG, 0x3f011300)); 4004 4005 result = DAG.getNode(ISD::FADD, dl, 4006 MVT::f32, LogOfExponent, Log10ofMantissa); 4007 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4008 // For floating-point precision of 12: 4009 // 4010 // Log10ofMantissa = 4011 // -0.64831180f + 4012 // (0.91751397f + 4013 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4014 // 4015 // error 0.00019228036, which is better than 12 bits 4016 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4017 getF32Constant(DAG, 0x3d431f31)); 4018 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4019 getF32Constant(DAG, 0x3ea21fb2)); 4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4021 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3f6ae232)); 4023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4024 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4025 getF32Constant(DAG, 0x3f25f7c3)); 4026 4027 result = DAG.getNode(ISD::FADD, dl, 4028 MVT::f32, LogOfExponent, Log10ofMantissa); 4029 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4030 // For floating-point precision of 18: 4031 // 4032 // Log10ofMantissa = 4033 // -0.84299375f + 4034 // (1.5327582f + 4035 // (-1.0688956f + 4036 // (0.49102474f + 4037 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4038 // 4039 // error 0.0000037995730, which is better than 18 bits 4040 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4041 getF32Constant(DAG, 0x3c5d51ce)); 4042 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4043 getF32Constant(DAG, 0x3e00685a)); 4044 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4045 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4046 getF32Constant(DAG, 0x3efb6798)); 4047 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4048 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4049 getF32Constant(DAG, 0x3f88d192)); 4050 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4051 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4052 getF32Constant(DAG, 0x3fc4316c)); 4053 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4054 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4055 getF32Constant(DAG, 0x3f57ce70)); 4056 4057 result = DAG.getNode(ISD::FADD, dl, 4058 MVT::f32, LogOfExponent, Log10ofMantissa); 4059 } 4060 } else { 4061 // No special expansion. 4062 result = DAG.getNode(ISD::FLOG10, dl, 4063 getValue(I.getArgOperand(0)).getValueType(), 4064 getValue(I.getArgOperand(0))); 4065 } 4066 4067 setValue(&I, result); 4068 } 4069 4070 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4071 /// limited-precision mode. 4072 void 4073 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4074 SDValue result; 4075 DebugLoc dl = getCurDebugLoc(); 4076 4077 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4078 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4079 SDValue Op = getValue(I.getArgOperand(0)); 4080 4081 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4082 4083 // FractionalPartOfX = x - (float)IntegerPartOfX; 4084 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4085 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4086 4087 // IntegerPartOfX <<= 23; 4088 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4089 DAG.getConstant(23, TLI.getPointerTy())); 4090 4091 if (LimitFloatPrecision <= 6) { 4092 // For floating-point precision of 6: 4093 // 4094 // TwoToFractionalPartOfX = 4095 // 0.997535578f + 4096 // (0.735607626f + 0.252464424f * x) * x; 4097 // 4098 // error 0.0144103317, which is 6 bits 4099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4100 getF32Constant(DAG, 0x3e814304)); 4101 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4102 getF32Constant(DAG, 0x3f3c50c8)); 4103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4104 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4105 getF32Constant(DAG, 0x3f7f5e7e)); 4106 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4107 SDValue TwoToFractionalPartOfX = 4108 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4109 4110 result = DAG.getNode(ISD::BITCAST, dl, 4111 MVT::f32, TwoToFractionalPartOfX); 4112 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4113 // For floating-point precision of 12: 4114 // 4115 // TwoToFractionalPartOfX = 4116 // 0.999892986f + 4117 // (0.696457318f + 4118 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4119 // 4120 // error 0.000107046256, which is 13 to 14 bits 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0x3da235e3)); 4123 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3e65b8f3)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x3f324b07)); 4128 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4129 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4130 getF32Constant(DAG, 0x3f7ff8fd)); 4131 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4132 SDValue TwoToFractionalPartOfX = 4133 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4134 4135 result = DAG.getNode(ISD::BITCAST, dl, 4136 MVT::f32, TwoToFractionalPartOfX); 4137 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4138 // For floating-point precision of 18: 4139 // 4140 // TwoToFractionalPartOfX = 4141 // 0.999999982f + 4142 // (0.693148872f + 4143 // (0.240227044f + 4144 // (0.554906021e-1f + 4145 // (0.961591928e-2f + 4146 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4147 // error 2.47208000*10^(-7), which is better than 18 bits 4148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4149 getF32Constant(DAG, 0x3924b03e)); 4150 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4151 getF32Constant(DAG, 0x3ab24b87)); 4152 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4153 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4154 getF32Constant(DAG, 0x3c1d8c17)); 4155 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4156 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4157 getF32Constant(DAG, 0x3d634a1d)); 4158 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4159 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4160 getF32Constant(DAG, 0x3e75fe14)); 4161 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4162 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4163 getF32Constant(DAG, 0x3f317234)); 4164 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4165 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4166 getF32Constant(DAG, 0x3f800000)); 4167 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4168 SDValue TwoToFractionalPartOfX = 4169 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4170 4171 result = DAG.getNode(ISD::BITCAST, dl, 4172 MVT::f32, TwoToFractionalPartOfX); 4173 } 4174 } else { 4175 // No special expansion. 4176 result = DAG.getNode(ISD::FEXP2, dl, 4177 getValue(I.getArgOperand(0)).getValueType(), 4178 getValue(I.getArgOperand(0))); 4179 } 4180 4181 setValue(&I, result); 4182 } 4183 4184 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4185 /// limited-precision mode with x == 10.0f. 4186 void 4187 SelectionDAGBuilder::visitPow(const CallInst &I) { 4188 SDValue result; 4189 const Value *Val = I.getArgOperand(0); 4190 DebugLoc dl = getCurDebugLoc(); 4191 bool IsExp10 = false; 4192 4193 if (getValue(Val).getValueType() == MVT::f32 && 4194 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4195 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4196 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4197 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4198 APFloat Ten(10.0f); 4199 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4200 } 4201 } 4202 } 4203 4204 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4205 SDValue Op = getValue(I.getArgOperand(1)); 4206 4207 // Put the exponent in the right bit position for later addition to the 4208 // final result: 4209 // 4210 // #define LOG2OF10 3.3219281f 4211 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4212 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4213 getF32Constant(DAG, 0x40549a78)); 4214 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4215 4216 // FractionalPartOfX = x - (float)IntegerPartOfX; 4217 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4218 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4219 4220 // IntegerPartOfX <<= 23; 4221 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4222 DAG.getConstant(23, TLI.getPointerTy())); 4223 4224 if (LimitFloatPrecision <= 6) { 4225 // For floating-point precision of 6: 4226 // 4227 // twoToFractionalPartOfX = 4228 // 0.997535578f + 4229 // (0.735607626f + 0.252464424f * x) * x; 4230 // 4231 // error 0.0144103317, which is 6 bits 4232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4233 getF32Constant(DAG, 0x3e814304)); 4234 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4235 getF32Constant(DAG, 0x3f3c50c8)); 4236 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4237 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4238 getF32Constant(DAG, 0x3f7f5e7e)); 4239 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4240 SDValue TwoToFractionalPartOfX = 4241 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4242 4243 result = DAG.getNode(ISD::BITCAST, dl, 4244 MVT::f32, TwoToFractionalPartOfX); 4245 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4246 // For floating-point precision of 12: 4247 // 4248 // TwoToFractionalPartOfX = 4249 // 0.999892986f + 4250 // (0.696457318f + 4251 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4252 // 4253 // error 0.000107046256, which is 13 to 14 bits 4254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0x3da235e3)); 4256 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4257 getF32Constant(DAG, 0x3e65b8f3)); 4258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4259 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4260 getF32Constant(DAG, 0x3f324b07)); 4261 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4262 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4263 getF32Constant(DAG, 0x3f7ff8fd)); 4264 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4265 SDValue TwoToFractionalPartOfX = 4266 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4267 4268 result = DAG.getNode(ISD::BITCAST, dl, 4269 MVT::f32, TwoToFractionalPartOfX); 4270 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4271 // For floating-point precision of 18: 4272 // 4273 // TwoToFractionalPartOfX = 4274 // 0.999999982f + 4275 // (0.693148872f + 4276 // (0.240227044f + 4277 // (0.554906021e-1f + 4278 // (0.961591928e-2f + 4279 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4280 // error 2.47208000*10^(-7), which is better than 18 bits 4281 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4282 getF32Constant(DAG, 0x3924b03e)); 4283 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4284 getF32Constant(DAG, 0x3ab24b87)); 4285 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4286 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4287 getF32Constant(DAG, 0x3c1d8c17)); 4288 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4289 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4290 getF32Constant(DAG, 0x3d634a1d)); 4291 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4292 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4293 getF32Constant(DAG, 0x3e75fe14)); 4294 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4295 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4296 getF32Constant(DAG, 0x3f317234)); 4297 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4298 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4299 getF32Constant(DAG, 0x3f800000)); 4300 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4301 SDValue TwoToFractionalPartOfX = 4302 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4303 4304 result = DAG.getNode(ISD::BITCAST, dl, 4305 MVT::f32, TwoToFractionalPartOfX); 4306 } 4307 } else { 4308 // No special expansion. 4309 result = DAG.getNode(ISD::FPOW, dl, 4310 getValue(I.getArgOperand(0)).getValueType(), 4311 getValue(I.getArgOperand(0)), 4312 getValue(I.getArgOperand(1))); 4313 } 4314 4315 setValue(&I, result); 4316 } 4317 4318 4319 /// ExpandPowI - Expand a llvm.powi intrinsic. 4320 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4321 SelectionDAG &DAG) { 4322 // If RHS is a constant, we can expand this out to a multiplication tree, 4323 // otherwise we end up lowering to a call to __powidf2 (for example). When 4324 // optimizing for size, we only want to do this if the expansion would produce 4325 // a small number of multiplies, otherwise we do the full expansion. 4326 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4327 // Get the exponent as a positive value. 4328 unsigned Val = RHSC->getSExtValue(); 4329 if ((int)Val < 0) Val = -Val; 4330 4331 // powi(x, 0) -> 1.0 4332 if (Val == 0) 4333 return DAG.getConstantFP(1.0, LHS.getValueType()); 4334 4335 const Function *F = DAG.getMachineFunction().getFunction(); 4336 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4337 // If optimizing for size, don't insert too many multiplies. This 4338 // inserts up to 5 multiplies. 4339 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4340 // We use the simple binary decomposition method to generate the multiply 4341 // sequence. There are more optimal ways to do this (for example, 4342 // powi(x,15) generates one more multiply than it should), but this has 4343 // the benefit of being both really simple and much better than a libcall. 