1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 if (const OverflowingBinaryOperator *OFBinOp = 2143 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2144 nuw = OFBinOp->hasNoUnsignedWrap(); 2145 nsw = OFBinOp->hasNoSignedWrap(); 2146 } 2147 if (const PossiblyExactOperator *ExactOp = 2148 dyn_cast<const PossiblyExactOperator>(&I)) 2149 exact = ExactOp->isExact(); 2150 2151 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2152 Op1, Op2, nuw, nsw, exact); 2153 setValue(&I, BinNodeValue); 2154 } 2155 2156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2157 SDValue Op1 = getValue(I.getOperand(0)); 2158 SDValue Op2 = getValue(I.getOperand(1)); 2159 2160 EVT ShiftTy = 2161 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2162 2163 // Coerce the shift amount to the right type if we can. 2164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2165 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2166 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2167 SDLoc DL = getCurSDLoc(); 2168 2169 // If the operand is smaller than the shift count type, promote it. 2170 if (ShiftSize > Op2Size) 2171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2172 2173 // If the operand is larger than the shift count type but the shift 2174 // count type has enough bits to represent any shift value, truncate 2175 // it now. This is a common case and it exposes the truncate to 2176 // optimization early. 2177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2179 // Otherwise we'll need to temporarily settle for some other convenient 2180 // type. Type legalization will make adjustments once the shiftee is split. 2181 else 2182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2183 } 2184 2185 bool nuw = false; 2186 bool nsw = false; 2187 bool exact = false; 2188 2189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2190 2191 if (const OverflowingBinaryOperator *OFBinOp = 2192 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2193 nuw = OFBinOp->hasNoUnsignedWrap(); 2194 nsw = OFBinOp->hasNoSignedWrap(); 2195 } 2196 if (const PossiblyExactOperator *ExactOp = 2197 dyn_cast<const PossiblyExactOperator>(&I)) 2198 exact = ExactOp->isExact(); 2199 } 2200 2201 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2202 nuw, nsw, exact); 2203 setValue(&I, Res); 2204 } 2205 2206 void SelectionDAGBuilder::visitSDiv(const User &I) { 2207 SDValue Op1 = getValue(I.getOperand(0)); 2208 SDValue Op2 = getValue(I.getOperand(1)); 2209 2210 // Turn exact SDivs into multiplications. 2211 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2212 // exact bit. 2213 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2214 !isa<ConstantSDNode>(Op1) && 2215 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2216 setValue(&I, DAG.getTargetLoweringInfo() 2217 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2218 else 2219 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2220 Op1, Op2)); 2221 } 2222 2223 void SelectionDAGBuilder::visitICmp(const User &I) { 2224 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2225 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2226 predicate = IC->getPredicate(); 2227 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2228 predicate = ICmpInst::Predicate(IC->getPredicate()); 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 ISD::CondCode Opcode = getICmpCondCode(predicate); 2232 2233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2235 } 2236 2237 void SelectionDAGBuilder::visitFCmp(const User &I) { 2238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2240 predicate = FC->getPredicate(); 2241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2242 predicate = FCmpInst::Predicate(FC->getPredicate()); 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 ISD::CondCode Condition = getFCmpCondCode(predicate); 2246 if (TM.Options.NoNaNsFPMath) 2247 Condition = getFCmpCodeWithoutNaN(Condition); 2248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2249 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2250 } 2251 2252 void SelectionDAGBuilder::visitSelect(const User &I) { 2253 SmallVector<EVT, 4> ValueVTs; 2254 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2255 unsigned NumValues = ValueVTs.size(); 2256 if (NumValues == 0) return; 2257 2258 SmallVector<SDValue, 4> Values(NumValues); 2259 SDValue Cond = getValue(I.getOperand(0)); 2260 SDValue LHSVal = getValue(I.getOperand(1)); 2261 SDValue RHSVal = getValue(I.getOperand(2)); 2262 auto BaseOps = {Cond}; 2263 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2264 ISD::VSELECT : ISD::SELECT; 2265 2266 // Min/max matching is only viable if all output VTs are the same. 2267 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2268 Value *LHS, *RHS; 2269 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2270 ISD::NodeType Opc = ISD::DELETED_NODE; 2271 switch (SPF) { 2272 case SPF_UMAX: Opc = ISD::UMAX; break; 2273 case SPF_UMIN: Opc = ISD::UMIN; break; 2274 case SPF_SMAX: Opc = ISD::SMAX; break; 2275 case SPF_SMIN: Opc = ISD::SMIN; break; 2276 default: break; 2277 } 2278 2279 EVT VT = ValueVTs[0]; 2280 LLVMContext &Ctx = *DAG.getContext(); 2281 auto &TLI = DAG.getTargetLoweringInfo(); 2282 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2283 VT = TLI.getTypeToTransformTo(Ctx, VT); 2284 2285 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT)) { 2286 OpCode = Opc; 2287 LHSVal = getValue(LHS); 2288 RHSVal = getValue(RHS); 2289 BaseOps = {}; 2290 } 2291 } 2292 2293 for (unsigned i = 0; i != NumValues; ++i) { 2294 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2295 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2296 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2297 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2298 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2299 Ops); 2300 } 2301 2302 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2303 DAG.getVTList(ValueVTs), Values)); 2304 } 2305 2306 void SelectionDAGBuilder::visitTrunc(const User &I) { 2307 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2308 SDValue N = getValue(I.getOperand(0)); 2309 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2310 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2311 } 2312 2313 void SelectionDAGBuilder::visitZExt(const User &I) { 2314 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2315 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2316 SDValue N = getValue(I.getOperand(0)); 2317 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2318 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2319 } 2320 2321 void SelectionDAGBuilder::visitSExt(const User &I) { 2322 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2323 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2324 SDValue N = getValue(I.getOperand(0)); 2325 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2326 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2327 } 2328 2329 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2330 // FPTrunc is never a no-op cast, no need to check 2331 SDValue N = getValue(I.getOperand(0)); 2332 SDLoc dl = getCurSDLoc(); 2333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2334 EVT DestVT = TLI.getValueType(I.getType()); 2335 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2336 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2337 } 2338 2339 void SelectionDAGBuilder::visitFPExt(const User &I) { 2340 // FPExt is never a no-op cast, no need to check 2341 SDValue N = getValue(I.getOperand(0)); 2342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2343 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2347 // FPToUI is never a no-op cast, no need to check 2348 SDValue N = getValue(I.getOperand(0)); 2349 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2350 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2351 } 2352 2353 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2354 // FPToSI is never a no-op cast, no need to check 2355 SDValue N = getValue(I.getOperand(0)); 2356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2357 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2358 } 2359 2360 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2361 // UIToFP is never a no-op cast, no need to check 2362 SDValue N = getValue(I.getOperand(0)); 2363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2364 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2365 } 2366 2367 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2368 // SIToFP is never a no-op cast, no need to check 2369 SDValue N = getValue(I.getOperand(0)); 2370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2371 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2372 } 2373 2374 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2375 // What to do depends on the size of the integer and the size of the pointer. 2376 // We can either truncate, zero extend, or no-op, accordingly. 2377 SDValue N = getValue(I.getOperand(0)); 2378 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2379 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2380 } 2381 2382 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2383 // What to do depends on the size of the integer and the size of the pointer. 2384 // We can either truncate, zero extend, or no-op, accordingly. 2385 SDValue N = getValue(I.getOperand(0)); 2386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2387 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2388 } 2389 2390 void SelectionDAGBuilder::visitBitCast(const User &I) { 2391 SDValue N = getValue(I.getOperand(0)); 2392 SDLoc dl = getCurSDLoc(); 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2394 2395 // BitCast assures us that source and destination are the same size so this is 2396 // either a BITCAST or a no-op. 2397 if (DestVT != N.getValueType()) 2398 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2399 DestVT, N)); // convert types. 2400 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2401 // might fold any kind of constant expression to an integer constant and that 2402 // is not what we are looking for. Only regcognize a bitcast of a genuine 2403 // constant integer as an opaque constant. 2404 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2405 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2406 /*isOpaque*/true)); 2407 else 2408 setValue(&I, N); // noop cast. 2409 } 2410 2411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2413 const Value *SV = I.getOperand(0); 2414 SDValue N = getValue(SV); 2415 EVT DestVT = TLI.getValueType(I.getType()); 2416 2417 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2418 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2419 2420 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2421 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2422 2423 setValue(&I, N); 2424 } 2425 2426 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2428 SDValue InVec = getValue(I.getOperand(0)); 2429 SDValue InVal = getValue(I.getOperand(1)); 2430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2431 getCurSDLoc(), TLI.getVectorIdxTy()); 2432 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2433 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2434 } 2435 2436 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2438 SDValue InVec = getValue(I.getOperand(0)); 2439 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2440 getCurSDLoc(), TLI.getVectorIdxTy()); 2441 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2442 TLI.getValueType(I.getType()), InVec, InIdx)); 2443 } 2444 2445 // Utility for visitShuffleVector - Return true if every element in Mask, 2446 // beginning from position Pos and ending in Pos+Size, falls within the 2447 // specified sequential range [L, L+Pos). or is undef. 2448 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2449 unsigned Pos, unsigned Size, int Low) { 2450 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2451 if (Mask[i] >= 0 && Mask[i] != Low) 2452 return false; 2453 return true; 2454 } 2455 2456 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2457 SDValue Src1 = getValue(I.getOperand(0)); 2458 SDValue Src2 = getValue(I.getOperand(1)); 2459 2460 SmallVector<int, 8> Mask; 2461 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2462 unsigned MaskNumElts = Mask.size(); 2463 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 EVT VT = TLI.getValueType(I.getType()); 2466 EVT SrcVT = Src1.getValueType(); 2467 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2468 2469 if (SrcNumElts == MaskNumElts) { 2470 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2471 &Mask[0])); 2472 return; 2473 } 2474 2475 // Normalize the shuffle vector since mask and vector length don't match. 2476 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2477 // Mask is longer than the source vectors and is a multiple of the source 2478 // vectors. We can use concatenate vector to make the mask and vectors 2479 // lengths match. 2480 if (SrcNumElts*2 == MaskNumElts) { 2481 // First check for Src1 in low and Src2 in high 2482 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2483 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2484 // The shuffle is concatenating two vectors together. 2485 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2486 VT, Src1, Src2)); 2487 return; 2488 } 2489 // Then check for Src2 in low and Src1 in high 2490 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2491 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2492 // The shuffle is concatenating two vectors together. 2493 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2494 VT, Src2, Src1)); 2495 return; 2496 } 2497 } 2498 2499 // Pad both vectors with undefs to make them the same length as the mask. 2500 unsigned NumConcat = MaskNumElts / SrcNumElts; 2501 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2502 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2503 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2504 2505 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2506 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2507 MOps1[0] = Src1; 2508 MOps2[0] = Src2; 2509 2510 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2511 getCurSDLoc(), VT, MOps1); 2512 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2513 getCurSDLoc(), VT, MOps2); 2514 2515 // Readjust mask for new input vector length. 2516 SmallVector<int, 8> MappedOps; 2517 for (unsigned i = 0; i != MaskNumElts; ++i) { 2518 int Idx = Mask[i]; 2519 if (Idx >= (int)SrcNumElts) 2520 Idx -= SrcNumElts - MaskNumElts; 2521 MappedOps.push_back(Idx); 2522 } 2523 2524 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2525 &MappedOps[0])); 2526 return; 2527 } 2528 2529 if (SrcNumElts > MaskNumElts) { 2530 // Analyze the access pattern of the vector to see if we can extract 2531 // two subvectors and do the shuffle. The analysis is done by calculating 2532 // the range of elements the mask access on both vectors. 2533 int MinRange[2] = { static_cast<int>(SrcNumElts), 2534 static_cast<int>(SrcNumElts)}; 2535 int MaxRange[2] = {-1, -1}; 2536 2537 for (unsigned i = 0; i != MaskNumElts; ++i) { 2538 int Idx = Mask[i]; 2539 unsigned Input = 0; 2540 if (Idx < 0) 2541 continue; 2542 2543 if (Idx >= (int)SrcNumElts) { 2544 Input = 1; 2545 Idx -= SrcNumElts; 2546 } 2547 if (Idx > MaxRange[Input]) 2548 MaxRange[Input] = Idx; 2549 if (Idx < MinRange[Input]) 2550 MinRange[Input] = Idx; 2551 } 2552 2553 // Check if the access is smaller than the vector size and can we find 2554 // a reasonable extract index. 2555 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2556 // Extract. 2557 int StartIdx[2]; // StartIdx to extract from 2558 for (unsigned Input = 0; Input < 2; ++Input) { 2559 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2560 RangeUse[Input] = 0; // Unused 2561 StartIdx[Input] = 0; 2562 continue; 2563 } 2564 2565 // Find a good start index that is a multiple of the mask length. Then 2566 // see if the rest of the elements are in range. 2567 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2568 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2569 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2570 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2571 } 2572 2573 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2574 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2575 return; 2576 } 2577 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2578 // Extract appropriate subvector and generate a vector shuffle 2579 for (unsigned Input = 0; Input < 2; ++Input) { 2580 SDValue &Src = Input == 0 ? Src1 : Src2; 2581 if (RangeUse[Input] == 0) 2582 Src = DAG.getUNDEF(VT); 2583 else { 2584 SDLoc dl = getCurSDLoc(); 2585 Src = DAG.getNode( 2586 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2587 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2588 } 2589 } 2590 2591 // Calculate new mask. 2592 SmallVector<int, 8> MappedOps; 2593 for (unsigned i = 0; i != MaskNumElts; ++i) { 2594 int Idx = Mask[i]; 2595 if (Idx >= 0) { 2596 if (Idx < (int)SrcNumElts) 2597 Idx -= StartIdx[0]; 2598 else 2599 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2600 } 2601 MappedOps.push_back(Idx); 2602 } 2603 2604 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2605 &MappedOps[0])); 2606 return; 2607 } 2608 } 2609 2610 // We can't use either concat vectors or extract subvectors so fall back to 2611 // replacing the shuffle with extract and build vector. 2612 // to insert and build vector. 2613 EVT EltVT = VT.getVectorElementType(); 2614 EVT IdxVT = TLI.getVectorIdxTy(); 2615 SDLoc dl = getCurSDLoc(); 2616 SmallVector<SDValue,8> Ops; 2617 for (unsigned i = 0; i != MaskNumElts; ++i) { 2618 int Idx = Mask[i]; 2619 SDValue Res; 2620 2621 if (Idx < 0) { 2622 Res = DAG.getUNDEF(EltVT); 2623 } else { 2624 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2625 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2626 2627 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2628 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2629 } 2630 2631 Ops.push_back(Res); 2632 } 2633 2634 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2635 } 2636 2637 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2638 const Value *Op0 = I.getOperand(0); 2639 const Value *Op1 = I.getOperand(1); 2640 Type *AggTy = I.getType(); 2641 Type *ValTy = Op1->getType(); 2642 bool IntoUndef = isa<UndefValue>(Op0); 2643 bool FromUndef = isa<UndefValue>(Op1); 2644 2645 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2646 2647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2648 SmallVector<EVT, 4> AggValueVTs; 2649 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2650 SmallVector<EVT, 4> ValValueVTs; 2651 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2652 2653 unsigned NumAggValues = AggValueVTs.size(); 2654 unsigned NumValValues = ValValueVTs.size(); 2655 SmallVector<SDValue, 4> Values(NumAggValues); 2656 2657 // Ignore an insertvalue that produces an empty object 2658 if (!NumAggValues) { 2659 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2660 return; 2661 } 2662 2663 SDValue Agg = getValue(Op0); 2664 unsigned i = 0; 2665 // Copy the beginning value(s) from the original aggregate. 2666 for (; i != LinearIndex; ++i) 2667 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2668 SDValue(Agg.getNode(), Agg.getResNo() + i); 2669 // Copy values from the inserted value(s). 2670 if (NumValValues) { 2671 SDValue Val = getValue(Op1); 2672 for (; i != LinearIndex + NumValValues; ++i) 2673 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2674 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2675 } 2676 // Copy remaining value(s) from the original aggregate. 2677 for (; i != NumAggValues; ++i) 2678 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2679 SDValue(Agg.getNode(), Agg.getResNo() + i); 2680 2681 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2682 DAG.getVTList(AggValueVTs), Values)); 2683 } 2684 2685 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2686 const Value *Op0 = I.getOperand(0); 2687 Type *AggTy = Op0->getType(); 2688 Type *ValTy = I.getType(); 2689 bool OutOfUndef = isa<UndefValue>(Op0); 2690 2691 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2692 2693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2694 SmallVector<EVT, 4> ValValueVTs; 2695 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2696 2697 unsigned NumValValues = ValValueVTs.size(); 2698 2699 // Ignore a extractvalue that produces an empty object 2700 if (!NumValValues) { 2701 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2702 return; 2703 } 2704 2705 SmallVector<SDValue, 4> Values(NumValValues); 2706 2707 SDValue Agg = getValue(Op0); 2708 // Copy out the selected value(s). 2709 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2710 Values[i - LinearIndex] = 2711 OutOfUndef ? 2712 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2713 SDValue(Agg.getNode(), Agg.getResNo() + i); 2714 2715 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2716 DAG.getVTList(ValValueVTs), Values)); 2717 } 2718 2719 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2720 Value *Op0 = I.getOperand(0); 2721 // Note that the pointer operand may be a vector of pointers. Take the scalar 2722 // element which holds a pointer. 2723 Type *Ty = Op0->getType()->getScalarType(); 2724 unsigned AS = Ty->getPointerAddressSpace(); 2725 SDValue N = getValue(Op0); 2726 SDLoc dl = getCurSDLoc(); 2727 2728 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2729 OI != E; ++OI) { 2730 const Value *Idx = *OI; 2731 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2732 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2733 if (Field) { 2734 // N = N + Offset 2735 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2736 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2737 DAG.getConstant(Offset, dl, N.getValueType())); 2738 } 2739 2740 Ty = StTy->getElementType(Field); 2741 } else { 2742 Ty = cast<SequentialType>(Ty)->getElementType(); 2743 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2744 unsigned PtrSize = PtrTy.getSizeInBits(); 2745 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2746 2747 // If this is a constant subscript, handle it quickly. 2748 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2749 if (CI->isZero()) 2750 continue; 2751 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2752 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2753 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2754 continue; 2755 } 2756 2757 // N = N + Idx * ElementSize; 2758 SDValue IdxN = getValue(Idx); 2759 2760 // If the index is smaller or larger than intptr_t, truncate or extend 2761 // it. 2762 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2763 2764 // If this is a multiply by a power of two, turn it into a shl 2765 // immediately. This is a very common case. 2766 if (ElementSize != 1) { 2767 if (ElementSize.isPowerOf2()) { 2768 unsigned Amt = ElementSize.logBase2(); 2769 IdxN = DAG.getNode(ISD::SHL, dl, 2770 N.getValueType(), IdxN, 2771 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2772 } else { 2773 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2774 IdxN = DAG.getNode(ISD::MUL, dl, 2775 N.getValueType(), IdxN, Scale); 2776 } 2777 } 2778 2779 N = DAG.getNode(ISD::ADD, dl, 2780 N.getValueType(), N, IdxN); 2781 } 2782 } 2783 2784 setValue(&I, N); 2785 } 2786 2787 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2788 // If this is a fixed sized alloca in the entry block of the function, 2789 // allocate it statically on the stack. 2790 if (FuncInfo.StaticAllocaMap.count(&I)) 2791 return; // getValue will auto-populate this. 2792 2793 SDLoc dl = getCurSDLoc(); 2794 Type *Ty = I.getAllocatedType(); 2795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2796 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2797 unsigned Align = 2798 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2799 I.getAlignment()); 2800 2801 SDValue AllocSize = getValue(I.getArraySize()); 2802 2803 EVT IntPtr = TLI.getPointerTy(); 2804 if (AllocSize.getValueType() != IntPtr) 2805 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2806 2807 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2808 AllocSize, 2809 DAG.getConstant(TySize, dl, IntPtr)); 2810 2811 // Handle alignment. If the requested alignment is less than or equal to 2812 // the stack alignment, ignore it. If the size is greater than or equal to 2813 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2814 unsigned StackAlign = 2815 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2816 if (Align <= StackAlign) 2817 Align = 0; 2818 2819 // Round the size of the allocation up to the stack alignment size 2820 // by add SA-1 to the size. 2821 AllocSize = DAG.getNode(ISD::ADD, dl, 2822 AllocSize.getValueType(), AllocSize, 2823 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2824 2825 // Mask out the low bits for alignment purposes. 2826 AllocSize = DAG.getNode(ISD::AND, dl, 2827 AllocSize.getValueType(), AllocSize, 2828 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2829 dl)); 2830 2831 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2832 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2833 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2834 setValue(&I, DSA); 2835 DAG.setRoot(DSA.getValue(1)); 2836 2837 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2838 } 2839 2840 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2841 if (I.isAtomic()) 2842 return visitAtomicLoad(I); 2843 2844 const Value *SV = I.getOperand(0); 2845 SDValue Ptr = getValue(SV); 2846 2847 Type *Ty = I.getType(); 2848 2849 bool isVolatile = I.isVolatile(); 2850 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2851 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2852 unsigned Alignment = I.getAlignment(); 2853 2854 AAMDNodes AAInfo; 2855 I.getAAMetadata(AAInfo); 2856 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2857 2858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2859 SmallVector<EVT, 4> ValueVTs; 2860 SmallVector<uint64_t, 4> Offsets; 2861 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2862 unsigned NumValues = ValueVTs.size(); 2863 if (NumValues == 0) 2864 return; 2865 2866 SDValue Root; 2867 bool ConstantMemory = false; 2868 if (isVolatile || NumValues > MaxParallelChains) 2869 // Serialize volatile loads with other side effects. 2870 Root = getRoot(); 2871 else if (AA->pointsToConstantMemory( 2872 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2873 // Do not serialize (non-volatile) loads of constant memory with anything. 2874 Root = DAG.getEntryNode(); 2875 ConstantMemory = true; 2876 } else { 2877 // Do not serialize non-volatile loads against each other. 2878 Root = DAG.getRoot(); 2879 } 2880 2881 SDLoc dl = getCurSDLoc(); 2882 2883 if (isVolatile) 2884 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2885 2886 SmallVector<SDValue, 4> Values(NumValues); 2887 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2888 NumValues)); 2889 EVT PtrVT = Ptr.getValueType(); 2890 unsigned ChainI = 0; 2891 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2892 // Serializing loads here may result in excessive register pressure, and 2893 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2894 // could recover a bit by hoisting nodes upward in the chain by recognizing 2895 // they are side-effect free or do not alias. The optimizer should really 2896 // avoid this case by converting large object/array copies to llvm.memcpy 2897 // (MaxParallelChains should always remain as failsafe). 