1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, NumIntermediates, RegisterVT); 452 unsigned NumElements = ValueVT.getVectorNumElements(); 453 454 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 455 NumParts = NumRegs; // Silence a compiler warning. 456 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 457 458 // Split the vector into intermediate operands. 459 SmallVector<SDValue, 8> Ops(NumIntermediates); 460 for (unsigned i = 0; i != NumIntermediates; ++i) { 461 if (IntermediateVT.isVector()) 462 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 463 IntermediateVT, Val, 464 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 465 else 466 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 467 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 468 } 469 470 // Split the intermediate operands into legal parts. 471 if (NumParts == NumIntermediates) { 472 // If the register was not expanded, promote or copy the value, 473 // as appropriate. 474 for (unsigned i = 0; i != NumParts; ++i) 475 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 476 } else if (NumParts > 0) { 477 // If the intermediate type was expanded, split each the value into 478 // legal parts. 479 assert(NumParts % NumIntermediates == 0 && 480 "Must expand into a divisible number of parts!"); 481 unsigned Factor = NumParts / NumIntermediates; 482 for (unsigned i = 0; i != NumIntermediates; ++i) 483 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 484 } 485 } 486 487 488 489 490 namespace { 491 /// RegsForValue - This struct represents the registers (physical or virtual) 492 /// that a particular set of values is assigned, and the type information 493 /// about the value. The most common situation is to represent one value at a 494 /// time, but struct or array values are handled element-wise as multiple 495 /// values. The splitting of aggregates is performed recursively, so that we 496 /// never have aggregate-typed registers. The values at this point do not 497 /// necessarily have legal types, so each value may require one or more 498 /// registers of some legal type. 499 /// 500 struct RegsForValue { 501 /// ValueVTs - The value types of the values, which may not be legal, and 502 /// may need be promoted or synthesized from one or more registers. 503 /// 504 SmallVector<EVT, 4> ValueVTs; 505 506 /// RegVTs - The value types of the registers. This is the same size as 507 /// ValueVTs and it records, for each value, what the type of the assigned 508 /// register or registers are. (Individual values are never synthesized 509 /// from more than one type of register.) 510 /// 511 /// With virtual registers, the contents of RegVTs is redundant with TLI's 512 /// getRegisterType member function, however when with physical registers 513 /// it is necessary to have a separate record of the types. 514 /// 515 SmallVector<EVT, 4> RegVTs; 516 517 /// Regs - This list holds the registers assigned to the values. 518 /// Each legal or promoted value requires one register, and each 519 /// expanded value requires multiple registers. 520 /// 521 SmallVector<unsigned, 4> Regs; 522 523 RegsForValue() {} 524 525 RegsForValue(const SmallVector<unsigned, 4> ®s, 526 EVT regvt, EVT valuevt) 527 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 528 529 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 530 unsigned Reg, const Type *Ty) { 531 ComputeValueVTs(tli, Ty, ValueVTs); 532 533 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 534 EVT ValueVT = ValueVTs[Value]; 535 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 536 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 537 for (unsigned i = 0; i != NumRegs; ++i) 538 Regs.push_back(Reg + i); 539 RegVTs.push_back(RegisterVT); 540 Reg += NumRegs; 541 } 542 } 543 544 /// areValueTypesLegal - Return true if types of all the values are legal. 545 bool areValueTypesLegal(const TargetLowering &TLI) { 546 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 547 EVT RegisterVT = RegVTs[Value]; 548 if (!TLI.isTypeLegal(RegisterVT)) 549 return false; 550 } 551 return true; 552 } 553 554 /// append - Add the specified values to this one. 555 void append(const RegsForValue &RHS) { 556 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 557 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 558 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 559 } 560 561 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 562 /// this value and returns the result as a ValueVTs value. This uses 563 /// Chain/Flag as the input and updates them for the output Chain/Flag. 564 /// If the Flag pointer is NULL, no flag is used. 565 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 566 DebugLoc dl, 567 SDValue &Chain, SDValue *Flag) const; 568 569 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 570 /// specified value into the registers specified by this object. This uses 571 /// Chain/Flag as the input and updates them for the output Chain/Flag. 572 /// If the Flag pointer is NULL, no flag is used. 573 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 574 SDValue &Chain, SDValue *Flag) const; 575 576 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 577 /// operand list. This adds the code marker, matching input operand index 578 /// (if applicable), and includes the number of values added into it. 579 void AddInlineAsmOperands(unsigned Kind, 580 bool HasMatching, unsigned MatchingIdx, 581 SelectionDAG &DAG, 582 std::vector<SDValue> &Ops) const; 583 }; 584 } 585 586 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 587 /// this value and returns the result as a ValueVT value. This uses 588 /// Chain/Flag as the input and updates them for the output Chain/Flag. 589 /// If the Flag pointer is NULL, no flag is used. 590 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 591 FunctionLoweringInfo &FuncInfo, 592 DebugLoc dl, 593 SDValue &Chain, SDValue *Flag) const { 594 // A Value with type {} or [0 x %t] needs no registers. 595 if (ValueVTs.empty()) 596 return SDValue(); 597 598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 599 600 // Assemble the legal parts into the final values. 601 SmallVector<SDValue, 4> Values(ValueVTs.size()); 602 SmallVector<SDValue, 8> Parts; 603 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 // Copy the legal parts from the registers. 605 EVT ValueVT = ValueVTs[Value]; 606 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 607 EVT RegisterVT = RegVTs[Value]; 608 609 Parts.resize(NumRegs); 610 for (unsigned i = 0; i != NumRegs; ++i) { 611 SDValue P; 612 if (Flag == 0) { 613 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 614 } else { 615 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 616 *Flag = P.getValue(2); 617 } 618 619 Chain = P.getValue(1); 620 621 // If the source register was virtual and if we know something about it, 622 // add an assert node. 623 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 624 RegisterVT.isInteger() && !RegisterVT.isVector()) { 625 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 626 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 627 const FunctionLoweringInfo::LiveOutInfo &LOI = 628 FuncInfo.LiveOutRegInfo[SlotNo]; 629 630 unsigned RegSize = RegisterVT.getSizeInBits(); 631 unsigned NumSignBits = LOI.NumSignBits; 632 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 633 634 // FIXME: We capture more information than the dag can represent. For 635 // now, just use the tightest assertzext/assertsext possible. 636 bool isSExt = true; 637 EVT FromVT(MVT::Other); 638 if (NumSignBits == RegSize) 639 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 640 else if (NumZeroBits >= RegSize-1) 641 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 642 else if (NumSignBits > RegSize-8) 643 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 644 else if (NumZeroBits >= RegSize-8) 645 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 646 else if (NumSignBits > RegSize-16) 647 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 648 else if (NumZeroBits >= RegSize-16) 649 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 650 else if (NumSignBits > RegSize-32) 651 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 652 else if (NumZeroBits >= RegSize-32) 653 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 654 655 if (FromVT != MVT::Other) 656 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 657 RegisterVT, P, DAG.getValueType(FromVT)); 658 } 659 } 660 661 Parts[i] = P; 662 } 663 664 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 665 NumRegs, RegisterVT, ValueVT); 666 Part += NumRegs; 667 Parts.clear(); 668 } 669 670 return DAG.getNode(ISD::MERGE_VALUES, dl, 671 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 672 &Values[0], ValueVTs.size()); 673 } 674 675 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 676 /// specified value into the registers specified by this object. This uses 677 /// Chain/Flag as the input and updates them for the output Chain/Flag. 678 /// If the Flag pointer is NULL, no flag is used. 679 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 680 SDValue &Chain, SDValue *Flag) const { 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Get the list of the values's legal parts. 684 unsigned NumRegs = Regs.size(); 685 SmallVector<SDValue, 8> Parts(NumRegs); 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 EVT ValueVT = ValueVTs[Value]; 688 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 689 EVT RegisterVT = RegVTs[Value]; 690 691 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 692 &Parts[Part], NumParts, RegisterVT); 693 Part += NumParts; 694 } 695 696 // Copy the parts into the registers. 697 SmallVector<SDValue, 8> Chains(NumRegs); 698 for (unsigned i = 0; i != NumRegs; ++i) { 699 SDValue Part; 700 if (Flag == 0) { 701 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 702 } else { 703 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 704 *Flag = Part.getValue(1); 705 } 706 707 Chains[i] = Part.getValue(0); 708 } 709 710 if (NumRegs == 1 || Flag) 711 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 712 // flagged to it. That is the CopyToReg nodes and the user are considered 713 // a single scheduling unit. If we create a TokenFactor and return it as 714 // chain, then the TokenFactor is both a predecessor (operand) of the 715 // user as well as a successor (the TF operands are flagged to the user). 716 // c1, f1 = CopyToReg 717 // c2, f2 = CopyToReg 718 // c3 = TokenFactor c1, c2 719 // ... 720 // = op c3, ..., f2 721 Chain = Chains[NumRegs-1]; 722 else 723 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 724 } 725 726 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 727 /// operand list. This adds the code marker and includes the number of 728 /// values added into it. 729 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 730 unsigned MatchingIdx, 731 SelectionDAG &DAG, 732 std::vector<SDValue> &Ops) const { 733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 734 735 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 736 if (HasMatching) 737 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 738 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 739 Ops.push_back(Res); 740 741 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 742 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 743 EVT RegisterVT = RegVTs[Value]; 744 for (unsigned i = 0; i != NumRegs; ++i) { 745 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 746 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 747 } 748 } 749 } 750 751 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 752 AA = &aa; 753 GFI = gfi; 754 TD = DAG.getTarget().getTargetData(); 755 } 756 757 /// clear - Clear out the current SelectionDAG and the associated 758 /// state and prepare this SelectionDAGBuilder object to be used 759 /// for a new block. This doesn't clear out information about 760 /// additional blocks that are needed to complete switch lowering 761 /// or PHI node updating; that information is cleared out as it is 762 /// consumed. 763 void SelectionDAGBuilder::clear() { 764 NodeMap.clear(); 765 UnusedArgNodeMap.clear(); 766 PendingLoads.clear(); 767 PendingExports.clear(); 768 DanglingDebugInfoMap.clear(); 769 CurDebugLoc = DebugLoc(); 770 HasTailCall = false; 771 } 772 773 /// getRoot - Return the current virtual root of the Selection DAG, 774 /// flushing any PendingLoad items. This must be done before emitting 775 /// a store or any other node that may need to be ordered after any 776 /// prior load instructions. 777 /// 778 SDValue SelectionDAGBuilder::getRoot() { 779 if (PendingLoads.empty()) 780 return DAG.getRoot(); 781 782 if (PendingLoads.size() == 1) { 783 SDValue Root = PendingLoads[0]; 784 DAG.setRoot(Root); 785 PendingLoads.clear(); 786 return Root; 787 } 788 789 // Otherwise, we have to make a token factor node. 790 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 791 &PendingLoads[0], PendingLoads.size()); 792 PendingLoads.clear(); 793 DAG.setRoot(Root); 794 return Root; 795 } 796 797 /// getControlRoot - Similar to getRoot, but instead of flushing all the 798 /// PendingLoad items, flush all the PendingExports items. It is necessary 799 /// to do this before emitting a terminator instruction. 800 /// 801 SDValue SelectionDAGBuilder::getControlRoot() { 802 SDValue Root = DAG.getRoot(); 803 804 if (PendingExports.empty()) 805 return Root; 806 807 // Turn all of the CopyToReg chains into one factored node. 808 if (Root.getOpcode() != ISD::EntryToken) { 809 unsigned i = 0, e = PendingExports.size(); 810 for (; i != e; ++i) { 811 assert(PendingExports[i].getNode()->getNumOperands() > 1); 812 if (PendingExports[i].getNode()->getOperand(0) == Root) 813 break; // Don't add the root if we already indirectly depend on it. 814 } 815 816 if (i == e) 817 PendingExports.push_back(Root); 818 } 819 820 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 821 &PendingExports[0], 822 PendingExports.size()); 823 PendingExports.clear(); 824 DAG.setRoot(Root); 825 return Root; 826 } 827 828 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 829 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 830 DAG.AssignOrdering(Node, SDNodeOrder); 831 832 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 833 AssignOrderingToNode(Node->getOperand(I).getNode()); 834 } 835 836 void SelectionDAGBuilder::visit(const Instruction &I) { 837 // Set up outgoing PHI node register values before emitting the terminator. 838 if (isa<TerminatorInst>(&I)) 839 HandlePHINodesInSuccessorBlocks(I.getParent()); 840 841 CurDebugLoc = I.getDebugLoc(); 842 843 visit(I.getOpcode(), I); 844 845 if (!isa<TerminatorInst>(&I) && !HasTailCall) 846 CopyToExportRegsIfNeeded(&I); 847 848 CurDebugLoc = DebugLoc(); 849 } 850 851 void SelectionDAGBuilder::visitPHI(const PHINode &) { 852 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 853 } 854 855 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 856 // Note: this doesn't use InstVisitor, because it has to work with 857 // ConstantExpr's in addition to instructions. 858 switch (Opcode) { 859 default: llvm_unreachable("Unknown instruction type encountered!"); 860 // Build the switch statement using the Instruction.def file. 861 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 862 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 863 #include "llvm/Instruction.def" 864 } 865 866 // Assign the ordering to the freshly created DAG nodes. 867 if (NodeMap.count(&I)) { 868 ++SDNodeOrder; 869 AssignOrderingToNode(getValue(&I).getNode()); 870 } 871 } 872 873 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 874 // generate the debug data structures now that we've seen its definition. 875 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 876 SDValue Val) { 877 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 878 if (DDI.getDI()) { 879 const DbgValueInst *DI = DDI.getDI(); 880 DebugLoc dl = DDI.getdl(); 881 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 882 MDNode *Variable = DI->getVariable(); 883 uint64_t Offset = DI->getOffset(); 884 SDDbgValue *SDV; 885 if (Val.getNode()) { 886 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 887 SDV = DAG.getDbgValue(Variable, Val.getNode(), 888 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 889 DAG.AddDbgValue(SDV, Val.getNode(), false); 890 } 891 } else { 892 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 893 Offset, dl, SDNodeOrder); 894 DAG.AddDbgValue(SDV, 0, false); 895 } 896 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 897 } 898 } 899 900 // getValue - Return an SDValue for the given Value. 901 SDValue SelectionDAGBuilder::getValue(const Value *V) { 902 // If we already have an SDValue for this value, use it. It's important 903 // to do this first, so that we don't create a CopyFromReg if we already 904 // have a regular SDValue. 905 SDValue &N = NodeMap[V]; 906 if (N.getNode()) return N; 907 908 // If there's a virtual register allocated and initialized for this 909 // value, use it. 910 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 911 if (It != FuncInfo.ValueMap.end()) { 912 unsigned InReg = It->second; 913 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 914 SDValue Chain = DAG.getEntryNode(); 915 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 916 } 917 918 // Otherwise create a new SDValue and remember it. 919 SDValue Val = getValueImpl(V); 920 NodeMap[V] = Val; 921 resolveDanglingDebugInfo(V, Val); 922 return Val; 923 } 924 925 /// getNonRegisterValue - Return an SDValue for the given Value, but 926 /// don't look in FuncInfo.ValueMap for a virtual register. 927 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 928 // If we already have an SDValue for this value, use it. 929 SDValue &N = NodeMap[V]; 930 if (N.getNode()) return N; 931 932 // Otherwise create a new SDValue and remember it. 933 SDValue Val = getValueImpl(V); 934 NodeMap[V] = Val; 935 resolveDanglingDebugInfo(V, Val); 936 return Val; 937 } 938 939 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 940 /// Create an SDValue for the given value. 941 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 942 if (const Constant *C = dyn_cast<Constant>(V)) { 943 EVT VT = TLI.getValueType(V->getType(), true); 944 945 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 946 return DAG.getConstant(*CI, VT); 947 948 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 949 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 950 951 if (isa<ConstantPointerNull>(C)) 952 return DAG.getConstant(0, TLI.getPointerTy()); 953 954 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 955 return DAG.getConstantFP(*CFP, VT); 956 957 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 958 return DAG.getUNDEF(VT); 959 960 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 961 visit(CE->getOpcode(), *CE); 962 SDValue N1 = NodeMap[V]; 963 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 964 return N1; 965 } 966 967 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 968 SmallVector<SDValue, 4> Constants; 969 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 970 OI != OE; ++OI) { 971 SDNode *Val = getValue(*OI).getNode(); 972 // If the operand is an empty aggregate, there are no values. 973 if (!Val) continue; 974 // Add each leaf value from the operand to the Constants list 975 // to form a flattened list of all the values. 976 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 977 Constants.push_back(SDValue(Val, i)); 978 } 979 980 return DAG.getMergeValues(&Constants[0], Constants.size(), 981 getCurDebugLoc()); 982 } 983 984 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 985 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 986 "Unknown struct or array constant!"); 987 988 SmallVector<EVT, 4> ValueVTs; 989 ComputeValueVTs(TLI, C->getType(), ValueVTs); 990 unsigned NumElts = ValueVTs.size(); 991 if (NumElts == 0) 992 return SDValue(); // empty struct 993 SmallVector<SDValue, 4> Constants(NumElts); 994 for (unsigned i = 0; i != NumElts; ++i) { 995 EVT EltVT = ValueVTs[i]; 996 if (isa<UndefValue>(C)) 997 Constants[i] = DAG.getUNDEF(EltVT); 998 else if (EltVT.isFloatingPoint()) 999 Constants[i] = DAG.getConstantFP(0, EltVT); 1000 else 1001 Constants[i] = DAG.getConstant(0, EltVT); 1002 } 1003 1004 return DAG.getMergeValues(&Constants[0], NumElts, 1005 getCurDebugLoc()); 1006 } 1007 1008 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1009 return DAG.getBlockAddress(BA, VT); 1010 1011 const VectorType *VecTy = cast<VectorType>(V->getType()); 1012 unsigned NumElements = VecTy->getNumElements(); 1013 1014 // Now that we know the number and type of the elements, get that number of 1015 // elements into the Ops array based on what kind of constant it is. 1016 SmallVector<SDValue, 16> Ops; 1017 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1018 for (unsigned i = 0; i != NumElements; ++i) 1019 Ops.push_back(getValue(CP->getOperand(i))); 1020 } else { 1021 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1022 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1023 1024 SDValue Op; 1025 if (EltVT.isFloatingPoint()) 1026 Op = DAG.getConstantFP(0, EltVT); 1027 else 1028 Op = DAG.getConstant(0, EltVT); 1029 Ops.assign(NumElements, Op); 1030 } 1031 1032 // Create a BUILD_VECTOR node. 1033 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1034 VT, &Ops[0], Ops.size()); 1035 } 1036 1037 // If this is a static alloca, generate it as the frameindex instead of 1038 // computation. 1039 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1040 DenseMap<const AllocaInst*, int>::iterator SI = 1041 FuncInfo.StaticAllocaMap.find(AI); 1042 if (SI != FuncInfo.StaticAllocaMap.end()) 1043 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1044 } 1045 1046 // If this is an instruction which fast-isel has deferred, select it now. 1047 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1048 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1049 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1050 SDValue Chain = DAG.getEntryNode(); 1051 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1052 } 1053 1054 llvm_unreachable("Can't get register for value!"); 1055 return SDValue(); 1056 } 1057 1058 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1059 SDValue Chain = getControlRoot(); 1060 SmallVector<ISD::OutputArg, 8> Outs; 1061 SmallVector<SDValue, 8> OutVals; 1062 1063 if (!FuncInfo.CanLowerReturn) { 1064 unsigned DemoteReg = FuncInfo.DemoteRegister; 1065 const Function *F = I.getParent()->getParent(); 1066 1067 // Emit a store of the return value through the virtual register. 1068 // Leave Outs empty so that LowerReturn won't try to load return 1069 // registers the usual way. 1070 SmallVector<EVT, 1> PtrValueVTs; 1071 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1072 PtrValueVTs); 1073 1074 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1075 SDValue RetOp = getValue(I.getOperand(0)); 1076 1077 SmallVector<EVT, 4> ValueVTs; 1078 SmallVector<uint64_t, 4> Offsets; 1079 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1080 unsigned NumValues = ValueVTs.size(); 1081 1082 SmallVector<SDValue, 4> Chains(NumValues); 1083 for (unsigned i = 0; i != NumValues; ++i) { 1084 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1085 RetPtr.getValueType(), RetPtr, 1086 DAG.getIntPtrConstant(Offsets[i])); 1087 Chains[i] = 1088 DAG.getStore(Chain, getCurDebugLoc(), 1089 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1090 Add, NULL, Offsets[i], false, false, 0); 1091 } 1092 1093 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1094 MVT::Other, &Chains[0], NumValues); 1095 } else if (I.getNumOperands() != 0) { 1096 SmallVector<EVT, 4> ValueVTs; 1097 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1098 unsigned NumValues = ValueVTs.size(); 1099 if (NumValues) { 1100 SDValue RetOp = getValue(I.getOperand(0)); 1101 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1102 EVT VT = ValueVTs[j]; 1103 1104 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1105 1106 const Function *F = I.getParent()->getParent(); 1107 if (F->paramHasAttr(0, Attribute::SExt)) 1108 ExtendKind = ISD::SIGN_EXTEND; 1109 else if (F->paramHasAttr(0, Attribute::ZExt)) 1110 ExtendKind = ISD::ZERO_EXTEND; 1111 1112 // FIXME: C calling convention requires the return type to be promoted 1113 // to at least 32-bit. But this is not necessary for non-C calling 1114 // conventions. The frontend should mark functions whose return values 1115 // require promoting with signext or zeroext attributes. 1116 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1117 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1118 if (VT.bitsLT(MinVT)) 1119 VT = MinVT; 1120 } 1121 1122 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1123 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1124 SmallVector<SDValue, 4> Parts(NumParts); 1125 getCopyToParts(DAG, getCurDebugLoc(), 1126 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1127 &Parts[0], NumParts, PartVT, ExtendKind); 1128 1129 // 'inreg' on function refers to return value 1130 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1131 if (F->paramHasAttr(0, Attribute::InReg)) 1132 Flags.setInReg(); 1133 1134 // Propagate extension type if any 1135 if (F->paramHasAttr(0, Attribute::SExt)) 1136 Flags.setSExt(); 1137 else if (F->paramHasAttr(0, Attribute::ZExt)) 1138 Flags.setZExt(); 1139 1140 for (unsigned i = 0; i < NumParts; ++i) { 1141 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1142 /*isfixed=*/true)); 1143 OutVals.push_back(Parts[i]); 1144 } 1145 } 1146 } 1147 } 1148 1149 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1150 CallingConv::ID CallConv = 1151 DAG.getMachineFunction().getFunction()->getCallingConv(); 1152 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1153 Outs, OutVals, getCurDebugLoc(), DAG); 1154 1155 // Verify that the target's LowerReturn behaved as expected. 1156 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1157 "LowerReturn didn't return a valid chain!"); 1158 1159 // Update the DAG with the new chain value resulting from return lowering. 1160 DAG.setRoot(Chain); 1161 } 1162 1163 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1164 /// created for it, emit nodes to copy the value into the virtual 1165 /// registers. 