4344 SDValue Res; // Logically starts equal to 1.0 4345 SDValue CurSquare = LHS; 4346 while (Val) { 4347 if (Val & 1) { 4348 if (Res.getNode()) 4349 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4350 else 4351 Res = CurSquare; // 1.0*CurSquare. 4352 } 4353 4354 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4355 CurSquare, CurSquare); 4356 Val >>= 1; 4357 } 4358 4359 // If the original was negative, invert the result, producing 1/(x*x*x). 4360 if (RHSC->getSExtValue() < 0) 4361 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4362 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4363 return Res; 4364 } 4365 } 4366 4367 // Otherwise, expand to a libcall. 4368 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4369 } 4370 4371 // getTruncatedArgReg - Find underlying register used for an truncated 4372 // argument. 4373 static unsigned getTruncatedArgReg(const SDValue &N) { 4374 if (N.getOpcode() != ISD::TRUNCATE) 4375 return 0; 4376 4377 const SDValue &Ext = N.getOperand(0); 4378 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4379 const SDValue &CFR = Ext.getOperand(0); 4380 if (CFR.getOpcode() == ISD::CopyFromReg) 4381 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4382 else 4383 if (CFR.getOpcode() == ISD::TRUNCATE) 4384 return getTruncatedArgReg(CFR); 4385 } 4386 return 0; 4387 } 4388 4389 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4390 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4391 /// At the end of instruction selection, they will be inserted to the entry BB. 4392 bool 4393 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4394 int64_t Offset, 4395 const SDValue &N) { 4396 const Argument *Arg = dyn_cast<Argument>(V); 4397 if (!Arg) 4398 return false; 4399 4400 MachineFunction &MF = DAG.getMachineFunction(); 4401 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4402 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4403 4404 // Ignore inlined function arguments here. 4405 DIVariable DV(Variable); 4406 if (DV.isInlinedFnArgument(MF.getFunction())) 4407 return false; 4408 4409 unsigned Reg = 0; 4410 // Some arguments' frame index is recorded during argument lowering. 4411 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4412 if (Offset) 4413 Reg = TRI->getFrameRegister(MF); 4414 4415 if (!Reg && N.getNode()) { 4416 if (N.getOpcode() == ISD::CopyFromReg) 4417 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4418 else 4419 Reg = getTruncatedArgReg(N); 4420 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4421 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4422 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4423 if (PR) 4424 Reg = PR; 4425 } 4426 } 4427 4428 if (!Reg) { 4429 // Check if ValueMap has reg number. 4430 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4431 if (VMI != FuncInfo.ValueMap.end()) 4432 Reg = VMI->second; 4433 } 4434 4435 if (!Reg && N.getNode()) { 4436 // Check if frame index is available. 4437 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4438 if (FrameIndexSDNode *FINode = 4439 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4440 Reg = TRI->getFrameRegister(MF); 4441 Offset = FINode->getIndex(); 4442 } 4443 } 4444 4445 if (!Reg) 4446 return false; 4447 4448 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4449 TII->get(TargetOpcode::DBG_VALUE)) 4450 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4451 FuncInfo.ArgDbgValues.push_back(&*MIB); 4452 return true; 4453 } 4454 4455 // VisualStudio defines setjmp as _setjmp 4456 #if defined(_MSC_VER) && defined(setjmp) && \ 4457 !defined(setjmp_undefined_for_msvc) 4458 # pragma push_macro("setjmp") 4459 # undef setjmp 4460 # define setjmp_undefined_for_msvc 4461 #endif 4462 4463 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4464 /// we want to emit this as a call to a named external function, return the name 4465 /// otherwise lower it and return null. 4466 const char * 4467 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4468 DebugLoc dl = getCurDebugLoc(); 4469 SDValue Res; 4470 4471 switch (Intrinsic) { 4472 default: 4473 // By default, turn this into a target intrinsic node. 4474 visitTargetIntrinsic(I, Intrinsic); 4475 return 0; 4476 case Intrinsic::vastart: visitVAStart(I); return 0; 4477 case Intrinsic::vaend: visitVAEnd(I); return 0; 4478 case Intrinsic::vacopy: visitVACopy(I); return 0; 4479 case Intrinsic::returnaddress: 4480 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4481 getValue(I.getArgOperand(0)))); 4482 return 0; 4483 case Intrinsic::frameaddress: 4484 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4485 getValue(I.getArgOperand(0)))); 4486 return 0; 4487 case Intrinsic::setjmp: 4488 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4489 case Intrinsic::longjmp: 4490 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4491 case Intrinsic::memcpy: { 4492 // Assert for address < 256 since we support only user defined address 4493 // spaces. 4494 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4495 < 256 && 4496 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4497 < 256 && 4498 "Unknown address space"); 4499 SDValue Op1 = getValue(I.getArgOperand(0)); 4500 SDValue Op2 = getValue(I.getArgOperand(1)); 4501 SDValue Op3 = getValue(I.getArgOperand(2)); 4502 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4503 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4504 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4505 MachinePointerInfo(I.getArgOperand(0)), 4506 MachinePointerInfo(I.getArgOperand(1)))); 4507 return 0; 4508 } 4509 case Intrinsic::memset: { 4510 // Assert for address < 256 since we support only user defined address 4511 // spaces. 4512 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4513 < 256 && 4514 "Unknown address space"); 4515 SDValue Op1 = getValue(I.getArgOperand(0)); 4516 SDValue Op2 = getValue(I.getArgOperand(1)); 4517 SDValue Op3 = getValue(I.getArgOperand(2)); 4518 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4519 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4520 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4521 MachinePointerInfo(I.getArgOperand(0)))); 4522 return 0; 4523 } 4524 case Intrinsic::memmove: { 4525 // Assert for address < 256 since we support only user defined address 4526 // spaces. 4527 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4528 < 256 && 4529 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4530 < 256 && 4531 "Unknown address space"); 4532 SDValue Op1 = getValue(I.getArgOperand(0)); 4533 SDValue Op2 = getValue(I.getArgOperand(1)); 4534 SDValue Op3 = getValue(I.getArgOperand(2)); 4535 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4536 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4537 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4538 MachinePointerInfo(I.getArgOperand(0)), 4539 MachinePointerInfo(I.getArgOperand(1)))); 4540 return 0; 4541 } 4542 case Intrinsic::dbg_declare: { 4543 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4544 MDNode *Variable = DI.getVariable(); 4545 const Value *Address = DI.getAddress(); 4546 if (!Address || !DIVariable(Variable).Verify()) 4547 return 0; 4548 4549 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4550 // but do not always have a corresponding SDNode built. The SDNodeOrder 4551 // absolute, but not relative, values are different depending on whether 4552 // debug info exists. 4553 ++SDNodeOrder; 4554 4555 // Check if address has undef value. 4556 if (isa<UndefValue>(Address) || 4557 (Address->use_empty() && !isa<Argument>(Address))) { 4558 DEBUG(dbgs() << "Dropping debug info for " << DI); 4559 return 0; 4560 } 4561 4562 SDValue &N = NodeMap[Address]; 4563 if (!N.getNode() && isa<Argument>(Address)) 4564 // Check unused arguments map. 4565 N = UnusedArgNodeMap[Address]; 4566 SDDbgValue *SDV; 4567 if (N.getNode()) { 4568 // Parameters are handled specially. 4569 bool isParameter = 4570 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4571 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4572 Address = BCI->getOperand(0); 4573 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4574 4575 if (isParameter && !AI) { 4576 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4577 if (FINode) 4578 // Byval parameter. We have a frame index at this point. 4579 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4580 0, dl, SDNodeOrder); 4581 else { 4582 // Address is an argument, so try to emit its dbg value using 4583 // virtual register info from the FuncInfo.ValueMap. 4584 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4585 return 0; 4586 } 4587 } else if (AI) 4588 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4589 0, dl, SDNodeOrder); 4590 else { 4591 // Can't do anything with other non-AI cases yet. 4592 DEBUG(dbgs() << "Dropping debug info for " << DI); 4593 return 0; 4594 } 4595 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4596 } else { 4597 // If Address is an argument then try to emit its dbg value using 4598 // virtual register info from the FuncInfo.ValueMap. 4599 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4600 // If variable is pinned by a alloca in dominating bb then 4601 // use StaticAllocaMap. 4602 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4603 if (AI->getParent() != DI.getParent()) { 4604 DenseMap<const AllocaInst*, int>::iterator SI = 4605 FuncInfo.StaticAllocaMap.find(AI); 4606 if (SI != FuncInfo.StaticAllocaMap.end()) { 4607 SDV = DAG.getDbgValue(Variable, SI->second, 4608 0, dl, SDNodeOrder); 4609 DAG.AddDbgValue(SDV, 0, false); 4610 return 0; 4611 } 4612 } 4613 } 4614 DEBUG(dbgs() << "Dropping debug info for " << DI); 4615 } 4616 } 4617 return 0; 4618 } 4619 case Intrinsic::dbg_value: { 4620 const DbgValueInst &DI = cast<DbgValueInst>(I); 4621 if (!DIVariable(DI.getVariable()).Verify()) 4622 return 0; 4623 4624 MDNode *Variable = DI.getVariable(); 4625 uint64_t Offset = DI.getOffset(); 4626 const Value *V = DI.getValue(); 4627 if (!V) 4628 return 0; 4629 4630 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4631 // but do not always have a corresponding SDNode built. The SDNodeOrder 4632 // absolute, but not relative, values are different depending on whether 4633 // debug info exists. 4634 ++SDNodeOrder; 4635 SDDbgValue *SDV; 4636 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4637 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4638 DAG.AddDbgValue(SDV, 0, false); 4639 } else { 4640 // Do not use getValue() in here; we don't want to generate code at 4641 // this point if it hasn't been done yet. 4642 SDValue N = NodeMap[V]; 4643 if (!N.getNode() && isa<Argument>(V)) 4644 // Check unused arguments map. 4645 N = UnusedArgNodeMap[V]; 4646 if (N.getNode()) { 4647 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4648 SDV = DAG.getDbgValue(Variable, N.getNode(), 4649 N.getResNo(), Offset, dl, SDNodeOrder); 4650 DAG.AddDbgValue(SDV, N.getNode(), false); 4651 } 4652 } else if (!V->use_empty() ) { 4653 // Do not call getValue(V) yet, as we don't want to generate code. 4654 // Remember it for later. 4655 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4656 DanglingDebugInfoMap[V] = DDI; 4657 } else { 4658 // We may expand this to cover more cases. One case where we have no 4659 // data available is an unreferenced parameter. 4660 DEBUG(dbgs() << "Dropping debug info for " << DI); 4661 } 4662 } 4663 4664 // Build a debug info table entry. 4665 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4666 V = BCI->getOperand(0); 4667 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4668 // Don't handle byval struct arguments or VLAs, for example. 4669 if (!AI) 4670 return 0; 4671 DenseMap<const AllocaInst*, int>::iterator SI = 4672 FuncInfo.StaticAllocaMap.find(AI); 4673 if (SI == FuncInfo.StaticAllocaMap.end()) 4674 return 0; // VLAs. 4675 int FI = SI->second; 4676 4677 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4678 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4679 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4680 return 0; 4681 } 4682 case Intrinsic::eh_exception: { 4683 // Insert the EXCEPTIONADDR instruction. 4684 assert(FuncInfo.MBB->isLandingPad() && 4685 "Call to eh.exception not in landing pad!"); 4686 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4687 SDValue Ops[1]; 4688 Ops[0] = DAG.getRoot(); 4689 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4690 setValue(&I, Op); 4691 DAG.setRoot(Op.getValue(1)); 4692 return 0; 4693 } 4694 4695 case Intrinsic::eh_selector: { 4696 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4697 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4698 if (CallMBB->isLandingPad()) 4699 AddCatchInfo(I, &MMI, CallMBB); 4700 else { 4701 #ifndef NDEBUG 4702 FuncInfo.CatchInfoLost.insert(&I); 4703 #endif 4704 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4705 unsigned Reg = TLI.getExceptionSelectorRegister(); 4706 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4707 } 4708 4709 // Insert the EHSELECTION instruction. 4710 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4711 SDValue Ops[2]; 4712 Ops[0] = getValue(I.getArgOperand(0)); 4713 Ops[1] = getRoot(); 4714 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4715 DAG.setRoot(Op.getValue(1)); 4716 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4717 return 0; 4718 } 4719 4720 case Intrinsic::eh_typeid_for: { 4721 // Find the type id for the given typeinfo. 