1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 void SelectionDAGBuilder::visit(const Instruction &I) { 933 // Set up outgoing PHI node register values before emitting the terminator. 934 if (isa<TerminatorInst>(&I)) 935 HandlePHINodesInSuccessorBlocks(I.getParent()); 936 937 ++SDNodeOrder; 938 939 CurInst = &I; 940 941 visit(I.getOpcode(), I); 942 943 if (!isa<TerminatorInst>(&I) && !HasTailCall && 944 !isStatepoint(&I)) // statepoints handle their exports internally 945 CopyToExportRegsIfNeeded(&I); 946 947 CurInst = nullptr; 948 } 949 950 void SelectionDAGBuilder::visitPHI(const PHINode &) { 951 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 952 } 953 954 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 955 // Note: this doesn't use InstVisitor, because it has to work with 956 // ConstantExpr's in addition to instructions. 957 switch (Opcode) { 958 default: llvm_unreachable("Unknown instruction type encountered!"); 959 // Build the switch statement using the Instruction.def file. 960 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 961 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 962 #include "llvm/IR/Instruction.def" 963 } 964 } 965 966 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 967 // generate the debug data structures now that we've seen its definition. 968 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 969 SDValue Val) { 970 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 971 if (DDI.getDI()) { 972 const DbgValueInst *DI = DDI.getDI(); 973 DebugLoc dl = DDI.getdl(); 974 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 975 DILocalVariable *Variable = DI->getVariable(); 976 DIExpression *Expr = DI->getExpression(); 977 assert(Variable->isValidLocationForIntrinsic(dl) && 978 "Expected inlined-at fields to agree"); 979 uint64_t Offset = DI->getOffset(); 980 SDDbgValue *SDV; 981 if (Val.getNode()) { 982 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 983 Val)) { 984 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 985 false, Offset, dl, DbgSDNodeOrder); 986 DAG.AddDbgValue(SDV, Val.getNode(), false); 987 } 988 } else 989 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 990 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 991 } 992 } 993 994 /// getCopyFromRegs - If there was virtual register allocated for the value V 995 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 996 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 997 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 998 SDValue Result; 999 1000 if (It != FuncInfo.ValueMap.end()) { 1001 unsigned InReg = It->second; 1002 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1003 DAG.getDataLayout(), InReg, Ty); 1004 SDValue Chain = DAG.getEntryNode(); 1005 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1006 resolveDanglingDebugInfo(V, Result); 1007 } 1008 1009 return Result; 1010 } 1011 1012 /// getValue - Return an SDValue for the given Value. 1013 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1014 // If we already have an SDValue for this value, use it. It's important 1015 // to do this first, so that we don't create a CopyFromReg if we already 1016 // have a regular SDValue. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) return N; 1019 1020 // If there's a virtual register allocated and initialized for this 1021 // value, use it. 1022 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1023 return copyFromReg; 1024 1025 // Otherwise create a new SDValue and remember it. 1026 SDValue Val = getValueImpl(V); 1027 NodeMap[V] = Val; 1028 resolveDanglingDebugInfo(V, Val); 1029 return Val; 1030 } 1031 1032 // Return true if SDValue exists for the given Value 1033 bool SelectionDAGBuilder::findValue(const Value *V) const { 1034 return (NodeMap.find(V) != NodeMap.end()) || 1035 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) { 1044 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1045 // Remove the debug location from the node as the node is about to be used 1046 // in a location which may differ from the original debug location. This 1047 // is relevant to Constant and ConstantFP nodes because they can appear 1048 // as constant expressions inside PHI nodes. 1049 N->setDebugLoc(DebugLoc()); 1050 } 1051 return N; 1052 } 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, getCurSDLoc(), 1078 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1079 } 1080 1081 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1082 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1083 1084 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1085 return DAG.getUNDEF(VT); 1086 1087 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1088 visit(CE->getOpcode(), *CE); 1089 SDValue N1 = NodeMap[V]; 1090 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1091 return N1; 1092 } 1093 1094 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1095 SmallVector<SDValue, 4> Constants; 1096 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1097 OI != OE; ++OI) { 1098 SDNode *Val = getValue(*OI).getNode(); 1099 // If the operand is an empty aggregate, there are no values. 1100 if (!Val) continue; 1101 // Add each leaf value from the operand to the Constants list 1102 // to form a flattened list of all the values. 1103 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1104 Constants.push_back(SDValue(Val, i)); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const ConstantDataSequential *CDS = 1111 dyn_cast<ConstantDataSequential>(C)) { 1112 SmallVector<SDValue, 4> Ops; 1113 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1114 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Ops.push_back(SDValue(Val, i)); 1119 } 1120 1121 if (isa<ArrayType>(CDS->getType())) 1122 return DAG.getMergeValues(Ops, getCurSDLoc()); 1123 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1124 VT, Ops); 1125 } 1126 1127 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1128 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1129 "Unknown struct or array constant!"); 1130 1131 SmallVector<EVT, 4> ValueVTs; 1132 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1133 unsigned NumElts = ValueVTs.size(); 1134 if (NumElts == 0) 1135 return SDValue(); // empty struct 1136 SmallVector<SDValue, 4> Constants(NumElts); 1137 for (unsigned i = 0; i != NumElts; ++i) { 1138 EVT EltVT = ValueVTs[i]; 1139 if (isa<UndefValue>(C)) 1140 Constants[i] = DAG.getUNDEF(EltVT); 1141 else if (EltVT.isFloatingPoint()) 1142 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1143 else 1144 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1145 } 1146 1147 return DAG.getMergeValues(Constants, getCurSDLoc()); 1148 } 1149 1150 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1151 return DAG.getBlockAddress(BA, VT); 1152 1153 VectorType *VecTy = cast<VectorType>(V->getType()); 1154 unsigned NumElements = VecTy->getNumElements(); 1155 1156 // Now that we know the number and type of the elements, get that number of 1157 // elements into the Ops array based on what kind of constant it is. 1158 SmallVector<SDValue, 16> Ops; 1159 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1160 for (unsigned i = 0; i != NumElements; ++i) 1161 Ops.push_back(getValue(CV->getOperand(i))); 1162 } else { 1163 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1164 EVT EltVT = 1165 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1166 1167 SDValue Op; 1168 if (EltVT.isFloatingPoint()) 1169 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1170 else 1171 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1172 Ops.assign(NumElements, Op); 1173 } 1174 1175 // Create a BUILD_VECTOR node. 1176 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1177 } 1178 1179 // If this is a static alloca, generate it as the frameindex instead of 1180 // computation. 1181 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1182 DenseMap<const AllocaInst*, int>::iterator SI = 1183 FuncInfo.StaticAllocaMap.find(AI); 1184 if (SI != FuncInfo.StaticAllocaMap.end()) 1185 return DAG.getFrameIndex(SI->second, 1186 TLI.getPointerTy(DAG.getDataLayout())); 1187 } 1188 1189 // If this is an instruction which fast-isel has deferred, select it now. 1190 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1191 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1192 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1193 Inst->getType()); 1194 SDValue Chain = DAG.getEntryNode(); 1195 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1196 } 1197 1198 llvm_unreachable("Can't get register for value!"); 1199 } 1200 1201 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1202 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1203 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1204 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1205 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1206 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1207 if (IsMSVCCXX || IsCoreCLR) 1208 CatchPadMBB->setIsEHFuncletEntry(); 1209 1210 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1211 } 1212 1213 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1214 // Update machine-CFG edge. 1215 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1216 FuncInfo.MBB->addSuccessor(TargetMBB); 1217 1218 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1219 bool IsSEH = isAsynchronousEHPersonality(Pers); 1220 if (IsSEH) { 1221 // If this is not a fall-through branch or optimizations are switched off, 1222 // emit the branch. 1223 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1224 TM.getOptLevel() == CodeGenOpt::None) 1225 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1226 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1227 return; 1228 } 1229 1230 // Figure out the funclet membership for the catchret's successor. 1231 // This will be used by the FuncletLayout pass to determine how to order the 1232 // BB's. 1233 // A 'catchret' returns to the outer scope's color. 