1166 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1167 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1168 if (VMI != FuncInfo.ValueMap.end()) { 1169 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1170 CopyValueToVirtualRegister(V, VMI->second); 1171 } 1172 } 1173 1174 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1175 /// the current basic block, add it to ValueMap now so that we'll get a 1176 /// CopyTo/FromReg. 1177 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1178 // No need to export constants. 1179 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1180 1181 // Already exported? 1182 if (FuncInfo.isExportedInst(V)) return; 1183 1184 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1185 CopyValueToVirtualRegister(V, Reg); 1186 } 1187 1188 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1189 const BasicBlock *FromBB) { 1190 // The operands of the setcc have to be in this block. We don't know 1191 // how to export them from some other block. 1192 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1193 // Can export from current BB. 1194 if (VI->getParent() == FromBB) 1195 return true; 1196 1197 // Is already exported, noop. 1198 return FuncInfo.isExportedInst(V); 1199 } 1200 1201 // If this is an argument, we can export it if the BB is the entry block or 1202 // if it is already exported. 1203 if (isa<Argument>(V)) { 1204 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1205 return true; 1206 1207 // Otherwise, can only export this if it is already exported. 1208 return FuncInfo.isExportedInst(V); 1209 } 1210 1211 // Otherwise, constants can always be exported. 1212 return true; 1213 } 1214 1215 static bool InBlock(const Value *V, const BasicBlock *BB) { 1216 if (const Instruction *I = dyn_cast<Instruction>(V)) 1217 return I->getParent() == BB; 1218 return true; 1219 } 1220 1221 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1222 /// This function emits a branch and is used at the leaves of an OR or an 1223 /// AND operator tree. 1224 /// 1225 void 1226 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1227 MachineBasicBlock *TBB, 1228 MachineBasicBlock *FBB, 1229 MachineBasicBlock *CurBB, 1230 MachineBasicBlock *SwitchBB) { 1231 const BasicBlock *BB = CurBB->getBasicBlock(); 1232 1233 // If the leaf of the tree is a comparison, merge the condition into 1234 // the caseblock. 1235 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1236 // The operands of the cmp have to be in this block. We don't know 1237 // how to export them from some other block. If this is the first block 1238 // of the sequence, no exporting is needed. 1239 if (CurBB == SwitchBB || 1240 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1241 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1242 ISD::CondCode Condition; 1243 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1244 Condition = getICmpCondCode(IC->getPredicate()); 1245 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1246 Condition = getFCmpCondCode(FC->getPredicate()); 1247 } else { 1248 Condition = ISD::SETEQ; // silence warning. 1249 llvm_unreachable("Unknown compare instruction"); 1250 } 1251 1252 CaseBlock CB(Condition, BOp->getOperand(0), 1253 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1254 SwitchCases.push_back(CB); 1255 return; 1256 } 1257 } 1258 1259 // Create a CaseBlock record representing this branch. 1260 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1261 NULL, TBB, FBB, CurBB); 1262 SwitchCases.push_back(CB); 1263 } 1264 1265 /// FindMergedConditions - If Cond is an expression like 1266 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1267 MachineBasicBlock *TBB, 1268 MachineBasicBlock *FBB, 1269 MachineBasicBlock *CurBB, 1270 MachineBasicBlock *SwitchBB, 1271 unsigned Opc) { 1272 // If this node is not part of the or/and tree, emit it as a branch. 1273 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1274 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1275 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1276 BOp->getParent() != CurBB->getBasicBlock() || 1277 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1278 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1279 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1280 return; 1281 } 1282 1283 // Create TmpBB after CurBB. 1284 MachineFunction::iterator BBI = CurBB; 1285 MachineFunction &MF = DAG.getMachineFunction(); 1286 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1287 CurBB->getParent()->insert(++BBI, TmpBB); 1288 1289 if (Opc == Instruction::Or) { 1290 // Codegen X | Y as: 1291 // jmp_if_X TBB 1292 // jmp TmpBB 1293 // TmpBB: 1294 // jmp_if_Y TBB 1295 // jmp FBB 1296 // 1297 1298 // Emit the LHS condition. 1299 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1300 1301 // Emit the RHS condition into TmpBB. 1302 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1303 } else { 1304 assert(Opc == Instruction::And && "Unknown merge op!"); 1305 // Codegen X & Y as: 1306 // jmp_if_X TmpBB 1307 // jmp FBB 1308 // TmpBB: 1309 // jmp_if_Y TBB 1310 // jmp FBB 1311 // 1312 // This requires creation of TmpBB after CurBB. 1313 1314 // Emit the LHS condition. 1315 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1316 1317 // Emit the RHS condition into TmpBB. 1318 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1319 } 1320 } 1321 1322 /// If the set of cases should be emitted as a series of branches, return true. 1323 /// If we should emit this as a bunch of and/or'd together conditions, return 1324 /// false. 1325 bool 1326 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1327 if (Cases.size() != 2) return true; 1328 1329 // If this is two comparisons of the same values or'd or and'd together, they 1330 // will get folded into a single comparison, so don't emit two blocks. 1331 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1332 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1333 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1334 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1335 return false; 1336 } 1337 1338 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1339 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1340 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1341 Cases[0].CC == Cases[1].CC && 1342 isa<Constant>(Cases[0].CmpRHS) && 1343 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1344 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1345 return false; 1346 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1347 return false; 1348 } 1349 1350 return true; 1351 } 1352 1353 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1354 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1355 1356 // Update machine-CFG edges. 1357 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1358 1359 // Figure out which block is immediately after the current one. 1360 MachineBasicBlock *NextBlock = 0; 1361 MachineFunction::iterator BBI = BrMBB; 1362 if (++BBI != FuncInfo.MF->end()) 1363 NextBlock = BBI; 1364 1365 if (I.isUnconditional()) { 1366 // Update machine-CFG edges. 1367 BrMBB->addSuccessor(Succ0MBB); 1368 1369 // If this is not a fall-through branch, emit the branch. 1370 if (Succ0MBB != NextBlock) 1371 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1372 MVT::Other, getControlRoot(), 1373 DAG.getBasicBlock(Succ0MBB))); 1374 1375 return; 1376 } 1377 1378 // If this condition is one of the special cases we handle, do special stuff 1379 // now. 1380 const Value *CondVal = I.getCondition(); 1381 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1382 1383 // If this is a series of conditions that are or'd or and'd together, emit 1384 // this as a sequence of branches instead of setcc's with and/or operations. 1385 // For example, instead of something like: 1386 // cmp A, B 1387 // C = seteq 1388 // cmp D, E 1389 // F = setle 1390 // or C, F 1391 // jnz foo 1392 // Emit: 1393 // cmp A, B 1394 // je foo 1395 // cmp D, E 1396 // jle foo 1397 // 1398 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1399 if (BOp->hasOneUse() && 1400 (BOp->getOpcode() == Instruction::And || 1401 BOp->getOpcode() == Instruction::Or)) { 1402 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1403 BOp->getOpcode()); 1404 // If the compares in later blocks need to use values not currently 1405 // exported from this block, export them now. This block should always 1406 // be the first entry. 1407 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1408 1409 // Allow some cases to be rejected. 1410 if (ShouldEmitAsBranches(SwitchCases)) { 1411 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1412 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1413 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1414 } 1415 1416 // Emit the branch for this block. 1417 visitSwitchCase(SwitchCases[0], BrMBB); 1418 SwitchCases.erase(SwitchCases.begin()); 1419 return; 1420 } 1421 1422 // Okay, we decided not to do this, remove any inserted MBB's and clear 1423 // SwitchCases. 1424 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1425 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1426 1427 SwitchCases.clear(); 1428 } 1429 } 1430 1431 // Create a CaseBlock record representing this branch. 1432 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1433 NULL, Succ0MBB, Succ1MBB, BrMBB); 1434 1435 // Use visitSwitchCase to actually insert the fast branch sequence for this 1436 // cond branch. 1437 visitSwitchCase(CB, BrMBB); 1438 } 1439 1440 /// visitSwitchCase - Emits the necessary code to represent a single node in 1441 /// the binary search tree resulting from lowering a switch instruction. 1442 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1443 MachineBasicBlock *SwitchBB) { 1444 SDValue Cond; 1445 SDValue CondLHS = getValue(CB.CmpLHS); 1446 DebugLoc dl = getCurDebugLoc(); 1447 1448 // Build the setcc now. 1449 if (CB.CmpMHS == NULL) { 1450 // Fold "(X == true)" to X and "(X == false)" to !X to 1451 // handle common cases produced by branch lowering. 1452 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1453 CB.CC == ISD::SETEQ) 1454 Cond = CondLHS; 1455 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1456 CB.CC == ISD::SETEQ) { 1457 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1458 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1459 } else 1460 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1461 } else { 1462 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1463 1464 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1465 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1466 1467 SDValue CmpOp = getValue(CB.CmpMHS); 1468 EVT VT = CmpOp.getValueType(); 1469 1470 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1471 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1472 ISD::SETLE); 1473 } else { 1474 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1475 VT, CmpOp, DAG.getConstant(Low, VT)); 1476 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1477 DAG.getConstant(High-Low, VT), ISD::SETULE); 1478 } 1479 } 1480 1481 // Update successor info 1482 SwitchBB->addSuccessor(CB.TrueBB); 1483 SwitchBB->addSuccessor(CB.FalseBB); 1484 1485 // Set NextBlock to be the MBB immediately after the current one, if any. 1486 // This is used to avoid emitting unnecessary branches to the next block. 1487 MachineBasicBlock *NextBlock = 0; 1488 MachineFunction::iterator BBI = SwitchBB; 1489 if (++BBI != FuncInfo.MF->end()) 1490 NextBlock = BBI; 1491 1492 // If the lhs block is the next block, invert the condition so that we can 1493 // fall through to the lhs instead of the rhs block. 1494 if (CB.TrueBB == NextBlock) { 1495 std::swap(CB.TrueBB, CB.FalseBB); 1496 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1497 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1498 } 1499 1500 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1501 MVT::Other, getControlRoot(), Cond, 1502 DAG.getBasicBlock(CB.TrueBB)); 1503 1504 // Insert the false branch. 1505 if (CB.FalseBB != NextBlock) 1506 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1507 DAG.getBasicBlock(CB.FalseBB)); 1508 1509 DAG.setRoot(BrCond); 1510 } 1511 1512 /// visitJumpTable - Emit JumpTable node in the current MBB 1513 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1514 // Emit the code for the jump table 1515 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1516 EVT PTy = TLI.getPointerTy(); 1517 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1518 JT.Reg, PTy); 1519 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1520 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1521 MVT::Other, Index.getValue(1), 1522 Table, Index); 1523 DAG.setRoot(BrJumpTable); 1524 } 1525 1526 /// visitJumpTableHeader - This function emits necessary code to produce index 1527 /// in the JumpTable from switch case. 1528 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1529 JumpTableHeader &JTH, 1530 MachineBasicBlock *SwitchBB) { 1531 // Subtract the lowest switch case value from the value being switched on and 1532 // conditional branch to default mbb if the result is greater than the 1533 // difference between smallest and largest cases. 1534 SDValue SwitchOp = getValue(JTH.SValue); 1535 EVT VT = SwitchOp.getValueType(); 1536 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1537 DAG.getConstant(JTH.First, VT)); 1538 1539 // The SDNode we just created, which holds the value being switched on minus 1540 // the smallest case value, needs to be copied to a virtual register so it 1541 // can be used as an index into the jump table in a subsequent basic block. 1542 // This value may be smaller or larger than the target's pointer type, and 1543 // therefore require extension or truncating. 1544 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1545 1546 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1547 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1548 JumpTableReg, SwitchOp); 1549 JT.Reg = JumpTableReg; 1550 1551 // Emit the range check for the jump table, and branch to the default block 1552 // for the switch statement if the value being switched on exceeds the largest 1553 // case in the switch. 1554 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1555 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1556 DAG.getConstant(JTH.Last-JTH.First,VT), 1557 ISD::SETUGT); 1558 1559 // Set NextBlock to be the MBB immediately after the current one, if any. 1560 // This is used to avoid emitting unnecessary branches to the next block. 1561 MachineBasicBlock *NextBlock = 0; 1562 MachineFunction::iterator BBI = SwitchBB; 1563 1564 if (++BBI != FuncInfo.MF->end()) 1565 NextBlock = BBI; 1566 1567 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1568 MVT::Other, CopyTo, CMP, 1569 DAG.getBasicBlock(JT.Default)); 1570 1571 if (JT.MBB != NextBlock) 1572 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1573 DAG.getBasicBlock(JT.MBB)); 1574 1575 DAG.setRoot(BrCond); 1576 } 1577 1578 /// visitBitTestHeader - This function emits necessary code to produce value 1579 /// suitable for "bit tests" 1580 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1581 MachineBasicBlock *SwitchBB) { 1582 // Subtract the minimum value 1583 SDValue SwitchOp = getValue(B.SValue); 1584 EVT VT = SwitchOp.getValueType(); 1585 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1586 DAG.getConstant(B.First, VT)); 1587 1588 // Check range 1589 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1590 TLI.getSetCCResultType(Sub.getValueType()), 1591 Sub, DAG.getConstant(B.Range, VT), 1592 ISD::SETUGT); 1593 1594 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1595 TLI.getPointerTy()); 1596 1597 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1598 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1599 B.Reg, ShiftOp); 1600 1601 // Set NextBlock to be the MBB immediately after the current one, if any. 1602 // This is used to avoid emitting unnecessary branches to the next block. 1603 MachineBasicBlock *NextBlock = 0; 1604 MachineFunction::iterator BBI = SwitchBB; 1605 if (++BBI != FuncInfo.MF->end()) 1606 NextBlock = BBI; 1607 1608 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1609 1610 SwitchBB->addSuccessor(B.Default); 1611 SwitchBB->addSuccessor(MBB); 1612 1613 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1614 MVT::Other, CopyTo, RangeCmp, 1615 DAG.getBasicBlock(B.Default)); 1616 1617 if (MBB != NextBlock) 1618 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1619 DAG.getBasicBlock(MBB)); 1620 1621 DAG.setRoot(BrRange); 1622 } 1623 1624 /// visitBitTestCase - this function produces one "bit test" 1625 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1626 unsigned Reg, 1627 BitTestCase &B, 1628 MachineBasicBlock *SwitchBB) { 1629 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1630 TLI.getPointerTy()); 1631 SDValue Cmp; 1632 if (CountPopulation_64(B.Mask) == 1) { 1633 // Testing for a single bit; just compare the shift count with what it 1634 // would need to be to shift a 1 bit in that position. 1635 Cmp = DAG.getSetCC(getCurDebugLoc(), 1636 TLI.getSetCCResultType(ShiftOp.getValueType()), 1637 ShiftOp, 1638 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1639 TLI.getPointerTy()), 1640 ISD::SETEQ); 1641 } else { 1642 // Make desired shift 1643 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1644 TLI.getPointerTy(), 1645 DAG.getConstant(1, TLI.getPointerTy()), 1646 ShiftOp); 1647 1648 // Emit bit tests and jumps 1649 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1650 TLI.getPointerTy(), SwitchVal, 1651 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1652 Cmp = DAG.getSetCC(getCurDebugLoc(), 1653 TLI.getSetCCResultType(AndOp.getValueType()), 1654 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1655 ISD::SETNE); 1656 } 1657 1658 SwitchBB->addSuccessor(B.TargetBB); 1659 SwitchBB->addSuccessor(NextMBB); 1660 1661 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1662 MVT::Other, getControlRoot(), 1663 Cmp, DAG.getBasicBlock(B.TargetBB)); 1664 1665 // Set NextBlock to be the MBB immediately after the current one, if any. 1666 // This is used to avoid emitting unnecessary branches to the next block. 1667 MachineBasicBlock *NextBlock = 0; 1668 MachineFunction::iterator BBI = SwitchBB; 1669 if (++BBI != FuncInfo.MF->end()) 1670 NextBlock = BBI; 1671 1672 if (NextMBB != NextBlock) 1673 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1674 DAG.getBasicBlock(NextMBB)); 1675 1676 DAG.setRoot(BrAnd); 1677 } 1678 1679 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1680 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1681 1682 // Retrieve successors. 1683 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1684 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1685 1686 const Value *Callee(I.getCalledValue()); 1687 if (isa<InlineAsm>(Callee)) 1688 visitInlineAsm(&I); 1689 else 1690 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1691 1692 // If the value of the invoke is used outside of its defining block, make it 1693 // available as a virtual register. 1694 CopyToExportRegsIfNeeded(&I); 1695 1696 // Update successor info 1697 InvokeMBB->addSuccessor(Return); 1698 InvokeMBB->addSuccessor(LandingPad); 1699 1700 // Drop into normal successor. 1701 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1702 MVT::Other, getControlRoot(), 1703 DAG.getBasicBlock(Return))); 1704 } 1705 1706 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1707 } 1708 1709 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1710 /// small case ranges). 1711 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1712 CaseRecVector& WorkList, 1713 const Value* SV, 1714 MachineBasicBlock *Default, 1715 MachineBasicBlock *SwitchBB) { 1716 Case& BackCase = *(CR.Range.second-1); 1717 1718 // Size is the number of Cases represented by this range. 1719 size_t Size = CR.Range.second - CR.Range.first; 1720 if (Size > 3) 1721 return false; 1722 1723 // Get the MachineFunction which holds the current MBB. This is used when 1724 // inserting any additional MBBs necessary to represent the switch. 1725 MachineFunction *CurMF = FuncInfo.MF; 1726 1727 // Figure out which block is immediately after the current one. 1728 MachineBasicBlock *NextBlock = 0; 1729 MachineFunction::iterator BBI = CR.CaseBB; 1730 1731 if (++BBI != FuncInfo.MF->end()) 1732 NextBlock = BBI; 1733 1734 // TODO: If any two of the cases has the same destination, and if one value 1735 // is the same as the other, but has one bit unset that the other has set, 1736 // use bit manipulation to do two compares at once. For example: 1737 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1738 1739 // Rearrange the case blocks so that the last one falls through if possible. 1740 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1741 // The last case block won't fall through into 'NextBlock' if we emit the 1742 // branches in this order. See if rearranging a case value would help. 1743 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1744 if (I->BB == NextBlock) { 1745 std::swap(*I, BackCase); 1746 break; 1747 } 1748 } 1749 } 1750 1751 // Create a CaseBlock record representing a conditional branch to 1752 // the Case's target mbb if the value being switched on SV is equal 1753 // to C. 1754 MachineBasicBlock *CurBlock = CR.CaseBB; 1755 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1756 MachineBasicBlock *FallThrough; 1757 if (I != E-1) { 1758 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1759 CurMF->insert(BBI, FallThrough); 1760 1761 // Put SV in a virtual register to make it available from the new blocks. 1762 ExportFromCurrentBlock(SV); 1763 } else { 1764 // If the last case doesn't match, go to the default block. 1765 FallThrough = Default; 1766 } 1767 1768 const Value *RHS, *LHS, *MHS; 1769 ISD::CondCode CC; 1770 if (I->High == I->Low) { 1771 // This is just small small case range :) containing exactly 1 case 1772 CC = ISD::SETEQ; 1773 LHS = SV; RHS = I->High; MHS = NULL; 1774 } else { 1775 CC = ISD::SETLE; 1776 LHS = I->Low; MHS = SV; RHS = I->High; 1777 } 1778 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1779 1780 // If emitting the first comparison, just call visitSwitchCase to emit the 1781 // code into the current block. Otherwise, push the CaseBlock onto the 1782 // vector to be later processed by SDISel, and insert the node's MBB 1783 // before the next MBB. 1784 if (CurBlock == SwitchBB) 1785 visitSwitchCase(CB, SwitchBB); 1786 else 1787 SwitchCases.push_back(CB); 1788 1789 CurBlock = FallThrough; 1790 } 1791 1792 return true; 1793 } 1794 1795 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1796 return !DisableJumpTables && 1797 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1798 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1799 } 1800 1801 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1802 APInt LastExt(Last), FirstExt(First); 1803 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1804 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1805 return (LastExt - FirstExt + 1ULL); 1806 } 1807 1808 /// handleJTSwitchCase - Emit jumptable for current switch case range 1809 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1810 CaseRecVector& WorkList, 1811 const Value* SV, 1812 MachineBasicBlock* Default, 1813 MachineBasicBlock *SwitchBB) { 1814 Case& FrontCase = *CR.Range.first; 1815 Case& BackCase = *(CR.Range.second-1); 1816 1817 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1818 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1819 1820 APInt TSize(First.getBitWidth(), 0); 1821 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1822 I!=E; ++I) 1823 TSize += I->size(); 1824 1825 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1826 return false; 1827 1828 APInt Range = ComputeRange(First, Last); 1829 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1830 if (Density < 0.4) 1831 return false; 1832 1833 DEBUG(dbgs() << "Lowering jump table\n" 1834 << "First entry: " << First << ". Last entry: " << Last << '\n' 1835 << "Range: " << Range 1836 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1837 1838 // Get the MachineFunction which holds the current MBB. This is used when 1839 // inserting any additional MBBs necessary to represent the switch. 1840 MachineFunction *CurMF = FuncInfo.MF; 1841 1842 // Figure out which block is immediately after the current one. 1843 MachineFunction::iterator BBI = CR.CaseBB; 1844 ++BBI; 1845 1846 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1847 1848 // Create a new basic block to hold the code for loading the address 1849 // of the jump table, and jumping to it. Update successor information; 1850 // we will either branch to the default case for the switch, or the jump 1851 // table. 1852 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1853 CurMF->insert(BBI, JumpTableBB); 1854 CR.CaseBB->addSuccessor(Default); 1855 CR.CaseBB->addSuccessor(JumpTableBB); 1856 1857 // Build a vector of destination BBs, corresponding to each target 1858 // of the jump table. If the value of the jump table slot corresponds to 1859 // a case statement, push the case's BB onto the vector, otherwise, push 1860 // the default BB. 1861 std::vector<MachineBasicBlock*> DestBBs; 1862 APInt TEI = First; 1863 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1864 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1865 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1866 1867 if (Low.sle(TEI) && TEI.sle(High)) { 1868 DestBBs.push_back(I->BB); 1869 if (TEI==High) 1870 ++I; 1871 } else { 1872 DestBBs.push_back(Default); 1873 } 1874 } 1875 1876 // Update successor info. Add one edge to each unique successor. 1877 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1878 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1879 E = DestBBs.end(); I != E; ++I) { 1880 if (!SuccsHandled[(*I)->getNumber()]) { 1881 SuccsHandled[(*I)->getNumber()] = true; 1882 JumpTableBB->addSuccessor(*I); 1883 } 1884 } 1885 1886 // Create a jump table index for this jump table. 1887 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1888 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1889 ->createJumpTableIndex(DestBBs); 1890 1891 // Set the jump table information so that we can codegen it as a second 1892 // MachineBasicBlock 1893 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1894 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1895 if (CR.CaseBB == SwitchBB) 1896 visitJumpTableHeader(JT, JTH, SwitchBB); 1897 1898 JTCases.push_back(JumpTableBlock(JTH, JT)); 1899 1900 return true; 1901 } 1902 1903 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1904 /// 2 subtrees. 