4722 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4723 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4724 Res = DAG.getConstant(TypeID, MVT::i32); 4725 setValue(&I, Res); 4726 return 0; 4727 } 4728 4729 case Intrinsic::eh_return_i32: 4730 case Intrinsic::eh_return_i64: 4731 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4732 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4733 MVT::Other, 4734 getControlRoot(), 4735 getValue(I.getArgOperand(0)), 4736 getValue(I.getArgOperand(1)))); 4737 return 0; 4738 case Intrinsic::eh_unwind_init: 4739 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4740 return 0; 4741 case Intrinsic::eh_dwarf_cfa: { 4742 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4743 TLI.getPointerTy()); 4744 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4745 TLI.getPointerTy(), 4746 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4747 TLI.getPointerTy()), 4748 CfaArg); 4749 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4750 TLI.getPointerTy(), 4751 DAG.getConstant(0, TLI.getPointerTy())); 4752 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4753 FA, Offset)); 4754 return 0; 4755 } 4756 case Intrinsic::eh_sjlj_callsite: { 4757 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4758 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4759 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4760 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4761 4762 MMI.setCurrentCallSite(CI->getZExtValue()); 4763 return 0; 4764 } 4765 case Intrinsic::eh_sjlj_functioncontext: { 4766 // Get and store the index of the function context. 4767 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4768 AllocaInst *FnCtx = 4769 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4770 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4771 MFI->setFunctionContextIndex(FI); 4772 return 0; 4773 } 4774 case Intrinsic::eh_sjlj_setjmp: { 4775 SDValue Ops[2]; 4776 Ops[0] = getRoot(); 4777 Ops[1] = getValue(I.getArgOperand(0)); 4778 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4779 DAG.getVTList(MVT::i32, MVT::Other), 4780 Ops, 2); 4781 setValue(&I, Op.getValue(0)); 4782 DAG.setRoot(Op.getValue(1)); 4783 return 0; 4784 } 4785 case Intrinsic::eh_sjlj_longjmp: { 4786 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4787 getRoot(), getValue(I.getArgOperand(0)))); 4788 return 0; 4789 } 4790 4791 case Intrinsic::x86_mmx_pslli_w: 4792 case Intrinsic::x86_mmx_pslli_d: 4793 case Intrinsic::x86_mmx_pslli_q: 4794 case Intrinsic::x86_mmx_psrli_w: 4795 case Intrinsic::x86_mmx_psrli_d: 4796 case Intrinsic::x86_mmx_psrli_q: 4797 case Intrinsic::x86_mmx_psrai_w: 4798 case Intrinsic::x86_mmx_psrai_d: { 4799 SDValue ShAmt = getValue(I.getArgOperand(1)); 4800 if (isa<ConstantSDNode>(ShAmt)) { 4801 visitTargetIntrinsic(I, Intrinsic); 4802 return 0; 4803 } 4804 unsigned NewIntrinsic = 0; 4805 EVT ShAmtVT = MVT::v2i32; 4806 switch (Intrinsic) { 4807 case Intrinsic::x86_mmx_pslli_w: 4808 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4809 break; 4810 case Intrinsic::x86_mmx_pslli_d: 4811 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4812 break; 4813 case Intrinsic::x86_mmx_pslli_q: 4814 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4815 break; 4816 case Intrinsic::x86_mmx_psrli_w: 4817 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4818 break; 4819 case Intrinsic::x86_mmx_psrli_d: 4820 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4821 break; 4822 case Intrinsic::x86_mmx_psrli_q: 4823 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4824 break; 4825 case Intrinsic::x86_mmx_psrai_w: 4826 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4827 break; 4828 case Intrinsic::x86_mmx_psrai_d: 4829 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4830 break; 4831 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4832 } 4833 4834 // The vector shift intrinsics with scalars uses 32b shift amounts but 4835 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4836 // to be zero. 4837 // We must do this early because v2i32 is not a legal type. 4838 DebugLoc dl = getCurDebugLoc(); 4839 SDValue ShOps[2]; 4840 ShOps[0] = ShAmt; 4841 ShOps[1] = DAG.getConstant(0, MVT::i32); 4842 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4843 EVT DestVT = TLI.getValueType(I.getType()); 4844 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4845 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4846 DAG.getConstant(NewIntrinsic, MVT::i32), 4847 getValue(I.getArgOperand(0)), ShAmt); 4848 setValue(&I, Res); 4849 return 0; 4850 } 4851 case Intrinsic::convertff: 4852 case Intrinsic::convertfsi: 4853 case Intrinsic::convertfui: 4854 case Intrinsic::convertsif: 4855 case Intrinsic::convertuif: 4856 case Intrinsic::convertss: 4857 case Intrinsic::convertsu: 4858 case Intrinsic::convertus: 4859 case Intrinsic::convertuu: { 4860 ISD::CvtCode Code = ISD::CVT_INVALID; 4861 switch (Intrinsic) { 4862 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4863 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4864 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4865 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4866 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4867 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4868 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4869 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4870 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4871 } 4872 EVT DestVT = TLI.getValueType(I.getType()); 4873 const Value *Op1 = I.getArgOperand(0); 4874 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4875 DAG.getValueType(DestVT), 4876 DAG.getValueType(getValue(Op1).getValueType()), 4877 getValue(I.getArgOperand(1)), 4878 getValue(I.getArgOperand(2)), 4879 Code); 4880 setValue(&I, Res); 4881 return 0; 4882 } 4883 case Intrinsic::sqrt: 4884 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)))); 4887 return 0; 4888 case Intrinsic::powi: 4889 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4890 getValue(I.getArgOperand(1)), DAG)); 4891 return 0; 4892 case Intrinsic::sin: 4893 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4894 getValue(I.getArgOperand(0)).getValueType(), 4895 getValue(I.getArgOperand(0)))); 4896 return 0; 4897 case Intrinsic::cos: 4898 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4899 getValue(I.getArgOperand(0)).getValueType(), 4900 getValue(I.getArgOperand(0)))); 4901 return 0; 4902 case Intrinsic::log: 4903 visitLog(I); 4904 return 0; 4905 case Intrinsic::log2: 4906 visitLog2(I); 4907 return 0; 4908 case Intrinsic::log10: 4909 visitLog10(I); 4910 return 0; 4911 case Intrinsic::exp: 4912 visitExp(I); 4913 return 0; 4914 case Intrinsic::exp2: 4915 visitExp2(I); 4916 return 0; 4917 case Intrinsic::pow: 4918 visitPow(I); 4919 return 0; 4920 case Intrinsic::fma: 4921 setValue(&I, DAG.getNode(ISD::FMA, dl, 4922 getValue(I.getArgOperand(0)).getValueType(), 4923 getValue(I.getArgOperand(0)), 4924 getValue(I.getArgOperand(1)), 4925 getValue(I.getArgOperand(2)))); 4926 return 0; 4927 case Intrinsic::convert_to_fp16: 4928 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4929 MVT::i16, getValue(I.getArgOperand(0)))); 4930 return 0; 4931 case Intrinsic::convert_from_fp16: 4932 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4933 MVT::f32, getValue(I.getArgOperand(0)))); 4934 return 0; 4935 case Intrinsic::pcmarker: { 4936 SDValue Tmp = getValue(I.getArgOperand(0)); 4937 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4938 return 0; 4939 } 4940 case Intrinsic::readcyclecounter: { 4941 SDValue Op = getRoot(); 4942 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4943 DAG.getVTList(MVT::i64, MVT::Other), 4944 &Op, 1); 4945 setValue(&I, Res); 4946 DAG.setRoot(Res.getValue(1)); 4947 return 0; 4948 } 4949 case Intrinsic::bswap: 4950 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4951 getValue(I.getArgOperand(0)).getValueType(), 4952 getValue(I.getArgOperand(0)))); 4953 return 0; 4954 case Intrinsic::cttz: { 4955 SDValue Arg = getValue(I.getArgOperand(0)); 4956 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4957 EVT Ty = Arg.getValueType(); 4958 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4959 dl, Ty, Arg)); 4960 return 0; 4961 } 4962 case Intrinsic::ctlz: { 4963 SDValue Arg = getValue(I.getArgOperand(0)); 4964 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4965 EVT Ty = Arg.getValueType(); 4966 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4967 dl, Ty, Arg)); 4968 return 0; 4969 } 4970 case Intrinsic::ctpop: { 4971 SDValue Arg = getValue(I.getArgOperand(0)); 4972 EVT Ty = Arg.getValueType(); 4973 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4974 return 0; 4975 } 4976 case Intrinsic::stacksave: { 4977 SDValue Op = getRoot(); 4978 Res = DAG.getNode(ISD::STACKSAVE, dl, 4979 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4980 setValue(&I, Res); 4981 DAG.setRoot(Res.getValue(1)); 4982 return 0; 4983 } 4984 case Intrinsic::stackrestore: { 4985 Res = getValue(I.getArgOperand(0)); 4986 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4987 return 0; 4988 } 4989 case Intrinsic::stackprotector: { 4990 // Emit code into the DAG to store the stack guard onto the stack. 4991 MachineFunction &MF = DAG.getMachineFunction(); 4992 MachineFrameInfo *MFI = MF.getFrameInfo(); 4993 EVT PtrTy = TLI.getPointerTy(); 4994 4995 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4996 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4997 4998 int FI = FuncInfo.StaticAllocaMap[Slot]; 4999 MFI->setStackProtectorIndex(FI); 5000 5001 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5002 5003 // Store the stack protector onto the stack. 5004 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5005 MachinePointerInfo::getFixedStack(FI), 5006 true, false, 0); 5007 setValue(&I, Res); 5008 DAG.setRoot(Res); 5009 return 0; 5010 } 5011 case Intrinsic::objectsize: { 5012 // If we don't know by now, we're never going to know. 5013 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5014 5015 assert(CI && "Non-constant type in __builtin_object_size?"); 5016 5017 SDValue Arg = getValue(I.getCalledValue()); 5018 EVT Ty = Arg.getValueType(); 5019 5020 if (CI->isZero()) 5021 Res = DAG.getConstant(-1ULL, Ty); 5022 else 5023 Res = DAG.getConstant(0, Ty); 5024 5025 setValue(&I, Res); 5026 return 0; 5027 } 5028 case Intrinsic::var_annotation: 5029 // Discard annotate attributes 5030 return 0; 5031 5032 case Intrinsic::init_trampoline: { 5033 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5034 5035 SDValue Ops[6]; 5036 Ops[0] = getRoot(); 5037 Ops[1] = getValue(I.getArgOperand(0)); 5038 Ops[2] = getValue(I.getArgOperand(1)); 5039 Ops[3] = getValue(I.getArgOperand(2)); 5040 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5041 Ops[5] = DAG.getSrcValue(F); 5042 5043 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5044 5045 DAG.setRoot(Res); 5046 return 0; 5047 } 5048 case Intrinsic::adjust_trampoline: { 5049 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5050 TLI.getPointerTy(), 5051 getValue(I.getArgOperand(0)))); 5052 return 0; 5053 } 5054 case Intrinsic::gcroot: 5055 if (GFI) { 5056 const Value *Alloca = I.getArgOperand(0); 5057 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5058 5059 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5060 GFI->addStackRoot(FI->getIndex(), TypeMap); 5061 } 5062 return 0; 5063 case Intrinsic::gcread: 5064 case Intrinsic::gcwrite: 5065 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5066 return 0; 5067 case Intrinsic::flt_rounds: 5068 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5069 return 0; 5070 5071 case Intrinsic::expect: { 5072 // Just replace __builtin_expect(exp, c) with EXP. 5073 setValue(&I, getValue(I.getArgOperand(0))); 5074 return 0; 5075 } 5076 5077 case Intrinsic::trap: { 5078 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5079 if (TrapFuncName.empty()) { 5080 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5081 return 0; 5082 } 5083 TargetLowering::ArgListTy Args; 5084 std::pair<SDValue, SDValue> Result = 5085 TLI.LowerCallTo(getRoot(), I.getType(), 5086 false, false, false, false, 0, CallingConv::C, 5087 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5088 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5089 Args, DAG, getCurDebugLoc()); 5090 DAG.setRoot(Result.second); 5091 return 0; 5092 } 5093 case Intrinsic::uadd_with_overflow: 5094 return implVisitAluOverflow(I, ISD::UADDO); 5095 case Intrinsic::sadd_with_overflow: 5096 return implVisitAluOverflow(I, ISD::SADDO); 5097 case Intrinsic::usub_with_overflow: 5098 return implVisitAluOverflow(I, ISD::USUBO); 5099 case Intrinsic::ssub_with_overflow: 5100 return implVisitAluOverflow(I, ISD::SSUBO); 5101 case Intrinsic::umul_with_overflow: 5102 return implVisitAluOverflow(I, ISD::UMULO); 5103 case Intrinsic::smul_with_overflow: 5104 return implVisitAluOverflow(I, ISD::SMULO); 5105 5106 case Intrinsic::prefetch: { 5107 SDValue Ops[5]; 5108 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5109 Ops[0] = getRoot(); 5110 Ops[1] = getValue(I.getArgOperand(0)); 5111 Ops[2] = getValue(I.getArgOperand(1)); 5112 Ops[3] = getValue(I.getArgOperand(2)); 5113 Ops[4] = getValue(I.getArgOperand(3)); 5114 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5115 DAG.getVTList(MVT::Other), 5116 &Ops[0], 5, 5117 EVT::getIntegerVT(*Context, 8), 5118 MachinePointerInfo(I.getArgOperand(0)), 5119 0, /* align */ 5120 false, /* volatile */ 5121 rw==0, /* read */ 5122 rw==1)); /* write */ 5123 return 0; 5124 } 5125 5126 case Intrinsic::invariant_start: 5127 case Intrinsic::lifetime_start: 5128 // Discard region information. 