1234 Value *ParentPad = I.getCatchSwitchParentPad(); 1235 const BasicBlock *SuccessorColor; 1236 if (isa<ConstantTokenNone>(ParentPad)) 1237 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1238 else 1239 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1240 assert(SuccessorColor && "No parent funclet for catchret!"); 1241 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1242 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1243 1244 // Create the terminator node. 1245 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1246 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1247 DAG.getBasicBlock(SuccessorColorMBB)); 1248 DAG.setRoot(Ret); 1249 } 1250 1251 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1252 // Don't emit any special code for the cleanuppad instruction. It just marks 1253 // the start of a funclet. 1254 FuncInfo.MBB->setIsEHFuncletEntry(); 1255 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1256 } 1257 1258 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1259 /// many places it could ultimately go. In the IR, we have a single unwind 1260 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1261 /// This function skips over imaginary basic blocks that hold catchswitch 1262 /// instructions, and finds all the "real" machine 1263 /// basic block destinations. As those destinations may not be successors of 1264 /// EHPadBB, here we also calculate the edge probability to those destinations. 1265 /// The passed-in Prob is the edge probability to EHPadBB. 1266 static void findUnwindDestinations( 1267 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1268 BranchProbability Prob, 1269 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1270 &UnwindDests) { 1271 EHPersonality Personality = 1272 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1273 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1274 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1275 1276 while (EHPadBB) { 1277 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1278 BasicBlock *NewEHPadBB = nullptr; 1279 if (isa<LandingPadInst>(Pad)) { 1280 // Stop on landingpads. They are not funclets. 1281 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1282 break; 1283 } else if (isa<CleanupPadInst>(Pad)) { 1284 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1285 // personalities. 1286 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1287 UnwindDests.back().first->setIsEHFuncletEntry(); 1288 break; 1289 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1290 // Add the catchpad handlers to the possible destinations. 1291 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1292 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1293 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1294 if (IsMSVCCXX || IsCoreCLR) 1295 UnwindDests.back().first->setIsEHFuncletEntry(); 1296 } 1297 NewEHPadBB = CatchSwitch->getUnwindDest(); 1298 } else { 1299 continue; 1300 } 1301 1302 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1303 if (BPI && NewEHPadBB) 1304 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1305 EHPadBB = NewEHPadBB; 1306 } 1307 } 1308 1309 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1310 // Update successor info. 1311 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1312 auto UnwindDest = I.getUnwindDest(); 1313 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1314 BranchProbability UnwindDestProb = 1315 (BPI && UnwindDest) 1316 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1317 : BranchProbability::getZero(); 1318 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1319 for (auto &UnwindDest : UnwindDests) { 1320 UnwindDest.first->setIsEHPad(); 1321 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1322 } 1323 FuncInfo.MBB->normalizeSuccProbs(); 1324 1325 // Create the terminator node. 1326 SDValue Ret = 1327 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1328 DAG.setRoot(Ret); 1329 } 1330 1331 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1332 report_fatal_error("visitCatchSwitch not yet implemented!"); 1333 } 1334 1335 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1337 auto &DL = DAG.getDataLayout(); 1338 SDValue Chain = getControlRoot(); 1339 SmallVector<ISD::OutputArg, 8> Outs; 1340 SmallVector<SDValue, 8> OutVals; 1341 1342 if (!FuncInfo.CanLowerReturn) { 1343 unsigned DemoteReg = FuncInfo.DemoteRegister; 1344 const Function *F = I.getParent()->getParent(); 1345 1346 // Emit a store of the return value through the virtual register. 1347 // Leave Outs empty so that LowerReturn won't try to load return 1348 // registers the usual way. 1349 SmallVector<EVT, 1> PtrValueVTs; 1350 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1351 PtrValueVTs); 1352 1353 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1354 DemoteReg, PtrValueVTs[0]); 1355 SDValue RetOp = getValue(I.getOperand(0)); 1356 1357 SmallVector<EVT, 4> ValueVTs; 1358 SmallVector<uint64_t, 4> Offsets; 1359 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1360 unsigned NumValues = ValueVTs.size(); 1361 1362 // An aggregate return value cannot wrap around the address space, so 1363 // offsets to its parts don't wrap either. 1364 SDNodeFlags Flags; 1365 Flags.setNoUnsignedWrap(true); 1366 1367 SmallVector<SDValue, 4> Chains(NumValues); 1368 for (unsigned i = 0; i != NumValues; ++i) { 1369 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1370 RetPtr.getValueType(), RetPtr, 1371 DAG.getIntPtrConstant(Offsets[i], 1372 getCurSDLoc()), 1373 &Flags); 1374 Chains[i] = 1375 DAG.getStore(Chain, getCurSDLoc(), 1376 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1377 // FIXME: better loc info would be nice. 1378 Add, MachinePointerInfo(), false, false, 0); 1379 } 1380 1381 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1382 MVT::Other, Chains); 1383 } else if (I.getNumOperands() != 0) { 1384 SmallVector<EVT, 4> ValueVTs; 1385 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1386 unsigned NumValues = ValueVTs.size(); 1387 if (NumValues) { 1388 SDValue RetOp = getValue(I.getOperand(0)); 1389 1390 const Function *F = I.getParent()->getParent(); 1391 1392 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1393 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1394 Attribute::SExt)) 1395 ExtendKind = ISD::SIGN_EXTEND; 1396 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1397 Attribute::ZExt)) 1398 ExtendKind = ISD::ZERO_EXTEND; 1399 1400 LLVMContext &Context = F->getContext(); 1401 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1402 Attribute::InReg); 1403 1404 for (unsigned j = 0; j != NumValues; ++j) { 1405 EVT VT = ValueVTs[j]; 1406 1407 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1408 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1409 1410 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1411 MVT PartVT = TLI.getRegisterType(Context, VT); 1412 SmallVector<SDValue, 4> Parts(NumParts); 1413 getCopyToParts(DAG, getCurSDLoc(), 1414 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1415 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1416 1417 // 'inreg' on function refers to return value 1418 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1419 if (RetInReg) 1420 Flags.setInReg(); 1421 1422 // Propagate extension type if any 1423 if (ExtendKind == ISD::SIGN_EXTEND) 1424 Flags.setSExt(); 1425 else if (ExtendKind == ISD::ZERO_EXTEND) 1426 Flags.setZExt(); 1427 1428 for (unsigned i = 0; i < NumParts; ++i) { 1429 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1430 VT, /*isfixed=*/true, 0, 0)); 1431 OutVals.push_back(Parts[i]); 1432 } 1433 } 1434 } 1435 } 1436 1437 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1438 CallingConv::ID CallConv = 1439 DAG.getMachineFunction().getFunction()->getCallingConv(); 1440 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1441 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1442 1443 // Verify that the target's LowerReturn behaved as expected. 1444 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1445 "LowerReturn didn't return a valid chain!"); 1446 1447 // Update the DAG with the new chain value resulting from return lowering. 1448 DAG.setRoot(Chain); 1449 } 1450 1451 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1452 /// created for it, emit nodes to copy the value into the virtual 1453 /// registers. 1454 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1455 // Skip empty types 1456 if (V->getType()->isEmptyTy()) 1457 return; 1458 1459 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1460 if (VMI != FuncInfo.ValueMap.end()) { 1461 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1462 CopyValueToVirtualRegister(V, VMI->second); 1463 } 1464 } 1465 1466 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1467 /// the current basic block, add it to ValueMap now so that we'll get a 1468 /// CopyTo/FromReg. 1469 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1470 // No need to export constants. 1471 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1472 1473 // Already exported? 1474 if (FuncInfo.isExportedInst(V)) return; 1475 1476 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1477 CopyValueToVirtualRegister(V, Reg); 1478 } 1479 1480 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1481 const BasicBlock *FromBB) { 1482 // The operands of the setcc have to be in this block. We don't know 1483 // how to export them from some other block. 1484 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1485 // Can export from current BB. 1486 if (VI->getParent() == FromBB) 1487 return true; 1488 1489 // Is already exported, noop. 1490 return FuncInfo.isExportedInst(V); 1491 } 1492 1493 // If this is an argument, we can export it if the BB is the entry block or 1494 // if it is already exported. 1495 if (isa<Argument>(V)) { 1496 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1497 return true; 1498 1499 // Otherwise, can only export this if it is already exported. 