xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f64fdd69d00ba83ecb363917514565cb048bf546)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 using namespace llvm;
61 
62 /// LimitFloatPrecision - Generate low-precision inline sequences for
63 /// some float libcalls (6, 8 or 12 bits).
64 static unsigned LimitFloatPrecision;
65 
66 static cl::opt<unsigned, true>
67 LimitFPPrecision("limit-float-precision",
68                  cl::desc("Generate low-precision inline sequences "
69                           "for some float libcalls"),
70                  cl::location(LimitFloatPrecision),
71                  cl::init(0));
72 
73 /// getCopyFromParts - Create a value that contains the specified legal parts
74 /// combined into the value they represent.  If the parts combine to a type
75 /// larger then ValueVT then AssertOp can be used to specify whether the extra
76 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77 /// (ISD::AssertSext).
78 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                 const SDValue *Parts,
80                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82   assert(NumParts > 0 && "No parts to assemble!");
83   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84   SDValue Val = Parts[0];
85 
86   if (NumParts > 1) {
87     // Assemble the value from multiple parts.
88     if (!ValueVT.isVector() && ValueVT.isInteger()) {
89       unsigned PartBits = PartVT.getSizeInBits();
90       unsigned ValueBits = ValueVT.getSizeInBits();
91 
92       // Assemble the power of 2 part.
93       unsigned RoundParts = NumParts & (NumParts - 1) ?
94         1 << Log2_32(NumParts) : NumParts;
95       unsigned RoundBits = PartBits * RoundParts;
96       EVT RoundVT = RoundBits == ValueBits ?
97         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98       SDValue Lo, Hi;
99 
100       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101 
102       if (RoundParts > 2) {
103         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                               PartVT, HalfVT);
105         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                               RoundParts / 2, PartVT, HalfVT);
107       } else {
108         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110       }
111 
112       if (TLI.isBigEndian())
113         std::swap(Lo, Hi);
114 
115       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116 
117       if (RoundParts < NumParts) {
118         // Assemble the trailing non-power-of-2 part.
119         unsigned OddParts = NumParts - RoundParts;
120         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121         Hi = getCopyFromParts(DAG, dl,
122                               Parts + RoundParts, OddParts, PartVT, OddVT);
123 
124         // Combine the round and odd parts.
125         Lo = Val;
126         if (TLI.isBigEndian())
127           std::swap(Lo, Hi);
128         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                          TLI.getPointerTy()));
133         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135       }
136     } else if (ValueVT.isVector()) {
137       // Handle a multi-element vector.
138       EVT IntermediateVT, RegisterVT;
139       unsigned NumIntermediates;
140       unsigned NumRegs =
141         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                    NumIntermediates, RegisterVT);
143       assert(NumRegs == NumParts
144              && "Part count doesn't match vector breakdown!");
145       NumParts = NumRegs; // Silence a compiler warning.
146       assert(RegisterVT == PartVT
147              && "Part type doesn't match vector breakdown!");
148       assert(RegisterVT == Parts[0].getValueType() &&
149              "Part type doesn't match part!");
150 
151       // Assemble the parts into intermediate operands.
152       SmallVector<SDValue, 8> Ops(NumIntermediates);
153       if (NumIntermediates == NumParts) {
154         // If the register was not expanded, truncate or copy the value,
155         // as appropriate.
156         for (unsigned i = 0; i != NumParts; ++i)
157           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                     PartVT, IntermediateVT);
159       } else if (NumParts > 0) {
160         // If the intermediate type was expanded, build the intermediate
161         // operands from the parts.
162         assert(NumParts % NumIntermediates == 0 &&
163                "Must expand into a divisible number of parts!");
164         unsigned Factor = NumParts / NumIntermediates;
165         for (unsigned i = 0; i != NumIntermediates; ++i)
166           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                     PartVT, IntermediateVT);
168       }
169 
170       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171       // intermediate operands.
172       Val = DAG.getNode(IntermediateVT.isVector() ?
173                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                         ValueVT, &Ops[0], NumIntermediates);
175     } else if (PartVT.isFloatingPoint()) {
176       // FP split into multiple FP parts (for ppcf128)
177       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178              "Unexpected split");
179       SDValue Lo, Hi;
180       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182       if (TLI.isBigEndian())
183         std::swap(Lo, Hi);
184       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185     } else {
186       // FP split into integer parts (soft fp)
187       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188              !PartVT.isVector() && "Unexpected split");
189       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191     }
192   }
193 
194   // There is now one part, held in Val.  Correct it to match ValueVT.
195   PartVT = Val.getValueType();
196 
197   if (PartVT == ValueVT)
198     return Val;
199 
200   if (PartVT.isVector()) {
201     assert(ValueVT.isVector() && "Unknown vector conversion!");
202     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203   }
204 
205   if (ValueVT.isVector()) {
206     assert(ValueVT.getVectorElementType() == PartVT &&
207            ValueVT.getVectorNumElements() == 1 &&
208            "Only trivial scalar-to-vector conversions should get here!");
209     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210   }
211 
212   if (PartVT.isInteger() &&
213       ValueVT.isInteger()) {
214     if (ValueVT.bitsLT(PartVT)) {
215       // For a truncate, see if we have any information to
216       // indicate whether the truncated bits will always be
217       // zero or sign-extension.
218       if (AssertOp != ISD::DELETED_NODE)
219         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                           DAG.getValueType(ValueVT));
221       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222     } else {
223       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224     }
225   }
226 
227   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228     if (ValueVT.bitsLT(Val.getValueType())) {
229       // FP_ROUND's are always exact here.
230       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                          DAG.getIntPtrConstant(1));
232     }
233 
234     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235   }
236 
237   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239 
240   llvm_unreachable("Unknown mismatch!");
241   return SDValue();
242 }
243 
244 /// getCopyToParts - Create a series of nodes that contain the specified value
245 /// split into legal parts.  If the parts contain more bits than Val, then, for
246 /// integers, ExtendKind can be used to specify how to generate the extra bits.
247 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                            SDValue Val, SDValue *Parts, unsigned NumParts,
249                            EVT PartVT,
250                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252   EVT PtrVT = TLI.getPointerTy();
253   EVT ValueVT = Val.getValueType();
254   unsigned PartBits = PartVT.getSizeInBits();
255   unsigned OrigNumParts = NumParts;
256   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257 
258   if (!NumParts)
259     return;
260 
261   if (!ValueVT.isVector()) {
262     if (PartVT == ValueVT) {
263       assert(NumParts == 1 && "No-op copy with multiple parts!");
264       Parts[0] = Val;
265       return;
266     }
267 
268     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269       // If the parts cover more bits than the value has, promote the value.
270       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271         assert(NumParts == 1 && "Do not know what to promote to!");
272         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276       } else {
277         llvm_unreachable("Unknown mismatch!");
278       }
279     } else if (PartBits == ValueVT.getSizeInBits()) {
280       // Different types of the same size.
281       assert(NumParts == 1 && PartVT != ValueVT);
282       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284       // If the parts cover less bits than value has, truncate the value.
285       if (PartVT.isInteger() && ValueVT.isInteger()) {
286         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288       } else {
289         llvm_unreachable("Unknown mismatch!");
290       }
291     }
292 
293     // The value may have changed - recompute ValueVT.
294     ValueVT = Val.getValueType();
295     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296            "Failed to tile the value with PartVT!");
297 
298     if (NumParts == 1) {
299       assert(PartVT == ValueVT && "Type conversion failed!");
300       Parts[0] = Val;
301       return;
302     }
303 
304     // Expand the value into multiple parts.
305     if (NumParts & (NumParts - 1)) {
306       // The number of parts is not a power of 2.  Split off and copy the tail.
307       assert(PartVT.isInteger() && ValueVT.isInteger() &&
308              "Do not know what to expand to!");
309       unsigned RoundParts = 1 << Log2_32(NumParts);
310       unsigned RoundBits = RoundParts * PartBits;
311       unsigned OddParts = NumParts - RoundParts;
312       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                    DAG.getConstant(RoundBits,
314                                                    TLI.getPointerTy()));
315       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                      OddParts, PartVT);
317 
318       if (TLI.isBigEndian())
319         // The odd parts were reversed by getCopyToParts - unreverse them.
320         std::reverse(Parts + RoundParts, Parts + NumParts);
321 
322       NumParts = RoundParts;
323       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325     }
326 
327     // The number of parts is a power of 2.  Repeatedly bisect the value using
328     // EXTRACT_ELEMENT.
329     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                            EVT::getIntegerVT(*DAG.getContext(),
331                                              ValueVT.getSizeInBits()),
332                            Val);
333 
334     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335       for (unsigned i = 0; i < NumParts; i += StepSize) {
336         unsigned ThisBits = StepSize * PartBits / 2;
337         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338         SDValue &Part0 = Parts[i];
339         SDValue &Part1 = Parts[i+StepSize/2];
340 
341         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                             ThisVT, Part0,
343                             DAG.getConstant(1, PtrVT));
344         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                             ThisVT, Part0,
346                             DAG.getConstant(0, PtrVT));
347 
348         if (ThisBits == PartBits && ThisVT != PartVT) {
349           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                 PartVT, Part0);
351           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                 PartVT, Part1);
353         }
354       }
355     }
356 
357     if (TLI.isBigEndian())
358       std::reverse(Parts, Parts + OrigNumParts);
359 
360     return;
361   }
362 
363   // Vector ValueVT.
364   if (NumParts == 1) {
365     if (PartVT != ValueVT) {
366       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368       } else {
369         assert(ValueVT.getVectorElementType() == PartVT &&
370                ValueVT.getVectorNumElements() == 1 &&
371                "Only trivial vector-to-scalar conversions should get here!");
372         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                           PartVT, Val,
374                           DAG.getConstant(0, PtrVT));
375       }
376     }
377 
378     Parts[0] = Val;
379     return;
380   }
381 
382   // Handle a multi-element vector.
383   EVT IntermediateVT, RegisterVT;
384   unsigned NumIntermediates;
385   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                               IntermediateVT, NumIntermediates, RegisterVT);
387   unsigned NumElements = ValueVT.getVectorNumElements();
388 
389   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390   NumParts = NumRegs; // Silence a compiler warning.
391   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392 
393   // Split the vector into intermediate operands.
394   SmallVector<SDValue, 8> Ops(NumIntermediates);
395   for (unsigned i = 0; i != NumIntermediates; ++i) {
396     if (IntermediateVT.isVector())
397       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                            IntermediateVT, Val,
399                            DAG.getConstant(i * (NumElements / NumIntermediates),
400                                            PtrVT));
401     else
402       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                            IntermediateVT, Val,
404                            DAG.getConstant(i, PtrVT));
405   }
406 
407   // Split the intermediate operands into legal parts.
408   if (NumParts == NumIntermediates) {
409     // If the register was not expanded, promote or copy the value,
410     // as appropriate.
411     for (unsigned i = 0; i != NumParts; ++i)
412       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413   } else if (NumParts > 0) {
414     // If the intermediate type was expanded, split each the value into
415     // legal parts.
416     assert(NumParts % NumIntermediates == 0 &&
417            "Must expand into a divisible number of parts!");
418     unsigned Factor = NumParts / NumIntermediates;
419     for (unsigned i = 0; i != NumIntermediates; ++i)
420       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421   }
422 }
423 
424 namespace {
425   /// RegsForValue - This struct represents the registers (physical or virtual)
426   /// that a particular set of values is assigned, and the type information
427   /// about the value. The most common situation is to represent one value at a
428   /// time, but struct or array values are handled element-wise as multiple
429   /// values.  The splitting of aggregates is performed recursively, so that we
430   /// never have aggregate-typed registers. The values at this point do not
431   /// necessarily have legal types, so each value may require one or more
432   /// registers of some legal type.
433   ///
434   struct RegsForValue {
435     /// ValueVTs - The value types of the values, which may not be legal, and
436     /// may need be promoted or synthesized from one or more registers.
437     ///
438     SmallVector<EVT, 4> ValueVTs;
439 
440     /// RegVTs - The value types of the registers. This is the same size as
441     /// ValueVTs and it records, for each value, what the type of the assigned
442     /// register or registers are. (Individual values are never synthesized
443     /// from more than one type of register.)
444     ///
445     /// With virtual registers, the contents of RegVTs is redundant with TLI's
446     /// getRegisterType member function, however when with physical registers
447     /// it is necessary to have a separate record of the types.
448     ///
449     SmallVector<EVT, 4> RegVTs;
450 
451     /// Regs - This list holds the registers assigned to the values.
452     /// Each legal or promoted value requires one register, and each
453     /// expanded value requires multiple registers.
454     ///
455     SmallVector<unsigned, 4> Regs;
456 
457     RegsForValue() {}
458 
459     RegsForValue(const SmallVector<unsigned, 4> &regs,
460                  EVT regvt, EVT valuevt)
461       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462 
463     RegsForValue(const SmallVector<unsigned, 4> &regs,
464                  const SmallVector<EVT, 4> &regvts,
465                  const SmallVector<EVT, 4> &valuevts)
466       : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467 
468     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                  unsigned Reg, const Type *Ty) {
470       ComputeValueVTs(tli, Ty, ValueVTs);
471 
472       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473         EVT ValueVT = ValueVTs[Value];
474         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476         for (unsigned i = 0; i != NumRegs; ++i)
477           Regs.push_back(Reg + i);
478         RegVTs.push_back(RegisterVT);
479         Reg += NumRegs;
480       }
481     }
482 
483     /// areValueTypesLegal - Return true if types of all the values are legal.
484     bool areValueTypesLegal(const TargetLowering &TLI) {
485       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486         EVT RegisterVT = RegVTs[Value];
487         if (!TLI.isTypeLegal(RegisterVT))
488           return false;
489       }
490       return true;
491     }
492 
493     /// append - Add the specified values to this one.
494     void append(const RegsForValue &RHS) {
495       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498     }
499 
500     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501     /// this value and returns the result as a ValueVTs value.  This uses
502     /// Chain/Flag as the input and updates them for the output Chain/Flag.
503     /// If the Flag pointer is NULL, no flag is used.
504     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                             DebugLoc dl,
506                             SDValue &Chain, SDValue *Flag) const;
507 
508     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509     /// specified value into the registers specified by this object.  This uses
510     /// Chain/Flag as the input and updates them for the output Chain/Flag.
511     /// If the Flag pointer is NULL, no flag is used.
512     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                        SDValue &Chain, SDValue *Flag) const;
514 
515     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516     /// operand list.  This adds the code marker, matching input operand index
517     /// (if applicable), and includes the number of values added into it.
518     void AddInlineAsmOperands(unsigned Kind,
519                               bool HasMatching, unsigned MatchingIdx,
520                               SelectionDAG &DAG,
521                               std::vector<SDValue> &Ops) const;
522   };
523 }
524 
525 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526 /// this value and returns the result as a ValueVT value.  This uses
527 /// Chain/Flag as the input and updates them for the output Chain/Flag.
528 /// If the Flag pointer is NULL, no flag is used.
529 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                       FunctionLoweringInfo &FuncInfo,
531                                       DebugLoc dl,
532                                       SDValue &Chain, SDValue *Flag) const {
533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534 
535   // Assemble the legal parts into the final values.
536   SmallVector<SDValue, 4> Values(ValueVTs.size());
537   SmallVector<SDValue, 8> Parts;
538   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539     // Copy the legal parts from the registers.
540     EVT ValueVT = ValueVTs[Value];
541     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542     EVT RegisterVT = RegVTs[Value];
543 
544     Parts.resize(NumRegs);
545     for (unsigned i = 0; i != NumRegs; ++i) {
546       SDValue P;
547       if (Flag == 0) {
548         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549       } else {
550         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551         *Flag = P.getValue(2);
552       }
553 
554       Chain = P.getValue(1);
555 
556       // If the source register was virtual and if we know something about it,
557       // add an assert node.
558       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559           RegisterVT.isInteger() && !RegisterVT.isVector()) {
560         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561         if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562           const FunctionLoweringInfo::LiveOutInfo &LOI =
563             FuncInfo.LiveOutRegInfo[SlotNo];
564 
565           unsigned RegSize = RegisterVT.getSizeInBits();
566           unsigned NumSignBits = LOI.NumSignBits;
567           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568 
569           // FIXME: We capture more information than the dag can represent.  For
570           // now, just use the tightest assertzext/assertsext possible.
571           bool isSExt = true;
572           EVT FromVT(MVT::Other);
573           if (NumSignBits == RegSize)
574             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575           else if (NumZeroBits >= RegSize-1)
576             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577           else if (NumSignBits > RegSize-8)
578             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579           else if (NumZeroBits >= RegSize-8)
580             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581           else if (NumSignBits > RegSize-16)
582             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583           else if (NumZeroBits >= RegSize-16)
584             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585           else if (NumSignBits > RegSize-32)
586             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587           else if (NumZeroBits >= RegSize-32)
588             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589 
590           if (FromVT != MVT::Other)
591             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                             RegisterVT, P, DAG.getValueType(FromVT));
593         }
594       }
595 
596       Parts[i] = P;
597     }
598 
599     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                      NumRegs, RegisterVT, ValueVT);
601     Part += NumRegs;
602     Parts.clear();
603   }
604 
605   return DAG.getNode(ISD::MERGE_VALUES, dl,
606                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                      &Values[0], ValueVTs.size());
608 }
609 
610 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611 /// specified value into the registers specified by this object.  This uses
612 /// Chain/Flag as the input and updates them for the output Chain/Flag.
613 /// If the Flag pointer is NULL, no flag is used.
614 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                  SDValue &Chain, SDValue *Flag) const {
616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617 
618   // Get the list of the values's legal parts.
619   unsigned NumRegs = Regs.size();
620   SmallVector<SDValue, 8> Parts(NumRegs);
621   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622     EVT ValueVT = ValueVTs[Value];
623     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624     EVT RegisterVT = RegVTs[Value];
625 
626     getCopyToParts(DAG, dl,
627                    Val.getValue(Val.getResNo() + Value),
628                    &Parts[Part], NumParts, RegisterVT);
629     Part += NumParts;
630   }
631 
632   // Copy the parts into the registers.
633   SmallVector<SDValue, 8> Chains(NumRegs);
634   for (unsigned i = 0; i != NumRegs; ++i) {
635     SDValue Part;
636     if (Flag == 0) {
637       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638     } else {
639       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640       *Flag = Part.getValue(1);
641     }
642 
643     Chains[i] = Part.getValue(0);
644   }
645 
646   if (NumRegs == 1 || Flag)
647     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648     // flagged to it. That is the CopyToReg nodes and the user are considered
649     // a single scheduling unit. If we create a TokenFactor and return it as
650     // chain, then the TokenFactor is both a predecessor (operand) of the
651     // user as well as a successor (the TF operands are flagged to the user).
652     // c1, f1 = CopyToReg
653     // c2, f2 = CopyToReg
654     // c3     = TokenFactor c1, c2
655     // ...
656     //        = op c3, ..., f2
657     Chain = Chains[NumRegs-1];
658   else
659     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660 }
661 
662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663 /// operand list.  This adds the code marker and includes the number of
664 /// values added into it.
665 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                         unsigned MatchingIdx,
667                                         SelectionDAG &DAG,
668                                         std::vector<SDValue> &Ops) const {
669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670 
671   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672   if (HasMatching)
673     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675   Ops.push_back(Res);
676 
677   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679     EVT RegisterVT = RegVTs[Value];
680     for (unsigned i = 0; i != NumRegs; ++i) {
681       assert(Reg < Regs.size() && "Mismatch in # registers expected");
682       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683     }
684   }
685 }
686 
687 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688   AA = &aa;
689   GFI = gfi;
690   TD = DAG.getTarget().getTargetData();
691 }
692 
693 /// clear - Clear out the current SelectionDAG and the associated
694 /// state and prepare this SelectionDAGBuilder object to be used
695 /// for a new block. This doesn't clear out information about
696 /// additional blocks that are needed to complete switch lowering
697 /// or PHI node updating; that information is cleared out as it is
698 /// consumed.
699 void SelectionDAGBuilder::clear() {
700   NodeMap.clear();
701   UnusedArgNodeMap.clear();
702   PendingLoads.clear();
703   PendingExports.clear();
704   CurDebugLoc = DebugLoc();
705   HasTailCall = false;
706 }
707 
708 /// getRoot - Return the current virtual root of the Selection DAG,
709 /// flushing any PendingLoad items. This must be done before emitting
710 /// a store or any other node that may need to be ordered after any
711 /// prior load instructions.
712 ///
713 SDValue SelectionDAGBuilder::getRoot() {
714   if (PendingLoads.empty())
715     return DAG.getRoot();
716 
717   if (PendingLoads.size() == 1) {
718     SDValue Root = PendingLoads[0];
719     DAG.setRoot(Root);
720     PendingLoads.clear();
721     return Root;
722   }
723 
724   // Otherwise, we have to make a token factor node.
725   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                                &PendingLoads[0], PendingLoads.size());
727   PendingLoads.clear();
728   DAG.setRoot(Root);
729   return Root;
730 }
731 
732 /// getControlRoot - Similar to getRoot, but instead of flushing all the
733 /// PendingLoad items, flush all the PendingExports items. It is necessary
734 /// to do this before emitting a terminator instruction.
735 ///
736 SDValue SelectionDAGBuilder::getControlRoot() {
737   SDValue Root = DAG.getRoot();
738 
739   if (PendingExports.empty())
740     return Root;
741 
742   // Turn all of the CopyToReg chains into one factored node.
743   if (Root.getOpcode() != ISD::EntryToken) {
744     unsigned i = 0, e = PendingExports.size();
745     for (; i != e; ++i) {
746       assert(PendingExports[i].getNode()->getNumOperands() > 1);
747       if (PendingExports[i].getNode()->getOperand(0) == Root)
748         break;  // Don't add the root if we already indirectly depend on it.
749     }
750 
751     if (i == e)
752       PendingExports.push_back(Root);
753   }
754 
755   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                      &PendingExports[0],
757                      PendingExports.size());
758   PendingExports.clear();
759   DAG.setRoot(Root);
760   return Root;
761 }
762 
763 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765   DAG.AssignOrdering(Node, SDNodeOrder);
766 
767   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768     AssignOrderingToNode(Node->getOperand(I).getNode());
769 }
770 
771 void SelectionDAGBuilder::visit(const Instruction &I) {
772   // Set up outgoing PHI node register values before emitting the terminator.
773   if (isa<TerminatorInst>(&I))
774     HandlePHINodesInSuccessorBlocks(I.getParent());
775 
776   CurDebugLoc = I.getDebugLoc();
777 
778   visit(I.getOpcode(), I);
779 
780   if (!isa<TerminatorInst>(&I) && !HasTailCall)
781     CopyToExportRegsIfNeeded(&I);
782 
783   CurDebugLoc = DebugLoc();
784 }
785 
786 void SelectionDAGBuilder::visitPHI(const PHINode &) {
787   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788 }
789 
790 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791   // Note: this doesn't use InstVisitor, because it has to work with
792   // ConstantExpr's in addition to instructions.
793   switch (Opcode) {
794   default: llvm_unreachable("Unknown instruction type encountered!");
795     // Build the switch statement using the Instruction.def file.
796 #define HANDLE_INST(NUM, OPCODE, CLASS) \
797     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798 #include "llvm/Instruction.def"
799   }
800 
801   // Assign the ordering to the freshly created DAG nodes.
802   if (NodeMap.count(&I)) {
803     ++SDNodeOrder;
804     AssignOrderingToNode(getValue(&I).getNode());
805   }
806 }
807 
808 /// getValue - Return an SDValue for the given Value.
809 SDValue SelectionDAGBuilder::getValue(const Value *V) {
810   // If we already have an SDValue for this value, use it. It's important
811   // to do this first, so that we don't create a CopyFromReg if we already
812   // have a regular SDValue.
813   SDValue &N = NodeMap[V];
814   if (N.getNode()) return N;
815 
816   // If there's a virtual register allocated and initialized for this
817   // value, use it.
818   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
819   if (It != FuncInfo.ValueMap.end()) {
820     unsigned InReg = It->second;
821     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
822     SDValue Chain = DAG.getEntryNode();
823     return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
824   }
825 
826   // Otherwise create a new SDValue and remember it.
827   return N = getValueImpl(V);
828 }
829 
830 /// getNonRegisterValue - Return an SDValue for the given Value, but
831 /// don't look in FuncInfo.ValueMap for a virtual register.
832 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
833   // If we already have an SDValue for this value, use it.