5129 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5130 return 0; 5131 case Intrinsic::invariant_end: 5132 case Intrinsic::lifetime_end: 5133 // Discard region information. 5134 return 0; 5135 } 5136 } 5137 5138 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5139 bool isTailCall, 5140 MachineBasicBlock *LandingPad) { 5141 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5142 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5143 Type *RetTy = FTy->getReturnType(); 5144 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5145 MCSymbol *BeginLabel = 0; 5146 5147 TargetLowering::ArgListTy Args; 5148 TargetLowering::ArgListEntry Entry; 5149 Args.reserve(CS.arg_size()); 5150 5151 // Check whether the function can return without sret-demotion. 5152 SmallVector<ISD::OutputArg, 4> Outs; 5153 SmallVector<uint64_t, 4> Offsets; 5154 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5155 Outs, TLI, &Offsets); 5156 5157 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5158 DAG.getMachineFunction(), 5159 FTy->isVarArg(), Outs, 5160 FTy->getContext()); 5161 5162 SDValue DemoteStackSlot; 5163 int DemoteStackIdx = -100; 5164 5165 if (!CanLowerReturn) { 5166 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5167 FTy->getReturnType()); 5168 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5169 FTy->getReturnType()); 5170 MachineFunction &MF = DAG.getMachineFunction(); 5171 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5172 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5173 5174 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5175 Entry.Node = DemoteStackSlot; 5176 Entry.Ty = StackSlotPtrType; 5177 Entry.isSExt = false; 5178 Entry.isZExt = false; 5179 Entry.isInReg = false; 5180 Entry.isSRet = true; 5181 Entry.isNest = false; 5182 Entry.isByVal = false; 5183 Entry.Alignment = Align; 5184 Args.push_back(Entry); 5185 RetTy = Type::getVoidTy(FTy->getContext()); 5186 } 5187 5188 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5189 i != e; ++i) { 5190 const Value *V = *i; 5191 5192 // Skip empty types 5193 if (V->getType()->isEmptyTy()) 5194 continue; 5195 5196 SDValue ArgNode = getValue(V); 5197 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5198 5199 unsigned attrInd = i - CS.arg_begin() + 1; 5200 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5201 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5202 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5203 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5204 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5205 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5206 Entry.Alignment = CS.getParamAlignment(attrInd); 5207 Args.push_back(Entry); 5208 } 5209 5210 if (LandingPad) { 5211 // Insert a label before the invoke call to mark the try range. This can be 5212 // used to detect deletion of the invoke via the MachineModuleInfo. 5213 BeginLabel = MMI.getContext().CreateTempSymbol(); 5214 5215 // For SjLj, keep track of which landing pads go with which invokes 5216 // so as to maintain the ordering of pads in the LSDA. 5217 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5218 if (CallSiteIndex) { 5219 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5220 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5221 5222 // Now that the call site is handled, stop tracking it. 5223 MMI.setCurrentCallSite(0); 5224 } 5225 5226 // Both PendingLoads and PendingExports must be flushed here; 5227 // this call might not return. 5228 (void)getRoot(); 5229 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5230 } 5231 5232 // Check if target-independent constraints permit a tail call here. 5233 // Target-dependent constraints are checked within TLI.LowerCallTo. 5234 if (isTailCall && 5235 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5236 isTailCall = false; 5237 5238 // If there's a possibility that fast-isel has already selected some amount 5239 // of the current basic block, don't emit a tail call. 5240 if (isTailCall && TM.Options.EnableFastISel) 5241 isTailCall = false; 5242 5243 std::pair<SDValue,SDValue> Result = 5244 TLI.LowerCallTo(getRoot(), RetTy, 5245 CS.paramHasAttr(0, Attribute::SExt), 5246 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5247 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5248 CS.getCallingConv(), 5249 isTailCall, 5250 !CS.getInstruction()->use_empty(), 5251 Callee, Args, DAG, getCurDebugLoc()); 5252 assert((isTailCall || Result.second.getNode()) && 5253 "Non-null chain expected with non-tail call!"); 5254 assert((Result.second.getNode() || !Result.first.getNode()) && 5255 "Null value expected with tail call!"); 5256 if (Result.first.getNode()) { 5257 setValue(CS.getInstruction(), Result.first); 5258 } else if (!CanLowerReturn && Result.second.getNode()) { 5259 // The instruction result is the result of loading from the 5260 // hidden sret parameter. 5261 SmallVector<EVT, 1> PVTs; 5262 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5263 5264 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5265 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5266 EVT PtrVT = PVTs[0]; 5267 unsigned NumValues = Outs.size(); 5268 SmallVector<SDValue, 4> Values(NumValues); 5269 SmallVector<SDValue, 4> Chains(NumValues); 5270 5271 for (unsigned i = 0; i < NumValues; ++i) { 5272 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5273 DemoteStackSlot, 5274 DAG.getConstant(Offsets[i], PtrVT)); 5275 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5276 Add, 5277 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5278 false, false, false, 1); 5279 Values[i] = L; 5280 Chains[i] = L.getValue(1); 5281 } 5282 5283 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5284 MVT::Other, &Chains[0], NumValues); 5285 PendingLoads.push_back(Chain); 5286 5287 // Collect the legal value parts into potentially illegal values 5288 // that correspond to the original function's return values. 5289 SmallVector<EVT, 4> RetTys; 5290 RetTy = FTy->getReturnType(); 5291 ComputeValueVTs(TLI, RetTy, RetTys); 5292 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5293 SmallVector<SDValue, 4> ReturnValues; 5294 unsigned CurReg = 0; 5295 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5296 EVT VT = RetTys[I]; 5297 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5298 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5299 5300 SDValue ReturnValue = 5301 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5302 RegisterVT, VT, AssertOp); 5303 ReturnValues.push_back(ReturnValue); 5304 CurReg += NumRegs; 5305 } 5306 5307 setValue(CS.getInstruction(), 5308 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5309 DAG.getVTList(&RetTys[0], RetTys.size()), 5310 &ReturnValues[0], ReturnValues.size())); 5311 } 5312 5313 // Assign order to nodes here. If the call does not produce a result, it won't 5314 // be mapped to a SDNode and visit() will not assign it an order number. 5315 if (!Result.second.getNode()) { 5316 // As a special case, a null chain means that a tail call has been emitted and 5317 // the DAG root is already updated. 5318 HasTailCall = true; 5319 ++SDNodeOrder; 5320 AssignOrderingToNode(DAG.getRoot().getNode()); 5321 } else { 5322 DAG.setRoot(Result.second); 5323 ++SDNodeOrder; 5324 AssignOrderingToNode(Result.second.getNode()); 5325 } 5326 5327 if (LandingPad) { 5328 // Insert a label at the end of the invoke call to mark the try range. This 5329 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5330 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5331 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5332 5333 // Inform MachineModuleInfo of range. 5334 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5335 } 5336 } 5337 5338 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5339 /// value is equal or not-equal to zero. 5340 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5341 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5342 UI != E; ++UI) { 5343 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5344 if (IC->isEquality()) 5345 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5346 if (C->isNullValue()) 5347 continue; 5348 // Unknown instruction. 5349 return false; 5350 } 5351 return true; 5352 } 5353 5354 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5355 Type *LoadTy, 5356 SelectionDAGBuilder &Builder) { 5357 5358 // Check to see if this load can be trivially constant folded, e.g. if the 5359 // input is from a string literal. 5360 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5361 // Cast pointer to the type we really want to load. 5362 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5363 PointerType::getUnqual(LoadTy)); 5364 5365 if (const Constant *LoadCst = 5366 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5367 Builder.TD)) 5368 return Builder.getValue(LoadCst); 5369 } 5370 5371 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5372 // still constant memory, the input chain can be the entry node. 5373 SDValue Root; 5374 bool ConstantMemory = false; 5375 5376 // Do not serialize (non-volatile) loads of constant memory with anything. 5377 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5378 Root = Builder.DAG.getEntryNode(); 5379 ConstantMemory = true; 5380 } else { 5381 // Do not serialize non-volatile loads against each other. 5382 Root = Builder.DAG.getRoot(); 5383 } 5384 5385 SDValue Ptr = Builder.getValue(PtrVal); 5386 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5387 Ptr, MachinePointerInfo(PtrVal), 5388 false /*volatile*/, 5389 false /*nontemporal*/, 5390 false /*isinvariant*/, 1 /* align=1 */); 5391 5392 if (!ConstantMemory) 5393 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5394 return LoadVal; 5395 } 5396 5397 5398 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5399 /// If so, return true and lower it, otherwise return false and it will be 5400 /// lowered like a normal call. 5401 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5402 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5403 if (I.getNumArgOperands() != 3) 5404 return false; 5405 5406 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5407 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5408 !I.getArgOperand(2)->getType()->isIntegerTy() || 5409 !I.getType()->isIntegerTy()) 5410 return false; 5411 5412 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5413 5414 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5415 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5416 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5417 bool ActuallyDoIt = true; 5418 MVT LoadVT; 5419 Type *LoadTy; 5420 switch (Size->getZExtValue()) { 5421 default: 5422 LoadVT = MVT::Other; 5423 LoadTy = 0; 5424 ActuallyDoIt = false; 5425 break; 5426 case 2: 5427 LoadVT = MVT::i16; 5428 LoadTy = Type::getInt16Ty(Size->getContext()); 5429 break; 5430 case 4: 5431 LoadVT = MVT::i32; 5432 LoadTy = Type::getInt32Ty(Size->getContext()); 5433 break; 5434 case 8: 5435 LoadVT = MVT::i64; 5436 LoadTy = Type::getInt64Ty(Size->getContext()); 5437 break; 5438 /* 5439 case 16: 5440 LoadVT = MVT::v4i32; 5441 LoadTy = Type::getInt32Ty(Size->getContext()); 5442 LoadTy = VectorType::get(LoadTy, 4); 5443 break; 5444 */ 5445 } 5446 5447 // This turns into unaligned loads. We only do this if the target natively 5448 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5449 // we'll only produce a small number of byte loads. 5450 5451 // Require that we can find a legal MVT, and only do this if the target 5452 // supports unaligned loads of that type. Expanding into byte loads would 5453 // bloat the code. 5454 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5455 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5456 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5457 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5458 ActuallyDoIt = false; 5459 } 5460 5461 if (ActuallyDoIt) { 5462 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5463 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5464 5465 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5466 ISD::SETNE); 5467 EVT CallVT = TLI.getValueType(I.getType(), true); 5468 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5469 return true; 5470 } 5471 } 5472 5473 5474 return false; 5475 } 5476 5477 5478 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5479 // Handle inline assembly differently. 5480 if (isa<InlineAsm>(I.getCalledValue())) { 5481 visitInlineAsm(&I); 5482 return; 5483 } 5484 5485 // See if any floating point values are being passed to this function. This is 5486 // used to emit an undefined reference to fltused on Windows. 