2898 if (ChainI == MaxParallelChains) { 2899 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2900 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2901 makeArrayRef(Chains.data(), ChainI)); 2902 Root = Chain; 2903 ChainI = 0; 2904 } 2905 SDValue A = DAG.getNode(ISD::ADD, dl, 2906 PtrVT, Ptr, 2907 DAG.getConstant(Offsets[i], dl, PtrVT)); 2908 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2909 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2910 isNonTemporal, isInvariant, Alignment, AAInfo, 2911 Ranges); 2912 2913 Values[i] = L; 2914 Chains[ChainI] = L.getValue(1); 2915 } 2916 2917 if (!ConstantMemory) { 2918 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2919 makeArrayRef(Chains.data(), ChainI)); 2920 if (isVolatile) 2921 DAG.setRoot(Chain); 2922 else 2923 PendingLoads.push_back(Chain); 2924 } 2925 2926 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2927 DAG.getVTList(ValueVTs), Values)); 2928 } 2929 2930 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2931 if (I.isAtomic()) 2932 return visitAtomicStore(I); 2933 2934 const Value *SrcV = I.getOperand(0); 2935 const Value *PtrV = I.getOperand(1); 2936 2937 SmallVector<EVT, 4> ValueVTs; 2938 SmallVector<uint64_t, 4> Offsets; 2939 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2940 ValueVTs, &Offsets); 2941 unsigned NumValues = ValueVTs.size(); 2942 if (NumValues == 0) 2943 return; 2944 2945 // Get the lowered operands. Note that we do this after 2946 // checking if NumResults is zero, because with zero results 2947 // the operands won't have values in the map. 2948 SDValue Src = getValue(SrcV); 2949 SDValue Ptr = getValue(PtrV); 2950 2951 SDValue Root = getRoot(); 2952 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2953 NumValues)); 2954 EVT PtrVT = Ptr.getValueType(); 2955 bool isVolatile = I.isVolatile(); 2956 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2957 unsigned Alignment = I.getAlignment(); 2958 SDLoc dl = getCurSDLoc(); 2959 2960 AAMDNodes AAInfo; 2961 I.getAAMetadata(AAInfo); 2962 2963 unsigned ChainI = 0; 2964 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2965 // See visitLoad comments. 2966 if (ChainI == MaxParallelChains) { 2967 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2968 makeArrayRef(Chains.data(), ChainI)); 2969 Root = Chain; 2970 ChainI = 0; 2971 } 2972 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2973 DAG.getConstant(Offsets[i], dl, PtrVT)); 2974 SDValue St = DAG.getStore(Root, dl, 2975 SDValue(Src.getNode(), Src.getResNo() + i), 2976 Add, MachinePointerInfo(PtrV, Offsets[i]), 2977 isVolatile, isNonTemporal, Alignment, AAInfo); 2978 Chains[ChainI] = St; 2979 } 2980 2981 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2982 makeArrayRef(Chains.data(), ChainI)); 2983 DAG.setRoot(StoreNode); 2984 } 2985 2986 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 2987 SDLoc sdl = getCurSDLoc(); 2988 2989 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 2990 Value *PtrOperand = I.getArgOperand(1); 2991 SDValue Ptr = getValue(PtrOperand); 2992 SDValue Src0 = getValue(I.getArgOperand(0)); 2993 SDValue Mask = getValue(I.getArgOperand(3)); 2994 EVT VT = Src0.getValueType(); 2995 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 2996 if (!Alignment) 2997 Alignment = DAG.getEVTAlignment(VT); 2998 2999 AAMDNodes AAInfo; 3000 I.getAAMetadata(AAInfo); 3001 3002 MachineMemOperand *MMO = 3003 DAG.getMachineFunction(). 3004 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3005 MachineMemOperand::MOStore, VT.getStoreSize(), 3006 Alignment, AAInfo); 3007 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3008 MMO, false); 3009 DAG.setRoot(StoreNode); 3010 setValue(&I, StoreNode); 3011 } 3012 3013 // Gather/scatter receive a vector of pointers. 3014 // This vector of pointers may be represented as a base pointer + vector of 3015 // indices, it depends on GEP and instruction preceeding GEP 3016 // that calculates indices 3017 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3018 SelectionDAGBuilder* SDB) { 3019 3020 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3021 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3022 if (!Gep || Gep->getNumOperands() > 2) 3023 return false; 3024 ShuffleVectorInst *ShuffleInst = 3025 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3026 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3027 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3028 Instruction::InsertElement) 3029 return false; 3030 3031 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3032 3033 SelectionDAG& DAG = SDB->DAG; 3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3035 // Check is the Ptr is inside current basic block 3036 // If not, look for the shuffle instruction 3037 if (SDB->findValue(Ptr)) 3038 Base = SDB->getValue(Ptr); 3039 else if (SDB->findValue(ShuffleInst)) { 3040 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3041 SDLoc sdl = ShuffleNode; 3042 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3043 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3044 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3045 SDB->setValue(Ptr, Base); 3046 } 3047 else 3048 return false; 3049 3050 Value *IndexVal = Gep->getOperand(1); 3051 if (SDB->findValue(IndexVal)) { 3052 Index = SDB->getValue(IndexVal); 3053 3054 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3055 IndexVal = Sext->getOperand(0); 3056 if (SDB->findValue(IndexVal)) 3057 Index = SDB->getValue(IndexVal); 3058 } 3059 return true; 3060 } 3061 return false; 3062 } 3063 3064 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3065 SDLoc sdl = getCurSDLoc(); 3066 3067 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3068 Value *Ptr = I.getArgOperand(1); 3069 SDValue Src0 = getValue(I.getArgOperand(0)); 3070 SDValue Mask = getValue(I.getArgOperand(3)); 3071 EVT VT = Src0.getValueType(); 3072 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3073 if (!Alignment) 3074 Alignment = DAG.getEVTAlignment(VT); 3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3076 3077 AAMDNodes AAInfo; 3078 I.getAAMetadata(AAInfo); 3079 3080 SDValue Base; 3081 SDValue Index; 3082 Value *BasePtr = Ptr; 3083 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3084 3085 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3086 MachineMemOperand *MMO = DAG.getMachineFunction(). 3087 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3088 MachineMemOperand::MOStore, VT.getStoreSize(), 3089 Alignment, AAInfo); 3090 if (!UniformBase) { 3091 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3092 Index = getValue(Ptr); 3093 } 3094 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3095 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3096 Ops, MMO); 3097 DAG.setRoot(Scatter); 3098 setValue(&I, Scatter); 3099 } 3100 3101 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3102 SDLoc sdl = getCurSDLoc(); 3103 3104 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3105 Value *PtrOperand = I.getArgOperand(0); 3106 SDValue Ptr = getValue(PtrOperand); 3107 SDValue Src0 = getValue(I.getArgOperand(3)); 3108 SDValue Mask = getValue(I.getArgOperand(2)); 3109 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 EVT VT = TLI.getValueType(I.getType()); 3112 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3113 if (!Alignment) 3114 Alignment = DAG.getEVTAlignment(VT); 3115 3116 AAMDNodes AAInfo; 3117 I.getAAMetadata(AAInfo); 3118 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3119 3120 SDValue InChain = DAG.getRoot(); 3121 if (AA->pointsToConstantMemory( 3122 AliasAnalysis::Location(PtrOperand, 3123 AA->getTypeStoreSize(I.getType()), 3124 AAInfo))) { 3125 // Do not serialize (non-volatile) loads of constant memory with anything. 3126 InChain = DAG.getEntryNode(); 3127 } 3128 3129 MachineMemOperand *MMO = 3130 DAG.getMachineFunction(). 3131 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3132 MachineMemOperand::MOLoad, VT.getStoreSize(), 3133 Alignment, AAInfo, Ranges); 3134 3135 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3136 ISD::NON_EXTLOAD); 3137 SDValue OutChain = Load.getValue(1); 3138 DAG.setRoot(OutChain); 3139 setValue(&I, Load); 3140 } 3141 3142 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3143 SDLoc sdl = getCurSDLoc(); 3144 3145 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3146 Value *Ptr = I.getArgOperand(0); 3147 SDValue Src0 = getValue(I.getArgOperand(3)); 3148 SDValue Mask = getValue(I.getArgOperand(2)); 3149 3150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3151 EVT VT = TLI.getValueType(I.getType()); 3152 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3153 if (!Alignment) 3154 Alignment = DAG.getEVTAlignment(VT); 3155 3156 AAMDNodes AAInfo; 3157 I.getAAMetadata(AAInfo); 3158 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3159 3160 SDValue Root = DAG.getRoot(); 3161 SDValue Base; 3162 SDValue Index; 3163 Value *BasePtr = Ptr; 3164 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3165 bool ConstantMemory = false; 3166 if (UniformBase && AA->pointsToConstantMemory( 3167 AliasAnalysis::Location(BasePtr, 3168 AA->getTypeStoreSize(I.getType()), 3169 AAInfo))) { 3170 // Do not serialize (non-volatile) loads of constant memory with anything. 3171 Root = DAG.getEntryNode(); 3172 ConstantMemory = true; 3173 } 3174 3175 MachineMemOperand *MMO = 3176 DAG.getMachineFunction(). 3177 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3178 MachineMemOperand::MOLoad, VT.getStoreSize(), 3179 Alignment, AAInfo, Ranges); 3180 3181 if (!UniformBase) { 3182 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3183 Index = getValue(Ptr); 3184 } 3185 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3186 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3187 Ops, MMO); 3188 3189 SDValue OutChain = Gather.getValue(1); 3190 if (!ConstantMemory) 3191 PendingLoads.push_back(OutChain); 3192 setValue(&I, Gather); 3193 } 3194 3195 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3196 SDLoc dl = getCurSDLoc(); 3197 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3198 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3199 SynchronizationScope Scope = I.getSynchScope(); 3200 3201 SDValue InChain = getRoot(); 3202 3203 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3204 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3205 SDValue L = DAG.getAtomicCmpSwap( 3206 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3207 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3208 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3209 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3210 3211 SDValue OutChain = L.getValue(2); 3212 3213 setValue(&I, L); 3214 DAG.setRoot(OutChain); 3215 } 3216 3217 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3218 SDLoc dl = getCurSDLoc(); 3219 ISD::NodeType NT; 3220 switch (I.getOperation()) { 3221 default: llvm_unreachable("Unknown atomicrmw operation"); 3222 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3223 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3224 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3225 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3226 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3227 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3228 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3229 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3230 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3231 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3232 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3233 } 3234 AtomicOrdering Order = I.getOrdering(); 3235 SynchronizationScope Scope = I.getSynchScope(); 3236 3237 SDValue InChain = getRoot(); 3238 3239 SDValue L = 3240 DAG.getAtomic(NT, dl, 3241 getValue(I.getValOperand()).getSimpleValueType(), 3242 InChain, 3243 getValue(I.getPointerOperand()), 3244 getValue(I.getValOperand()), 3245 I.getPointerOperand(), 3246 /* Alignment=*/ 0, Order, Scope); 3247 3248 SDValue OutChain = L.getValue(1); 3249 3250 setValue(&I, L); 3251 DAG.setRoot(OutChain); 3252 } 3253 3254 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3255 SDLoc dl = getCurSDLoc(); 3256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3257 SDValue Ops[3]; 3258 Ops[0] = getRoot(); 3259 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3260 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3261 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3262 } 3263 3264 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3265 SDLoc dl = getCurSDLoc(); 3266 AtomicOrdering Order = I.getOrdering(); 3267 SynchronizationScope Scope = I.getSynchScope(); 3268 3269 SDValue InChain = getRoot(); 3270 3271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3272 EVT VT = TLI.getValueType(I.getType()); 3273 3274 if (I.getAlignment() < VT.getSizeInBits() / 8) 3275 report_fatal_error("Cannot generate unaligned atomic load"); 3276 3277 MachineMemOperand *MMO = 3278 DAG.getMachineFunction(). 3279 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3280 MachineMemOperand::MOVolatile | 3281 MachineMemOperand::MOLoad, 3282 VT.getStoreSize(), 3283 I.getAlignment() ? I.getAlignment() : 3284 DAG.getEVTAlignment(VT)); 3285 3286 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3287 SDValue L = 3288 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3289 getValue(I.getPointerOperand()), MMO, 3290 Order, Scope); 3291 3292 SDValue OutChain = L.getValue(1); 3293 3294 setValue(&I, L); 3295 DAG.setRoot(OutChain); 3296 } 3297 3298 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3299 SDLoc dl = getCurSDLoc(); 3300 3301 AtomicOrdering Order = I.getOrdering(); 3302 SynchronizationScope Scope = I.getSynchScope(); 3303 3304 SDValue InChain = getRoot(); 3305 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3308 3309 if (I.getAlignment() < VT.getSizeInBits() / 8) 3310 report_fatal_error("Cannot generate unaligned atomic store"); 3311 3312 SDValue OutChain = 3313 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3314 InChain, 3315 getValue(I.getPointerOperand()), 3316 getValue(I.getValueOperand()), 3317 I.getPointerOperand(), I.getAlignment(), 3318 Order, Scope); 3319 3320 DAG.setRoot(OutChain); 3321 } 3322 3323 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3324 /// node. 3325 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3326 unsigned Intrinsic) { 3327 bool HasChain = !I.doesNotAccessMemory(); 3328 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3329 3330 // Build the operand list. 3331 SmallVector<SDValue, 8> Ops; 3332 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3333 if (OnlyLoad) { 3334 // We don't need to serialize loads against other loads. 3335 Ops.push_back(DAG.getRoot()); 3336 } else { 3337 Ops.push_back(getRoot()); 3338 } 3339 } 3340 3341 // Info is set by getTgtMemInstrinsic 3342 TargetLowering::IntrinsicInfo Info; 3343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3344 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3345 3346 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3347 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3348 Info.opc == ISD::INTRINSIC_W_CHAIN) 3349 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3350 TLI.getPointerTy())); 3351 3352 // Add all operands of the call to the operand list. 3353 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3354 SDValue Op = getValue(I.getArgOperand(i)); 3355 Ops.push_back(Op); 3356 } 3357 3358 SmallVector<EVT, 4> ValueVTs; 3359 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3360 3361 if (HasChain) 3362 ValueVTs.push_back(MVT::Other); 3363 3364 SDVTList VTs = DAG.getVTList(ValueVTs); 3365 3366 // Create the node. 3367 SDValue Result; 3368 if (IsTgtIntrinsic) { 3369 // This is target intrinsic that touches memory 3370 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3371 VTs, Ops, Info.memVT, 3372 MachinePointerInfo(Info.ptrVal, Info.offset), 3373 Info.align, Info.vol, 3374 Info.readMem, Info.writeMem, Info.size); 3375 } else if (!HasChain) { 3376 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3377 } else if (!I.getType()->isVoidTy()) { 3378 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3379 } else { 3380 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3381 } 3382 3383 if (HasChain) { 3384 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3385 if (OnlyLoad) 3386 PendingLoads.push_back(Chain); 3387 else 3388 DAG.setRoot(Chain); 3389 } 3390 3391 if (!I.getType()->isVoidTy()) { 3392 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3393 EVT VT = TLI.getValueType(PTy); 3394 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3395 } 3396 3397 setValue(&I, Result); 3398 } 3399 } 3400 3401 /// GetSignificand - Get the significand and build it into a floating-point 3402 /// number with exponent of 1: 3403 /// 3404 /// Op = (Op & 0x007fffff) | 0x3f800000; 3405 /// 3406 /// where Op is the hexadecimal representation of floating point value. 3407 static SDValue 3408 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3409 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3410 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3411 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3412 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3413 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3414 } 3415 3416 /// GetExponent - Get the exponent: 3417 /// 3418 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3419 /// 3420 /// where Op is the hexadecimal representation of floating point value. 3421 static SDValue 3422 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3423 SDLoc dl) { 3424 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3425 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3426 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3427 DAG.getConstant(23, dl, TLI.getPointerTy())); 3428 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3429 DAG.getConstant(127, dl, MVT::i32)); 3430 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3431 } 3432 3433 /// getF32Constant - Get 32-bit floating point constant. 3434 static SDValue 3435 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3436 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3437 MVT::f32); 3438 } 3439 3440 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3441 SelectionDAG &DAG) { 3442 // IntegerPartOfX = ((int32_t)(t0); 3443 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3444 3445 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3446 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3447 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3448 3449 // IntegerPartOfX <<= 23; 3450 IntegerPartOfX = DAG.getNode( 3451 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3452 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3453 3454 SDValue TwoToFractionalPartOfX; 3455 if (LimitFloatPrecision <= 6) { 3456 // For floating-point precision of 6: 3457 // 3458 // TwoToFractionalPartOfX = 3459 // 0.997535578f + 3460 // (0.735607626f + 0.252464424f * x) * x; 3461 // 3462 // error 0.0144103317, which is 6 bits 3463 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3464 getF32Constant(DAG, 0x3e814304, dl)); 3465 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3466 getF32Constant(DAG, 0x3f3c50c8, dl)); 3467 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3468 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3469 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3470 } else if (LimitFloatPrecision <= 12) { 3471 // For floating-point precision of 12: 3472 // 3473 // TwoToFractionalPartOfX = 3474 // 0.999892986f + 3475 // (0.696457318f + 3476 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3477 // 3478 // error 0.000107046256, which is 13 to 14 bits 3479 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3480 getF32Constant(DAG, 0x3da235e3, dl)); 3481 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3482 getF32Constant(DAG, 0x3e65b8f3, dl)); 3483 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3484 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3485 getF32Constant(DAG, 0x3f324b07, dl)); 3486 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3487 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3488 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3489 } else { // LimitFloatPrecision <= 18 3490 // For floating-point precision of 18: 3491 // 3492 // TwoToFractionalPartOfX = 3493 // 0.999999982f + 3494 // (0.693148872f + 3495 // (0.240227044f + 3496 // (0.554906021e-1f + 3497 // (0.961591928e-2f + 3498 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3499 // error 2.47208000*10^(-7), which is better than 18 bits 3500 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3501 getF32Constant(DAG, 0x3924b03e, dl)); 3502 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3503 getF32Constant(DAG, 0x3ab24b87, dl)); 3504 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3505 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3506 getF32Constant(DAG, 0x3c1d8c17, dl)); 3507 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3508 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3509 getF32Constant(DAG, 0x3d634a1d, dl)); 3510 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3511 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3512 getF32Constant(DAG, 0x3e75fe14, dl)); 3513 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3514 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3515 getF32Constant(DAG, 0x3f317234, dl)); 3516 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3517 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3518 getF32Constant(DAG, 0x3f800000, dl)); 3519 } 3520 3521 // Add the exponent into the result in integer domain. 3522 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3523 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3524 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3525 } 3526 3527 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3528 /// limited-precision mode. 3529 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3530 const TargetLowering &TLI) { 3531 if (Op.getValueType() == MVT::f32 && 3532 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3533 3534 // Put the exponent in the right bit position for later addition to the 3535 // final result: 3536 // 3537 // #define LOG2OFe 1.4426950f 3538 // t0 = Op * LOG2OFe 3539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3540 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3541 return getLimitedPrecisionExp2(t0, dl, DAG); 3542 } 3543 3544 // No special expansion. 3545 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3546 } 3547 3548 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3549 /// limited-precision mode. 3550 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3551 const TargetLowering &TLI) { 3552 if (Op.getValueType() == MVT::f32 && 3553 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3554 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3555 3556 // Scale the exponent by log(2) [0.69314718f]. 3557 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3558 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3559 getF32Constant(DAG, 0x3f317218, dl)); 3560 3561 // Get the significand and build it into a floating-point number with 3562 // exponent of 1. 3563 SDValue X = GetSignificand(DAG, Op1, dl); 3564 3565 SDValue LogOfMantissa; 3566 if (LimitFloatPrecision <= 6) { 3567 // For floating-point precision of 6: 3568 // 3569 // LogofMantissa = 3570 // -1.1609546f + 3571 // (1.4034025f - 0.23903021f * x) * x; 3572 // 3573 // error 0.0034276066, which is better than 8 bits 3574 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3575 getF32Constant(DAG, 0xbe74c456, dl)); 3576 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3577 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3578 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3579 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3580 getF32Constant(DAG, 0x3f949a29, dl)); 3581 } else if (LimitFloatPrecision <= 12) { 3582 // For floating-point precision of 12: 3583 // 3584 // LogOfMantissa = 3585 // -1.7417939f + 3586 // (2.8212026f + 3587 // (-1.4699568f + 3588 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3589 // 3590 // error 0.000061011436, which is 14 bits 3591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3592 getF32Constant(DAG, 0xbd67b6d6, dl)); 3593 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3594 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3596 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3597 getF32Constant(DAG, 0x3fbc278b, dl)); 3598 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3599 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3600 getF32Constant(DAG, 0x40348e95, dl)); 3601 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3602 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3603 getF32Constant(DAG, 0x3fdef31a, dl)); 3604 } else { // LimitFloatPrecision <= 18 3605 // For floating-point precision of 18: 3606 // 3607 // LogOfMantissa = 3608 // -2.1072184f + 3609 // (4.2372794f + 3610 // (-3.7029485f + 3611 // (2.2781945f + 3612 // (-0.87823314f + 3613 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3614 // 3615 // error 0.0000023660568, which is better than 18 bits 3616 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3617 getF32Constant(DAG, 0xbc91e5ac, dl)); 3618 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3619 getF32Constant(DAG, 0x3e4350aa, dl)); 3620 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3621 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3622 getF32Constant(DAG, 0x3f60d3e3, dl)); 3623 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3624 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3625 getF32Constant(DAG, 0x4011cdf0, dl)); 3626 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3627 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3628 getF32Constant(DAG, 0x406cfd1c, dl)); 3629 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3630 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3631 getF32Constant(DAG, 0x408797cb, dl)); 3632 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3633 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3634 getF32Constant(DAG, 0x4006dcab, dl)); 3635 } 3636 3637 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3638 } 3639 3640 // No special expansion. 3641 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3642 } 3643 3644 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3645 /// limited-precision mode. 3646 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3647 const TargetLowering &TLI) { 3648 if (Op.getValueType() == MVT::f32 && 3649 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3650 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3651 3652 // Get the exponent. 3653 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3654 3655 // Get the significand and build it into a floating-point number with 3656 // exponent of 1. 