1905 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1906 CaseRecVector& WorkList, 1907 const Value* SV, 1908 MachineBasicBlock *Default, 1909 MachineBasicBlock *SwitchBB) { 1910 // Get the MachineFunction which holds the current MBB. This is used when 1911 // inserting any additional MBBs necessary to represent the switch. 1912 MachineFunction *CurMF = FuncInfo.MF; 1913 1914 // Figure out which block is immediately after the current one. 1915 MachineFunction::iterator BBI = CR.CaseBB; 1916 ++BBI; 1917 1918 Case& FrontCase = *CR.Range.first; 1919 Case& BackCase = *(CR.Range.second-1); 1920 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1921 1922 // Size is the number of Cases represented by this range. 1923 unsigned Size = CR.Range.second - CR.Range.first; 1924 1925 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1926 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1927 double FMetric = 0; 1928 CaseItr Pivot = CR.Range.first + Size/2; 1929 1930 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1931 // (heuristically) allow us to emit JumpTable's later. 1932 APInt TSize(First.getBitWidth(), 0); 1933 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1934 I!=E; ++I) 1935 TSize += I->size(); 1936 1937 APInt LSize = FrontCase.size(); 1938 APInt RSize = TSize-LSize; 1939 DEBUG(dbgs() << "Selecting best pivot: \n" 1940 << "First: " << First << ", Last: " << Last <<'\n' 1941 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1942 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1943 J!=E; ++I, ++J) { 1944 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1945 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1946 APInt Range = ComputeRange(LEnd, RBegin); 1947 assert((Range - 2ULL).isNonNegative() && 1948 "Invalid case distance"); 1949 double LDensity = (double)LSize.roundToDouble() / 1950 (LEnd - First + 1ULL).roundToDouble(); 1951 double RDensity = (double)RSize.roundToDouble() / 1952 (Last - RBegin + 1ULL).roundToDouble(); 1953 double Metric = Range.logBase2()*(LDensity+RDensity); 1954 // Should always split in some non-trivial place 1955 DEBUG(dbgs() <<"=>Step\n" 1956 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1957 << "LDensity: " << LDensity 1958 << ", RDensity: " << RDensity << '\n' 1959 << "Metric: " << Metric << '\n'); 1960 if (FMetric < Metric) { 1961 Pivot = J; 1962 FMetric = Metric; 1963 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1964 } 1965 1966 LSize += J->size(); 1967 RSize -= J->size(); 1968 } 1969 if (areJTsAllowed(TLI)) { 1970 // If our case is dense we *really* should handle it earlier! 1971 assert((FMetric > 0) && "Should handle dense range earlier!"); 1972 } else { 1973 Pivot = CR.Range.first + Size/2; 1974 } 1975 1976 CaseRange LHSR(CR.Range.first, Pivot); 1977 CaseRange RHSR(Pivot, CR.Range.second); 1978 Constant *C = Pivot->Low; 1979 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1980 1981 // We know that we branch to the LHS if the Value being switched on is 1982 // less than the Pivot value, C. We use this to optimize our binary 1983 // tree a bit, by recognizing that if SV is greater than or equal to the 1984 // LHS's Case Value, and that Case Value is exactly one less than the 1985 // Pivot's Value, then we can branch directly to the LHS's Target, 1986 // rather than creating a leaf node for it. 1987 if ((LHSR.second - LHSR.first) == 1 && 1988 LHSR.first->High == CR.GE && 1989 cast<ConstantInt>(C)->getValue() == 1990 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1991 TrueBB = LHSR.first->BB; 1992 } else { 1993 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1994 CurMF->insert(BBI, TrueBB); 1995 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1996 1997 // Put SV in a virtual register to make it available from the new blocks. 1998 ExportFromCurrentBlock(SV); 1999 } 2000 2001 // Similar to the optimization above, if the Value being switched on is 2002 // known to be less than the Constant CR.LT, and the current Case Value 2003 // is CR.LT - 1, then we can branch directly to the target block for 2004 // the current Case Value, rather than emitting a RHS leaf node for it. 2005 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2006 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2007 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2008 FalseBB = RHSR.first->BB; 2009 } else { 2010 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2011 CurMF->insert(BBI, FalseBB); 2012 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2013 2014 // Put SV in a virtual register to make it available from the new blocks. 2015 ExportFromCurrentBlock(SV); 2016 } 2017 2018 // Create a CaseBlock record representing a conditional branch to 2019 // the LHS node if the value being switched on SV is less than C. 2020 // Otherwise, branch to LHS. 2021 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2022 2023 if (CR.CaseBB == SwitchBB) 2024 visitSwitchCase(CB, SwitchBB); 2025 else 2026 SwitchCases.push_back(CB); 2027 2028 return true; 2029 } 2030 2031 /// handleBitTestsSwitchCase - if current case range has few destination and 2032 /// range span less, than machine word bitwidth, encode case range into series 2033 /// of masks and emit bit tests with these masks. 2034 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2035 CaseRecVector& WorkList, 2036 const Value* SV, 2037 MachineBasicBlock* Default, 2038 MachineBasicBlock *SwitchBB){ 2039 EVT PTy = TLI.getPointerTy(); 2040 unsigned IntPtrBits = PTy.getSizeInBits(); 2041 2042 Case& FrontCase = *CR.Range.first; 2043 Case& BackCase = *(CR.Range.second-1); 2044 2045 // Get the MachineFunction which holds the current MBB. This is used when 2046 // inserting any additional MBBs necessary to represent the switch. 2047 MachineFunction *CurMF = FuncInfo.MF; 2048 2049 // If target does not have legal shift left, do not emit bit tests at all. 2050 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2051 return false; 2052 2053 size_t numCmps = 0; 2054 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2055 I!=E; ++I) { 2056 // Single case counts one, case range - two. 2057 numCmps += (I->Low == I->High ? 1 : 2); 2058 } 2059 2060 // Count unique destinations 2061 SmallSet<MachineBasicBlock*, 4> Dests; 2062 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2063 Dests.insert(I->BB); 2064 if (Dests.size() > 3) 2065 // Don't bother the code below, if there are too much unique destinations 2066 return false; 2067 } 2068 DEBUG(dbgs() << "Total number of unique destinations: " 2069 << Dests.size() << '\n' 2070 << "Total number of comparisons: " << numCmps << '\n'); 2071 2072 // Compute span of values. 2073 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2074 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2075 APInt cmpRange = maxValue - minValue; 2076 2077 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2078 << "Low bound: " << minValue << '\n' 2079 << "High bound: " << maxValue << '\n'); 2080 2081 if (cmpRange.uge(IntPtrBits) || 2082 (!(Dests.size() == 1 && numCmps >= 3) && 2083 !(Dests.size() == 2 && numCmps >= 5) && 2084 !(Dests.size() >= 3 && numCmps >= 6))) 2085 return false; 2086 2087 DEBUG(dbgs() << "Emitting bit tests\n"); 2088 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2089 2090 // Optimize the case where all the case values fit in a 2091 // word without having to subtract minValue. In this case, 2092 // we can optimize away the subtraction. 2093 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2094 cmpRange = maxValue; 2095 } else { 2096 lowBound = minValue; 2097 } 2098 2099 CaseBitsVector CasesBits; 2100 unsigned i, count = 0; 2101 2102 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2103 MachineBasicBlock* Dest = I->BB; 2104 for (i = 0; i < count; ++i) 2105 if (Dest == CasesBits[i].BB) 2106 break; 2107 2108 if (i == count) { 2109 assert((count < 3) && "Too much destinations to test!"); 2110 CasesBits.push_back(CaseBits(0, Dest, 0)); 2111 count++; 2112 } 2113 2114 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2115 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2116 2117 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2118 uint64_t hi = (highValue - lowBound).getZExtValue(); 2119 2120 for (uint64_t j = lo; j <= hi; j++) { 2121 CasesBits[i].Mask |= 1ULL << j; 2122 CasesBits[i].Bits++; 2123 } 2124 2125 } 2126 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2127 2128 BitTestInfo BTC; 2129 2130 // Figure out which block is immediately after the current one. 2131 MachineFunction::iterator BBI = CR.CaseBB; 2132 ++BBI; 2133 2134 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2135 2136 DEBUG(dbgs() << "Cases:\n"); 2137 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2138 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2139 << ", Bits: " << CasesBits[i].Bits 2140 << ", BB: " << CasesBits[i].BB << '\n'); 2141 2142 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2143 CurMF->insert(BBI, CaseBB); 2144 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2145 CaseBB, 2146 CasesBits[i].BB)); 2147 2148 // Put SV in a virtual register to make it available from the new blocks. 2149 ExportFromCurrentBlock(SV); 2150 } 2151 2152 BitTestBlock BTB(lowBound, cmpRange, SV, 2153 -1U, (CR.CaseBB == SwitchBB), 2154 CR.CaseBB, Default, BTC); 2155 2156 if (CR.CaseBB == SwitchBB) 2157 visitBitTestHeader(BTB, SwitchBB); 2158 2159 BitTestCases.push_back(BTB); 2160 2161 return true; 2162 } 2163 2164 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2165 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2166 const SwitchInst& SI) { 2167 size_t numCmps = 0; 2168 2169 // Start with "simple" cases 2170 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2171 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2172 Cases.push_back(Case(SI.getSuccessorValue(i), 2173 SI.getSuccessorValue(i), 2174 SMBB)); 2175 } 2176 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2177 2178 // Merge case into clusters 2179 if (Cases.size() >= 2) 2180 // Must recompute end() each iteration because it may be 2181 // invalidated by erase if we hold on to it 2182 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2183 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2184 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2185 MachineBasicBlock* nextBB = J->BB; 2186 MachineBasicBlock* currentBB = I->BB; 2187 2188 // If the two neighboring cases go to the same destination, merge them 2189 // into a single case. 2190 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2191 I->High = J->High; 2192 J = Cases.erase(J); 2193 } else { 2194 I = J++; 2195 } 2196 } 2197 2198 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2199 if (I->Low != I->High) 2200 // A range counts double, since it requires two compares. 2201 ++numCmps; 2202 } 2203 2204 return numCmps; 2205 } 2206 2207 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2208 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2209 2210 // Figure out which block is immediately after the current one. 2211 MachineBasicBlock *NextBlock = 0; 2212 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2213 2214 // If there is only the default destination, branch to it if it is not the 2215 // next basic block. Otherwise, just fall through. 2216 if (SI.getNumOperands() == 2) { 2217 // Update machine-CFG edges. 2218 2219 // If this is not a fall-through branch, emit the branch. 2220 SwitchMBB->addSuccessor(Default); 2221 if (Default != NextBlock) 2222 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2223 MVT::Other, getControlRoot(), 2224 DAG.getBasicBlock(Default))); 2225 2226 return; 2227 } 2228 2229 // If there are any non-default case statements, create a vector of Cases 2230 // representing each one, and sort the vector so that we can efficiently 2231 // create a binary search tree from them. 2232 CaseVector Cases; 2233 size_t numCmps = Clusterify(Cases, SI); 2234 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2235 << ". Total compares: " << numCmps << '\n'); 2236 numCmps = 0; 2237 2238 // Get the Value to be switched on and default basic blocks, which will be 2239 // inserted into CaseBlock records, representing basic blocks in the binary 2240 // search tree. 2241 const Value *SV = SI.getOperand(0); 2242 2243 // Push the initial CaseRec onto the worklist 2244 CaseRecVector WorkList; 2245 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2246 CaseRange(Cases.begin(),Cases.end()))); 2247 2248 while (!WorkList.empty()) { 2249 // Grab a record representing a case range to process off the worklist 2250 CaseRec CR = WorkList.back(); 2251 WorkList.pop_back(); 2252 2253 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2254 continue; 2255 2256 // If the range has few cases (two or less) emit a series of specific 2257 // tests. 2258 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2259 continue; 2260 2261 // If the switch has more than 5 blocks, and at least 40% dense, and the 2262 // target supports indirect branches, then emit a jump table rather than 2263 // lowering the switch to a binary tree of conditional branches. 2264 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2265 continue; 2266 2267 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2268 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2269 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2270 } 2271 } 2272 2273 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2274 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2275 2276 // Update machine-CFG edges with unique successors. 2277 SmallVector<BasicBlock*, 32> succs; 2278 succs.reserve(I.getNumSuccessors()); 2279 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2280 succs.push_back(I.getSuccessor(i)); 2281 array_pod_sort(succs.begin(), succs.end()); 2282 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2283 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2284 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2285 2286 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2287 MVT::Other, getControlRoot(), 2288 getValue(I.getAddress()))); 2289 } 2290 2291 void SelectionDAGBuilder::visitFSub(const User &I) { 2292 // -0.0 - X --> fneg 2293 const Type *Ty = I.getType(); 2294 if (Ty->isVectorTy()) { 2295 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2296 const VectorType *DestTy = cast<VectorType>(I.getType()); 2297 const Type *ElTy = DestTy->getElementType(); 2298 unsigned VL = DestTy->getNumElements(); 2299 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2300 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2301 if (CV == CNZ) { 2302 SDValue Op2 = getValue(I.getOperand(1)); 2303 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2304 Op2.getValueType(), Op2)); 2305 return; 2306 } 2307 } 2308 } 2309 2310 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2311 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2312 SDValue Op2 = getValue(I.getOperand(1)); 2313 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2314 Op2.getValueType(), Op2)); 2315 return; 2316 } 2317 2318 visitBinary(I, ISD::FSUB); 2319 } 2320 2321 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2322 SDValue Op1 = getValue(I.getOperand(0)); 2323 SDValue Op2 = getValue(I.getOperand(1)); 2324 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2325 Op1.getValueType(), Op1, Op2)); 2326 } 2327 2328 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2329 SDValue Op1 = getValue(I.getOperand(0)); 2330 SDValue Op2 = getValue(I.getOperand(1)); 2331 if (!I.getType()->isVectorTy() && 2332 Op2.getValueType() != TLI.getShiftAmountTy()) { 2333 // If the operand is smaller than the shift count type, promote it. 2334 EVT PTy = TLI.getPointerTy(); 2335 EVT STy = TLI.getShiftAmountTy(); 2336 if (STy.bitsGT(Op2.getValueType())) 2337 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2338 TLI.getShiftAmountTy(), Op2); 2339 // If the operand is larger than the shift count type but the shift 2340 // count type has enough bits to represent any shift value, truncate 2341 // it now. This is a common case and it exposes the truncate to 2342 // optimization early. 2343 else if (STy.getSizeInBits() >= 2344 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2345 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2346 TLI.getShiftAmountTy(), Op2); 2347 // Otherwise we'll need to temporarily settle for some other 2348 // convenient type; type legalization will make adjustments as 2349 // needed. 2350 else if (PTy.bitsLT(Op2.getValueType())) 2351 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2352 TLI.getPointerTy(), Op2); 2353 else if (PTy.bitsGT(Op2.getValueType())) 2354 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2355 TLI.getPointerTy(), Op2); 2356 } 2357 2358 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2359 Op1.getValueType(), Op1, Op2)); 2360 } 2361 2362 void SelectionDAGBuilder::visitICmp(const User &I) { 2363 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2365 predicate = IC->getPredicate(); 2366 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2367 predicate = ICmpInst::Predicate(IC->getPredicate()); 2368 SDValue Op1 = getValue(I.getOperand(0)); 2369 SDValue Op2 = getValue(I.getOperand(1)); 2370 ISD::CondCode Opcode = getICmpCondCode(predicate); 2371 2372 EVT DestVT = TLI.getValueType(I.getType()); 2373 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2374 } 2375 2376 void SelectionDAGBuilder::visitFCmp(const User &I) { 2377 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2378 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2379 predicate = FC->getPredicate(); 2380 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2381 predicate = FCmpInst::Predicate(FC->getPredicate()); 2382 SDValue Op1 = getValue(I.getOperand(0)); 2383 SDValue Op2 = getValue(I.getOperand(1)); 2384 ISD::CondCode Condition = getFCmpCondCode(predicate); 2385 EVT DestVT = TLI.getValueType(I.getType()); 2386 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2387 } 2388 2389 void SelectionDAGBuilder::visitSelect(const User &I) { 2390 SmallVector<EVT, 4> ValueVTs; 2391 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2392 unsigned NumValues = ValueVTs.size(); 2393 if (NumValues == 0) return; 2394 2395 SmallVector<SDValue, 4> Values(NumValues); 2396 SDValue Cond = getValue(I.getOperand(0)); 2397 SDValue TrueVal = getValue(I.getOperand(1)); 2398 SDValue FalseVal = getValue(I.getOperand(2)); 2399 2400 for (unsigned i = 0; i != NumValues; ++i) 2401 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2402 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2403 Cond, 2404 SDValue(TrueVal.getNode(), 2405 TrueVal.getResNo() + i), 2406 SDValue(FalseVal.getNode(), 2407 FalseVal.getResNo() + i)); 2408 2409 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2410 DAG.getVTList(&ValueVTs[0], NumValues), 2411 &Values[0], NumValues)); 2412 } 2413 2414 void SelectionDAGBuilder::visitTrunc(const User &I) { 2415 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2416 SDValue N = getValue(I.getOperand(0)); 2417 EVT DestVT = TLI.getValueType(I.getType()); 2418 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2419 } 2420 2421 void SelectionDAGBuilder::visitZExt(const User &I) { 2422 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2423 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2424 SDValue N = getValue(I.getOperand(0)); 2425 EVT DestVT = TLI.getValueType(I.getType()); 2426 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2427 } 2428 2429 void SelectionDAGBuilder::visitSExt(const User &I) { 2430 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2431 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2432 SDValue N = getValue(I.getOperand(0)); 2433 EVT DestVT = TLI.getValueType(I.getType()); 2434 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2435 } 2436 2437 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2438 // FPTrunc is never a no-op cast, no need to check 2439 SDValue N = getValue(I.getOperand(0)); 2440 EVT DestVT = TLI.getValueType(I.getType()); 2441 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2442 DestVT, N, DAG.getIntPtrConstant(0))); 2443 } 2444 2445 void SelectionDAGBuilder::visitFPExt(const User &I){ 2446 // FPTrunc is never a no-op cast, no need to check 2447 SDValue N = getValue(I.getOperand(0)); 2448 EVT DestVT = TLI.getValueType(I.getType()); 2449 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2450 } 2451 2452 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2453 // FPToUI is never a no-op cast, no need to check 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT DestVT = TLI.getValueType(I.getType()); 2456 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2457 } 2458 2459 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2460 // FPToSI is never a no-op cast, no need to check 2461 SDValue N = getValue(I.getOperand(0)); 2462 EVT DestVT = TLI.getValueType(I.getType()); 2463 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2464 } 2465 2466 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2467 // UIToFP is never a no-op cast, no need to check 2468 SDValue N = getValue(I.getOperand(0)); 2469 EVT DestVT = TLI.getValueType(I.getType()); 2470 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2471 } 2472 2473 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2474 // SIToFP is never a no-op cast, no need to check 2475 SDValue N = getValue(I.getOperand(0)); 2476 EVT DestVT = TLI.getValueType(I.getType()); 2477 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2478 } 2479 2480 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2481 // What to do depends on the size of the integer and the size of the pointer. 2482 // We can either truncate, zero extend, or no-op, accordingly. 2483 SDValue N = getValue(I.getOperand(0)); 2484 EVT DestVT = TLI.getValueType(I.getType()); 2485 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2486 } 2487 2488 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2489 // What to do depends on the size of the integer and the size of the pointer. 2490 // We can either truncate, zero extend, or no-op, accordingly. 2491 SDValue N = getValue(I.getOperand(0)); 2492 EVT DestVT = TLI.getValueType(I.getType()); 2493 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2494 } 2495 2496 void SelectionDAGBuilder::visitBitCast(const User &I) { 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = TLI.getValueType(I.getType()); 2499 2500 // BitCast assures us that source and destination are the same size so this is 2501 // either a BIT_CONVERT or a no-op. 2502 if (DestVT != N.getValueType()) 2503 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2504 DestVT, N)); // convert types. 2505 else 2506 setValue(&I, N); // noop cast. 2507 } 2508 2509 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2510 SDValue InVec = getValue(I.getOperand(0)); 2511 SDValue InVal = getValue(I.getOperand(1)); 2512 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2513 TLI.getPointerTy(), 2514 getValue(I.getOperand(2))); 2515 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2516 TLI.getValueType(I.getType()), 2517 InVec, InVal, InIdx)); 2518 } 2519 2520 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2521 SDValue InVec = getValue(I.getOperand(0)); 2522 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2523 TLI.getPointerTy(), 2524 getValue(I.getOperand(1))); 2525 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2526 TLI.getValueType(I.getType()), InVec, InIdx)); 2527 } 2528 2529 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2530 // from SIndx and increasing to the element length (undefs are allowed). 2531 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2532 unsigned MaskNumElts = Mask.size(); 2533 for (unsigned i = 0; i != MaskNumElts; ++i) 2534 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2535 return false; 2536 return true; 2537 } 2538 2539 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2540 SmallVector<int, 8> Mask; 2541 SDValue Src1 = getValue(I.getOperand(0)); 2542 SDValue Src2 = getValue(I.getOperand(1)); 2543 2544 // Convert the ConstantVector mask operand into an array of ints, with -1 2545 // representing undef values. 2546 SmallVector<Constant*, 8> MaskElts; 2547 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2548 unsigned MaskNumElts = MaskElts.size(); 2549 for (unsigned i = 0; i != MaskNumElts; ++i) { 2550 if (isa<UndefValue>(MaskElts[i])) 2551 Mask.push_back(-1); 2552 else 2553 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2554 } 2555 2556 EVT VT = TLI.getValueType(I.getType()); 2557 EVT SrcVT = Src1.getValueType(); 2558 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2559 2560 if (SrcNumElts == MaskNumElts) { 2561 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2562 &Mask[0])); 2563 return; 2564 } 2565 2566 // Normalize the shuffle vector since mask and vector length don't match. 2567 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2568 // Mask is longer than the source vectors and is a multiple of the source 2569 // vectors. We can use concatenate vector to make the mask and vectors 2570 // lengths match. 2571 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2572 // The shuffle is concatenating two vectors together. 2573 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2574 VT, Src1, Src2)); 2575 return; 2576 } 2577 2578 // Pad both vectors with undefs to make them the same length as the mask. 2579 unsigned NumConcat = MaskNumElts / SrcNumElts; 2580 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2581 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2582 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2583 2584 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2585 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2586 MOps1[0] = Src1; 2587 MOps2[0] = Src2; 2588 2589 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2590 getCurDebugLoc(), VT, 2591 &MOps1[0], NumConcat); 2592 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2593 getCurDebugLoc(), VT, 2594 &MOps2[0], NumConcat); 2595 2596 // Readjust mask for new input vector length. 