5487 FunctionType *FT = 5488 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5489 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5490 if (FT->isVarArg() && 5491 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5492 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5493 Type* T = I.getArgOperand(i)->getType(); 5494 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5495 i != e; ++i) { 5496 if (!i->isFloatingPointTy()) continue; 5497 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5498 break; 5499 } 5500 } 5501 } 5502 5503 const char *RenameFn = 0; 5504 if (Function *F = I.getCalledFunction()) { 5505 if (F->isDeclaration()) { 5506 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5507 if (unsigned IID = II->getIntrinsicID(F)) { 5508 RenameFn = visitIntrinsicCall(I, IID); 5509 if (!RenameFn) 5510 return; 5511 } 5512 } 5513 if (unsigned IID = F->getIntrinsicID()) { 5514 RenameFn = visitIntrinsicCall(I, IID); 5515 if (!RenameFn) 5516 return; 5517 } 5518 } 5519 5520 // Check for well-known libc/libm calls. If the function is internal, it 5521 // can't be a library call. 5522 if (!F->hasLocalLinkage() && F->hasName()) { 5523 StringRef Name = F->getName(); 5524 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") || 5525 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") || 5526 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) { 5527 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5528 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5529 I.getType() == I.getArgOperand(0)->getType() && 5530 I.getType() == I.getArgOperand(1)->getType()) { 5531 SDValue LHS = getValue(I.getArgOperand(0)); 5532 SDValue RHS = getValue(I.getArgOperand(1)); 5533 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5534 LHS.getValueType(), LHS, RHS)); 5535 return; 5536 } 5537 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") || 5538 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") || 5539 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) { 5540 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5541 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5542 I.getType() == I.getArgOperand(0)->getType()) { 5543 SDValue Tmp = getValue(I.getArgOperand(0)); 5544 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5545 Tmp.getValueType(), Tmp)); 5546 return; 5547 } 5548 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") || 5549 (LibInfo->has(LibFunc::sinf) && Name == "sinf") || 5550 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) { 5551 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5552 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5553 I.getType() == I.getArgOperand(0)->getType() && 5554 I.onlyReadsMemory()) { 5555 SDValue Tmp = getValue(I.getArgOperand(0)); 5556 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5557 Tmp.getValueType(), Tmp)); 5558 return; 5559 } 5560 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") || 5561 (LibInfo->has(LibFunc::cosf) && Name == "cosf") || 5562 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) { 5563 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5564 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5565 I.getType() == I.getArgOperand(0)->getType() && 5566 I.onlyReadsMemory()) { 5567 SDValue Tmp = getValue(I.getArgOperand(0)); 5568 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5569 Tmp.getValueType(), Tmp)); 5570 return; 5571 } 5572 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") || 5573 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") || 5574 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) { 5575 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5576 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5577 I.getType() == I.getArgOperand(0)->getType() && 5578 I.onlyReadsMemory()) { 5579 SDValue Tmp = getValue(I.getArgOperand(0)); 5580 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5581 Tmp.getValueType(), Tmp)); 5582 return; 5583 } 5584 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") || 5585 (LibInfo->has(LibFunc::floorf) && Name == "floorf") || 5586 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) { 5587 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5588 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5589 I.getType() == I.getArgOperand(0)->getType()) { 5590 SDValue Tmp = getValue(I.getArgOperand(0)); 5591 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(), 5592 Tmp.getValueType(), Tmp)); 5593 return; 5594 } 5595 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") || 5596 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") || 5597 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) { 5598 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5599 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5600 I.getType() == I.getArgOperand(0)->getType()) { 5601 SDValue Tmp = getValue(I.getArgOperand(0)); 5602 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(), 5603 Tmp.getValueType(), Tmp)); 5604 return; 5605 } 5606 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") || 5607 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") || 5608 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) { 5609 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5610 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5611 I.getType() == I.getArgOperand(0)->getType()) { 5612 SDValue Tmp = getValue(I.getArgOperand(0)); 5613 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(), 5614 Tmp.getValueType(), Tmp)); 5615 return; 5616 } 5617 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") || 5618 (LibInfo->has(LibFunc::rintf) && Name == "rintf") || 5619 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) { 5620 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5621 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5622 I.getType() == I.getArgOperand(0)->getType()) { 5623 SDValue Tmp = getValue(I.getArgOperand(0)); 5624 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(), 5625 Tmp.getValueType(), Tmp)); 5626 return; 5627 } 5628 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") || 5629 (LibInfo->has(LibFunc::truncf) && Name == "truncf") || 5630 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) { 5631 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5632 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5633 I.getType() == I.getArgOperand(0)->getType()) { 5634 SDValue Tmp = getValue(I.getArgOperand(0)); 5635 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(), 5636 Tmp.getValueType(), Tmp)); 5637 return; 5638 } 5639 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") || 5640 (LibInfo->has(LibFunc::log2f) && Name == "log2f") || 5641 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) { 5642 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5643 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5644 I.getType() == I.getArgOperand(0)->getType()) { 5645 SDValue Tmp = getValue(I.getArgOperand(0)); 5646 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(), 5647 Tmp.getValueType(), Tmp)); 5648 return; 5649 } 5650 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") || 5651 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") || 5652 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) { 5653 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5654 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5655 I.getType() == I.getArgOperand(0)->getType()) { 5656 SDValue Tmp = getValue(I.getArgOperand(0)); 5657 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(), 5658 Tmp.getValueType(), Tmp)); 5659 return; 5660 } 5661 } else if (Name == "memcmp") { 5662 if (visitMemCmpCall(I)) 5663 return; 5664 } 5665 } 5666 } 5667 5668 SDValue Callee; 5669 if (!RenameFn) 5670 Callee = getValue(I.getCalledValue()); 5671 else 5672 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5673 5674 // Check if we can potentially perform a tail call. More detailed checking is 5675 // be done within LowerCallTo, after more information about the call is known. 5676 LowerCallTo(&I, Callee, I.isTailCall()); 5677 } 5678 5679 namespace { 5680 5681 /// AsmOperandInfo - This contains information for each constraint that we are 5682 /// lowering. 5683 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5684 public: 5685 /// CallOperand - If this is the result output operand or a clobber 5686 /// this is null, otherwise it is the incoming operand to the CallInst. 5687 /// This gets modified as the asm is processed. 5688 SDValue CallOperand; 5689 5690 /// AssignedRegs - If this is a register or register class operand, this 5691 /// contains the set of register corresponding to the operand. 5692 RegsForValue AssignedRegs; 5693 5694 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5695 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5696 } 5697 5698 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5699 /// busy in OutputRegs/InputRegs. 5700 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5701 std::set<unsigned> &OutputRegs, 5702 std::set<unsigned> &InputRegs, 5703 const TargetRegisterInfo &TRI) const { 5704 if (isOutReg) { 5705 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5706 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5707 } 5708 if (isInReg) { 5709 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5710 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5711 } 5712 } 5713 5714 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5715 /// corresponds to. If there is no Value* for this operand, it returns 5716 /// MVT::Other. 5717 EVT getCallOperandValEVT(LLVMContext &Context, 5718 const TargetLowering &TLI, 5719 const TargetData *TD) const { 5720 if (CallOperandVal == 0) return MVT::Other; 5721 5722 if (isa<BasicBlock>(CallOperandVal)) 5723 return TLI.getPointerTy(); 5724 5725 llvm::Type *OpTy = CallOperandVal->getType(); 5726 5727 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5728 // If this is an indirect operand, the operand is a pointer to the 5729 // accessed type. 5730 if (isIndirect) { 5731 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5732 if (!PtrTy) 5733 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5734 OpTy = PtrTy->getElementType(); 5735 } 5736 5737 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5738 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5739 if (STy->getNumElements() == 1) 5740 OpTy = STy->getElementType(0); 5741 5742 // If OpTy is not a single value, it may be a struct/union that we 5743 // can tile with integers. 5744 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5745 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5746 switch (BitSize) { 5747 default: break; 5748 case 1: 5749 case 8: 5750 case 16: 5751 case 32: 5752 case 64: 5753 case 128: 5754 OpTy = IntegerType::get(Context, BitSize); 5755 break; 5756 } 5757 } 5758 5759 return TLI.getValueType(OpTy, true); 5760 } 5761 5762 private: 5763 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5764 /// specified set. 5765 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5766 const TargetRegisterInfo &TRI) { 5767 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5768 Regs.insert(Reg); 5769 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5770 for (; *Aliases; ++Aliases) 5771 Regs.insert(*Aliases); 5772 } 5773 }; 5774 5775 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5776 5777 } // end anonymous namespace 5778 5779 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5780 /// specified operand. We prefer to assign virtual registers, to allow the 5781 /// register allocator to handle the assignment process. However, if the asm 5782 /// uses features that we can't model on machineinstrs, we have SDISel do the 5783 /// allocation. This produces generally horrible, but correct, code. 5784 /// 5785 /// OpInfo describes the operand. 5786 /// Input and OutputRegs are the set of already allocated physical registers. 5787 /// 5788 static void GetRegistersForValue(SelectionDAG &DAG, 5789 const TargetLowering &TLI, 5790 DebugLoc DL, 5791 SDISelAsmOperandInfo &OpInfo, 5792 std::set<unsigned> &OutputRegs, 5793 std::set<unsigned> &InputRegs) { 5794 LLVMContext &Context = *DAG.getContext(); 5795 5796 // Compute whether this value requires an input register, an output register, 5797 // or both. 5798 bool isOutReg = false; 5799 bool isInReg = false; 5800 switch (OpInfo.Type) { 5801 case InlineAsm::isOutput: 5802 isOutReg = true; 5803 5804 // If there is an input constraint that matches this, we need to reserve 5805 // the input register so no other inputs allocate to it. 5806 isInReg = OpInfo.hasMatchingInput(); 5807 break; 5808 case InlineAsm::isInput: 5809 isInReg = true; 5810 isOutReg = false; 5811 break; 5812 case InlineAsm::isClobber: 5813 isOutReg = true; 5814 isInReg = true; 5815 break; 5816 } 5817 5818 5819 MachineFunction &MF = DAG.getMachineFunction(); 5820 SmallVector<unsigned, 4> Regs; 5821 5822 // If this is a constraint for a single physreg, or a constraint for a 5823 // register class, find it. 5824 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5825 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5826 OpInfo.ConstraintVT); 5827 5828 unsigned NumRegs = 1; 5829 if (OpInfo.ConstraintVT != MVT::Other) { 5830 // If this is a FP input in an integer register (or visa versa) insert a bit 5831 // cast of the input value. More generally, handle any case where the input 5832 // value disagrees with the register class we plan to stick this in. 5833 if (OpInfo.Type == InlineAsm::isInput && 5834 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5835 // Try to convert to the first EVT that the reg class contains. If the 5836 // types are identical size, use a bitcast to convert (e.g. two differing 5837 // vector types). 5838 EVT RegVT = *PhysReg.second->vt_begin(); 5839 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5840 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5841 RegVT, OpInfo.CallOperand); 5842 OpInfo.ConstraintVT = RegVT; 5843 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5844 // If the input is a FP value and we want it in FP registers, do a 5845 // bitcast to the corresponding integer type. This turns an f64 value 5846 // into i64, which can be passed with two i32 values on a 32-bit 5847 // machine. 