1500 return FuncInfo.isExportedInst(V); 1501 } 1502 1503 // Otherwise, constants can always be exported. 1504 return true; 1505 } 1506 1507 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1508 BranchProbability 1509 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1510 const MachineBasicBlock *Dst) const { 1511 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1512 const BasicBlock *SrcBB = Src->getBasicBlock(); 1513 const BasicBlock *DstBB = Dst->getBasicBlock(); 1514 if (!BPI) { 1515 // If BPI is not available, set the default probability as 1 / N, where N is 1516 // the number of successors. 1517 auto SuccSize = std::max<uint32_t>( 1518 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1519 return BranchProbability(1, SuccSize); 1520 } 1521 return BPI->getEdgeProbability(SrcBB, DstBB); 1522 } 1523 1524 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1525 MachineBasicBlock *Dst, 1526 BranchProbability Prob) { 1527 if (!FuncInfo.BPI) 1528 Src->addSuccessorWithoutProb(Dst); 1529 else { 1530 if (Prob.isUnknown()) 1531 Prob = getEdgeProbability(Src, Dst); 1532 Src->addSuccessor(Dst, Prob); 1533 } 1534 } 1535 1536 static bool InBlock(const Value *V, const BasicBlock *BB) { 1537 if (const Instruction *I = dyn_cast<Instruction>(V)) 1538 return I->getParent() == BB; 1539 return true; 1540 } 1541 1542 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1543 /// This function emits a branch and is used at the leaves of an OR or an 1544 /// AND operator tree. 1545 /// 1546 void 1547 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1548 MachineBasicBlock *TBB, 1549 MachineBasicBlock *FBB, 1550 MachineBasicBlock *CurBB, 1551 MachineBasicBlock *SwitchBB, 1552 BranchProbability TProb, 1553 BranchProbability FProb) { 1554 const BasicBlock *BB = CurBB->getBasicBlock(); 1555 1556 // If the leaf of the tree is a comparison, merge the condition into 1557 // the caseblock. 1558 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1559 // The operands of the cmp have to be in this block. We don't know 1560 // how to export them from some other block. If this is the first block 1561 // of the sequence, no exporting is needed. 1562 if (CurBB == SwitchBB || 1563 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1564 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1565 ISD::CondCode Condition; 1566 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1567 Condition = getICmpCondCode(IC->getPredicate()); 1568 } else { 1569 const FCmpInst *FC = cast<FCmpInst>(Cond); 1570 Condition = getFCmpCondCode(FC->getPredicate()); 1571 if (TM.Options.NoNaNsFPMath) 1572 Condition = getFCmpCodeWithoutNaN(Condition); 1573 } 1574 1575 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1576 TBB, FBB, CurBB, TProb, FProb); 1577 SwitchCases.push_back(CB); 1578 return; 1579 } 1580 } 1581 1582 // Create a CaseBlock record representing this branch. 1583 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1584 nullptr, TBB, FBB, CurBB, TProb, FProb); 1585 SwitchCases.push_back(CB); 1586 } 1587 1588 /// FindMergedConditions - If Cond is an expression like 1589 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1590 MachineBasicBlock *TBB, 1591 MachineBasicBlock *FBB, 1592 MachineBasicBlock *CurBB, 1593 MachineBasicBlock *SwitchBB, 1594 Instruction::BinaryOps Opc, 1595 BranchProbability TProb, 1596 BranchProbability FProb) { 1597 // If this node is not part of the or/and tree, emit it as a branch. 1598 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1599 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1600 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1601 BOp->getParent() != CurBB->getBasicBlock() || 1602 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1603 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1604 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1605 TProb, FProb); 1606 return; 1607 } 1608 1609 // Create TmpBB after CurBB. 1610 MachineFunction::iterator BBI(CurBB); 1611 MachineFunction &MF = DAG.getMachineFunction(); 1612 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1613 CurBB->getParent()->insert(++BBI, TmpBB); 1614 1615 if (Opc == Instruction::Or) { 1616 // Codegen X | Y as: 1617 // BB1: 1618 // jmp_if_X TBB 1619 // jmp TmpBB 1620 // TmpBB: 1621 // jmp_if_Y TBB 1622 // jmp FBB 1623 // 1624 1625 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1626 // The requirement is that 1627 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1628 // = TrueProb for original BB. 1629 // Assuming the original probabilities are A and B, one choice is to set 1630 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1631 // A/(1+B) and 2B/(1+B). This choice assumes that 1632 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1633 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1634 // TmpBB, but the math is more complicated. 1635 1636 auto NewTrueProb = TProb / 2; 1637 auto NewFalseProb = TProb / 2 + FProb; 1638 // Emit the LHS condition. 1639 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1640 NewTrueProb, NewFalseProb); 1641 1642 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1643 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1644 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1645 // Emit the RHS condition into TmpBB. 1646 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1647 Probs[0], Probs[1]); 1648 } else { 1649 assert(Opc == Instruction::And && "Unknown merge op!"); 1650 // Codegen X & Y as: 1651 // BB1: 1652 // jmp_if_X TmpBB 1653 // jmp FBB 1654 // TmpBB: 1655 // jmp_if_Y TBB 1656 // jmp FBB 1657 // 1658 // This requires creation of TmpBB after CurBB. 1659 1660 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1661 // The requirement is that 1662 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1663 // = FalseProb for original BB. 1664 // Assuming the original probabilities are A and B, one choice is to set 1665 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1666 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1667 // TrueProb for BB1 * FalseProb for TmpBB. 1668 1669 auto NewTrueProb = TProb + FProb / 2; 1670 auto NewFalseProb = FProb / 2; 1671 // Emit the LHS condition. 1672 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1673 NewTrueProb, NewFalseProb); 1674 1675 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1676 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1677 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1678 // Emit the RHS condition into TmpBB. 1679 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1680 Probs[0], Probs[1]); 1681 } 1682 } 1683 1684 /// If the set of cases should be emitted as a series of branches, return true. 1685 /// If we should emit this as a bunch of and/or'd together conditions, return 1686 /// false. 1687 bool 1688 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1689 if (Cases.size() != 2) return true; 1690 1691 // If this is two comparisons of the same values or'd or and'd together, they 1692 // will get folded into a single comparison, so don't emit two blocks. 1693 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1694 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1695 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1696 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1697 return false; 1698 } 1699 1700 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1701 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1702 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1703 Cases[0].CC == Cases[1].CC && 1704 isa<Constant>(Cases[0].CmpRHS) && 1705 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1706 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1707 return false; 1708 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1709 return false; 1710 } 1711 1712 return true; 1713 } 1714 1715 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1716 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1717 1718 // Update machine-CFG edges. 1719 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1720 1721 if (I.isUnconditional()) { 1722 // Update machine-CFG edges. 1723 BrMBB->addSuccessor(Succ0MBB); 1724 1725 // If this is not a fall-through branch or optimizations are switched off, 1726 // emit the branch. 1727 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1728 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1729 MVT::Other, getControlRoot(), 1730 DAG.getBasicBlock(Succ0MBB))); 1731 1732 return; 1733 } 1734 1735 // If this condition is one of the special cases we handle, do special stuff 1736 // now. 1737 const Value *CondVal = I.getCondition(); 1738 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1739 1740 // If this is a series of conditions that are or'd or and'd together, emit 1741 // this as a sequence of branches instead of setcc's with and/or operations. 1742 // As long as jumps are not expensive, this should improve performance. 1743 // For example, instead of something like: 1744 // cmp A, B 1745 // C = seteq 1746 // cmp D, E 1747 // F = setle 1748 // or C, F 1749 // jnz foo 1750 // Emit: 1751 // cmp A, B 1752 // je foo 1753 // cmp D, E 1754 // jle foo 1755 // 1756 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1757 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1758 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1759 !I.getMetadata(LLVMContext::MD_unpredictable) && 1760 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1761 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1762 Opcode, 1763 getEdgeProbability(BrMBB, Succ0MBB), 1764 getEdgeProbability(BrMBB, Succ1MBB)); 1765 // If the compares in later blocks need to use values not currently 1766 // exported from this block, export them now. This block should always 1767 // be the first entry. 1768 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1769 1770 // Allow some cases to be rejected. 