834   SDValue &N = NodeMap[V];
835   if (N.getNode()) return N;
836 
837   // Otherwise create a new SDValue and remember it.
838   return N = getValueImpl(V);
839 }
840 
841 /// getValueImpl - Helper function for getValue and getMaterializedValue.
842 /// Create an SDValue for the given value.
843 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
844   if (const Constant *C = dyn_cast<Constant>(V)) {
845     EVT VT = TLI.getValueType(V->getType(), true);
846 
847     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
848       return DAG.getConstant(*CI, VT);
849 
850     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
851       return DAG.getGlobalAddress(GV, VT);
852 
853     if (isa<ConstantPointerNull>(C))
854       return DAG.getConstant(0, TLI.getPointerTy());
855 
856     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
857       return DAG.getConstantFP(*CFP, VT);
858 
859     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
860       return DAG.getUNDEF(VT);
861 
862     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
863       visit(CE->getOpcode(), *CE);
864       SDValue N1 = NodeMap[V];
865       assert(N1.getNode() && "visit didn't populate the NodeMap!");
866       return N1;
867     }
868 
869     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
870       SmallVector<SDValue, 4> Constants;
871       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
872            OI != OE; ++OI) {
873         SDNode *Val = getValue(*OI).getNode();
874         // If the operand is an empty aggregate, there are no values.
875         if (!Val) continue;
876         // Add each leaf value from the operand to the Constants list
877         // to form a flattened list of all the values.
878         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
879           Constants.push_back(SDValue(Val, i));
880       }
881 
882       return DAG.getMergeValues(&Constants[0], Constants.size(),
883                                 getCurDebugLoc());
884     }
885 
886     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
887       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
888              "Unknown struct or array constant!");
889 
890       SmallVector<EVT, 4> ValueVTs;
891       ComputeValueVTs(TLI, C->getType(), ValueVTs);
892       unsigned NumElts = ValueVTs.size();
893       if (NumElts == 0)
894         return SDValue(); // empty struct
895       SmallVector<SDValue, 4> Constants(NumElts);
896       for (unsigned i = 0; i != NumElts; ++i) {
897         EVT EltVT = ValueVTs[i];
898         if (isa<UndefValue>(C))
899           Constants[i] = DAG.getUNDEF(EltVT);
900         else if (EltVT.isFloatingPoint())
901           Constants[i] = DAG.getConstantFP(0, EltVT);
902         else
903           Constants[i] = DAG.getConstant(0, EltVT);
904       }
905 
906       return DAG.getMergeValues(&Constants[0], NumElts,
907                                 getCurDebugLoc());
908     }
909 
910     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
911       return DAG.getBlockAddress(BA, VT);
912 
913     const VectorType *VecTy = cast<VectorType>(V->getType());
914     unsigned NumElements = VecTy->getNumElements();
915 
916     // Now that we know the number and type of the elements, get that number of
917     // elements into the Ops array based on what kind of constant it is.
918     SmallVector<SDValue, 16> Ops;
919     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
920       for (unsigned i = 0; i != NumElements; ++i)
921         Ops.push_back(getValue(CP->getOperand(i)));
922     } else {
923       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
924       EVT EltVT = TLI.getValueType(VecTy->getElementType());
925 
926       SDValue Op;
927       if (EltVT.isFloatingPoint())
928         Op = DAG.getConstantFP(0, EltVT);
929       else
930         Op = DAG.getConstant(0, EltVT);
931       Ops.assign(NumElements, Op);
932     }
933 
934     // Create a BUILD_VECTOR node.
935     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
936                                     VT, &Ops[0], Ops.size());
937   }
938 
939   // If this is a static alloca, generate it as the frameindex instead of
940   // computation.
941   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
942     DenseMap<const AllocaInst*, int>::iterator SI =
943       FuncInfo.StaticAllocaMap.find(AI);
944     if (SI != FuncInfo.StaticAllocaMap.end())
945       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
946   }
947 
948   // If this is an instruction which fast-isel has deferred, select it now.
949   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
950     assert(Inst->isSafeToSpeculativelyExecute() &&
951            "Instruction with side effects deferred!");
952     visit(*Inst);
953     DenseMap<const Value *, SDValue>::iterator NIt = NodeMap.find(Inst);
954     if (NIt != NodeMap.end() && NIt->second.getNode())
955       return NIt->second;
956   }
957 
958   llvm_unreachable("Can't get register for value!");
959   return SDValue();
960 }
961 
962 /// Get the EVTs and ArgFlags collections that represent the legalized return
963 /// type of the given function.  This does not require a DAG or a return value,
964 /// and is suitable for use before any DAGs for the function are constructed.
965 static void getReturnInfo(const Type* ReturnType,
966                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
967                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
968                    const TargetLowering &TLI,
969                    SmallVectorImpl<uint64_t> *Offsets = 0) {
970   SmallVector<EVT, 4> ValueVTs;
971   ComputeValueVTs(TLI, ReturnType, ValueVTs);
972   unsigned NumValues = ValueVTs.size();
973   if (NumValues == 0) return;
974   unsigned Offset = 0;
975 
976   for (unsigned j = 0, f = NumValues; j != f; ++j) {
977     EVT VT = ValueVTs[j];
978     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
979 
980     if (attr & Attribute::SExt)
981       ExtendKind = ISD::SIGN_EXTEND;
982     else if (attr & Attribute::ZExt)
983       ExtendKind = ISD::ZERO_EXTEND;
984 
985     // FIXME: C calling convention requires the return type to be promoted to
986     // at least 32-bit. But this is not necessary for non-C calling
987     // conventions. The frontend should mark functions whose return values
988     // require promoting with signext or zeroext attributes.
989     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
990       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
991       if (VT.bitsLT(MinVT))
992         VT = MinVT;
993     }
994 
995     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
996     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
997     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
998                         PartVT.getTypeForEVT(ReturnType->getContext()));
999 
1000     // 'inreg' on function refers to return value
1001     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1002     if (attr & Attribute::InReg)
1003       Flags.setInReg();
1004 
1005     // Propagate extension type if any
1006     if (attr & Attribute::SExt)
1007       Flags.setSExt();
1008     else if (attr & Attribute::ZExt)
1009       Flags.setZExt();
1010 
1011     for (unsigned i = 0; i < NumParts; ++i) {
1012       OutVTs.push_back(PartVT);
1013       OutFlags.push_back(Flags);
1014       if (Offsets)
1015       {
1016         Offsets->push_back(Offset);
1017         Offset += PartSize;
1018       }
1019     }
1020   }
1021 }
1022 
1023 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1024   SDValue Chain = getControlRoot();
1025   SmallVector<ISD::OutputArg, 8> Outs;
1026 
1027   if (!FuncInfo.CanLowerReturn) {
1028     unsigned DemoteReg = FuncInfo.DemoteRegister;
1029     const Function *F = I.getParent()->getParent();
1030 
1031     // Emit a store of the return value through the virtual register.
1032     // Leave Outs empty so that LowerReturn won't try to load return
1033     // registers the usual way.
1034     SmallVector<EVT, 1> PtrValueVTs;
1035     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1036                     PtrValueVTs);
1037 
1038     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1039     SDValue RetOp = getValue(I.getOperand(0));
1040 
1041     SmallVector<EVT, 4> ValueVTs;
1042     SmallVector<uint64_t, 4> Offsets;
1043     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1044     unsigned NumValues = ValueVTs.size();
1045 
1046     SmallVector<SDValue, 4> Chains(NumValues);
1047     EVT PtrVT = PtrValueVTs[0];
1048     for (unsigned i = 0; i != NumValues; ++i) {
1049       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1050                                 DAG.getConstant(Offsets[i], PtrVT));
1051       Chains[i] =
1052         DAG.getStore(Chain, getCurDebugLoc(),
1053                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1054                      Add, NULL, Offsets[i], false, false, 0);
1055     }
1056 
1057     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1058                         MVT::Other, &Chains[0], NumValues);
1059   } else if (I.getNumOperands() != 0) {
1060     SmallVector<EVT, 4> ValueVTs;
1061     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1062     unsigned NumValues = ValueVTs.size();
1063     if (NumValues) {
1064       SDValue RetOp = getValue(I.getOperand(0));
1065       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1066         EVT VT = ValueVTs[j];
1067 
1068         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1069 
1070         const Function *F = I.getParent()->getParent();
1071         if (F->paramHasAttr(0, Attribute::SExt))
1072           ExtendKind = ISD::SIGN_EXTEND;
1073         else if (F->paramHasAttr(0, Attribute::ZExt))
1074           ExtendKind = ISD::ZERO_EXTEND;
1075 
1076         // FIXME: C calling convention requires the return type to be promoted
1077         // to at least 32-bit. But this is not necessary for non-C calling
1078         // conventions. The frontend should mark functions whose return values
1079         // require promoting with signext or zeroext attributes.
1080         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1081           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1082           if (VT.bitsLT(MinVT))
1083             VT = MinVT;
1084         }
1085 
1086         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1087         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1088         SmallVector<SDValue, 4> Parts(NumParts);
1089         getCopyToParts(DAG, getCurDebugLoc(),
1090                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1091                        &Parts[0], NumParts, PartVT, ExtendKind);
1092 
1093         // 'inreg' on function refers to return value
1094         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1095         if (F->paramHasAttr(0, Attribute::InReg))
1096           Flags.setInReg();
1097 
1098         // Propagate extension type if any
1099         if (F->paramHasAttr(0, Attribute::SExt))
1100           Flags.setSExt();
1101         else if (F->paramHasAttr(0, Attribute::ZExt))
1102           Flags.setZExt();
1103 
1104         for (unsigned i = 0; i < NumParts; ++i)
1105           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1106       }
1107     }
1108   }
1109 
1110   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1111   CallingConv::ID CallConv =
1112     DAG.getMachineFunction().getFunction()->getCallingConv();
1113   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1114                           Outs, getCurDebugLoc(), DAG);
1115 
1116   // Verify that the target's LowerReturn behaved as expected.
1117   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1118          "LowerReturn didn't return a valid chain!");
1119 
1120   // Update the DAG with the new chain value resulting from return lowering.
1121   DAG.setRoot(Chain);
1122 }
1123 
1124 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1125 /// created for it, emit nodes to copy the value into the virtual
1126 /// registers.
1127 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1128   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1129   if (VMI != FuncInfo.ValueMap.end()) {
1130     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1131     CopyValueToVirtualRegister(V, VMI->second);
1132   }
1133 }
1134 
1135 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1136 /// the current basic block, add it to ValueMap now so that we'll get a
1137 /// CopyTo/FromReg.
1138 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1139   // No need to export constants.
1140   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1141 
1142   // Already exported?
1143   if (FuncInfo.isExportedInst(V)) return;
1144 
1145   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1146   CopyValueToVirtualRegister(V, Reg);
1147 }
1148 
1149 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1150                                                      const BasicBlock *FromBB) {
1151   // The operands of the setcc have to be in this block.  We don't know
1152   // how to export them from some other block.
1153   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1154     // Can export from current BB.
1155     if (VI->getParent() == FromBB)
1156       return true;
1157 
1158     // Is already exported, noop.
1159     return FuncInfo.isExportedInst(V);
1160   }
1161 
1162   // If this is an argument, we can export it if the BB is the entry block or
1163   // if it is already exported.
1164   if (isa<Argument>(V)) {
1165     if (FromBB == &FromBB->getParent()->getEntryBlock())
1166       return true;
1167 
1168     // Otherwise, can only export this if it is already exported.
1169     return FuncInfo.isExportedInst(V);
1170   }
1171 
1172   // Otherwise, constants can always be exported.
1173   return true;
1174 }
1175 
1176 static bool InBlock(const Value *V, const BasicBlock *BB) {
1177   if (const Instruction *I = dyn_cast<Instruction>(V))
1178     return I->getParent() == BB;
1179   return true;
1180 }
1181 
1182 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1183 /// This function emits a branch and is used at the leaves of an OR or an
1184 /// AND operator tree.
1185 ///
1186 void
1187 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1188                                                   MachineBasicBlock *TBB,
1189                                                   MachineBasicBlock *FBB,
1190                                                   MachineBasicBlock *CurBB,
1191                                                   MachineBasicBlock *SwitchBB) {
1192   const BasicBlock *BB = CurBB->getBasicBlock();
1193 
1194   // If the leaf of the tree is a comparison, merge the condition into
1195   // the caseblock.
1196   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1197     // The operands of the cmp have to be in this block.  We don't know
1198     // how to export them from some other block.  If this is the first block
1199     // of the sequence, no exporting is needed.
1200     if (CurBB == SwitchBB ||
1201         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1202          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1203       ISD::CondCode Condition;
1204       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1205         Condition = getICmpCondCode(IC->getPredicate());
1206       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1207         Condition = getFCmpCondCode(FC->getPredicate());
1208       } else {
1209         Condition = ISD::SETEQ; // silence warning.
1210         llvm_unreachable("Unknown compare instruction");
1211       }
1212 
1213       CaseBlock CB(Condition, BOp->getOperand(0),
1214                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1215       SwitchCases.push_back(CB);
1216       return;
1217     }
1218   }
1219 
1220   // Create a CaseBlock record representing this branch.
1221   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1222                NULL, TBB, FBB, CurBB);
1223   SwitchCases.push_back(CB);
1224 }
1225 
1226 /// FindMergedConditions - If Cond is an expression like
1227 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1228                                                MachineBasicBlock *TBB,
1229                                                MachineBasicBlock *FBB,
1230                                                MachineBasicBlock *CurBB,
1231                                                MachineBasicBlock *SwitchBB,
1232                                                unsigned Opc) {
1233   // If this node is not part of the or/and tree, emit it as a branch.
1234   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1235   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1236       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1237       BOp->getParent() != CurBB->getBasicBlock() ||
1238       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1239       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1240     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1241     return;
1242   }
1243 
1244   //  Create TmpBB after CurBB.
1245   MachineFunction::iterator BBI = CurBB;
1246   MachineFunction &MF = DAG.getMachineFunction();
1247   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1248   CurBB->getParent()->insert(++BBI, TmpBB);
1249 
1250   if (Opc == Instruction::Or) {
1251     // Codegen X | Y as:
1252     //   jmp_if_X TBB
1253     //   jmp TmpBB
1254     // TmpBB:
1255     //   jmp_if_Y TBB
1256     //   jmp FBB
1257     //
1258 
1259     // Emit the LHS condition.
1260     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1261 
1262     // Emit the RHS condition into TmpBB.
1263     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1264   } else {
1265     assert(Opc == Instruction::And && "Unknown merge op!");
1266     // Codegen X & Y as:
1267     //   jmp_if_X TmpBB
1268     //   jmp FBB
1269     // TmpBB:
1270     //   jmp_if_Y TBB
1271     //   jmp FBB
1272     //
1273     //  This requires creation of TmpBB after CurBB.
1274 
1275     // Emit the LHS condition.
1276     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1277 
1278     // Emit the RHS condition into TmpBB.
1279     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1280   }
1281 }
1282 
1283 /// If the set of cases should be emitted as a series of branches, return true.
1284 /// If we should emit this as a bunch of and/or'd together conditions, return
1285 /// false.
1286 bool
1287 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1288   if (Cases.size() != 2) return true;
1289 
1290   // If this is two comparisons of the same values or'd or and'd together, they
1291   // will get folded into a single comparison, so don't emit two blocks.
1292   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1293        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1294       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1295        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1296     return false;
1297   }
1298 
1299   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1300   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1301   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1302       Cases[0].CC == Cases[1].CC &&
1303       isa<Constant>(Cases[0].CmpRHS) &&
1304       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1305     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1306       return false;
1307     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1308       return false;
1309   }
1310 
1311   return true;
1312 }
1313 
1314 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1315   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1316 
1317   // Update machine-CFG edges.
1318   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1319 
1320   // Figure out which block is immediately after the current one.
1321   MachineBasicBlock *NextBlock = 0;
1322   MachineFunction::iterator BBI = BrMBB;
1323   if (++BBI != FuncInfo.MF->end())
1324     NextBlock = BBI;
1325 
1326   if (I.isUnconditional()) {
1327     // Update machine-CFG edges.
1328     BrMBB->addSuccessor(Succ0MBB);
1329 
1330     // If this is not a fall-through branch, emit the branch.
1331     if (Succ0MBB != NextBlock)
1332       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1333                               MVT::Other, getControlRoot(),
1334                               DAG.getBasicBlock(Succ0MBB)));
1335 
1336     return;
1337   }
1338 
1339   // If this condition is one of the special cases we handle, do special stuff
1340   // now.
1341   const Value *CondVal = I.getCondition();
1342   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1343 
1344   // If this is a series of conditions that are or'd or and'd together, emit
1345   // this as a sequence of branches instead of setcc's with and/or operations.
1346   // For example, instead of something like:
1347   //     cmp A, B
1348   //     C = seteq
1349   //     cmp D, E
1350   //     F = setle
1351   //     or C, F
1352   //     jnz foo
1353   // Emit:
1354   //     cmp A, B
1355   //     je foo
1356   //     cmp D, E
1357   //     jle foo
1358   //
1359   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1360     if (BOp->hasOneUse() &&
1361         (BOp->getOpcode() == Instruction::And ||
1362          BOp->getOpcode() == Instruction::Or)) {
1363       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1364                            BOp->getOpcode());
1365       // If the compares in later blocks need to use values not currently
1366       // exported from this block, export them now.  This block should always
1367       // be the first entry.
1368       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1369 
1370       // Allow some cases to be rejected.
1371       if (ShouldEmitAsBranches(SwitchCases)) {
1372         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1373           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1374           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1375         }
1376 
1377         // Emit the branch for this block.
1378         visitSwitchCase(SwitchCases[0], BrMBB);
1379         SwitchCases.erase(SwitchCases.begin());
1380         return;
1381       }
1382 
1383       // Okay, we decided not to do this, remove any inserted MBB's and clear
1384       // SwitchCases.
1385       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1386         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1387 
1388       SwitchCases.clear();
1389     }
1390   }
1391 
1392   // Create a CaseBlock record representing this branch.
1393   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1394                NULL, Succ0MBB, Succ1MBB, BrMBB);
1395 
1396   // Use visitSwitchCase to actually insert the fast branch sequence for this
1397   // cond branch.
1398   visitSwitchCase(CB, BrMBB);
1399 }
1400 
1401 /// visitSwitchCase - Emits the necessary code to represent a single node in
1402 /// the binary search tree resulting from lowering a switch instruction.
1403 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1404                                           MachineBasicBlock *SwitchBB) {
1405   SDValue Cond;
1406   SDValue CondLHS = getValue(CB.CmpLHS);
1407   DebugLoc dl = getCurDebugLoc();
1408 
1409   // Build the setcc now.
1410   if (CB.CmpMHS == NULL) {
1411     // Fold "(X == true)" to X and "(X == false)" to !X to
1412     // handle common cases produced by branch lowering.
1413     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1414         CB.CC == ISD::SETEQ)
1415       Cond = CondLHS;
1416     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1417              CB.CC == ISD::SETEQ) {
1418       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1419       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1420     } else
1421       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1422   } else {
1423     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1424 
1425     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1426     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1427 
1428     SDValue CmpOp = getValue(CB.CmpMHS);
1429     EVT VT = CmpOp.getValueType();
1430 
1431     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1432       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1433                           ISD::SETLE);
1434     } else {
1435       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1436                                 VT, CmpOp, DAG.getConstant(Low, VT));
1437       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1438                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1439     }
1440   }
1441 
1442   // Update successor info
1443   SwitchBB->addSuccessor(CB.TrueBB);
1444   SwitchBB->addSuccessor(CB.FalseBB);
1445 
1446   // Set NextBlock to be the MBB immediately after the current one, if any.
1447   // This is used to avoid emitting unnecessary branches to the next block.
1448   MachineBasicBlock *NextBlock = 0;
1449   MachineFunction::iterator BBI = SwitchBB;
1450   if (++BBI != FuncInfo.MF->end())
1451     NextBlock = BBI;
1452 
1453   // If the lhs block is the next block, invert the condition so that we can
1454   // fall through to the lhs instead of the rhs block.
1455   if (CB.TrueBB == NextBlock) {
1456     std::swap(CB.TrueBB, CB.FalseBB);
1457     SDValue True = DAG.getConstant(1, Cond.getValueType());
1458     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1459   }
1460 
1461   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1462                                MVT::Other, getControlRoot(), Cond,
1463                                DAG.getBasicBlock(CB.TrueBB));
1464 
1465   // If the branch was constant folded, fix up the CFG.
1466   if (BrCond.getOpcode() == ISD::BR) {
1467     SwitchBB->removeSuccessor(CB.FalseBB);
1468   } else {
1469     // Otherwise, go ahead and insert the false branch.
1470     if (BrCond == getControlRoot())
1471       SwitchBB->removeSuccessor(CB.TrueBB);
1472 
1473     if (CB.FalseBB != NextBlock)
1474       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1475                            DAG.getBasicBlock(CB.FalseBB));
1476   }
1477 
1478   DAG.setRoot(BrCond);
1479 }
1480 
1481 /// visitJumpTable - Emit JumpTable node in the current MBB
1482 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1483   // Emit the code for the jump table
1484   assert(JT.Reg != -1U && "Should lower JT Header first!");
1485   EVT PTy = TLI.getPointerTy();
1486   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1487                                      JT.Reg, PTy);
1488   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1489   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1490                                     MVT::Other, Index.getValue(1),
1491                                     Table, Index);
1492   DAG.setRoot(BrJumpTable);
1493 }
1494 
1495 /// visitJumpTableHeader - This function emits necessary code to produce index
1496 /// in the JumpTable from switch case.
1497 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1498                                                JumpTableHeader &JTH,
1499                                                MachineBasicBlock *SwitchBB) {
1500   // Subtract the lowest switch case value from the value being switched on and
1501   // conditional branch to default mbb if the result is greater than the
1502   // difference between smallest and largest cases.
1503   SDValue SwitchOp = getValue(JTH.SValue);
1504   EVT VT = SwitchOp.getValueType();
1505   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1506                             DAG.getConstant(JTH.First, VT));
1507 
1508   // The SDNode we just created, which holds the value being switched on minus
1509   // the smallest case value, needs to be copied to a virtual register so it
1510   // can be used as an index into the jump table in a subsequent basic block.
1511   // This value may be smaller or larger than the target's pointer type, and
1512   // therefore require extension or truncating.
1513   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1514 
1515   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1516   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1517                                     JumpTableReg, SwitchOp);
1518   JT.Reg = JumpTableReg;
1519 
1520   // Emit the range check for the jump table, and branch to the default block
1521   // for the switch statement if the value being switched on exceeds the largest
1522   // case in the switch.
1523   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1524                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1525                              DAG.getConstant(JTH.Last-JTH.First,VT),
1526                              ISD::SETUGT);
1527 
1528   // Set NextBlock to be the MBB immediately after the current one, if any.
1529   // This is used to avoid emitting unnecessary branches to the next block.
1530   MachineBasicBlock *NextBlock = 0;
1531   MachineFunction::iterator BBI = SwitchBB;
1532 
1533   if (++BBI != FuncInfo.MF->end())
1534     NextBlock = BBI;
1535 
1536   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1537                                MVT::Other, CopyTo, CMP,
1538                                DAG.getBasicBlock(JT.Default));
1539 
1540   if (JT.MBB != NextBlock)
1541     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1542                          DAG.getBasicBlock(JT.MBB));
1543 
1544   DAG.setRoot(BrCond);
1545 }
1546 
1547 /// visitBitTestHeader - This function emits necessary code to produce value
1548 /// suitable for "bit tests"
1549 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1550                                              MachineBasicBlock *SwitchBB) {
1551   // Subtract the minimum value
1552   SDValue SwitchOp = getValue(B.SValue);
1553   EVT VT = SwitchOp.getValueType();
1554   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1555                             DAG.getConstant(B.First, VT));
1556 
1557   // Check range
1558   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1559                                   TLI.getSetCCResultType(Sub.getValueType()),
1560                                   Sub, DAG.getConstant(B.Range, VT),
1561                                   ISD::SETUGT);
1562 
1563   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1564                                        TLI.getPointerTy());
1565 
1566   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1567   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1568                                     B.Reg, ShiftOp);
1569 
1570   // Set NextBlock to be the MBB immediately after the current one, if any.
1571   // This is used to avoid emitting unnecessary branches to the next block.