5848 RegVT = EVT::getIntegerVT(Context, 5849 OpInfo.ConstraintVT.getSizeInBits()); 5850 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5851 RegVT, OpInfo.CallOperand); 5852 OpInfo.ConstraintVT = RegVT; 5853 } 5854 } 5855 5856 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5857 } 5858 5859 EVT RegVT; 5860 EVT ValueVT = OpInfo.ConstraintVT; 5861 5862 // If this is a constraint for a specific physical register, like {r17}, 5863 // assign it now. 5864 if (unsigned AssignedReg = PhysReg.first) { 5865 const TargetRegisterClass *RC = PhysReg.second; 5866 if (OpInfo.ConstraintVT == MVT::Other) 5867 ValueVT = *RC->vt_begin(); 5868 5869 // Get the actual register value type. This is important, because the user 5870 // may have asked for (e.g.) the AX register in i32 type. We need to 5871 // remember that AX is actually i16 to get the right extension. 5872 RegVT = *RC->vt_begin(); 5873 5874 // This is a explicit reference to a physical register. 5875 Regs.push_back(AssignedReg); 5876 5877 // If this is an expanded reference, add the rest of the regs to Regs. 5878 if (NumRegs != 1) { 5879 TargetRegisterClass::iterator I = RC->begin(); 5880 for (; *I != AssignedReg; ++I) 5881 assert(I != RC->end() && "Didn't find reg!"); 5882 5883 // Already added the first reg. 5884 --NumRegs; ++I; 5885 for (; NumRegs; --NumRegs, ++I) { 5886 assert(I != RC->end() && "Ran out of registers to allocate!"); 5887 Regs.push_back(*I); 5888 } 5889 } 5890 5891 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5892 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5893 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5894 return; 5895 } 5896 5897 // Otherwise, if this was a reference to an LLVM register class, create vregs 5898 // for this reference. 5899 if (const TargetRegisterClass *RC = PhysReg.second) { 5900 RegVT = *RC->vt_begin(); 5901 if (OpInfo.ConstraintVT == MVT::Other) 5902 ValueVT = RegVT; 5903 5904 // Create the appropriate number of virtual registers. 5905 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5906 for (; NumRegs; --NumRegs) 5907 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5908 5909 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5910 return; 5911 } 5912 5913 // Otherwise, we couldn't allocate enough registers for this. 5914 } 5915 5916 /// visitInlineAsm - Handle a call to an InlineAsm object. 5917 /// 5918 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5919 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5920 5921 /// ConstraintOperands - Information about all of the constraints. 5922 SDISelAsmOperandInfoVector ConstraintOperands; 5923 5924 std::set<unsigned> OutputRegs, InputRegs; 5925 5926 TargetLowering::AsmOperandInfoVector 5927 TargetConstraints = TLI.ParseConstraints(CS); 5928 5929 bool hasMemory = false; 5930 5931 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5932 unsigned ResNo = 0; // ResNo - The result number of the next output. 5933 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5934 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5935 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5936 5937 EVT OpVT = MVT::Other; 5938 5939 // Compute the value type for each operand. 5940 switch (OpInfo.Type) { 5941 case InlineAsm::isOutput: 5942 // Indirect outputs just consume an argument. 5943 if (OpInfo.isIndirect) { 5944 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5945 break; 5946 } 5947 5948 // The return value of the call is this value. As such, there is no 5949 // corresponding argument. 5950 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5951 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5952 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5953 } else { 5954 assert(ResNo == 0 && "Asm only has one result!"); 5955 OpVT = TLI.getValueType(CS.getType()); 5956 } 5957 ++ResNo; 5958 break; 5959 case InlineAsm::isInput: 5960 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5961 break; 5962 case InlineAsm::isClobber: 5963 // Nothing to do. 5964 break; 5965 } 5966 5967 // If this is an input or an indirect output, process the call argument. 5968 // BasicBlocks are labels, currently appearing only in asm's. 5969 if (OpInfo.CallOperandVal) { 5970 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5971 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5972 } else { 5973 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5974 } 5975 5976 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5977 } 5978 5979 OpInfo.ConstraintVT = OpVT; 5980 5981 // Indirect operand accesses access memory. 5982 if (OpInfo.isIndirect) 5983 hasMemory = true; 5984 else { 5985 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5986 TargetLowering::ConstraintType 5987 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5988 if (CType == TargetLowering::C_Memory) { 5989 hasMemory = true; 5990 break; 5991 } 5992 } 5993 } 5994 } 5995 5996 SDValue Chain, Flag; 5997 5998 // We won't need to flush pending loads if this asm doesn't touch 5999 // memory and is nonvolatile. 6000 if (hasMemory || IA->hasSideEffects()) 6001 Chain = getRoot(); 6002 else 6003 Chain = DAG.getRoot(); 6004 6005 // Second pass over the constraints: compute which constraint option to use 6006 // and assign registers to constraints that want a specific physreg. 6007 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6008 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6009 6010 // If this is an output operand with a matching input operand, look up the 6011 // matching input. If their types mismatch, e.g. one is an integer, the 6012 // other is floating point, or their sizes are different, flag it as an 6013 // error. 6014 if (OpInfo.hasMatchingInput()) { 6015 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6016 6017 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6018 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6019 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6020 OpInfo.ConstraintVT); 6021 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6022 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6023 Input.ConstraintVT); 6024 if ((OpInfo.ConstraintVT.isInteger() != 6025 Input.ConstraintVT.isInteger()) || 6026 (MatchRC.second != InputRC.second)) { 6027 report_fatal_error("Unsupported asm: input constraint" 6028 " with a matching output constraint of" 6029 " incompatible type!"); 6030 } 6031 Input.ConstraintVT = OpInfo.ConstraintVT; 6032 } 6033 } 6034 6035 // Compute the constraint code and ConstraintType to use. 6036 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6037 6038 // If this is a memory input, and if the operand is not indirect, do what we 6039 // need to to provide an address for the memory input. 6040 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6041 !OpInfo.isIndirect) { 6042 assert((OpInfo.isMultipleAlternative || 6043 (OpInfo.Type == InlineAsm::isInput)) && 6044 "Can only indirectify direct input operands!"); 6045 6046 // Memory operands really want the address of the value. If we don't have 6047 // an indirect input, put it in the constpool if we can, otherwise spill 6048 // it to a stack slot. 6049 // TODO: This isn't quite right. We need to handle these according to 6050 // the addressing mode that the constraint wants. Also, this may take 6051 // an additional register for the computation and we don't want that 6052 // either. 6053 6054 // If the operand is a float, integer, or vector constant, spill to a 6055 // constant pool entry to get its address. 6056 const Value *OpVal = OpInfo.CallOperandVal; 6057 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6058 isa<ConstantVector>(OpVal)) { 6059 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6060 TLI.getPointerTy()); 6061 } else { 6062 // Otherwise, create a stack slot and emit a store to it before the 6063 // asm. 6064 Type *Ty = OpVal->getType(); 6065 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6066 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6067 MachineFunction &MF = DAG.getMachineFunction(); 6068 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6069 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6070 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6071 OpInfo.CallOperand, StackSlot, 6072 MachinePointerInfo::getFixedStack(SSFI), 6073 false, false, 0); 6074 OpInfo.CallOperand = StackSlot; 6075 } 6076 6077 // There is no longer a Value* corresponding to this operand. 6078 OpInfo.CallOperandVal = 0; 6079 6080 // It is now an indirect operand. 6081 OpInfo.isIndirect = true; 6082 } 6083 6084 // If this constraint is for a specific register, allocate it before 6085 // anything else. 6086 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6087 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6088 InputRegs); 6089 } 6090 6091 // Second pass - Loop over all of the operands, assigning virtual or physregs 6092 // to register class operands. 6093 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6094 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6095 6096 // C_Register operands have already been allocated, Other/Memory don't need 6097 // to be. 6098 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6099 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6100 InputRegs); 6101 } 6102 6103 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6104 std::vector<SDValue> AsmNodeOperands; 6105 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6106 AsmNodeOperands.push_back( 6107 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6108 TLI.getPointerTy())); 6109 6110 // If we have a !srcloc metadata node associated with it, we want to attach 6111 // this to the ultimately generated inline asm machineinstr. To do this, we 6112 // pass in the third operand as this (potentially null) inline asm MDNode. 6113 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6114 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6115 6116 // Remember the HasSideEffect and AlignStack bits as operand 3. 6117 unsigned ExtraInfo = 0; 6118 if (IA->hasSideEffects()) 6119 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6120 if (IA->isAlignStack()) 6121 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6122 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6123 TLI.getPointerTy())); 6124 6125 // Loop over all of the inputs, copying the operand values into the 6126 // appropriate registers and processing the output regs. 6127 RegsForValue RetValRegs; 6128 6129 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6130 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6131 6132 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6133 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6134 6135 switch (OpInfo.Type) { 6136 case InlineAsm::isOutput: { 6137 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6138 OpInfo.ConstraintType != TargetLowering::C_Register) { 6139 // Memory output, or 'other' output (e.g. 'X' constraint). 6140 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6141 6142 // Add information to the INLINEASM node to know about this output. 6143 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6144 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6145 TLI.getPointerTy())); 6146 AsmNodeOperands.push_back(OpInfo.CallOperand); 6147 break; 6148 } 6149 6150 // Otherwise, this is a register or register class output. 6151 6152 // Copy the output from the appropriate register. Find a register that 6153 // we can use. 6154 if (OpInfo.AssignedRegs.Regs.empty()) { 6155 LLVMContext &Ctx = *DAG.getContext(); 6156 Ctx.emitError(CS.getInstruction(), 6157 "couldn't allocate output register for constraint '" + 6158 Twine(OpInfo.ConstraintCode) + "'"); 6159 break; 6160 } 6161 6162 // If this is an indirect operand, store through the pointer after the 6163 // asm. 6164 if (OpInfo.isIndirect) { 6165 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6166 OpInfo.CallOperandVal)); 6167 } else { 6168 // This is the result value of the call. 6169 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6170 // Concatenate this output onto the outputs list. 6171 RetValRegs.append(OpInfo.AssignedRegs); 6172 } 6173 6174 // Add information to the INLINEASM node to know that this register is 6175 // set. 6176 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6177 InlineAsm::Kind_RegDefEarlyClobber : 6178 InlineAsm::Kind_RegDef, 6179 false, 6180 0, 6181 DAG, 6182 AsmNodeOperands); 6183 break; 6184 } 6185 case InlineAsm::isInput: { 6186 SDValue InOperandVal = OpInfo.CallOperand; 6187 6188 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6189 // If this is required to match an output register we have already set, 6190 // just use its register. 6191 unsigned OperandNo = OpInfo.getMatchedOperand(); 6192 6193 // Scan until we find the definition we already emitted of this operand. 6194 // When we find it, create a RegsForValue operand. 6195 unsigned CurOp = InlineAsm::Op_FirstOperand; 6196 for (; OperandNo; --OperandNo) { 6197 // Advance to the next operand. 