1771 if (ShouldEmitAsBranches(SwitchCases)) { 1772 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1773 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1774 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1775 } 1776 1777 // Emit the branch for this block. 1778 visitSwitchCase(SwitchCases[0], BrMBB); 1779 SwitchCases.erase(SwitchCases.begin()); 1780 return; 1781 } 1782 1783 // Okay, we decided not to do this, remove any inserted MBB's and clear 1784 // SwitchCases. 1785 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1786 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1787 1788 SwitchCases.clear(); 1789 } 1790 } 1791 1792 // Create a CaseBlock record representing this branch. 1793 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1794 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1795 1796 // Use visitSwitchCase to actually insert the fast branch sequence for this 1797 // cond branch. 1798 visitSwitchCase(CB, BrMBB); 1799 } 1800 1801 /// visitSwitchCase - Emits the necessary code to represent a single node in 1802 /// the binary search tree resulting from lowering a switch instruction. 1803 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1804 MachineBasicBlock *SwitchBB) { 1805 SDValue Cond; 1806 SDValue CondLHS = getValue(CB.CmpLHS); 1807 SDLoc dl = getCurSDLoc(); 1808 1809 // Build the setcc now. 1810 if (!CB.CmpMHS) { 1811 // Fold "(X == true)" to X and "(X == false)" to !X to 1812 // handle common cases produced by branch lowering. 1813 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1814 CB.CC == ISD::SETEQ) 1815 Cond = CondLHS; 1816 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1817 CB.CC == ISD::SETEQ) { 1818 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1819 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1820 } else 1821 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1822 } else { 1823 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1824 1825 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1826 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1827 1828 SDValue CmpOp = getValue(CB.CmpMHS); 1829 EVT VT = CmpOp.getValueType(); 1830 1831 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1832 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1833 ISD::SETLE); 1834 } else { 1835 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1836 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1837 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1838 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1839 } 1840 } 1841 1842 // Update successor info 1843 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1844 // TrueBB and FalseBB are always different unless the incoming IR is 1845 // degenerate. This only happens when running llc on weird IR. 1846 if (CB.TrueBB != CB.FalseBB) 1847 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1848 SwitchBB->normalizeSuccProbs(); 1849 1850 // If the lhs block is the next block, invert the condition so that we can 1851 // fall through to the lhs instead of the rhs block. 1852 if (CB.TrueBB == NextBlock(SwitchBB)) { 1853 std::swap(CB.TrueBB, CB.FalseBB); 1854 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1855 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1856 } 1857 1858 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1859 MVT::Other, getControlRoot(), Cond, 1860 DAG.getBasicBlock(CB.TrueBB)); 1861 1862 // Insert the false branch. Do this even if it's a fall through branch, 1863 // this makes it easier to do DAG optimizations which require inverting 1864 // the branch condition. 1865 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1866 DAG.getBasicBlock(CB.FalseBB)); 1867 1868 DAG.setRoot(BrCond); 1869 } 1870 1871 /// visitJumpTable - Emit JumpTable node in the current MBB 1872 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1873 // Emit the code for the jump table 1874 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1875 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1876 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1877 JT.Reg, PTy); 1878 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1879 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1880 MVT::Other, Index.getValue(1), 1881 Table, Index); 1882 DAG.setRoot(BrJumpTable); 1883 } 1884 1885 /// visitJumpTableHeader - This function emits necessary code to produce index 1886 /// in the JumpTable from switch case. 1887 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1888 JumpTableHeader &JTH, 1889 MachineBasicBlock *SwitchBB) { 1890 SDLoc dl = getCurSDLoc(); 1891 1892 // Subtract the lowest switch case value from the value being switched on and 1893 // conditional branch to default mbb if the result is greater than the 1894 // difference between smallest and largest cases. 1895 SDValue SwitchOp = getValue(JTH.SValue); 1896 EVT VT = SwitchOp.getValueType(); 1897 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1898 DAG.getConstant(JTH.First, dl, VT)); 1899 1900 // The SDNode we just created, which holds the value being switched on minus 1901 // the smallest case value, needs to be copied to a virtual register so it 1902 // can be used as an index into the jump table in a subsequent basic block. 1903 // This value may be smaller or larger than the target's pointer type, and 1904 // therefore require extension or truncating. 1905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1906 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1907 1908 unsigned JumpTableReg = 1909 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1910 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1911 JumpTableReg, SwitchOp); 1912 JT.Reg = JumpTableReg; 1913 1914 // Emit the range check for the jump table, and branch to the default block 1915 // for the switch statement if the value being switched on exceeds the largest 1916 // case in the switch. 1917 SDValue CMP = DAG.getSetCC( 1918 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1919 Sub.getValueType()), 1920 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1921 1922 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, CopyTo, CMP, 1924 DAG.getBasicBlock(JT.Default)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (JT.MBB != NextBlock(SwitchBB)) 1928 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1929 DAG.getBasicBlock(JT.MBB)); 1930 1931 DAG.setRoot(BrCond); 1932 } 1933 1934 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1935 /// tail spliced into a stack protector check success bb. 1936 /// 1937 /// For a high level explanation of how this fits into the stack protector 1938 /// generation see the comment on the declaration of class 1939 /// StackProtectorDescriptor. 1940 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1941 MachineBasicBlock *ParentBB) { 1942 1943 // First create the loads to the guard/stack slot for the comparison. 1944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1945 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1946 1947 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1948 int FI = MFI->getStackProtectorIndex(); 1949 1950 const Value *IRGuard = SPD.getGuard(); 1951 SDValue GuardPtr = getValue(IRGuard); 1952 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1953 1954 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1955 1956 SDValue Guard; 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1960 // guard value from the virtual register holding the value. Otherwise, emit a 1961 // volatile load to retrieve the stack guard value. 1962 unsigned GuardReg = SPD.getGuardReg(); 1963 1964 if (GuardReg && TLI.useLoadStackGuardNode()) 1965 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1966 PtrTy); 1967 else 1968 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1969 GuardPtr, MachinePointerInfo(IRGuard, 0), 1970 true, false, false, Align); 1971 1972 SDValue StackSlot = DAG.getLoad( 1973 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1974 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1975 false, false, Align); 1976 1977 // Perform the comparison via a subtract/getsetcc. 1978 EVT VT = Guard.getValueType(); 1979 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1980 1981 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1982 *DAG.getContext(), 1983 Sub.getValueType()), 1984 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1985 1986 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1987 // branch to failure MBB. 1988 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1989 MVT::Other, StackSlot.getOperand(0), 1990 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1991 // Otherwise branch to success MBB. 1992 SDValue Br = DAG.getNode(ISD::BR, dl, 1993 MVT::Other, BrCond, 1994 DAG.getBasicBlock(SPD.getSuccessMBB())); 1995 1996 DAG.setRoot(Br); 1997 } 1998 1999 /// Codegen the failure basic block for a stack protector check. 2000 /// 2001 /// A failure stack protector machine basic block consists simply of a call to 2002 /// __stack_chk_fail(). 2003 /// 2004 /// For a high level explanation of how this fits into the stack protector 2005 /// generation see the comment on the declaration of class 2006 /// StackProtectorDescriptor. 2007 void 2008 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2010 SDValue Chain = 2011 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2012 None, false, getCurSDLoc(), false, false).second; 2013 DAG.setRoot(Chain); 2014 } 2015 2016 /// visitBitTestHeader - This function emits necessary code to produce value 2017 /// suitable for "bit tests" 2018 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2019 MachineBasicBlock *SwitchBB) { 2020 SDLoc dl = getCurSDLoc(); 2021 2022 // Subtract the minimum value 2023 SDValue SwitchOp = getValue(B.SValue); 2024 EVT VT = SwitchOp.getValueType(); 2025 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2026 DAG.getConstant(B.First, dl, VT)); 2027 2028 // Check range 2029 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2030 SDValue RangeCmp = DAG.getSetCC( 2031 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2032 Sub.getValueType()), 2033 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2034 2035 // Determine the type of the test operands. 