3657 SDValue X = GetSignificand(DAG, Op1, dl); 3658 3659 // Different possible minimax approximations of significand in 3660 // floating-point for various degrees of accuracy over [1,2]. 3661 SDValue Log2ofMantissa; 3662 if (LimitFloatPrecision <= 6) { 3663 // For floating-point precision of 6: 3664 // 3665 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3666 // 3667 // error 0.0049451742, which is more than 7 bits 3668 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3669 getF32Constant(DAG, 0xbeb08fe0, dl)); 3670 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3671 getF32Constant(DAG, 0x40019463, dl)); 3672 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3673 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3674 getF32Constant(DAG, 0x3fd6633d, dl)); 3675 } else if (LimitFloatPrecision <= 12) { 3676 // For floating-point precision of 12: 3677 // 3678 // Log2ofMantissa = 3679 // -2.51285454f + 3680 // (4.07009056f + 3681 // (-2.12067489f + 3682 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3683 // 3684 // error 0.0000876136000, which is better than 13 bits 3685 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3686 getF32Constant(DAG, 0xbda7262e, dl)); 3687 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3688 getF32Constant(DAG, 0x3f25280b, dl)); 3689 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3690 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3691 getF32Constant(DAG, 0x4007b923, dl)); 3692 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3693 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3694 getF32Constant(DAG, 0x40823e2f, dl)); 3695 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3696 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3697 getF32Constant(DAG, 0x4020d29c, dl)); 3698 } else { // LimitFloatPrecision <= 18 3699 // For floating-point precision of 18: 3700 // 3701 // Log2ofMantissa = 3702 // -3.0400495f + 3703 // (6.1129976f + 3704 // (-5.3420409f + 3705 // (3.2865683f + 3706 // (-1.2669343f + 3707 // (0.27515199f - 3708 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3709 // 3710 // error 0.0000018516, which is better than 18 bits 3711 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3712 getF32Constant(DAG, 0xbcd2769e, dl)); 3713 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3714 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3715 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3716 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3717 getF32Constant(DAG, 0x3fa22ae7, dl)); 3718 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3719 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3720 getF32Constant(DAG, 0x40525723, dl)); 3721 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3722 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3723 getF32Constant(DAG, 0x40aaf200, dl)); 3724 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3725 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3726 getF32Constant(DAG, 0x40c39dad, dl)); 3727 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3728 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3729 getF32Constant(DAG, 0x4042902c, dl)); 3730 } 3731 3732 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3733 } 3734 3735 // No special expansion. 3736 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3737 } 3738 3739 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3740 /// limited-precision mode. 3741 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3742 const TargetLowering &TLI) { 3743 if (Op.getValueType() == MVT::f32 && 3744 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3745 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3746 3747 // Scale the exponent by log10(2) [0.30102999f]. 3748 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3749 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3750 getF32Constant(DAG, 0x3e9a209a, dl)); 3751 3752 // Get the significand and build it into a floating-point number with 3753 // exponent of 1. 3754 SDValue X = GetSignificand(DAG, Op1, dl); 3755 3756 SDValue Log10ofMantissa; 3757 if (LimitFloatPrecision <= 6) { 3758 // For floating-point precision of 6: 3759 // 3760 // Log10ofMantissa = 3761 // -0.50419619f + 3762 // (0.60948995f - 0.10380950f * x) * x; 3763 // 3764 // error 0.0014886165, which is 6 bits 3765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0xbdd49a13, dl)); 3767 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3768 getF32Constant(DAG, 0x3f1c0789, dl)); 3769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3770 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3f011300, dl)); 3772 } else if (LimitFloatPrecision <= 12) { 3773 // For floating-point precision of 12: 3774 // 3775 // Log10ofMantissa = 3776 // -0.64831180f + 3777 // (0.91751397f + 3778 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3779 // 3780 // error 0.00019228036, which is better than 12 bits 3781 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3782 getF32Constant(DAG, 0x3d431f31, dl)); 3783 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3784 getF32Constant(DAG, 0x3ea21fb2, dl)); 3785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3787 getF32Constant(DAG, 0x3f6ae232, dl)); 3788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3789 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3790 getF32Constant(DAG, 0x3f25f7c3, dl)); 3791 } else { // LimitFloatPrecision <= 18 3792 // For floating-point precision of 18: 3793 // 3794 // Log10ofMantissa = 3795 // -0.84299375f + 3796 // (1.5327582f + 3797 // (-1.0688956f + 3798 // (0.49102474f + 3799 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3800 // 3801 // error 0.0000037995730, which is better than 18 bits 3802 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3803 getF32Constant(DAG, 0x3c5d51ce, dl)); 3804 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3805 getF32Constant(DAG, 0x3e00685a, dl)); 3806 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3807 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3808 getF32Constant(DAG, 0x3efb6798, dl)); 3809 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3810 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3811 getF32Constant(DAG, 0x3f88d192, dl)); 3812 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3813 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3814 getF32Constant(DAG, 0x3fc4316c, dl)); 3815 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3816 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3817 getF32Constant(DAG, 0x3f57ce70, dl)); 3818 } 3819 3820 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3821 } 3822 3823 // No special expansion. 3824 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3825 } 3826 3827 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3828 /// limited-precision mode. 3829 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3830 const TargetLowering &TLI) { 3831 if (Op.getValueType() == MVT::f32 && 3832 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3833 return getLimitedPrecisionExp2(Op, dl, DAG); 3834 3835 // No special expansion. 3836 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3837 } 3838 3839 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3840 /// limited-precision mode with x == 10.0f. 3841 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3842 SelectionDAG &DAG, const TargetLowering &TLI) { 3843 bool IsExp10 = false; 3844 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3845 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3846 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3847 APFloat Ten(10.0f); 3848 IsExp10 = LHSC->isExactlyValue(Ten); 3849 } 3850 } 3851 3852 if (IsExp10) { 3853 // Put the exponent in the right bit position for later addition to the 3854 // final result: 3855 // 3856 // #define LOG2OF10 3.3219281f 3857 // t0 = Op * LOG2OF10; 3858 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3859 getF32Constant(DAG, 0x40549a78, dl)); 3860 return getLimitedPrecisionExp2(t0, dl, DAG); 3861 } 3862 3863 // No special expansion. 3864 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3865 } 3866 3867 3868 /// ExpandPowI - Expand a llvm.powi intrinsic. 3869 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3870 SelectionDAG &DAG) { 3871 // If RHS is a constant, we can expand this out to a multiplication tree, 3872 // otherwise we end up lowering to a call to __powidf2 (for example). When 3873 // optimizing for size, we only want to do this if the expansion would produce 3874 // a small number of multiplies, otherwise we do the full expansion. 3875 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3876 // Get the exponent as a positive value. 3877 unsigned Val = RHSC->getSExtValue(); 3878 if ((int)Val < 0) Val = -Val; 3879 3880 // powi(x, 0) -> 1.0 3881 if (Val == 0) 3882 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3883 3884 const Function *F = DAG.getMachineFunction().getFunction(); 3885 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3886 // If optimizing for size, don't insert too many multiplies. This 3887 // inserts up to 5 multiplies. 3888 countPopulation(Val) + Log2_32(Val) < 7) { 3889 // We use the simple binary decomposition method to generate the multiply 3890 // sequence. There are more optimal ways to do this (for example, 3891 // powi(x,15) generates one more multiply than it should), but this has 3892 // the benefit of being both really simple and much better than a libcall. 3893 SDValue Res; // Logically starts equal to 1.0 3894 SDValue CurSquare = LHS; 3895 while (Val) { 3896 if (Val & 1) { 3897 if (Res.getNode()) 3898 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3899 else 3900 Res = CurSquare; // 1.0*CurSquare. 3901 } 3902 3903 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3904 CurSquare, CurSquare); 3905 Val >>= 1; 3906 } 3907 3908 // If the original was negative, invert the result, producing 1/(x*x*x). 3909 if (RHSC->getSExtValue() < 0) 3910 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3911 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3912 return Res; 3913 } 3914 } 3915 3916 // Otherwise, expand to a libcall. 3917 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3918 } 3919 3920 // getTruncatedArgReg - Find underlying register used for an truncated 3921 // argument. 3922 static unsigned getTruncatedArgReg(const SDValue &N) { 3923 if (N.getOpcode() != ISD::TRUNCATE) 3924 return 0; 3925 3926 const SDValue &Ext = N.getOperand(0); 3927 if (Ext.getOpcode() == ISD::AssertZext || 3928 Ext.getOpcode() == ISD::AssertSext) { 3929 const SDValue &CFR = Ext.getOperand(0); 3930 if (CFR.getOpcode() == ISD::CopyFromReg) 3931 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3932 if (CFR.getOpcode() == ISD::TRUNCATE) 3933 return getTruncatedArgReg(CFR); 3934 } 3935 return 0; 3936 } 3937 3938 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3939 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3940 /// At the end of instruction selection, they will be inserted to the entry BB. 3941 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3942 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3943 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3944 const Argument *Arg = dyn_cast<Argument>(V); 3945 if (!Arg) 3946 return false; 3947 3948 MachineFunction &MF = DAG.getMachineFunction(); 3949 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3950 3951 // Ignore inlined function arguments here. 3952 // 3953 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3954 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3955 return false; 3956 3957 Optional<MachineOperand> Op; 3958 // Some arguments' frame index is recorded during argument lowering. 3959 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3960 Op = MachineOperand::CreateFI(FI); 3961 3962 if (!Op && N.getNode()) { 3963 unsigned Reg; 3964 if (N.getOpcode() == ISD::CopyFromReg) 3965 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3966 else 3967 Reg = getTruncatedArgReg(N); 3968 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3969 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3970 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3971 if (PR) 3972 Reg = PR; 3973 } 3974 if (Reg) 3975 Op = MachineOperand::CreateReg(Reg, false); 3976 } 3977 3978 if (!Op) { 3979 // Check if ValueMap has reg number. 3980 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3981 if (VMI != FuncInfo.ValueMap.end()) 3982 Op = MachineOperand::CreateReg(VMI->second, false); 3983 } 3984 3985 if (!Op && N.getNode()) 3986 // Check if frame index is available. 3987 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3988 if (FrameIndexSDNode *FINode = 3989 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3990 Op = MachineOperand::CreateFI(FINode->getIndex()); 3991 3992 if (!Op) 3993 return false; 3994 3995 assert(Variable->isValidLocationForIntrinsic(DL) && 3996 "Expected inlined-at fields to agree"); 3997 if (Op->isReg()) 3998 FuncInfo.ArgDbgValues.push_back( 3999 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4000 Op->getReg(), Offset, Variable, Expr)); 4001 else 4002 FuncInfo.ArgDbgValues.push_back( 4003 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4004 .addOperand(*Op) 4005 .addImm(Offset) 4006 .addMetadata(Variable) 4007 .addMetadata(Expr)); 4008 4009 return true; 4010 } 4011 4012 // VisualStudio defines setjmp as _setjmp 4013 #if defined(_MSC_VER) && defined(setjmp) && \ 4014 !defined(setjmp_undefined_for_msvc) 4015 # pragma push_macro("setjmp") 4016 # undef setjmp 4017 # define setjmp_undefined_for_msvc 4018 #endif 4019 4020 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4021 /// we want to emit this as a call to a named external function, return the name 4022 /// otherwise lower it and return null. 4023 const char * 4024 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4026 SDLoc sdl = getCurSDLoc(); 4027 DebugLoc dl = getCurDebugLoc(); 4028 SDValue Res; 4029 4030 switch (Intrinsic) { 4031 default: 4032 // By default, turn this into a target intrinsic node. 4033 visitTargetIntrinsic(I, Intrinsic); 4034 return nullptr; 4035 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4036 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4037 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4038 case Intrinsic::returnaddress: 4039 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4040 getValue(I.getArgOperand(0)))); 4041 return nullptr; 4042 case Intrinsic::frameaddress: 4043 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4044 getValue(I.getArgOperand(0)))); 4045 return nullptr; 4046 case Intrinsic::read_register: { 4047 Value *Reg = I.getArgOperand(0); 4048 SDValue Chain = getRoot(); 4049 SDValue RegName = 4050 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4051 EVT VT = TLI.getValueType(I.getType()); 4052 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4053 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4054 setValue(&I, Res); 4055 DAG.setRoot(Res.getValue(1)); 4056 return nullptr; 4057 } 4058 case Intrinsic::write_register: { 4059 Value *Reg = I.getArgOperand(0); 4060 Value *RegValue = I.getArgOperand(1); 4061 SDValue Chain = getRoot(); 4062 SDValue RegName = 4063 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4064 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4065 RegName, getValue(RegValue))); 4066 return nullptr; 4067 } 4068 case Intrinsic::setjmp: 4069 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4070 case Intrinsic::longjmp: 4071 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4072 case Intrinsic::memcpy: { 4073 // FIXME: this definition of "user defined address space" is x86-specific 4074 // Assert for address < 256 since we support only user defined address 4075 // spaces. 4076 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4077 < 256 && 4078 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4079 < 256 && 4080 "Unknown address space"); 4081 SDValue Op1 = getValue(I.getArgOperand(0)); 4082 SDValue Op2 = getValue(I.getArgOperand(1)); 4083 SDValue Op3 = getValue(I.getArgOperand(2)); 4084 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4085 if (!Align) 4086 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4087 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4088 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4089 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4090 false, isTC, 4091 MachinePointerInfo(I.getArgOperand(0)), 4092 MachinePointerInfo(I.getArgOperand(1))); 4093 updateDAGForMaybeTailCall(MC); 4094 return nullptr; 4095 } 4096 case Intrinsic::memset: { 4097 // FIXME: this definition of "user defined address space" is x86-specific 4098 // Assert for address < 256 since we support only user defined address 4099 // spaces. 4100 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4101 < 256 && 4102 "Unknown address space"); 4103 SDValue Op1 = getValue(I.getArgOperand(0)); 4104 SDValue Op2 = getValue(I.getArgOperand(1)); 4105 SDValue Op3 = getValue(I.getArgOperand(2)); 4106 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4107 if (!Align) 4108 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4109 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4110 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4111 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4112 isTC, MachinePointerInfo(I.getArgOperand(0))); 4113 updateDAGForMaybeTailCall(MS); 4114 return nullptr; 4115 } 4116 case Intrinsic::memmove: { 4117 // FIXME: this definition of "user defined address space" is x86-specific 4118 // Assert for address < 256 since we support only user defined address 4119 // spaces. 4120 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4121 < 256 && 4122 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4123 < 256 && 4124 "Unknown address space"); 4125 SDValue Op1 = getValue(I.getArgOperand(0)); 4126 SDValue Op2 = getValue(I.getArgOperand(1)); 4127 SDValue Op3 = getValue(I.getArgOperand(2)); 4128 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4129 if (!Align) 4130 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4131 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4132 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4133 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4134 isTC, MachinePointerInfo(I.getArgOperand(0)), 4135 MachinePointerInfo(I.getArgOperand(1))); 4136 updateDAGForMaybeTailCall(MM); 4137 return nullptr; 4138 } 4139 case Intrinsic::dbg_declare: { 4140 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4141 DILocalVariable *Variable = DI.getVariable(); 4142 DIExpression *Expression = DI.getExpression(); 4143 const Value *Address = DI.getAddress(); 4144 assert(Variable && "Missing variable"); 4145 if (!Address) { 4146 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4147 return nullptr; 4148 } 4149 4150 // Check if address has undef value. 4151 if (isa<UndefValue>(Address) || 4152 (Address->use_empty() && !isa<Argument>(Address))) { 4153 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4154 return nullptr; 4155 } 4156 4157 SDValue &N = NodeMap[Address]; 4158 if (!N.getNode() && isa<Argument>(Address)) 4159 // Check unused arguments map. 4160 N = UnusedArgNodeMap[Address]; 4161 SDDbgValue *SDV; 4162 if (N.getNode()) { 4163 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4164 Address = BCI->getOperand(0); 4165 // Parameters are handled specially. 4166 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4167 isa<Argument>(Address); 4168 4169 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4170 4171 if (isParameter && !AI) { 4172 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4173 if (FINode) 4174 // Byval parameter. We have a frame index at this point. 4175 SDV = DAG.getFrameIndexDbgValue( 4176 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4177 else { 4178 // Address is an argument, so try to emit its dbg value using 4179 // virtual register info from the FuncInfo.ValueMap. 4180 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4181 N); 4182 return nullptr; 4183 } 4184 } else if (AI) 4185 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4186 true, 0, dl, SDNodeOrder); 4187 else { 4188 // Can't do anything with other non-AI cases yet. 4189 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4190 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4191 DEBUG(Address->dump()); 4192 return nullptr; 4193 } 4194 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4195 } else { 4196 // If Address is an argument then try to emit its dbg value using 4197 // virtual register info from the FuncInfo.ValueMap. 4198 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4199 N)) { 4200 // If variable is pinned by a alloca in dominating bb then 4201 // use StaticAllocaMap. 4202 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4203 if (AI->getParent() != DI.getParent()) { 4204 DenseMap<const AllocaInst*, int>::iterator SI = 4205 FuncInfo.StaticAllocaMap.find(AI); 4206 if (SI != FuncInfo.StaticAllocaMap.end()) { 4207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4208 0, dl, SDNodeOrder); 4209 DAG.AddDbgValue(SDV, nullptr, false); 4210 return nullptr; 4211 } 4212 } 4213 } 4214 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4215 } 4216 } 4217 return nullptr; 4218 } 4219 case Intrinsic::dbg_value: { 4220 const DbgValueInst &DI = cast<DbgValueInst>(I); 4221 assert(DI.getVariable() && "Missing variable"); 4222 4223 DILocalVariable *Variable = DI.getVariable(); 4224 DIExpression *Expression = DI.getExpression(); 4225 uint64_t Offset = DI.getOffset(); 4226 const Value *V = DI.getValue(); 4227 if (!V) 4228 return nullptr; 4229 4230 SDDbgValue *SDV; 4231 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4232 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4233 SDNodeOrder); 4234 DAG.AddDbgValue(SDV, nullptr, false); 4235 } else { 4236 // Do not use getValue() in here; we don't want to generate code at 4237 // this point if it hasn't been done yet. 4238 SDValue N = NodeMap[V]; 4239 if (!N.getNode() && isa<Argument>(V)) 4240 // Check unused arguments map. 4241 N = UnusedArgNodeMap[V]; 4242 if (N.getNode()) { 4243 // A dbg.value for an alloca is always indirect. 4244 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4245 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4246 IsIndirect, N)) { 4247 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4248 IsIndirect, Offset, dl, SDNodeOrder); 4249 DAG.AddDbgValue(SDV, N.getNode(), false); 4250 } 4251 } else if (!V->use_empty() ) { 4252 // Do not call getValue(V) yet, as we don't want to generate code. 4253 // Remember it for later. 4254 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4255 DanglingDebugInfoMap[V] = DDI; 4256 } else { 4257 // We may expand this to cover more cases. One case where we have no 4258 // data available is an unreferenced parameter. 4259 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4260 } 4261 } 4262 4263 // Build a debug info table entry. 4264 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4265 V = BCI->getOperand(0); 4266 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4267 // Don't handle byval struct arguments or VLAs, for example. 4268 if (!AI) { 4269 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4270 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4271 return nullptr; 4272 } 4273 DenseMap<const AllocaInst*, int>::iterator SI = 4274 FuncInfo.StaticAllocaMap.find(AI); 4275 if (SI == FuncInfo.StaticAllocaMap.end()) 4276 return nullptr; // VLAs. 4277 return nullptr; 4278 } 4279 4280 case Intrinsic::eh_typeid_for: { 4281 // Find the type id for the given typeinfo. 4282 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4283 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4284 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4285 setValue(&I, Res); 4286 return nullptr; 4287 } 4288 4289 case Intrinsic::eh_return_i32: 4290 case Intrinsic::eh_return_i64: 4291 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4292 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4293 MVT::Other, 4294 getControlRoot(), 4295 getValue(I.getArgOperand(0)), 4296 getValue(I.getArgOperand(1)))); 4297 return nullptr; 4298 case Intrinsic::eh_unwind_init: 4299 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4300 return nullptr; 4301 case Intrinsic::eh_dwarf_cfa: { 4302 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4303 TLI.getPointerTy()); 4304 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4305 CfaArg.getValueType(), 4306 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4307 CfaArg.getValueType()), 4308 CfaArg); 4309 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4310 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4311 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4312 FA, Offset)); 4313 return nullptr; 4314 } 4315 case Intrinsic::eh_sjlj_callsite: { 4316 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4317 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4318 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4319 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4320 4321 MMI.setCurrentCallSite(CI->getZExtValue()); 4322 return nullptr; 4323 } 4324 case Intrinsic::eh_sjlj_functioncontext: { 4325 // Get and store the index of the function context. 