2597 SmallVector<int, 8> MappedOps; 2598 for (unsigned i = 0; i != MaskNumElts; ++i) { 2599 int Idx = Mask[i]; 2600 if (Idx < (int)SrcNumElts) 2601 MappedOps.push_back(Idx); 2602 else 2603 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2604 } 2605 2606 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2607 &MappedOps[0])); 2608 return; 2609 } 2610 2611 if (SrcNumElts > MaskNumElts) { 2612 // Analyze the access pattern of the vector to see if we can extract 2613 // two subvectors and do the shuffle. The analysis is done by calculating 2614 // the range of elements the mask access on both vectors. 2615 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2616 int MaxRange[2] = {-1, -1}; 2617 2618 for (unsigned i = 0; i != MaskNumElts; ++i) { 2619 int Idx = Mask[i]; 2620 int Input = 0; 2621 if (Idx < 0) 2622 continue; 2623 2624 if (Idx >= (int)SrcNumElts) { 2625 Input = 1; 2626 Idx -= SrcNumElts; 2627 } 2628 if (Idx > MaxRange[Input]) 2629 MaxRange[Input] = Idx; 2630 if (Idx < MinRange[Input]) 2631 MinRange[Input] = Idx; 2632 } 2633 2634 // Check if the access is smaller than the vector size and can we find 2635 // a reasonable extract index. 2636 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2637 // Extract. 2638 int StartIdx[2]; // StartIdx to extract from 2639 for (int Input=0; Input < 2; ++Input) { 2640 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2641 RangeUse[Input] = 0; // Unused 2642 StartIdx[Input] = 0; 2643 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2644 // Fits within range but we should see if we can find a good 2645 // start index that is a multiple of the mask length. 2646 if (MaxRange[Input] < (int)MaskNumElts) { 2647 RangeUse[Input] = 1; // Extract from beginning of the vector 2648 StartIdx[Input] = 0; 2649 } else { 2650 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2651 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2652 StartIdx[Input] + MaskNumElts < SrcNumElts) 2653 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2654 } 2655 } 2656 } 2657 2658 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2659 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2660 return; 2661 } 2662 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2663 // Extract appropriate subvector and generate a vector shuffle 2664 for (int Input=0; Input < 2; ++Input) { 2665 SDValue &Src = Input == 0 ? Src1 : Src2; 2666 if (RangeUse[Input] == 0) 2667 Src = DAG.getUNDEF(VT); 2668 else 2669 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2670 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2671 } 2672 2673 // Calculate new mask. 2674 SmallVector<int, 8> MappedOps; 2675 for (unsigned i = 0; i != MaskNumElts; ++i) { 2676 int Idx = Mask[i]; 2677 if (Idx < 0) 2678 MappedOps.push_back(Idx); 2679 else if (Idx < (int)SrcNumElts) 2680 MappedOps.push_back(Idx - StartIdx[0]); 2681 else 2682 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2683 } 2684 2685 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2686 &MappedOps[0])); 2687 return; 2688 } 2689 } 2690 2691 // We can't use either concat vectors or extract subvectors so fall back to 2692 // replacing the shuffle with extract and build vector. 2693 // to insert and build vector. 2694 EVT EltVT = VT.getVectorElementType(); 2695 EVT PtrVT = TLI.getPointerTy(); 2696 SmallVector<SDValue,8> Ops; 2697 for (unsigned i = 0; i != MaskNumElts; ++i) { 2698 if (Mask[i] < 0) { 2699 Ops.push_back(DAG.getUNDEF(EltVT)); 2700 } else { 2701 int Idx = Mask[i]; 2702 SDValue Res; 2703 2704 if (Idx < (int)SrcNumElts) 2705 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2706 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2707 else 2708 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2709 EltVT, Src2, 2710 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2711 2712 Ops.push_back(Res); 2713 } 2714 } 2715 2716 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2717 VT, &Ops[0], Ops.size())); 2718 } 2719 2720 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2721 const Value *Op0 = I.getOperand(0); 2722 const Value *Op1 = I.getOperand(1); 2723 const Type *AggTy = I.getType(); 2724 const Type *ValTy = Op1->getType(); 2725 bool IntoUndef = isa<UndefValue>(Op0); 2726 bool FromUndef = isa<UndefValue>(Op1); 2727 2728 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2729 I.idx_begin(), I.idx_end()); 2730 2731 SmallVector<EVT, 4> AggValueVTs; 2732 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2733 SmallVector<EVT, 4> ValValueVTs; 2734 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2735 2736 unsigned NumAggValues = AggValueVTs.size(); 2737 unsigned NumValValues = ValValueVTs.size(); 2738 SmallVector<SDValue, 4> Values(NumAggValues); 2739 2740 SDValue Agg = getValue(Op0); 2741 SDValue Val = getValue(Op1); 2742 unsigned i = 0; 2743 // Copy the beginning value(s) from the original aggregate. 2744 for (; i != LinearIndex; ++i) 2745 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2746 SDValue(Agg.getNode(), Agg.getResNo() + i); 2747 // Copy values from the inserted value(s). 2748 for (; i != LinearIndex + NumValValues; ++i) 2749 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2750 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2751 // Copy remaining value(s) from the original aggregate. 2752 for (; i != NumAggValues; ++i) 2753 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2754 SDValue(Agg.getNode(), Agg.getResNo() + i); 2755 2756 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2757 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2758 &Values[0], NumAggValues)); 2759 } 2760 2761 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2762 const Value *Op0 = I.getOperand(0); 2763 const Type *AggTy = Op0->getType(); 2764 const Type *ValTy = I.getType(); 2765 bool OutOfUndef = isa<UndefValue>(Op0); 2766 2767 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2768 I.idx_begin(), I.idx_end()); 2769 2770 SmallVector<EVT, 4> ValValueVTs; 2771 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2772 2773 unsigned NumValValues = ValValueVTs.size(); 2774 SmallVector<SDValue, 4> Values(NumValValues); 2775 2776 SDValue Agg = getValue(Op0); 2777 // Copy out the selected value(s). 2778 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2779 Values[i - LinearIndex] = 2780 OutOfUndef ? 2781 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2782 SDValue(Agg.getNode(), Agg.getResNo() + i); 2783 2784 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2785 DAG.getVTList(&ValValueVTs[0], NumValValues), 2786 &Values[0], NumValValues)); 2787 } 2788 2789 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2790 SDValue N = getValue(I.getOperand(0)); 2791 const Type *Ty = I.getOperand(0)->getType(); 2792 2793 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2794 OI != E; ++OI) { 2795 const Value *Idx = *OI; 2796 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2797 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2798 if (Field) { 2799 // N = N + Offset 2800 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2801 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2802 DAG.getIntPtrConstant(Offset)); 2803 } 2804 2805 Ty = StTy->getElementType(Field); 2806 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2807 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2808 2809 // Offset canonically 0 for unions, but type changes 2810 Ty = UnTy->getElementType(Field); 2811 } else { 2812 Ty = cast<SequentialType>(Ty)->getElementType(); 2813 2814 // If this is a constant subscript, handle it quickly. 2815 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2816 if (CI->isZero()) continue; 2817 uint64_t Offs = 2818 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2819 SDValue OffsVal; 2820 EVT PTy = TLI.getPointerTy(); 2821 unsigned PtrBits = PTy.getSizeInBits(); 2822 if (PtrBits < 64) 2823 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2824 TLI.getPointerTy(), 2825 DAG.getConstant(Offs, MVT::i64)); 2826 else 2827 OffsVal = DAG.getIntPtrConstant(Offs); 2828 2829 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2830 OffsVal); 2831 continue; 2832 } 2833 2834 // N = N + Idx * ElementSize; 2835 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2836 TD->getTypeAllocSize(Ty)); 2837 SDValue IdxN = getValue(Idx); 2838 2839 // If the index is smaller or larger than intptr_t, truncate or extend 2840 // it. 2841 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2842 2843 // If this is a multiply by a power of two, turn it into a shl 2844 // immediately. This is a very common case. 2845 if (ElementSize != 1) { 2846 if (ElementSize.isPowerOf2()) { 2847 unsigned Amt = ElementSize.logBase2(); 2848 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2849 N.getValueType(), IdxN, 2850 DAG.getConstant(Amt, TLI.getPointerTy())); 2851 } else { 2852 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2853 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2854 N.getValueType(), IdxN, Scale); 2855 } 2856 } 2857 2858 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2859 N.getValueType(), N, IdxN); 2860 } 2861 } 2862 2863 setValue(&I, N); 2864 } 2865 2866 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2867 // If this is a fixed sized alloca in the entry block of the function, 2868 // allocate it statically on the stack. 2869 if (FuncInfo.StaticAllocaMap.count(&I)) 2870 return; // getValue will auto-populate this. 2871 2872 const Type *Ty = I.getAllocatedType(); 2873 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2874 unsigned Align = 2875 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2876 I.getAlignment()); 2877 2878 SDValue AllocSize = getValue(I.getArraySize()); 2879 2880 EVT IntPtr = TLI.getPointerTy(); 2881 if (AllocSize.getValueType() != IntPtr) 2882 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2883 2884 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2885 AllocSize, 2886 DAG.getConstant(TySize, IntPtr)); 2887 2888 // Handle alignment. If the requested alignment is less than or equal to 2889 // the stack alignment, ignore it. If the size is greater than or equal to 2890 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2891 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2892 if (Align <= StackAlign) 2893 Align = 0; 2894 2895 // Round the size of the allocation up to the stack alignment size 2896 // by add SA-1 to the size. 2897 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2898 AllocSize.getValueType(), AllocSize, 2899 DAG.getIntPtrConstant(StackAlign-1)); 2900 2901 // Mask out the low bits for alignment purposes. 2902 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2903 AllocSize.getValueType(), AllocSize, 2904 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2905 2906 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2907 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2908 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2909 VTs, Ops, 3); 2910 setValue(&I, DSA); 2911 DAG.setRoot(DSA.getValue(1)); 2912 2913 // Inform the Frame Information that we have just allocated a variable-sized 2914 // object. 2915 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2916 } 2917 2918 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2919 const Value *SV = I.getOperand(0); 2920 SDValue Ptr = getValue(SV); 2921 2922 const Type *Ty = I.getType(); 2923 2924 bool isVolatile = I.isVolatile(); 2925 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2926 unsigned Alignment = I.getAlignment(); 2927 2928 SmallVector<EVT, 4> ValueVTs; 2929 SmallVector<uint64_t, 4> Offsets; 2930 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2931 unsigned NumValues = ValueVTs.size(); 2932 if (NumValues == 0) 2933 return; 2934 2935 SDValue Root; 2936 bool ConstantMemory = false; 2937 if (I.isVolatile()) 2938 // Serialize volatile loads with other side effects. 2939 Root = getRoot(); 2940 else if (AA->pointsToConstantMemory(SV)) { 2941 // Do not serialize (non-volatile) loads of constant memory with anything. 2942 Root = DAG.getEntryNode(); 2943 ConstantMemory = true; 2944 } else { 2945 // Do not serialize non-volatile loads against each other. 2946 Root = DAG.getRoot(); 2947 } 2948 2949 SmallVector<SDValue, 4> Values(NumValues); 2950 SmallVector<SDValue, 4> Chains(NumValues); 2951 EVT PtrVT = Ptr.getValueType(); 2952 for (unsigned i = 0; i != NumValues; ++i) { 2953 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2954 PtrVT, Ptr, 2955 DAG.getConstant(Offsets[i], PtrVT)); 2956 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2957 A, SV, Offsets[i], isVolatile, 2958 isNonTemporal, Alignment); 2959 2960 Values[i] = L; 2961 Chains[i] = L.getValue(1); 2962 } 2963 2964 if (!ConstantMemory) { 2965 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2966 MVT::Other, &Chains[0], NumValues); 2967 if (isVolatile) 2968 DAG.setRoot(Chain); 2969 else 2970 PendingLoads.push_back(Chain); 2971 } 2972 2973 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2974 DAG.getVTList(&ValueVTs[0], NumValues), 2975 &Values[0], NumValues)); 2976 } 2977 2978 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2979 const Value *SrcV = I.getOperand(0); 2980 const Value *PtrV = I.getOperand(1); 2981 2982 SmallVector<EVT, 4> ValueVTs; 2983 SmallVector<uint64_t, 4> Offsets; 2984 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2985 unsigned NumValues = ValueVTs.size(); 2986 if (NumValues == 0) 2987 return; 2988 2989 // Get the lowered operands. Note that we do this after 2990 // checking if NumResults is zero, because with zero results 2991 // the operands won't have values in the map. 2992 SDValue Src = getValue(SrcV); 2993 SDValue Ptr = getValue(PtrV); 2994 2995 SDValue Root = getRoot(); 2996 SmallVector<SDValue, 4> Chains(NumValues); 2997 EVT PtrVT = Ptr.getValueType(); 2998 bool isVolatile = I.isVolatile(); 2999 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3000 unsigned Alignment = I.getAlignment(); 3001 3002 for (unsigned i = 0; i != NumValues; ++i) { 3003 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3004 DAG.getConstant(Offsets[i], PtrVT)); 3005 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3006 SDValue(Src.getNode(), Src.getResNo() + i), 3007 Add, PtrV, Offsets[i], isVolatile, 3008 isNonTemporal, Alignment); 3009 } 3010 3011 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3012 MVT::Other, &Chains[0], NumValues)); 3013 } 3014 3015 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3016 /// node. 3017 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3018 unsigned Intrinsic) { 3019 bool HasChain = !I.doesNotAccessMemory(); 3020 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3021 3022 // Build the operand list. 3023 SmallVector<SDValue, 8> Ops; 3024 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3025 if (OnlyLoad) { 3026 // We don't need to serialize loads against other loads. 3027 Ops.push_back(DAG.getRoot()); 3028 } else { 3029 Ops.push_back(getRoot()); 3030 } 3031 } 3032 3033 // Info is set by getTgtMemInstrinsic 3034 TargetLowering::IntrinsicInfo Info; 3035 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3036 3037 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3038 if (!IsTgtIntrinsic) 3039 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3040 3041 // Add all operands of the call to the operand list. 3042 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3043 SDValue Op = getValue(I.getArgOperand(i)); 3044 assert(TLI.isTypeLegal(Op.getValueType()) && 3045 "Intrinsic uses a non-legal type?"); 3046 Ops.push_back(Op); 3047 } 3048 3049 SmallVector<EVT, 4> ValueVTs; 3050 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3051 #ifndef NDEBUG 3052 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3053 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3054 "Intrinsic uses a non-legal type?"); 3055 } 3056 #endif // NDEBUG 3057 3058 if (HasChain) 3059 ValueVTs.push_back(MVT::Other); 3060 3061 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3062 3063 // Create the node. 3064 SDValue Result; 3065 if (IsTgtIntrinsic) { 3066 // This is target intrinsic that touches memory 3067 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3068 VTs, &Ops[0], Ops.size(), 3069 Info.memVT, Info.ptrVal, Info.offset, 3070 Info.align, Info.vol, 3071 Info.readMem, Info.writeMem); 3072 } else if (!HasChain) { 3073 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3074 VTs, &Ops[0], Ops.size()); 3075 } else if (!I.getType()->isVoidTy()) { 3076 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3077 VTs, &Ops[0], Ops.size()); 3078 } else { 3079 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3080 VTs, &Ops[0], Ops.size()); 3081 } 3082 3083 if (HasChain) { 3084 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3085 if (OnlyLoad) 3086 PendingLoads.push_back(Chain); 3087 else 3088 DAG.setRoot(Chain); 3089 } 3090 3091 if (!I.getType()->isVoidTy()) { 3092 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3093 EVT VT = TLI.getValueType(PTy); 3094 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3095 } 3096 3097 setValue(&I, Result); 3098 } 3099 } 3100 3101 /// GetSignificand - Get the significand and build it into a floating-point 3102 /// number with exponent of 1: 3103 /// 3104 /// Op = (Op & 0x007fffff) | 0x3f800000; 3105 /// 3106 /// where Op is the hexidecimal representation of floating point value. 3107 static SDValue 3108 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3109 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3110 DAG.getConstant(0x007fffff, MVT::i32)); 3111 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3112 DAG.getConstant(0x3f800000, MVT::i32)); 3113 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3114 } 3115 3116 /// GetExponent - Get the exponent: 3117 /// 3118 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3119 /// 3120 /// where Op is the hexidecimal representation of floating point value. 3121 static SDValue 3122 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3123 DebugLoc dl) { 3124 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3125 DAG.getConstant(0x7f800000, MVT::i32)); 3126 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3127 DAG.getConstant(23, TLI.getPointerTy())); 3128 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3129 DAG.getConstant(127, MVT::i32)); 3130 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3131 } 3132 3133 /// getF32Constant - Get 32-bit floating point constant. 3134 static SDValue 3135 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3136 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3137 } 3138 3139 /// Inlined utility function to implement binary input atomic intrinsics for 3140 /// visitIntrinsicCall: I is a call instruction 3141 /// Op is the associated NodeType for I 3142 const char * 3143 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3144 ISD::NodeType Op) { 3145 SDValue Root = getRoot(); 3146 SDValue L = 3147 DAG.getAtomic(Op, getCurDebugLoc(), 3148 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3149 Root, 3150 getValue(I.getArgOperand(0)), 3151 getValue(I.getArgOperand(1)), 3152 I.getArgOperand(0)); 3153 setValue(&I, L); 3154 DAG.setRoot(L.getValue(1)); 3155 return 0; 3156 } 3157 3158 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3159 const char * 3160 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3161 SDValue Op1 = getValue(I.getArgOperand(0)); 3162 SDValue Op2 = getValue(I.getArgOperand(1)); 3163 3164 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3165 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3166 return 0; 3167 } 3168 3169 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3170 /// limited-precision mode. 3171 void 3172 SelectionDAGBuilder::visitExp(const CallInst &I) { 3173 SDValue result; 3174 DebugLoc dl = getCurDebugLoc(); 3175 3176 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3177 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3178 SDValue Op = getValue(I.getArgOperand(0)); 3179 3180 // Put the exponent in the right bit position for later addition to the 3181 // final result: 3182 // 3183 // #define LOG2OFe 1.4426950f 3184 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3185 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3186 getF32Constant(DAG, 0x3fb8aa3b)); 3187 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3188 3189 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3190 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3191 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3192 3193 // IntegerPartOfX <<= 23; 3194 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3195 DAG.getConstant(23, TLI.getPointerTy())); 3196 3197 if (LimitFloatPrecision <= 6) { 3198 // For floating-point precision of 6: 3199 // 3200 // TwoToFractionalPartOfX = 3201 // 0.997535578f + 3202 // (0.735607626f + 0.252464424f * x) * x; 3203 // 3204 // error 0.0144103317, which is 6 bits 3205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3206 getF32Constant(DAG, 0x3e814304)); 3207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3208 getF32Constant(DAG, 0x3f3c50c8)); 3209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3211 getF32Constant(DAG, 0x3f7f5e7e)); 3212 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3213 3214 // Add the exponent into the result in integer domain. 3215 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3216 TwoToFracPartOfX, IntegerPartOfX); 3217 3218 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3219 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3220 // For floating-point precision of 12: 3221 // 3222 // TwoToFractionalPartOfX = 3223 // 0.999892986f + 3224 // (0.696457318f + 3225 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3226 // 3227 // 0.000107046256 error, which is 13 to 14 bits 3228 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3229 getF32Constant(DAG, 0x3da235e3)); 3230 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3231 getF32Constant(DAG, 0x3e65b8f3)); 3232 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3233 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3234 getF32Constant(DAG, 0x3f324b07)); 3235 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3236 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3237 getF32Constant(DAG, 0x3f7ff8fd)); 3238 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3239 3240 // Add the exponent into the result in integer domain. 3241 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3242 TwoToFracPartOfX, IntegerPartOfX); 3243 3244 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3245 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3246 // For floating-point precision of 18: 3247 // 3248 // TwoToFractionalPartOfX = 3249 // 0.999999982f + 3250 // (0.693148872f + 3251 // (0.240227044f + 3252 // (0.554906021e-1f + 3253 // (0.961591928e-2f + 3254 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3255 // 3256 // error 2.47208000*10^(-7), which is better than 18 bits 3257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3258 getF32Constant(DAG, 0x3924b03e)); 3259 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3260 getF32Constant(DAG, 0x3ab24b87)); 3261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3263 getF32Constant(DAG, 0x3c1d8c17)); 3264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3265 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3266 getF32Constant(DAG, 0x3d634a1d)); 3267 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3268 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3269 getF32Constant(DAG, 0x3e75fe14)); 3270 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3271 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3272 getF32Constant(DAG, 0x3f317234)); 3273 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3274 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3275 getF32Constant(DAG, 0x3f800000)); 3276 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3277 MVT::i32, t13); 3278 3279 // Add the exponent into the result in integer domain. 3280 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3281 TwoToFracPartOfX, IntegerPartOfX); 3282 3283 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3284 } 3285 } else { 3286 // No special expansion. 3287 result = DAG.getNode(ISD::FEXP, dl, 3288 getValue(I.getArgOperand(0)).getValueType(), 3289 getValue(I.getArgOperand(0))); 3290 } 3291 3292 setValue(&I, result); 3293 } 3294 3295 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3296 /// limited-precision mode. 3297 void 3298 SelectionDAGBuilder::visitLog(const CallInst &I) { 3299 SDValue result; 3300 DebugLoc dl = getCurDebugLoc(); 3301 3302 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3303 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3304 SDValue Op = getValue(I.getArgOperand(0)); 3305 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3306 3307 // Scale the exponent by log(2) [0.69314718f]. 3308 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3309 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3310 getF32Constant(DAG, 0x3f317218)); 3311 3312 // Get the significand and build it into a floating-point number with 3313 // exponent of 1. 