2036 bool UsePtrType = false; 2037 if (!TLI.isTypeLegal(VT)) 2038 UsePtrType = true; 2039 else { 2040 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2041 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2042 // Switch table case range are encoded into series of masks. 2043 // Just use pointer type, it's guaranteed to fit. 2044 UsePtrType = true; 2045 break; 2046 } 2047 } 2048 if (UsePtrType) { 2049 VT = TLI.getPointerTy(DAG.getDataLayout()); 2050 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2051 } 2052 2053 B.RegVT = VT.getSimpleVT(); 2054 B.Reg = FuncInfo.CreateReg(B.RegVT); 2055 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2056 2057 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2058 2059 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2060 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2061 SwitchBB->normalizeSuccProbs(); 2062 2063 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2064 MVT::Other, CopyTo, RangeCmp, 2065 DAG.getBasicBlock(B.Default)); 2066 2067 // Avoid emitting unnecessary branches to the next block. 2068 if (MBB != NextBlock(SwitchBB)) 2069 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2070 DAG.getBasicBlock(MBB)); 2071 2072 DAG.setRoot(BrRange); 2073 } 2074 2075 /// visitBitTestCase - this function produces one "bit test" 2076 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2077 MachineBasicBlock* NextMBB, 2078 BranchProbability BranchProbToNext, 2079 unsigned Reg, 2080 BitTestCase &B, 2081 MachineBasicBlock *SwitchBB) { 2082 SDLoc dl = getCurSDLoc(); 2083 MVT VT = BB.RegVT; 2084 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2085 SDValue Cmp; 2086 unsigned PopCount = countPopulation(B.Mask); 2087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2088 if (PopCount == 1) { 2089 // Testing for a single bit; just compare the shift count with what it 2090 // would need to be to shift a 1 bit in that position. 2091 Cmp = DAG.getSetCC( 2092 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2093 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2094 ISD::SETEQ); 2095 } else if (PopCount == BB.Range) { 2096 // There is only one zero bit in the range, test for it directly. 2097 Cmp = DAG.getSetCC( 2098 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2099 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2100 ISD::SETNE); 2101 } else { 2102 // Make desired shift 2103 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2104 DAG.getConstant(1, dl, VT), ShiftOp); 2105 2106 // Emit bit tests and jumps 2107 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2108 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2109 Cmp = DAG.getSetCC( 2110 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2111 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2112 } 2113 2114 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2115 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2116 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2117 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2118 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2119 // one as they are relative probabilities (and thus work more like weights), 2120 // and hence we need to normalize them to let the sum of them become one. 2121 SwitchBB->normalizeSuccProbs(); 2122 2123 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2124 MVT::Other, getControlRoot(), 2125 Cmp, DAG.getBasicBlock(B.TargetBB)); 2126 2127 // Avoid emitting unnecessary branches to the next block. 2128 if (NextMBB != NextBlock(SwitchBB)) 2129 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2130 DAG.getBasicBlock(NextMBB)); 2131 2132 DAG.setRoot(BrAnd); 2133 } 2134 2135 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2136 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2137 2138 // Retrieve successors. Look through artificial IR level blocks like 2139 // catchswitch for successors. 2140 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2141 const BasicBlock *EHPadBB = I.getSuccessor(1); 2142 2143 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2144 // have to do anything here to lower funclet bundles. 2145 assert(!I.hasOperandBundlesOtherThan( 2146 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2147 "Cannot lower invokes with arbitrary operand bundles yet!"); 2148 2149 const Value *Callee(I.getCalledValue()); 2150 const Function *Fn = dyn_cast<Function>(Callee); 2151 if (isa<InlineAsm>(Callee)) 2152 visitInlineAsm(&I); 2153 else if (Fn && Fn->isIntrinsic()) { 2154 switch (Fn->getIntrinsicID()) { 2155 default: 2156 llvm_unreachable("Cannot invoke this intrinsic"); 2157 case Intrinsic::donothing: 2158 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2159 break; 2160 case Intrinsic::experimental_patchpoint_void: 2161 case Intrinsic::experimental_patchpoint_i64: 2162 visitPatchpoint(&I, EHPadBB); 2163 break; 2164 case Intrinsic::experimental_gc_statepoint: 2165 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2166 break; 2167 } 2168 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2169 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2170 // Eventually we will support lowering the @llvm.experimental.deoptimize 2171 // intrinsic, and right now there are no plans to support other intrinsics 2172 // with deopt state. 2173 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2174 } else { 2175 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2176 } 2177 2178 // If the value of the invoke is used outside of its defining block, make it 2179 // available as a virtual register. 2180 // We already took care of the exported value for the statepoint instruction 2181 // during call to the LowerStatepoint. 2182 if (!isStatepoint(I)) { 2183 CopyToExportRegsIfNeeded(&I); 2184 } 2185 2186 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2187 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2188 BranchProbability EHPadBBProb = 2189 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2190 : BranchProbability::getZero(); 2191 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2192 2193 // Update successor info. 2194 addSuccessorWithProb(InvokeMBB, Return); 2195 for (auto &UnwindDest : UnwindDests) { 2196 UnwindDest.first->setIsEHPad(); 2197 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2198 } 2199 InvokeMBB->normalizeSuccProbs(); 2200 2201 // Drop into normal successor. 2202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2203 MVT::Other, getControlRoot(), 2204 DAG.getBasicBlock(Return))); 2205 } 2206 2207 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2208 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2209 } 2210 2211 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2212 assert(FuncInfo.MBB->isEHPad() && 2213 "Call to landingpad not in landing pad!"); 2214 2215 MachineBasicBlock *MBB = FuncInfo.MBB; 2216 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2217 AddLandingPadInfo(LP, MMI, MBB); 2218 2219 // If there aren't registers to copy the values into (e.g., during SjLj 2220 // exceptions), then don't bother to create these DAG nodes. 2221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2222 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2223 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2224 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2225 return; 2226 2227 // If landingpad's return type is token type, we don't create DAG nodes 2228 // for its exception pointer and selector value. The extraction of exception 2229 // pointer or selector value from token type landingpads is not currently 2230 // supported. 2231 if (LP.getType()->isTokenTy()) 2232 return; 2233 2234 SmallVector<EVT, 2> ValueVTs; 2235 SDLoc dl = getCurSDLoc(); 2236 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2237 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2238 2239 // Get the two live-in registers as SDValues. The physregs have already been 2240 // copied into virtual registers. 2241 SDValue Ops[2]; 2242 if (FuncInfo.ExceptionPointerVirtReg) { 2243 Ops[0] = DAG.getZExtOrTrunc( 2244 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2245 FuncInfo.ExceptionPointerVirtReg, 2246 TLI.getPointerTy(DAG.getDataLayout())), 2247 dl, ValueVTs[0]); 2248 } else { 2249 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2250 } 2251 Ops[1] = DAG.getZExtOrTrunc( 2252 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2253 FuncInfo.ExceptionSelectorVirtReg, 2254 TLI.getPointerTy(DAG.getDataLayout())), 2255 dl, ValueVTs[1]); 2256 2257 // Merge into one. 2258 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2259 DAG.getVTList(ValueVTs), Ops); 2260 setValue(&LP, Res); 2261 } 2262 2263 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2264 #ifndef NDEBUG 2265 for (const CaseCluster &CC : Clusters) 2266 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2267 #endif 2268 2269 std::sort(Clusters.begin(), Clusters.end(), 2270 [](const CaseCluster &a, const CaseCluster &b) { 2271 return a.Low->getValue().slt(b.Low->getValue()); 2272 }); 2273 2274 // Merge adjacent clusters with the same destination. 2275 const unsigned N = Clusters.size(); 2276 unsigned DstIndex = 0; 2277 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2278 CaseCluster &CC = Clusters[SrcIndex]; 2279 const ConstantInt *CaseVal = CC.Low; 2280 MachineBasicBlock *Succ = CC.MBB; 2281 2282 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2283 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2284 // If this case has the same successor and is a neighbour, merge it into 2285 // the previous cluster. 2286 Clusters[DstIndex - 1].High = CaseVal; 2287 Clusters[DstIndex - 1].Prob += CC.Prob; 2288 } else { 2289 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2290 sizeof(Clusters[SrcIndex])); 2291 } 2292 } 2293 Clusters.resize(DstIndex); 2294 } 2295 2296 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2297 MachineBasicBlock *Last) { 2298 // Update JTCases. 