4326 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4327 AllocaInst *FnCtx = 4328 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4329 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4330 MFI->setFunctionContextIndex(FI); 4331 return nullptr; 4332 } 4333 case Intrinsic::eh_sjlj_setjmp: { 4334 SDValue Ops[2]; 4335 Ops[0] = getRoot(); 4336 Ops[1] = getValue(I.getArgOperand(0)); 4337 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4338 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4339 setValue(&I, Op.getValue(0)); 4340 DAG.setRoot(Op.getValue(1)); 4341 return nullptr; 4342 } 4343 case Intrinsic::eh_sjlj_longjmp: { 4344 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4345 getRoot(), getValue(I.getArgOperand(0)))); 4346 return nullptr; 4347 } 4348 4349 case Intrinsic::masked_gather: 4350 visitMaskedGather(I); 4351 return nullptr; 4352 case Intrinsic::masked_load: 4353 visitMaskedLoad(I); 4354 return nullptr; 4355 case Intrinsic::masked_scatter: 4356 visitMaskedScatter(I); 4357 return nullptr; 4358 case Intrinsic::masked_store: 4359 visitMaskedStore(I); 4360 return nullptr; 4361 case Intrinsic::x86_mmx_pslli_w: 4362 case Intrinsic::x86_mmx_pslli_d: 4363 case Intrinsic::x86_mmx_pslli_q: 4364 case Intrinsic::x86_mmx_psrli_w: 4365 case Intrinsic::x86_mmx_psrli_d: 4366 case Intrinsic::x86_mmx_psrli_q: 4367 case Intrinsic::x86_mmx_psrai_w: 4368 case Intrinsic::x86_mmx_psrai_d: { 4369 SDValue ShAmt = getValue(I.getArgOperand(1)); 4370 if (isa<ConstantSDNode>(ShAmt)) { 4371 visitTargetIntrinsic(I, Intrinsic); 4372 return nullptr; 4373 } 4374 unsigned NewIntrinsic = 0; 4375 EVT ShAmtVT = MVT::v2i32; 4376 switch (Intrinsic) { 4377 case Intrinsic::x86_mmx_pslli_w: 4378 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4379 break; 4380 case Intrinsic::x86_mmx_pslli_d: 4381 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4382 break; 4383 case Intrinsic::x86_mmx_pslli_q: 4384 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4385 break; 4386 case Intrinsic::x86_mmx_psrli_w: 4387 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4388 break; 4389 case Intrinsic::x86_mmx_psrli_d: 4390 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4391 break; 4392 case Intrinsic::x86_mmx_psrli_q: 4393 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4394 break; 4395 case Intrinsic::x86_mmx_psrai_w: 4396 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4397 break; 4398 case Intrinsic::x86_mmx_psrai_d: 4399 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4400 break; 4401 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4402 } 4403 4404 // The vector shift intrinsics with scalars uses 32b shift amounts but 4405 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4406 // to be zero. 4407 // We must do this early because v2i32 is not a legal type. 4408 SDValue ShOps[2]; 4409 ShOps[0] = ShAmt; 4410 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4411 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4412 EVT DestVT = TLI.getValueType(I.getType()); 4413 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4414 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4415 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4416 getValue(I.getArgOperand(0)), ShAmt); 4417 setValue(&I, Res); 4418 return nullptr; 4419 } 4420 case Intrinsic::convertff: 4421 case Intrinsic::convertfsi: 4422 case Intrinsic::convertfui: 4423 case Intrinsic::convertsif: 4424 case Intrinsic::convertuif: 4425 case Intrinsic::convertss: 4426 case Intrinsic::convertsu: 4427 case Intrinsic::convertus: 4428 case Intrinsic::convertuu: { 4429 ISD::CvtCode Code = ISD::CVT_INVALID; 4430 switch (Intrinsic) { 4431 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4432 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4433 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4434 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4435 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4436 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4437 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4438 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4439 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4440 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4441 } 4442 EVT DestVT = TLI.getValueType(I.getType()); 4443 const Value *Op1 = I.getArgOperand(0); 4444 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4445 DAG.getValueType(DestVT), 4446 DAG.getValueType(getValue(Op1).getValueType()), 4447 getValue(I.getArgOperand(1)), 4448 getValue(I.getArgOperand(2)), 4449 Code); 4450 setValue(&I, Res); 4451 return nullptr; 4452 } 4453 case Intrinsic::powi: 4454 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4455 getValue(I.getArgOperand(1)), DAG)); 4456 return nullptr; 4457 case Intrinsic::log: 4458 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4459 return nullptr; 4460 case Intrinsic::log2: 4461 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4462 return nullptr; 4463 case Intrinsic::log10: 4464 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4465 return nullptr; 4466 case Intrinsic::exp: 4467 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4468 return nullptr; 4469 case Intrinsic::exp2: 4470 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4471 return nullptr; 4472 case Intrinsic::pow: 4473 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4474 getValue(I.getArgOperand(1)), DAG, TLI)); 4475 return nullptr; 4476 case Intrinsic::sqrt: 4477 case Intrinsic::fabs: 4478 case Intrinsic::sin: 4479 case Intrinsic::cos: 4480 case Intrinsic::floor: 4481 case Intrinsic::ceil: 4482 case Intrinsic::trunc: 4483 case Intrinsic::rint: 4484 case Intrinsic::nearbyint: 4485 case Intrinsic::round: { 4486 unsigned Opcode; 4487 switch (Intrinsic) { 4488 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4489 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4490 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4491 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4492 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4493 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4494 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4495 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4496 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4497 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4498 case Intrinsic::round: Opcode = ISD::FROUND; break; 4499 } 4500 4501 setValue(&I, DAG.getNode(Opcode, sdl, 4502 getValue(I.getArgOperand(0)).getValueType(), 4503 getValue(I.getArgOperand(0)))); 4504 return nullptr; 4505 } 4506 case Intrinsic::minnum: 4507 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4508 getValue(I.getArgOperand(0)).getValueType(), 4509 getValue(I.getArgOperand(0)), 4510 getValue(I.getArgOperand(1)))); 4511 return nullptr; 4512 case Intrinsic::maxnum: 4513 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4514 getValue(I.getArgOperand(0)).getValueType(), 4515 getValue(I.getArgOperand(0)), 4516 getValue(I.getArgOperand(1)))); 4517 return nullptr; 4518 case Intrinsic::copysign: 4519 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4520 getValue(I.getArgOperand(0)).getValueType(), 4521 getValue(I.getArgOperand(0)), 4522 getValue(I.getArgOperand(1)))); 4523 return nullptr; 4524 case Intrinsic::fma: 4525 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4526 getValue(I.getArgOperand(0)).getValueType(), 4527 getValue(I.getArgOperand(0)), 4528 getValue(I.getArgOperand(1)), 4529 getValue(I.getArgOperand(2)))); 4530 return nullptr; 4531 case Intrinsic::fmuladd: { 4532 EVT VT = TLI.getValueType(I.getType()); 4533 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4534 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4535 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4536 getValue(I.getArgOperand(0)).getValueType(), 4537 getValue(I.getArgOperand(0)), 4538 getValue(I.getArgOperand(1)), 4539 getValue(I.getArgOperand(2)))); 4540 } else { 4541 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4542 getValue(I.getArgOperand(0)).getValueType(), 4543 getValue(I.getArgOperand(0)), 4544 getValue(I.getArgOperand(1))); 4545 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4546 getValue(I.getArgOperand(0)).getValueType(), 4547 Mul, 4548 getValue(I.getArgOperand(2))); 4549 setValue(&I, Add); 4550 } 4551 return nullptr; 4552 } 4553 case Intrinsic::convert_to_fp16: 4554 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4555 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4556 getValue(I.getArgOperand(0)), 4557 DAG.getTargetConstant(0, sdl, 4558 MVT::i32)))); 4559 return nullptr; 4560 case Intrinsic::convert_from_fp16: 4561 setValue(&I, 4562 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4563 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4564 getValue(I.getArgOperand(0))))); 4565 return nullptr; 4566 case Intrinsic::pcmarker: { 4567 SDValue Tmp = getValue(I.getArgOperand(0)); 4568 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4569 return nullptr; 4570 } 4571 case Intrinsic::readcyclecounter: { 4572 SDValue Op = getRoot(); 4573 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4574 DAG.getVTList(MVT::i64, MVT::Other), Op); 4575 setValue(&I, Res); 4576 DAG.setRoot(Res.getValue(1)); 4577 return nullptr; 4578 } 4579 case Intrinsic::bswap: 4580 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 getValue(I.getArgOperand(0)))); 4583 return nullptr; 4584 case Intrinsic::cttz: { 4585 SDValue Arg = getValue(I.getArgOperand(0)); 4586 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4587 EVT Ty = Arg.getValueType(); 4588 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4589 sdl, Ty, Arg)); 4590 return nullptr; 4591 } 4592 case Intrinsic::ctlz: { 4593 SDValue Arg = getValue(I.getArgOperand(0)); 4594 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4595 EVT Ty = Arg.getValueType(); 4596 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4597 sdl, Ty, Arg)); 4598 return nullptr; 4599 } 4600 case Intrinsic::ctpop: { 4601 SDValue Arg = getValue(I.getArgOperand(0)); 4602 EVT Ty = Arg.getValueType(); 4603 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4604 return nullptr; 4605 } 4606 case Intrinsic::stacksave: { 4607 SDValue Op = getRoot(); 4608 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4609 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4610 setValue(&I, Res); 4611 DAG.setRoot(Res.getValue(1)); 4612 return nullptr; 4613 } 4614 case Intrinsic::stackrestore: { 4615 Res = getValue(I.getArgOperand(0)); 4616 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4617 return nullptr; 4618 } 4619 case Intrinsic::stackprotector: { 4620 // Emit code into the DAG to store the stack guard onto the stack. 4621 MachineFunction &MF = DAG.getMachineFunction(); 4622 MachineFrameInfo *MFI = MF.getFrameInfo(); 4623 EVT PtrTy = TLI.getPointerTy(); 4624 SDValue Src, Chain = getRoot(); 4625 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4626 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4627 4628 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4629 // global variable __stack_chk_guard. 4630 if (!GV) 4631 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4632 if (BC->getOpcode() == Instruction::BitCast) 4633 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4634 4635 if (GV && TLI.useLoadStackGuardNode()) { 4636 // Emit a LOAD_STACK_GUARD node. 4637 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4638 sdl, PtrTy, Chain); 4639 MachinePointerInfo MPInfo(GV); 4640 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4641 unsigned Flags = MachineMemOperand::MOLoad | 4642 MachineMemOperand::MOInvariant; 4643 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4644 PtrTy.getSizeInBits() / 8, 4645 DAG.getEVTAlignment(PtrTy)); 4646 Node->setMemRefs(MemRefs, MemRefs + 1); 4647 4648 // Copy the guard value to a virtual register so that it can be 4649 // retrieved in the epilogue. 4650 Src = SDValue(Node, 0); 4651 const TargetRegisterClass *RC = 4652 TLI.getRegClassFor(Src.getSimpleValueType()); 4653 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4654 4655 SPDescriptor.setGuardReg(Reg); 4656 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4657 } else { 4658 Src = getValue(I.getArgOperand(0)); // The guard's value. 4659 } 4660 4661 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4662 4663 int FI = FuncInfo.StaticAllocaMap[Slot]; 4664 MFI->setStackProtectorIndex(FI); 4665 4666 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4667 4668 // Store the stack protector onto the stack. 4669 Res = DAG.getStore(Chain, sdl, Src, FIN, 4670 MachinePointerInfo::getFixedStack(FI), 4671 true, false, 0); 4672 setValue(&I, Res); 4673 DAG.setRoot(Res); 4674 return nullptr; 4675 } 4676 case Intrinsic::objectsize: { 4677 // If we don't know by now, we're never going to know. 4678 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4679 4680 assert(CI && "Non-constant type in __builtin_object_size?"); 4681 4682 SDValue Arg = getValue(I.getCalledValue()); 4683 EVT Ty = Arg.getValueType(); 4684 4685 if (CI->isZero()) 4686 Res = DAG.getConstant(-1ULL, sdl, Ty); 4687 else 4688 Res = DAG.getConstant(0, sdl, Ty); 4689 4690 setValue(&I, Res); 4691 return nullptr; 4692 } 4693 case Intrinsic::annotation: 4694 case Intrinsic::ptr_annotation: 4695 // Drop the intrinsic, but forward the value 4696 setValue(&I, getValue(I.getOperand(0))); 4697 return nullptr; 4698 case Intrinsic::assume: 4699 case Intrinsic::var_annotation: 4700 // Discard annotate attributes and assumptions 4701 return nullptr; 4702 4703 case Intrinsic::init_trampoline: { 4704 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4705 4706 SDValue Ops[6]; 4707 Ops[0] = getRoot(); 4708 Ops[1] = getValue(I.getArgOperand(0)); 4709 Ops[2] = getValue(I.getArgOperand(1)); 4710 Ops[3] = getValue(I.getArgOperand(2)); 4711 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4712 Ops[5] = DAG.getSrcValue(F); 4713 4714 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4715 4716 DAG.setRoot(Res); 4717 return nullptr; 4718 } 4719 case Intrinsic::adjust_trampoline: { 4720 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4721 TLI.getPointerTy(), 4722 getValue(I.getArgOperand(0)))); 4723 return nullptr; 4724 } 4725 case Intrinsic::gcroot: 4726 if (GFI) { 4727 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4728 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4729 4730 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4731 GFI->addStackRoot(FI->getIndex(), TypeMap); 4732 } 4733 return nullptr; 4734 case Intrinsic::gcread: 4735 case Intrinsic::gcwrite: 4736 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4737 case Intrinsic::flt_rounds: 4738 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4739 return nullptr; 4740 4741 case Intrinsic::expect: { 4742 // Just replace __builtin_expect(exp, c) with EXP. 4743 setValue(&I, getValue(I.getArgOperand(0))); 4744 return nullptr; 4745 } 4746 4747 case Intrinsic::debugtrap: 4748 case Intrinsic::trap: { 4749 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4750 if (TrapFuncName.empty()) { 4751 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4752 ISD::TRAP : ISD::DEBUGTRAP; 4753 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4754 return nullptr; 4755 } 4756 TargetLowering::ArgListTy Args; 4757 4758 TargetLowering::CallLoweringInfo CLI(DAG); 4759 CLI.setDebugLoc(sdl).setChain(getRoot()) 4760 .setCallee(CallingConv::C, I.getType(), 4761 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4762 std::move(Args), 0); 4763 4764 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4765 DAG.setRoot(Result.second); 4766 return nullptr; 4767 } 4768 4769 case Intrinsic::uadd_with_overflow: 4770 case Intrinsic::sadd_with_overflow: 4771 case Intrinsic::usub_with_overflow: 4772 case Intrinsic::ssub_with_overflow: 4773 case Intrinsic::umul_with_overflow: 4774 case Intrinsic::smul_with_overflow: { 4775 ISD::NodeType Op; 4776 switch (Intrinsic) { 4777 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4778 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4779 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4780 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4781 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4782 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4783 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4784 } 4785 SDValue Op1 = getValue(I.getArgOperand(0)); 4786 SDValue Op2 = getValue(I.getArgOperand(1)); 4787 4788 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4789 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4790 return nullptr; 4791 } 4792 case Intrinsic::prefetch: { 4793 SDValue Ops[5]; 4794 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4795 Ops[0] = getRoot(); 4796 Ops[1] = getValue(I.getArgOperand(0)); 4797 Ops[2] = getValue(I.getArgOperand(1)); 4798 Ops[3] = getValue(I.getArgOperand(2)); 4799 Ops[4] = getValue(I.getArgOperand(3)); 4800 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4801 DAG.getVTList(MVT::Other), Ops, 4802 EVT::getIntegerVT(*Context, 8), 4803 MachinePointerInfo(I.getArgOperand(0)), 4804 0, /* align */ 4805 false, /* volatile */ 4806 rw==0, /* read */ 4807 rw==1)); /* write */ 4808 return nullptr; 4809 } 4810 case Intrinsic::lifetime_start: 4811 case Intrinsic::lifetime_end: { 4812 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4813 // Stack coloring is not enabled in O0, discard region information. 4814 if (TM.getOptLevel() == CodeGenOpt::None) 4815 return nullptr; 4816 4817 SmallVector<Value *, 4> Allocas; 4818 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4819 4820 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4821 E = Allocas.end(); Object != E; ++Object) { 4822 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4823 4824 // Could not find an Alloca. 4825 if (!LifetimeObject) 4826 continue; 4827 4828 // First check that the Alloca is static, otherwise it won't have a 4829 // valid frame index. 4830 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4831 if (SI == FuncInfo.StaticAllocaMap.end()) 4832 return nullptr; 4833 4834 int FI = SI->second; 4835 4836 SDValue Ops[2]; 4837 Ops[0] = getRoot(); 4838 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4839 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4840 4841 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4842 DAG.setRoot(Res); 4843 } 4844 return nullptr; 4845 } 4846 case Intrinsic::invariant_start: 4847 // Discard region information. 4848 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4849 return nullptr; 4850 case Intrinsic::invariant_end: 4851 // Discard region information. 4852 return nullptr; 4853 case Intrinsic::stackprotectorcheck: { 4854 // Do not actually emit anything for this basic block. Instead we initialize 4855 // the stack protector descriptor and export the guard variable so we can 4856 // access it in FinishBasicBlock. 4857 const BasicBlock *BB = I.getParent(); 4858 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4859 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4860 4861 // Flush our exports since we are going to process a terminator. 4862 (void)getControlRoot(); 4863 return nullptr; 4864 } 4865 case Intrinsic::clear_cache: 4866 return TLI.getClearCacheBuiltinName(); 4867 case Intrinsic::eh_actions: 4868 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4869 return nullptr; 4870 case Intrinsic::donothing: 4871 // ignore 4872 return nullptr; 4873 case Intrinsic::experimental_stackmap: { 4874 visitStackmap(I); 4875 return nullptr; 4876 } 4877 case Intrinsic::experimental_patchpoint_void: 4878 case Intrinsic::experimental_patchpoint_i64: { 4879 visitPatchpoint(&I); 4880 return nullptr; 4881 } 4882 case Intrinsic::experimental_gc_statepoint: { 4883 visitStatepoint(I); 4884 return nullptr; 4885 } 4886 case Intrinsic::experimental_gc_result_int: 4887 case Intrinsic::experimental_gc_result_float: 4888 case Intrinsic::experimental_gc_result_ptr: 4889 case Intrinsic::experimental_gc_result: { 4890 visitGCResult(I); 4891 return nullptr; 4892 } 4893 case Intrinsic::experimental_gc_relocate: { 4894 visitGCRelocate(I); 4895 return nullptr; 4896 } 4897 case Intrinsic::instrprof_increment: 4898 llvm_unreachable("instrprof failed to lower an increment"); 4899 4900 case Intrinsic::frameescape: { 4901 MachineFunction &MF = DAG.getMachineFunction(); 4902 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4903 4904 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4905 // is the same on all targets. 4906 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4907 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4908 if (isa<ConstantPointerNull>(Arg)) 4909 continue; // Skip null pointers. They represent a hole in index space. 4910 AllocaInst *Slot = cast<AllocaInst>(Arg); 4911 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4912 "can only escape static allocas"); 4913 int FI = FuncInfo.StaticAllocaMap[Slot]; 4914 MCSymbol *FrameAllocSym = 4915 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4916 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4917 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4918 TII->get(TargetOpcode::FRAME_ALLOC)) 4919 .addSym(FrameAllocSym) 4920 .addFrameIndex(FI); 4921 } 4922 4923 return nullptr; 4924 } 4925 4926 case Intrinsic::framerecover: { 4927 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4928 MachineFunction &MF = DAG.getMachineFunction(); 4929 MVT PtrVT = TLI.getPointerTy(0); 4930 4931 // Get the symbol that defines the frame offset. 4932 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4933 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4934 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4935 MCSymbol *FrameAllocSym = 4936 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4937 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4938 4939 // Create a TargetExternalSymbol for the label to avoid any target lowering 4940 // that would make this PC relative. 4941 StringRef Name = FrameAllocSym->getName(); 4942 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4943 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4944 SDValue OffsetVal = 4945 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4946 4947 // Add the offset to the FP. 4948 Value *FP = I.getArgOperand(1); 4949 SDValue FPVal = getValue(FP); 4950 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4951 setValue(&I, Add); 4952 4953 return nullptr; 4954 } 4955 case Intrinsic::eh_begincatch: 4956 case Intrinsic::eh_endcatch: 4957 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4958 case Intrinsic::eh_exceptioncode: { 4959 unsigned Reg = TLI.getExceptionPointerRegister(); 4960 assert(Reg && "cannot get exception code on this platform"); 4961 MVT PtrVT = TLI.getPointerTy(); 4962 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4963 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4964 SDValue N = 4965 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4966 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4967 setValue(&I, N); 4968 return nullptr; 4969 } 4970 } 4971 } 4972 4973 std::pair<SDValue, SDValue> 4974 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4975 MachineBasicBlock *LandingPad) { 4976 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4977 MCSymbol *BeginLabel = nullptr; 4978 4979 if (LandingPad) { 4980 // Insert a label before the invoke call to mark the try range. This can be 4981 // used to detect deletion of the invoke via the MachineModuleInfo. 4982 BeginLabel = MMI.getContext().createTempSymbol(); 4983 4984 // For SjLj, keep track of which landing pads go with which invokes 4985 // so as to maintain the ordering of pads in the LSDA. 4986 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4987 if (CallSiteIndex) { 4988 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4989 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4990 4991 // Now that the call site is handled, stop tracking it. 4992 MMI.setCurrentCallSite(0); 4993 } 4994 4995 // Both PendingLoads and PendingExports must be flushed here; 4996 // this call might not return. 4997 (void)getRoot(); 4998 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4999 5000 CLI.setChain(getRoot()); 5001 } 5002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5003 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5004 5005 assert((CLI.IsTailCall || Result.second.getNode()) && 5006 "Non-null chain expected with non-tail call!"); 5007 assert((Result.second.getNode() || !Result.first.getNode()) && 5008 "Null value expected with tail call!"); 5009 5010 if (!Result.second.getNode()) { 5011 // As a special case, a null chain means that a tail call has been emitted 5012 // and the DAG root is already updated. 5013 HasTailCall = true; 5014 5015 // Since there's no actual continuation from this block, nothing can be 5016 // relying on us setting vregs for them. 5017 PendingExports.clear(); 5018 } else { 5019 DAG.setRoot(Result.second); 5020 } 5021 5022 if (LandingPad) { 5023 // Insert a label at the end of the invoke call to mark the try range. This 5024 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5025 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5026 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5027 5028 // Inform MachineModuleInfo of range. 5029 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5030 } 5031 5032 return Result; 5033 } 5034 5035 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5036 bool isTailCall, 5037 MachineBasicBlock *LandingPad) { 5038 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5039 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5040 Type *RetTy = FTy->getReturnType(); 5041 5042 TargetLowering::ArgListTy Args; 5043 TargetLowering::ArgListEntry Entry; 5044 Args.reserve(CS.arg_size()); 5045 5046 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5047 i != e; ++i) { 5048 const Value *V = *i; 5049 5050 // Skip empty types 5051 if (V->getType()->isEmptyTy()) 5052 continue; 5053 5054 SDValue ArgNode = getValue(V); 5055 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5056 5057 // Skip the first return-type Attribute to get to params. 5058 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5059 Args.push_back(Entry); 5060 5061 // If we have an explicit sret argument that is an Instruction, (i.e., it 5062 // might point to function-local memory), we can't meaningfully tail-call. 5063 if (Entry.isSRet && isa<Instruction>(V)) 5064 isTailCall = false; 5065 } 5066 5067 // Check if target-independent constraints permit a tail call here. 5068 // Target-dependent constraints are checked within TLI->LowerCallTo. 5069 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5070 isTailCall = false; 5071 5072 TargetLowering::CallLoweringInfo CLI(DAG); 5073 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5074 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5075 .setTailCall(isTailCall); 5076 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5077 5078 if (Result.first.getNode()) 5079 setValue(CS.getInstruction(), Result.first); 5080 } 5081 5082 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5083 /// value is equal or not-equal to zero. 5084 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5085 for (const User *U : V->users()) { 5086 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5087 if (IC->isEquality()) 5088 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5089 if (C->isNullValue()) 5090 continue; 5091 // Unknown instruction. 5092 return false; 5093 } 5094 return true; 5095 } 5096 5097 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5098 Type *LoadTy, 5099 SelectionDAGBuilder &Builder) { 5100 5101 // Check to see if this load can be trivially constant folded, e.g. if the 5102 // input is from a string literal. 5103 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5104 // Cast pointer to the type we really want to load. 5105 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5106 PointerType::getUnqual(LoadTy)); 5107 5108 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5109 const_cast<Constant *>(LoadInput), *Builder.DL)) 5110 return Builder.getValue(LoadCst); 5111 } 5112 5113 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5114 // still constant memory, the input chain can be the entry node. 5115 SDValue Root; 5116 bool ConstantMemory = false; 5117 5118 // Do not serialize (non-volatile) loads of constant memory with anything. 5119 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5120 Root = Builder.DAG.getEntryNode(); 5121 ConstantMemory = true; 5122 } else { 5123 // Do not serialize non-volatile loads against each other. 5124 Root = Builder.DAG.getRoot(); 5125 } 5126 5127 SDValue Ptr = Builder.getValue(PtrVal); 5128 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5129 Ptr, MachinePointerInfo(PtrVal), 5130 false /*volatile*/, 5131 false /*nontemporal*/, 5132 false /*isinvariant*/, 1 /* align=1 */); 5133 5134 if (!ConstantMemory) 5135 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5136 return LoadVal; 5137 } 5138 5139 /// processIntegerCallValue - Record the value for an instruction that 5140 /// produces an integer result, converting the type where necessary. 