3314 SDValue X = GetSignificand(DAG, Op1, dl); 3315 3316 if (LimitFloatPrecision <= 6) { 3317 // For floating-point precision of 6: 3318 // 3319 // LogofMantissa = 3320 // -1.1609546f + 3321 // (1.4034025f - 0.23903021f * x) * x; 3322 // 3323 // error 0.0034276066, which is better than 8 bits 3324 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3325 getF32Constant(DAG, 0xbe74c456)); 3326 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3327 getF32Constant(DAG, 0x3fb3a2b1)); 3328 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3329 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3330 getF32Constant(DAG, 0x3f949a29)); 3331 3332 result = DAG.getNode(ISD::FADD, dl, 3333 MVT::f32, LogOfExponent, LogOfMantissa); 3334 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3335 // For floating-point precision of 12: 3336 // 3337 // LogOfMantissa = 3338 // -1.7417939f + 3339 // (2.8212026f + 3340 // (-1.4699568f + 3341 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3342 // 3343 // error 0.000061011436, which is 14 bits 3344 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3345 getF32Constant(DAG, 0xbd67b6d6)); 3346 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3347 getF32Constant(DAG, 0x3ee4f4b8)); 3348 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3349 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3350 getF32Constant(DAG, 0x3fbc278b)); 3351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3352 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3353 getF32Constant(DAG, 0x40348e95)); 3354 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3355 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3356 getF32Constant(DAG, 0x3fdef31a)); 3357 3358 result = DAG.getNode(ISD::FADD, dl, 3359 MVT::f32, LogOfExponent, LogOfMantissa); 3360 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3361 // For floating-point precision of 18: 3362 // 3363 // LogOfMantissa = 3364 // -2.1072184f + 3365 // (4.2372794f + 3366 // (-3.7029485f + 3367 // (2.2781945f + 3368 // (-0.87823314f + 3369 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3370 // 3371 // error 0.0000023660568, which is better than 18 bits 3372 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3373 getF32Constant(DAG, 0xbc91e5ac)); 3374 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3375 getF32Constant(DAG, 0x3e4350aa)); 3376 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3377 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3378 getF32Constant(DAG, 0x3f60d3e3)); 3379 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3380 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3381 getF32Constant(DAG, 0x4011cdf0)); 3382 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3383 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3384 getF32Constant(DAG, 0x406cfd1c)); 3385 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3386 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3387 getF32Constant(DAG, 0x408797cb)); 3388 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3389 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3390 getF32Constant(DAG, 0x4006dcab)); 3391 3392 result = DAG.getNode(ISD::FADD, dl, 3393 MVT::f32, LogOfExponent, LogOfMantissa); 3394 } 3395 } else { 3396 // No special expansion. 3397 result = DAG.getNode(ISD::FLOG, dl, 3398 getValue(I.getArgOperand(0)).getValueType(), 3399 getValue(I.getArgOperand(0))); 3400 } 3401 3402 setValue(&I, result); 3403 } 3404 3405 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3406 /// limited-precision mode. 3407 void 3408 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3409 SDValue result; 3410 DebugLoc dl = getCurDebugLoc(); 3411 3412 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3413 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3414 SDValue Op = getValue(I.getArgOperand(0)); 3415 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3416 3417 // Get the exponent. 3418 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3419 3420 // Get the significand and build it into a floating-point number with 3421 // exponent of 1. 3422 SDValue X = GetSignificand(DAG, Op1, dl); 3423 3424 // Different possible minimax approximations of significand in 3425 // floating-point for various degrees of accuracy over [1,2]. 3426 if (LimitFloatPrecision <= 6) { 3427 // For floating-point precision of 6: 3428 // 3429 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3430 // 3431 // error 0.0049451742, which is more than 7 bits 3432 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3433 getF32Constant(DAG, 0xbeb08fe0)); 3434 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3435 getF32Constant(DAG, 0x40019463)); 3436 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3437 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3438 getF32Constant(DAG, 0x3fd6633d)); 3439 3440 result = DAG.getNode(ISD::FADD, dl, 3441 MVT::f32, LogOfExponent, Log2ofMantissa); 3442 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3443 // For floating-point precision of 12: 3444 // 3445 // Log2ofMantissa = 3446 // -2.51285454f + 3447 // (4.07009056f + 3448 // (-2.12067489f + 3449 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3450 // 3451 // error 0.0000876136000, which is better than 13 bits 3452 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3453 getF32Constant(DAG, 0xbda7262e)); 3454 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3455 getF32Constant(DAG, 0x3f25280b)); 3456 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3457 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3458 getF32Constant(DAG, 0x4007b923)); 3459 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3460 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3461 getF32Constant(DAG, 0x40823e2f)); 3462 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3463 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3464 getF32Constant(DAG, 0x4020d29c)); 3465 3466 result = DAG.getNode(ISD::FADD, dl, 3467 MVT::f32, LogOfExponent, Log2ofMantissa); 3468 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3469 // For floating-point precision of 18: 3470 // 3471 // Log2ofMantissa = 3472 // -3.0400495f + 3473 // (6.1129976f + 3474 // (-5.3420409f + 3475 // (3.2865683f + 3476 // (-1.2669343f + 3477 // (0.27515199f - 3478 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3479 // 3480 // error 0.0000018516, which is better than 18 bits 3481 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3482 getF32Constant(DAG, 0xbcd2769e)); 3483 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3484 getF32Constant(DAG, 0x3e8ce0b9)); 3485 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3486 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3487 getF32Constant(DAG, 0x3fa22ae7)); 3488 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3489 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3490 getF32Constant(DAG, 0x40525723)); 3491 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3492 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3493 getF32Constant(DAG, 0x40aaf200)); 3494 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3495 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3496 getF32Constant(DAG, 0x40c39dad)); 3497 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3498 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3499 getF32Constant(DAG, 0x4042902c)); 3500 3501 result = DAG.getNode(ISD::FADD, dl, 3502 MVT::f32, LogOfExponent, Log2ofMantissa); 3503 } 3504 } else { 3505 // No special expansion. 3506 result = DAG.getNode(ISD::FLOG2, dl, 3507 getValue(I.getArgOperand(0)).getValueType(), 3508 getValue(I.getArgOperand(0))); 3509 } 3510 3511 setValue(&I, result); 3512 } 3513 3514 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3515 /// limited-precision mode. 3516 void 3517 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3518 SDValue result; 3519 DebugLoc dl = getCurDebugLoc(); 3520 3521 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3523 SDValue Op = getValue(I.getArgOperand(0)); 3524 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3525 3526 // Scale the exponent by log10(2) [0.30102999f]. 3527 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3528 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3529 getF32Constant(DAG, 0x3e9a209a)); 3530 3531 // Get the significand and build it into a floating-point number with 3532 // exponent of 1. 3533 SDValue X = GetSignificand(DAG, Op1, dl); 3534 3535 if (LimitFloatPrecision <= 6) { 3536 // For floating-point precision of 6: 3537 // 3538 // Log10ofMantissa = 3539 // -0.50419619f + 3540 // (0.60948995f - 0.10380950f * x) * x; 3541 // 3542 // error 0.0014886165, which is 6 bits 3543 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3544 getF32Constant(DAG, 0xbdd49a13)); 3545 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3546 getF32Constant(DAG, 0x3f1c0789)); 3547 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3548 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3549 getF32Constant(DAG, 0x3f011300)); 3550 3551 result = DAG.getNode(ISD::FADD, dl, 3552 MVT::f32, LogOfExponent, Log10ofMantissa); 3553 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3554 // For floating-point precision of 12: 3555 // 3556 // Log10ofMantissa = 3557 // -0.64831180f + 3558 // (0.91751397f + 3559 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3560 // 3561 // error 0.00019228036, which is better than 12 bits 3562 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3563 getF32Constant(DAG, 0x3d431f31)); 3564 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3565 getF32Constant(DAG, 0x3ea21fb2)); 3566 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3567 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3568 getF32Constant(DAG, 0x3f6ae232)); 3569 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3570 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3571 getF32Constant(DAG, 0x3f25f7c3)); 3572 3573 result = DAG.getNode(ISD::FADD, dl, 3574 MVT::f32, LogOfExponent, Log10ofMantissa); 3575 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3576 // For floating-point precision of 18: 3577 // 3578 // Log10ofMantissa = 3579 // -0.84299375f + 3580 // (1.5327582f + 3581 // (-1.0688956f + 3582 // (0.49102474f + 3583 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3584 // 3585 // error 0.0000037995730, which is better than 18 bits 3586 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3587 getF32Constant(DAG, 0x3c5d51ce)); 3588 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3589 getF32Constant(DAG, 0x3e00685a)); 3590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3591 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3592 getF32Constant(DAG, 0x3efb6798)); 3593 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3594 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3595 getF32Constant(DAG, 0x3f88d192)); 3596 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3597 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3598 getF32Constant(DAG, 0x3fc4316c)); 3599 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3600 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3601 getF32Constant(DAG, 0x3f57ce70)); 3602 3603 result = DAG.getNode(ISD::FADD, dl, 3604 MVT::f32, LogOfExponent, Log10ofMantissa); 3605 } 3606 } else { 3607 // No special expansion. 3608 result = DAG.getNode(ISD::FLOG10, dl, 3609 getValue(I.getArgOperand(0)).getValueType(), 3610 getValue(I.getArgOperand(0))); 3611 } 3612 3613 setValue(&I, result); 3614 } 3615 3616 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3617 /// limited-precision mode. 3618 void 3619 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3620 SDValue result; 3621 DebugLoc dl = getCurDebugLoc(); 3622 3623 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3624 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3625 SDValue Op = getValue(I.getArgOperand(0)); 3626 3627 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3628 3629 // FractionalPartOfX = x - (float)IntegerPartOfX; 3630 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3631 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3632 3633 // IntegerPartOfX <<= 23; 3634 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3635 DAG.getConstant(23, TLI.getPointerTy())); 3636 3637 if (LimitFloatPrecision <= 6) { 3638 // For floating-point precision of 6: 3639 // 3640 // TwoToFractionalPartOfX = 3641 // 0.997535578f + 3642 // (0.735607626f + 0.252464424f * x) * x; 3643 // 3644 // error 0.0144103317, which is 6 bits 3645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3646 getF32Constant(DAG, 0x3e814304)); 3647 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3648 getF32Constant(DAG, 0x3f3c50c8)); 3649 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3650 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3651 getF32Constant(DAG, 0x3f7f5e7e)); 3652 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3653 SDValue TwoToFractionalPartOfX = 3654 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3655 3656 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3657 MVT::f32, TwoToFractionalPartOfX); 3658 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3659 // For floating-point precision of 12: 3660 // 3661 // TwoToFractionalPartOfX = 3662 // 0.999892986f + 3663 // (0.696457318f + 3664 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3665 // 3666 // error 0.000107046256, which is 13 to 14 bits 3667 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3668 getF32Constant(DAG, 0x3da235e3)); 3669 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3670 getF32Constant(DAG, 0x3e65b8f3)); 3671 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3672 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3673 getF32Constant(DAG, 0x3f324b07)); 3674 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3675 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3676 getF32Constant(DAG, 0x3f7ff8fd)); 3677 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3678 SDValue TwoToFractionalPartOfX = 3679 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3680 3681 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3682 MVT::f32, TwoToFractionalPartOfX); 3683 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3684 // For floating-point precision of 18: 3685 // 3686 // TwoToFractionalPartOfX = 3687 // 0.999999982f + 3688 // (0.693148872f + 3689 // (0.240227044f + 3690 // (0.554906021e-1f + 3691 // (0.961591928e-2f + 3692 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3693 // error 2.47208000*10^(-7), which is better than 18 bits 3694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3695 getF32Constant(DAG, 0x3924b03e)); 3696 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3697 getF32Constant(DAG, 0x3ab24b87)); 3698 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3699 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3700 getF32Constant(DAG, 0x3c1d8c17)); 3701 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3702 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3703 getF32Constant(DAG, 0x3d634a1d)); 3704 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3705 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3706 getF32Constant(DAG, 0x3e75fe14)); 3707 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3708 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3709 getF32Constant(DAG, 0x3f317234)); 3710 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3711 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3712 getF32Constant(DAG, 0x3f800000)); 3713 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3714 SDValue TwoToFractionalPartOfX = 3715 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3716 3717 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3718 MVT::f32, TwoToFractionalPartOfX); 3719 } 3720 } else { 3721 // No special expansion. 3722 result = DAG.getNode(ISD::FEXP2, dl, 3723 getValue(I.getArgOperand(0)).getValueType(), 3724 getValue(I.getArgOperand(0))); 3725 } 3726 3727 setValue(&I, result); 3728 } 3729 3730 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3731 /// limited-precision mode with x == 10.0f. 3732 void 3733 SelectionDAGBuilder::visitPow(const CallInst &I) { 3734 SDValue result; 3735 const Value *Val = I.getArgOperand(0); 3736 DebugLoc dl = getCurDebugLoc(); 3737 bool IsExp10 = false; 3738 3739 if (getValue(Val).getValueType() == MVT::f32 && 3740 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3741 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3742 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3743 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3744 APFloat Ten(10.0f); 3745 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3746 } 3747 } 3748 } 3749 3750 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3751 SDValue Op = getValue(I.getArgOperand(1)); 3752 3753 // Put the exponent in the right bit position for later addition to the 3754 // final result: 3755 // 3756 // #define LOG2OF10 3.3219281f 3757 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3758 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3759 getF32Constant(DAG, 0x40549a78)); 3760 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3761 3762 // FractionalPartOfX = x - (float)IntegerPartOfX; 3763 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3764 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3765 3766 // IntegerPartOfX <<= 23; 3767 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3768 DAG.getConstant(23, TLI.getPointerTy())); 3769 3770 if (LimitFloatPrecision <= 6) { 3771 // For floating-point precision of 6: 3772 // 3773 // twoToFractionalPartOfX = 3774 // 0.997535578f + 3775 // (0.735607626f + 0.252464424f * x) * x; 3776 // 3777 // error 0.0144103317, which is 6 bits 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0x3e814304)); 3780 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3f3c50c8)); 3782 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3783 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3784 getF32Constant(DAG, 0x3f7f5e7e)); 3785 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3786 SDValue TwoToFractionalPartOfX = 3787 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3788 3789 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3790 MVT::f32, TwoToFractionalPartOfX); 3791 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3792 // For floating-point precision of 12: 3793 // 3794 // TwoToFractionalPartOfX = 3795 // 0.999892986f + 3796 // (0.696457318f + 3797 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3798 // 3799 // error 0.000107046256, which is 13 to 14 bits 3800 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3801 getF32Constant(DAG, 0x3da235e3)); 3802 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3803 getF32Constant(DAG, 0x3e65b8f3)); 3804 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3805 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3806 getF32Constant(DAG, 0x3f324b07)); 3807 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3808 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3809 getF32Constant(DAG, 0x3f7ff8fd)); 3810 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3811 SDValue TwoToFractionalPartOfX = 3812 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3813 3814 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3815 MVT::f32, TwoToFractionalPartOfX); 3816 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3817 // For floating-point precision of 18: 3818 // 3819 // TwoToFractionalPartOfX = 3820 // 0.999999982f + 3821 // (0.693148872f + 3822 // (0.240227044f + 3823 // (0.554906021e-1f + 3824 // (0.961591928e-2f + 3825 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3826 // error 2.47208000*10^(-7), which is better than 18 bits 3827 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3828 getF32Constant(DAG, 0x3924b03e)); 3829 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3830 getF32Constant(DAG, 0x3ab24b87)); 3831 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3832 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3833 getF32Constant(DAG, 0x3c1d8c17)); 3834 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3835 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3836 getF32Constant(DAG, 0x3d634a1d)); 3837 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3838 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3839 getF32Constant(DAG, 0x3e75fe14)); 3840 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3841 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3842 getF32Constant(DAG, 0x3f317234)); 3843 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3844 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3845 getF32Constant(DAG, 0x3f800000)); 3846 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3847 SDValue TwoToFractionalPartOfX = 3848 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3849 3850 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3851 MVT::f32, TwoToFractionalPartOfX); 3852 } 3853 } else { 3854 // No special expansion. 3855 result = DAG.getNode(ISD::FPOW, dl, 3856 getValue(I.getArgOperand(0)).getValueType(), 3857 getValue(I.getArgOperand(0)), 3858 getValue(I.getArgOperand(1))); 3859 } 3860 3861 setValue(&I, result); 3862 } 3863 3864 3865 /// ExpandPowI - Expand a llvm.powi intrinsic. 3866 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3867 SelectionDAG &DAG) { 3868 // If RHS is a constant, we can expand this out to a multiplication tree, 3869 // otherwise we end up lowering to a call to __powidf2 (for example). When 3870 // optimizing for size, we only want to do this if the expansion would produce 3871 // a small number of multiplies, otherwise we do the full expansion. 3872 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3873 // Get the exponent as a positive value. 3874 unsigned Val = RHSC->getSExtValue(); 3875 if ((int)Val < 0) Val = -Val; 3876 3877 // powi(x, 0) -> 1.0 3878 if (Val == 0) 3879 return DAG.getConstantFP(1.0, LHS.getValueType()); 3880 3881 const Function *F = DAG.getMachineFunction().getFunction(); 3882 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3883 // If optimizing for size, don't insert too many multiplies. This 3884 // inserts up to 5 multiplies. 3885 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3886 // We use the simple binary decomposition method to generate the multiply 3887 // sequence. There are more optimal ways to do this (for example, 3888 // powi(x,15) generates one more multiply than it should), but this has 3889 // the benefit of being both really simple and much better than a libcall. 3890 SDValue Res; // Logically starts equal to 1.0 3891 SDValue CurSquare = LHS; 3892 while (Val) { 3893 if (Val & 1) { 3894 if (Res.getNode()) 3895 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3896 else 3897 Res = CurSquare; // 1.0*CurSquare. 3898 } 3899 3900 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3901 CurSquare, CurSquare); 3902 Val >>= 1; 3903 } 3904 3905 // If the original was negative, invert the result, producing 1/(x*x*x). 3906 if (RHSC->getSExtValue() < 0) 3907 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3908 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3909 return Res; 3910 } 3911 } 3912 3913 // Otherwise, expand to a libcall. 3914 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3915 } 3916 3917 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3918 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3919 /// At the end of instruction selection, they will be inserted to the entry BB. 3920 bool 3921 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3922 uint64_t Offset, 3923 const SDValue &N) { 3924 if (!isa<Argument>(V)) 3925 return false; 3926 3927 MachineFunction &MF = DAG.getMachineFunction(); 3928 // Ignore inlined function arguments here. 3929 DIVariable DV(Variable); 3930 if (DV.isInlinedFnArgument(MF.getFunction())) 3931 return false; 3932 3933 MachineBasicBlock *MBB = FuncInfo.MBB; 3934 if (MBB != &MF.front()) 3935 return false; 3936 3937 unsigned Reg = 0; 3938 if (N.getOpcode() == ISD::CopyFromReg) { 3939 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3940 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3941 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3942 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3943 if (PR) 3944 Reg = PR; 3945 } 3946 } 3947 3948 if (!Reg) { 3949 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3950 if (VMI == FuncInfo.ValueMap.end()) 3951 return false; 3952 Reg = VMI->second; 3953 } 3954 3955 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3956 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3957 TII->get(TargetOpcode::DBG_VALUE)) 3958 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3959 FuncInfo.ArgDbgValues.push_back(&*MIB); 3960 return true; 3961 } 3962 3963 // VisualStudio defines setjmp as _setjmp 3964 #if defined(_MSC_VER) && defined(setjmp) 3965 #define setjmp_undefined_for_visual_studio 3966 #undef setjmp 3967 #endif 3968 3969 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3970 /// we want to emit this as a call to a named external function, return the name 3971 /// otherwise lower it and return null. 3972 const char * 3973 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3974 DebugLoc dl = getCurDebugLoc(); 3975 SDValue Res; 3976 3977 switch (Intrinsic) { 3978 default: 3979 // By default, turn this into a target intrinsic node. 3980 visitTargetIntrinsic(I, Intrinsic); 3981 return 0; 3982 case Intrinsic::vastart: visitVAStart(I); return 0; 3983 case Intrinsic::vaend: visitVAEnd(I); return 0; 3984 case Intrinsic::vacopy: visitVACopy(I); return 0; 3985 case Intrinsic::returnaddress: 3986 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3987 getValue(I.getArgOperand(0)))); 3988 return 0; 3989 case Intrinsic::frameaddress: 3990 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3991 getValue(I.getArgOperand(0)))); 3992 return 0; 3993 case Intrinsic::setjmp: 3994 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3995 case Intrinsic::longjmp: 3996 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3997 case Intrinsic::memcpy: { 3998 // Assert for address < 256 since we support only user defined address 3999 // spaces. 4000 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4001 < 256 && 4002 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4003 < 256 && 4004 "Unknown address space"); 4005 SDValue Op1 = getValue(I.getArgOperand(0)); 4006 SDValue Op2 = getValue(I.getArgOperand(1)); 4007 SDValue Op3 = getValue(I.getArgOperand(2)); 4008 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4009 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4010 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4011 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4012 return 0; 4013 } 4014 case Intrinsic::memset: { 4015 // Assert for address < 256 since we support only user defined address 4016 // spaces. 4017 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4018 < 256 && 4019 "Unknown address space"); 4020 SDValue Op1 = getValue(I.getArgOperand(0)); 4021 SDValue Op2 = getValue(I.getArgOperand(1)); 4022 SDValue Op3 = getValue(I.getArgOperand(2)); 4023 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4024 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4025 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4026 I.getArgOperand(0), 0)); 4027 return 0; 4028 } 4029 case Intrinsic::memmove: { 4030 // Assert for address < 256 since we support only user defined address 4031 // spaces. 4032 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4033 < 256 && 4034 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4035 < 256 && 4036 "Unknown address space"); 4037 SDValue Op1 = getValue(I.getArgOperand(0)); 4038 SDValue Op2 = getValue(I.getArgOperand(1)); 4039 SDValue Op3 = getValue(I.getArgOperand(2)); 4040 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4041 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4042 4043 // If the source and destination are known to not be aliases, we can 4044 // lower memmove as memcpy. 