1572   MachineBasicBlock *NextBlock = 0;
1573   MachineFunction::iterator BBI = SwitchBB;
1574   if (++BBI != FuncInfo.MF->end())
1575     NextBlock = BBI;
1576 
1577   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1578 
1579   SwitchBB->addSuccessor(B.Default);
1580   SwitchBB->addSuccessor(MBB);
1581 
1582   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1583                                 MVT::Other, CopyTo, RangeCmp,
1584                                 DAG.getBasicBlock(B.Default));
1585 
1586   if (MBB != NextBlock)
1587     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1588                           DAG.getBasicBlock(MBB));
1589 
1590   DAG.setRoot(BrRange);
1591 }
1592 
1593 /// visitBitTestCase - this function produces one "bit test"
1594 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1595                                            unsigned Reg,
1596                                            BitTestCase &B,
1597                                            MachineBasicBlock *SwitchBB) {
1598   // Make desired shift
1599   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1600                                        TLI.getPointerTy());
1601   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1602                                   TLI.getPointerTy(),
1603                                   DAG.getConstant(1, TLI.getPointerTy()),
1604                                   ShiftOp);
1605 
1606   // Emit bit tests and jumps
1607   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1608                               TLI.getPointerTy(), SwitchVal,
1609                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1610   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1611                                 TLI.getSetCCResultType(AndOp.getValueType()),
1612                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1613                                 ISD::SETNE);
1614 
1615   SwitchBB->addSuccessor(B.TargetBB);
1616   SwitchBB->addSuccessor(NextMBB);
1617 
1618   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1619                               MVT::Other, getControlRoot(),
1620                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1621 
1622   // Set NextBlock to be the MBB immediately after the current one, if any.
1623   // This is used to avoid emitting unnecessary branches to the next block.
1624   MachineBasicBlock *NextBlock = 0;
1625   MachineFunction::iterator BBI = SwitchBB;
1626   if (++BBI != FuncInfo.MF->end())
1627     NextBlock = BBI;
1628 
1629   if (NextMBB != NextBlock)
1630     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1631                         DAG.getBasicBlock(NextMBB));
1632 
1633   DAG.setRoot(BrAnd);
1634 }
1635 
1636 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1637   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1638 
1639   // Retrieve successors.
1640   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1641   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1642 
1643   const Value *Callee(I.getCalledValue());
1644   if (isa<InlineAsm>(Callee))
1645     visitInlineAsm(&I);
1646   else
1647     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1648 
1649   // If the value of the invoke is used outside of its defining block, make it
1650   // available as a virtual register.
1651   CopyToExportRegsIfNeeded(&I);
1652 
1653   // Update successor info
1654   InvokeMBB->addSuccessor(Return);
1655   InvokeMBB->addSuccessor(LandingPad);
1656 
1657   // Drop into normal successor.
1658   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1659                           MVT::Other, getControlRoot(),
1660                           DAG.getBasicBlock(Return)));
1661 }
1662 
1663 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1664 }
1665 
1666 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1667 /// small case ranges).
1668 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1669                                                  CaseRecVector& WorkList,
1670                                                  const Value* SV,
1671                                                  MachineBasicBlock *Default,
1672                                                  MachineBasicBlock *SwitchBB) {
1673   Case& BackCase  = *(CR.Range.second-1);
1674 
1675   // Size is the number of Cases represented by this range.
1676   size_t Size = CR.Range.second - CR.Range.first;
1677   if (Size > 3)
1678     return false;
1679 
1680   // Get the MachineFunction which holds the current MBB.  This is used when
1681   // inserting any additional MBBs necessary to represent the switch.
1682   MachineFunction *CurMF = FuncInfo.MF;
1683 
1684   // Figure out which block is immediately after the current one.
1685   MachineBasicBlock *NextBlock = 0;
1686   MachineFunction::iterator BBI = CR.CaseBB;
1687 
1688   if (++BBI != FuncInfo.MF->end())
1689     NextBlock = BBI;
1690 
1691   // TODO: If any two of the cases has the same destination, and if one value
1692   // is the same as the other, but has one bit unset that the other has set,
1693   // use bit manipulation to do two compares at once.  For example:
1694   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1695 
1696   // Rearrange the case blocks so that the last one falls through if possible.
1697   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1698     // The last case block won't fall through into 'NextBlock' if we emit the
1699     // branches in this order.  See if rearranging a case value would help.
1700     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1701       if (I->BB == NextBlock) {
1702         std::swap(*I, BackCase);
1703         break;
1704       }
1705     }
1706   }
1707 
1708   // Create a CaseBlock record representing a conditional branch to
1709   // the Case's target mbb if the value being switched on SV is equal
1710   // to C.
1711   MachineBasicBlock *CurBlock = CR.CaseBB;
1712   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1713     MachineBasicBlock *FallThrough;
1714     if (I != E-1) {
1715       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1716       CurMF->insert(BBI, FallThrough);
1717 
1718       // Put SV in a virtual register to make it available from the new blocks.
1719       ExportFromCurrentBlock(SV);
1720     } else {
1721       // If the last case doesn't match, go to the default block.
1722       FallThrough = Default;
1723     }
1724 
1725     const Value *RHS, *LHS, *MHS;
1726     ISD::CondCode CC;
1727     if (I->High == I->Low) {
1728       // This is just small small case range :) containing exactly 1 case
1729       CC = ISD::SETEQ;
1730       LHS = SV; RHS = I->High; MHS = NULL;
1731     } else {
1732       CC = ISD::SETLE;
1733       LHS = I->Low; MHS = SV; RHS = I->High;
1734     }
1735     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1736 
1737     // If emitting the first comparison, just call visitSwitchCase to emit the
1738     // code into the current block.  Otherwise, push the CaseBlock onto the
1739     // vector to be later processed by SDISel, and insert the node's MBB
1740     // before the next MBB.
1741     if (CurBlock == SwitchBB)
1742       visitSwitchCase(CB, SwitchBB);
1743     else
1744       SwitchCases.push_back(CB);
1745 
1746     CurBlock = FallThrough;
1747   }
1748 
1749   return true;
1750 }
1751 
1752 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1753   return !DisableJumpTables &&
1754           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1755            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1756 }
1757 
1758 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1759   APInt LastExt(Last), FirstExt(First);
1760   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1761   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1762   return (LastExt - FirstExt + 1ULL);
1763 }
1764 
1765 /// handleJTSwitchCase - Emit jumptable for current switch case range
1766 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1767                                              CaseRecVector& WorkList,
1768                                              const Value* SV,
1769                                              MachineBasicBlock* Default,
1770                                              MachineBasicBlock *SwitchBB) {
1771   Case& FrontCase = *CR.Range.first;
1772   Case& BackCase  = *(CR.Range.second-1);
1773 
1774   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1775   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1776 
1777   APInt TSize(First.getBitWidth(), 0);
1778   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1779        I!=E; ++I)
1780     TSize += I->size();
1781 
1782   if (!areJTsAllowed(TLI) || TSize.ult(4))
1783     return false;
1784 
1785   APInt Range = ComputeRange(First, Last);
1786   double Density = TSize.roundToDouble() / Range.roundToDouble();
1787   if (Density < 0.4)
1788     return false;
1789 
1790   DEBUG(dbgs() << "Lowering jump table\n"
1791                << "First entry: " << First << ". Last entry: " << Last << '\n'
1792                << "Range: " << Range
1793                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1794 
1795   // Get the MachineFunction which holds the current MBB.  This is used when
1796   // inserting any additional MBBs necessary to represent the switch.
1797   MachineFunction *CurMF = FuncInfo.MF;
1798 
1799   // Figure out which block is immediately after the current one.
1800   MachineFunction::iterator BBI = CR.CaseBB;
1801   ++BBI;
1802 
1803   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1804 
1805   // Create a new basic block to hold the code for loading the address
1806   // of the jump table, and jumping to it.  Update successor information;
1807   // we will either branch to the default case for the switch, or the jump
1808   // table.
1809   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1810   CurMF->insert(BBI, JumpTableBB);
1811   CR.CaseBB->addSuccessor(Default);
1812   CR.CaseBB->addSuccessor(JumpTableBB);
1813 
1814   // Build a vector of destination BBs, corresponding to each target
1815   // of the jump table. If the value of the jump table slot corresponds to
1816   // a case statement, push the case's BB onto the vector, otherwise, push
1817   // the default BB.
1818   std::vector<MachineBasicBlock*> DestBBs;
1819   APInt TEI = First;
1820   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1821     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1822     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1823 
1824     if (Low.sle(TEI) && TEI.sle(High)) {
1825       DestBBs.push_back(I->BB);
1826       if (TEI==High)
1827         ++I;
1828     } else {
1829       DestBBs.push_back(Default);
1830     }
1831   }
1832 
1833   // Update successor info. Add one edge to each unique successor.
1834   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1835   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1836          E = DestBBs.end(); I != E; ++I) {
1837     if (!SuccsHandled[(*I)->getNumber()]) {
1838       SuccsHandled[(*I)->getNumber()] = true;
1839       JumpTableBB->addSuccessor(*I);
1840     }
1841   }
1842 
1843   // Create a jump table index for this jump table.
1844   unsigned JTEncoding = TLI.getJumpTableEncoding();
1845   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1846                        ->createJumpTableIndex(DestBBs);
1847 
1848   // Set the jump table information so that we can codegen it as a second
1849   // MachineBasicBlock
1850   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1851   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1852   if (CR.CaseBB == SwitchBB)
1853     visitJumpTableHeader(JT, JTH, SwitchBB);
1854 
1855   JTCases.push_back(JumpTableBlock(JTH, JT));
1856 
1857   return true;
1858 }
1859 
1860 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1861 /// 2 subtrees.
1862 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1863                                                   CaseRecVector& WorkList,
1864                                                   const Value* SV,
1865                                                   MachineBasicBlock *Default,
1866                                                   MachineBasicBlock *SwitchBB) {
1867   // Get the MachineFunction which holds the current MBB.  This is used when
1868   // inserting any additional MBBs necessary to represent the switch.
1869   MachineFunction *CurMF = FuncInfo.MF;
1870 
1871   // Figure out which block is immediately after the current one.
1872   MachineFunction::iterator BBI = CR.CaseBB;
1873   ++BBI;
1874 
1875   Case& FrontCase = *CR.Range.first;
1876   Case& BackCase  = *(CR.Range.second-1);
1877   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1878 
1879   // Size is the number of Cases represented by this range.
1880   unsigned Size = CR.Range.second - CR.Range.first;
1881 
1882   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1883   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1884   double FMetric = 0;
1885   CaseItr Pivot = CR.Range.first + Size/2;
1886 
1887   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1888   // (heuristically) allow us to emit JumpTable's later.
1889   APInt TSize(First.getBitWidth(), 0);
1890   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1891        I!=E; ++I)
1892     TSize += I->size();
1893 
1894   APInt LSize = FrontCase.size();
1895   APInt RSize = TSize-LSize;
1896   DEBUG(dbgs() << "Selecting best pivot: \n"
1897                << "First: " << First << ", Last: " << Last <<'\n'
1898                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1899   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1900        J!=E; ++I, ++J) {
1901     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1902     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1903     APInt Range = ComputeRange(LEnd, RBegin);
1904     assert((Range - 2ULL).isNonNegative() &&
1905            "Invalid case distance");
1906     double LDensity = (double)LSize.roundToDouble() /
1907                            (LEnd - First + 1ULL).roundToDouble();
1908     double RDensity = (double)RSize.roundToDouble() /
1909                            (Last - RBegin + 1ULL).roundToDouble();
1910     double Metric = Range.logBase2()*(LDensity+RDensity);
1911     // Should always split in some non-trivial place
1912     DEBUG(dbgs() <<"=>Step\n"
1913                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1914                  << "LDensity: " << LDensity
1915                  << ", RDensity: " << RDensity << '\n'
1916                  << "Metric: " << Metric << '\n');
1917     if (FMetric < Metric) {
1918       Pivot = J;
1919       FMetric = Metric;
1920       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1921     }
1922 
1923     LSize += J->size();
1924     RSize -= J->size();
1925   }
1926   if (areJTsAllowed(TLI)) {
1927     // If our case is dense we *really* should handle it earlier!
1928     assert((FMetric > 0) && "Should handle dense range earlier!");
1929   } else {
1930     Pivot = CR.Range.first + Size/2;
1931   }
1932 
1933   CaseRange LHSR(CR.Range.first, Pivot);
1934   CaseRange RHSR(Pivot, CR.Range.second);
1935   Constant *C = Pivot->Low;
1936   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1937 
1938   // We know that we branch to the LHS if the Value being switched on is
1939   // less than the Pivot value, C.  We use this to optimize our binary
1940   // tree a bit, by recognizing that if SV is greater than or equal to the
1941   // LHS's Case Value, and that Case Value is exactly one less than the
1942   // Pivot's Value, then we can branch directly to the LHS's Target,
1943   // rather than creating a leaf node for it.
1944   if ((LHSR.second - LHSR.first) == 1 &&
1945       LHSR.first->High == CR.GE &&
1946       cast<ConstantInt>(C)->getValue() ==
1947       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1948     TrueBB = LHSR.first->BB;
1949   } else {
1950     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1951     CurMF->insert(BBI, TrueBB);
1952     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1953 
1954     // Put SV in a virtual register to make it available from the new blocks.
1955     ExportFromCurrentBlock(SV);
1956   }
1957 
1958   // Similar to the optimization above, if the Value being switched on is
1959   // known to be less than the Constant CR.LT, and the current Case Value
1960   // is CR.LT - 1, then we can branch directly to the target block for
1961   // the current Case Value, rather than emitting a RHS leaf node for it.
1962   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1963       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1964       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1965     FalseBB = RHSR.first->BB;
1966   } else {
1967     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1968     CurMF->insert(BBI, FalseBB);
1969     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1970 
1971     // Put SV in a virtual register to make it available from the new blocks.
1972     ExportFromCurrentBlock(SV);
1973   }
1974 
1975   // Create a CaseBlock record representing a conditional branch to
1976   // the LHS node if the value being switched on SV is less than C.
1977   // Otherwise, branch to LHS.
1978   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1979 
1980   if (CR.CaseBB == SwitchBB)
1981     visitSwitchCase(CB, SwitchBB);
1982   else
1983     SwitchCases.push_back(CB);
1984 
1985   return true;
1986 }
1987 
1988 /// handleBitTestsSwitchCase - if current case range has few destination and
1989 /// range span less, than machine word bitwidth, encode case range into series
1990 /// of masks and emit bit tests with these masks.
1991 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1992                                                    CaseRecVector& WorkList,
1993                                                    const Value* SV,
1994                                                    MachineBasicBlock* Default,
1995                                                    MachineBasicBlock *SwitchBB){
1996   EVT PTy = TLI.getPointerTy();
1997   unsigned IntPtrBits = PTy.getSizeInBits();
1998 
1999   Case& FrontCase = *CR.Range.first;
2000   Case& BackCase  = *(CR.Range.second-1);
2001 
2002   // Get the MachineFunction which holds the current MBB.  This is used when
2003   // inserting any additional MBBs necessary to represent the switch.
2004   MachineFunction *CurMF = FuncInfo.MF;
2005 
2006   // If target does not have legal shift left, do not emit bit tests at all.
2007   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2008     return false;
2009 
2010   size_t numCmps = 0;
2011   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2012        I!=E; ++I) {
2013     // Single case counts one, case range - two.
2014     numCmps += (I->Low == I->High ? 1 : 2);
2015   }
2016 
2017   // Count unique destinations
2018   SmallSet<MachineBasicBlock*, 4> Dests;
2019   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2020     Dests.insert(I->BB);
2021     if (Dests.size() > 3)
2022       // Don't bother the code below, if there are too much unique destinations
2023       return false;
2024   }
2025   DEBUG(dbgs() << "Total number of unique destinations: "
2026         << Dests.size() << '\n'
2027         << "Total number of comparisons: " << numCmps << '\n');
2028 
2029   // Compute span of values.
2030   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2031   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2032   APInt cmpRange = maxValue - minValue;
2033 
2034   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2035                << "Low bound: " << minValue << '\n'
2036                << "High bound: " << maxValue << '\n');
2037 
2038   if (cmpRange.uge(IntPtrBits) ||
2039       (!(Dests.size() == 1 && numCmps >= 3) &&
2040        !(Dests.size() == 2 && numCmps >= 5) &&
2041        !(Dests.size() >= 3 && numCmps >= 6)))
2042     return false;
2043 
2044   DEBUG(dbgs() << "Emitting bit tests\n");
2045   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2046 
2047   // Optimize the case where all the case values fit in a
2048   // word without having to subtract minValue. In this case,
2049   // we can optimize away the subtraction.
2050   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2051     cmpRange = maxValue;
2052   } else {
2053     lowBound = minValue;
2054   }
2055 
2056   CaseBitsVector CasesBits;
2057   unsigned i, count = 0;
2058 
2059   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2060     MachineBasicBlock* Dest = I->BB;
2061     for (i = 0; i < count; ++i)
2062       if (Dest == CasesBits[i].BB)
2063         break;
2064 
2065     if (i == count) {
2066       assert((count < 3) && "Too much destinations to test!");
2067       CasesBits.push_back(CaseBits(0, Dest, 0));
2068       count++;
2069     }
2070 
2071     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2072     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2073 
2074     uint64_t lo = (lowValue - lowBound).getZExtValue();
2075     uint64_t hi = (highValue - lowBound).getZExtValue();
2076 
2077     for (uint64_t j = lo; j <= hi; j++) {
2078       CasesBits[i].Mask |=  1ULL << j;
2079       CasesBits[i].Bits++;
2080     }
2081 
2082   }
2083   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2084 
2085   BitTestInfo BTC;
2086 
2087   // Figure out which block is immediately after the current one.
2088   MachineFunction::iterator BBI = CR.CaseBB;
2089   ++BBI;
2090 
2091   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2092 
2093   DEBUG(dbgs() << "Cases:\n");
2094   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2095     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2096                  << ", Bits: " << CasesBits[i].Bits
2097                  << ", BB: " << CasesBits[i].BB << '\n');
2098 
2099     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2100     CurMF->insert(BBI, CaseBB);
2101     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2102                               CaseBB,
2103                               CasesBits[i].BB));
2104 
2105     // Put SV in a virtual register to make it available from the new blocks.
2106     ExportFromCurrentBlock(SV);
2107   }
2108 
2109   BitTestBlock BTB(lowBound, cmpRange, SV,
2110                    -1U, (CR.CaseBB == SwitchBB),
2111                    CR.CaseBB, Default, BTC);
2112 
2113   if (CR.CaseBB == SwitchBB)
2114     visitBitTestHeader(BTB, SwitchBB);
2115 
2116   BitTestCases.push_back(BTB);
2117 
2118   return true;
2119 }
2120 
2121 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2122 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2123                                        const SwitchInst& SI) {
2124   size_t numCmps = 0;
2125 
2126   // Start with "simple" cases
2127   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2128     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2129     Cases.push_back(Case(SI.getSuccessorValue(i),
2130                          SI.getSuccessorValue(i),
2131                          SMBB));
2132   }
2133   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2134 
2135   // Merge case into clusters
2136   if (Cases.size() >= 2)
2137     // Must recompute end() each iteration because it may be
2138     // invalidated by erase if we hold on to it
2139     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2140       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2141       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2142       MachineBasicBlock* nextBB = J->BB;
2143       MachineBasicBlock* currentBB = I->BB;
2144 
2145       // If the two neighboring cases go to the same destination, merge them
2146       // into a single case.
2147       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2148         I->High = J->High;
2149         J = Cases.erase(J);
2150       } else {
2151         I = J++;
2152       }
2153     }
2154 
2155   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2156     if (I->Low != I->High)
2157       // A range counts double, since it requires two compares.
2158       ++numCmps;
2159   }
2160 
2161   return numCmps;
2162 }
2163 
2164 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2165   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2166 
2167   // Figure out which block is immediately after the current one.
2168   MachineBasicBlock *NextBlock = 0;
2169   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2170 
2171   // If there is only the default destination, branch to it if it is not the
2172   // next basic block.  Otherwise, just fall through.
2173   if (SI.getNumOperands() == 2) {
2174     // Update machine-CFG edges.
2175 
2176     // If this is not a fall-through branch, emit the branch.
2177     SwitchMBB->addSuccessor(Default);
2178     if (Default != NextBlock)
2179       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2180                               MVT::Other, getControlRoot(),
2181                               DAG.getBasicBlock(Default)));
2182 
2183     return;
2184   }
2185 
2186   // If there are any non-default case statements, create a vector of Cases
2187   // representing each one, and sort the vector so that we can efficiently
2188   // create a binary search tree from them.
2189   CaseVector Cases;
2190   size_t numCmps = Clusterify(Cases, SI);
2191   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2192                << ". Total compares: " << numCmps << '\n');
2193   numCmps = 0;
2194 
2195   // Get the Value to be switched on and default basic blocks, which will be
2196   // inserted into CaseBlock records, representing basic blocks in the binary
2197   // search tree.
2198   const Value *SV = SI.getOperand(0);
2199 
2200   // Push the initial CaseRec onto the worklist
2201   CaseRecVector WorkList;
2202   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2203                              CaseRange(Cases.begin(),Cases.end())));
2204 
2205   while (!WorkList.empty()) {
2206     // Grab a record representing a case range to process off the worklist
2207     CaseRec CR = WorkList.back();
2208     WorkList.pop_back();
2209 
2210     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2211       continue;
2212 
2213     // If the range has few cases (two or less) emit a series of specific
2214     // tests.
2215     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2216       continue;
2217 
2218     // If the switch has more than 5 blocks, and at least 40% dense, and the
2219     // target supports indirect branches, then emit a jump table rather than
2220     // lowering the switch to a binary tree of conditional branches.
2221     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2222       continue;
2223 
2224     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2225     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2226     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2227   }
2228 }
2229 
2230 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2231   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2232 
2233   // Update machine-CFG edges with unique successors.
2234   SmallVector<BasicBlock*, 32> succs;
2235   succs.reserve(I.getNumSuccessors());
2236   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2237     succs.push_back(I.getSuccessor(i));
2238   array_pod_sort(succs.begin(), succs.end());
2239   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2240   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2241     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2242 
2243   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2244                           MVT::Other, getControlRoot(),
2245                           getValue(I.getAddress())));
2246 }
2247 
2248 void SelectionDAGBuilder::visitFSub(const User &I) {
2249   // -0.0 - X --> fneg
2250   const Type *Ty = I.getType();
2251   if (Ty->isVectorTy()) {
2252     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2253       const VectorType *DestTy = cast<VectorType>(I.getType());
2254       const Type *ElTy = DestTy->getElementType();
2255       unsigned VL = DestTy->getNumElements();
2256       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2257       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2258       if (CV == CNZ) {
2259         SDValue Op2 = getValue(I.getOperand(1));
2260         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2261                                  Op2.getValueType(), Op2));
2262         return;
2263       }
2264     }
2265   }
2266 
2267   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2268     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2269       SDValue Op2 = getValue(I.getOperand(1));
2270       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2271                                Op2.getValueType(), Op2));
2272       return;
2273     }
2274 
2275   visitBinary(I, ISD::FSUB);
2276 }
2277 
2278 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2279   SDValue Op1 = getValue(I.getOperand(0));
2280   SDValue Op2 = getValue(I.getOperand(1));
2281   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2282                            Op1.getValueType(), Op1, Op2));
2283 }
2284 
2285 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2286   SDValue Op1 = getValue(I.getOperand(0));
2287   SDValue Op2 = getValue(I.getOperand(1));
2288   if (!I.getType()->isVectorTy() &&
2289       Op2.getValueType() != TLI.getShiftAmountTy()) {
2290     // If the operand is smaller than the shift count type, promote it.
2291     EVT PTy = TLI.getPointerTy();
2292     EVT STy = TLI.getShiftAmountTy();
2293     if (STy.bitsGT(Op2.getValueType()))
2294       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2295                         TLI.getShiftAmountTy(), Op2);
2296     // If the operand is larger than the shift count type but the shift
2297     // count type has enough bits to represent any shift value, truncate
2298     // it now. This is a common case and it exposes the truncate to
2299     // optimization early.
2300     else if (STy.getSizeInBits() >=
2301              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2302       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2303                         TLI.getShiftAmountTy(), Op2);
2304     // Otherwise we'll need to temporarily settle for some other
2305     // convenient type; type legalization will make adjustments as
2306     // needed.