5141 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5142 SDValue Value, 5143 bool IsSigned) { 5144 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5145 if (IsSigned) 5146 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5147 else 5148 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5149 setValue(&I, Value); 5150 } 5151 5152 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5153 /// If so, return true and lower it, otherwise return false and it will be 5154 /// lowered like a normal call. 5155 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5156 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5157 if (I.getNumArgOperands() != 3) 5158 return false; 5159 5160 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5161 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5162 !I.getArgOperand(2)->getType()->isIntegerTy() || 5163 !I.getType()->isIntegerTy()) 5164 return false; 5165 5166 const Value *Size = I.getArgOperand(2); 5167 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5168 if (CSize && CSize->getZExtValue() == 0) { 5169 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5170 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5171 return true; 5172 } 5173 5174 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5175 std::pair<SDValue, SDValue> Res = 5176 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5177 getValue(LHS), getValue(RHS), getValue(Size), 5178 MachinePointerInfo(LHS), 5179 MachinePointerInfo(RHS)); 5180 if (Res.first.getNode()) { 5181 processIntegerCallValue(I, Res.first, true); 5182 PendingLoads.push_back(Res.second); 5183 return true; 5184 } 5185 5186 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5187 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5188 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5189 bool ActuallyDoIt = true; 5190 MVT LoadVT; 5191 Type *LoadTy; 5192 switch (CSize->getZExtValue()) { 5193 default: 5194 LoadVT = MVT::Other; 5195 LoadTy = nullptr; 5196 ActuallyDoIt = false; 5197 break; 5198 case 2: 5199 LoadVT = MVT::i16; 5200 LoadTy = Type::getInt16Ty(CSize->getContext()); 5201 break; 5202 case 4: 5203 LoadVT = MVT::i32; 5204 LoadTy = Type::getInt32Ty(CSize->getContext()); 5205 break; 5206 case 8: 5207 LoadVT = MVT::i64; 5208 LoadTy = Type::getInt64Ty(CSize->getContext()); 5209 break; 5210 /* 5211 case 16: 5212 LoadVT = MVT::v4i32; 5213 LoadTy = Type::getInt32Ty(CSize->getContext()); 5214 LoadTy = VectorType::get(LoadTy, 4); 5215 break; 5216 */ 5217 } 5218 5219 // This turns into unaligned loads. We only do this if the target natively 5220 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5221 // we'll only produce a small number of byte loads. 5222 5223 // Require that we can find a legal MVT, and only do this if the target 5224 // supports unaligned loads of that type. Expanding into byte loads would 5225 // bloat the code. 5226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5227 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5228 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5229 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5230 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5231 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5232 // TODO: Check alignment of src and dest ptrs. 5233 if (!TLI.isTypeLegal(LoadVT) || 5234 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5235 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5236 ActuallyDoIt = false; 5237 } 5238 5239 if (ActuallyDoIt) { 5240 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5241 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5242 5243 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5244 ISD::SETNE); 5245 processIntegerCallValue(I, Res, false); 5246 return true; 5247 } 5248 } 5249 5250 5251 return false; 5252 } 5253 5254 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5255 /// form. If so, return true and lower it, otherwise return false and it 5256 /// will be lowered like a normal call. 5257 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5258 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5259 if (I.getNumArgOperands() != 3) 5260 return false; 5261 5262 const Value *Src = I.getArgOperand(0); 5263 const Value *Char = I.getArgOperand(1); 5264 const Value *Length = I.getArgOperand(2); 5265 if (!Src->getType()->isPointerTy() || 5266 !Char->getType()->isIntegerTy() || 5267 !Length->getType()->isIntegerTy() || 5268 !I.getType()->isPointerTy()) 5269 return false; 5270 5271 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5272 std::pair<SDValue, SDValue> Res = 5273 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5274 getValue(Src), getValue(Char), getValue(Length), 5275 MachinePointerInfo(Src)); 5276 if (Res.first.getNode()) { 5277 setValue(&I, Res.first); 5278 PendingLoads.push_back(Res.second); 5279 return true; 5280 } 5281 5282 return false; 5283 } 5284 5285 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5286 /// optimized form. If so, return true and lower it, otherwise return false 5287 /// and it will be lowered like a normal call. 5288 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5289 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5290 if (I.getNumArgOperands() != 2) 5291 return false; 5292 5293 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5294 if (!Arg0->getType()->isPointerTy() || 5295 !Arg1->getType()->isPointerTy() || 5296 !I.getType()->isPointerTy()) 5297 return false; 5298 5299 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5300 std::pair<SDValue, SDValue> Res = 5301 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5302 getValue(Arg0), getValue(Arg1), 5303 MachinePointerInfo(Arg0), 5304 MachinePointerInfo(Arg1), isStpcpy); 5305 if (Res.first.getNode()) { 5306 setValue(&I, Res.first); 5307 DAG.setRoot(Res.second); 5308 return true; 5309 } 5310 5311 return false; 5312 } 5313 5314 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5315 /// If so, return true and lower it, otherwise return false and it will be 5316 /// lowered like a normal call. 5317 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5318 // Verify that the prototype makes sense. int strcmp(void*,void*) 5319 if (I.getNumArgOperands() != 2) 5320 return false; 5321 5322 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5323 if (!Arg0->getType()->isPointerTy() || 5324 !Arg1->getType()->isPointerTy() || 5325 !I.getType()->isIntegerTy()) 5326 return false; 5327 5328 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5329 std::pair<SDValue, SDValue> Res = 5330 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5331 getValue(Arg0), getValue(Arg1), 5332 MachinePointerInfo(Arg0), 5333 MachinePointerInfo(Arg1)); 5334 if (Res.first.getNode()) { 5335 processIntegerCallValue(I, Res.first, true); 5336 PendingLoads.push_back(Res.second); 5337 return true; 5338 } 5339 5340 return false; 5341 } 5342 5343 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5344 /// form. If so, return true and lower it, otherwise return false and it 5345 /// will be lowered like a normal call. 5346 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5347 // Verify that the prototype makes sense. size_t strlen(char *) 5348 if (I.getNumArgOperands() != 1) 5349 return false; 5350 5351 const Value *Arg0 = I.getArgOperand(0); 5352 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5353 return false; 5354 5355 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5356 std::pair<SDValue, SDValue> Res = 5357 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5358 getValue(Arg0), MachinePointerInfo(Arg0)); 5359 if (Res.first.getNode()) { 5360 processIntegerCallValue(I, Res.first, false); 5361 PendingLoads.push_back(Res.second); 5362 return true; 5363 } 5364 5365 return false; 5366 } 5367 5368 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5369 /// form. If so, return true and lower it, otherwise return false and it 5370 /// will be lowered like a normal call. 5371 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5372 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5373 if (I.getNumArgOperands() != 2) 5374 return false; 5375 5376 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5377 if (!Arg0->getType()->isPointerTy() || 5378 !Arg1->getType()->isIntegerTy() || 5379 !I.getType()->isIntegerTy()) 5380 return false; 5381 5382 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5383 std::pair<SDValue, SDValue> Res = 5384 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5385 getValue(Arg0), getValue(Arg1), 5386 MachinePointerInfo(Arg0)); 5387 if (Res.first.getNode()) { 5388 processIntegerCallValue(I, Res.first, false); 5389 PendingLoads.push_back(Res.second); 5390 return true; 5391 } 5392 5393 return false; 5394 } 5395 5396 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5397 /// operation (as expected), translate it to an SDNode with the specified opcode 5398 /// and return true. 5399 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5400 unsigned Opcode) { 5401 // Sanity check that it really is a unary floating-point call. 5402 if (I.getNumArgOperands() != 1 || 5403 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5404 I.getType() != I.getArgOperand(0)->getType() || 5405 !I.onlyReadsMemory()) 5406 return false; 5407 5408 SDValue Tmp = getValue(I.getArgOperand(0)); 5409 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5410 return true; 5411 } 5412 5413 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5414 /// operation (as expected), translate it to an SDNode with the specified opcode 5415 /// and return true. 5416 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5417 unsigned Opcode) { 5418 // Sanity check that it really is a binary floating-point call. 5419 if (I.getNumArgOperands() != 2 || 5420 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5421 I.getType() != I.getArgOperand(0)->getType() || 5422 I.getType() != I.getArgOperand(1)->getType() || 5423 !I.onlyReadsMemory()) 5424 return false; 5425 5426 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5427 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5428 EVT VT = Tmp0.getValueType(); 5429 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5430 return true; 5431 } 5432 5433 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5434 // Handle inline assembly differently. 5435 if (isa<InlineAsm>(I.getCalledValue())) { 5436 visitInlineAsm(&I); 5437 return; 5438 } 5439 5440 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5441 ComputeUsesVAFloatArgument(I, &MMI); 5442 5443 const char *RenameFn = nullptr; 5444 if (Function *F = I.getCalledFunction()) { 5445 if (F->isDeclaration()) { 5446 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5447 if (unsigned IID = II->getIntrinsicID(F)) { 5448 RenameFn = visitIntrinsicCall(I, IID); 5449 if (!RenameFn) 5450 return; 5451 } 5452 } 5453 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5454 RenameFn = visitIntrinsicCall(I, IID); 5455 if (!RenameFn) 5456 return; 5457 } 5458 } 5459 5460 // Check for well-known libc/libm calls. If the function is internal, it 5461 // can't be a library call. 5462 LibFunc::Func Func; 5463 if (!F->hasLocalLinkage() && F->hasName() && 5464 LibInfo->getLibFunc(F->getName(), Func) && 5465 LibInfo->hasOptimizedCodeGen(Func)) { 5466 switch (Func) { 5467 default: break; 5468 case LibFunc::copysign: 5469 case LibFunc::copysignf: 5470 case LibFunc::copysignl: 5471 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5472 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5473 I.getType() == I.getArgOperand(0)->getType() && 5474 I.getType() == I.getArgOperand(1)->getType() && 5475 I.onlyReadsMemory()) { 5476 SDValue LHS = getValue(I.getArgOperand(0)); 5477 SDValue RHS = getValue(I.getArgOperand(1)); 5478 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5479 LHS.getValueType(), LHS, RHS)); 5480 return; 5481 } 5482 break; 5483 case LibFunc::fabs: 5484 case LibFunc::fabsf: 5485 case LibFunc::fabsl: 5486 if (visitUnaryFloatCall(I, ISD::FABS)) 5487 return; 5488 break; 5489 case LibFunc::fmin: 5490 case LibFunc::fminf: 5491 case LibFunc::fminl: 5492 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5493 return; 5494 break; 5495 case LibFunc::fmax: 5496 case LibFunc::fmaxf: 5497 case LibFunc::fmaxl: 5498 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5499 return; 5500 break; 5501 case LibFunc::sin: 5502 case LibFunc::sinf: 5503 case LibFunc::sinl: 5504 if (visitUnaryFloatCall(I, ISD::FSIN)) 5505 return; 5506 break; 5507 case LibFunc::cos: 5508 case LibFunc::cosf: 5509 case LibFunc::cosl: 5510 if (visitUnaryFloatCall(I, ISD::FCOS)) 5511 return; 5512 break; 5513 case LibFunc::sqrt: 5514 case LibFunc::sqrtf: 5515 case LibFunc::sqrtl: 5516 case LibFunc::sqrt_finite: 5517 case LibFunc::sqrtf_finite: 5518 case LibFunc::sqrtl_finite: 5519 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5520 return; 5521 break; 5522 case LibFunc::floor: 5523 case LibFunc::floorf: 5524 case LibFunc::floorl: 5525 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5526 return; 5527 break; 5528 case LibFunc::nearbyint: 5529 case LibFunc::nearbyintf: 5530 case LibFunc::nearbyintl: 5531 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5532 return; 5533 break; 5534 case LibFunc::ceil: 5535 case LibFunc::ceilf: 5536 case LibFunc::ceill: 5537 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5538 return; 5539 break; 5540 case LibFunc::rint: 5541 case LibFunc::rintf: 5542 case LibFunc::rintl: 5543 if (visitUnaryFloatCall(I, ISD::FRINT)) 5544 return; 5545 break; 5546 case LibFunc::round: 5547 case LibFunc::roundf: 5548 case LibFunc::roundl: 5549 if (visitUnaryFloatCall(I, ISD::FROUND)) 5550 return; 5551 break; 5552 case LibFunc::trunc: 5553 case LibFunc::truncf: 5554 case LibFunc::truncl: 5555 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5556 return; 5557 break; 5558 case LibFunc::log2: 5559 case LibFunc::log2f: 5560 case LibFunc::log2l: 5561 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5562 return; 5563 break; 5564 case LibFunc::exp2: 5565 case LibFunc::exp2f: 5566 case LibFunc::exp2l: 5567 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5568 return; 5569 break; 5570 case LibFunc::memcmp: 5571 if (visitMemCmpCall(I)) 5572 return; 5573 break; 5574 case LibFunc::memchr: 5575 if (visitMemChrCall(I)) 5576 return; 5577 break; 5578 case LibFunc::strcpy: 5579 if (visitStrCpyCall(I, false)) 5580 return; 5581 break; 5582 case LibFunc::stpcpy: 5583 if (visitStrCpyCall(I, true)) 5584 return; 5585 break; 5586 case LibFunc::strcmp: 5587 if (visitStrCmpCall(I)) 5588 return; 5589 break; 5590 case LibFunc::strlen: 5591 if (visitStrLenCall(I)) 5592 return; 5593 break; 5594 case LibFunc::strnlen: 5595 if (visitStrNLenCall(I)) 5596 return; 5597 break; 5598 } 5599 } 5600 } 5601 5602 SDValue Callee; 5603 if (!RenameFn) 5604 Callee = getValue(I.getCalledValue()); 5605 else 5606 Callee = DAG.getExternalSymbol(RenameFn, 5607 DAG.getTargetLoweringInfo().getPointerTy()); 5608 5609 // Check if we can potentially perform a tail call. More detailed checking is 5610 // be done within LowerCallTo, after more information about the call is known. 5611 LowerCallTo(&I, Callee, I.isTailCall()); 5612 } 5613 5614 namespace { 5615 5616 /// AsmOperandInfo - This contains information for each constraint that we are 5617 /// lowering. 5618 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5619 public: 5620 /// CallOperand - If this is the result output operand or a clobber 5621 /// this is null, otherwise it is the incoming operand to the CallInst. 5622 /// This gets modified as the asm is processed. 5623 SDValue CallOperand; 5624 5625 /// AssignedRegs - If this is a register or register class operand, this 5626 /// contains the set of register corresponding to the operand. 5627 RegsForValue AssignedRegs; 5628 5629 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5630 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5631 } 5632 5633 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5634 /// corresponds to. If there is no Value* for this operand, it returns 5635 /// MVT::Other. 5636 EVT getCallOperandValEVT(LLVMContext &Context, 5637 const TargetLowering &TLI, 5638 const DataLayout *DL) const { 5639 if (!CallOperandVal) return MVT::Other; 5640 5641 if (isa<BasicBlock>(CallOperandVal)) 5642 return TLI.getPointerTy(); 5643 5644 llvm::Type *OpTy = CallOperandVal->getType(); 5645 5646 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5647 // If this is an indirect operand, the operand is a pointer to the 5648 // accessed type. 5649 if (isIndirect) { 5650 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5651 if (!PtrTy) 5652 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5653 OpTy = PtrTy->getElementType(); 5654 } 5655 5656 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5657 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5658 if (STy->getNumElements() == 1) 5659 OpTy = STy->getElementType(0); 5660 5661 // If OpTy is not a single value, it may be a struct/union that we 5662 // can tile with integers. 5663 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5664 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5665 switch (BitSize) { 5666 default: break; 5667 case 1: 5668 case 8: 5669 case 16: 5670 case 32: 5671 case 64: 5672 case 128: 5673 OpTy = IntegerType::get(Context, BitSize); 5674 break; 5675 } 5676 } 5677 5678 return TLI.getValueType(OpTy, true); 5679 } 5680 }; 5681 5682 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5683 5684 } // end anonymous namespace 5685 5686 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5687 /// specified operand. We prefer to assign virtual registers, to allow the 5688 /// register allocator to handle the assignment process. However, if the asm 5689 /// uses features that we can't model on machineinstrs, we have SDISel do the 5690 /// allocation. This produces generally horrible, but correct, code. 5691 /// 5692 /// OpInfo describes the operand. 5693 /// 5694 static void GetRegistersForValue(SelectionDAG &DAG, 5695 const TargetLowering &TLI, 5696 SDLoc DL, 5697 SDISelAsmOperandInfo &OpInfo) { 5698 LLVMContext &Context = *DAG.getContext(); 5699 5700 MachineFunction &MF = DAG.getMachineFunction(); 5701 SmallVector<unsigned, 4> Regs; 5702 5703 // If this is a constraint for a single physreg, or a constraint for a 5704 // register class, find it. 5705 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5706 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5707 OpInfo.ConstraintCode, 5708 OpInfo.ConstraintVT); 5709 5710 unsigned NumRegs = 1; 5711 if (OpInfo.ConstraintVT != MVT::Other) { 5712 // If this is a FP input in an integer register (or visa versa) insert a bit 5713 // cast of the input value. More generally, handle any case where the input 5714 // value disagrees with the register class we plan to stick this in. 5715 if (OpInfo.Type == InlineAsm::isInput && 5716 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5717 // Try to convert to the first EVT that the reg class contains. If the 5718 // types are identical size, use a bitcast to convert (e.g. two differing 5719 // vector types). 5720 MVT RegVT = *PhysReg.second->vt_begin(); 5721 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5722 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5723 RegVT, OpInfo.CallOperand); 5724 OpInfo.ConstraintVT = RegVT; 5725 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5726 // If the input is a FP value and we want it in FP registers, do a 5727 // bitcast to the corresponding integer type. This turns an f64 value 5728 // into i64, which can be passed with two i32 values on a 32-bit 5729 // machine. 5730 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5731 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5732 RegVT, OpInfo.CallOperand); 5733 OpInfo.ConstraintVT = RegVT; 5734 } 5735 } 5736 5737 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5738 } 5739 5740 MVT RegVT; 5741 EVT ValueVT = OpInfo.ConstraintVT; 5742 5743 // If this is a constraint for a specific physical register, like {r17}, 5744 // assign it now. 5745 if (unsigned AssignedReg = PhysReg.first) { 5746 const TargetRegisterClass *RC = PhysReg.second; 5747 if (OpInfo.ConstraintVT == MVT::Other) 5748 ValueVT = *RC->vt_begin(); 5749 5750 // Get the actual register value type. This is important, because the user 5751 // may have asked for (e.g.) the AX register in i32 type. We need to 5752 // remember that AX is actually i16 to get the right extension. 5753 RegVT = *RC->vt_begin(); 5754 5755 // This is a explicit reference to a physical register. 5756 Regs.push_back(AssignedReg); 5757 5758 // If this is an expanded reference, add the rest of the regs to Regs. 5759 if (NumRegs != 1) { 5760 TargetRegisterClass::iterator I = RC->begin(); 5761 for (; *I != AssignedReg; ++I) 5762 assert(I != RC->end() && "Didn't find reg!"); 5763 5764 // Already added the first reg. 5765 --NumRegs; ++I; 5766 for (; NumRegs; --NumRegs, ++I) { 5767 assert(I != RC->end() && "Ran out of registers to allocate!"); 5768 Regs.push_back(*I); 5769 } 5770 } 5771 5772 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5773 return; 5774 } 5775 5776 // Otherwise, if this was a reference to an LLVM register class, create vregs 5777 // for this reference. 5778 if (const TargetRegisterClass *RC = PhysReg.second) { 5779 RegVT = *RC->vt_begin(); 5780 if (OpInfo.ConstraintVT == MVT::Other) 5781 ValueVT = RegVT; 5782 5783 // Create the appropriate number of virtual registers. 5784 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5785 for (; NumRegs; --NumRegs) 5786 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5787 5788 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5789 return; 5790 } 5791 5792 // Otherwise, we couldn't allocate enough registers for this. 5793 } 5794 5795 /// visitInlineAsm - Handle a call to an InlineAsm object. 5796 /// 5797 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5798 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5799 5800 /// ConstraintOperands - Information about all of the constraints. 5801 SDISelAsmOperandInfoVector ConstraintOperands; 5802 5803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5804 TargetLowering::AsmOperandInfoVector TargetConstraints = 5805 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5806 5807 bool hasMemory = false; 5808 5809 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5810 unsigned ResNo = 0; // ResNo - The result number of the next output. 5811 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5812 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5813 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5814 5815 MVT OpVT = MVT::Other; 5816 5817 // Compute the value type for each operand. 5818 switch (OpInfo.Type) { 5819 case InlineAsm::isOutput: 5820 // Indirect outputs just consume an argument. 5821 if (OpInfo.isIndirect) { 5822 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5823 break; 5824 } 5825 5826 // The return value of the call is this value. As such, there is no 5827 // corresponding argument. 5828 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5829 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5830 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5831 } else { 5832 assert(ResNo == 0 && "Asm only has one result!"); 5833 OpVT = TLI.getSimpleValueType(CS.getType()); 5834 } 5835 ++ResNo; 5836 break; 5837 case InlineAsm::isInput: 5838 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5839 break; 5840 case InlineAsm::isClobber: 5841 // Nothing to do. 5842 break; 5843 } 5844 5845 // If this is an input or an indirect output, process the call argument. 5846 // BasicBlocks are labels, currently appearing only in asm's. 5847 if (OpInfo.CallOperandVal) { 5848 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5849 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5850 } else { 5851 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5852 } 5853 5854 OpVT = 5855 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5856 } 5857 5858 OpInfo.ConstraintVT = OpVT; 5859 5860 // Indirect operand accesses access memory. 5861 if (OpInfo.isIndirect) 5862 hasMemory = true; 5863 else { 5864 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5865 TargetLowering::ConstraintType 5866 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5867 if (CType == TargetLowering::C_Memory) { 5868 hasMemory = true; 5869 break; 5870 } 5871 } 5872 } 5873 } 5874 5875 SDValue Chain, Flag; 5876 5877 // We won't need to flush pending loads if this asm doesn't touch 5878 // memory and is nonvolatile. 5879 if (hasMemory || IA->hasSideEffects()) 5880 Chain = getRoot(); 5881 else 5882 Chain = DAG.getRoot(); 5883 5884 // Second pass over the constraints: compute which constraint option to use 5885 // and assign registers to constraints that want a specific physreg. 5886 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5887 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5888 5889 // If this is an output operand with a matching input operand, look up the 5890 // matching input. If their types mismatch, e.g. one is an integer, the 5891 // other is floating point, or their sizes are different, flag it as an 5892 // error. 5893 if (OpInfo.hasMatchingInput()) { 5894 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5895 5896 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5897 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5898 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5899 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5900 OpInfo.ConstraintVT); 5901 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5902 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5903 Input.ConstraintVT); 5904 if ((OpInfo.ConstraintVT.isInteger() != 5905 Input.ConstraintVT.isInteger()) || 5906 (MatchRC.second != InputRC.second)) { 5907 report_fatal_error("Unsupported asm: input constraint" 5908 " with a matching output constraint of" 5909 " incompatible type!"); 5910 } 5911 Input.ConstraintVT = OpInfo.ConstraintVT; 5912 } 5913 } 5914 5915 // Compute the constraint code and ConstraintType to use. 5916 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5917 5918 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5919 OpInfo.Type == InlineAsm::isClobber) 5920 continue; 5921 5922 // If this is a memory input, and if the operand is not indirect, do what we 5923 // need to to provide an address for the memory input. 5924 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5925 !OpInfo.isIndirect) { 5926 assert((OpInfo.isMultipleAlternative || 5927 (OpInfo.Type == InlineAsm::isInput)) && 5928 "Can only indirectify direct input operands!"); 5929 5930 // Memory operands really want the address of the value. If we don't have 5931 // an indirect input, put it in the constpool if we can, otherwise spill 5932 // it to a stack slot. 5933 // TODO: This isn't quite right. We need to handle these according to 5934 // the addressing mode that the constraint wants. Also, this may take 5935 // an additional register for the computation and we don't want that 5936 // either. 5937 5938 // If the operand is a float, integer, or vector constant, spill to a 5939 // constant pool entry to get its address. 