6198 unsigned OpFlag = 6199 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6200 assert((InlineAsm::isRegDefKind(OpFlag) || 6201 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6202 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6203 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6204 } 6205 6206 unsigned OpFlag = 6207 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6208 if (InlineAsm::isRegDefKind(OpFlag) || 6209 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6210 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6211 if (OpInfo.isIndirect) { 6212 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6213 LLVMContext &Ctx = *DAG.getContext(); 6214 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6215 " don't know how to handle tied " 6216 "indirect register inputs"); 6217 } 6218 6219 RegsForValue MatchedRegs; 6220 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6221 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6222 MatchedRegs.RegVTs.push_back(RegVT); 6223 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6224 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6225 i != e; ++i) 6226 MatchedRegs.Regs.push_back 6227 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6228 6229 // Use the produced MatchedRegs object to 6230 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6231 Chain, &Flag); 6232 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6233 true, OpInfo.getMatchedOperand(), 6234 DAG, AsmNodeOperands); 6235 break; 6236 } 6237 6238 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6239 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6240 "Unexpected number of operands"); 6241 // Add information to the INLINEASM node to know about this input. 6242 // See InlineAsm.h isUseOperandTiedToDef. 6243 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6244 OpInfo.getMatchedOperand()); 6245 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6246 TLI.getPointerTy())); 6247 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6248 break; 6249 } 6250 6251 // Treat indirect 'X' constraint as memory. 6252 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6253 OpInfo.isIndirect) 6254 OpInfo.ConstraintType = TargetLowering::C_Memory; 6255 6256 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6257 std::vector<SDValue> Ops; 6258 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6259 Ops, DAG); 6260 if (Ops.empty()) { 6261 LLVMContext &Ctx = *DAG.getContext(); 6262 Ctx.emitError(CS.getInstruction(), 6263 "invalid operand for inline asm constraint '" + 6264 Twine(OpInfo.ConstraintCode) + "'"); 6265 break; 6266 } 6267 6268 // Add information to the INLINEASM node to know about this input. 6269 unsigned ResOpType = 6270 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6271 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6272 TLI.getPointerTy())); 6273 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6274 break; 6275 } 6276 6277 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6278 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6279 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6280 "Memory operands expect pointer values"); 6281 6282 // Add information to the INLINEASM node to know about this input. 6283 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6284 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6285 TLI.getPointerTy())); 6286 AsmNodeOperands.push_back(InOperandVal); 6287 break; 6288 } 6289 6290 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6291 OpInfo.ConstraintType == TargetLowering::C_Register) && 6292 "Unknown constraint type!"); 6293 assert(!OpInfo.isIndirect && 6294 "Don't know how to handle indirect register inputs yet!"); 6295 6296 // Copy the input into the appropriate registers. 6297 if (OpInfo.AssignedRegs.Regs.empty()) { 6298 LLVMContext &Ctx = *DAG.getContext(); 6299 Ctx.emitError(CS.getInstruction(), 6300 "couldn't allocate input reg for constraint '" + 6301 Twine(OpInfo.ConstraintCode) + "'"); 6302 break; 6303 } 6304 6305 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6306 Chain, &Flag); 6307 6308 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6309 DAG, AsmNodeOperands); 6310 break; 6311 } 6312 case InlineAsm::isClobber: { 6313 // Add the clobbered value to the operand list, so that the register 6314 // allocator is aware that the physreg got clobbered. 6315 if (!OpInfo.AssignedRegs.Regs.empty()) 6316 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6317 false, 0, DAG, 6318 AsmNodeOperands); 6319 break; 6320 } 6321 } 6322 } 6323 6324 // Finish up input operands. Set the input chain and add the flag last. 6325 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6326 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6327 6328 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6329 DAG.getVTList(MVT::Other, MVT::Glue), 6330 &AsmNodeOperands[0], AsmNodeOperands.size()); 6331 Flag = Chain.getValue(1); 6332 6333 // If this asm returns a register value, copy the result from that register 6334 // and set it as the value of the call. 6335 if (!RetValRegs.Regs.empty()) { 6336 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6337 Chain, &Flag); 6338 6339 // FIXME: Why don't we do this for inline asms with MRVs? 6340 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6341 EVT ResultType = TLI.getValueType(CS.getType()); 6342 6343 // If any of the results of the inline asm is a vector, it may have the 6344 // wrong width/num elts. This can happen for register classes that can 6345 // contain multiple different value types. The preg or vreg allocated may 6346 // not have the same VT as was expected. Convert it to the right type 6347 // with bit_convert. 6348 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6349 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6350 ResultType, Val); 6351 6352 } else if (ResultType != Val.getValueType() && 6353 ResultType.isInteger() && Val.getValueType().isInteger()) { 6354 // If a result value was tied to an input value, the computed result may 6355 // have a wider width than the expected result. Extract the relevant 6356 // portion. 6357 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6358 } 6359 6360 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6361 } 6362 6363 setValue(CS.getInstruction(), Val); 6364 // Don't need to use this as a chain in this case. 6365 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6366 return; 6367 } 6368 6369 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6370 6371 // Process indirect outputs, first output all of the flagged copies out of 6372 // physregs. 6373 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6374 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6375 const Value *Ptr = IndirectStoresToEmit[i].second; 6376 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6377 Chain, &Flag); 6378 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6379 } 6380 6381 // Emit the non-flagged stores from the physregs. 6382 SmallVector<SDValue, 8> OutChains; 6383 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6384 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6385 StoresToEmit[i].first, 6386 getValue(StoresToEmit[i].second), 6387 MachinePointerInfo(StoresToEmit[i].second), 6388 false, false, 0); 6389 OutChains.push_back(Val); 6390 } 6391 6392 if (!OutChains.empty()) 6393 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6394 &OutChains[0], OutChains.size()); 6395 6396 DAG.setRoot(Chain); 6397 } 6398 6399 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6400 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6401 MVT::Other, getRoot(), 6402 getValue(I.getArgOperand(0)), 6403 DAG.getSrcValue(I.getArgOperand(0)))); 6404 } 6405 6406 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6407 const TargetData &TD = *TLI.getTargetData(); 6408 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6409 getRoot(), getValue(I.getOperand(0)), 6410 DAG.getSrcValue(I.getOperand(0)), 6411 TD.getABITypeAlignment(I.getType())); 6412 setValue(&I, V); 6413 DAG.setRoot(V.getValue(1)); 6414 } 6415 6416 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6417 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6418 MVT::Other, getRoot(), 6419 getValue(I.getArgOperand(0)), 6420 DAG.getSrcValue(I.getArgOperand(0)))); 6421 } 6422 6423 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6424 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6425 MVT::Other, getRoot(), 6426 getValue(I.getArgOperand(0)), 6427 getValue(I.getArgOperand(1)), 6428 DAG.getSrcValue(I.getArgOperand(0)), 6429 DAG.getSrcValue(I.getArgOperand(1)))); 6430 } 6431 6432 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6433 /// implementation, which just calls LowerCall. 6434 /// FIXME: When all targets are 6435 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6436 std::pair<SDValue, SDValue> 6437 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6438 bool RetSExt, bool RetZExt, bool isVarArg, 6439 bool isInreg, unsigned NumFixedArgs, 6440 CallingConv::ID CallConv, bool isTailCall, 6441 bool isReturnValueUsed, 6442 SDValue Callee, 6443 ArgListTy &Args, SelectionDAG &DAG, 6444 DebugLoc dl) const { 6445 // Handle all of the outgoing arguments. 6446 SmallVector<ISD::OutputArg, 32> Outs; 6447 SmallVector<SDValue, 32> OutVals; 6448 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6449 SmallVector<EVT, 4> ValueVTs; 6450 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6451 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6452 Value != NumValues; ++Value) { 6453 EVT VT = ValueVTs[Value]; 6454 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6455 SDValue Op = SDValue(Args[i].Node.getNode(), 6456 Args[i].Node.getResNo() + Value); 6457 ISD::ArgFlagsTy Flags; 6458 unsigned OriginalAlignment = 6459 getTargetData()->getABITypeAlignment(ArgTy); 6460 6461 if (Args[i].isZExt) 6462 Flags.setZExt(); 6463 if (Args[i].isSExt) 6464 Flags.setSExt(); 6465 if (Args[i].isInReg) 6466 Flags.setInReg(); 6467 if (Args[i].isSRet) 6468 Flags.setSRet(); 6469 if (Args[i].isByVal) { 6470 Flags.setByVal(); 6471 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6472 Type *ElementTy = Ty->getElementType(); 6473 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6474 // For ByVal, alignment should come from FE. BE will guess if this 6475 // info is not there but there are cases it cannot get right. 6476 unsigned FrameAlign; 6477 if (Args[i].Alignment) 6478 FrameAlign = Args[i].Alignment; 6479 else 6480 FrameAlign = getByValTypeAlignment(ElementTy); 6481 Flags.setByValAlign(FrameAlign); 6482 } 6483 if (Args[i].isNest) 6484 Flags.setNest(); 6485 Flags.setOrigAlign(OriginalAlignment); 6486 6487 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6488 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6489 SmallVector<SDValue, 4> Parts(NumParts); 6490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6491 6492 if (Args[i].isSExt) 6493 ExtendKind = ISD::SIGN_EXTEND; 6494 else if (Args[i].isZExt) 6495 ExtendKind = ISD::ZERO_EXTEND; 6496 6497 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6498 PartVT, ExtendKind); 6499 6500 for (unsigned j = 0; j != NumParts; ++j) { 6501 // if it isn't first piece, alignment must be 1 6502 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6503 i < NumFixedArgs); 6504 if (NumParts > 1 && j == 0) 6505 MyFlags.Flags.setSplit(); 6506 else if (j != 0) 6507 MyFlags.Flags.setOrigAlign(1); 6508 6509 Outs.push_back(MyFlags); 6510 OutVals.push_back(Parts[j]); 6511 } 6512 } 6513 } 6514 6515 // Handle the incoming return values from the call. 6516 SmallVector<ISD::InputArg, 32> Ins; 6517 SmallVector<EVT, 4> RetTys; 6518 ComputeValueVTs(*this, RetTy, RetTys); 6519 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6520 EVT VT = RetTys[I]; 6521 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6522 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6523 for (unsigned i = 0; i != NumRegs; ++i) { 6524 ISD::InputArg MyFlags; 6525 MyFlags.VT = RegisterVT.getSimpleVT(); 6526 MyFlags.Used = isReturnValueUsed; 6527 if (RetSExt) 6528 MyFlags.Flags.setSExt(); 6529 if (RetZExt) 6530 MyFlags.Flags.setZExt(); 6531 if (isInreg) 6532 MyFlags.Flags.setInReg(); 6533 Ins.push_back(MyFlags); 6534 } 6535 } 6536 6537 SmallVector<SDValue, 4> InVals; 6538 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6539 Outs, OutVals, Ins, dl, DAG, InVals); 6540 6541 // Verify that the target's LowerCall behaved as expected. 6542 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6543 "LowerCall didn't return a valid chain!"); 6544 assert((!isTailCall || InVals.empty()) && 6545 "LowerCall emitted a return value for a tail call!"); 6546 assert((isTailCall || InVals.size() == Ins.size()) && 6547 "LowerCall didn't emit the correct number of values!"); 6548 6549 // For a tail call, the return value is merely live-out and there aren't 6550 // any nodes in the DAG representing it. Return a special value to 6551 // indicate that a tail call has been emitted and no more Instructions 6552 // should be processed in the current block. 6553 if (isTailCall) { 6554 DAG.setRoot(Chain); 6555 return std::make_pair(SDValue(), SDValue()); 6556 } 6557 6558 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6559 assert(InVals[i].getNode() && 6560 "LowerCall emitted a null value!"); 6561 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6562 "LowerCall emitted a value with the wrong type!"); 6563 }); 6564 6565 // Collect the legal value parts into potentially illegal values 6566 // that correspond to the original function's return values. 