2307     else if (PTy.bitsLT(Op2.getValueType()))
2308       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2309                         TLI.getPointerTy(), Op2);
2310     else if (PTy.bitsGT(Op2.getValueType()))
2311       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2312                         TLI.getPointerTy(), Op2);
2313   }
2314 
2315   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2316                            Op1.getValueType(), Op1, Op2));
2317 }
2318 
2319 void SelectionDAGBuilder::visitICmp(const User &I) {
2320   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2321   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2322     predicate = IC->getPredicate();
2323   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2324     predicate = ICmpInst::Predicate(IC->getPredicate());
2325   SDValue Op1 = getValue(I.getOperand(0));
2326   SDValue Op2 = getValue(I.getOperand(1));
2327   ISD::CondCode Opcode = getICmpCondCode(predicate);
2328 
2329   EVT DestVT = TLI.getValueType(I.getType());
2330   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2331 }
2332 
2333 void SelectionDAGBuilder::visitFCmp(const User &I) {
2334   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2335   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2336     predicate = FC->getPredicate();
2337   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2338     predicate = FCmpInst::Predicate(FC->getPredicate());
2339   SDValue Op1 = getValue(I.getOperand(0));
2340   SDValue Op2 = getValue(I.getOperand(1));
2341   ISD::CondCode Condition = getFCmpCondCode(predicate);
2342   EVT DestVT = TLI.getValueType(I.getType());
2343   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2344 }
2345 
2346 void SelectionDAGBuilder::visitSelect(const User &I) {
2347   SmallVector<EVT, 4> ValueVTs;
2348   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2349   unsigned NumValues = ValueVTs.size();
2350   if (NumValues == 0) return;
2351 
2352   SmallVector<SDValue, 4> Values(NumValues);
2353   SDValue Cond     = getValue(I.getOperand(0));
2354   SDValue TrueVal  = getValue(I.getOperand(1));
2355   SDValue FalseVal = getValue(I.getOperand(2));
2356 
2357   for (unsigned i = 0; i != NumValues; ++i)
2358     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2359                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2360                             Cond,
2361                             SDValue(TrueVal.getNode(),
2362                                     TrueVal.getResNo() + i),
2363                             SDValue(FalseVal.getNode(),
2364                                     FalseVal.getResNo() + i));
2365 
2366   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2367                            DAG.getVTList(&ValueVTs[0], NumValues),
2368                            &Values[0], NumValues));
2369 }
2370 
2371 void SelectionDAGBuilder::visitTrunc(const User &I) {
2372   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2373   SDValue N = getValue(I.getOperand(0));
2374   EVT DestVT = TLI.getValueType(I.getType());
2375   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2376 }
2377 
2378 void SelectionDAGBuilder::visitZExt(const User &I) {
2379   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2380   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2381   SDValue N = getValue(I.getOperand(0));
2382   EVT DestVT = TLI.getValueType(I.getType());
2383   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2384 }
2385 
2386 void SelectionDAGBuilder::visitSExt(const User &I) {
2387   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2388   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2389   SDValue N = getValue(I.getOperand(0));
2390   EVT DestVT = TLI.getValueType(I.getType());
2391   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2392 }
2393 
2394 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2395   // FPTrunc is never a no-op cast, no need to check
2396   SDValue N = getValue(I.getOperand(0));
2397   EVT DestVT = TLI.getValueType(I.getType());
2398   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2399                            DestVT, N, DAG.getIntPtrConstant(0)));
2400 }
2401 
2402 void SelectionDAGBuilder::visitFPExt(const User &I){
2403   // FPTrunc is never a no-op cast, no need to check
2404   SDValue N = getValue(I.getOperand(0));
2405   EVT DestVT = TLI.getValueType(I.getType());
2406   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2407 }
2408 
2409 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2410   // FPToUI is never a no-op cast, no need to check
2411   SDValue N = getValue(I.getOperand(0));
2412   EVT DestVT = TLI.getValueType(I.getType());
2413   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2414 }
2415 
2416 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2417   // FPToSI is never a no-op cast, no need to check
2418   SDValue N = getValue(I.getOperand(0));
2419   EVT DestVT = TLI.getValueType(I.getType());
2420   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2421 }
2422 
2423 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2424   // UIToFP is never a no-op cast, no need to check
2425   SDValue N = getValue(I.getOperand(0));
2426   EVT DestVT = TLI.getValueType(I.getType());
2427   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2428 }
2429 
2430 void SelectionDAGBuilder::visitSIToFP(const User &I){
2431   // SIToFP is never a no-op cast, no need to check
2432   SDValue N = getValue(I.getOperand(0));
2433   EVT DestVT = TLI.getValueType(I.getType());
2434   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2435 }
2436 
2437 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2438   // What to do depends on the size of the integer and the size of the pointer.
2439   // We can either truncate, zero extend, or no-op, accordingly.
2440   SDValue N = getValue(I.getOperand(0));
2441   EVT SrcVT = N.getValueType();
2442   EVT DestVT = TLI.getValueType(I.getType());
2443   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2444 }
2445 
2446 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2447   // What to do depends on the size of the integer and the size of the pointer.
2448   // We can either truncate, zero extend, or no-op, accordingly.
2449   SDValue N = getValue(I.getOperand(0));
2450   EVT SrcVT = N.getValueType();
2451   EVT DestVT = TLI.getValueType(I.getType());
2452   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2453 }
2454 
2455 void SelectionDAGBuilder::visitBitCast(const User &I) {
2456   SDValue N = getValue(I.getOperand(0));
2457   EVT DestVT = TLI.getValueType(I.getType());
2458 
2459   // BitCast assures us that source and destination are the same size so this is
2460   // either a BIT_CONVERT or a no-op.
2461   if (DestVT != N.getValueType())
2462     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2463                              DestVT, N)); // convert types.
2464   else
2465     setValue(&I, N);            // noop cast.
2466 }
2467 
2468 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2469   SDValue InVec = getValue(I.getOperand(0));
2470   SDValue InVal = getValue(I.getOperand(1));
2471   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2472                               TLI.getPointerTy(),
2473                               getValue(I.getOperand(2)));
2474   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2475                            TLI.getValueType(I.getType()),
2476                            InVec, InVal, InIdx));
2477 }
2478 
2479 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2480   SDValue InVec = getValue(I.getOperand(0));
2481   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2482                               TLI.getPointerTy(),
2483                               getValue(I.getOperand(1)));
2484   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2485                            TLI.getValueType(I.getType()), InVec, InIdx));
2486 }
2487 
2488 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2489 // from SIndx and increasing to the element length (undefs are allowed).
2490 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2491   unsigned MaskNumElts = Mask.size();
2492   for (unsigned i = 0; i != MaskNumElts; ++i)
2493     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2494       return false;
2495   return true;
2496 }
2497 
2498 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2499   SmallVector<int, 8> Mask;
2500   SDValue Src1 = getValue(I.getOperand(0));
2501   SDValue Src2 = getValue(I.getOperand(1));
2502 
2503   // Convert the ConstantVector mask operand into an array of ints, with -1
2504   // representing undef values.
2505   SmallVector<Constant*, 8> MaskElts;
2506   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2507   unsigned MaskNumElts = MaskElts.size();
2508   for (unsigned i = 0; i != MaskNumElts; ++i) {
2509     if (isa<UndefValue>(MaskElts[i]))
2510       Mask.push_back(-1);
2511     else
2512       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2513   }
2514 
2515   EVT VT = TLI.getValueType(I.getType());
2516   EVT SrcVT = Src1.getValueType();
2517   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2518 
2519   if (SrcNumElts == MaskNumElts) {
2520     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2521                                       &Mask[0]));
2522     return;
2523   }
2524 
2525   // Normalize the shuffle vector since mask and vector length don't match.
2526   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2527     // Mask is longer than the source vectors and is a multiple of the source
2528     // vectors.  We can use concatenate vector to make the mask and vectors
2529     // lengths match.
2530     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2531       // The shuffle is concatenating two vectors together.
2532       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2533                                VT, Src1, Src2));
2534       return;
2535     }
2536 
2537     // Pad both vectors with undefs to make them the same length as the mask.
2538     unsigned NumConcat = MaskNumElts / SrcNumElts;
2539     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2540     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2541     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2542 
2543     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2544     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2545     MOps1[0] = Src1;
2546     MOps2[0] = Src2;
2547 
2548     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2549                                                   getCurDebugLoc(), VT,
2550                                                   &MOps1[0], NumConcat);
2551     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2552                                                   getCurDebugLoc(), VT,
2553                                                   &MOps2[0], NumConcat);
2554 
2555     // Readjust mask for new input vector length.
2556     SmallVector<int, 8> MappedOps;
2557     for (unsigned i = 0; i != MaskNumElts; ++i) {
2558       int Idx = Mask[i];
2559       if (Idx < (int)SrcNumElts)
2560         MappedOps.push_back(Idx);
2561       else
2562         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2563     }
2564 
2565     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2566                                       &MappedOps[0]));
2567     return;
2568   }
2569 
2570   if (SrcNumElts > MaskNumElts) {
2571     // Analyze the access pattern of the vector to see if we can extract
2572     // two subvectors and do the shuffle. The analysis is done by calculating
2573     // the range of elements the mask access on both vectors.
2574     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2575     int MaxRange[2] = {-1, -1};
2576 
2577     for (unsigned i = 0; i != MaskNumElts; ++i) {
2578       int Idx = Mask[i];
2579       int Input = 0;
2580       if (Idx < 0)
2581         continue;
2582 
2583       if (Idx >= (int)SrcNumElts) {
2584         Input = 1;
2585         Idx -= SrcNumElts;
2586       }
2587       if (Idx > MaxRange[Input])
2588         MaxRange[Input] = Idx;
2589       if (Idx < MinRange[Input])
2590         MinRange[Input] = Idx;
2591     }
2592 
2593     // Check if the access is smaller than the vector size and can we find
2594     // a reasonable extract index.
2595     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2596                                  // Extract.
2597     int StartIdx[2];  // StartIdx to extract from
2598     for (int Input=0; Input < 2; ++Input) {
2599       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2600         RangeUse[Input] = 0; // Unused
2601         StartIdx[Input] = 0;
2602       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2603         // Fits within range but we should see if we can find a good
2604         // start index that is a multiple of the mask length.
2605         if (MaxRange[Input] < (int)MaskNumElts) {
2606           RangeUse[Input] = 1; // Extract from beginning of the vector
2607           StartIdx[Input] = 0;
2608         } else {
2609           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2610           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2611               StartIdx[Input] + MaskNumElts < SrcNumElts)
2612             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2613         }
2614       }
2615     }
2616 
2617     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2618       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2619       return;
2620     }
2621     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2622       // Extract appropriate subvector and generate a vector shuffle
2623       for (int Input=0; Input < 2; ++Input) {
2624         SDValue &Src = Input == 0 ? Src1 : Src2;
2625         if (RangeUse[Input] == 0)
2626           Src = DAG.getUNDEF(VT);
2627         else
2628           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2629                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2630       }
2631 
2632       // Calculate new mask.
2633       SmallVector<int, 8> MappedOps;
2634       for (unsigned i = 0; i != MaskNumElts; ++i) {
2635         int Idx = Mask[i];
2636         if (Idx < 0)
2637           MappedOps.push_back(Idx);
2638         else if (Idx < (int)SrcNumElts)
2639           MappedOps.push_back(Idx - StartIdx[0]);
2640         else
2641           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2642       }
2643 
2644       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2645                                         &MappedOps[0]));
2646       return;
2647     }
2648   }
2649 
2650   // We can't use either concat vectors or extract subvectors so fall back to
2651   // replacing the shuffle with extract and build vector.
2652   // to insert and build vector.
2653   EVT EltVT = VT.getVectorElementType();
2654   EVT PtrVT = TLI.getPointerTy();
2655   SmallVector<SDValue,8> Ops;
2656   for (unsigned i = 0; i != MaskNumElts; ++i) {
2657     if (Mask[i] < 0) {
2658       Ops.push_back(DAG.getUNDEF(EltVT));
2659     } else {
2660       int Idx = Mask[i];
2661       SDValue Res;
2662 
2663       if (Idx < (int)SrcNumElts)
2664         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2665                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2666       else
2667         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2668                           EltVT, Src2,
2669                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2670 
2671       Ops.push_back(Res);
2672     }
2673   }
2674 
2675   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2676                            VT, &Ops[0], Ops.size()));
2677 }
2678 
2679 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2680   const Value *Op0 = I.getOperand(0);
2681   const Value *Op1 = I.getOperand(1);
2682   const Type *AggTy = I.getType();
2683   const Type *ValTy = Op1->getType();
2684   bool IntoUndef = isa<UndefValue>(Op0);
2685   bool FromUndef = isa<UndefValue>(Op1);
2686 
2687   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2688                                             I.idx_begin(), I.idx_end());
2689 
2690   SmallVector<EVT, 4> AggValueVTs;
2691   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2692   SmallVector<EVT, 4> ValValueVTs;
2693   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2694 
2695   unsigned NumAggValues = AggValueVTs.size();
2696   unsigned NumValValues = ValValueVTs.size();
2697   SmallVector<SDValue, 4> Values(NumAggValues);
2698 
2699   SDValue Agg = getValue(Op0);
2700   SDValue Val = getValue(Op1);
2701   unsigned i = 0;
2702   // Copy the beginning value(s) from the original aggregate.
2703   for (; i != LinearIndex; ++i)
2704     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2705                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2706   // Copy values from the inserted value(s).
2707   for (; i != LinearIndex + NumValValues; ++i)
2708     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2709                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2710   // Copy remaining value(s) from the original aggregate.
2711   for (; i != NumAggValues; ++i)
2712     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2713                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2714 
2715   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2716                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2717                            &Values[0], NumAggValues));
2718 }
2719 
2720 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2721   const Value *Op0 = I.getOperand(0);
2722   const Type *AggTy = Op0->getType();
2723   const Type *ValTy = I.getType();
2724   bool OutOfUndef = isa<UndefValue>(Op0);
2725 
2726   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2727                                             I.idx_begin(), I.idx_end());
2728 
2729   SmallVector<EVT, 4> ValValueVTs;
2730   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2731 
2732   unsigned NumValValues = ValValueVTs.size();
2733   SmallVector<SDValue, 4> Values(NumValValues);
2734 
2735   SDValue Agg = getValue(Op0);
2736   // Copy out the selected value(s).
2737   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2738     Values[i - LinearIndex] =
2739       OutOfUndef ?
2740         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2741         SDValue(Agg.getNode(), Agg.getResNo() + i);
2742 
2743   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2744                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2745                            &Values[0], NumValValues));
2746 }
2747 
2748 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2749   SDValue N = getValue(I.getOperand(0));
2750   const Type *Ty = I.getOperand(0)->getType();
2751 
2752   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2753        OI != E; ++OI) {
2754     const Value *Idx = *OI;
2755     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2756       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2757       if (Field) {
2758         // N = N + Offset
2759         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2760         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2761                         DAG.getIntPtrConstant(Offset));
2762       }
2763 
2764       Ty = StTy->getElementType(Field);
2765     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2766       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2767 
2768       // Offset canonically 0 for unions, but type changes
2769       Ty = UnTy->getElementType(Field);
2770     } else {
2771       Ty = cast<SequentialType>(Ty)->getElementType();
2772 
2773       // If this is a constant subscript, handle it quickly.
2774       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2775         if (CI->isZero()) continue;
2776         uint64_t Offs =
2777             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2778         SDValue OffsVal;
2779         EVT PTy = TLI.getPointerTy();
2780         unsigned PtrBits = PTy.getSizeInBits();
2781         if (PtrBits < 64)
2782           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2783                                 TLI.getPointerTy(),
2784                                 DAG.getConstant(Offs, MVT::i64));
2785         else
2786           OffsVal = DAG.getIntPtrConstant(Offs);
2787 
2788         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2789                         OffsVal);
2790         continue;
2791       }
2792 
2793       // N = N + Idx * ElementSize;
2794       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2795                                 TD->getTypeAllocSize(Ty));
2796       SDValue IdxN = getValue(Idx);
2797 
2798       // If the index is smaller or larger than intptr_t, truncate or extend
2799       // it.
2800       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2801 
2802       // If this is a multiply by a power of two, turn it into a shl
2803       // immediately.  This is a very common case.
2804       if (ElementSize != 1) {
2805         if (ElementSize.isPowerOf2()) {
2806           unsigned Amt = ElementSize.logBase2();
2807           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2808                              N.getValueType(), IdxN,
2809                              DAG.getConstant(Amt, TLI.getPointerTy()));
2810         } else {
2811           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2812           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2813                              N.getValueType(), IdxN, Scale);
2814         }
2815       }
2816 
2817       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2818                       N.getValueType(), N, IdxN);
2819     }
2820   }
2821 
2822   setValue(&I, N);
2823 }
2824 
2825 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2826   // If this is a fixed sized alloca in the entry block of the function,
2827   // allocate it statically on the stack.
2828   if (FuncInfo.StaticAllocaMap.count(&I))
2829     return;   // getValue will auto-populate this.
2830 
2831   const Type *Ty = I.getAllocatedType();
2832   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2833   unsigned Align =
2834     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2835              I.getAlignment());
2836 
2837   SDValue AllocSize = getValue(I.getArraySize());
2838 
2839   EVT IntPtr = TLI.getPointerTy();
2840   if (AllocSize.getValueType() != IntPtr)
2841     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2842 
2843   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2844                           AllocSize,
2845                           DAG.getConstant(TySize, IntPtr));
2846 
2847   // Handle alignment.  If the requested alignment is less than or equal to
2848   // the stack alignment, ignore it.  If the size is greater than or equal to
2849   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2850   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2851   if (Align <= StackAlign)
2852     Align = 0;
2853 
2854   // Round the size of the allocation up to the stack alignment size
2855   // by add SA-1 to the size.
2856   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2857                           AllocSize.getValueType(), AllocSize,
2858                           DAG.getIntPtrConstant(StackAlign-1));
2859 
2860   // Mask out the low bits for alignment purposes.
2861   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2862                           AllocSize.getValueType(), AllocSize,
2863                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2864 
2865   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2866   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2867   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2868                             VTs, Ops, 3);
2869   setValue(&I, DSA);
2870   DAG.setRoot(DSA.getValue(1));
2871 
2872   // Inform the Frame Information that we have just allocated a variable-sized
2873   // object.
2874   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2875 }
2876 
2877 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2878   const Value *SV = I.getOperand(0);
2879   SDValue Ptr = getValue(SV);
2880 
2881   const Type *Ty = I.getType();
2882 
2883   bool isVolatile = I.isVolatile();
2884   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2885   unsigned Alignment = I.getAlignment();
2886 
2887   SmallVector<EVT, 4> ValueVTs;
2888   SmallVector<uint64_t, 4> Offsets;
2889   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2890   unsigned NumValues = ValueVTs.size();
2891   if (NumValues == 0)
2892     return;
2893 
2894   SDValue Root;
2895   bool ConstantMemory = false;
2896   if (I.isVolatile())
2897     // Serialize volatile loads with other side effects.
2898     Root = getRoot();
2899   else if (AA->pointsToConstantMemory(SV)) {
2900     // Do not serialize (non-volatile) loads of constant memory with anything.
2901     Root = DAG.getEntryNode();
2902     ConstantMemory = true;
2903   } else {
2904     // Do not serialize non-volatile loads against each other.
2905     Root = DAG.getRoot();
2906   }
2907 
2908   SmallVector<SDValue, 4> Values(NumValues);
2909   SmallVector<SDValue, 4> Chains(NumValues);
2910   EVT PtrVT = Ptr.getValueType();
2911   for (unsigned i = 0; i != NumValues; ++i) {
2912     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2913                             PtrVT, Ptr,
2914                             DAG.getConstant(Offsets[i], PtrVT));
2915     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2916                             A, SV, Offsets[i], isVolatile,
2917                             isNonTemporal, Alignment);
2918 
2919     Values[i] = L;
2920     Chains[i] = L.getValue(1);
2921   }
2922 
2923   if (!ConstantMemory) {
2924     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2925                                 MVT::Other, &Chains[0], NumValues);
2926     if (isVolatile)
2927       DAG.setRoot(Chain);
2928     else
2929       PendingLoads.push_back(Chain);
2930   }
2931 
2932   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2933                            DAG.getVTList(&ValueVTs[0], NumValues),
2934                            &Values[0], NumValues));
2935 }
2936 
2937 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2938   const Value *SrcV = I.getOperand(0);
2939   const Value *PtrV = I.getOperand(1);
2940 
2941   SmallVector<EVT, 4> ValueVTs;
2942   SmallVector<uint64_t, 4> Offsets;
2943   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2944   unsigned NumValues = ValueVTs.size();
2945   if (NumValues == 0)
2946     return;
2947 
2948   // Get the lowered operands. Note that we do this after
2949   // checking if NumResults is zero, because with zero results
2950   // the operands won't have values in the map.
2951   SDValue Src = getValue(SrcV);
2952   SDValue Ptr = getValue(PtrV);
2953 
2954   SDValue Root = getRoot();
2955   SmallVector<SDValue, 4> Chains(NumValues);
2956   EVT PtrVT = Ptr.getValueType();
2957   bool isVolatile = I.isVolatile();
2958   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2959   unsigned Alignment = I.getAlignment();
2960 
2961   for (unsigned i = 0; i != NumValues; ++i) {
2962     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2963                               DAG.getConstant(Offsets[i], PtrVT));
2964     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2965                              SDValue(Src.getNode(), Src.getResNo() + i),
2966                              Add, PtrV, Offsets[i], isVolatile,
2967                              isNonTemporal, Alignment);
2968   }
2969 
2970   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2971                           MVT::Other, &Chains[0], NumValues));
2972 }
2973 
2974 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2975 /// node.
2976 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2977                                                unsigned Intrinsic) {
2978   bool HasChain = !I.doesNotAccessMemory();
2979   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2980 
2981   // Build the operand list.
2982   SmallVector<SDValue, 8> Ops;
2983   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2984     if (OnlyLoad) {
2985       // We don't need to serialize loads against other loads.
2986       Ops.push_back(DAG.getRoot());
2987     } else {
2988       Ops.push_back(getRoot());
2989     }
2990   }
2991 
2992   // Info is set by getTgtMemInstrinsic
2993   TargetLowering::IntrinsicInfo Info;
2994   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2995 
2996   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2997   if (!IsTgtIntrinsic)
2998     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2999 
3000   // Add all operands of the call to the operand list.
3001   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3002     SDValue Op = getValue(I.getOperand(i));
3003     assert(TLI.isTypeLegal(Op.getValueType()) &&
3004            "Intrinsic uses a non-legal type?");
3005     Ops.push_back(Op);
3006   }
3007 
3008   SmallVector<EVT, 4> ValueVTs;
3009   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3010 #ifndef NDEBUG
3011   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3012     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3013            "Intrinsic uses a non-legal type?");
3014   }
3015 #endif // NDEBUG
3016 
3017   if (HasChain)
3018     ValueVTs.push_back(MVT::Other);
3019 
3020   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3021 
3022   // Create the node.
3023   SDValue Result;
3024   if (IsTgtIntrinsic) {
3025     // This is target intrinsic that touches memory
3026     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3027                                      VTs, &Ops[0], Ops.size(),
3028                                      Info.memVT, Info.ptrVal, Info.offset,
3029                                      Info.align, Info.vol,
3030                                      Info.readMem, Info.writeMem);
3031   } else if (!HasChain) {
3032     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3033                          VTs, &Ops[0], Ops.size());
3034   } else if (!I.getType()->isVoidTy()) {
3035     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3036                          VTs, &Ops[0], Ops.size());
3037   } else {
3038     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3039                          VTs, &Ops[0], Ops.size());
3040   }
3041 
3042   if (HasChain) {
3043     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3044     if (OnlyLoad)
3045       PendingLoads.push_back(Chain);
3046     else
3047       DAG.setRoot(Chain);
3048   }
3049 
3050   if (!I.getType()->isVoidTy()) {
3051     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3052       EVT VT = TLI.getValueType(PTy);
3053       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3054     }
3055 
3056     setValue(&I, Result);
3057   }
3058 }
3059 
3060 /// GetSignificand - Get the significand and build it into a floating-point
3061 /// number with exponent of 1:
3062 ///
3063 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3064 ///
3065 /// where Op is the hexidecimal representation of floating point value.
3066 static SDValue
3067 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3068   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3069                            DAG.getConstant(0x007fffff, MVT::i32));
3070   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3071                            DAG.getConstant(0x3f800000, MVT::i32));
3072   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3073 }
3074 
3075 /// GetExponent - Get the exponent:
3076 ///
3077 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3078 ///
3079 /// where Op is the hexidecimal representation of floating point value.