5940 const Value *OpVal = OpInfo.CallOperandVal; 5941 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5942 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5943 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5944 TLI.getPointerTy()); 5945 } else { 5946 // Otherwise, create a stack slot and emit a store to it before the 5947 // asm. 5948 Type *Ty = OpVal->getType(); 5949 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5950 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5951 MachineFunction &MF = DAG.getMachineFunction(); 5952 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5953 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5954 Chain = DAG.getStore(Chain, getCurSDLoc(), 5955 OpInfo.CallOperand, StackSlot, 5956 MachinePointerInfo::getFixedStack(SSFI), 5957 false, false, 0); 5958 OpInfo.CallOperand = StackSlot; 5959 } 5960 5961 // There is no longer a Value* corresponding to this operand. 5962 OpInfo.CallOperandVal = nullptr; 5963 5964 // It is now an indirect operand. 5965 OpInfo.isIndirect = true; 5966 } 5967 5968 // If this constraint is for a specific register, allocate it before 5969 // anything else. 5970 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5971 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5972 } 5973 5974 // Second pass - Loop over all of the operands, assigning virtual or physregs 5975 // to register class operands. 5976 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5977 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5978 5979 // C_Register operands have already been allocated, Other/Memory don't need 5980 // to be. 5981 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5982 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5983 } 5984 5985 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5986 std::vector<SDValue> AsmNodeOperands; 5987 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5988 AsmNodeOperands.push_back( 5989 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5990 TLI.getPointerTy())); 5991 5992 // If we have a !srcloc metadata node associated with it, we want to attach 5993 // this to the ultimately generated inline asm machineinstr. To do this, we 5994 // pass in the third operand as this (potentially null) inline asm MDNode. 5995 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5996 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5997 5998 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5999 // bits as operand 3. 6000 unsigned ExtraInfo = 0; 6001 if (IA->hasSideEffects()) 6002 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6003 if (IA->isAlignStack()) 6004 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6005 // Set the asm dialect. 6006 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6007 6008 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6009 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6010 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6011 6012 // Compute the constraint code and ConstraintType to use. 6013 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6014 6015 // Ideally, we would only check against memory constraints. However, the 6016 // meaning of an other constraint can be target-specific and we can't easily 6017 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6018 // for other constriants as well. 6019 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6020 OpInfo.ConstraintType == TargetLowering::C_Other) { 6021 if (OpInfo.Type == InlineAsm::isInput) 6022 ExtraInfo |= InlineAsm::Extra_MayLoad; 6023 else if (OpInfo.Type == InlineAsm::isOutput) 6024 ExtraInfo |= InlineAsm::Extra_MayStore; 6025 else if (OpInfo.Type == InlineAsm::isClobber) 6026 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6027 } 6028 } 6029 6030 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6031 TLI.getPointerTy())); 6032 6033 // Loop over all of the inputs, copying the operand values into the 6034 // appropriate registers and processing the output regs. 6035 RegsForValue RetValRegs; 6036 6037 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6038 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6039 6040 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6041 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6042 6043 switch (OpInfo.Type) { 6044 case InlineAsm::isOutput: { 6045 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6046 OpInfo.ConstraintType != TargetLowering::C_Register) { 6047 // Memory output, or 'other' output (e.g. 'X' constraint). 6048 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6049 6050 unsigned ConstraintID = 6051 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6052 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6053 "Failed to convert memory constraint code to constraint id."); 6054 6055 // Add information to the INLINEASM node to know about this output. 6056 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6057 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6058 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6059 MVT::i32)); 6060 AsmNodeOperands.push_back(OpInfo.CallOperand); 6061 break; 6062 } 6063 6064 // Otherwise, this is a register or register class output. 6065 6066 // Copy the output from the appropriate register. Find a register that 6067 // we can use. 6068 if (OpInfo.AssignedRegs.Regs.empty()) { 6069 LLVMContext &Ctx = *DAG.getContext(); 6070 Ctx.emitError(CS.getInstruction(), 6071 "couldn't allocate output register for constraint '" + 6072 Twine(OpInfo.ConstraintCode) + "'"); 6073 return; 6074 } 6075 6076 // If this is an indirect operand, store through the pointer after the 6077 // asm. 6078 if (OpInfo.isIndirect) { 6079 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6080 OpInfo.CallOperandVal)); 6081 } else { 6082 // This is the result value of the call. 6083 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6084 // Concatenate this output onto the outputs list. 6085 RetValRegs.append(OpInfo.AssignedRegs); 6086 } 6087 6088 // Add information to the INLINEASM node to know that this register is 6089 // set. 6090 OpInfo.AssignedRegs 6091 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6092 ? InlineAsm::Kind_RegDefEarlyClobber 6093 : InlineAsm::Kind_RegDef, 6094 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6095 break; 6096 } 6097 case InlineAsm::isInput: { 6098 SDValue InOperandVal = OpInfo.CallOperand; 6099 6100 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6101 // If this is required to match an output register we have already set, 6102 // just use its register. 6103 unsigned OperandNo = OpInfo.getMatchedOperand(); 6104 6105 // Scan until we find the definition we already emitted of this operand. 6106 // When we find it, create a RegsForValue operand. 6107 unsigned CurOp = InlineAsm::Op_FirstOperand; 6108 for (; OperandNo; --OperandNo) { 6109 // Advance to the next operand. 6110 unsigned OpFlag = 6111 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6112 assert((InlineAsm::isRegDefKind(OpFlag) || 6113 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6114 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6115 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6116 } 6117 6118 unsigned OpFlag = 6119 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6120 if (InlineAsm::isRegDefKind(OpFlag) || 6121 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6122 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6123 if (OpInfo.isIndirect) { 6124 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6125 LLVMContext &Ctx = *DAG.getContext(); 6126 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6127 " don't know how to handle tied " 6128 "indirect register inputs"); 6129 return; 6130 } 6131 6132 RegsForValue MatchedRegs; 6133 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6134 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6135 MatchedRegs.RegVTs.push_back(RegVT); 6136 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6137 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6138 i != e; ++i) { 6139 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6140 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6141 else { 6142 LLVMContext &Ctx = *DAG.getContext(); 6143 Ctx.emitError(CS.getInstruction(), 6144 "inline asm error: This value" 6145 " type register class is not natively supported!"); 6146 return; 6147 } 6148 } 6149 SDLoc dl = getCurSDLoc(); 6150 // Use the produced MatchedRegs object to 6151 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6152 Chain, &Flag, CS.getInstruction()); 6153 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6154 true, OpInfo.getMatchedOperand(), dl, 6155 DAG, AsmNodeOperands); 6156 break; 6157 } 6158 6159 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6160 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6161 "Unexpected number of operands"); 6162 // Add information to the INLINEASM node to know about this input. 6163 // See InlineAsm.h isUseOperandTiedToDef. 6164 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6165 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6166 OpInfo.getMatchedOperand()); 6167 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6168 TLI.getPointerTy())); 6169 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6170 break; 6171 } 6172 6173 // Treat indirect 'X' constraint as memory. 6174 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6175 OpInfo.isIndirect) 6176 OpInfo.ConstraintType = TargetLowering::C_Memory; 6177 6178 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6179 std::vector<SDValue> Ops; 6180 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6181 Ops, DAG); 6182 if (Ops.empty()) { 6183 LLVMContext &Ctx = *DAG.getContext(); 6184 Ctx.emitError(CS.getInstruction(), 6185 "invalid operand for inline asm constraint '" + 6186 Twine(OpInfo.ConstraintCode) + "'"); 6187 return; 6188 } 6189 6190 // Add information to the INLINEASM node to know about this input. 6191 unsigned ResOpType = 6192 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6193 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6194 getCurSDLoc(), 6195 TLI.getPointerTy())); 6196 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6197 break; 6198 } 6199 6200 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6201 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6202 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6203 "Memory operands expect pointer values"); 6204 6205 unsigned ConstraintID = 6206 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6207 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6208 "Failed to convert memory constraint code to constraint id."); 6209 6210 // Add information to the INLINEASM node to know about this input. 6211 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6212 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6213 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6214 getCurSDLoc(), 6215 MVT::i32)); 6216 AsmNodeOperands.push_back(InOperandVal); 6217 break; 6218 } 6219 6220 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6221 OpInfo.ConstraintType == TargetLowering::C_Register) && 6222 "Unknown constraint type!"); 6223 6224 // TODO: Support this. 6225 if (OpInfo.isIndirect) { 6226 LLVMContext &Ctx = *DAG.getContext(); 6227 Ctx.emitError(CS.getInstruction(), 6228 "Don't know how to handle indirect register inputs yet " 6229 "for constraint '" + 6230 Twine(OpInfo.ConstraintCode) + "'"); 6231 return; 6232 } 6233 6234 // Copy the input into the appropriate registers. 6235 if (OpInfo.AssignedRegs.Regs.empty()) { 6236 LLVMContext &Ctx = *DAG.getContext(); 6237 Ctx.emitError(CS.getInstruction(), 6238 "couldn't allocate input reg for constraint '" + 6239 Twine(OpInfo.ConstraintCode) + "'"); 6240 return; 6241 } 6242 6243 SDLoc dl = getCurSDLoc(); 6244 6245 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6246 Chain, &Flag, CS.getInstruction()); 6247 6248 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6249 dl, DAG, AsmNodeOperands); 6250 break; 6251 } 6252 case InlineAsm::isClobber: { 6253 // Add the clobbered value to the operand list, so that the register 6254 // allocator is aware that the physreg got clobbered. 6255 if (!OpInfo.AssignedRegs.Regs.empty()) 6256 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6257 false, 0, getCurSDLoc(), DAG, 6258 AsmNodeOperands); 6259 break; 6260 } 6261 } 6262 } 6263 6264 // Finish up input operands. Set the input chain and add the flag last. 6265 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6266 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6267 6268 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6269 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6270 Flag = Chain.getValue(1); 6271 6272 // If this asm returns a register value, copy the result from that register 6273 // and set it as the value of the call. 6274 if (!RetValRegs.Regs.empty()) { 6275 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6276 Chain, &Flag, CS.getInstruction()); 6277 6278 // FIXME: Why don't we do this for inline asms with MRVs? 6279 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6280 EVT ResultType = TLI.getValueType(CS.getType()); 6281 6282 // If any of the results of the inline asm is a vector, it may have the 6283 // wrong width/num elts. This can happen for register classes that can 6284 // contain multiple different value types. The preg or vreg allocated may 6285 // not have the same VT as was expected. Convert it to the right type 6286 // with bit_convert. 6287 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6288 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6289 ResultType, Val); 6290 6291 } else if (ResultType != Val.getValueType() && 6292 ResultType.isInteger() && Val.getValueType().isInteger()) { 6293 // If a result value was tied to an input value, the computed result may 6294 // have a wider width than the expected result. Extract the relevant 6295 // portion. 6296 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6297 } 6298 6299 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6300 } 6301 6302 setValue(CS.getInstruction(), Val); 6303 // Don't need to use this as a chain in this case. 6304 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6305 return; 6306 } 6307 6308 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6309 6310 // Process indirect outputs, first output all of the flagged copies out of 6311 // physregs. 6312 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6313 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6314 const Value *Ptr = IndirectStoresToEmit[i].second; 6315 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6316 Chain, &Flag, IA); 6317 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6318 } 6319 6320 // Emit the non-flagged stores from the physregs. 6321 SmallVector<SDValue, 8> OutChains; 6322 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6323 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6324 StoresToEmit[i].first, 6325 getValue(StoresToEmit[i].second), 6326 MachinePointerInfo(StoresToEmit[i].second), 6327 false, false, 0); 6328 OutChains.push_back(Val); 6329 } 6330 6331 if (!OutChains.empty()) 6332 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6333 6334 DAG.setRoot(Chain); 6335 } 6336 6337 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6338 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6339 MVT::Other, getRoot(), 6340 getValue(I.getArgOperand(0)), 6341 DAG.getSrcValue(I.getArgOperand(0)))); 6342 } 6343 6344 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6346 const DataLayout &DL = *TLI.getDataLayout(); 6347 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6348 getRoot(), getValue(I.getOperand(0)), 6349 DAG.getSrcValue(I.getOperand(0)), 6350 DL.getABITypeAlignment(I.getType())); 6351 setValue(&I, V); 6352 DAG.setRoot(V.getValue(1)); 6353 } 6354 6355 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6356 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6357 MVT::Other, getRoot(), 6358 getValue(I.getArgOperand(0)), 6359 DAG.getSrcValue(I.getArgOperand(0)))); 6360 } 6361 6362 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6363 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6364 MVT::Other, getRoot(), 6365 getValue(I.getArgOperand(0)), 6366 getValue(I.getArgOperand(1)), 6367 DAG.getSrcValue(I.getArgOperand(0)), 6368 DAG.getSrcValue(I.getArgOperand(1)))); 6369 } 6370 6371 /// \brief Lower an argument list according to the target calling convention. 6372 /// 6373 /// \return A tuple of <return-value, token-chain> 6374 /// 6375 /// This is a helper for lowering intrinsics that follow a target calling 6376 /// convention or require stack pointer adjustment. Only a subset of the 6377 /// intrinsic's operands need to participate in the calling convention. 6378 std::pair<SDValue, SDValue> 6379 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6380 unsigned NumArgs, SDValue Callee, 6381 Type *ReturnTy, 6382 MachineBasicBlock *LandingPad, 6383 bool IsPatchPoint) { 6384 TargetLowering::ArgListTy Args; 6385 Args.reserve(NumArgs); 6386 6387 // Populate the argument list. 6388 // Attributes for args start at offset 1, after the return attribute. 6389 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6390 ArgI != ArgE; ++ArgI) { 6391 const Value *V = CS->getOperand(ArgI); 6392 6393 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6394 6395 TargetLowering::ArgListEntry Entry; 6396 Entry.Node = getValue(V); 6397 Entry.Ty = V->getType(); 6398 Entry.setAttributes(&CS, AttrI); 6399 Args.push_back(Entry); 6400 } 6401 6402 TargetLowering::CallLoweringInfo CLI(DAG); 6403 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6404 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6405 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6406 6407 return lowerInvokable(CLI, LandingPad); 6408 } 6409 6410 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6411 /// or patchpoint target node's operand list. 6412 /// 6413 /// Constants are converted to TargetConstants purely as an optimization to 6414 /// avoid constant materialization and register allocation. 6415 /// 6416 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6417 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6418 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6419 /// address materialization and register allocation, but may also be required 6420 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6421 /// alloca in the entry block, then the runtime may assume that the alloca's 6422 /// StackMap location can be read immediately after compilation and that the 6423 /// location is valid at any point during execution (this is similar to the 6424 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6425 /// only available in a register, then the runtime would need to trap when 6426 /// execution reaches the StackMap in order to read the alloca's location. 6427 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6428 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6429 SelectionDAGBuilder &Builder) { 6430 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6431 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6432 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6433 Ops.push_back( 6434 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6435 Ops.push_back( 6436 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6437 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6438 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6439 Ops.push_back( 6440 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6441 } else 6442 Ops.push_back(OpVal); 6443 } 6444 } 6445 6446 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6447 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6448 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6449 // [live variables...]) 6450 6451 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6452 6453 SDValue Chain, InFlag, Callee, NullPtr; 6454 SmallVector<SDValue, 32> Ops; 6455 6456 SDLoc DL = getCurSDLoc(); 6457 Callee = getValue(CI.getCalledValue()); 6458 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6459 6460 // The stackmap intrinsic only records the live variables (the arguemnts 6461 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6462 // intrinsic, this won't be lowered to a function call. This means we don't 6463 // have to worry about calling conventions and target specific lowering code. 6464 // Instead we perform the call lowering right here. 6465 // 6466 // chain, flag = CALLSEQ_START(chain, 0) 6467 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6468 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6469 // 6470 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6471 InFlag = Chain.getValue(1); 6472 6473 // Add the <id> and <numBytes> constants. 6474 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6475 Ops.push_back(DAG.getTargetConstant( 6476 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6477 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6478 Ops.push_back(DAG.getTargetConstant( 6479 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6480 MVT::i32)); 6481 6482 // Push live variables for the stack map. 6483 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6484 6485 // We are not pushing any register mask info here on the operands list, 6486 // because the stackmap doesn't clobber anything. 6487 6488 // Push the chain and the glue flag. 6489 Ops.push_back(Chain); 6490 Ops.push_back(InFlag); 6491 6492 // Create the STACKMAP node. 6493 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6494 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6495 Chain = SDValue(SM, 0); 6496 InFlag = Chain.getValue(1); 6497 6498 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6499 6500 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6501 6502 // Set the root to the target-lowered call chain. 6503 DAG.setRoot(Chain); 6504 6505 // Inform the Frame Information that we have a stackmap in this function. 6506 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6507 } 6508 6509 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6510 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6511 MachineBasicBlock *LandingPad) { 6512 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6513 // i32 <numBytes>, 6514 // i8* <target>, 6515 // i32 <numArgs>, 6516 // [Args...], 6517 // [live variables...]) 6518 6519 CallingConv::ID CC = CS.getCallingConv(); 6520 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6521 bool HasDef = !CS->getType()->isVoidTy(); 6522 SDLoc dl = getCurSDLoc(); 6523 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6524 6525 // Handle immediate and symbolic callees. 6526 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6527 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6528 /*isTarget=*/true); 6529 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6530 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6531 SDLoc(SymbolicCallee), 6532 SymbolicCallee->getValueType(0)); 6533 6534 // Get the real number of arguments participating in the call <numArgs> 6535 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6536 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6537 6538 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6539 // Intrinsics include all meta-operands up to but not including CC. 6540 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6541 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6542 "Not enough arguments provided to the patchpoint intrinsic"); 6543 6544 // For AnyRegCC the arguments are lowered later on manually. 6545 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6546 Type *ReturnTy = 6547 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6548 std::pair<SDValue, SDValue> Result = 6549 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6550 LandingPad, true); 6551 6552 SDNode *CallEnd = Result.second.getNode(); 6553 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6554 CallEnd = CallEnd->getOperand(0).getNode(); 6555 6556 /// Get a call instruction from the call sequence chain. 6557 /// Tail calls are not allowed. 6558 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6559 "Expected a callseq node."); 6560 SDNode *Call = CallEnd->getOperand(0).getNode(); 6561 bool HasGlue = Call->getGluedNode(); 6562 6563 // Replace the target specific call node with the patchable intrinsic. 6564 SmallVector<SDValue, 8> Ops; 6565 6566 // Add the <id> and <numBytes> constants. 6567 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6568 Ops.push_back(DAG.getTargetConstant( 6569 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6570 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6571 Ops.push_back(DAG.getTargetConstant( 6572 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6573 MVT::i32)); 6574 6575 // Add the callee. 6576 Ops.push_back(Callee); 6577 6578 // Adjust <numArgs> to account for any arguments that have been passed on the 6579 // stack instead. 6580 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6581 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6582 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6583 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6584 6585 // Add the calling convention 6586 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6587 6588 // Add the arguments we omitted previously. The register allocator should 6589 // place these in any free register. 6590 if (IsAnyRegCC) 6591 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6592 Ops.push_back(getValue(CS.getArgument(i))); 6593 6594 // Push the arguments from the call instruction up to the register mask. 6595 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6596 Ops.append(Call->op_begin() + 2, e); 6597 6598 // Push live variables for the stack map. 6599 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6600 6601 // Push the register mask info. 6602 if (HasGlue) 6603 Ops.push_back(*(Call->op_end()-2)); 6604 else 6605 Ops.push_back(*(Call->op_end()-1)); 6606 6607 // Push the chain (this is originally the first operand of the call, but 6608 // becomes now the last or second to last operand). 6609 Ops.push_back(*(Call->op_begin())); 6610 6611 // Push the glue flag (last operand). 6612 if (HasGlue) 6613 Ops.push_back(*(Call->op_end()-1)); 6614 6615 SDVTList NodeTys; 6616 if (IsAnyRegCC && HasDef) { 6617 // Create the return types based on the intrinsic definition 6618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6619 SmallVector<EVT, 3> ValueVTs; 6620 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6621 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6622 6623 // There is always a chain and a glue type at the end 6624 ValueVTs.push_back(MVT::Other); 6625 ValueVTs.push_back(MVT::Glue); 6626 NodeTys = DAG.getVTList(ValueVTs); 6627 } else 6628 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6629 6630 // Replace the target specific call node with a PATCHPOINT node. 6631 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6632 dl, NodeTys, Ops); 6633 6634 // Update the NodeMap. 6635 if (HasDef) { 6636 if (IsAnyRegCC) 6637 setValue(CS.getInstruction(), SDValue(MN, 0)); 6638 else 6639 setValue(CS.getInstruction(), Result.first); 6640 } 6641 6642 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6643 // call sequence. Furthermore the location of the chain and glue can change 6644 // when the AnyReg calling convention is used and the intrinsic returns a 6645 // value. 