4045 uint64_t Size = -1ULL; 4046 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4047 Size = C->getZExtValue(); 4048 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4049 AliasAnalysis::NoAlias) { 4050 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4051 false, I.getArgOperand(0), 0, 4052 I.getArgOperand(1), 0)); 4053 return 0; 4054 } 4055 4056 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4057 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4058 return 0; 4059 } 4060 case Intrinsic::dbg_declare: { 4061 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4062 if (!DIVariable(DI.getVariable()).Verify()) 4063 return 0; 4064 4065 MDNode *Variable = DI.getVariable(); 4066 // Parameters are handled specially. 4067 bool isParameter = 4068 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4069 const Value *Address = DI.getAddress(); 4070 if (!Address) 4071 return 0; 4072 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4073 Address = BCI->getOperand(0); 4074 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4075 4076 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4077 // but do not always have a corresponding SDNode built. The SDNodeOrder 4078 // absolute, but not relative, values are different depending on whether 4079 // debug info exists. 4080 ++SDNodeOrder; 4081 SDValue &N = NodeMap[Address]; 4082 SDDbgValue *SDV; 4083 if (N.getNode()) { 4084 if (isParameter && !AI) { 4085 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4086 if (FINode) 4087 // Byval parameter. We have a frame index at this point. 4088 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4089 0, dl, SDNodeOrder); 4090 else 4091 // Can't do anything with other non-AI cases yet. This might be a 4092 // parameter of a callee function that got inlined, for example. 4093 return 0; 4094 } else if (AI) 4095 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4096 0, dl, SDNodeOrder); 4097 else 4098 // Can't do anything with other non-AI cases yet. 4099 return 0; 4100 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4101 } else { 4102 // This isn't useful, but it shows what we're missing. 4103 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4104 0, dl, SDNodeOrder); 4105 DAG.AddDbgValue(SDV, 0, isParameter); 4106 } 4107 return 0; 4108 } 4109 case Intrinsic::dbg_value: { 4110 const DbgValueInst &DI = cast<DbgValueInst>(I); 4111 if (!DIVariable(DI.getVariable()).Verify()) 4112 return 0; 4113 4114 MDNode *Variable = DI.getVariable(); 4115 uint64_t Offset = DI.getOffset(); 4116 const Value *V = DI.getValue(); 4117 if (!V) 4118 return 0; 4119 4120 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4121 // but do not always have a corresponding SDNode built. The SDNodeOrder 4122 // absolute, but not relative, values are different depending on whether 4123 // debug info exists. 4124 ++SDNodeOrder; 4125 SDDbgValue *SDV; 4126 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4127 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4128 DAG.AddDbgValue(SDV, 0, false); 4129 } else { 4130 bool createUndef = false; 4131 // Do not use getValue() in here; we don't want to generate code at 4132 // this point if it hasn't been done yet. 4133 SDValue N = NodeMap[V]; 4134 if (!N.getNode() && isa<Argument>(V)) 4135 // Check unused arguments map. 4136 N = UnusedArgNodeMap[V]; 4137 if (N.getNode()) { 4138 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4139 SDV = DAG.getDbgValue(Variable, N.getNode(), 4140 N.getResNo(), Offset, dl, SDNodeOrder); 4141 DAG.AddDbgValue(SDV, N.getNode(), false); 4142 } 4143 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4144 // Do not call getValue(V) yet, as we don't want to generate code. 4145 // Remember it for later. 4146 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4147 DanglingDebugInfoMap[V] = DDI; 4148 } else 4149 createUndef = true; 4150 if (createUndef) { 4151 // We may expand this to cover more cases. One case where we have no 4152 // data available is an unreferenced parameter; we need this fallback. 4153 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4154 Offset, dl, SDNodeOrder); 4155 DAG.AddDbgValue(SDV, 0, false); 4156 } 4157 } 4158 4159 // Build a debug info table entry. 4160 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4161 V = BCI->getOperand(0); 4162 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4163 // Don't handle byval struct arguments or VLAs, for example. 4164 if (!AI) 4165 return 0; 4166 DenseMap<const AllocaInst*, int>::iterator SI = 4167 FuncInfo.StaticAllocaMap.find(AI); 4168 if (SI == FuncInfo.StaticAllocaMap.end()) 4169 return 0; // VLAs. 4170 int FI = SI->second; 4171 4172 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4173 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4174 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4175 return 0; 4176 } 4177 case Intrinsic::eh_exception: { 4178 // Insert the EXCEPTIONADDR instruction. 4179 assert(FuncInfo.MBB->isLandingPad() && 4180 "Call to eh.exception not in landing pad!"); 4181 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4182 SDValue Ops[1]; 4183 Ops[0] = DAG.getRoot(); 4184 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4185 setValue(&I, Op); 4186 DAG.setRoot(Op.getValue(1)); 4187 return 0; 4188 } 4189 4190 case Intrinsic::eh_selector: { 4191 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4192 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4193 if (CallMBB->isLandingPad()) 4194 AddCatchInfo(I, &MMI, CallMBB); 4195 else { 4196 #ifndef NDEBUG 4197 FuncInfo.CatchInfoLost.insert(&I); 4198 #endif 4199 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4200 unsigned Reg = TLI.getExceptionSelectorRegister(); 4201 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4202 } 4203 4204 // Insert the EHSELECTION instruction. 4205 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4206 SDValue Ops[2]; 4207 Ops[0] = getValue(I.getArgOperand(0)); 4208 Ops[1] = getRoot(); 4209 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4210 DAG.setRoot(Op.getValue(1)); 4211 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4212 return 0; 4213 } 4214 4215 case Intrinsic::eh_typeid_for: { 4216 // Find the type id for the given typeinfo. 4217 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4218 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4219 Res = DAG.getConstant(TypeID, MVT::i32); 4220 setValue(&I, Res); 4221 return 0; 4222 } 4223 4224 case Intrinsic::eh_return_i32: 4225 case Intrinsic::eh_return_i64: 4226 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4227 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4228 MVT::Other, 4229 getControlRoot(), 4230 getValue(I.getArgOperand(0)), 4231 getValue(I.getArgOperand(1)))); 4232 return 0; 4233 case Intrinsic::eh_unwind_init: 4234 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4235 return 0; 4236 case Intrinsic::eh_dwarf_cfa: { 4237 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4238 TLI.getPointerTy()); 4239 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4240 TLI.getPointerTy(), 4241 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4242 TLI.getPointerTy()), 4243 CfaArg); 4244 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4245 TLI.getPointerTy(), 4246 DAG.getConstant(0, TLI.getPointerTy())); 4247 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4248 FA, Offset)); 4249 return 0; 4250 } 4251 case Intrinsic::eh_sjlj_callsite: { 4252 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4253 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4254 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4255 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4256 4257 MMI.setCurrentCallSite(CI->getZExtValue()); 4258 return 0; 4259 } 4260 case Intrinsic::eh_sjlj_setjmp: { 4261 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4262 getValue(I.getArgOperand(0)))); 4263 return 0; 4264 } 4265 case Intrinsic::eh_sjlj_longjmp: { 4266 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4267 getRoot(), 4268 getValue(I.getArgOperand(0)))); 4269 return 0; 4270 } 4271 4272 case Intrinsic::convertff: 4273 case Intrinsic::convertfsi: 4274 case Intrinsic::convertfui: 4275 case Intrinsic::convertsif: 4276 case Intrinsic::convertuif: 4277 case Intrinsic::convertss: 4278 case Intrinsic::convertsu: 4279 case Intrinsic::convertus: 4280 case Intrinsic::convertuu: { 4281 ISD::CvtCode Code = ISD::CVT_INVALID; 4282 switch (Intrinsic) { 4283 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4284 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4285 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4286 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4287 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4288 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4289 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4290 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4291 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4292 } 4293 EVT DestVT = TLI.getValueType(I.getType()); 4294 const Value *Op1 = I.getArgOperand(0); 4295 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4296 DAG.getValueType(DestVT), 4297 DAG.getValueType(getValue(Op1).getValueType()), 4298 getValue(I.getArgOperand(1)), 4299 getValue(I.getArgOperand(2)), 4300 Code); 4301 setValue(&I, Res); 4302 return 0; 4303 } 4304 case Intrinsic::sqrt: 4305 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4306 getValue(I.getArgOperand(0)).getValueType(), 4307 getValue(I.getArgOperand(0)))); 4308 return 0; 4309 case Intrinsic::powi: 4310 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4311 getValue(I.getArgOperand(1)), DAG)); 4312 return 0; 4313 case Intrinsic::sin: 4314 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4315 getValue(I.getArgOperand(0)).getValueType(), 4316 getValue(I.getArgOperand(0)))); 4317 return 0; 4318 case Intrinsic::cos: 4319 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4320 getValue(I.getArgOperand(0)).getValueType(), 4321 getValue(I.getArgOperand(0)))); 4322 return 0; 4323 case Intrinsic::log: 4324 visitLog(I); 4325 return 0; 4326 case Intrinsic::log2: 4327 visitLog2(I); 4328 return 0; 4329 case Intrinsic::log10: 4330 visitLog10(I); 4331 return 0; 4332 case Intrinsic::exp: 4333 visitExp(I); 4334 return 0; 4335 case Intrinsic::exp2: 4336 visitExp2(I); 4337 return 0; 4338 case Intrinsic::pow: 4339 visitPow(I); 4340 return 0; 4341 case Intrinsic::convert_to_fp16: 4342 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4343 MVT::i16, getValue(I.getArgOperand(0)))); 4344 return 0; 4345 case Intrinsic::convert_from_fp16: 4346 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4347 MVT::f32, getValue(I.getArgOperand(0)))); 4348 return 0; 4349 case Intrinsic::pcmarker: { 4350 SDValue Tmp = getValue(I.getArgOperand(0)); 4351 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4352 return 0; 4353 } 4354 case Intrinsic::readcyclecounter: { 4355 SDValue Op = getRoot(); 4356 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4357 DAG.getVTList(MVT::i64, MVT::Other), 4358 &Op, 1); 4359 setValue(&I, Res); 4360 DAG.setRoot(Res.getValue(1)); 4361 return 0; 4362 } 4363 case Intrinsic::bswap: 4364 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4365 getValue(I.getArgOperand(0)).getValueType(), 4366 getValue(I.getArgOperand(0)))); 4367 return 0; 4368 case Intrinsic::cttz: { 4369 SDValue Arg = getValue(I.getArgOperand(0)); 4370 EVT Ty = Arg.getValueType(); 4371 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4372 return 0; 4373 } 4374 case Intrinsic::ctlz: { 4375 SDValue Arg = getValue(I.getArgOperand(0)); 4376 EVT Ty = Arg.getValueType(); 4377 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4378 return 0; 4379 } 4380 case Intrinsic::ctpop: { 4381 SDValue Arg = getValue(I.getArgOperand(0)); 4382 EVT Ty = Arg.getValueType(); 4383 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4384 return 0; 4385 } 4386 case Intrinsic::stacksave: { 4387 SDValue Op = getRoot(); 4388 Res = DAG.getNode(ISD::STACKSAVE, dl, 4389 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4390 setValue(&I, Res); 4391 DAG.setRoot(Res.getValue(1)); 4392 return 0; 4393 } 4394 case Intrinsic::stackrestore: { 4395 Res = getValue(I.getArgOperand(0)); 4396 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4397 return 0; 4398 } 4399 case Intrinsic::stackprotector: { 4400 // Emit code into the DAG to store the stack guard onto the stack. 4401 MachineFunction &MF = DAG.getMachineFunction(); 4402 MachineFrameInfo *MFI = MF.getFrameInfo(); 4403 EVT PtrTy = TLI.getPointerTy(); 4404 4405 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4406 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4407 4408 int FI = FuncInfo.StaticAllocaMap[Slot]; 4409 MFI->setStackProtectorIndex(FI); 4410 4411 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4412 4413 // Store the stack protector onto the stack. 4414 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4415 PseudoSourceValue::getFixedStack(FI), 4416 0, true, false, 0); 4417 setValue(&I, Res); 4418 DAG.setRoot(Res); 4419 return 0; 4420 } 4421 case Intrinsic::objectsize: { 4422 // If we don't know by now, we're never going to know. 4423 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4424 4425 assert(CI && "Non-constant type in __builtin_object_size?"); 4426 4427 SDValue Arg = getValue(I.getCalledValue()); 4428 EVT Ty = Arg.getValueType(); 4429 4430 if (CI->isZero()) 4431 Res = DAG.getConstant(-1ULL, Ty); 4432 else 4433 Res = DAG.getConstant(0, Ty); 4434 4435 setValue(&I, Res); 4436 return 0; 4437 } 4438 case Intrinsic::var_annotation: 4439 // Discard annotate attributes 4440 return 0; 4441 4442 case Intrinsic::init_trampoline: { 4443 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4444 4445 SDValue Ops[6]; 4446 Ops[0] = getRoot(); 4447 Ops[1] = getValue(I.getArgOperand(0)); 4448 Ops[2] = getValue(I.getArgOperand(1)); 4449 Ops[3] = getValue(I.getArgOperand(2)); 4450 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4451 Ops[5] = DAG.getSrcValue(F); 4452 4453 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4454 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4455 Ops, 6); 4456 4457 setValue(&I, Res); 4458 DAG.setRoot(Res.getValue(1)); 4459 return 0; 4460 } 4461 case Intrinsic::gcroot: 4462 if (GFI) { 4463 const Value *Alloca = I.getArgOperand(0); 4464 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4465 4466 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4467 GFI->addStackRoot(FI->getIndex(), TypeMap); 4468 } 4469 return 0; 4470 case Intrinsic::gcread: 4471 case Intrinsic::gcwrite: 4472 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4473 return 0; 4474 case Intrinsic::flt_rounds: 4475 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4476 return 0; 4477 case Intrinsic::trap: 4478 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4479 return 0; 4480 case Intrinsic::uadd_with_overflow: 4481 return implVisitAluOverflow(I, ISD::UADDO); 4482 case Intrinsic::sadd_with_overflow: 4483 return implVisitAluOverflow(I, ISD::SADDO); 4484 case Intrinsic::usub_with_overflow: 4485 return implVisitAluOverflow(I, ISD::USUBO); 4486 case Intrinsic::ssub_with_overflow: 4487 return implVisitAluOverflow(I, ISD::SSUBO); 4488 case Intrinsic::umul_with_overflow: 4489 return implVisitAluOverflow(I, ISD::UMULO); 4490 case Intrinsic::smul_with_overflow: 4491 return implVisitAluOverflow(I, ISD::SMULO); 4492 4493 case Intrinsic::prefetch: { 4494 SDValue Ops[4]; 4495 Ops[0] = getRoot(); 4496 Ops[1] = getValue(I.getArgOperand(0)); 4497 Ops[2] = getValue(I.getArgOperand(1)); 4498 Ops[3] = getValue(I.getArgOperand(2)); 4499 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4500 return 0; 4501 } 4502 4503 case Intrinsic::memory_barrier: { 4504 SDValue Ops[6]; 4505 Ops[0] = getRoot(); 4506 for (int x = 1; x < 6; ++x) 4507 Ops[x] = getValue(I.getArgOperand(x - 1)); 4508 4509 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4510 return 0; 4511 } 4512 case Intrinsic::atomic_cmp_swap: { 4513 SDValue Root = getRoot(); 4514 SDValue L = 4515 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4516 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4517 Root, 4518 getValue(I.getArgOperand(0)), 4519 getValue(I.getArgOperand(1)), 4520 getValue(I.getArgOperand(2)), 4521 I.getArgOperand(0)); 4522 setValue(&I, L); 4523 DAG.setRoot(L.getValue(1)); 4524 return 0; 4525 } 4526 case Intrinsic::atomic_load_add: 4527 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4528 case Intrinsic::atomic_load_sub: 4529 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4530 case Intrinsic::atomic_load_or: 4531 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4532 case Intrinsic::atomic_load_xor: 4533 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4534 case Intrinsic::atomic_load_and: 4535 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4536 case Intrinsic::atomic_load_nand: 4537 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4538 case Intrinsic::atomic_load_max: 4539 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4540 case Intrinsic::atomic_load_min: 4541 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4542 case Intrinsic::atomic_load_umin: 4543 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4544 case Intrinsic::atomic_load_umax: 4545 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4546 case Intrinsic::atomic_swap: 4547 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4548 4549 case Intrinsic::invariant_start: 4550 case Intrinsic::lifetime_start: 4551 // Discard region information. 4552 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4553 return 0; 4554 case Intrinsic::invariant_end: 4555 case Intrinsic::lifetime_end: 4556 // Discard region information. 4557 return 0; 4558 } 4559 } 4560 4561 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4562 bool isTailCall, 4563 MachineBasicBlock *LandingPad) { 4564 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4565 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4566 const Type *RetTy = FTy->getReturnType(); 4567 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4568 MCSymbol *BeginLabel = 0; 4569 4570 TargetLowering::ArgListTy Args; 4571 TargetLowering::ArgListEntry Entry; 4572 Args.reserve(CS.arg_size()); 4573 4574 // Check whether the function can return without sret-demotion. 4575 SmallVector<ISD::OutputArg, 4> Outs; 4576 SmallVector<uint64_t, 4> Offsets; 4577 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4578 Outs, TLI, &Offsets); 4579 4580 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4581 FTy->isVarArg(), Outs, FTy->getContext()); 4582 4583 SDValue DemoteStackSlot; 4584 4585 if (!CanLowerReturn) { 4586 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4587 FTy->getReturnType()); 4588 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4589 FTy->getReturnType()); 4590 MachineFunction &MF = DAG.getMachineFunction(); 4591 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4592 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4593 4594 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4595 Entry.Node = DemoteStackSlot; 4596 Entry.Ty = StackSlotPtrType; 4597 Entry.isSExt = false; 4598 Entry.isZExt = false; 4599 Entry.isInReg = false; 4600 Entry.isSRet = true; 4601 Entry.isNest = false; 4602 Entry.isByVal = false; 4603 Entry.Alignment = Align; 4604 Args.push_back(Entry); 4605 RetTy = Type::getVoidTy(FTy->getContext()); 4606 } 4607 4608 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4609 i != e; ++i) { 4610 SDValue ArgNode = getValue(*i); 4611 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4612 4613 unsigned attrInd = i - CS.arg_begin() + 1; 4614 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4615 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4616 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4617 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4618 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4619 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4620 Entry.Alignment = CS.getParamAlignment(attrInd); 4621 Args.push_back(Entry); 4622 } 4623 4624 if (LandingPad) { 4625 // Insert a label before the invoke call to mark the try range. This can be 4626 // used to detect deletion of the invoke via the MachineModuleInfo. 4627 BeginLabel = MMI.getContext().CreateTempSymbol(); 4628 4629 // For SjLj, keep track of which landing pads go with which invokes 4630 // so as to maintain the ordering of pads in the LSDA. 4631 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4632 if (CallSiteIndex) { 4633 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4634 // Now that the call site is handled, stop tracking it. 4635 MMI.setCurrentCallSite(0); 4636 } 4637 4638 // Both PendingLoads and PendingExports must be flushed here; 4639 // this call might not return. 4640 (void)getRoot(); 4641 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4642 } 4643 4644 // Check if target-independent constraints permit a tail call here. 4645 // Target-dependent constraints are checked within TLI.LowerCallTo. 4646 if (isTailCall && 4647 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4648 isTailCall = false; 4649 4650 std::pair<SDValue,SDValue> Result = 4651 TLI.LowerCallTo(getRoot(), RetTy, 4652 CS.paramHasAttr(0, Attribute::SExt), 4653 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4654 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4655 CS.getCallingConv(), 4656 isTailCall, 4657 !CS.getInstruction()->use_empty(), 4658 Callee, Args, DAG, getCurDebugLoc()); 4659 assert((isTailCall || Result.second.getNode()) && 4660 "Non-null chain expected with non-tail call!"); 4661 assert((Result.second.getNode() || !Result.first.getNode()) && 4662 "Null value expected with tail call!"); 4663 if (Result.first.getNode()) { 4664 setValue(CS.getInstruction(), Result.first); 4665 } else if (!CanLowerReturn && Result.second.getNode()) { 4666 // The instruction result is the result of loading from the 4667 // hidden sret parameter. 4668 SmallVector<EVT, 1> PVTs; 4669 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4670 4671 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4672 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4673 EVT PtrVT = PVTs[0]; 4674 unsigned NumValues = Outs.size(); 4675 SmallVector<SDValue, 4> Values(NumValues); 4676 SmallVector<SDValue, 4> Chains(NumValues); 4677 4678 for (unsigned i = 0; i < NumValues; ++i) { 4679 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4680 DemoteStackSlot, 4681 DAG.getConstant(Offsets[i], PtrVT)); 4682 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4683 Add, NULL, Offsets[i], false, false, 1); 4684 Values[i] = L; 4685 Chains[i] = L.getValue(1); 4686 } 4687 4688 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4689 MVT::Other, &Chains[0], NumValues); 4690 PendingLoads.push_back(Chain); 4691 4692 // Collect the legal value parts into potentially illegal values 4693 // that correspond to the original function's return values. 4694 SmallVector<EVT, 4> RetTys; 4695 RetTy = FTy->getReturnType(); 4696 ComputeValueVTs(TLI, RetTy, RetTys); 4697 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4698 SmallVector<SDValue, 4> ReturnValues; 4699 unsigned CurReg = 0; 4700 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4701 EVT VT = RetTys[I]; 4702 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4703 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4704 4705 SDValue ReturnValue = 4706 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4707 RegisterVT, VT, AssertOp); 4708 ReturnValues.push_back(ReturnValue); 4709 CurReg += NumRegs; 4710 } 4711 4712 setValue(CS.getInstruction(), 4713 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4714 DAG.getVTList(&RetTys[0], RetTys.size()), 4715 &ReturnValues[0], ReturnValues.size())); 4716 4717 } 4718 4719 // As a special case, a null chain means that a tail call has been emitted and 4720 // the DAG root is already updated. 4721 if (Result.second.getNode()) 4722 DAG.setRoot(Result.second); 4723 else 4724 HasTailCall = true; 4725 4726 if (LandingPad) { 4727 // Insert a label at the end of the invoke call to mark the try range. This 4728 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4729 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4730 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4731 4732 // Inform MachineModuleInfo of range. 4733 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4734 } 4735 } 4736 4737 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4738 /// value is equal or not-equal to zero. 4739 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4740 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4741 UI != E; ++UI) { 4742 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4743 if (IC->isEquality()) 4744 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4745 if (C->isNullValue()) 4746 continue; 4747 // Unknown instruction. 4748 return false; 4749 } 4750 return true; 4751 } 4752 4753 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4754 const Type *LoadTy, 4755 SelectionDAGBuilder &Builder) { 4756 4757 // Check to see if this load can be trivially constant folded, e.g. if the 4758 // input is from a string literal. 4759 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4760 // Cast pointer to the type we really want to load. 4761 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4762 PointerType::getUnqual(LoadTy)); 4763 4764 if (const Constant *LoadCst = 4765 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4766 Builder.TD)) 4767 return Builder.getValue(LoadCst); 4768 } 4769 4770 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4771 // still constant memory, the input chain can be the entry node. 4772 SDValue Root; 4773 bool ConstantMemory = false; 4774 4775 // Do not serialize (non-volatile) loads of constant memory with anything. 4776 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4777 Root = Builder.DAG.getEntryNode(); 4778 ConstantMemory = true; 4779 } else { 4780 // Do not serialize non-volatile loads against each other. 