3080 static SDValue
3081 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3082             DebugLoc dl) {
3083   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3084                            DAG.getConstant(0x7f800000, MVT::i32));
3085   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3086                            DAG.getConstant(23, TLI.getPointerTy()));
3087   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3088                            DAG.getConstant(127, MVT::i32));
3089   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3090 }
3091 
3092 /// getF32Constant - Get 32-bit floating point constant.
3093 static SDValue
3094 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3095   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3096 }
3097 
3098 /// Inlined utility function to implement binary input atomic intrinsics for
3099 /// visitIntrinsicCall: I is a call instruction
3100 ///                     Op is the associated NodeType for I
3101 const char *
3102 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3103                                            ISD::NodeType Op) {
3104   SDValue Root = getRoot();
3105   SDValue L =
3106     DAG.getAtomic(Op, getCurDebugLoc(),
3107                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3108                   Root,
3109                   getValue(I.getOperand(1)),
3110                   getValue(I.getOperand(2)),
3111                   I.getOperand(1));
3112   setValue(&I, L);
3113   DAG.setRoot(L.getValue(1));
3114   return 0;
3115 }
3116 
3117 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3118 const char *
3119 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3120   SDValue Op1 = getValue(I.getOperand(1));
3121   SDValue Op2 = getValue(I.getOperand(2));
3122 
3123   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3124   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3125   return 0;
3126 }
3127 
3128 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3129 /// limited-precision mode.
3130 void
3131 SelectionDAGBuilder::visitExp(const CallInst &I) {
3132   SDValue result;
3133   DebugLoc dl = getCurDebugLoc();
3134 
3135   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3136       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3137     SDValue Op = getValue(I.getOperand(1));
3138 
3139     // Put the exponent in the right bit position for later addition to the
3140     // final result:
3141     //
3142     //   #define LOG2OFe 1.4426950f
3143     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3144     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3145                              getF32Constant(DAG, 0x3fb8aa3b));
3146     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3147 
3148     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3149     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3150     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3151 
3152     //   IntegerPartOfX <<= 23;
3153     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3154                                  DAG.getConstant(23, TLI.getPointerTy()));
3155 
3156     if (LimitFloatPrecision <= 6) {
3157       // For floating-point precision of 6:
3158       //
3159       //   TwoToFractionalPartOfX =
3160       //     0.997535578f +
3161       //       (0.735607626f + 0.252464424f * x) * x;
3162       //
3163       // error 0.0144103317, which is 6 bits
3164       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3165                                getF32Constant(DAG, 0x3e814304));
3166       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3167                                getF32Constant(DAG, 0x3f3c50c8));
3168       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3169       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3170                                getF32Constant(DAG, 0x3f7f5e7e));
3171       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3172 
3173       // Add the exponent into the result in integer domain.
3174       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3175                                TwoToFracPartOfX, IntegerPartOfX);
3176 
3177       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3178     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3179       // For floating-point precision of 12:
3180       //
3181       //   TwoToFractionalPartOfX =
3182       //     0.999892986f +
3183       //       (0.696457318f +
3184       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3185       //
3186       // 0.000107046256 error, which is 13 to 14 bits
3187       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3188                                getF32Constant(DAG, 0x3da235e3));
3189       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3190                                getF32Constant(DAG, 0x3e65b8f3));
3191       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3192       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3193                                getF32Constant(DAG, 0x3f324b07));
3194       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3195       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3196                                getF32Constant(DAG, 0x3f7ff8fd));
3197       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3198 
3199       // Add the exponent into the result in integer domain.
3200       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3201                                TwoToFracPartOfX, IntegerPartOfX);
3202 
3203       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3204     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3205       // For floating-point precision of 18:
3206       //
3207       //   TwoToFractionalPartOfX =
3208       //     0.999999982f +
3209       //       (0.693148872f +
3210       //         (0.240227044f +
3211       //           (0.554906021e-1f +
3212       //             (0.961591928e-2f +
3213       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3214       //
3215       // error 2.47208000*10^(-7), which is better than 18 bits
3216       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3217                                getF32Constant(DAG, 0x3924b03e));
3218       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3219                                getF32Constant(DAG, 0x3ab24b87));
3220       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3221       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3222                                getF32Constant(DAG, 0x3c1d8c17));
3223       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3224       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3225                                getF32Constant(DAG, 0x3d634a1d));
3226       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3227       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3228                                getF32Constant(DAG, 0x3e75fe14));
3229       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3230       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3231                                 getF32Constant(DAG, 0x3f317234));
3232       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3233       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3234                                 getF32Constant(DAG, 0x3f800000));
3235       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3236                                              MVT::i32, t13);
3237 
3238       // Add the exponent into the result in integer domain.
3239       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3240                                 TwoToFracPartOfX, IntegerPartOfX);
3241 
3242       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3243     }
3244   } else {
3245     // No special expansion.
3246     result = DAG.getNode(ISD::FEXP, dl,
3247                          getValue(I.getOperand(1)).getValueType(),
3248                          getValue(I.getOperand(1)));
3249   }
3250 
3251   setValue(&I, result);
3252 }
3253 
3254 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3255 /// limited-precision mode.
3256 void
3257 SelectionDAGBuilder::visitLog(const CallInst &I) {
3258   SDValue result;
3259   DebugLoc dl = getCurDebugLoc();
3260 
3261   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3262       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3263     SDValue Op = getValue(I.getOperand(1));
3264     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3265 
3266     // Scale the exponent by log(2) [0.69314718f].
3267     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3268     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3269                                         getF32Constant(DAG, 0x3f317218));
3270 
3271     // Get the significand and build it into a floating-point number with
3272     // exponent of 1.
3273     SDValue X = GetSignificand(DAG, Op1, dl);
3274 
3275     if (LimitFloatPrecision <= 6) {
3276       // For floating-point precision of 6:
3277       //
3278       //   LogofMantissa =
3279       //     -1.1609546f +
3280       //       (1.4034025f - 0.23903021f * x) * x;
3281       //
3282       // error 0.0034276066, which is better than 8 bits
3283       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3284                                getF32Constant(DAG, 0xbe74c456));
3285       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3286                                getF32Constant(DAG, 0x3fb3a2b1));
3287       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3288       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3289                                           getF32Constant(DAG, 0x3f949a29));
3290 
3291       result = DAG.getNode(ISD::FADD, dl,
3292                            MVT::f32, LogOfExponent, LogOfMantissa);
3293     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3294       // For floating-point precision of 12:
3295       //
3296       //   LogOfMantissa =
3297       //     -1.7417939f +
3298       //       (2.8212026f +
3299       //         (-1.4699568f +
3300       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3301       //
3302       // error 0.000061011436, which is 14 bits
3303       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3304                                getF32Constant(DAG, 0xbd67b6d6));
3305       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3306                                getF32Constant(DAG, 0x3ee4f4b8));
3307       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3308       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3309                                getF32Constant(DAG, 0x3fbc278b));
3310       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3311       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3312                                getF32Constant(DAG, 0x40348e95));
3313       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3314       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3315                                           getF32Constant(DAG, 0x3fdef31a));
3316 
3317       result = DAG.getNode(ISD::FADD, dl,
3318                            MVT::f32, LogOfExponent, LogOfMantissa);
3319     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3320       // For floating-point precision of 18:
3321       //
3322       //   LogOfMantissa =
3323       //     -2.1072184f +
3324       //       (4.2372794f +
3325       //         (-3.7029485f +
3326       //           (2.2781945f +
3327       //             (-0.87823314f +
3328       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3329       //
3330       // error 0.0000023660568, which is better than 18 bits
3331       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3332                                getF32Constant(DAG, 0xbc91e5ac));
3333       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3334                                getF32Constant(DAG, 0x3e4350aa));
3335       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3336       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3337                                getF32Constant(DAG, 0x3f60d3e3));
3338       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3339       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3340                                getF32Constant(DAG, 0x4011cdf0));
3341       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3342       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3343                                getF32Constant(DAG, 0x406cfd1c));
3344       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3345       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3346                                getF32Constant(DAG, 0x408797cb));
3347       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3348       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3349                                           getF32Constant(DAG, 0x4006dcab));
3350 
3351       result = DAG.getNode(ISD::FADD, dl,
3352                            MVT::f32, LogOfExponent, LogOfMantissa);
3353     }
3354   } else {
3355     // No special expansion.
3356     result = DAG.getNode(ISD::FLOG, dl,
3357                          getValue(I.getOperand(1)).getValueType(),
3358                          getValue(I.getOperand(1)));
3359   }
3360 
3361   setValue(&I, result);
3362 }
3363 
3364 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3365 /// limited-precision mode.
3366 void
3367 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3368   SDValue result;
3369   DebugLoc dl = getCurDebugLoc();
3370 
3371   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3372       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3373     SDValue Op = getValue(I.getOperand(1));
3374     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3375 
3376     // Get the exponent.
3377     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3378 
3379     // Get the significand and build it into a floating-point number with
3380     // exponent of 1.
3381     SDValue X = GetSignificand(DAG, Op1, dl);
3382 
3383     // Different possible minimax approximations of significand in
3384     // floating-point for various degrees of accuracy over [1,2].
3385     if (LimitFloatPrecision <= 6) {
3386       // For floating-point precision of 6:
3387       //
3388       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3389       //
3390       // error 0.0049451742, which is more than 7 bits
3391       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3392                                getF32Constant(DAG, 0xbeb08fe0));
3393       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3394                                getF32Constant(DAG, 0x40019463));
3395       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3396       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3397                                            getF32Constant(DAG, 0x3fd6633d));
3398 
3399       result = DAG.getNode(ISD::FADD, dl,
3400                            MVT::f32, LogOfExponent, Log2ofMantissa);
3401     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3402       // For floating-point precision of 12:
3403       //
3404       //   Log2ofMantissa =
3405       //     -2.51285454f +
3406       //       (4.07009056f +
3407       //         (-2.12067489f +
3408       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3409       //
3410       // error 0.0000876136000, which is better than 13 bits
3411       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3412                                getF32Constant(DAG, 0xbda7262e));
3413       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3414                                getF32Constant(DAG, 0x3f25280b));
3415       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3416       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3417                                getF32Constant(DAG, 0x4007b923));
3418       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3419       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3420                                getF32Constant(DAG, 0x40823e2f));
3421       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3422       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3423                                            getF32Constant(DAG, 0x4020d29c));
3424 
3425       result = DAG.getNode(ISD::FADD, dl,
3426                            MVT::f32, LogOfExponent, Log2ofMantissa);
3427     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3428       // For floating-point precision of 18:
3429       //
3430       //   Log2ofMantissa =
3431       //     -3.0400495f +
3432       //       (6.1129976f +
3433       //         (-5.3420409f +
3434       //           (3.2865683f +
3435       //             (-1.2669343f +
3436       //               (0.27515199f -
3437       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3438       //
3439       // error 0.0000018516, which is better than 18 bits
3440       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3441                                getF32Constant(DAG, 0xbcd2769e));
3442       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3443                                getF32Constant(DAG, 0x3e8ce0b9));
3444       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3445       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3446                                getF32Constant(DAG, 0x3fa22ae7));
3447       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3448       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3449                                getF32Constant(DAG, 0x40525723));
3450       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3451       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3452                                getF32Constant(DAG, 0x40aaf200));
3453       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3454       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3455                                getF32Constant(DAG, 0x40c39dad));
3456       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3457       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3458                                            getF32Constant(DAG, 0x4042902c));
3459 
3460       result = DAG.getNode(ISD::FADD, dl,
3461                            MVT::f32, LogOfExponent, Log2ofMantissa);
3462     }
3463   } else {
3464     // No special expansion.
3465     result = DAG.getNode(ISD::FLOG2, dl,
3466                          getValue(I.getOperand(1)).getValueType(),
3467                          getValue(I.getOperand(1)));
3468   }
3469 
3470   setValue(&I, result);
3471 }
3472 
3473 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3474 /// limited-precision mode.
3475 void
3476 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3477   SDValue result;
3478   DebugLoc dl = getCurDebugLoc();
3479 
3480   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3481       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3482     SDValue Op = getValue(I.getOperand(1));
3483     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3484 
3485     // Scale the exponent by log10(2) [0.30102999f].
3486     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3487     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3488                                         getF32Constant(DAG, 0x3e9a209a));
3489 
3490     // Get the significand and build it into a floating-point number with
3491     // exponent of 1.
3492     SDValue X = GetSignificand(DAG, Op1, dl);
3493 
3494     if (LimitFloatPrecision <= 6) {
3495       // For floating-point precision of 6:
3496       //
3497       //   Log10ofMantissa =
3498       //     -0.50419619f +
3499       //       (0.60948995f - 0.10380950f * x) * x;
3500       //
3501       // error 0.0014886165, which is 6 bits
3502       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3503                                getF32Constant(DAG, 0xbdd49a13));
3504       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3505                                getF32Constant(DAG, 0x3f1c0789));
3506       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3507       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3508                                             getF32Constant(DAG, 0x3f011300));
3509 
3510       result = DAG.getNode(ISD::FADD, dl,
3511                            MVT::f32, LogOfExponent, Log10ofMantissa);
3512     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3513       // For floating-point precision of 12:
3514       //
3515       //   Log10ofMantissa =
3516       //     -0.64831180f +
3517       //       (0.91751397f +
3518       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3519       //
3520       // error 0.00019228036, which is better than 12 bits
3521       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3522                                getF32Constant(DAG, 0x3d431f31));
3523       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3524                                getF32Constant(DAG, 0x3ea21fb2));
3525       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3526       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3527                                getF32Constant(DAG, 0x3f6ae232));
3528       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3529       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3530                                             getF32Constant(DAG, 0x3f25f7c3));
3531 
3532       result = DAG.getNode(ISD::FADD, dl,
3533                            MVT::f32, LogOfExponent, Log10ofMantissa);
3534     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3535       // For floating-point precision of 18:
3536       //
3537       //   Log10ofMantissa =
3538       //     -0.84299375f +
3539       //       (1.5327582f +
3540       //         (-1.0688956f +
3541       //           (0.49102474f +
3542       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3543       //
3544       // error 0.0000037995730, which is better than 18 bits
3545       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                                getF32Constant(DAG, 0x3c5d51ce));
3547       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3548                                getF32Constant(DAG, 0x3e00685a));
3549       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3550       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3551                                getF32Constant(DAG, 0x3efb6798));
3552       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3553       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3554                                getF32Constant(DAG, 0x3f88d192));
3555       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3556       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3557                                getF32Constant(DAG, 0x3fc4316c));
3558       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3559       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3560                                             getF32Constant(DAG, 0x3f57ce70));
3561 
3562       result = DAG.getNode(ISD::FADD, dl,
3563                            MVT::f32, LogOfExponent, Log10ofMantissa);
3564     }
3565   } else {
3566     // No special expansion.
3567     result = DAG.getNode(ISD::FLOG10, dl,
3568                          getValue(I.getOperand(1)).getValueType(),
3569                          getValue(I.getOperand(1)));
3570   }
3571 
3572   setValue(&I, result);
3573 }
3574 
3575 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3576 /// limited-precision mode.
3577 void
3578 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3579   SDValue result;
3580   DebugLoc dl = getCurDebugLoc();
3581 
3582   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3583       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3584     SDValue Op = getValue(I.getOperand(1));
3585 
3586     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3587 
3588     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3589     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3590     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3591 
3592     //   IntegerPartOfX <<= 23;
3593     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3594                                  DAG.getConstant(23, TLI.getPointerTy()));
3595 
3596     if (LimitFloatPrecision <= 6) {
3597       // For floating-point precision of 6:
3598       //
3599       //   TwoToFractionalPartOfX =
3600       //     0.997535578f +
3601       //       (0.735607626f + 0.252464424f * x) * x;
3602       //
3603       // error 0.0144103317, which is 6 bits
3604       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3605                                getF32Constant(DAG, 0x3e814304));
3606       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3607                                getF32Constant(DAG, 0x3f3c50c8));
3608       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3609       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3610                                getF32Constant(DAG, 0x3f7f5e7e));
3611       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3612       SDValue TwoToFractionalPartOfX =
3613         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3614 
3615       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3616                            MVT::f32, TwoToFractionalPartOfX);
3617     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3618       // For floating-point precision of 12:
3619       //
3620       //   TwoToFractionalPartOfX =
3621       //     0.999892986f +
3622       //       (0.696457318f +
3623       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3624       //
3625       // error 0.000107046256, which is 13 to 14 bits
3626       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3627                                getF32Constant(DAG, 0x3da235e3));
3628       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3629                                getF32Constant(DAG, 0x3e65b8f3));
3630       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3631       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3632                                getF32Constant(DAG, 0x3f324b07));
3633       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3634       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3635                                getF32Constant(DAG, 0x3f7ff8fd));
3636       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3637       SDValue TwoToFractionalPartOfX =
3638         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3639 
3640       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3641                            MVT::f32, TwoToFractionalPartOfX);
3642     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3643       // For floating-point precision of 18:
3644       //
3645       //   TwoToFractionalPartOfX =
3646       //     0.999999982f +
3647       //       (0.693148872f +
3648       //         (0.240227044f +
3649       //           (0.554906021e-1f +
3650       //             (0.961591928e-2f +
3651       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3652       // error 2.47208000*10^(-7), which is better than 18 bits
3653       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3654                                getF32Constant(DAG, 0x3924b03e));
3655       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3656                                getF32Constant(DAG, 0x3ab24b87));
3657       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3658       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3659                                getF32Constant(DAG, 0x3c1d8c17));
3660       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3661       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3662                                getF32Constant(DAG, 0x3d634a1d));
3663       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3664       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3665                                getF32Constant(DAG, 0x3e75fe14));
3666       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3667       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3668                                 getF32Constant(DAG, 0x3f317234));
3669       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3670       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3671                                 getF32Constant(DAG, 0x3f800000));
3672       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3673       SDValue TwoToFractionalPartOfX =
3674         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3675 
3676       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3677                            MVT::f32, TwoToFractionalPartOfX);
3678     }
3679   } else {
3680     // No special expansion.
3681     result = DAG.getNode(ISD::FEXP2, dl,
3682                          getValue(I.getOperand(1)).getValueType(),
3683                          getValue(I.getOperand(1)));
3684   }
3685 
3686   setValue(&I, result);
3687 }
3688 
3689 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3690 /// limited-precision mode with x == 10.0f.
3691 void
3692 SelectionDAGBuilder::visitPow(const CallInst &I) {
3693   SDValue result;
3694   const Value *Val = I.getOperand(1);
3695   DebugLoc dl = getCurDebugLoc();
3696   bool IsExp10 = false;
3697 
3698   if (getValue(Val).getValueType() == MVT::f32 &&
3699       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3700       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3701     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3702       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3703         APFloat Ten(10.0f);
3704         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3705       }
3706     }
3707   }
3708 
3709   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3710     SDValue Op = getValue(I.getOperand(2));
3711 
3712     // Put the exponent in the right bit position for later addition to the
3713     // final result:
3714     //
3715     //   #define LOG2OF10 3.3219281f
3716     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3717     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3718                              getF32Constant(DAG, 0x40549a78));
3719     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3720 
3721     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3722     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3723     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3724 
3725     //   IntegerPartOfX <<= 23;
3726     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3727                                  DAG.getConstant(23, TLI.getPointerTy()));
3728 
3729     if (LimitFloatPrecision <= 6) {
3730       // For floating-point precision of 6:
3731       //
3732       //   twoToFractionalPartOfX =
3733       //     0.997535578f +
3734       //       (0.735607626f + 0.252464424f * x) * x;
3735       //
3736       // error 0.0144103317, which is 6 bits
3737       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3738                                getF32Constant(DAG, 0x3e814304));
3739       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3740                                getF32Constant(DAG, 0x3f3c50c8));
3741       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3742       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3743                                getF32Constant(DAG, 0x3f7f5e7e));
3744       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3745       SDValue TwoToFractionalPartOfX =
3746         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3747 
3748       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3749                            MVT::f32, TwoToFractionalPartOfX);
3750     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3751       // For floating-point precision of 12:
3752       //
3753       //   TwoToFractionalPartOfX =
3754       //     0.999892986f +
3755       //       (0.696457318f +
3756       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3757       //
3758       // error 0.000107046256, which is 13 to 14 bits
3759       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3760                                getF32Constant(DAG, 0x3da235e3));
3761       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3762                                getF32Constant(DAG, 0x3e65b8f3));
3763       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3764       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3765                                getF32Constant(DAG, 0x3f324b07));
3766       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3767       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3768                                getF32Constant(DAG, 0x3f7ff8fd));
3769       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3770       SDValue TwoToFractionalPartOfX =
3771         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3772 
3773       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3774                            MVT::f32, TwoToFractionalPartOfX);
3775     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3776       // For floating-point precision of 18:
3777       //
3778       //   TwoToFractionalPartOfX =
3779       //     0.999999982f +
3780       //       (0.693148872f +
3781       //         (0.240227044f +
3782       //           (0.554906021e-1f +
3783       //             (0.961591928e-2f +
3784       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3785       // error 2.47208000*10^(-7), which is better than 18 bits
3786       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3787                                getF32Constant(DAG, 0x3924b03e));
3788       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3789                                getF32Constant(DAG, 0x3ab24b87));
3790       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                                getF32Constant(DAG, 0x3c1d8c17));
3793       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3795                                getF32Constant(DAG, 0x3d634a1d));
3796       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3797       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3798                                getF32Constant(DAG, 0x3e75fe14));
3799       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3800       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3801                                 getF32Constant(DAG, 0x3f317234));
3802       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3803       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3804                                 getF32Constant(DAG, 0x3f800000));
3805       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3806       SDValue TwoToFractionalPartOfX =
3807         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3808 
3809       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3810                            MVT::f32, TwoToFractionalPartOfX);
3811     }
3812   } else {
3813     // No special expansion.
3814     result = DAG.getNode(ISD::FPOW, dl,
3815                          getValue(I.getOperand(1)).getValueType(),
3816                          getValue(I.getOperand(1)),
3817                          getValue(I.getOperand(2)));
3818   }
3819 
3820   setValue(&I, result);
3821 }
3822 
3823 
3824 /// ExpandPowI - Expand a llvm.powi intrinsic.
3825 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3826                           SelectionDAG &DAG) {
3827   // If RHS is a constant, we can expand this out to a multiplication tree,
3828   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3829   // optimizing for size, we only want to do this if the expansion would produce
3830   // a small number of multiplies, otherwise we do the full expansion.
3831   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3832     // Get the exponent as a positive value.
3833     unsigned Val = RHSC->getSExtValue();
3834     if ((int)Val < 0) Val = -Val;
3835 
3836     // powi(x, 0) -> 1.0
3837     if (Val == 0)
3838       return DAG.getConstantFP(1.0, LHS.getValueType());
3839 
3840     const Function *F = DAG.getMachineFunction().getFunction();
3841     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3842         // If optimizing for size, don't insert too many multiplies.  This
3843         // inserts up to 5 multiplies.
3844         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3845       // We use the simple binary decomposition method to generate the multiply
3846       // sequence.  There are more optimal ways to do this (for example,
3847       // powi(x,15) generates one more multiply than it should), but this has
3848       // the benefit of being both really simple and much better than a libcall.
3849       SDValue Res;  // Logically starts equal to 1.0
3850       SDValue CurSquare = LHS;
3851       while (Val) {
3852         if (Val & 1) {
3853           if (Res.getNode())
3854             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3855           else
3856             Res = CurSquare;  // 1.0*CurSquare.
3857         }
3858 
3859         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3860                                 CurSquare, CurSquare);
3861         Val >>= 1;
3862       }
3863 
3864       // If the original was negative, invert the result, producing 1/(x*x*x).
3865       if (RHSC->getSExtValue() < 0)
3866         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3867                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3868       return Res;
3869     }
3870   }
3871 
3872   // Otherwise, expand to a libcall.
3873   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3874 }
3875 
3876 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3877 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3878 /// At the end of instruction selection, they will be inserted to the entry BB.
3879 bool
3880 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3881                                               const Value *V, MDNode *Variable,
3882                                               uint64_t Offset,
3883                                               const SDValue &N) {
3884   if (!isa<Argument>(V))
3885     return false;
3886 
3887   MachineFunction &MF = DAG.getMachineFunction();
3888   // Ignore inlined function arguments here.