6646 if (IsAnyRegCC && HasDef) { 6647 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6648 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6649 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6650 } else 6651 DAG.ReplaceAllUsesWith(Call, MN); 6652 DAG.DeleteNode(Call); 6653 6654 // Inform the Frame Information that we have a patchpoint in this function. 6655 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6656 } 6657 6658 /// Returns an AttributeSet representing the attributes applied to the return 6659 /// value of the given call. 6660 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6661 SmallVector<Attribute::AttrKind, 2> Attrs; 6662 if (CLI.RetSExt) 6663 Attrs.push_back(Attribute::SExt); 6664 if (CLI.RetZExt) 6665 Attrs.push_back(Attribute::ZExt); 6666 if (CLI.IsInReg) 6667 Attrs.push_back(Attribute::InReg); 6668 6669 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6670 Attrs); 6671 } 6672 6673 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6674 /// implementation, which just calls LowerCall. 6675 /// FIXME: When all targets are 6676 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6677 std::pair<SDValue, SDValue> 6678 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6679 // Handle the incoming return values from the call. 6680 CLI.Ins.clear(); 6681 Type *OrigRetTy = CLI.RetTy; 6682 SmallVector<EVT, 4> RetTys; 6683 SmallVector<uint64_t, 4> Offsets; 6684 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6685 6686 SmallVector<ISD::OutputArg, 4> Outs; 6687 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6688 6689 bool CanLowerReturn = 6690 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6691 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6692 6693 SDValue DemoteStackSlot; 6694 int DemoteStackIdx = -100; 6695 if (!CanLowerReturn) { 6696 // FIXME: equivalent assert? 6697 // assert(!CS.hasInAllocaArgument() && 6698 // "sret demotion is incompatible with inalloca"); 6699 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6700 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6701 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6702 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6703 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6704 6705 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6706 ArgListEntry Entry; 6707 Entry.Node = DemoteStackSlot; 6708 Entry.Ty = StackSlotPtrType; 6709 Entry.isSExt = false; 6710 Entry.isZExt = false; 6711 Entry.isInReg = false; 6712 Entry.isSRet = true; 6713 Entry.isNest = false; 6714 Entry.isByVal = false; 6715 Entry.isReturned = false; 6716 Entry.Alignment = Align; 6717 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6718 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6719 6720 // sret demotion isn't compatible with tail-calls, since the sret argument 6721 // points into the callers stack frame. 6722 CLI.IsTailCall = false; 6723 } else { 6724 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6725 EVT VT = RetTys[I]; 6726 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6727 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6728 for (unsigned i = 0; i != NumRegs; ++i) { 6729 ISD::InputArg MyFlags; 6730 MyFlags.VT = RegisterVT; 6731 MyFlags.ArgVT = VT; 6732 MyFlags.Used = CLI.IsReturnValueUsed; 6733 if (CLI.RetSExt) 6734 MyFlags.Flags.setSExt(); 6735 if (CLI.RetZExt) 6736 MyFlags.Flags.setZExt(); 6737 if (CLI.IsInReg) 6738 MyFlags.Flags.setInReg(); 6739 CLI.Ins.push_back(MyFlags); 6740 } 6741 } 6742 } 6743 6744 // Handle all of the outgoing arguments. 6745 CLI.Outs.clear(); 6746 CLI.OutVals.clear(); 6747 ArgListTy &Args = CLI.getArgs(); 6748 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6749 SmallVector<EVT, 4> ValueVTs; 6750 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6751 Type *FinalType = Args[i].Ty; 6752 if (Args[i].isByVal) 6753 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6754 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6755 FinalType, CLI.CallConv, CLI.IsVarArg); 6756 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6757 ++Value) { 6758 EVT VT = ValueVTs[Value]; 6759 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6760 SDValue Op = SDValue(Args[i].Node.getNode(), 6761 Args[i].Node.getResNo() + Value); 6762 ISD::ArgFlagsTy Flags; 6763 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6764 6765 if (Args[i].isZExt) 6766 Flags.setZExt(); 6767 if (Args[i].isSExt) 6768 Flags.setSExt(); 6769 if (Args[i].isInReg) 6770 Flags.setInReg(); 6771 if (Args[i].isSRet) 6772 Flags.setSRet(); 6773 if (Args[i].isByVal) 6774 Flags.setByVal(); 6775 if (Args[i].isInAlloca) { 6776 Flags.setInAlloca(); 6777 // Set the byval flag for CCAssignFn callbacks that don't know about 6778 // inalloca. This way we can know how many bytes we should've allocated 6779 // and how many bytes a callee cleanup function will pop. If we port 6780 // inalloca to more targets, we'll have to add custom inalloca handling 6781 // in the various CC lowering callbacks. 6782 Flags.setByVal(); 6783 } 6784 if (Args[i].isByVal || Args[i].isInAlloca) { 6785 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6786 Type *ElementTy = Ty->getElementType(); 6787 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6788 // For ByVal, alignment should come from FE. BE will guess if this 6789 // info is not there but there are cases it cannot get right. 6790 unsigned FrameAlign; 6791 if (Args[i].Alignment) 6792 FrameAlign = Args[i].Alignment; 6793 else 6794 FrameAlign = getByValTypeAlignment(ElementTy); 6795 Flags.setByValAlign(FrameAlign); 6796 } 6797 if (Args[i].isNest) 6798 Flags.setNest(); 6799 if (NeedsRegBlock) 6800 Flags.setInConsecutiveRegs(); 6801 Flags.setOrigAlign(OriginalAlignment); 6802 6803 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6804 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6805 SmallVector<SDValue, 4> Parts(NumParts); 6806 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6807 6808 if (Args[i].isSExt) 6809 ExtendKind = ISD::SIGN_EXTEND; 6810 else if (Args[i].isZExt) 6811 ExtendKind = ISD::ZERO_EXTEND; 6812 6813 // Conservatively only handle 'returned' on non-vectors for now 6814 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6815 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6816 "unexpected use of 'returned'"); 6817 // Before passing 'returned' to the target lowering code, ensure that 6818 // either the register MVT and the actual EVT are the same size or that 6819 // the return value and argument are extended in the same way; in these 6820 // cases it's safe to pass the argument register value unchanged as the 6821 // return register value (although it's at the target's option whether 6822 // to do so) 6823 // TODO: allow code generation to take advantage of partially preserved 6824 // registers rather than clobbering the entire register when the 6825 // parameter extension method is not compatible with the return 6826 // extension method 6827 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6828 (ExtendKind != ISD::ANY_EXTEND && 6829 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6830 Flags.setReturned(); 6831 } 6832 6833 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6834 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6835 6836 for (unsigned j = 0; j != NumParts; ++j) { 6837 // if it isn't first piece, alignment must be 1 6838 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6839 i < CLI.NumFixedArgs, 6840 i, j*Parts[j].getValueType().getStoreSize()); 6841 if (NumParts > 1 && j == 0) 6842 MyFlags.Flags.setSplit(); 6843 else if (j != 0) 6844 MyFlags.Flags.setOrigAlign(1); 6845 6846 CLI.Outs.push_back(MyFlags); 6847 CLI.OutVals.push_back(Parts[j]); 6848 } 6849 6850 if (NeedsRegBlock && Value == NumValues - 1) 6851 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6852 } 6853 } 6854 6855 SmallVector<SDValue, 4> InVals; 6856 CLI.Chain = LowerCall(CLI, InVals); 6857 6858 // Verify that the target's LowerCall behaved as expected. 6859 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6860 "LowerCall didn't return a valid chain!"); 6861 assert((!CLI.IsTailCall || InVals.empty()) && 6862 "LowerCall emitted a return value for a tail call!"); 6863 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6864 "LowerCall didn't emit the correct number of values!"); 6865 6866 // For a tail call, the return value is merely live-out and there aren't 6867 // any nodes in the DAG representing it. Return a special value to 6868 // indicate that a tail call has been emitted and no more Instructions 6869 // should be processed in the current block. 6870 if (CLI.IsTailCall) { 6871 CLI.DAG.setRoot(CLI.Chain); 6872 return std::make_pair(SDValue(), SDValue()); 6873 } 6874 6875 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6876 assert(InVals[i].getNode() && 6877 "LowerCall emitted a null value!"); 6878 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6879 "LowerCall emitted a value with the wrong type!"); 6880 }); 6881 6882 SmallVector<SDValue, 4> ReturnValues; 6883 if (!CanLowerReturn) { 6884 // The instruction result is the result of loading from the 6885 // hidden sret parameter. 6886 SmallVector<EVT, 1> PVTs; 6887 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6888 6889 ComputeValueVTs(*this, PtrRetTy, PVTs); 6890 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6891 EVT PtrVT = PVTs[0]; 6892 6893 unsigned NumValues = RetTys.size(); 6894 ReturnValues.resize(NumValues); 6895 SmallVector<SDValue, 4> Chains(NumValues); 6896 6897 for (unsigned i = 0; i < NumValues; ++i) { 6898 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6899 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6900 PtrVT)); 6901 SDValue L = CLI.DAG.getLoad( 6902 RetTys[i], CLI.DL, CLI.Chain, Add, 6903 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6904 false, false, 1); 6905 ReturnValues[i] = L; 6906 Chains[i] = L.getValue(1); 6907 } 6908 6909 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6910 } else { 6911 // Collect the legal value parts into potentially illegal values 6912 // that correspond to the original function's return values. 6913 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6914 if (CLI.RetSExt) 6915 AssertOp = ISD::AssertSext; 6916 else if (CLI.RetZExt) 6917 AssertOp = ISD::AssertZext; 6918 unsigned CurReg = 0; 6919 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6920 EVT VT = RetTys[I]; 6921 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6922 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6923 6924 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6925 NumRegs, RegisterVT, VT, nullptr, 6926 AssertOp)); 6927 CurReg += NumRegs; 6928 } 6929 6930 // For a function returning void, there is no return value. We can't create 6931 // such a node, so we just return a null return value in that case. In 6932 // that case, nothing will actually look at the value. 6933 if (ReturnValues.empty()) 6934 return std::make_pair(SDValue(), CLI.Chain); 6935 } 6936 6937 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6938 CLI.DAG.getVTList(RetTys), ReturnValues); 6939 return std::make_pair(Res, CLI.Chain); 6940 } 6941 6942 void TargetLowering::LowerOperationWrapper(SDNode *N, 6943 SmallVectorImpl<SDValue> &Results, 6944 SelectionDAG &DAG) const { 6945 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6946 if (Res.getNode()) 6947 Results.push_back(Res); 6948 } 6949 6950 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6951 llvm_unreachable("LowerOperation not implemented for this target!"); 6952 } 6953 6954 void 6955 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6956 SDValue Op = getNonRegisterValue(V); 6957 assert((Op.getOpcode() != ISD::CopyFromReg || 6958 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6959 "Copy from a reg to the same reg!"); 6960 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6961 6962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6963 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6964 SDValue Chain = DAG.getEntryNode(); 6965 6966 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6967 FuncInfo.PreferredExtendType.end()) 6968 ? ISD::ANY_EXTEND 6969 : FuncInfo.PreferredExtendType[V]; 6970 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6971 PendingExports.push_back(Chain); 6972 } 6973 6974 #include "llvm/CodeGen/SelectionDAGISel.h" 6975 6976 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6977 /// entry block, return true. This includes arguments used by switches, since 6978 /// the switch may expand into multiple basic blocks. 6979 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6980 // With FastISel active, we may be splitting blocks, so force creation 6981 // of virtual registers for all non-dead arguments. 6982 if (FastISel) 6983 return A->use_empty(); 6984 6985 const BasicBlock *Entry = A->getParent()->begin(); 6986 for (const User *U : A->users()) 6987 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6988 return false; // Use not in entry block. 6989 6990 return true; 6991 } 6992 6993 void SelectionDAGISel::LowerArguments(const Function &F) { 6994 SelectionDAG &DAG = SDB->DAG; 6995 SDLoc dl = SDB->getCurSDLoc(); 6996 const DataLayout *DL = TLI->getDataLayout(); 6997 SmallVector<ISD::InputArg, 16> Ins; 6998 6999 if (!FuncInfo->CanLowerReturn) { 7000 // Put in an sret pointer parameter before all the other parameters. 7001 SmallVector<EVT, 1> ValueVTs; 7002 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7003 7004 // NOTE: Assuming that a pointer will never break down to more than one VT 7005 // or one register. 7006 ISD::ArgFlagsTy Flags; 7007 Flags.setSRet(); 7008 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7009 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7010 ISD::InputArg::NoArgIndex, 0); 7011 Ins.push_back(RetArg); 7012 } 7013 7014 // Set up the incoming argument description vector. 7015 unsigned Idx = 1; 7016 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7017 I != E; ++I, ++Idx) { 7018 SmallVector<EVT, 4> ValueVTs; 7019 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7020 bool isArgValueUsed = !I->use_empty(); 7021 unsigned PartBase = 0; 7022 Type *FinalType = I->getType(); 7023 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7024 FinalType = cast<PointerType>(FinalType)->getElementType(); 7025 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7026 FinalType, F.getCallingConv(), F.isVarArg()); 7027 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7028 Value != NumValues; ++Value) { 7029 EVT VT = ValueVTs[Value]; 7030 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7031 ISD::ArgFlagsTy Flags; 7032 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7033 7034 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7035 Flags.setZExt(); 7036 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7037 Flags.setSExt(); 7038 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7039 Flags.setInReg(); 7040 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7041 Flags.setSRet(); 7042 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7043 Flags.setByVal(); 7044 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7045 Flags.setInAlloca(); 7046 // Set the byval flag for CCAssignFn callbacks that don't know about 7047 // inalloca. This way we can know how many bytes we should've allocated 7048 // and how many bytes a callee cleanup function will pop. If we port 7049 // inalloca to more targets, we'll have to add custom inalloca handling 7050 // in the various CC lowering callbacks. 7051 Flags.setByVal(); 7052 } 7053 if (Flags.isByVal() || Flags.isInAlloca()) { 7054 PointerType *Ty = cast<PointerType>(I->getType()); 7055 Type *ElementTy = Ty->getElementType(); 7056 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7057 // For ByVal, alignment should be passed from FE. BE will guess if 7058 // this info is not there but there are cases it cannot get right. 7059 unsigned FrameAlign; 7060 if (F.getParamAlignment(Idx)) 7061 FrameAlign = F.getParamAlignment(Idx); 7062 else 7063 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7064 Flags.setByValAlign(FrameAlign); 7065 } 7066 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7067 Flags.setNest(); 7068 if (NeedsRegBlock) 7069 Flags.setInConsecutiveRegs(); 7070 Flags.setOrigAlign(OriginalAlignment); 7071 7072 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7073 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7074 for (unsigned i = 0; i != NumRegs; ++i) { 7075 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7076 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7077 if (NumRegs > 1 && i == 0) 7078 MyFlags.Flags.setSplit(); 7079 // if it isn't first piece, alignment must be 1 7080 else if (i > 0) 7081 MyFlags.Flags.setOrigAlign(1); 7082 Ins.push_back(MyFlags); 7083 } 7084 if (NeedsRegBlock && Value == NumValues - 1) 7085 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7086 PartBase += VT.getStoreSize(); 7087 } 7088 } 7089 7090 // Call the target to set up the argument values. 7091 SmallVector<SDValue, 8> InVals; 7092 SDValue NewRoot = TLI->LowerFormalArguments( 7093 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7094 7095 // Verify that the target's LowerFormalArguments behaved as expected. 7096 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7097 "LowerFormalArguments didn't return a valid chain!"); 7098 assert(InVals.size() == Ins.size() && 7099 "LowerFormalArguments didn't emit the correct number of values!"); 7100 DEBUG({ 7101 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7102 assert(InVals[i].getNode() && 7103 "LowerFormalArguments emitted a null value!"); 7104 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7105 "LowerFormalArguments emitted a value with the wrong type!"); 7106 } 7107 }); 7108 7109 // Update the DAG with the new chain value resulting from argument lowering. 7110 DAG.setRoot(NewRoot); 7111 7112 // Set up the argument values. 7113 unsigned i = 0; 7114 Idx = 1; 7115 if (!FuncInfo->CanLowerReturn) { 7116 // Create a virtual register for the sret pointer, and put in a copy 7117 // from the sret argument into it. 7118 SmallVector<EVT, 1> ValueVTs; 7119 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7120 MVT VT = ValueVTs[0].getSimpleVT(); 7121 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7122 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7123 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7124 RegVT, VT, nullptr, AssertOp); 7125 7126 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7127 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7128 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7129 FuncInfo->DemoteRegister = SRetReg; 7130 NewRoot = 7131 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7132 DAG.setRoot(NewRoot); 7133 7134 // i indexes lowered arguments. Bump it past the hidden sret argument. 7135 // Idx indexes LLVM arguments. Don't touch it. 7136 ++i; 7137 } 7138 7139 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7140 ++I, ++Idx) { 7141 SmallVector<SDValue, 4> ArgValues; 7142 SmallVector<EVT, 4> ValueVTs; 7143 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7144 unsigned NumValues = ValueVTs.size(); 7145 7146 // If this argument is unused then remember its value. It is used to generate 7147 // debugging information. 7148 if (I->use_empty() && NumValues) { 7149 SDB->setUnusedArgValue(I, InVals[i]); 7150 7151 // Also remember any frame index for use in FastISel. 7152 if (FrameIndexSDNode *FI = 7153 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7154 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7155 } 7156 7157 for (unsigned Val = 0; Val != NumValues; ++Val) { 7158 EVT VT = ValueVTs[Val]; 7159 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7160 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7161 7162 if (!I->use_empty()) { 7163 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7164 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7165 AssertOp = ISD::AssertSext; 7166 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7167 AssertOp = ISD::AssertZext; 7168 7169 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7170 NumParts, PartVT, VT, 7171 nullptr, AssertOp)); 7172 } 7173 7174 i += NumParts; 7175 } 7176 7177 // We don't need to do anything else for unused arguments. 7178 if (ArgValues.empty()) 7179 continue; 7180 7181 // Note down frame index. 7182 if (FrameIndexSDNode *FI = 7183 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7184 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7185 7186 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7187 SDB->getCurSDLoc()); 7188 7189 SDB->setValue(I, Res); 7190 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7191 if (LoadSDNode *LNode = 7192 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7193 if (FrameIndexSDNode *FI = 7194 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7195 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7196 } 7197 7198 // If this argument is live outside of the entry block, insert a copy from 7199 // wherever we got it to the vreg that other BB's will reference it as. 7200 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7201 // If we can, though, try to skip creating an unnecessary vreg. 7202 // FIXME: This isn't very clean... it would be nice to make this more 7203 // general. It's also subtly incompatible with the hacks FastISel 7204 // uses with vregs. 7205 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7206 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7207 FuncInfo->ValueMap[I] = Reg; 7208 continue; 7209 } 7210 } 7211 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7212 FuncInfo->InitializeRegForValue(I); 7213 SDB->CopyToExportRegsIfNeeded(I); 7214 } 7215 } 7216 7217 assert(i == InVals.size() && "Argument register count mismatch!"); 7218 7219 // Finally, if the target has anything special to do, allow it to do so. 7220 EmitFunctionEntryCode(); 7221 } 7222 7223 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7224 /// ensure constants are generated when needed. Remember the virtual registers 7225 /// that need to be added to the Machine PHI nodes as input. We cannot just 7226 /// directly add them, because expansion might result in multiple MBB's for one 7227 /// BB. As such, the start of the BB might correspond to a different MBB than 7228 /// the end. 7229 /// 7230 void 7231 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7232 const TerminatorInst *TI = LLVMBB->getTerminator(); 7233 7234 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7235 7236 // Check PHI nodes in successors that expect a value to be available from this 7237 // block. 7238 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7239 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7240 if (!isa<PHINode>(SuccBB->begin())) continue; 7241 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7242 7243 // If this terminator has multiple identical successors (common for 7244 // switches), only handle each succ once. 7245 if (!SuccsHandled.insert(SuccMBB).second) 7246 continue; 7247 7248 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7249 7250 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7251 // nodes and Machine PHI nodes, but the incoming operands have not been 7252 // emitted yet. 7253 for (BasicBlock::const_iterator I = SuccBB->begin(); 7254 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7255 // Ignore dead phi's. 7256 if (PN->use_empty()) continue; 7257 7258 // Skip empty types 7259 if (PN->getType()->isEmptyTy()) 7260 continue; 7261 7262 unsigned Reg; 7263 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7264 7265 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7266 unsigned &RegOut = ConstantsOut[C]; 7267 if (RegOut == 0) { 7268 RegOut = FuncInfo.CreateRegs(C->getType()); 7269 CopyValueToVirtualRegister(C, RegOut); 7270 } 7271 Reg = RegOut; 7272 } else { 7273 DenseMap<const Value *, unsigned>::iterator I = 7274 FuncInfo.ValueMap.find(PHIOp); 7275 if (I != FuncInfo.ValueMap.end()) 7276 Reg = I->second; 7277 else { 7278 assert(isa<AllocaInst>(PHIOp) && 7279 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7280 "Didn't codegen value into a register!??"); 7281 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7282 CopyValueToVirtualRegister(PHIOp, Reg); 7283 } 7284 } 7285 7286 // Remember that this register needs to added to the machine PHI node as 7287 // the input for this MBB. 7288 SmallVector<EVT, 4> ValueVTs; 7289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7290 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7291 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7292 EVT VT = ValueVTs[vti]; 7293 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7294 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7295 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7296 Reg += NumRegisters; 7297 } 7298 } 7299 } 7300 7301 ConstantsOut.clear(); 7302 } 7303 7304 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7305 /// is 0. 7306 MachineBasicBlock * 7307 SelectionDAGBuilder::StackProtectorDescriptor:: 7308 AddSuccessorMBB(const BasicBlock *BB, 7309 MachineBasicBlock *ParentMBB, 7310 bool IsLikely, 7311 MachineBasicBlock *SuccMBB) { 7312 // If SuccBB has not been created yet, create it. 7313 if (!SuccMBB) { 7314 MachineFunction *MF = ParentMBB->getParent(); 7315 MachineFunction::iterator BBI = ParentMBB; 7316 SuccMBB = MF->CreateMachineBasicBlock(BB); 7317 MF->insert(++BBI, SuccMBB); 7318 } 7319 // Add it as a successor of ParentMBB. 7320 ParentMBB->addSuccessor( 7321 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7322 return SuccMBB; 7323 } 7324 7325 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7326 MachineFunction::iterator I = MBB; 7327 if (++I == FuncInfo.MF->end()) 7328 return nullptr; 7329 return I; 7330 } 7331 7332 /// During lowering new call nodes can be created (such as memset, etc.). 7333 /// Those will become new roots of the current DAG, but complications arise 7334 /// when they are tail calls. In such cases, the call lowering will update 7335 /// the root, but the builder still needs to know that a tail call has been 7336 /// lowered in order to avoid generating an additional return. 7337 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7338 // If the node is null, we do have a tail call. 7339 if (MaybeTC.getNode() != nullptr) 7340 DAG.setRoot(MaybeTC); 7341 else 7342 HasTailCall = true; 7343 } 7344 7345 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7346 unsigned *TotalCases, unsigned First, 7347 unsigned Last) { 7348 assert(Last >= First); 7349 assert(TotalCases[Last] >= TotalCases[First]); 7350 7351 APInt LowCase = Clusters[First].Low->getValue(); 7352 APInt HighCase = Clusters[Last].High->getValue(); 7353 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7354 7355 // FIXME: A range of consecutive cases has 100% density, but only requires one 7356 // comparison to lower. We should discriminate against such consecutive ranges 7357 // in jump tables. 