2299 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2300 if (JTCases[i].first.HeaderBB == First) 2301 JTCases[i].first.HeaderBB = Last; 2302 2303 // Update BitTestCases. 2304 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2305 if (BitTestCases[i].Parent == First) 2306 BitTestCases[i].Parent = Last; 2307 } 2308 2309 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2310 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2311 2312 // Update machine-CFG edges with unique successors. 2313 SmallSet<BasicBlock*, 32> Done; 2314 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2315 BasicBlock *BB = I.getSuccessor(i); 2316 bool Inserted = Done.insert(BB).second; 2317 if (!Inserted) 2318 continue; 2319 2320 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2321 addSuccessorWithProb(IndirectBrMBB, Succ); 2322 } 2323 IndirectBrMBB->normalizeSuccProbs(); 2324 2325 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2326 MVT::Other, getControlRoot(), 2327 getValue(I.getAddress()))); 2328 } 2329 2330 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2331 if (DAG.getTarget().Options.TrapUnreachable) 2332 DAG.setRoot( 2333 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2334 } 2335 2336 void SelectionDAGBuilder::visitFSub(const User &I) { 2337 // -0.0 - X --> fneg 2338 Type *Ty = I.getType(); 2339 if (isa<Constant>(I.getOperand(0)) && 2340 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2341 SDValue Op2 = getValue(I.getOperand(1)); 2342 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2343 Op2.getValueType(), Op2)); 2344 return; 2345 } 2346 2347 visitBinary(I, ISD::FSUB); 2348 } 2349 2350 /// Checks if the given instruction performs a vector reduction, in which case 2351 /// we have the freedom to alter the elements in the result as long as the 2352 /// reduction of them stays unchanged. 2353 static bool isVectorReductionOp(const User *I) { 2354 const Instruction *Inst = dyn_cast<Instruction>(I); 2355 if (!Inst || !Inst->getType()->isVectorTy()) 2356 return false; 2357 2358 auto OpCode = Inst->getOpcode(); 2359 switch (OpCode) { 2360 case Instruction::Add: 2361 case Instruction::Mul: 2362 case Instruction::And: 2363 case Instruction::Or: 2364 case Instruction::Xor: 2365 break; 2366 case Instruction::FAdd: 2367 case Instruction::FMul: 2368 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2369 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2370 break; 2371 // Fall through. 2372 default: 2373 return false; 2374 } 2375 2376 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2377 unsigned ElemNumToReduce = ElemNum; 2378 2379 // Do DFS search on the def-use chain from the given instruction. We only 2380 // allow four kinds of operations during the search until we reach the 2381 // instruction that extracts the first element from the vector: 2382 // 2383 // 1. The reduction operation of the same opcode as the given instruction. 2384 // 2385 // 2. PHI node. 2386 // 2387 // 3. ShuffleVector instruction together with a reduction operation that 2388 // does a partial reduction. 2389 // 2390 // 4. ExtractElement that extracts the first element from the vector, and we 2391 // stop searching the def-use chain here. 2392 // 2393 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2394 // from 1-3 to the stack to continue the DFS. The given instruction is not 2395 // a reduction operation if we meet any other instructions other than those 2396 // listed above. 2397 2398 SmallVector<const User *, 16> UsersToVisit{Inst}; 2399 SmallPtrSet<const User *, 16> Visited; 2400 bool ReduxExtracted = false; 2401 2402 while (!UsersToVisit.empty()) { 2403 auto User = UsersToVisit.back(); 2404 UsersToVisit.pop_back(); 2405 if (!Visited.insert(User).second) 2406 continue; 2407 2408 for (const auto &U : User->users()) { 2409 auto Inst = dyn_cast<Instruction>(U); 2410 if (!Inst) 2411 return false; 2412 2413 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2414 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2415 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2416 return false; 2417 UsersToVisit.push_back(U); 2418 } else if (const ShuffleVectorInst *ShufInst = 2419 dyn_cast<ShuffleVectorInst>(U)) { 2420 // Detect the following pattern: A ShuffleVector instruction together 2421 // with a reduction that do partial reduction on the first and second 2422 // ElemNumToReduce / 2 elements, and store the result in 2423 // ElemNumToReduce / 2 elements in another vector. 2424 2425 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2426 if (ResultElements < ElemNum) 2427 return false; 2428 2429 if (ElemNumToReduce == 1) 2430 return false; 2431 if (!isa<UndefValue>(U->getOperand(1))) 2432 return false; 2433 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2434 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2435 return false; 2436 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2437 if (ShufInst->getMaskValue(i) != -1) 2438 return false; 2439 2440 // There is only one user of this ShuffleVector instruction, which 2441 // must be a reduction operation. 2442 if (!U->hasOneUse()) 2443 return false; 2444 2445 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2446 if (!U2 || U2->getOpcode() != OpCode) 2447 return false; 2448 2449 // Check operands of the reduction operation. 2450 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2451 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2452 UsersToVisit.push_back(U2); 2453 ElemNumToReduce /= 2; 2454 } else 2455 return false; 2456 } else if (isa<ExtractElementInst>(U)) { 2457 // At this moment we should have reduced all elements in the vector. 2458 if (ElemNumToReduce != 1) 2459 return false; 2460 2461 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2462 if (!Val || Val->getZExtValue() != 0) 2463 return false; 2464 2465 ReduxExtracted = true; 2466 } else 2467 return false; 2468 } 2469 } 2470 return ReduxExtracted; 2471 } 2472 2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2474 SDValue Op1 = getValue(I.getOperand(0)); 2475 SDValue Op2 = getValue(I.getOperand(1)); 2476 2477 bool nuw = false; 2478 bool nsw = false; 2479 bool exact = false; 2480 bool vec_redux = false; 2481 FastMathFlags FMF; 2482 2483 if (const OverflowingBinaryOperator *OFBinOp = 2484 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2485 nuw = OFBinOp->hasNoUnsignedWrap(); 2486 nsw = OFBinOp->hasNoSignedWrap(); 2487 } 2488 if (const PossiblyExactOperator *ExactOp = 2489 dyn_cast<const PossiblyExactOperator>(&I)) 2490 exact = ExactOp->isExact(); 2491 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2492 FMF = FPOp->getFastMathFlags(); 2493 2494 if (isVectorReductionOp(&I)) { 2495 vec_redux = true; 2496 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2497 } 2498 2499 SDNodeFlags Flags; 2500 Flags.setExact(exact); 2501 Flags.setNoSignedWrap(nsw); 2502 Flags.setNoUnsignedWrap(nuw); 2503 Flags.setVectorReduction(vec_redux); 2504 if (EnableFMFInDAG) { 2505 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2506 Flags.setNoInfs(FMF.noInfs()); 2507 Flags.setNoNaNs(FMF.noNaNs()); 2508 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2509 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2510 } 2511 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2512 Op1, Op2, &Flags); 2513 setValue(&I, BinNodeValue); 2514 } 2515 2516 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2517 SDValue Op1 = getValue(I.getOperand(0)); 2518 SDValue Op2 = getValue(I.getOperand(1)); 2519 2520 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2521 Op2.getValueType(), DAG.getDataLayout()); 2522 2523 // Coerce the shift amount to the right type if we can. 2524 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2525 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2526 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2527 SDLoc DL = getCurSDLoc(); 2528 2529 // If the operand is smaller than the shift count type, promote it. 2530 if (ShiftSize > Op2Size) 2531 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2532 2533 // If the operand is larger than the shift count type but the shift 2534 // count type has enough bits to represent any shift value, truncate 2535 // it now. This is a common case and it exposes the truncate to 2536 // optimization early. 2537 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2538 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2539 // Otherwise we'll need to temporarily settle for some other convenient 2540 // type. Type legalization will make adjustments once the shiftee is split. 2541 else 2542 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2543 } 2544 2545 bool nuw = false; 2546 bool nsw = false; 2547 bool exact = false; 2548 2549 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2550 2551 if (const OverflowingBinaryOperator *OFBinOp = 2552 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2553 nuw = OFBinOp->hasNoUnsignedWrap(); 2554 nsw = OFBinOp->hasNoSignedWrap(); 2555 } 2556 if (const PossiblyExactOperator *ExactOp = 2557 dyn_cast<const PossiblyExactOperator>(&I)) 2558 exact = ExactOp->isExact(); 2559 } 2560 SDNodeFlags Flags; 2561 Flags.setExact(exact); 2562 Flags.setNoSignedWrap(nsw); 2563 Flags.setNoUnsignedWrap(nuw); 2564 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2565 &Flags); 2566 setValue(&I, Res); 2567 } 2568 2569 void SelectionDAGBuilder::visitSDiv(const User &I) { 2570 SDValue Op1 = getValue(I.getOperand(0)); 2571 SDValue Op2 = getValue(I.getOperand(1)); 2572 2573 SDNodeFlags Flags; 2574 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2575 cast<PossiblyExactOperator>(&I)->isExact()); 2576 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2577 Op2, &Flags)); 2578 } 2579 2580 void SelectionDAGBuilder::visitICmp(const User &I) { 2581 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2582 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2583 predicate = IC->getPredicate(); 2584 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2585 predicate = ICmpInst::Predicate(IC->getPredicate()); 2586 SDValue Op1 = getValue(I.getOperand(0)); 2587 SDValue Op2 = getValue(I.getOperand(1)); 2588 ISD::CondCode Opcode = getICmpCondCode(predicate); 2589 2590 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2591 I.getType()); 2592 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2593 } 2594 2595 void SelectionDAGBuilder::visitFCmp(const User &I) { 2596 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2597 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2598 predicate = FC->getPredicate(); 2599 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2600 predicate = FCmpInst::Predicate(FC->getPredicate()); 2601 SDValue Op1 = getValue(I.getOperand(0)); 2602 SDValue Op2 = getValue(I.getOperand(1)); 2603 ISD::CondCode Condition = getFCmpCondCode(predicate); 2604 2605 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2606 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2607 // further optimization, but currently FMF is only applicable to binary nodes. 