6567 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6568 if (RetSExt) 6569 AssertOp = ISD::AssertSext; 6570 else if (RetZExt) 6571 AssertOp = ISD::AssertZext; 6572 SmallVector<SDValue, 4> ReturnValues; 6573 unsigned CurReg = 0; 6574 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6575 EVT VT = RetTys[I]; 6576 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6577 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6578 6579 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6580 NumRegs, RegisterVT, VT, 6581 AssertOp)); 6582 CurReg += NumRegs; 6583 } 6584 6585 // For a function returning void, there is no return value. We can't create 6586 // such a node, so we just return a null return value in that case. In 6587 // that case, nothing will actually look at the value. 6588 if (ReturnValues.empty()) 6589 return std::make_pair(SDValue(), Chain); 6590 6591 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6592 DAG.getVTList(&RetTys[0], RetTys.size()), 6593 &ReturnValues[0], ReturnValues.size()); 6594 return std::make_pair(Res, Chain); 6595 } 6596 6597 void TargetLowering::LowerOperationWrapper(SDNode *N, 6598 SmallVectorImpl<SDValue> &Results, 6599 SelectionDAG &DAG) const { 6600 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6601 if (Res.getNode()) 6602 Results.push_back(Res); 6603 } 6604 6605 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6606 llvm_unreachable("LowerOperation not implemented for this target!"); 6607 return SDValue(); 6608 } 6609 6610 void 6611 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6612 SDValue Op = getNonRegisterValue(V); 6613 assert((Op.getOpcode() != ISD::CopyFromReg || 6614 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6615 "Copy from a reg to the same reg!"); 6616 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6617 6618 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6619 SDValue Chain = DAG.getEntryNode(); 6620 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6621 PendingExports.push_back(Chain); 6622 } 6623 6624 #include "llvm/CodeGen/SelectionDAGISel.h" 6625 6626 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6627 /// entry block, return true. This includes arguments used by switches, since 6628 /// the switch may expand into multiple basic blocks. 6629 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6630 // With FastISel active, we may be splitting blocks, so force creation 6631 // of virtual registers for all non-dead arguments. 6632 if (FastISel) 6633 return A->use_empty(); 6634 6635 const BasicBlock *Entry = A->getParent()->begin(); 6636 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6637 UI != E; ++UI) { 6638 const User *U = *UI; 6639 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6640 return false; // Use not in entry block. 6641 } 6642 return true; 6643 } 6644 6645 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6646 // If this is the entry block, emit arguments. 6647 const Function &F = *LLVMBB->getParent(); 6648 SelectionDAG &DAG = SDB->DAG; 6649 DebugLoc dl = SDB->getCurDebugLoc(); 6650 const TargetData *TD = TLI.getTargetData(); 6651 SmallVector<ISD::InputArg, 16> Ins; 6652 6653 // Check whether the function can return without sret-demotion. 6654 SmallVector<ISD::OutputArg, 4> Outs; 6655 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6656 Outs, TLI); 6657 6658 if (!FuncInfo->CanLowerReturn) { 6659 // Put in an sret pointer parameter before all the other parameters. 6660 SmallVector<EVT, 1> ValueVTs; 6661 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6662 6663 // NOTE: Assuming that a pointer will never break down to more than one VT 6664 // or one register. 6665 ISD::ArgFlagsTy Flags; 6666 Flags.setSRet(); 6667 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6668 ISD::InputArg RetArg(Flags, RegisterVT, true); 6669 Ins.push_back(RetArg); 6670 } 6671 6672 // Set up the incoming argument description vector. 6673 unsigned Idx = 1; 6674 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6675 I != E; ++I, ++Idx) { 6676 SmallVector<EVT, 4> ValueVTs; 6677 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6678 bool isArgValueUsed = !I->use_empty(); 6679 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6680 Value != NumValues; ++Value) { 6681 EVT VT = ValueVTs[Value]; 6682 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6683 ISD::ArgFlagsTy Flags; 6684 unsigned OriginalAlignment = 6685 TD->getABITypeAlignment(ArgTy); 6686 6687 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6688 Flags.setZExt(); 6689 if (F.paramHasAttr(Idx, Attribute::SExt)) 6690 Flags.setSExt(); 6691 if (F.paramHasAttr(Idx, Attribute::InReg)) 6692 Flags.setInReg(); 6693 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6694 Flags.setSRet(); 6695 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6696 Flags.setByVal(); 6697 PointerType *Ty = cast<PointerType>(I->getType()); 6698 Type *ElementTy = Ty->getElementType(); 6699 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6700 // For ByVal, alignment should be passed from FE. BE will guess if 6701 // this info is not there but there are cases it cannot get right. 6702 unsigned FrameAlign; 6703 if (F.getParamAlignment(Idx)) 6704 FrameAlign = F.getParamAlignment(Idx); 6705 else 6706 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6707 Flags.setByValAlign(FrameAlign); 6708 } 6709 if (F.paramHasAttr(Idx, Attribute::Nest)) 6710 Flags.setNest(); 6711 Flags.setOrigAlign(OriginalAlignment); 6712 6713 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6714 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6715 for (unsigned i = 0; i != NumRegs; ++i) { 6716 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6717 if (NumRegs > 1 && i == 0) 6718 MyFlags.Flags.setSplit(); 6719 // if it isn't first piece, alignment must be 1 6720 else if (i > 0) 6721 MyFlags.Flags.setOrigAlign(1); 6722 Ins.push_back(MyFlags); 6723 } 6724 } 6725 } 6726 6727 // Call the target to set up the argument values. 6728 SmallVector<SDValue, 8> InVals; 6729 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6730 F.isVarArg(), Ins, 6731 dl, DAG, InVals); 6732 6733 // Verify that the target's LowerFormalArguments behaved as expected. 6734 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6735 "LowerFormalArguments didn't return a valid chain!"); 6736 assert(InVals.size() == Ins.size() && 6737 "LowerFormalArguments didn't emit the correct number of values!"); 6738 DEBUG({ 6739 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6740 assert(InVals[i].getNode() && 6741 "LowerFormalArguments emitted a null value!"); 6742 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6743 "LowerFormalArguments emitted a value with the wrong type!"); 6744 } 6745 }); 6746 6747 // Update the DAG with the new chain value resulting from argument lowering. 6748 DAG.setRoot(NewRoot); 6749 6750 // Set up the argument values. 6751 unsigned i = 0; 6752 Idx = 1; 6753 if (!FuncInfo->CanLowerReturn) { 6754 // Create a virtual register for the sret pointer, and put in a copy 6755 // from the sret argument into it. 6756 SmallVector<EVT, 1> ValueVTs; 6757 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6758 EVT VT = ValueVTs[0]; 6759 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6760 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6761 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6762 RegVT, VT, AssertOp); 6763 6764 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6765 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6766 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6767 FuncInfo->DemoteRegister = SRetReg; 6768 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6769 SRetReg, ArgValue); 6770 DAG.setRoot(NewRoot); 6771 6772 // i indexes lowered arguments. Bump it past the hidden sret argument. 6773 // Idx indexes LLVM arguments. Don't touch it. 6774 ++i; 6775 } 6776 6777 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6778 ++I, ++Idx) { 6779 SmallVector<SDValue, 4> ArgValues; 6780 SmallVector<EVT, 4> ValueVTs; 6781 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6782 unsigned NumValues = ValueVTs.size(); 6783 6784 // If this argument is unused then remember its value. It is used to generate 6785 // debugging information. 6786 if (I->use_empty() && NumValues) 6787 SDB->setUnusedArgValue(I, InVals[i]); 6788 6789 for (unsigned Val = 0; Val != NumValues; ++Val) { 6790 EVT VT = ValueVTs[Val]; 6791 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6792 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6793 6794 if (!I->use_empty()) { 6795 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6796 if (F.paramHasAttr(Idx, Attribute::SExt)) 6797 AssertOp = ISD::AssertSext; 6798 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6799 AssertOp = ISD::AssertZext; 6800 6801 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6802 NumParts, PartVT, VT, 6803 AssertOp)); 6804 } 6805 6806 i += NumParts; 6807 } 6808 6809 // We don't need to do anything else for unused arguments. 6810 if (ArgValues.empty()) 6811 continue; 6812 6813 // Note down frame index. 6814 if (FrameIndexSDNode *FI = 6815 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6816 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6817 6818 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6819 SDB->getCurDebugLoc()); 6820 6821 SDB->setValue(I, Res); 6822 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6823 if (LoadSDNode *LNode = 6824 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6825 if (FrameIndexSDNode *FI = 6826 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6827 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6828 } 6829 6830 // If this argument is live outside of the entry block, insert a copy from 6831 // wherever we got it to the vreg that other BB's will reference it as. 6832 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6833 // If we can, though, try to skip creating an unnecessary vreg. 6834 // FIXME: This isn't very clean... it would be nice to make this more 6835 // general. It's also subtly incompatible with the hacks FastISel 6836 // uses with vregs. 6837 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6838 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6839 FuncInfo->ValueMap[I] = Reg; 6840 continue; 6841 } 6842 } 6843 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6844 FuncInfo->InitializeRegForValue(I); 6845 SDB->CopyToExportRegsIfNeeded(I); 6846 } 6847 } 6848 6849 assert(i == InVals.size() && "Argument register count mismatch!"); 6850 6851 // Finally, if the target has anything special to do, allow it to do so. 6852 // FIXME: this should insert code into the DAG! 6853 EmitFunctionEntryCode(); 6854 } 6855 6856 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6857 /// ensure constants are generated when needed. Remember the virtual registers 6858 /// that need to be added to the Machine PHI nodes as input. We cannot just 6859 /// directly add them, because expansion might result in multiple MBB's for one 6860 /// BB. As such, the start of the BB might correspond to a different MBB than 6861 /// the end. 6862 /// 6863 void 6864 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6865 const TerminatorInst *TI = LLVMBB->getTerminator(); 6866 6867 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6868 6869 // Check successor nodes' PHI nodes that expect a constant to be available 6870 // from this block. 6871 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6872 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6873 if (!isa<PHINode>(SuccBB->begin())) continue; 6874 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6875 6876 // If this terminator has multiple identical successors (common for 6877 // switches), only handle each succ once. 6878 if (!SuccsHandled.insert(SuccMBB)) continue; 6879 6880 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6881 6882 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6883 // nodes and Machine PHI nodes, but the incoming operands have not been 6884 // emitted yet. 6885 for (BasicBlock::const_iterator I = SuccBB->begin(); 6886 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6887 // Ignore dead phi's. 6888 if (PN->use_empty()) continue; 6889 6890 // Skip empty types 6891 if (PN->getType()->isEmptyTy()) 6892 continue; 6893 6894 unsigned Reg; 6895 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6896 6897 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6898 unsigned &RegOut = ConstantsOut[C]; 6899 if (RegOut == 0) { 6900 RegOut = FuncInfo.CreateRegs(C->getType()); 6901 CopyValueToVirtualRegister(C, RegOut); 6902 } 6903 Reg = RegOut; 6904 } else { 6905 DenseMap<const Value *, unsigned>::iterator I = 6906 FuncInfo.ValueMap.find(PHIOp); 6907 if (I != FuncInfo.ValueMap.end()) 6908 Reg = I->second; 6909 else { 6910 assert(isa<AllocaInst>(PHIOp) && 6911 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6912 "Didn't codegen value into a register!??"); 6913 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6914 CopyValueToVirtualRegister(PHIOp, Reg); 6915 } 6916 } 6917 6918 // Remember that this register needs to added to the machine PHI node as 6919 // the input for this MBB. 6920 SmallVector<EVT, 4> ValueVTs; 6921 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6922 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6923 EVT VT = ValueVTs[vti]; 6924 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6925 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6926 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6927 Reg += NumRegisters; 6928 } 6929 } 6930 } 6931 ConstantsOut.clear(); 6932 } 6933