3889   DIVariable DV(Variable);
3890   if (DV.isInlinedFnArgument(MF.getFunction()))
3891     return false;
3892 
3893   MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3894   if (MBB != &MF.front())
3895     return false;
3896 
3897   unsigned Reg = 0;
3898   if (N.getOpcode() == ISD::CopyFromReg) {
3899     Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3900     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3901       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3902       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3903       if (PR)
3904         Reg = PR;
3905     }
3906   }
3907 
3908   if (!Reg) {
3909     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3910     if (VMI == FuncInfo.ValueMap.end())
3911       return false;
3912     Reg = VMI->second;
3913   }
3914 
3915   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3916   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3917                                     TII->get(TargetOpcode::DBG_VALUE))
3918     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3919   FuncInfo.ArgDbgValues.push_back(&*MIB);
3920   return true;
3921 }
3922 
3923 // VisualStudio defines setjmp as _setjmp
3924 #if defined(_MSC_VER) && defined(setjmp)
3925 #define setjmp_undefined_for_visual_studio
3926 #undef setjmp
3927 #endif
3928 
3929 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3930 /// we want to emit this as a call to a named external function, return the name
3931 /// otherwise lower it and return null.
3932 const char *
3933 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3934   DebugLoc dl = getCurDebugLoc();
3935   SDValue Res;
3936 
3937   switch (Intrinsic) {
3938   default:
3939     // By default, turn this into a target intrinsic node.
3940     visitTargetIntrinsic(I, Intrinsic);
3941     return 0;
3942   case Intrinsic::vastart:  visitVAStart(I); return 0;
3943   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3944   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3945   case Intrinsic::returnaddress:
3946     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3947                              getValue(I.getOperand(1))));
3948     return 0;
3949   case Intrinsic::frameaddress:
3950     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3951                              getValue(I.getOperand(1))));
3952     return 0;
3953   case Intrinsic::setjmp:
3954     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3955   case Intrinsic::longjmp:
3956     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3957   case Intrinsic::memcpy: {
3958     // Assert for address < 256 since we support only user defined address
3959     // spaces.
3960     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3961            < 256 &&
3962            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3963            < 256 &&
3964            "Unknown address space");
3965     SDValue Op1 = getValue(I.getOperand(1));
3966     SDValue Op2 = getValue(I.getOperand(2));
3967     SDValue Op3 = getValue(I.getOperand(3));
3968     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3969     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3970     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3971                               I.getOperand(1), 0, I.getOperand(2), 0));
3972     return 0;
3973   }
3974   case Intrinsic::memset: {
3975     // Assert for address < 256 since we support only user defined address
3976     // spaces.
3977     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3978            < 256 &&
3979            "Unknown address space");
3980     SDValue Op1 = getValue(I.getOperand(1));
3981     SDValue Op2 = getValue(I.getOperand(2));
3982     SDValue Op3 = getValue(I.getOperand(3));
3983     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3984     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3985     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3986                               I.getOperand(1), 0));
3987     return 0;
3988   }
3989   case Intrinsic::memmove: {
3990     // Assert for address < 256 since we support only user defined address
3991     // spaces.
3992     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3993            < 256 &&
3994            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3995            < 256 &&
3996            "Unknown address space");
3997     SDValue Op1 = getValue(I.getOperand(1));
3998     SDValue Op2 = getValue(I.getOperand(2));
3999     SDValue Op3 = getValue(I.getOperand(3));
4000     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4001     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
4002 
4003     // If the source and destination are known to not be aliases, we can
4004     // lower memmove as memcpy.
4005     uint64_t Size = -1ULL;
4006     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4007       Size = C->getZExtValue();
4008     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4009         AliasAnalysis::NoAlias) {
4010       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4011                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
4012       return 0;
4013     }
4014 
4015     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4016                                I.getOperand(1), 0, I.getOperand(2), 0));
4017     return 0;
4018   }
4019   case Intrinsic::dbg_declare: {
4020     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4021     if (!DIVariable(DI.getVariable()).Verify())
4022       return 0;
4023 
4024     MDNode *Variable = DI.getVariable();
4025     // Parameters are handled specially.
4026     bool isParameter =
4027       DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4028     const Value *Address = DI.getAddress();
4029     if (!Address)
4030       return 0;
4031     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4032       Address = BCI->getOperand(0);
4033     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4034     if (AI) {
4035       // Don't handle byval arguments or VLAs, for example.
4036       // Non-byval arguments are handled here (they refer to the stack temporary
4037       // alloca at this point).
4038       DenseMap<const AllocaInst*, int>::iterator SI =
4039         FuncInfo.StaticAllocaMap.find(AI);
4040       if (SI == FuncInfo.StaticAllocaMap.end())
4041         return 0; // VLAs.
4042       int FI = SI->second;
4043 
4044       MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4045       if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4046         MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4047     }
4048 
4049     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4050     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4051     // absolute, but not relative, values are different depending on whether
4052     // debug info exists.
4053     ++SDNodeOrder;
4054     SDValue &N = NodeMap[Address];
4055     SDDbgValue *SDV;
4056     if (N.getNode()) {
4057       if (isParameter && !AI) {
4058         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4059         if (FINode)
4060           // Byval parameter.  We have a frame index at this point.
4061           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4062                                 0, dl, SDNodeOrder);
4063         else
4064           // Can't do anything with other non-AI cases yet.  This might be a
4065           // parameter of a callee function that got inlined, for example.
4066           return 0;
4067       } else if (AI)
4068         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4069                               0, dl, SDNodeOrder);
4070       else
4071         // Can't do anything with other non-AI cases yet.
4072         return 0;
4073       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4074     } else {
4075       // This isn't useful, but it shows what we're missing.
4076       SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4077                             0, dl, SDNodeOrder);
4078       DAG.AddDbgValue(SDV, 0, isParameter);
4079     }
4080     return 0;
4081   }
4082   case Intrinsic::dbg_value: {
4083     const DbgValueInst &DI = cast<DbgValueInst>(I);
4084     if (!DIVariable(DI.getVariable()).Verify())
4085       return 0;
4086 
4087     MDNode *Variable = DI.getVariable();
4088     uint64_t Offset = DI.getOffset();
4089     const Value *V = DI.getValue();
4090     if (!V)
4091       return 0;
4092 
4093     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4094     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4095     // absolute, but not relative, values are different depending on whether
4096     // debug info exists.
4097     ++SDNodeOrder;
4098     SDDbgValue *SDV;
4099     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4100       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4101       DAG.AddDbgValue(SDV, 0, false);
4102     } else {
4103       bool createUndef = false;
4104       // FIXME : Why not use getValue() directly ?
4105       SDValue N = NodeMap[V];
4106       if (!N.getNode() && isa<Argument>(V))
4107         // Check unused arguments map.
4108         N = UnusedArgNodeMap[V];
4109       if (N.getNode()) {
4110         if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4111           SDV = DAG.getDbgValue(Variable, N.getNode(),
4112                                 N.getResNo(), Offset, dl, SDNodeOrder);
4113           DAG.AddDbgValue(SDV, N.getNode(), false);
4114         }
4115       } else if (isa<PHINode>(V) && !V->use_empty()) {
4116         SDValue N = getValue(V);
4117         if (N.getNode()) {
4118           if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4119             SDV = DAG.getDbgValue(Variable, N.getNode(),
4120                                   N.getResNo(), Offset, dl, SDNodeOrder);
4121             DAG.AddDbgValue(SDV, N.getNode(), false);
4122           }
4123         } else
4124           createUndef = true;
4125       } else
4126         createUndef = true;
4127       if (createUndef) {
4128         // We may expand this to cover more cases.  One case where we have no
4129         // data available is an unreferenced parameter; we need this fallback.
4130         SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4131                               Offset, dl, SDNodeOrder);
4132         DAG.AddDbgValue(SDV, 0, false);
4133       }
4134     }
4135 
4136     // Build a debug info table entry.
4137     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4138       V = BCI->getOperand(0);
4139     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4140     // Don't handle byval struct arguments or VLAs, for example.
4141     if (!AI)
4142       return 0;
4143     DenseMap<const AllocaInst*, int>::iterator SI =
4144       FuncInfo.StaticAllocaMap.find(AI);
4145     if (SI == FuncInfo.StaticAllocaMap.end())
4146       return 0; // VLAs.
4147     int FI = SI->second;
4148 
4149     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4150     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4151       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4152     return 0;
4153   }
4154   case Intrinsic::eh_exception: {
4155     // Insert the EXCEPTIONADDR instruction.
4156     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4157            "Call to eh.exception not in landing pad!");
4158     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4159     SDValue Ops[1];
4160     Ops[0] = DAG.getRoot();
4161     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4162     setValue(&I, Op);
4163     DAG.setRoot(Op.getValue(1));
4164     return 0;
4165   }
4166 
4167   case Intrinsic::eh_selector: {
4168     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4169     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4170     if (CallMBB->isLandingPad())
4171       AddCatchInfo(I, &MMI, CallMBB);
4172     else {
4173 #ifndef NDEBUG
4174       FuncInfo.CatchInfoLost.insert(&I);
4175 #endif
4176       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4177       unsigned Reg = TLI.getExceptionSelectorRegister();
4178       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4179     }
4180 
4181     // Insert the EHSELECTION instruction.
4182     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4183     SDValue Ops[2];
4184     Ops[0] = getValue(I.getOperand(1));
4185     Ops[1] = getRoot();
4186     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4187     DAG.setRoot(Op.getValue(1));
4188     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4189     return 0;
4190   }
4191 
4192   case Intrinsic::eh_typeid_for: {
4193     // Find the type id for the given typeinfo.
4194     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4195     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4196     Res = DAG.getConstant(TypeID, MVT::i32);
4197     setValue(&I, Res);
4198     return 0;
4199   }
4200 
4201   case Intrinsic::eh_return_i32:
4202   case Intrinsic::eh_return_i64:
4203     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4204     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4205                             MVT::Other,
4206                             getControlRoot(),
4207                             getValue(I.getOperand(1)),
4208                             getValue(I.getOperand(2))));
4209     return 0;
4210   case Intrinsic::eh_unwind_init:
4211     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4212     return 0;
4213   case Intrinsic::eh_dwarf_cfa: {
4214     EVT VT = getValue(I.getOperand(1)).getValueType();
4215     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4216                                         TLI.getPointerTy());
4217     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4218                                  TLI.getPointerTy(),
4219                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4220                                              TLI.getPointerTy()),
4221                                  CfaArg);
4222     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4223                              TLI.getPointerTy(),
4224                              DAG.getConstant(0, TLI.getPointerTy()));
4225     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4226                              FA, Offset));
4227     return 0;
4228   }
4229   case Intrinsic::eh_sjlj_callsite: {
4230     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4231     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4232     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4233     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4234 
4235     MMI.setCurrentCallSite(CI->getZExtValue());
4236     return 0;
4237   }
4238   case Intrinsic::eh_sjlj_setjmp: {
4239     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4240                              getValue(I.getOperand(1))));
4241     return 0;
4242   }
4243   case Intrinsic::eh_sjlj_longjmp: {
4244     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4245                             getRoot(),
4246                             getValue(I.getOperand(1))));
4247     return 0;
4248   }
4249 
4250   case Intrinsic::convertff:
4251   case Intrinsic::convertfsi:
4252   case Intrinsic::convertfui:
4253   case Intrinsic::convertsif:
4254   case Intrinsic::convertuif:
4255   case Intrinsic::convertss:
4256   case Intrinsic::convertsu:
4257   case Intrinsic::convertus:
4258   case Intrinsic::convertuu: {
4259     ISD::CvtCode Code = ISD::CVT_INVALID;
4260     switch (Intrinsic) {
4261     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4262     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4263     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4264     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4265     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4266     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4267     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4268     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4269     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4270     }
4271     EVT DestVT = TLI.getValueType(I.getType());
4272     const Value *Op1 = I.getOperand(1);
4273     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4274                                DAG.getValueType(DestVT),
4275                                DAG.getValueType(getValue(Op1).getValueType()),
4276                                getValue(I.getOperand(2)),
4277                                getValue(I.getOperand(3)),
4278                                Code);
4279     setValue(&I, Res);
4280     return 0;
4281   }
4282   case Intrinsic::sqrt:
4283     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4284                              getValue(I.getOperand(1)).getValueType(),
4285                              getValue(I.getOperand(1))));
4286     return 0;
4287   case Intrinsic::powi:
4288     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4289                             getValue(I.getOperand(2)), DAG));
4290     return 0;
4291   case Intrinsic::sin:
4292     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4293                              getValue(I.getOperand(1)).getValueType(),
4294                              getValue(I.getOperand(1))));
4295     return 0;
4296   case Intrinsic::cos:
4297     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4298                              getValue(I.getOperand(1)).getValueType(),
4299                              getValue(I.getOperand(1))));
4300     return 0;
4301   case Intrinsic::log:
4302     visitLog(I);
4303     return 0;
4304   case Intrinsic::log2:
4305     visitLog2(I);
4306     return 0;
4307   case Intrinsic::log10:
4308     visitLog10(I);
4309     return 0;
4310   case Intrinsic::exp:
4311     visitExp(I);
4312     return 0;
4313   case Intrinsic::exp2:
4314     visitExp2(I);
4315     return 0;
4316   case Intrinsic::pow:
4317     visitPow(I);
4318     return 0;
4319   case Intrinsic::convert_to_fp16:
4320     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4321                              MVT::i16, getValue(I.getOperand(1))));
4322     return 0;
4323   case Intrinsic::convert_from_fp16:
4324     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4325                              MVT::f32, getValue(I.getOperand(1))));
4326     return 0;
4327   case Intrinsic::pcmarker: {
4328     SDValue Tmp = getValue(I.getOperand(1));
4329     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4330     return 0;
4331   }
4332   case Intrinsic::readcyclecounter: {
4333     SDValue Op = getRoot();
4334     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4335                       DAG.getVTList(MVT::i64, MVT::Other),
4336                       &Op, 1);
4337     setValue(&I, Res);
4338     DAG.setRoot(Res.getValue(1));
4339     return 0;
4340   }
4341   case Intrinsic::bswap:
4342     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4343                              getValue(I.getOperand(1)).getValueType(),
4344                              getValue(I.getOperand(1))));
4345     return 0;
4346   case Intrinsic::cttz: {
4347     SDValue Arg = getValue(I.getOperand(1));
4348     EVT Ty = Arg.getValueType();
4349     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4350     return 0;
4351   }
4352   case Intrinsic::ctlz: {
4353     SDValue Arg = getValue(I.getOperand(1));
4354     EVT Ty = Arg.getValueType();
4355     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4356     return 0;
4357   }
4358   case Intrinsic::ctpop: {
4359     SDValue Arg = getValue(I.getOperand(1));
4360     EVT Ty = Arg.getValueType();
4361     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4362     return 0;
4363   }
4364   case Intrinsic::stacksave: {
4365     SDValue Op = getRoot();
4366     Res = DAG.getNode(ISD::STACKSAVE, dl,
4367                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4368     setValue(&I, Res);
4369     DAG.setRoot(Res.getValue(1));
4370     return 0;
4371   }
4372   case Intrinsic::stackrestore: {
4373     Res = getValue(I.getOperand(1));
4374     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4375     return 0;
4376   }
4377   case Intrinsic::stackprotector: {
4378     // Emit code into the DAG to store the stack guard onto the stack.
4379     MachineFunction &MF = DAG.getMachineFunction();
4380     MachineFrameInfo *MFI = MF.getFrameInfo();
4381     EVT PtrTy = TLI.getPointerTy();
4382 
4383     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4384     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4385 
4386     int FI = FuncInfo.StaticAllocaMap[Slot];
4387     MFI->setStackProtectorIndex(FI);
4388 
4389     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4390 
4391     // Store the stack protector onto the stack.
4392     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4393                        PseudoSourceValue::getFixedStack(FI),
4394                        0, true, false, 0);
4395     setValue(&I, Res);
4396     DAG.setRoot(Res);
4397     return 0;
4398   }
4399   case Intrinsic::objectsize: {
4400     // If we don't know by now, we're never going to know.
4401     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4402 
4403     assert(CI && "Non-constant type in __builtin_object_size?");
4404 
4405     SDValue Arg = getValue(I.getOperand(0));
4406     EVT Ty = Arg.getValueType();
4407 
4408     if (CI->isZero())
4409       Res = DAG.getConstant(-1ULL, Ty);
4410     else
4411       Res = DAG.getConstant(0, Ty);
4412 
4413     setValue(&I, Res);
4414     return 0;
4415   }
4416   case Intrinsic::var_annotation:
4417     // Discard annotate attributes
4418     return 0;
4419 
4420   case Intrinsic::init_trampoline: {
4421     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4422 
4423     SDValue Ops[6];
4424     Ops[0] = getRoot();
4425     Ops[1] = getValue(I.getOperand(1));
4426     Ops[2] = getValue(I.getOperand(2));
4427     Ops[3] = getValue(I.getOperand(3));
4428     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4429     Ops[5] = DAG.getSrcValue(F);
4430 
4431     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4432                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4433                       Ops, 6);
4434 
4435     setValue(&I, Res);
4436     DAG.setRoot(Res.getValue(1));
4437     return 0;
4438   }
4439   case Intrinsic::gcroot:
4440     if (GFI) {
4441       const Value *Alloca = I.getOperand(1);
4442       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4443 
4444       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4445       GFI->addStackRoot(FI->getIndex(), TypeMap);
4446     }
4447     return 0;
4448   case Intrinsic::gcread:
4449   case Intrinsic::gcwrite:
4450     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4451     return 0;
4452   case Intrinsic::flt_rounds:
4453     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4454     return 0;
4455   case Intrinsic::trap:
4456     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4457     return 0;
4458   case Intrinsic::uadd_with_overflow:
4459     return implVisitAluOverflow(I, ISD::UADDO);
4460   case Intrinsic::sadd_with_overflow:
4461     return implVisitAluOverflow(I, ISD::SADDO);
4462   case Intrinsic::usub_with_overflow:
4463     return implVisitAluOverflow(I, ISD::USUBO);
4464   case Intrinsic::ssub_with_overflow:
4465     return implVisitAluOverflow(I, ISD::SSUBO);
4466   case Intrinsic::umul_with_overflow:
4467     return implVisitAluOverflow(I, ISD::UMULO);
4468   case Intrinsic::smul_with_overflow:
4469     return implVisitAluOverflow(I, ISD::SMULO);
4470 
4471   case Intrinsic::prefetch: {
4472     SDValue Ops[4];
4473     Ops[0] = getRoot();
4474     Ops[1] = getValue(I.getOperand(1));
4475     Ops[2] = getValue(I.getOperand(2));
4476     Ops[3] = getValue(I.getOperand(3));
4477     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4478     return 0;
4479   }
4480 
4481   case Intrinsic::memory_barrier: {
4482     SDValue Ops[6];
4483     Ops[0] = getRoot();
4484     for (int x = 1; x < 6; ++x)
4485       Ops[x] = getValue(I.getOperand(x));
4486 
4487     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4488     return 0;
4489   }
4490   case Intrinsic::atomic_cmp_swap: {
4491     SDValue Root = getRoot();
4492     SDValue L =
4493       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4494                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4495                     Root,
4496                     getValue(I.getOperand(1)),
4497                     getValue(I.getOperand(2)),
4498                     getValue(I.getOperand(3)),
4499                     I.getOperand(1));
4500     setValue(&I, L);
4501     DAG.setRoot(L.getValue(1));
4502     return 0;
4503   }
4504   case Intrinsic::atomic_load_add:
4505     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4506   case Intrinsic::atomic_load_sub:
4507     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4508   case Intrinsic::atomic_load_or:
4509     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4510   case Intrinsic::atomic_load_xor:
4511     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4512   case Intrinsic::atomic_load_and:
4513     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4514   case Intrinsic::atomic_load_nand:
4515     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4516   case Intrinsic::atomic_load_max:
4517     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4518   case Intrinsic::atomic_load_min:
4519     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4520   case Intrinsic::atomic_load_umin:
4521     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4522   case Intrinsic::atomic_load_umax:
4523     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4524   case Intrinsic::atomic_swap:
4525     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4526 
4527   case Intrinsic::invariant_start:
4528   case Intrinsic::lifetime_start:
4529     // Discard region information.
4530     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4531     return 0;
4532   case Intrinsic::invariant_end:
4533   case Intrinsic::lifetime_end:
4534     // Discard region information.
4535     return 0;
4536   }
4537 }
4538 
4539 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4540                                       bool isTailCall,
4541                                       MachineBasicBlock *LandingPad) {
4542   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4543   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4544   const Type *RetTy = FTy->getReturnType();
4545   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4546   MCSymbol *BeginLabel = 0;
4547 
4548   TargetLowering::ArgListTy Args;
4549   TargetLowering::ArgListEntry Entry;
4550   Args.reserve(CS.arg_size());
4551 
4552   // Check whether the function can return without sret-demotion.
4553   SmallVector<EVT, 4> OutVTs;
4554   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4555   SmallVector<uint64_t, 4> Offsets;
4556   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4557                 OutVTs, OutsFlags, TLI, &Offsets);
4558 
4559   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4560                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4561 
4562   SDValue DemoteStackSlot;
4563 
4564   if (!CanLowerReturn) {
4565     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4566                       FTy->getReturnType());
4567     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4568                       FTy->getReturnType());
4569     MachineFunction &MF = DAG.getMachineFunction();
4570     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4571     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4572 
4573     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4574     Entry.Node = DemoteStackSlot;
4575     Entry.Ty = StackSlotPtrType;
4576     Entry.isSExt = false;
4577     Entry.isZExt = false;
4578     Entry.isInReg = false;
4579     Entry.isSRet = true;
4580     Entry.isNest = false;
4581     Entry.isByVal = false;
4582     Entry.Alignment = Align;
4583     Args.push_back(Entry);
4584     RetTy = Type::getVoidTy(FTy->getContext());
4585   }
4586 
4587   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4588        i != e; ++i) {
4589     SDValue ArgNode = getValue(*i);
4590     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4591 
4592     unsigned attrInd = i - CS.arg_begin() + 1;
4593     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4594     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4595     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4596     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4597     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4598     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4599     Entry.Alignment = CS.getParamAlignment(attrInd);
4600     Args.push_back(Entry);
4601   }
4602 
4603   if (LandingPad) {
4604     // Insert a label before the invoke call to mark the try range.  This can be
4605     // used to detect deletion of the invoke via the MachineModuleInfo.
4606     BeginLabel = MMI.getContext().CreateTempSymbol();
4607 
4608     // For SjLj, keep track of which landing pads go with which invokes
4609     // so as to maintain the ordering of pads in the LSDA.
4610     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4611     if (CallSiteIndex) {
4612       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4613       // Now that the call site is handled, stop tracking it.
4614       MMI.setCurrentCallSite(0);
4615     }
4616 
4617     // Both PendingLoads and PendingExports must be flushed here;
4618     // this call might not return.
4619     (void)getRoot();
4620     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4621   }
4622 
4623   // Check if target-independent constraints permit a tail call here.
4624   // Target-dependent constraints are checked within TLI.LowerCallTo.
4625   if (isTailCall &&
4626       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4627     isTailCall = false;
4628 
4629   std::pair<SDValue,SDValue> Result =
4630     TLI.LowerCallTo(getRoot(), RetTy,
4631                     CS.paramHasAttr(0, Attribute::SExt),
4632                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4633                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4634                     CS.getCallingConv(),
4635                     isTailCall,
4636                     !CS.getInstruction()->use_empty(),
4637                     Callee, Args, DAG, getCurDebugLoc());
4638   assert((isTailCall || Result.second.getNode()) &&
4639          "Non-null chain expected with non-tail call!");
4640   assert((Result.second.getNode() || !Result.first.getNode()) &&
4641          "Null value expected with tail call!");
4642   if (Result.first.getNode()) {
4643     setValue(CS.getInstruction(), Result.first);
4644   } else if (!CanLowerReturn && Result.second.getNode()) {
4645     // The instruction result is the result of loading from the
4646     // hidden sret parameter.
4647     SmallVector<EVT, 1> PVTs;
4648     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4649 
4650     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4651     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4652     EVT PtrVT = PVTs[0];
4653     unsigned NumValues = OutVTs.size();
4654     SmallVector<SDValue, 4> Values(NumValues);
4655     SmallVector<SDValue, 4> Chains(NumValues);
4656 
4657     for (unsigned i = 0; i < NumValues; ++i) {
4658       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4659                                 DemoteStackSlot,
4660                                 DAG.getConstant(Offsets[i], PtrVT));
4661       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4662                               Add, NULL, Offsets[i], false, false, 1);
4663       Values[i] = L;
4664       Chains[i] = L.getValue(1);
4665     }
4666 
4667     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4668                                 MVT::Other, &Chains[0], NumValues);
4669     PendingLoads.push_back(Chain);
4670 
4671     // Collect the legal value parts into potentially illegal values
4672     // that correspond to the original function's return values.