2608 if (TM.Options.NoNaNsFPMath) 2609 Condition = getFCmpCodeWithoutNaN(Condition); 2610 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2611 I.getType()); 2612 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2613 } 2614 2615 void SelectionDAGBuilder::visitSelect(const User &I) { 2616 SmallVector<EVT, 4> ValueVTs; 2617 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2618 ValueVTs); 2619 unsigned NumValues = ValueVTs.size(); 2620 if (NumValues == 0) return; 2621 2622 SmallVector<SDValue, 4> Values(NumValues); 2623 SDValue Cond = getValue(I.getOperand(0)); 2624 SDValue LHSVal = getValue(I.getOperand(1)); 2625 SDValue RHSVal = getValue(I.getOperand(2)); 2626 auto BaseOps = {Cond}; 2627 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2628 ISD::VSELECT : ISD::SELECT; 2629 2630 // Min/max matching is only viable if all output VTs are the same. 2631 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2632 EVT VT = ValueVTs[0]; 2633 LLVMContext &Ctx = *DAG.getContext(); 2634 auto &TLI = DAG.getTargetLoweringInfo(); 2635 2636 // We care about the legality of the operation after it has been type 2637 // legalized. 2638 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2639 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2640 VT = TLI.getTypeToTransformTo(Ctx, VT); 2641 2642 // If the vselect is legal, assume we want to leave this as a vector setcc + 2643 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2644 // min/max is legal on the scalar type. 2645 bool UseScalarMinMax = VT.isVector() && 2646 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2647 2648 Value *LHS, *RHS; 2649 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2650 ISD::NodeType Opc = ISD::DELETED_NODE; 2651 switch (SPR.Flavor) { 2652 case SPF_UMAX: Opc = ISD::UMAX; break; 2653 case SPF_UMIN: Opc = ISD::UMIN; break; 2654 case SPF_SMAX: Opc = ISD::SMAX; break; 2655 case SPF_SMIN: Opc = ISD::SMIN; break; 2656 case SPF_FMINNUM: 2657 switch (SPR.NaNBehavior) { 2658 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2659 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2660 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2661 case SPNB_RETURNS_ANY: { 2662 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2663 Opc = ISD::FMINNUM; 2664 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2665 Opc = ISD::FMINNAN; 2666 else if (UseScalarMinMax) 2667 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2668 ISD::FMINNUM : ISD::FMINNAN; 2669 break; 2670 } 2671 } 2672 break; 2673 case SPF_FMAXNUM: 2674 switch (SPR.NaNBehavior) { 2675 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2676 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2677 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2678 case SPNB_RETURNS_ANY: 2679 2680 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2681 Opc = ISD::FMAXNUM; 2682 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2683 Opc = ISD::FMAXNAN; 2684 else if (UseScalarMinMax) 2685 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2686 ISD::FMAXNUM : ISD::FMAXNAN; 2687 break; 2688 } 2689 break; 2690 default: break; 2691 } 2692 2693 if (Opc != ISD::DELETED_NODE && 2694 (TLI.isOperationLegalOrCustom(Opc, VT) || 2695 (UseScalarMinMax && 2696 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2697 // If the underlying comparison instruction is used by any other 2698 // instruction, the consumed instructions won't be destroyed, so it is 2699 // not profitable to convert to a min/max. 2700 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2701 OpCode = Opc; 2702 LHSVal = getValue(LHS); 2703 RHSVal = getValue(RHS); 2704 BaseOps = {}; 2705 } 2706 } 2707 2708 for (unsigned i = 0; i != NumValues; ++i) { 2709 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2710 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2711 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2712 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2713 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2714 Ops); 2715 } 2716 2717 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2718 DAG.getVTList(ValueVTs), Values)); 2719 } 2720 2721 void SelectionDAGBuilder::visitTrunc(const User &I) { 2722 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2723 SDValue N = getValue(I.getOperand(0)); 2724 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2725 I.getType()); 2726 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2727 } 2728 2729 void SelectionDAGBuilder::visitZExt(const User &I) { 2730 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2731 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2732 SDValue N = getValue(I.getOperand(0)); 2733 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2734 I.getType()); 2735 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2736 } 2737 2738 void SelectionDAGBuilder::visitSExt(const User &I) { 2739 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2740 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2741 SDValue N = getValue(I.getOperand(0)); 2742 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2743 I.getType()); 2744 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2745 } 2746 2747 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2748 // FPTrunc is never a no-op cast, no need to check 2749 SDValue N = getValue(I.getOperand(0)); 2750 SDLoc dl = getCurSDLoc(); 2751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2752 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2753 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2754 DAG.getTargetConstant( 2755 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2756 } 2757 2758 void SelectionDAGBuilder::visitFPExt(const User &I) { 2759 // FPExt is never a no-op cast, no need to check 2760 SDValue N = getValue(I.getOperand(0)); 2761 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2762 I.getType()); 2763 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2764 } 2765 2766 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2767 // FPToUI is never a no-op cast, no need to check 2768 SDValue N = getValue(I.getOperand(0)); 2769 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2770 I.getType()); 2771 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2772 } 2773 2774 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2775 // FPToSI is never a no-op cast, no need to check 2776 SDValue N = getValue(I.getOperand(0)); 2777 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2778 I.getType()); 2779 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2780 } 2781 2782 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2783 // UIToFP is never a no-op cast, no need to check 2784 SDValue N = getValue(I.getOperand(0)); 2785 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2786 I.getType()); 2787 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2788 } 2789 2790 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2791 // SIToFP is never a no-op cast, no need to check 2792 SDValue N = getValue(I.getOperand(0)); 2793 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2794 I.getType()); 2795 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2796 } 2797 2798 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2799 // What to do depends on the size of the integer and the size of the pointer. 2800 // We can either truncate, zero extend, or no-op, accordingly. 2801 SDValue N = getValue(I.getOperand(0)); 2802 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2803 I.getType()); 2804 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2805 } 2806 2807 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2808 // What to do depends on the size of the integer and the size of the pointer. 2809 // We can either truncate, zero extend, or no-op, accordingly. 2810 SDValue N = getValue(I.getOperand(0)); 2811 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2812 I.getType()); 2813 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2814 } 2815 2816 void SelectionDAGBuilder::visitBitCast(const User &I) { 2817 SDValue N = getValue(I.getOperand(0)); 2818 SDLoc dl = getCurSDLoc(); 2819 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2820 I.getType()); 2821 2822 // BitCast assures us that source and destination are the same size so this is 2823 // either a BITCAST or a no-op. 2824 if (DestVT != N.getValueType()) 2825 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2826 DestVT, N)); // convert types. 2827 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2828 // might fold any kind of constant expression to an integer constant and that 2829 // is not what we are looking for. Only regcognize a bitcast of a genuine 2830 // constant integer as an opaque constant. 