4781 Root = Builder.DAG.getRoot(); 4782 } 4783 4784 SDValue Ptr = Builder.getValue(PtrVal); 4785 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4786 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4787 false /*volatile*/, 4788 false /*nontemporal*/, 1 /* align=1 */); 4789 4790 if (!ConstantMemory) 4791 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4792 return LoadVal; 4793 } 4794 4795 4796 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4797 /// If so, return true and lower it, otherwise return false and it will be 4798 /// lowered like a normal call. 4799 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4800 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4801 if (I.getNumArgOperands() != 3) 4802 return false; 4803 4804 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4805 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4806 !I.getArgOperand(2)->getType()->isIntegerTy() || 4807 !I.getType()->isIntegerTy()) 4808 return false; 4809 4810 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4811 4812 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4813 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4814 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4815 bool ActuallyDoIt = true; 4816 MVT LoadVT; 4817 const Type *LoadTy; 4818 switch (Size->getZExtValue()) { 4819 default: 4820 LoadVT = MVT::Other; 4821 LoadTy = 0; 4822 ActuallyDoIt = false; 4823 break; 4824 case 2: 4825 LoadVT = MVT::i16; 4826 LoadTy = Type::getInt16Ty(Size->getContext()); 4827 break; 4828 case 4: 4829 LoadVT = MVT::i32; 4830 LoadTy = Type::getInt32Ty(Size->getContext()); 4831 break; 4832 case 8: 4833 LoadVT = MVT::i64; 4834 LoadTy = Type::getInt64Ty(Size->getContext()); 4835 break; 4836 /* 4837 case 16: 4838 LoadVT = MVT::v4i32; 4839 LoadTy = Type::getInt32Ty(Size->getContext()); 4840 LoadTy = VectorType::get(LoadTy, 4); 4841 break; 4842 */ 4843 } 4844 4845 // This turns into unaligned loads. We only do this if the target natively 4846 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4847 // we'll only produce a small number of byte loads. 4848 4849 // Require that we can find a legal MVT, and only do this if the target 4850 // supports unaligned loads of that type. Expanding into byte loads would 4851 // bloat the code. 4852 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4853 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4854 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4855 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4856 ActuallyDoIt = false; 4857 } 4858 4859 if (ActuallyDoIt) { 4860 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4861 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4862 4863 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4864 ISD::SETNE); 4865 EVT CallVT = TLI.getValueType(I.getType(), true); 4866 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4867 return true; 4868 } 4869 } 4870 4871 4872 return false; 4873 } 4874 4875 4876 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4877 // Handle inline assembly differently. 4878 if (isa<InlineAsm>(I.getCalledValue())) { 4879 visitInlineAsm(&I); 4880 return; 4881 } 4882 4883 const char *RenameFn = 0; 4884 if (Function *F = I.getCalledFunction()) { 4885 if (F->isDeclaration()) { 4886 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4887 if (unsigned IID = II->getIntrinsicID(F)) { 4888 RenameFn = visitIntrinsicCall(I, IID); 4889 if (!RenameFn) 4890 return; 4891 } 4892 } 4893 if (unsigned IID = F->getIntrinsicID()) { 4894 RenameFn = visitIntrinsicCall(I, IID); 4895 if (!RenameFn) 4896 return; 4897 } 4898 } 4899 4900 // Check for well-known libc/libm calls. If the function is internal, it 4901 // can't be a library call. 4902 if (!F->hasLocalLinkage() && F->hasName()) { 4903 StringRef Name = F->getName(); 4904 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4905 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4906 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4907 I.getType() == I.getArgOperand(0)->getType() && 4908 I.getType() == I.getArgOperand(1)->getType()) { 4909 SDValue LHS = getValue(I.getArgOperand(0)); 4910 SDValue RHS = getValue(I.getArgOperand(1)); 4911 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4912 LHS.getValueType(), LHS, RHS)); 4913 return; 4914 } 4915 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4916 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4917 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4918 I.getType() == I.getArgOperand(0)->getType()) { 4919 SDValue Tmp = getValue(I.getArgOperand(0)); 4920 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4921 Tmp.getValueType(), Tmp)); 4922 return; 4923 } 4924 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4925 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4926 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4927 I.getType() == I.getArgOperand(0)->getType() && 4928 I.onlyReadsMemory()) { 4929 SDValue Tmp = getValue(I.getArgOperand(0)); 4930 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4931 Tmp.getValueType(), Tmp)); 4932 return; 4933 } 4934 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4935 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4936 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4937 I.getType() == I.getArgOperand(0)->getType() && 4938 I.onlyReadsMemory()) { 4939 SDValue Tmp = getValue(I.getArgOperand(0)); 4940 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4941 Tmp.getValueType(), Tmp)); 4942 return; 4943 } 4944 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4945 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4946 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4947 I.getType() == I.getArgOperand(0)->getType() && 4948 I.onlyReadsMemory()) { 4949 SDValue Tmp = getValue(I.getArgOperand(0)); 4950 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4951 Tmp.getValueType(), Tmp)); 4952 return; 4953 } 4954 } else if (Name == "memcmp") { 4955 if (visitMemCmpCall(I)) 4956 return; 4957 } 4958 } 4959 } 4960 4961 SDValue Callee; 4962 if (!RenameFn) 4963 Callee = getValue(I.getCalledValue()); 4964 else 4965 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4966 4967 // Check if we can potentially perform a tail call. More detailed checking is 4968 // be done within LowerCallTo, after more information about the call is known. 4969 LowerCallTo(&I, Callee, I.isTailCall()); 4970 } 4971 4972 namespace llvm { 4973 4974 /// AsmOperandInfo - This contains information for each constraint that we are 4975 /// lowering. 4976 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4977 public TargetLowering::AsmOperandInfo { 4978 public: 4979 /// CallOperand - If this is the result output operand or a clobber 4980 /// this is null, otherwise it is the incoming operand to the CallInst. 4981 /// This gets modified as the asm is processed. 4982 SDValue CallOperand; 4983 4984 /// AssignedRegs - If this is a register or register class operand, this 4985 /// contains the set of register corresponding to the operand. 4986 RegsForValue AssignedRegs; 4987 4988 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4989 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4990 } 4991 4992 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4993 /// busy in OutputRegs/InputRegs. 4994 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4995 std::set<unsigned> &OutputRegs, 4996 std::set<unsigned> &InputRegs, 4997 const TargetRegisterInfo &TRI) const { 4998 if (isOutReg) { 4999 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5000 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5001 } 5002 if (isInReg) { 5003 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5004 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5005 } 5006 } 5007 5008 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5009 /// corresponds to. If there is no Value* for this operand, it returns 5010 /// MVT::Other. 5011 EVT getCallOperandValEVT(LLVMContext &Context, 5012 const TargetLowering &TLI, 5013 const TargetData *TD) const { 5014 if (CallOperandVal == 0) return MVT::Other; 5015 5016 if (isa<BasicBlock>(CallOperandVal)) 5017 return TLI.getPointerTy(); 5018 5019 const llvm::Type *OpTy = CallOperandVal->getType(); 5020 5021 // If this is an indirect operand, the operand is a pointer to the 5022 // accessed type. 5023 if (isIndirect) { 5024 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5025 if (!PtrTy) 5026 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5027 OpTy = PtrTy->getElementType(); 5028 } 5029 5030 // If OpTy is not a single value, it may be a struct/union that we 5031 // can tile with integers. 5032 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5033 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5034 switch (BitSize) { 5035 default: break; 5036 case 1: 5037 case 8: 5038 case 16: 5039 case 32: 5040 case 64: 5041 case 128: 5042 OpTy = IntegerType::get(Context, BitSize); 5043 break; 5044 } 5045 } 5046 5047 return TLI.getValueType(OpTy, true); 5048 } 5049 5050 private: 5051 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5052 /// specified set. 5053 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5054 const TargetRegisterInfo &TRI) { 5055 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5056 Regs.insert(Reg); 5057 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5058 for (; *Aliases; ++Aliases) 5059 Regs.insert(*Aliases); 5060 } 5061 }; 5062 5063 } // end llvm namespace. 5064 5065 /// isAllocatableRegister - If the specified register is safe to allocate, 5066 /// i.e. it isn't a stack pointer or some other special register, return the 5067 /// register class for the register. Otherwise, return null. 5068 static const TargetRegisterClass * 5069 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5070 const TargetLowering &TLI, 5071 const TargetRegisterInfo *TRI) { 5072 EVT FoundVT = MVT::Other; 5073 const TargetRegisterClass *FoundRC = 0; 5074 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5075 E = TRI->regclass_end(); RCI != E; ++RCI) { 5076 EVT ThisVT = MVT::Other; 5077 5078 const TargetRegisterClass *RC = *RCI; 5079 // If none of the value types for this register class are valid, we 5080 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5081 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5082 I != E; ++I) { 5083 if (TLI.isTypeLegal(*I)) { 5084 // If we have already found this register in a different register class, 5085 // choose the one with the largest VT specified. For example, on 5086 // PowerPC, we favor f64 register classes over f32. 5087 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5088 ThisVT = *I; 5089 break; 5090 } 5091 } 5092 } 5093 5094 if (ThisVT == MVT::Other) continue; 5095 5096 // NOTE: This isn't ideal. In particular, this might allocate the 5097 // frame pointer in functions that need it (due to them not being taken 5098 // out of allocation, because a variable sized allocation hasn't been seen 5099 // yet). This is a slight code pessimization, but should still work. 5100 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5101 E = RC->allocation_order_end(MF); I != E; ++I) 5102 if (*I == Reg) { 5103 // We found a matching register class. Keep looking at others in case 5104 // we find one with larger registers that this physreg is also in. 5105 FoundRC = RC; 5106 FoundVT = ThisVT; 5107 break; 5108 } 5109 } 5110 return FoundRC; 5111 } 5112 5113 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5114 /// specified operand. We prefer to assign virtual registers, to allow the 5115 /// register allocator to handle the assignment process. However, if the asm 5116 /// uses features that we can't model on machineinstrs, we have SDISel do the 5117 /// allocation. This produces generally horrible, but correct, code. 5118 /// 5119 /// OpInfo describes the operand. 5120 /// Input and OutputRegs are the set of already allocated physical registers. 5121 /// 5122 void SelectionDAGBuilder:: 5123 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5124 std::set<unsigned> &OutputRegs, 5125 std::set<unsigned> &InputRegs) { 5126 LLVMContext &Context = FuncInfo.Fn->getContext(); 5127 5128 // Compute whether this value requires an input register, an output register, 5129 // or both. 5130 bool isOutReg = false; 5131 bool isInReg = false; 5132 switch (OpInfo.Type) { 5133 case InlineAsm::isOutput: 5134 isOutReg = true; 5135 5136 // If there is an input constraint that matches this, we need to reserve 5137 // the input register so no other inputs allocate to it. 5138 isInReg = OpInfo.hasMatchingInput(); 5139 break; 5140 case InlineAsm::isInput: 5141 isInReg = true; 5142 isOutReg = false; 5143 break; 5144 case InlineAsm::isClobber: 5145 isOutReg = true; 5146 isInReg = true; 5147 break; 5148 } 5149 5150 5151 MachineFunction &MF = DAG.getMachineFunction(); 5152 SmallVector<unsigned, 4> Regs; 5153 5154 // If this is a constraint for a single physreg, or a constraint for a 5155 // register class, find it. 5156 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5157 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5158 OpInfo.ConstraintVT); 5159 5160 unsigned NumRegs = 1; 5161 if (OpInfo.ConstraintVT != MVT::Other) { 5162 // If this is a FP input in an integer register (or visa versa) insert a bit 5163 // cast of the input value. More generally, handle any case where the input 5164 // value disagrees with the register class we plan to stick this in. 5165 if (OpInfo.Type == InlineAsm::isInput && 5166 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5167 // Try to convert to the first EVT that the reg class contains. If the 5168 // types are identical size, use a bitcast to convert (e.g. two differing 5169 // vector types). 5170 EVT RegVT = *PhysReg.second->vt_begin(); 5171 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5172 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5173 RegVT, OpInfo.CallOperand); 5174 OpInfo.ConstraintVT = RegVT; 5175 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5176 // If the input is a FP value and we want it in FP registers, do a 5177 // bitcast to the corresponding integer type. This turns an f64 value 5178 // into i64, which can be passed with two i32 values on a 32-bit 5179 // machine. 5180 RegVT = EVT::getIntegerVT(Context, 5181 OpInfo.ConstraintVT.getSizeInBits()); 5182 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5183 RegVT, OpInfo.CallOperand); 5184 OpInfo.ConstraintVT = RegVT; 5185 } 5186 } 5187 5188 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5189 } 5190 5191 EVT RegVT; 5192 EVT ValueVT = OpInfo.ConstraintVT; 5193 5194 // If this is a constraint for a specific physical register, like {r17}, 5195 // assign it now. 5196 if (unsigned AssignedReg = PhysReg.first) { 5197 const TargetRegisterClass *RC = PhysReg.second; 5198 if (OpInfo.ConstraintVT == MVT::Other) 5199 ValueVT = *RC->vt_begin(); 5200 5201 // Get the actual register value type. This is important, because the user 5202 // may have asked for (e.g.) the AX register in i32 type. We need to 5203 // remember that AX is actually i16 to get the right extension. 5204 RegVT = *RC->vt_begin(); 5205 5206 // This is a explicit reference to a physical register. 5207 Regs.push_back(AssignedReg); 5208 5209 // If this is an expanded reference, add the rest of the regs to Regs. 5210 if (NumRegs != 1) { 5211 TargetRegisterClass::iterator I = RC->begin(); 5212 for (; *I != AssignedReg; ++I) 5213 assert(I != RC->end() && "Didn't find reg!"); 5214 5215 // Already added the first reg. 5216 --NumRegs; ++I; 5217 for (; NumRegs; --NumRegs, ++I) { 5218 assert(I != RC->end() && "Ran out of registers to allocate!"); 5219 Regs.push_back(*I); 5220 } 5221 } 5222 5223 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5224 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5225 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5226 return; 5227 } 5228 5229 // Otherwise, if this was a reference to an LLVM register class, create vregs 5230 // for this reference. 5231 if (const TargetRegisterClass *RC = PhysReg.second) { 5232 RegVT = *RC->vt_begin(); 5233 if (OpInfo.ConstraintVT == MVT::Other) 5234 ValueVT = RegVT; 5235 5236 // Create the appropriate number of virtual registers. 5237 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5238 for (; NumRegs; --NumRegs) 5239 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5240 5241 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5242 return; 5243 } 5244 5245 // This is a reference to a register class that doesn't directly correspond 5246 // to an LLVM register class. Allocate NumRegs consecutive, available, 5247 // registers from the class. 5248 std::vector<unsigned> RegClassRegs 5249 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5250 OpInfo.ConstraintVT); 5251 5252 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5253 unsigned NumAllocated = 0; 5254 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5255 unsigned Reg = RegClassRegs[i]; 5256 // See if this register is available. 5257 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5258 (isInReg && InputRegs.count(Reg))) { // Already used. 5259 // Make sure we find consecutive registers. 5260 NumAllocated = 0; 5261 continue; 5262 } 5263 5264 // Check to see if this register is allocatable (i.e. don't give out the 5265 // stack pointer). 5266 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5267 if (!RC) { // Couldn't allocate this register. 5268 // Reset NumAllocated to make sure we return consecutive registers. 5269 NumAllocated = 0; 5270 continue; 5271 } 5272 5273 // Okay, this register is good, we can use it. 5274 ++NumAllocated; 5275 5276 // If we allocated enough consecutive registers, succeed. 5277 if (NumAllocated == NumRegs) { 5278 unsigned RegStart = (i-NumAllocated)+1; 5279 unsigned RegEnd = i+1; 5280 // Mark all of the allocated registers used. 5281 for (unsigned i = RegStart; i != RegEnd; ++i) 5282 Regs.push_back(RegClassRegs[i]); 5283 5284 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5285 OpInfo.ConstraintVT); 5286 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5287 return; 5288 } 5289 } 5290 5291 // Otherwise, we couldn't allocate enough registers for this. 5292 } 5293 5294 /// visitInlineAsm - Handle a call to an InlineAsm object. 5295 /// 5296 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5297 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5298 5299 /// ConstraintOperands - Information about all of the constraints. 5300 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5301 5302 std::set<unsigned> OutputRegs, InputRegs; 5303 5304 // Do a prepass over the constraints, canonicalizing them, and building up the 5305 // ConstraintOperands list. 5306 std::vector<InlineAsm::ConstraintInfo> 5307 ConstraintInfos = IA->ParseConstraints(); 5308 5309 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5310 5311 SDValue Chain, Flag; 5312 5313 // We won't need to flush pending loads if this asm doesn't touch 5314 // memory and is nonvolatile. 5315 if (hasMemory || IA->hasSideEffects()) 5316 Chain = getRoot(); 5317 else 5318 Chain = DAG.getRoot(); 5319 5320 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5321 unsigned ResNo = 0; // ResNo - The result number of the next output. 5322 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5323 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5324 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5325 5326 EVT OpVT = MVT::Other; 5327 5328 // Compute the value type for each operand. 5329 switch (OpInfo.Type) { 5330 case InlineAsm::isOutput: 5331 // Indirect outputs just consume an argument. 5332 if (OpInfo.isIndirect) { 5333 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5334 break; 5335 } 5336 5337 // The return value of the call is this value. As such, there is no 5338 // corresponding argument. 5339 assert(!CS.getType()->isVoidTy() && 5340 "Bad inline asm!"); 5341 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5342 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5343 } else { 5344 assert(ResNo == 0 && "Asm only has one result!"); 5345 OpVT = TLI.getValueType(CS.getType()); 5346 } 5347 ++ResNo; 5348 break; 5349 case InlineAsm::isInput: 5350 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5351 break; 5352 case InlineAsm::isClobber: 5353 // Nothing to do. 5354 break; 5355 } 5356 5357 // If this is an input or an indirect output, process the call argument. 5358 // BasicBlocks are labels, currently appearing only in asm's. 5359 if (OpInfo.CallOperandVal) { 5360 // Strip bitcasts, if any. This mostly comes up for functions. 5361 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5362 5363 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5364 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5365 } else { 5366 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5367 } 5368 5369 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5370 } 5371 5372 OpInfo.ConstraintVT = OpVT; 5373 } 5374 5375 // Second pass over the constraints: compute which constraint option to use 5376 // and assign registers to constraints that want a specific physreg. 5377 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5378 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5379 5380 // If this is an output operand with a matching input operand, look up the 5381 // matching input. If their types mismatch, e.g. one is an integer, the 5382 // other is floating point, or their sizes are different, flag it as an 5383 // error. 5384 if (OpInfo.hasMatchingInput()) { 5385 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5386 5387 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5388 if ((OpInfo.ConstraintVT.isInteger() != 5389 Input.ConstraintVT.isInteger()) || 5390 (OpInfo.ConstraintVT.getSizeInBits() != 5391 Input.ConstraintVT.getSizeInBits())) { 5392 report_fatal_error("Unsupported asm: input constraint" 5393 " with a matching output constraint of" 5394 " incompatible type!"); 5395 } 5396 Input.ConstraintVT = OpInfo.ConstraintVT; 5397 } 5398 } 5399 5400 // Compute the constraint code and ConstraintType to use. 5401 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5402 5403 // If this is a memory input, and if the operand is not indirect, do what we 5404 // need to to provide an address for the memory input. 5405 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5406 !OpInfo.isIndirect) { 5407 assert(OpInfo.Type == InlineAsm::isInput && 5408 "Can only indirectify direct input operands!"); 5409 5410 // Memory operands really want the address of the value. If we don't have 5411 // an indirect input, put it in the constpool if we can, otherwise spill 5412 // it to a stack slot. 5413 5414 // If the operand is a float, integer, or vector constant, spill to a 5415 // constant pool entry to get its address. 5416 const Value *OpVal = OpInfo.CallOperandVal; 5417 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5418 isa<ConstantVector>(OpVal)) { 5419 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5420 TLI.getPointerTy()); 5421 } else { 5422 // Otherwise, create a stack slot and emit a store to it before the 5423 // asm. 5424 const Type *Ty = OpVal->getType(); 5425 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5426 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5427 MachineFunction &MF = DAG.getMachineFunction(); 5428 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5429 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5430 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5431 OpInfo.CallOperand, StackSlot, NULL, 0, 5432 false, false, 0); 5433 OpInfo.CallOperand = StackSlot; 5434 } 5435 5436 // There is no longer a Value* corresponding to this operand. 5437 OpInfo.CallOperandVal = 0; 5438 5439 // It is now an indirect operand. 5440 OpInfo.isIndirect = true; 5441 } 5442 5443 // If this constraint is for a specific register, allocate it before 5444 // anything else. 5445 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5446 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5447 } 5448 5449 ConstraintInfos.clear(); 5450 5451 // Second pass - Loop over all of the operands, assigning virtual or physregs 5452 // to register class operands. 5453 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5454 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5455 5456 // C_Register operands have already been allocated, Other/Memory don't need 5457 // to be. 5458 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5459 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5460 } 5461 5462 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5463 std::vector<SDValue> AsmNodeOperands; 5464 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5465 AsmNodeOperands.push_back( 5466 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5467 TLI.getPointerTy())); 5468 5469 // If we have a !srcloc metadata node associated with it, we want to attach 5470 // this to the ultimately generated inline asm machineinstr. To do this, we 5471 // pass in the third operand as this (potentially null) inline asm MDNode. 5472 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5473 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5474 5475 // Remember the AlignStack bit as operand 3. 5476 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5477 MVT::i1)); 5478 5479 // Loop over all of the inputs, copying the operand values into the 5480 // appropriate registers and processing the output regs. 5481 RegsForValue RetValRegs; 5482 5483 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5484 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5485 5486 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5487 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5488 5489 switch (OpInfo.Type) { 5490 case InlineAsm::isOutput: { 5491 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5492 OpInfo.ConstraintType != TargetLowering::C_Register) { 5493 // Memory output, or 'other' output (e.g. 'X' constraint). 5494 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5495 5496 // Add information to the INLINEASM node to know about this output. 5497 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5498 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5499 TLI.getPointerTy())); 5500 AsmNodeOperands.push_back(OpInfo.CallOperand); 5501 break; 5502 } 5503 5504 // Otherwise, this is a register or register class output. 