4673     SmallVector<EVT, 4> RetTys;
4674     RetTy = FTy->getReturnType();
4675     ComputeValueVTs(TLI, RetTy, RetTys);
4676     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4677     SmallVector<SDValue, 4> ReturnValues;
4678     unsigned CurReg = 0;
4679     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4680       EVT VT = RetTys[I];
4681       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4682       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4683 
4684       SDValue ReturnValue =
4685         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4686                          RegisterVT, VT, AssertOp);
4687       ReturnValues.push_back(ReturnValue);
4688       CurReg += NumRegs;
4689     }
4690 
4691     setValue(CS.getInstruction(),
4692              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4693                          DAG.getVTList(&RetTys[0], RetTys.size()),
4694                          &ReturnValues[0], ReturnValues.size()));
4695 
4696   }
4697 
4698   // As a special case, a null chain means that a tail call has been emitted and
4699   // the DAG root is already updated.
4700   if (Result.second.getNode())
4701     DAG.setRoot(Result.second);
4702   else
4703     HasTailCall = true;
4704 
4705   if (LandingPad) {
4706     // Insert a label at the end of the invoke call to mark the try range.  This
4707     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4708     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4709     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4710 
4711     // Inform MachineModuleInfo of range.
4712     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4713   }
4714 }
4715 
4716 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4717 /// value is equal or not-equal to zero.
4718 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4719   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4720        UI != E; ++UI) {
4721     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4722       if (IC->isEquality())
4723         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4724           if (C->isNullValue())
4725             continue;
4726     // Unknown instruction.
4727     return false;
4728   }
4729   return true;
4730 }
4731 
4732 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4733                              const Type *LoadTy,
4734                              SelectionDAGBuilder &Builder) {
4735 
4736   // Check to see if this load can be trivially constant folded, e.g. if the
4737   // input is from a string literal.
4738   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4739     // Cast pointer to the type we really want to load.
4740     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4741                                          PointerType::getUnqual(LoadTy));
4742 
4743     if (const Constant *LoadCst =
4744           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4745                                        Builder.TD))
4746       return Builder.getValue(LoadCst);
4747   }
4748 
4749   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4750   // still constant memory, the input chain can be the entry node.
4751   SDValue Root;
4752   bool ConstantMemory = false;
4753 
4754   // Do not serialize (non-volatile) loads of constant memory with anything.
4755   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4756     Root = Builder.DAG.getEntryNode();
4757     ConstantMemory = true;
4758   } else {
4759     // Do not serialize non-volatile loads against each other.
4760     Root = Builder.DAG.getRoot();
4761   }
4762 
4763   SDValue Ptr = Builder.getValue(PtrVal);
4764   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4765                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4766                                         false /*volatile*/,
4767                                         false /*nontemporal*/, 1 /* align=1 */);
4768 
4769   if (!ConstantMemory)
4770     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4771   return LoadVal;
4772 }
4773 
4774 
4775 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4776 /// If so, return true and lower it, otherwise return false and it will be
4777 /// lowered like a normal call.
4778 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4779   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4780   if (I.getNumOperands() != 4)
4781     return false;
4782 
4783   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4784   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4785       !I.getOperand(3)->getType()->isIntegerTy() ||
4786       !I.getType()->isIntegerTy())
4787     return false;
4788 
4789   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4790 
4791   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4792   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4793   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4794     bool ActuallyDoIt = true;
4795     MVT LoadVT;
4796     const Type *LoadTy;
4797     switch (Size->getZExtValue()) {
4798     default:
4799       LoadVT = MVT::Other;
4800       LoadTy = 0;
4801       ActuallyDoIt = false;
4802       break;
4803     case 2:
4804       LoadVT = MVT::i16;
4805       LoadTy = Type::getInt16Ty(Size->getContext());
4806       break;
4807     case 4:
4808       LoadVT = MVT::i32;
4809       LoadTy = Type::getInt32Ty(Size->getContext());
4810       break;
4811     case 8:
4812       LoadVT = MVT::i64;
4813       LoadTy = Type::getInt64Ty(Size->getContext());
4814       break;
4815         /*
4816     case 16:
4817       LoadVT = MVT::v4i32;
4818       LoadTy = Type::getInt32Ty(Size->getContext());
4819       LoadTy = VectorType::get(LoadTy, 4);
4820       break;
4821          */
4822     }
4823 
4824     // This turns into unaligned loads.  We only do this if the target natively
4825     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4826     // we'll only produce a small number of byte loads.
4827 
4828     // Require that we can find a legal MVT, and only do this if the target
4829     // supports unaligned loads of that type.  Expanding into byte loads would
4830     // bloat the code.
4831     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4832       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4833       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4834       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4835         ActuallyDoIt = false;
4836     }
4837 
4838     if (ActuallyDoIt) {
4839       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4840       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4841 
4842       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4843                                  ISD::SETNE);
4844       EVT CallVT = TLI.getValueType(I.getType(), true);
4845       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4846       return true;
4847     }
4848   }
4849 
4850 
4851   return false;
4852 }
4853 
4854 
4855 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4856   const char *RenameFn = 0;
4857   if (Function *F = I.getCalledFunction()) {
4858     if (F->isDeclaration()) {
4859       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4860       if (II) {
4861         if (unsigned IID = II->getIntrinsicID(F)) {
4862           RenameFn = visitIntrinsicCall(I, IID);
4863           if (!RenameFn)
4864             return;
4865         }
4866       }
4867       if (unsigned IID = F->getIntrinsicID()) {
4868         RenameFn = visitIntrinsicCall(I, IID);
4869         if (!RenameFn)
4870           return;
4871       }
4872     }
4873 
4874     // Check for well-known libc/libm calls.  If the function is internal, it
4875     // can't be a library call.
4876     if (!F->hasLocalLinkage() && F->hasName()) {
4877       StringRef Name = F->getName();
4878       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4879         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4880             I.getOperand(1)->getType()->isFloatingPointTy() &&
4881             I.getType() == I.getOperand(1)->getType() &&
4882             I.getType() == I.getOperand(2)->getType()) {
4883           SDValue LHS = getValue(I.getOperand(1));
4884           SDValue RHS = getValue(I.getOperand(2));
4885           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4886                                    LHS.getValueType(), LHS, RHS));
4887           return;
4888         }
4889       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4890         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4891             I.getOperand(1)->getType()->isFloatingPointTy() &&
4892             I.getType() == I.getOperand(1)->getType()) {
4893           SDValue Tmp = getValue(I.getOperand(1));
4894           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4895                                    Tmp.getValueType(), Tmp));
4896           return;
4897         }
4898       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4899         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4900             I.getOperand(1)->getType()->isFloatingPointTy() &&
4901             I.getType() == I.getOperand(1)->getType() &&
4902             I.onlyReadsMemory()) {
4903           SDValue Tmp = getValue(I.getOperand(1));
4904           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4905                                    Tmp.getValueType(), Tmp));
4906           return;
4907         }
4908       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4909         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4910             I.getOperand(1)->getType()->isFloatingPointTy() &&
4911             I.getType() == I.getOperand(1)->getType() &&
4912             I.onlyReadsMemory()) {
4913           SDValue Tmp = getValue(I.getOperand(1));
4914           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4915                                    Tmp.getValueType(), Tmp));
4916           return;
4917         }
4918       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4919         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4920             I.getOperand(1)->getType()->isFloatingPointTy() &&
4921             I.getType() == I.getOperand(1)->getType() &&
4922             I.onlyReadsMemory()) {
4923           SDValue Tmp = getValue(I.getOperand(1));
4924           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4925                                    Tmp.getValueType(), Tmp));
4926           return;
4927         }
4928       } else if (Name == "memcmp") {
4929         if (visitMemCmpCall(I))
4930           return;
4931       }
4932     }
4933   } else if (isa<InlineAsm>(I.getOperand(0))) {
4934     visitInlineAsm(&I);
4935     return;
4936   }
4937 
4938   SDValue Callee;
4939   if (!RenameFn)
4940     Callee = getValue(I.getOperand(0));
4941   else
4942     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4943 
4944   // Check if we can potentially perform a tail call. More detailed checking is
4945   // be done within LowerCallTo, after more information about the call is known.
4946   LowerCallTo(&I, Callee, I.isTailCall());
4947 }
4948 
4949 namespace llvm {
4950 
4951 /// AsmOperandInfo - This contains information for each constraint that we are
4952 /// lowering.
4953 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4954     public TargetLowering::AsmOperandInfo {
4955 public:
4956   /// CallOperand - If this is the result output operand or a clobber
4957   /// this is null, otherwise it is the incoming operand to the CallInst.
4958   /// This gets modified as the asm is processed.
4959   SDValue CallOperand;
4960 
4961   /// AssignedRegs - If this is a register or register class operand, this
4962   /// contains the set of register corresponding to the operand.
4963   RegsForValue AssignedRegs;
4964 
4965   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4966     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4967   }
4968 
4969   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4970   /// busy in OutputRegs/InputRegs.
4971   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4972                          std::set<unsigned> &OutputRegs,
4973                          std::set<unsigned> &InputRegs,
4974                          const TargetRegisterInfo &TRI) const {
4975     if (isOutReg) {
4976       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4977         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4978     }
4979     if (isInReg) {
4980       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4981         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4982     }
4983   }
4984 
4985   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4986   /// corresponds to.  If there is no Value* for this operand, it returns
4987   /// MVT::Other.
4988   EVT getCallOperandValEVT(LLVMContext &Context,
4989                            const TargetLowering &TLI,
4990                            const TargetData *TD) const {
4991     if (CallOperandVal == 0) return MVT::Other;
4992 
4993     if (isa<BasicBlock>(CallOperandVal))
4994       return TLI.getPointerTy();
4995 
4996     const llvm::Type *OpTy = CallOperandVal->getType();
4997 
4998     // If this is an indirect operand, the operand is a pointer to the
4999     // accessed type.
5000     if (isIndirect) {
5001       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5002       if (!PtrTy)
5003         report_fatal_error("Indirect operand for inline asm not a pointer!");
5004       OpTy = PtrTy->getElementType();
5005     }
5006 
5007     // If OpTy is not a single value, it may be a struct/union that we
5008     // can tile with integers.
5009     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5010       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5011       switch (BitSize) {
5012       default: break;
5013       case 1:
5014       case 8:
5015       case 16:
5016       case 32:
5017       case 64:
5018       case 128:
5019         OpTy = IntegerType::get(Context, BitSize);
5020         break;
5021       }
5022     }
5023 
5024     return TLI.getValueType(OpTy, true);
5025   }
5026 
5027 private:
5028   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5029   /// specified set.
5030   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5031                                 const TargetRegisterInfo &TRI) {
5032     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5033     Regs.insert(Reg);
5034     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5035       for (; *Aliases; ++Aliases)
5036         Regs.insert(*Aliases);
5037   }
5038 };
5039 
5040 } // end llvm namespace.
5041 
5042 /// isAllocatableRegister - If the specified register is safe to allocate,
5043 /// i.e. it isn't a stack pointer or some other special register, return the
5044 /// register class for the register.  Otherwise, return null.
5045 static const TargetRegisterClass *
5046 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5047                       const TargetLowering &TLI,
5048                       const TargetRegisterInfo *TRI) {
5049   EVT FoundVT = MVT::Other;
5050   const TargetRegisterClass *FoundRC = 0;
5051   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5052        E = TRI->regclass_end(); RCI != E; ++RCI) {
5053     EVT ThisVT = MVT::Other;
5054 
5055     const TargetRegisterClass *RC = *RCI;
5056     // If none of the value types for this register class are valid, we
5057     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5058     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5059          I != E; ++I) {
5060       if (TLI.isTypeLegal(*I)) {
5061         // If we have already found this register in a different register class,
5062         // choose the one with the largest VT specified.  For example, on
5063         // PowerPC, we favor f64 register classes over f32.
5064         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5065           ThisVT = *I;
5066           break;
5067         }
5068       }
5069     }
5070 
5071     if (ThisVT == MVT::Other) continue;
5072 
5073     // NOTE: This isn't ideal.  In particular, this might allocate the
5074     // frame pointer in functions that need it (due to them not being taken
5075     // out of allocation, because a variable sized allocation hasn't been seen
5076     // yet).  This is a slight code pessimization, but should still work.
5077     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5078          E = RC->allocation_order_end(MF); I != E; ++I)
5079       if (*I == Reg) {
5080         // We found a matching register class.  Keep looking at others in case
5081         // we find one with larger registers that this physreg is also in.
5082         FoundRC = RC;
5083         FoundVT = ThisVT;
5084         break;
5085       }
5086   }
5087   return FoundRC;
5088 }
5089 
5090 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5091 /// specified operand.  We prefer to assign virtual registers, to allow the
5092 /// register allocator to handle the assignment process.  However, if the asm
5093 /// uses features that we can't model on machineinstrs, we have SDISel do the
5094 /// allocation.  This produces generally horrible, but correct, code.
5095 ///
5096 ///   OpInfo describes the operand.
5097 ///   Input and OutputRegs are the set of already allocated physical registers.
5098 ///
5099 void SelectionDAGBuilder::
5100 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5101                      std::set<unsigned> &OutputRegs,
5102                      std::set<unsigned> &InputRegs) {
5103   LLVMContext &Context = FuncInfo.Fn->getContext();
5104 
5105   // Compute whether this value requires an input register, an output register,
5106   // or both.
5107   bool isOutReg = false;
5108   bool isInReg = false;
5109   switch (OpInfo.Type) {
5110   case InlineAsm::isOutput:
5111     isOutReg = true;
5112 
5113     // If there is an input constraint that matches this, we need to reserve
5114     // the input register so no other inputs allocate to it.
5115     isInReg = OpInfo.hasMatchingInput();
5116     break;
5117   case InlineAsm::isInput:
5118     isInReg = true;
5119     isOutReg = false;
5120     break;
5121   case InlineAsm::isClobber:
5122     isOutReg = true;
5123     isInReg = true;
5124     break;
5125   }
5126 
5127 
5128   MachineFunction &MF = DAG.getMachineFunction();
5129   SmallVector<unsigned, 4> Regs;
5130 
5131   // If this is a constraint for a single physreg, or a constraint for a
5132   // register class, find it.
5133   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5134     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5135                                      OpInfo.ConstraintVT);
5136 
5137   unsigned NumRegs = 1;
5138   if (OpInfo.ConstraintVT != MVT::Other) {
5139     // If this is a FP input in an integer register (or visa versa) insert a bit
5140     // cast of the input value.  More generally, handle any case where the input
5141     // value disagrees with the register class we plan to stick this in.
5142     if (OpInfo.Type == InlineAsm::isInput &&
5143         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5144       // Try to convert to the first EVT that the reg class contains.  If the
5145       // types are identical size, use a bitcast to convert (e.g. two differing
5146       // vector types).
5147       EVT RegVT = *PhysReg.second->vt_begin();
5148       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5149         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5150                                          RegVT, OpInfo.CallOperand);
5151         OpInfo.ConstraintVT = RegVT;
5152       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5153         // If the input is a FP value and we want it in FP registers, do a
5154         // bitcast to the corresponding integer type.  This turns an f64 value
5155         // into i64, which can be passed with two i32 values on a 32-bit
5156         // machine.
5157         RegVT = EVT::getIntegerVT(Context,
5158                                   OpInfo.ConstraintVT.getSizeInBits());
5159         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5160                                          RegVT, OpInfo.CallOperand);
5161         OpInfo.ConstraintVT = RegVT;
5162       }
5163     }
5164 
5165     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5166   }
5167 
5168   EVT RegVT;
5169   EVT ValueVT = OpInfo.ConstraintVT;
5170 
5171   // If this is a constraint for a specific physical register, like {r17},
5172   // assign it now.
5173   if (unsigned AssignedReg = PhysReg.first) {
5174     const TargetRegisterClass *RC = PhysReg.second;
5175     if (OpInfo.ConstraintVT == MVT::Other)
5176       ValueVT = *RC->vt_begin();
5177 
5178     // Get the actual register value type.  This is important, because the user
5179     // may have asked for (e.g.) the AX register in i32 type.  We need to
5180     // remember that AX is actually i16 to get the right extension.
5181     RegVT = *RC->vt_begin();
5182 
5183     // This is a explicit reference to a physical register.
5184     Regs.push_back(AssignedReg);
5185 
5186     // If this is an expanded reference, add the rest of the regs to Regs.
5187     if (NumRegs != 1) {
5188       TargetRegisterClass::iterator I = RC->begin();
5189       for (; *I != AssignedReg; ++I)
5190         assert(I != RC->end() && "Didn't find reg!");
5191 
5192       // Already added the first reg.
5193       --NumRegs; ++I;
5194       for (; NumRegs; --NumRegs, ++I) {
5195         assert(I != RC->end() && "Ran out of registers to allocate!");
5196         Regs.push_back(*I);
5197       }
5198     }
5199 
5200     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5201     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5202     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5203     return;
5204   }
5205 
5206   // Otherwise, if this was a reference to an LLVM register class, create vregs
5207   // for this reference.
5208   if (const TargetRegisterClass *RC = PhysReg.second) {
5209     RegVT = *RC->vt_begin();
5210     if (OpInfo.ConstraintVT == MVT::Other)
5211       ValueVT = RegVT;
5212 
5213     // Create the appropriate number of virtual registers.
5214     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5215     for (; NumRegs; --NumRegs)
5216       Regs.push_back(RegInfo.createVirtualRegister(RC));
5217 
5218     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5219     return;
5220   }
5221 
5222   // This is a reference to a register class that doesn't directly correspond
5223   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5224   // registers from the class.
5225   std::vector<unsigned> RegClassRegs
5226     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5227                                             OpInfo.ConstraintVT);
5228 
5229   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5230   unsigned NumAllocated = 0;
5231   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5232     unsigned Reg = RegClassRegs[i];
5233     // See if this register is available.
5234     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5235         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5236       // Make sure we find consecutive registers.
5237       NumAllocated = 0;
5238       continue;
5239     }
5240 
5241     // Check to see if this register is allocatable (i.e. don't give out the
5242     // stack pointer).
5243     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5244     if (!RC) {        // Couldn't allocate this register.
5245       // Reset NumAllocated to make sure we return consecutive registers.
5246       NumAllocated = 0;
5247       continue;
5248     }
5249 
5250     // Okay, this register is good, we can use it.
5251     ++NumAllocated;
5252 
5253     // If we allocated enough consecutive registers, succeed.
5254     if (NumAllocated == NumRegs) {
5255       unsigned RegStart = (i-NumAllocated)+1;
5256       unsigned RegEnd   = i+1;
5257       // Mark all of the allocated registers used.
5258       for (unsigned i = RegStart; i != RegEnd; ++i)
5259         Regs.push_back(RegClassRegs[i]);
5260 
5261       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5262                                          OpInfo.ConstraintVT);
5263       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5264       return;
5265     }
5266   }
5267 
5268   // Otherwise, we couldn't allocate enough registers for this.
5269 }
5270 
5271 /// visitInlineAsm - Handle a call to an InlineAsm object.
5272 ///
5273 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5274   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5275 
5276   /// ConstraintOperands - Information about all of the constraints.
5277   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5278 
5279   std::set<unsigned> OutputRegs, InputRegs;
5280 
5281   // Do a prepass over the constraints, canonicalizing them, and building up the
5282   // ConstraintOperands list.
5283   std::vector<InlineAsm::ConstraintInfo>
5284     ConstraintInfos = IA->ParseConstraints();
5285 
5286   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5287 
5288   SDValue Chain, Flag;
5289 
5290   // We won't need to flush pending loads if this asm doesn't touch
5291   // memory and is nonvolatile.
5292   if (hasMemory || IA->hasSideEffects())
5293     Chain = getRoot();
5294   else
5295     Chain = DAG.getRoot();
5296 
5297   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5298   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5299   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5300     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5301     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5302 
5303     EVT OpVT = MVT::Other;
5304 
5305     // Compute the value type for each operand.
5306     switch (OpInfo.Type) {
5307     case InlineAsm::isOutput:
5308       // Indirect outputs just consume an argument.
5309       if (OpInfo.isIndirect) {
5310         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5311         break;
5312       }
5313 
5314       // The return value of the call is this value.  As such, there is no
5315       // corresponding argument.
5316       assert(!CS.getType()->isVoidTy() &&
5317              "Bad inline asm!");
5318       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5319         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5320       } else {
5321         assert(ResNo == 0 && "Asm only has one result!");
5322         OpVT = TLI.getValueType(CS.getType());
5323       }
5324       ++ResNo;
5325       break;
5326     case InlineAsm::isInput:
5327       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5328       break;
5329     case InlineAsm::isClobber:
5330       // Nothing to do.
5331       break;
5332     }
5333 
5334     // If this is an input or an indirect output, process the call argument.
5335     // BasicBlocks are labels, currently appearing only in asm's.
5336     if (OpInfo.CallOperandVal) {
5337       // Strip bitcasts, if any.  This mostly comes up for functions.
5338       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5339 
5340       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5341         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5342       } else {
5343         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5344       }
5345 
5346       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5347     }
5348 
5349     OpInfo.ConstraintVT = OpVT;
5350   }
5351 
5352   // Second pass over the constraints: compute which constraint option to use
5353   // and assign registers to constraints that want a specific physreg.
5354   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5355     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5356 
5357     // If this is an output operand with a matching input operand, look up the
5358     // matching input. If their types mismatch, e.g. one is an integer, the
5359     // other is floating point, or their sizes are different, flag it as an
5360     // error.
5361     if (OpInfo.hasMatchingInput()) {
5362       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5363 
5364       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5365         if ((OpInfo.ConstraintVT.isInteger() !=
5366              Input.ConstraintVT.isInteger()) ||
5367             (OpInfo.ConstraintVT.getSizeInBits() !=
5368              Input.ConstraintVT.getSizeInBits())) {
5369           report_fatal_error("Unsupported asm: input constraint"
5370                              " with a matching output constraint of"
5371                              " incompatible type!");
5372         }
5373         Input.ConstraintVT = OpInfo.ConstraintVT;
5374       }
5375     }
5376 
5377     // Compute the constraint code and ConstraintType to use.
5378     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5379 
5380     // If this is a memory input, and if the operand is not indirect, do what we
5381     // need to to provide an address for the memory input.
5382     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5383         !OpInfo.isIndirect) {
5384       assert(OpInfo.Type == InlineAsm::isInput &&
5385              "Can only indirectify direct input operands!");
5386 
5387       // Memory operands really want the address of the value.  If we don't have
5388       // an indirect input, put it in the constpool if we can, otherwise spill
5389       // it to a stack slot.
5390 
5391       // If the operand is a float, integer, or vector constant, spill to a
5392       // constant pool entry to get its address.
5393       const Value *OpVal = OpInfo.CallOperandVal;
5394       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5395           isa<ConstantVector>(OpVal)) {
5396         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5397                                                  TLI.getPointerTy());
5398       } else {
5399         // Otherwise, create a stack slot and emit a store to it before the
5400         // asm.
5401         const Type *Ty = OpVal->getType();
5402         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5403         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5404         MachineFunction &MF = DAG.getMachineFunction();
5405         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5406         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5407         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5408                              OpInfo.CallOperand, StackSlot, NULL, 0,
5409                              false, false, 0);
5410         OpInfo.CallOperand = StackSlot;
5411       }
5412 
5413       // There is no longer a Value* corresponding to this operand.
5414       OpInfo.CallOperandVal = 0;
5415 
5416       // It is now an indirect operand.
5417       OpInfo.isIndirect = true;
5418     }
5419 
5420     // If this constraint is for a specific register, allocate it before
5421     // anything else.
5422     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5423       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5424   }
5425 
5426   ConstraintInfos.clear();
5427 
5428   // Second pass - Loop over all of the operands, assigning virtual or physregs
5429   // to register class operands.
5430   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5431     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5432 
5433     // C_Register operands have already been allocated, Other/Memory don't need
5434     // to be.
5435     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5436       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5437   }
5438 
5439   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5440   std::vector<SDValue> AsmNodeOperands;
5441   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5442   AsmNodeOperands.push_back(
5443           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5444                                       TLI.getPointerTy()));
5445 
5446   // If we have a !srcloc metadata node associated with it, we want to attach
5447   // this to the ultimately generated inline asm machineinstr.  To do this, we
5448   // pass in the third operand as this (potentially null) inline asm MDNode.
5449   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5450   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5451 
5452   // Loop over all of the inputs, copying the operand values into the
5453   // appropriate registers and processing the output regs.