7358 7359 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7360 uint64_t Range = Diff + 1; 7361 7362 uint64_t NumCases = 7363 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7364 7365 assert(NumCases < UINT64_MAX / 100); 7366 assert(Range >= NumCases); 7367 7368 return NumCases * 100 >= Range * MinJumpTableDensity; 7369 } 7370 7371 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7372 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7373 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7374 } 7375 7376 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7377 unsigned First, unsigned Last, 7378 const SwitchInst *SI, 7379 MachineBasicBlock *DefaultMBB, 7380 CaseCluster &JTCluster) { 7381 assert(First <= Last); 7382 7383 uint32_t Weight = 0; 7384 unsigned NumCmps = 0; 7385 std::vector<MachineBasicBlock*> Table; 7386 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7387 for (unsigned I = First; I <= Last; ++I) { 7388 assert(Clusters[I].Kind == CC_Range); 7389 Weight += Clusters[I].Weight; 7390 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7391 APInt Low = Clusters[I].Low->getValue(); 7392 APInt High = Clusters[I].High->getValue(); 7393 NumCmps += (Low == High) ? 1 : 2; 7394 if (I != First) { 7395 // Fill the gap between this and the previous cluster. 7396 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7397 assert(PreviousHigh.slt(Low)); 7398 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7399 for (uint64_t J = 0; J < Gap; J++) 7400 Table.push_back(DefaultMBB); 7401 } 7402 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7403 for (uint64_t J = 0; J < ClusterSize; ++J) 7404 Table.push_back(Clusters[I].MBB); 7405 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7406 } 7407 7408 unsigned NumDests = JTWeights.size(); 7409 if (isSuitableForBitTests(NumDests, NumCmps, 7410 Clusters[First].Low->getValue(), 7411 Clusters[Last].High->getValue())) { 7412 // Clusters[First..Last] should be lowered as bit tests instead. 7413 return false; 7414 } 7415 7416 // Create the MBB that will load from and jump through the table. 7417 // Note: We create it here, but it's not inserted into the function yet. 7418 MachineFunction *CurMF = FuncInfo.MF; 7419 MachineBasicBlock *JumpTableMBB = 7420 CurMF->CreateMachineBasicBlock(SI->getParent()); 7421 7422 // Add successors. Note: use table order for determinism. 7423 SmallPtrSet<MachineBasicBlock *, 8> Done; 7424 for (MachineBasicBlock *Succ : Table) { 7425 if (Done.count(Succ)) 7426 continue; 7427 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7428 Done.insert(Succ); 7429 } 7430 7431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7432 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7433 ->createJumpTableIndex(Table); 7434 7435 // Set up the jump table info. 7436 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7437 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7438 Clusters[Last].High->getValue(), SI->getCondition(), 7439 nullptr, false); 7440 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7441 7442 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7443 JTCases.size() - 1, Weight); 7444 return true; 7445 } 7446 7447 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7448 const SwitchInst *SI, 7449 MachineBasicBlock *DefaultMBB) { 7450 #ifndef NDEBUG 7451 // Clusters must be non-empty, sorted, and only contain Range clusters. 7452 assert(!Clusters.empty()); 7453 for (CaseCluster &C : Clusters) 7454 assert(C.Kind == CC_Range); 7455 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7456 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7457 #endif 7458 7459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7460 if (!areJTsAllowed(TLI)) 7461 return; 7462 7463 const int64_t N = Clusters.size(); 7464 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7465 7466 // Split Clusters into minimum number of dense partitions. The algorithm uses 7467 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7468 // for the Case Statement'" (1994), but builds the MinPartitions array in 7469 // reverse order to make it easier to reconstruct the partitions in ascending 7470 // order. In the choice between two optimal partitionings, it picks the one 7471 // which yields more jump tables. 7472 7473 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7474 SmallVector<unsigned, 8> MinPartitions(N); 7475 // LastElement[i] is the last element of the partition starting at i. 7476 SmallVector<unsigned, 8> LastElement(N); 7477 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7478 SmallVector<unsigned, 8> NumTables(N); 7479 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7480 SmallVector<unsigned, 8> TotalCases(N); 7481 7482 for (unsigned i = 0; i < N; ++i) { 7483 APInt Hi = Clusters[i].High->getValue(); 7484 APInt Lo = Clusters[i].Low->getValue(); 7485 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7486 if (i != 0) 7487 TotalCases[i] += TotalCases[i - 1]; 7488 } 7489 7490 // Base case: There is only one way to partition Clusters[N-1]. 7491 MinPartitions[N - 1] = 1; 7492 LastElement[N - 1] = N - 1; 7493 assert(MinJumpTableSize > 1); 7494 NumTables[N - 1] = 0; 7495 7496 // Note: loop indexes are signed to avoid underflow. 7497 for (int64_t i = N - 2; i >= 0; i--) { 7498 // Find optimal partitioning of Clusters[i..N-1]. 7499 // Baseline: Put Clusters[i] into a partition on its own. 7500 MinPartitions[i] = MinPartitions[i + 1] + 1; 7501 LastElement[i] = i; 7502 NumTables[i] = NumTables[i + 1]; 7503 7504 // Search for a solution that results in fewer partitions. 7505 for (int64_t j = N - 1; j > i; j--) { 7506 // Try building a partition from Clusters[i..j]. 7507 if (isDense(Clusters, &TotalCases[0], i, j)) { 7508 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7509 bool IsTable = j - i + 1 >= MinJumpTableSize; 7510 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7511 7512 // If this j leads to fewer partitions, or same number of partitions 7513 // with more lookup tables, it is a better partitioning. 7514 if (NumPartitions < MinPartitions[i] || 7515 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7516 MinPartitions[i] = NumPartitions; 7517 LastElement[i] = j; 7518 NumTables[i] = Tables; 7519 } 7520 } 7521 } 7522 } 7523 7524 // Iterate over the partitions, replacing some with jump tables in-place. 7525 unsigned DstIndex = 0; 7526 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7527 Last = LastElement[First]; 7528 assert(Last >= First); 7529 assert(DstIndex <= First); 7530 unsigned NumClusters = Last - First + 1; 7531 7532 CaseCluster JTCluster; 7533 if (NumClusters >= MinJumpTableSize && 7534 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7535 Clusters[DstIndex++] = JTCluster; 7536 } else { 7537 for (unsigned I = First; I <= Last; ++I) 7538 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7539 } 7540 } 7541 Clusters.resize(DstIndex); 7542 } 7543 7544 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7545 // FIXME: Using the pointer type doesn't seem ideal. 7546 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7547 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7548 return Range <= BW; 7549 } 7550 7551 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7552 unsigned NumCmps, 7553 const APInt &Low, 7554 const APInt &High) { 7555 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7556 // range of cases both require only one branch to lower. Just looking at the 7557 // number of clusters and destinations should be enough to decide whether to 7558 // build bit tests. 7559 7560 // To lower a range with bit tests, the range must fit the bitwidth of a 7561 // machine word. 7562 if (!rangeFitsInWord(Low, High)) 7563 return false; 7564 7565 // Decide whether it's profitable to lower this range with bit tests. Each 7566 // destination requires a bit test and branch, and there is an overall range 7567 // check branch. For a small number of clusters, separate comparisons might be 7568 // cheaper, and for many destinations, splitting the range might be better. 7569 return (NumDests == 1 && NumCmps >= 3) || 7570 (NumDests == 2 && NumCmps >= 5) || 7571 (NumDests == 3 && NumCmps >= 6); 7572 } 7573 7574 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7575 unsigned First, unsigned Last, 7576 const SwitchInst *SI, 7577 CaseCluster &BTCluster) { 7578 assert(First <= Last); 7579 if (First == Last) 7580 return false; 7581 7582 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7583 unsigned NumCmps = 0; 7584 for (int64_t I = First; I <= Last; ++I) { 7585 assert(Clusters[I].Kind == CC_Range); 7586 Dests.set(Clusters[I].MBB->getNumber()); 7587 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7588 } 7589 unsigned NumDests = Dests.count(); 7590 7591 APInt Low = Clusters[First].Low->getValue(); 7592 APInt High = Clusters[Last].High->getValue(); 7593 assert(Low.slt(High)); 7594 7595 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7596 return false; 7597 7598 APInt LowBound; 7599 APInt CmpRange; 7600 7601 const int BitWidth = 7602 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7603 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7604 7605 if (Low.isNonNegative() && High.slt(BitWidth)) { 7606 // Optimize the case where all the case values fit in a 7607 // word without having to subtract minValue. In this case, 7608 // we can optimize away the subtraction. 7609 LowBound = APInt::getNullValue(Low.getBitWidth()); 7610 CmpRange = High; 7611 } else { 7612 LowBound = Low; 7613 CmpRange = High - Low; 7614 } 7615 7616 CaseBitsVector CBV; 7617 uint32_t TotalWeight = 0; 7618 for (unsigned i = First; i <= Last; ++i) { 7619 // Find the CaseBits for this destination. 7620 unsigned j; 7621 for (j = 0; j < CBV.size(); ++j) 7622 if (CBV[j].BB == Clusters[i].MBB) 7623 break; 7624 if (j == CBV.size()) 7625 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7626 CaseBits *CB = &CBV[j]; 7627 7628 // Update Mask, Bits and ExtraWeight. 7629 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7630 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7631 for (uint64_t j = Lo; j <= Hi; ++j) { 7632 CB->Mask |= 1ULL << j; 7633 CB->Bits++; 7634 } 7635 CB->ExtraWeight += Clusters[i].Weight; 7636 TotalWeight += Clusters[i].Weight; 7637 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7638 } 7639 7640 BitTestInfo BTI; 7641 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7642 // Sort by weight first, number of bits second. 7643 if (a.ExtraWeight != b.ExtraWeight) 7644 return a.ExtraWeight > b.ExtraWeight; 7645 return a.Bits > b.Bits; 7646 }); 7647 7648 for (auto &CB : CBV) { 7649 MachineBasicBlock *BitTestBB = 7650 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7651 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7652 } 7653 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7654 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7655 nullptr, std::move(BTI)); 7656 7657 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7658 BitTestCases.size() - 1, TotalWeight); 7659 return true; 7660 } 7661 7662 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7663 const SwitchInst *SI) { 7664 // Partition Clusters into as few subsets as possible, where each subset has a 7665 // range that fits in a machine word and has <= 3 unique destinations. 7666 7667 #ifndef NDEBUG 7668 // Clusters must be sorted and contain Range or JumpTable clusters. 7669 assert(!Clusters.empty()); 7670 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7671 for (const CaseCluster &C : Clusters) 7672 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7673 for (unsigned i = 1; i < Clusters.size(); ++i) 7674 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7675 #endif 7676 7677 // If target does not have legal shift left, do not emit bit tests at all. 7678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7679 EVT PTy = TLI.getPointerTy(); 7680 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7681 return; 7682 7683 int BitWidth = PTy.getSizeInBits(); 7684 const int64_t N = Clusters.size(); 7685 7686 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7687 SmallVector<unsigned, 8> MinPartitions(N); 7688 // LastElement[i] is the last element of the partition starting at i. 7689 SmallVector<unsigned, 8> LastElement(N); 7690 7691 // FIXME: This might not be the best algorithm for finding bit test clusters. 7692 7693 // Base case: There is only one way to partition Clusters[N-1]. 7694 MinPartitions[N - 1] = 1; 7695 LastElement[N - 1] = N - 1; 7696 7697 // Note: loop indexes are signed to avoid underflow. 7698 for (int64_t i = N - 2; i >= 0; --i) { 7699 // Find optimal partitioning of Clusters[i..N-1]. 7700 // Baseline: Put Clusters[i] into a partition on its own. 7701 MinPartitions[i] = MinPartitions[i + 1] + 1; 7702 LastElement[i] = i; 7703 7704 // Search for a solution that results in fewer partitions. 7705 // Note: the search is limited by BitWidth, reducing time complexity. 7706 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7707 // Try building a partition from Clusters[i..j]. 7708 7709 // Check the range. 7710 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7711 Clusters[j].High->getValue())) 7712 continue; 7713 7714 // Check nbr of destinations and cluster types. 7715 // FIXME: This works, but doesn't seem very efficient. 7716 bool RangesOnly = true; 7717 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7718 for (int64_t k = i; k <= j; k++) { 7719 if (Clusters[k].Kind != CC_Range) { 7720 RangesOnly = false; 7721 break; 7722 } 7723 Dests.set(Clusters[k].MBB->getNumber()); 7724 } 7725 if (!RangesOnly || Dests.count() > 3) 7726 break; 7727 7728 // Check if it's a better partition. 7729 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7730 if (NumPartitions < MinPartitions[i]) { 7731 // Found a better partition. 7732 MinPartitions[i] = NumPartitions; 7733 LastElement[i] = j; 7734 } 7735 } 7736 } 7737 7738 // Iterate over the partitions, replacing with bit-test clusters in-place. 7739 unsigned DstIndex = 0; 7740 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7741 Last = LastElement[First]; 7742 assert(First <= Last); 7743 assert(DstIndex <= First); 7744 7745 CaseCluster BitTestCluster; 7746 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7747 Clusters[DstIndex++] = BitTestCluster; 7748 } else { 7749 for (unsigned I = First; I <= Last; ++I) 7750 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7751 } 7752 } 7753 Clusters.resize(DstIndex); 7754 } 7755 7756 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7757 MachineBasicBlock *SwitchMBB, 7758 MachineBasicBlock *DefaultMBB) { 7759 MachineFunction *CurMF = FuncInfo.MF; 7760 MachineBasicBlock *NextMBB = nullptr; 7761 MachineFunction::iterator BBI = W.MBB; 7762 if (++BBI != FuncInfo.MF->end()) 7763 NextMBB = BBI; 7764 7765 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7766 7767 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7768 7769 if (Size == 2 && W.MBB == SwitchMBB) { 7770 // If any two of the cases has the same destination, and if one value 7771 // is the same as the other, but has one bit unset that the other has set, 7772 // use bit manipulation to do two compares at once. For example: 7773 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7774 // TODO: This could be extended to merge any 2 cases in switches with 3 7775 // cases. 7776 // TODO: Handle cases where W.CaseBB != SwitchBB. 7777 CaseCluster &Small = *W.FirstCluster; 7778 CaseCluster &Big = *W.LastCluster; 7779 7780 if (Small.Low == Small.High && Big.Low == Big.High && 7781 Small.MBB == Big.MBB) { 7782 const APInt &SmallValue = Small.Low->getValue(); 7783 const APInt &BigValue = Big.Low->getValue(); 7784 7785 // Check that there is only one bit different. 7786 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7787 (SmallValue | BigValue) == BigValue) { 7788 // Isolate the common bit. 7789 APInt CommonBit = BigValue & ~SmallValue; 7790 assert((SmallValue | CommonBit) == BigValue && 7791 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7792 7793 SDValue CondLHS = getValue(Cond); 7794 EVT VT = CondLHS.getValueType(); 7795 SDLoc DL = getCurSDLoc(); 7796 7797 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7798 DAG.getConstant(CommonBit, DL, VT)); 7799 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7800 DAG.getConstant(BigValue, DL, VT), 7801 ISD::SETEQ); 7802 7803 // Update successor info. 7804 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7805 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7806 addSuccessorWithWeight( 7807 SwitchMBB, DefaultMBB, 7808 // The default destination is the first successor in IR. 7809 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7810 : 0); 7811 7812 // Insert the true branch. 7813 SDValue BrCond = 7814 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7815 DAG.getBasicBlock(Small.MBB)); 7816 // Insert the false branch. 7817 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7818 DAG.getBasicBlock(DefaultMBB)); 7819 7820 DAG.setRoot(BrCond); 7821 return; 7822 } 7823 } 7824 } 7825 7826 if (TM.getOptLevel() != CodeGenOpt::None) { 7827 // Order cases by weight so the most likely case will be checked first. 7828 std::sort(W.FirstCluster, W.LastCluster + 1, 7829 [](const CaseCluster &a, const CaseCluster &b) { 7830 return a.Weight > b.Weight; 7831 }); 7832 7833 // Rearrange the case blocks so that the last one falls through if possible 7834 // without without changing the order of weights. 7835 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7836 --I; 7837 if (I->Weight > W.LastCluster->Weight) 7838 break; 7839 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7840 std::swap(*I, *W.LastCluster); 7841 break; 7842 } 7843 } 7844 } 7845 7846 // Compute total weight. 7847 uint32_t UnhandledWeights = 0; 7848 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7849 UnhandledWeights += I->Weight; 7850 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7851 } 7852 7853 MachineBasicBlock *CurMBB = W.MBB; 7854 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7855 MachineBasicBlock *Fallthrough; 7856 if (I == W.LastCluster) { 7857 // For the last cluster, fall through to the default destination. 7858 Fallthrough = DefaultMBB; 7859 } else { 7860 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7861 CurMF->insert(BBI, Fallthrough); 7862 // Put Cond in a virtual register to make it available from the new blocks. 7863 ExportFromCurrentBlock(Cond); 7864 } 7865 7866 switch (I->Kind) { 7867 case CC_JumpTable: { 7868 // FIXME: Optimize away range check based on pivot comparisons. 7869 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7870 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7871 7872 // The jump block hasn't been inserted yet; insert it here. 7873 MachineBasicBlock *JumpMBB = JT->MBB; 7874 CurMF->insert(BBI, JumpMBB); 7875 addSuccessorWithWeight(CurMBB, Fallthrough); 7876 addSuccessorWithWeight(CurMBB, JumpMBB); 7877 7878 // The jump table header will be inserted in our current block, do the 7879 // range check, and fall through to our fallthrough block. 7880 JTH->HeaderBB = CurMBB; 7881 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7882 7883 // If we're in the right place, emit the jump table header right now. 7884 if (CurMBB == SwitchMBB) { 7885 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7886 JTH->Emitted = true; 7887 } 7888 break; 7889 } 7890 case CC_BitTests: { 7891 // FIXME: Optimize away range check based on pivot comparisons. 7892 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7893 7894 // The bit test blocks haven't been inserted yet; insert them here. 7895 for (BitTestCase &BTC : BTB->Cases) 7896 CurMF->insert(BBI, BTC.ThisBB); 7897 7898 // Fill in fields of the BitTestBlock. 7899 BTB->Parent = CurMBB; 7900 BTB->Default = Fallthrough; 7901 7902 // If we're in the right place, emit the bit test header header right now. 7903 if (CurMBB ==SwitchMBB) { 7904 visitBitTestHeader(*BTB, SwitchMBB); 7905 BTB->Emitted = true; 7906 } 7907 break; 7908 } 7909 case CC_Range: { 7910 const Value *RHS, *LHS, *MHS; 7911 ISD::CondCode CC; 7912 if (I->Low == I->High) { 7913 // Check Cond == I->Low. 7914 CC = ISD::SETEQ; 7915 LHS = Cond; 7916 RHS=I->Low; 7917 MHS = nullptr; 7918 } else { 7919 // Check I->Low <= Cond <= I->High. 7920 CC = ISD::SETLE; 7921 LHS = I->Low; 7922 MHS = Cond; 7923 RHS = I->High; 7924 } 7925 7926 // The false weight is the sum of all unhandled cases. 7927 UnhandledWeights -= I->Weight; 7928 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7929 UnhandledWeights); 7930 7931 if (CurMBB == SwitchMBB) 7932 visitSwitchCase(CB, SwitchMBB); 7933 else 7934 SwitchCases.push_back(CB); 7935 7936 break; 7937 } 7938 } 7939 CurMBB = Fallthrough; 7940 } 7941 } 7942 7943 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7944 const SwitchWorkListItem &W, 7945 Value *Cond, 7946 MachineBasicBlock *SwitchMBB) { 7947 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7948 "Clusters not sorted?"); 7949 7950 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7951 7952 // Balance the tree based on branch weights to create a near-optimal (in terms 7953 // of search time given key frequency) binary search tree. See e.g. Kurt 7954 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7955 CaseClusterIt LastLeft = W.FirstCluster; 7956 CaseClusterIt FirstRight = W.LastCluster; 7957 uint32_t LeftWeight = LastLeft->Weight; 7958 uint32_t RightWeight = FirstRight->Weight; 7959 7960 // Move LastLeft and FirstRight towards each other from opposite directions to 7961 // find a partitioning of the clusters which balances the weight on both 7962 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7963 // taken to ensure 0-weight nodes are distributed evenly. 7964 unsigned I = 0; 7965 while (LastLeft + 1 < FirstRight) { 7966 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7967 LeftWeight += (++LastLeft)->Weight; 7968 else 7969 RightWeight += (--FirstRight)->Weight; 7970 I++; 7971 } 7972 assert(LastLeft + 1 == FirstRight); 7973 assert(LastLeft >= W.FirstCluster); 7974 assert(FirstRight <= W.LastCluster); 7975 7976 // Use the first element on the right as pivot since we will make less-than 7977 // comparisons against it. 7978 CaseClusterIt PivotCluster = FirstRight; 7979 assert(PivotCluster > W.FirstCluster); 7980 assert(PivotCluster <= W.LastCluster); 7981 7982 CaseClusterIt FirstLeft = W.FirstCluster; 7983 CaseClusterIt LastRight = W.LastCluster; 7984 7985 const ConstantInt *Pivot = PivotCluster->Low; 7986 7987 // New blocks will be inserted immediately after the current one. 7988 MachineFunction::iterator BBI = W.MBB; 7989 ++BBI; 7990 7991 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7992 // we can branch to its destination directly if it's squeezed exactly in 7993 // between the known lower bound and Pivot - 1. 7994 MachineBasicBlock *LeftMBB; 7995 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7996 FirstLeft->Low == W.GE && 7997 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7998 LeftMBB = FirstLeft->MBB; 7999 } else { 8000 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8001 FuncInfo.MF->insert(BBI, LeftMBB); 8002 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8003 // Put Cond in a virtual register to make it available from the new blocks. 8004 ExportFromCurrentBlock(Cond); 8005 } 8006 8007 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8008 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8009 // directly if RHS.High equals the current upper bound. 8010 MachineBasicBlock *RightMBB; 8011 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8012 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8013 RightMBB = FirstRight->MBB; 8014 } else { 8015 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8016 FuncInfo.MF->insert(BBI, RightMBB); 8017 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8018 // Put Cond in a virtual register to make it available from the new blocks. 8019 ExportFromCurrentBlock(Cond); 8020 } 8021 8022 // Create the CaseBlock record that will be used to lower the branch. 8023 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8024 LeftWeight, RightWeight); 8025 8026 if (W.MBB == SwitchMBB) 8027 visitSwitchCase(CB, SwitchMBB); 8028 else 8029 SwitchCases.push_back(CB); 8030 } 8031 8032 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8033 // Extract cases from the switch. 8034 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8035 CaseClusterVector Clusters; 8036 Clusters.reserve(SI.getNumCases()); 8037 for (auto I : SI.cases()) { 8038 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8039 const ConstantInt *CaseVal = I.getCaseValue(); 8040 uint32_t Weight = 8041 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8042 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8043 } 8044 8045 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8046 8047 // Cluster adjacent cases with the same destination. We do this at all 8048 // optimization levels because it's cheap to do and will make codegen faster 8049 // if there are many clusters. 8050 sortAndRangeify(Clusters); 8051 8052 if (TM.getOptLevel() != CodeGenOpt::None) { 8053 // Replace an unreachable default with the most popular destination. 8054 // FIXME: Exploit unreachable default more aggressively. 8055 bool UnreachableDefault = 8056 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8057 if (UnreachableDefault && !Clusters.empty()) { 8058 DenseMap<const BasicBlock *, unsigned> Popularity; 8059 unsigned MaxPop = 0; 8060 const BasicBlock *MaxBB = nullptr; 8061 for (auto I : SI.cases()) { 8062 const BasicBlock *BB = I.getCaseSuccessor(); 8063 if (++Popularity[BB] > MaxPop) { 8064 MaxPop = Popularity[BB]; 8065 MaxBB = BB; 8066 } 8067 } 8068 // Set new default. 8069 assert(MaxPop > 0 && MaxBB); 8070 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8071 8072 // Remove cases that were pointing to the destination that is now the 8073 // default. 8074 CaseClusterVector New; 8075 New.reserve(Clusters.size()); 8076 for (CaseCluster &CC : Clusters) { 8077 if (CC.MBB != DefaultMBB) 8078 New.push_back(CC); 8079 } 8080 Clusters = std::move(New); 8081 } 8082 } 8083 8084 // If there is only the default destination, jump there directly. 8085 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8086 if (Clusters.empty()) { 8087 SwitchMBB->addSuccessor(DefaultMBB); 8088 if (DefaultMBB != NextBlock(SwitchMBB)) { 8089 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8090 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8091 } 8092 return; 8093 } 8094 8095 if (TM.getOptLevel() != CodeGenOpt::None) { 8096 findJumpTables(Clusters, &SI, DefaultMBB); 8097 findBitTestClusters(Clusters, &SI); 8098 } 8099 8100 8101 DEBUG({ 8102 dbgs() << "Case clusters: "; 8103 for (const CaseCluster &C : Clusters) { 8104 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8105 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8106 8107 C.Low->getValue().print(dbgs(), true); 8108 if (C.Low != C.High) { 8109 dbgs() << '-'; 8110 C.High->getValue().print(dbgs(), true); 8111 } 8112 dbgs() << ' '; 8113 } 8114 dbgs() << '\n'; 8115 }); 8116 8117 assert(!Clusters.empty()); 8118 SwitchWorkList WorkList; 8119 CaseClusterIt First = Clusters.begin(); 8120 CaseClusterIt Last = Clusters.end() - 1; 8121 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8122 8123 while (!WorkList.empty()) { 8124 SwitchWorkListItem W = WorkList.back(); 8125 WorkList.pop_back(); 8126 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8127 8128 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8129 // For optimized builds, lower large range as a balanced binary tree. 8130 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8131 continue; 8132 } 8133 8134 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8135 } 8136 } 8137