5505 5506 // Copy the output from the appropriate register. Find a register that 5507 // we can use. 5508 if (OpInfo.AssignedRegs.Regs.empty()) 5509 report_fatal_error("Couldn't allocate output reg for constraint '" + 5510 Twine(OpInfo.ConstraintCode) + "'!"); 5511 5512 // If this is an indirect operand, store through the pointer after the 5513 // asm. 5514 if (OpInfo.isIndirect) { 5515 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5516 OpInfo.CallOperandVal)); 5517 } else { 5518 // This is the result value of the call. 5519 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5520 // Concatenate this output onto the outputs list. 5521 RetValRegs.append(OpInfo.AssignedRegs); 5522 } 5523 5524 // Add information to the INLINEASM node to know that this register is 5525 // set. 5526 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5527 InlineAsm::Kind_RegDefEarlyClobber : 5528 InlineAsm::Kind_RegDef, 5529 false, 5530 0, 5531 DAG, 5532 AsmNodeOperands); 5533 break; 5534 } 5535 case InlineAsm::isInput: { 5536 SDValue InOperandVal = OpInfo.CallOperand; 5537 5538 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5539 // If this is required to match an output register we have already set, 5540 // just use its register. 5541 unsigned OperandNo = OpInfo.getMatchedOperand(); 5542 5543 // Scan until we find the definition we already emitted of this operand. 5544 // When we find it, create a RegsForValue operand. 5545 unsigned CurOp = InlineAsm::Op_FirstOperand; 5546 for (; OperandNo; --OperandNo) { 5547 // Advance to the next operand. 5548 unsigned OpFlag = 5549 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5550 assert((InlineAsm::isRegDefKind(OpFlag) || 5551 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5552 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5553 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5554 } 5555 5556 unsigned OpFlag = 5557 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5558 if (InlineAsm::isRegDefKind(OpFlag) || 5559 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5560 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5561 if (OpInfo.isIndirect) { 5562 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5563 LLVMContext &Ctx = *DAG.getContext(); 5564 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5565 " don't know how to handle tied " 5566 "indirect register inputs"); 5567 } 5568 5569 RegsForValue MatchedRegs; 5570 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5571 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5572 MatchedRegs.RegVTs.push_back(RegVT); 5573 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5574 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5575 i != e; ++i) 5576 MatchedRegs.Regs.push_back 5577 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5578 5579 // Use the produced MatchedRegs object to 5580 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5581 Chain, &Flag); 5582 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5583 true, OpInfo.getMatchedOperand(), 5584 DAG, AsmNodeOperands); 5585 break; 5586 } 5587 5588 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5589 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5590 "Unexpected number of operands"); 5591 // Add information to the INLINEASM node to know about this input. 5592 // See InlineAsm.h isUseOperandTiedToDef. 5593 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5594 OpInfo.getMatchedOperand()); 5595 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5596 TLI.getPointerTy())); 5597 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5598 break; 5599 } 5600 5601 // Treat indirect 'X' constraint as memory. 5602 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5603 OpInfo.isIndirect) 5604 OpInfo.ConstraintType = TargetLowering::C_Memory; 5605 5606 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5607 std::vector<SDValue> Ops; 5608 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5609 Ops, DAG); 5610 if (Ops.empty()) 5611 report_fatal_error("Invalid operand for inline asm constraint '" + 5612 Twine(OpInfo.ConstraintCode) + "'!"); 5613 5614 // Add information to the INLINEASM node to know about this input. 5615 unsigned ResOpType = 5616 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5617 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5618 TLI.getPointerTy())); 5619 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5620 break; 5621 } 5622 5623 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5624 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5625 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5626 "Memory operands expect pointer values"); 5627 5628 // Add information to the INLINEASM node to know about this input. 5629 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5630 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5631 TLI.getPointerTy())); 5632 AsmNodeOperands.push_back(InOperandVal); 5633 break; 5634 } 5635 5636 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5637 OpInfo.ConstraintType == TargetLowering::C_Register) && 5638 "Unknown constraint type!"); 5639 assert(!OpInfo.isIndirect && 5640 "Don't know how to handle indirect register inputs yet!"); 5641 5642 // Copy the input into the appropriate registers. 5643 if (OpInfo.AssignedRegs.Regs.empty() || 5644 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5645 report_fatal_error("Couldn't allocate input reg for constraint '" + 5646 Twine(OpInfo.ConstraintCode) + "'!"); 5647 5648 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5649 Chain, &Flag); 5650 5651 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5652 DAG, AsmNodeOperands); 5653 break; 5654 } 5655 case InlineAsm::isClobber: { 5656 // Add the clobbered value to the operand list, so that the register 5657 // allocator is aware that the physreg got clobbered. 5658 if (!OpInfo.AssignedRegs.Regs.empty()) 5659 OpInfo.AssignedRegs.AddInlineAsmOperands( 5660 InlineAsm::Kind_RegDefEarlyClobber, 5661 false, 0, DAG, 5662 AsmNodeOperands); 5663 break; 5664 } 5665 } 5666 } 5667 5668 // Finish up input operands. Set the input chain and add the flag last. 5669 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5670 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5671 5672 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5673 DAG.getVTList(MVT::Other, MVT::Flag), 5674 &AsmNodeOperands[0], AsmNodeOperands.size()); 5675 Flag = Chain.getValue(1); 5676 5677 // If this asm returns a register value, copy the result from that register 5678 // and set it as the value of the call. 5679 if (!RetValRegs.Regs.empty()) { 5680 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5681 Chain, &Flag); 5682 5683 // FIXME: Why don't we do this for inline asms with MRVs? 5684 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5685 EVT ResultType = TLI.getValueType(CS.getType()); 5686 5687 // If any of the results of the inline asm is a vector, it may have the 5688 // wrong width/num elts. This can happen for register classes that can 5689 // contain multiple different value types. The preg or vreg allocated may 5690 // not have the same VT as was expected. Convert it to the right type 5691 // with bit_convert. 5692 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5693 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5694 ResultType, Val); 5695 5696 } else if (ResultType != Val.getValueType() && 5697 ResultType.isInteger() && Val.getValueType().isInteger()) { 5698 // If a result value was tied to an input value, the computed result may 5699 // have a wider width than the expected result. Extract the relevant 5700 // portion. 5701 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5702 } 5703 5704 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5705 } 5706 5707 setValue(CS.getInstruction(), Val); 5708 // Don't need to use this as a chain in this case. 5709 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5710 return; 5711 } 5712 5713 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5714 5715 // Process indirect outputs, first output all of the flagged copies out of 5716 // physregs. 5717 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5718 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5719 const Value *Ptr = IndirectStoresToEmit[i].second; 5720 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5721 Chain, &Flag); 5722 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5723 } 5724 5725 // Emit the non-flagged stores from the physregs. 5726 SmallVector<SDValue, 8> OutChains; 5727 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5728 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5729 StoresToEmit[i].first, 5730 getValue(StoresToEmit[i].second), 5731 StoresToEmit[i].second, 0, 5732 false, false, 0); 5733 OutChains.push_back(Val); 5734 } 5735 5736 if (!OutChains.empty()) 5737 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5738 &OutChains[0], OutChains.size()); 5739 5740 DAG.setRoot(Chain); 5741 } 5742 5743 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5744 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5745 MVT::Other, getRoot(), 5746 getValue(I.getArgOperand(0)), 5747 DAG.getSrcValue(I.getArgOperand(0)))); 5748 } 5749 5750 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5751 const TargetData &TD = *TLI.getTargetData(); 5752 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5753 getRoot(), getValue(I.getOperand(0)), 5754 DAG.getSrcValue(I.getOperand(0)), 5755 TD.getABITypeAlignment(I.getType())); 5756 setValue(&I, V); 5757 DAG.setRoot(V.getValue(1)); 5758 } 5759 5760 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5761 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5762 MVT::Other, getRoot(), 5763 getValue(I.getArgOperand(0)), 5764 DAG.getSrcValue(I.getArgOperand(0)))); 5765 } 5766 5767 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5768 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5769 MVT::Other, getRoot(), 5770 getValue(I.getArgOperand(0)), 5771 getValue(I.getArgOperand(1)), 5772 DAG.getSrcValue(I.getArgOperand(0)), 5773 DAG.getSrcValue(I.getArgOperand(1)))); 5774 } 5775 5776 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5777 /// implementation, which just calls LowerCall. 5778 /// FIXME: When all targets are 5779 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5780 std::pair<SDValue, SDValue> 5781 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5782 bool RetSExt, bool RetZExt, bool isVarArg, 5783 bool isInreg, unsigned NumFixedArgs, 5784 CallingConv::ID CallConv, bool isTailCall, 5785 bool isReturnValueUsed, 5786 SDValue Callee, 5787 ArgListTy &Args, SelectionDAG &DAG, 5788 DebugLoc dl) const { 5789 // Handle all of the outgoing arguments. 5790 SmallVector<ISD::OutputArg, 32> Outs; 5791 SmallVector<SDValue, 32> OutVals; 5792 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5793 SmallVector<EVT, 4> ValueVTs; 5794 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5795 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5796 Value != NumValues; ++Value) { 5797 EVT VT = ValueVTs[Value]; 5798 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5799 SDValue Op = SDValue(Args[i].Node.getNode(), 5800 Args[i].Node.getResNo() + Value); 5801 ISD::ArgFlagsTy Flags; 5802 unsigned OriginalAlignment = 5803 getTargetData()->getABITypeAlignment(ArgTy); 5804 5805 if (Args[i].isZExt) 5806 Flags.setZExt(); 5807 if (Args[i].isSExt) 5808 Flags.setSExt(); 5809 if (Args[i].isInReg) 5810 Flags.setInReg(); 5811 if (Args[i].isSRet) 5812 Flags.setSRet(); 5813 if (Args[i].isByVal) { 5814 Flags.setByVal(); 5815 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5816 const Type *ElementTy = Ty->getElementType(); 5817 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5818 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5819 // For ByVal, alignment should come from FE. BE will guess if this 5820 // info is not there but there are cases it cannot get right. 5821 if (Args[i].Alignment) 5822 FrameAlign = Args[i].Alignment; 5823 Flags.setByValAlign(FrameAlign); 5824 Flags.setByValSize(FrameSize); 5825 } 5826 if (Args[i].isNest) 5827 Flags.setNest(); 5828 Flags.setOrigAlign(OriginalAlignment); 5829 5830 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5831 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5832 SmallVector<SDValue, 4> Parts(NumParts); 5833 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5834 5835 if (Args[i].isSExt) 5836 ExtendKind = ISD::SIGN_EXTEND; 5837 else if (Args[i].isZExt) 5838 ExtendKind = ISD::ZERO_EXTEND; 5839 5840 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5841 PartVT, ExtendKind); 5842 5843 for (unsigned j = 0; j != NumParts; ++j) { 5844 // if it isn't first piece, alignment must be 1 5845 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5846 i < NumFixedArgs); 5847 if (NumParts > 1 && j == 0) 5848 MyFlags.Flags.setSplit(); 5849 else if (j != 0) 5850 MyFlags.Flags.setOrigAlign(1); 5851 5852 Outs.push_back(MyFlags); 5853 OutVals.push_back(Parts[j]); 5854 } 5855 } 5856 } 5857 5858 // Handle the incoming return values from the call. 5859 SmallVector<ISD::InputArg, 32> Ins; 5860 SmallVector<EVT, 4> RetTys; 5861 ComputeValueVTs(*this, RetTy, RetTys); 5862 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5863 EVT VT = RetTys[I]; 5864 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5865 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5866 for (unsigned i = 0; i != NumRegs; ++i) { 5867 ISD::InputArg MyFlags; 5868 MyFlags.VT = RegisterVT; 5869 MyFlags.Used = isReturnValueUsed; 5870 if (RetSExt) 5871 MyFlags.Flags.setSExt(); 5872 if (RetZExt) 5873 MyFlags.Flags.setZExt(); 5874 if (isInreg) 5875 MyFlags.Flags.setInReg(); 5876 Ins.push_back(MyFlags); 5877 } 5878 } 5879 5880 SmallVector<SDValue, 4> InVals; 5881 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5882 Outs, OutVals, Ins, dl, DAG, InVals); 5883 5884 // Verify that the target's LowerCall behaved as expected. 5885 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5886 "LowerCall didn't return a valid chain!"); 5887 assert((!isTailCall || InVals.empty()) && 5888 "LowerCall emitted a return value for a tail call!"); 5889 assert((isTailCall || InVals.size() == Ins.size()) && 5890 "LowerCall didn't emit the correct number of values!"); 5891 5892 // For a tail call, the return value is merely live-out and there aren't 5893 // any nodes in the DAG representing it. Return a special value to 5894 // indicate that a tail call has been emitted and no more Instructions 5895 // should be processed in the current block. 5896 if (isTailCall) { 5897 DAG.setRoot(Chain); 5898 return std::make_pair(SDValue(), SDValue()); 5899 } 5900 5901 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5902 assert(InVals[i].getNode() && 5903 "LowerCall emitted a null value!"); 5904 assert(Ins[i].VT == InVals[i].getValueType() && 5905 "LowerCall emitted a value with the wrong type!"); 5906 }); 5907 5908 // Collect the legal value parts into potentially illegal values 5909 // that correspond to the original function's return values. 5910 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5911 if (RetSExt) 5912 AssertOp = ISD::AssertSext; 5913 else if (RetZExt) 5914 AssertOp = ISD::AssertZext; 5915 SmallVector<SDValue, 4> ReturnValues; 5916 unsigned CurReg = 0; 5917 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5918 EVT VT = RetTys[I]; 5919 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5920 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5921 5922 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5923 NumRegs, RegisterVT, VT, 5924 AssertOp)); 5925 CurReg += NumRegs; 5926 } 5927 5928 // For a function returning void, there is no return value. We can't create 5929 // such a node, so we just return a null return value in that case. In 5930 // that case, nothing will actualy look at the value. 5931 if (ReturnValues.empty()) 5932 return std::make_pair(SDValue(), Chain); 5933 5934 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5935 DAG.getVTList(&RetTys[0], RetTys.size()), 5936 &ReturnValues[0], ReturnValues.size()); 5937 return std::make_pair(Res, Chain); 5938 } 5939 5940 void TargetLowering::LowerOperationWrapper(SDNode *N, 5941 SmallVectorImpl<SDValue> &Results, 5942 SelectionDAG &DAG) const { 5943 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5944 if (Res.getNode()) 5945 Results.push_back(Res); 5946 } 5947 5948 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5949 llvm_unreachable("LowerOperation not implemented for this target!"); 5950 return SDValue(); 5951 } 5952 5953 void 5954 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5955 SDValue Op = getNonRegisterValue(V); 5956 assert((Op.getOpcode() != ISD::CopyFromReg || 5957 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5958 "Copy from a reg to the same reg!"); 5959 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5960 5961 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5962 SDValue Chain = DAG.getEntryNode(); 5963 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5964 PendingExports.push_back(Chain); 5965 } 5966 5967 #include "llvm/CodeGen/SelectionDAGISel.h" 5968 5969 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5970 // If this is the entry block, emit arguments. 5971 const Function &F = *LLVMBB->getParent(); 5972 SelectionDAG &DAG = SDB->DAG; 5973 DebugLoc dl = SDB->getCurDebugLoc(); 5974 const TargetData *TD = TLI.getTargetData(); 5975 SmallVector<ISD::InputArg, 16> Ins; 5976 5977 // Check whether the function can return without sret-demotion. 5978 SmallVector<ISD::OutputArg, 4> Outs; 5979 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5980 Outs, TLI); 5981 5982 if (!FuncInfo->CanLowerReturn) { 5983 // Put in an sret pointer parameter before all the other parameters. 5984 SmallVector<EVT, 1> ValueVTs; 5985 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5986 5987 // NOTE: Assuming that a pointer will never break down to more than one VT 5988 // or one register. 5989 ISD::ArgFlagsTy Flags; 5990 Flags.setSRet(); 5991 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5992 ISD::InputArg RetArg(Flags, RegisterVT, true); 5993 Ins.push_back(RetArg); 5994 } 5995 5996 // Set up the incoming argument description vector. 5997 unsigned Idx = 1; 5998 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5999 I != E; ++I, ++Idx) { 6000 SmallVector<EVT, 4> ValueVTs; 6001 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6002 bool isArgValueUsed = !I->use_empty(); 6003 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6004 Value != NumValues; ++Value) { 6005 EVT VT = ValueVTs[Value]; 6006 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6007 ISD::ArgFlagsTy Flags; 6008 unsigned OriginalAlignment = 6009 TD->getABITypeAlignment(ArgTy); 6010 6011 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6012 Flags.setZExt(); 6013 if (F.paramHasAttr(Idx, Attribute::SExt)) 6014 Flags.setSExt(); 6015 if (F.paramHasAttr(Idx, Attribute::InReg)) 6016 Flags.setInReg(); 6017 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6018 Flags.setSRet(); 6019 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6020 Flags.setByVal(); 6021 const PointerType *Ty = cast<PointerType>(I->getType()); 6022 const Type *ElementTy = Ty->getElementType(); 6023 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6024 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6025 // For ByVal, alignment should be passed from FE. BE will guess if 6026 // this info is not there but there are cases it cannot get right. 6027 if (F.getParamAlignment(Idx)) 6028 FrameAlign = F.getParamAlignment(Idx); 6029 Flags.setByValAlign(FrameAlign); 6030 Flags.setByValSize(FrameSize); 6031 } 6032 if (F.paramHasAttr(Idx, Attribute::Nest)) 6033 Flags.setNest(); 6034 Flags.setOrigAlign(OriginalAlignment); 6035 6036 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6037 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6038 for (unsigned i = 0; i != NumRegs; ++i) { 6039 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6040 if (NumRegs > 1 && i == 0) 6041 MyFlags.Flags.setSplit(); 6042 // if it isn't first piece, alignment must be 1 6043 else if (i > 0) 6044 MyFlags.Flags.setOrigAlign(1); 6045 Ins.push_back(MyFlags); 6046 } 6047 } 6048 } 6049 6050 // Call the target to set up the argument values. 6051 SmallVector<SDValue, 8> InVals; 6052 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6053 F.isVarArg(), Ins, 6054 dl, DAG, InVals); 6055 6056 // Verify that the target's LowerFormalArguments behaved as expected. 6057 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6058 "LowerFormalArguments didn't return a valid chain!"); 6059 assert(InVals.size() == Ins.size() && 6060 "LowerFormalArguments didn't emit the correct number of values!"); 6061 DEBUG({ 6062 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6063 assert(InVals[i].getNode() && 6064 "LowerFormalArguments emitted a null value!"); 6065 assert(Ins[i].VT == InVals[i].getValueType() && 6066 "LowerFormalArguments emitted a value with the wrong type!"); 6067 } 6068 }); 6069 6070 // Update the DAG with the new chain value resulting from argument lowering. 6071 DAG.setRoot(NewRoot); 6072 6073 // Set up the argument values. 6074 unsigned i = 0; 6075 Idx = 1; 6076 if (!FuncInfo->CanLowerReturn) { 6077 // Create a virtual register for the sret pointer, and put in a copy 6078 // from the sret argument into it. 6079 SmallVector<EVT, 1> ValueVTs; 6080 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6081 EVT VT = ValueVTs[0]; 6082 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6083 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6084 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6085 RegVT, VT, AssertOp); 6086 6087 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6088 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6089 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6090 FuncInfo->DemoteRegister = SRetReg; 6091 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6092 SRetReg, ArgValue); 6093 DAG.setRoot(NewRoot); 6094 6095 // i indexes lowered arguments. Bump it past the hidden sret argument. 6096 // Idx indexes LLVM arguments. Don't touch it. 6097 ++i; 6098 } 6099 6100 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6101 ++I, ++Idx) { 6102 SmallVector<SDValue, 4> ArgValues; 6103 SmallVector<EVT, 4> ValueVTs; 6104 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6105 unsigned NumValues = ValueVTs.size(); 6106 6107 // If this argument is unused then remember its value. It is used to generate 6108 // debugging information. 6109 if (I->use_empty() && NumValues) 6110 SDB->setUnusedArgValue(I, InVals[i]); 6111 6112 for (unsigned Value = 0; Value != NumValues; ++Value) { 6113 EVT VT = ValueVTs[Value]; 6114 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6115 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6116 6117 if (!I->use_empty()) { 6118 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6119 if (F.paramHasAttr(Idx, Attribute::SExt)) 6120 AssertOp = ISD::AssertSext; 6121 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6122 AssertOp = ISD::AssertZext; 6123 6124 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6125 NumParts, PartVT, VT, 6126 AssertOp)); 6127 } 6128 6129 i += NumParts; 6130 } 6131 6132 if (!I->use_empty()) { 6133 SDValue Res; 6134 if (!ArgValues.empty()) 6135 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6136 SDB->getCurDebugLoc()); 6137 SDB->setValue(I, Res); 6138 6139 // If this argument is live outside of the entry block, insert a copy from 6140 // whereever we got it to the vreg that other BB's will reference it as. 6141 SDB->CopyToExportRegsIfNeeded(I); 6142 } 6143 } 6144 6145 assert(i == InVals.size() && "Argument register count mismatch!"); 6146 6147 // Finally, if the target has anything special to do, allow it to do so. 6148 // FIXME: this should insert code into the DAG! 6149 EmitFunctionEntryCode(); 6150 } 6151 6152 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6153 /// ensure constants are generated when needed. Remember the virtual registers 6154 /// that need to be added to the Machine PHI nodes as input. We cannot just 6155 /// directly add them, because expansion might result in multiple MBB's for one 6156 /// BB. As such, the start of the BB might correspond to a different MBB than 6157 /// the end. 6158 /// 6159 void 6160 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6161 const TerminatorInst *TI = LLVMBB->getTerminator(); 6162 6163 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6164 6165 // Check successor nodes' PHI nodes that expect a constant to be available 6166 // from this block. 6167 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6168 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6169 if (!isa<PHINode>(SuccBB->begin())) continue; 6170 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6171 6172 // If this terminator has multiple identical successors (common for 6173 // switches), only handle each succ once. 6174 if (!SuccsHandled.insert(SuccMBB)) continue; 6175 6176 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6177 6178 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6179 // nodes and Machine PHI nodes, but the incoming operands have not been 6180 // emitted yet. 6181 for (BasicBlock::const_iterator I = SuccBB->begin(); 6182 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6183 // Ignore dead phi's. 6184 if (PN->use_empty()) continue; 6185 6186 unsigned Reg; 6187 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6188 6189 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6190 unsigned &RegOut = ConstantsOut[C]; 6191 if (RegOut == 0) { 6192 RegOut = FuncInfo.CreateRegs(C->getType()); 6193 CopyValueToVirtualRegister(C, RegOut); 6194 } 6195 Reg = RegOut; 6196 } else { 6197 DenseMap<const Value *, unsigned>::iterator I = 6198 FuncInfo.ValueMap.find(PHIOp); 6199 if (I != FuncInfo.ValueMap.end()) 6200 Reg = I->second; 6201 else { 6202 assert(isa<AllocaInst>(PHIOp) && 6203 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6204 "Didn't codegen value into a register!??"); 6205 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6206 CopyValueToVirtualRegister(PHIOp, Reg); 6207 } 6208 } 6209 6210 // Remember that this register needs to added to the machine PHI node as 6211 // the input for this MBB. 6212 SmallVector<EVT, 4> ValueVTs; 6213 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6214 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6215 EVT VT = ValueVTs[vti]; 6216 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6217 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6218 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6219 Reg += NumRegisters; 6220 } 6221 } 6222 } 6223 ConstantsOut.clear(); 6224 } 6225