5454   RegsForValue RetValRegs;
5455 
5456   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5457   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5458 
5459   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5460     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5461 
5462     switch (OpInfo.Type) {
5463     case InlineAsm::isOutput: {
5464       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5465           OpInfo.ConstraintType != TargetLowering::C_Register) {
5466         // Memory output, or 'other' output (e.g. 'X' constraint).
5467         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5468 
5469         // Add information to the INLINEASM node to know about this output.
5470         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5471         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5472                                                         TLI.getPointerTy()));
5473         AsmNodeOperands.push_back(OpInfo.CallOperand);
5474         break;
5475       }
5476 
5477       // Otherwise, this is a register or register class output.
5478 
5479       // Copy the output from the appropriate register.  Find a register that
5480       // we can use.
5481       if (OpInfo.AssignedRegs.Regs.empty())
5482         report_fatal_error("Couldn't allocate output reg for constraint '" +
5483                            Twine(OpInfo.ConstraintCode) + "'!");
5484 
5485       // If this is an indirect operand, store through the pointer after the
5486       // asm.
5487       if (OpInfo.isIndirect) {
5488         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5489                                                       OpInfo.CallOperandVal));
5490       } else {
5491         // This is the result value of the call.
5492         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5493         // Concatenate this output onto the outputs list.
5494         RetValRegs.append(OpInfo.AssignedRegs);
5495       }
5496 
5497       // Add information to the INLINEASM node to know that this register is
5498       // set.
5499       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5500                                            InlineAsm::Kind_RegDefEarlyClobber :
5501                                                InlineAsm::Kind_RegDef,
5502                                                false,
5503                                                0,
5504                                                DAG,
5505                                                AsmNodeOperands);
5506       break;
5507     }
5508     case InlineAsm::isInput: {
5509       SDValue InOperandVal = OpInfo.CallOperand;
5510 
5511       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5512         // If this is required to match an output register we have already set,
5513         // just use its register.
5514         unsigned OperandNo = OpInfo.getMatchedOperand();
5515 
5516         // Scan until we find the definition we already emitted of this operand.
5517         // When we find it, create a RegsForValue operand.
5518         unsigned CurOp = InlineAsm::Op_FirstOperand;
5519         for (; OperandNo; --OperandNo) {
5520           // Advance to the next operand.
5521           unsigned OpFlag =
5522             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5523           assert((InlineAsm::isRegDefKind(OpFlag) ||
5524                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5525                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5526           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5527         }
5528 
5529         unsigned OpFlag =
5530           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5531         if (InlineAsm::isRegDefKind(OpFlag) ||
5532             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5533           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5534           if (OpInfo.isIndirect) {
5535             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5536             LLVMContext &Ctx = *DAG.getContext();
5537             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5538                           " don't know how to handle tied "
5539                           "indirect register inputs");
5540           }
5541 
5542           RegsForValue MatchedRegs;
5543           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5544           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5545           MatchedRegs.RegVTs.push_back(RegVT);
5546           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5547           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5548                i != e; ++i)
5549             MatchedRegs.Regs.push_back
5550               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5551 
5552           // Use the produced MatchedRegs object to
5553           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5554                                     Chain, &Flag);
5555           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5556                                            true, OpInfo.getMatchedOperand(),
5557                                            DAG, AsmNodeOperands);
5558           break;
5559         }
5560 
5561         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5562         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5563                "Unexpected number of operands");
5564         // Add information to the INLINEASM node to know about this input.
5565         // See InlineAsm.h isUseOperandTiedToDef.
5566         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5567                                                     OpInfo.getMatchedOperand());
5568         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5569                                                         TLI.getPointerTy()));
5570         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5571         break;
5572       }
5573 
5574       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5575         assert(!OpInfo.isIndirect &&
5576                "Don't know how to handle indirect other inputs yet!");
5577 
5578         std::vector<SDValue> Ops;
5579         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5580                                          hasMemory, Ops, DAG);
5581         if (Ops.empty())
5582           report_fatal_error("Invalid operand for inline asm constraint '" +
5583                              Twine(OpInfo.ConstraintCode) + "'!");
5584 
5585         // Add information to the INLINEASM node to know about this input.
5586         unsigned ResOpType =
5587           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5588         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5589                                                         TLI.getPointerTy()));
5590         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5591         break;
5592       }
5593 
5594       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5595         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5596         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5597                "Memory operands expect pointer values");
5598 
5599         // Add information to the INLINEASM node to know about this input.
5600         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5601         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5602                                                         TLI.getPointerTy()));
5603         AsmNodeOperands.push_back(InOperandVal);
5604         break;
5605       }
5606 
5607       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5608               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5609              "Unknown constraint type!");
5610       assert(!OpInfo.isIndirect &&
5611              "Don't know how to handle indirect register inputs yet!");
5612 
5613       // Copy the input into the appropriate registers.
5614       if (OpInfo.AssignedRegs.Regs.empty() ||
5615           !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5616         report_fatal_error("Couldn't allocate input reg for constraint '" +
5617                            Twine(OpInfo.ConstraintCode) + "'!");
5618 
5619       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5620                                         Chain, &Flag);
5621 
5622       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5623                                                DAG, AsmNodeOperands);
5624       break;
5625     }
5626     case InlineAsm::isClobber: {
5627       // Add the clobbered value to the operand list, so that the register
5628       // allocator is aware that the physreg got clobbered.
5629       if (!OpInfo.AssignedRegs.Regs.empty())
5630         OpInfo.AssignedRegs.AddInlineAsmOperands(
5631                                             InlineAsm::Kind_RegDefEarlyClobber,
5632                                                  false, 0, DAG,
5633                                                  AsmNodeOperands);
5634       break;
5635     }
5636     }
5637   }
5638 
5639   // Finish up input operands.  Set the input chain and add the flag last.
5640   AsmNodeOperands[0] = Chain;
5641   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5642 
5643   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5644                       DAG.getVTList(MVT::Other, MVT::Flag),
5645                       &AsmNodeOperands[0], AsmNodeOperands.size());
5646   Flag = Chain.getValue(1);
5647 
5648   // If this asm returns a register value, copy the result from that register
5649   // and set it as the value of the call.
5650   if (!RetValRegs.Regs.empty()) {
5651     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5652                                              Chain, &Flag);
5653 
5654     // FIXME: Why don't we do this for inline asms with MRVs?
5655     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5656       EVT ResultType = TLI.getValueType(CS.getType());
5657 
5658       // If any of the results of the inline asm is a vector, it may have the
5659       // wrong width/num elts.  This can happen for register classes that can
5660       // contain multiple different value types.  The preg or vreg allocated may
5661       // not have the same VT as was expected.  Convert it to the right type
5662       // with bit_convert.
5663       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5664         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5665                           ResultType, Val);
5666 
5667       } else if (ResultType != Val.getValueType() &&
5668                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5669         // If a result value was tied to an input value, the computed result may
5670         // have a wider width than the expected result.  Extract the relevant
5671         // portion.
5672         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5673       }
5674 
5675       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5676     }
5677 
5678     setValue(CS.getInstruction(), Val);
5679     // Don't need to use this as a chain in this case.
5680     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5681       return;
5682   }
5683 
5684   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5685 
5686   // Process indirect outputs, first output all of the flagged copies out of
5687   // physregs.
5688   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5689     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5690     const Value *Ptr = IndirectStoresToEmit[i].second;
5691     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5692                                              Chain, &Flag);
5693     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5694   }
5695 
5696   // Emit the non-flagged stores from the physregs.
5697   SmallVector<SDValue, 8> OutChains;
5698   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5699     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5700                                StoresToEmit[i].first,
5701                                getValue(StoresToEmit[i].second),
5702                                StoresToEmit[i].second, 0,
5703                                false, false, 0);
5704     OutChains.push_back(Val);
5705   }
5706 
5707   if (!OutChains.empty())
5708     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5709                         &OutChains[0], OutChains.size());
5710 
5711   DAG.setRoot(Chain);
5712 }
5713 
5714 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5715   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5716                           MVT::Other, getRoot(),
5717                           getValue(I.getOperand(1)),
5718                           DAG.getSrcValue(I.getOperand(1))));
5719 }
5720 
5721 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5722   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5723                            getRoot(), getValue(I.getOperand(0)),
5724                            DAG.getSrcValue(I.getOperand(0)));
5725   setValue(&I, V);
5726   DAG.setRoot(V.getValue(1));
5727 }
5728 
5729 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5730   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5731                           MVT::Other, getRoot(),
5732                           getValue(I.getOperand(1)),
5733                           DAG.getSrcValue(I.getOperand(1))));
5734 }
5735 
5736 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5737   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5738                           MVT::Other, getRoot(),
5739                           getValue(I.getOperand(1)),
5740                           getValue(I.getOperand(2)),
5741                           DAG.getSrcValue(I.getOperand(1)),
5742                           DAG.getSrcValue(I.getOperand(2))));
5743 }
5744 
5745 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5746 /// implementation, which just calls LowerCall.
5747 /// FIXME: When all targets are
5748 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5749 std::pair<SDValue, SDValue>
5750 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5751                             bool RetSExt, bool RetZExt, bool isVarArg,
5752                             bool isInreg, unsigned NumFixedArgs,
5753                             CallingConv::ID CallConv, bool isTailCall,
5754                             bool isReturnValueUsed,
5755                             SDValue Callee,
5756                             ArgListTy &Args, SelectionDAG &DAG,
5757                             DebugLoc dl) const {
5758   // Handle all of the outgoing arguments.
5759   SmallVector<ISD::OutputArg, 32> Outs;
5760   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5761     SmallVector<EVT, 4> ValueVTs;
5762     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5763     for (unsigned Value = 0, NumValues = ValueVTs.size();
5764          Value != NumValues; ++Value) {
5765       EVT VT = ValueVTs[Value];
5766       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5767       SDValue Op = SDValue(Args[i].Node.getNode(),
5768                            Args[i].Node.getResNo() + Value);
5769       ISD::ArgFlagsTy Flags;
5770       unsigned OriginalAlignment =
5771         getTargetData()->getABITypeAlignment(ArgTy);
5772 
5773       if (Args[i].isZExt)
5774         Flags.setZExt();
5775       if (Args[i].isSExt)
5776         Flags.setSExt();
5777       if (Args[i].isInReg)
5778         Flags.setInReg();
5779       if (Args[i].isSRet)
5780         Flags.setSRet();
5781       if (Args[i].isByVal) {
5782         Flags.setByVal();
5783         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5784         const Type *ElementTy = Ty->getElementType();
5785         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5786         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5787         // For ByVal, alignment should come from FE.  BE will guess if this
5788         // info is not there but there are cases it cannot get right.
5789         if (Args[i].Alignment)
5790           FrameAlign = Args[i].Alignment;
5791         Flags.setByValAlign(FrameAlign);
5792         Flags.setByValSize(FrameSize);
5793       }
5794       if (Args[i].isNest)
5795         Flags.setNest();
5796       Flags.setOrigAlign(OriginalAlignment);
5797 
5798       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5799       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5800       SmallVector<SDValue, 4> Parts(NumParts);
5801       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5802 
5803       if (Args[i].isSExt)
5804         ExtendKind = ISD::SIGN_EXTEND;
5805       else if (Args[i].isZExt)
5806         ExtendKind = ISD::ZERO_EXTEND;
5807 
5808       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5809                      PartVT, ExtendKind);
5810 
5811       for (unsigned j = 0; j != NumParts; ++j) {
5812         // if it isn't first piece, alignment must be 1
5813         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5814         if (NumParts > 1 && j == 0)
5815           MyFlags.Flags.setSplit();
5816         else if (j != 0)
5817           MyFlags.Flags.setOrigAlign(1);
5818 
5819         Outs.push_back(MyFlags);
5820       }
5821     }
5822   }
5823 
5824   // Handle the incoming return values from the call.
5825   SmallVector<ISD::InputArg, 32> Ins;
5826   SmallVector<EVT, 4> RetTys;
5827   ComputeValueVTs(*this, RetTy, RetTys);
5828   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5829     EVT VT = RetTys[I];
5830     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5831     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5832     for (unsigned i = 0; i != NumRegs; ++i) {
5833       ISD::InputArg MyFlags;
5834       MyFlags.VT = RegisterVT;
5835       MyFlags.Used = isReturnValueUsed;
5836       if (RetSExt)
5837         MyFlags.Flags.setSExt();
5838       if (RetZExt)
5839         MyFlags.Flags.setZExt();
5840       if (isInreg)
5841         MyFlags.Flags.setInReg();
5842       Ins.push_back(MyFlags);
5843     }
5844   }
5845 
5846   SmallVector<SDValue, 4> InVals;
5847   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5848                     Outs, Ins, dl, DAG, InVals);
5849 
5850   // Verify that the target's LowerCall behaved as expected.
5851   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5852          "LowerCall didn't return a valid chain!");
5853   assert((!isTailCall || InVals.empty()) &&
5854          "LowerCall emitted a return value for a tail call!");
5855   assert((isTailCall || InVals.size() == Ins.size()) &&
5856          "LowerCall didn't emit the correct number of values!");
5857 
5858   // For a tail call, the return value is merely live-out and there aren't
5859   // any nodes in the DAG representing it. Return a special value to
5860   // indicate that a tail call has been emitted and no more Instructions
5861   // should be processed in the current block.
5862   if (isTailCall) {
5863     DAG.setRoot(Chain);
5864     return std::make_pair(SDValue(), SDValue());
5865   }
5866 
5867   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5868           assert(InVals[i].getNode() &&
5869                  "LowerCall emitted a null value!");
5870           assert(Ins[i].VT == InVals[i].getValueType() &&
5871                  "LowerCall emitted a value with the wrong type!");
5872         });
5873 
5874   // Collect the legal value parts into potentially illegal values
5875   // that correspond to the original function's return values.
5876   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5877   if (RetSExt)
5878     AssertOp = ISD::AssertSext;
5879   else if (RetZExt)
5880     AssertOp = ISD::AssertZext;
5881   SmallVector<SDValue, 4> ReturnValues;
5882   unsigned CurReg = 0;
5883   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5884     EVT VT = RetTys[I];
5885     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5886     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5887 
5888     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5889                                             NumRegs, RegisterVT, VT,
5890                                             AssertOp));
5891     CurReg += NumRegs;
5892   }
5893 
5894   // For a function returning void, there is no return value. We can't create
5895   // such a node, so we just return a null return value in that case. In
5896   // that case, nothing will actualy look at the value.
5897   if (ReturnValues.empty())
5898     return std::make_pair(SDValue(), Chain);
5899 
5900   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5901                             DAG.getVTList(&RetTys[0], RetTys.size()),
5902                             &ReturnValues[0], ReturnValues.size());
5903   return std::make_pair(Res, Chain);
5904 }
5905 
5906 void TargetLowering::LowerOperationWrapper(SDNode *N,
5907                                            SmallVectorImpl<SDValue> &Results,
5908                                            SelectionDAG &DAG) const {
5909   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5910   if (Res.getNode())
5911     Results.push_back(Res);
5912 }
5913 
5914 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5915   llvm_unreachable("LowerOperation not implemented for this target!");
5916   return SDValue();
5917 }
5918 
5919 void
5920 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5921   SDValue Op = getNonRegisterValue(V);
5922   assert((Op.getOpcode() != ISD::CopyFromReg ||
5923           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5924          "Copy from a reg to the same reg!");
5925   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5926 
5927   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5928   SDValue Chain = DAG.getEntryNode();
5929   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5930   PendingExports.push_back(Chain);
5931 }
5932 
5933 #include "llvm/CodeGen/SelectionDAGISel.h"
5934 
5935 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5936   // If this is the entry block, emit arguments.
5937   const Function &F = *LLVMBB->getParent();
5938   SelectionDAG &DAG = SDB->DAG;
5939   SDValue OldRoot = DAG.getRoot();
5940   DebugLoc dl = SDB->getCurDebugLoc();
5941   const TargetData *TD = TLI.getTargetData();
5942   SmallVector<ISD::InputArg, 16> Ins;
5943 
5944   // Check whether the function can return without sret-demotion.
5945   SmallVector<EVT, 4> OutVTs;
5946   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5947   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5948                 OutVTs, OutsFlags, TLI);
5949 
5950   FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5951                                                 F.isVarArg(),
5952                                                 OutVTs, OutsFlags, DAG);
5953   if (!FuncInfo->CanLowerReturn) {
5954     // Put in an sret pointer parameter before all the other parameters.
5955     SmallVector<EVT, 1> ValueVTs;
5956     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5957 
5958     // NOTE: Assuming that a pointer will never break down to more than one VT
5959     // or one register.
5960     ISD::ArgFlagsTy Flags;
5961     Flags.setSRet();
5962     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5963     ISD::InputArg RetArg(Flags, RegisterVT, true);
5964     Ins.push_back(RetArg);
5965   }
5966 
5967   // Set up the incoming argument description vector.
5968   unsigned Idx = 1;
5969   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5970        I != E; ++I, ++Idx) {
5971     SmallVector<EVT, 4> ValueVTs;
5972     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5973     bool isArgValueUsed = !I->use_empty();
5974     for (unsigned Value = 0, NumValues = ValueVTs.size();
5975          Value != NumValues; ++Value) {
5976       EVT VT = ValueVTs[Value];
5977       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5978       ISD::ArgFlagsTy Flags;
5979       unsigned OriginalAlignment =
5980         TD->getABITypeAlignment(ArgTy);
5981 
5982       if (F.paramHasAttr(Idx, Attribute::ZExt))
5983         Flags.setZExt();
5984       if (F.paramHasAttr(Idx, Attribute::SExt))
5985         Flags.setSExt();
5986       if (F.paramHasAttr(Idx, Attribute::InReg))
5987         Flags.setInReg();
5988       if (F.paramHasAttr(Idx, Attribute::StructRet))
5989         Flags.setSRet();
5990       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5991         Flags.setByVal();
5992         const PointerType *Ty = cast<PointerType>(I->getType());
5993         const Type *ElementTy = Ty->getElementType();
5994         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5995         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5996         // For ByVal, alignment should be passed from FE.  BE will guess if
5997         // this info is not there but there are cases it cannot get right.
5998         if (F.getParamAlignment(Idx))
5999           FrameAlign = F.getParamAlignment(Idx);
6000         Flags.setByValAlign(FrameAlign);
6001         Flags.setByValSize(FrameSize);
6002       }
6003       if (F.paramHasAttr(Idx, Attribute::Nest))
6004         Flags.setNest();
6005       Flags.setOrigAlign(OriginalAlignment);
6006 
6007       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6008       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6009       for (unsigned i = 0; i != NumRegs; ++i) {
6010         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6011         if (NumRegs > 1 && i == 0)
6012           MyFlags.Flags.setSplit();
6013         // if it isn't first piece, alignment must be 1
6014         else if (i > 0)
6015           MyFlags.Flags.setOrigAlign(1);
6016         Ins.push_back(MyFlags);
6017       }
6018     }
6019   }
6020 
6021   // Call the target to set up the argument values.
6022   SmallVector<SDValue, 8> InVals;
6023   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6024                                              F.isVarArg(), Ins,
6025                                              dl, DAG, InVals);
6026 
6027   // Verify that the target's LowerFormalArguments behaved as expected.
6028   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6029          "LowerFormalArguments didn't return a valid chain!");
6030   assert(InVals.size() == Ins.size() &&
6031          "LowerFormalArguments didn't emit the correct number of values!");
6032   DEBUG({
6033       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6034         assert(InVals[i].getNode() &&
6035                "LowerFormalArguments emitted a null value!");
6036         assert(Ins[i].VT == InVals[i].getValueType() &&
6037                "LowerFormalArguments emitted a value with the wrong type!");
6038       }
6039     });
6040 
6041   // Update the DAG with the new chain value resulting from argument lowering.
6042   DAG.setRoot(NewRoot);
6043 
6044   // Set up the argument values.
6045   unsigned i = 0;
6046   Idx = 1;
6047   if (!FuncInfo->CanLowerReturn) {
6048     // Create a virtual register for the sret pointer, and put in a copy
6049     // from the sret argument into it.
6050     SmallVector<EVT, 1> ValueVTs;
6051     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6052     EVT VT = ValueVTs[0];
6053     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6054     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6055     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6056                                         RegVT, VT, AssertOp);
6057 
6058     MachineFunction& MF = SDB->DAG.getMachineFunction();
6059     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6060     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6061     FuncInfo->DemoteRegister = SRetReg;
6062     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6063                                     SRetReg, ArgValue);
6064     DAG.setRoot(NewRoot);
6065 
6066     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6067     // Idx indexes LLVM arguments.  Don't touch it.
6068     ++i;
6069   }
6070 
6071   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6072       ++I, ++Idx) {
6073     SmallVector<SDValue, 4> ArgValues;
6074     SmallVector<EVT, 4> ValueVTs;
6075     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6076     unsigned NumValues = ValueVTs.size();
6077 
6078     // If this argument is unused then remember its value. It is used to generate
6079     // debugging information.
6080     if (I->use_empty() && NumValues)
6081       SDB->setUnusedArgValue(I, InVals[i]);
6082 
6083     for (unsigned Value = 0; Value != NumValues; ++Value) {
6084       EVT VT = ValueVTs[Value];
6085       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6086       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6087 
6088       if (!I->use_empty()) {
6089         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6090         if (F.paramHasAttr(Idx, Attribute::SExt))
6091           AssertOp = ISD::AssertSext;
6092         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6093           AssertOp = ISD::AssertZext;
6094 
6095         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6096                                              NumParts, PartVT, VT,
6097                                              AssertOp));
6098       }
6099 
6100       i += NumParts;
6101     }
6102 
6103     if (!I->use_empty()) {
6104       SDValue Res;
6105       if (!ArgValues.empty())
6106         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6107                                  SDB->getCurDebugLoc());
6108       SDB->setValue(I, Res);
6109 
6110       // If this argument is live outside of the entry block, insert a copy from
6111       // whereever we got it to the vreg that other BB's will reference it as.
6112       SDB->CopyToExportRegsIfNeeded(I);
6113     }
6114   }
6115 
6116   assert(i == InVals.size() && "Argument register count mismatch!");
6117 
6118   // Finally, if the target has anything special to do, allow it to do so.
6119   // FIXME: this should insert code into the DAG!
6120   EmitFunctionEntryCode();
6121 }
6122 
6123 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6124 /// ensure constants are generated when needed.  Remember the virtual registers
6125 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6126 /// directly add them, because expansion might result in multiple MBB's for one
6127 /// BB.  As such, the start of the BB might correspond to a different MBB than
6128 /// the end.
6129 ///
6130 void
6131 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6132   const TerminatorInst *TI = LLVMBB->getTerminator();
6133 
6134   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6135 
6136   // Check successor nodes' PHI nodes that expect a constant to be available
6137   // from this block.
6138   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6139     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6140     if (!isa<PHINode>(SuccBB->begin())) continue;
6141     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6142 
6143     // If this terminator has multiple identical successors (common for
6144     // switches), only handle each succ once.
6145     if (!SuccsHandled.insert(SuccMBB)) continue;
6146 
6147     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6148 
6149     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6150     // nodes and Machine PHI nodes, but the incoming operands have not been
6151     // emitted yet.
6152     for (BasicBlock::const_iterator I = SuccBB->begin();
6153          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6154       // Ignore dead phi's.
6155       if (PN->use_empty()) continue;
6156 
6157       unsigned Reg;
6158       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6159 
6160       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6161         unsigned &RegOut = ConstantsOut[C];
6162         if (RegOut == 0) {
6163           RegOut = FuncInfo.CreateRegForValue(C);
6164           CopyValueToVirtualRegister(C, RegOut);
6165         }
6166         Reg = RegOut;
6167       } else {
6168         Reg = FuncInfo.ValueMap[PHIOp];
6169         if (Reg == 0) {
6170           assert(isa<AllocaInst>(PHIOp) &&
6171                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6172                  "Didn't codegen value into a register!??");
6173           Reg = FuncInfo.CreateRegForValue(PHIOp);
6174           CopyValueToVirtualRegister(PHIOp, Reg);
6175         }
6176       }
6177 
6178       // Remember that this register needs to added to the machine PHI node as
6179       // the input for this MBB.
6180       SmallVector<EVT, 4> ValueVTs;
6181       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6182       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6183         EVT VT = ValueVTs[vti];
6184         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6185         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6186           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6187         Reg += NumRegisters;
6188       }
6189     }
6190   }
6191   ConstantsOut.clear();
6192 }
6193