2831 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2832 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2833 /*isOpaque*/true)); 2834 else 2835 setValue(&I, N); // noop cast. 2836 } 2837 2838 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 const Value *SV = I.getOperand(0); 2841 SDValue N = getValue(SV); 2842 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2843 2844 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2845 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2846 2847 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2848 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2849 2850 setValue(&I, N); 2851 } 2852 2853 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2855 SDValue InVec = getValue(I.getOperand(0)); 2856 SDValue InVal = getValue(I.getOperand(1)); 2857 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2858 TLI.getVectorIdxTy(DAG.getDataLayout())); 2859 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2860 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2861 InVec, InVal, InIdx)); 2862 } 2863 2864 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2866 SDValue InVec = getValue(I.getOperand(0)); 2867 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2868 TLI.getVectorIdxTy(DAG.getDataLayout())); 2869 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2870 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2871 InVec, InIdx)); 2872 } 2873 2874 // Utility for visitShuffleVector - Return true if every element in Mask, 2875 // beginning from position Pos and ending in Pos+Size, falls within the 2876 // specified sequential range [L, L+Pos). or is undef. 2877 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2878 unsigned Pos, unsigned Size, int Low) { 2879 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2880 if (Mask[i] >= 0 && Mask[i] != Low) 2881 return false; 2882 return true; 2883 } 2884 2885 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2886 SDValue Src1 = getValue(I.getOperand(0)); 2887 SDValue Src2 = getValue(I.getOperand(1)); 2888 2889 SmallVector<int, 8> Mask; 2890 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2891 unsigned MaskNumElts = Mask.size(); 2892 2893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2894 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2895 EVT SrcVT = Src1.getValueType(); 2896 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2897 2898 if (SrcNumElts == MaskNumElts) { 2899 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2900 &Mask[0])); 2901 return; 2902 } 2903 2904 // Normalize the shuffle vector since mask and vector length don't match. 2905 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2906 // Mask is longer than the source vectors and is a multiple of the source 2907 // vectors. We can use concatenate vector to make the mask and vectors 2908 // lengths match. 2909 if (SrcNumElts*2 == MaskNumElts) { 2910 // First check for Src1 in low and Src2 in high 2911 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2912 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2913 // The shuffle is concatenating two vectors together. 2914 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2915 VT, Src1, Src2)); 2916 return; 2917 } 2918 // Then check for Src2 in low and Src1 in high 2919 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2920 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2921 // The shuffle is concatenating two vectors together. 2922 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2923 VT, Src2, Src1)); 2924 return; 2925 } 2926 } 2927 2928 // Pad both vectors with undefs to make them the same length as the mask. 2929 unsigned NumConcat = MaskNumElts / SrcNumElts; 2930 bool Src1U = Src1.isUndef(); 2931 bool Src2U = Src2.isUndef(); 2932 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2933 2934 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2935 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2936 MOps1[0] = Src1; 2937 MOps2[0] = Src2; 2938 2939 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2940 getCurSDLoc(), VT, MOps1); 2941 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2942 getCurSDLoc(), VT, MOps2); 2943 2944 // Readjust mask for new input vector length. 2945 SmallVector<int, 8> MappedOps; 2946 for (unsigned i = 0; i != MaskNumElts; ++i) { 2947 int Idx = Mask[i]; 2948 if (Idx >= (int)SrcNumElts) 2949 Idx -= SrcNumElts - MaskNumElts; 2950 MappedOps.push_back(Idx); 2951 } 2952 2953 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2954 &MappedOps[0])); 2955 return; 2956 } 2957 2958 if (SrcNumElts > MaskNumElts) { 2959 // Analyze the access pattern of the vector to see if we can extract 2960 // two subvectors and do the shuffle. The analysis is done by calculating 2961 // the range of elements the mask access on both vectors. 2962 int MinRange[2] = { static_cast<int>(SrcNumElts), 2963 static_cast<int>(SrcNumElts)}; 2964 int MaxRange[2] = {-1, -1}; 2965 2966 for (unsigned i = 0; i != MaskNumElts; ++i) { 2967 int Idx = Mask[i]; 2968 unsigned Input = 0; 2969 if (Idx < 0) 2970 continue; 2971 2972 if (Idx >= (int)SrcNumElts) { 2973 Input = 1; 2974 Idx -= SrcNumElts; 2975 } 2976 if (Idx > MaxRange[Input]) 2977 MaxRange[Input] = Idx; 2978 if (Idx < MinRange[Input]) 2979 MinRange[Input] = Idx; 2980 } 2981 2982 // Check if the access is smaller than the vector size and can we find 2983 // a reasonable extract index. 2984 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2985 // Extract. 2986 int StartIdx[2]; // StartIdx to extract from 2987 for (unsigned Input = 0; Input < 2; ++Input) { 2988 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2989 RangeUse[Input] = 0; // Unused 2990 StartIdx[Input] = 0; 2991 continue; 2992 } 2993 2994 // Find a good start index that is a multiple of the mask length. Then 2995 // see if the rest of the elements are in range. 2996 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2997 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2998 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2999 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3000 } 3001 3002 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3003 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3004 return; 3005 } 3006 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3007 // Extract appropriate subvector and generate a vector shuffle 3008 for (unsigned Input = 0; Input < 2; ++Input) { 3009 SDValue &Src = Input == 0 ? Src1 : Src2; 3010 if (RangeUse[Input] == 0) 3011 Src = DAG.getUNDEF(VT); 3012 else { 3013 SDLoc dl = getCurSDLoc(); 3014 Src = DAG.getNode( 3015 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3016 DAG.getConstant(StartIdx[Input], dl, 3017 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3018 } 3019 } 3020 3021 // Calculate new mask. 3022 SmallVector<int, 8> MappedOps; 3023 for (unsigned i = 0; i != MaskNumElts; ++i) { 3024 int Idx = Mask[i]; 3025 if (Idx >= 0) { 3026 if (Idx < (int)SrcNumElts) 3027 Idx -= StartIdx[0]; 3028 else 3029 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3030 } 3031 MappedOps.push_back(Idx); 3032 } 3033 3034 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3035 &MappedOps[0])); 3036 return; 3037 } 3038 } 3039 3040 // We can't use either concat vectors or extract subvectors so fall back to 3041 // replacing the shuffle with extract and build vector. 3042 // to insert and build vector. 3043 EVT EltVT = VT.getVectorElementType(); 3044 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3045 SDLoc dl = getCurSDLoc(); 3046 SmallVector<SDValue,8> Ops; 3047 for (unsigned i = 0; i != MaskNumElts; ++i) { 3048 int Idx = Mask[i]; 3049 SDValue Res; 3050 3051 if (Idx < 0) { 3052 Res = DAG.getUNDEF(EltVT); 3053 } else { 3054 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3055 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3056 3057 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3058 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3059 } 3060 3061 Ops.push_back(Res); 3062 } 3063 3064 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3065 } 3066 3067 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3068 const Value *Op0 = I.getOperand(0); 3069 const Value *Op1 = I.getOperand(1); 3070 Type *AggTy = I.getType(); 3071 Type *ValTy = Op1->getType(); 3072 bool IntoUndef = isa<UndefValue>(Op0); 3073 bool FromUndef = isa<UndefValue>(Op1); 3074 3075 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3076 3077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3078 SmallVector<EVT, 4> AggValueVTs; 3079 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3080 SmallVector<EVT, 4> ValValueVTs; 3081 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3082 3083 unsigned NumAggValues = AggValueVTs.size(); 3084 unsigned NumValValues = ValValueVTs.size(); 3085 SmallVector<SDValue, 4> Values(NumAggValues); 3086 3087 // Ignore an insertvalue that produces an empty object 3088 if (!NumAggValues) { 3089 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3090 return; 3091 } 3092 3093 SDValue Agg = getValue(Op0); 3094 unsigned i = 0; 3095 // Copy the beginning value(s) from the original aggregate. 3096 for (; i != LinearIndex; ++i) 3097 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3098 SDValue(Agg.getNode(), Agg.getResNo() + i); 3099 // Copy values from the inserted value(s). 3100 if (NumValValues) { 3101 SDValue Val = getValue(Op1); 3102 for (; i != LinearIndex + NumValValues; ++i) 3103 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3104 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3105 } 3106 // Copy remaining value(s) from the original aggregate. 3107 for (; i != NumAggValues; ++i) 3108 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3109 SDValue(Agg.getNode(), Agg.getResNo() + i); 3110 3111 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3112 DAG.getVTList(AggValueVTs), Values)); 3113 } 3114 3115 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3116 const Value *Op0 = I.getOperand(0); 3117 Type *AggTy = Op0->getType(); 3118 Type *ValTy = I.getType(); 3119 bool OutOfUndef = isa<UndefValue>(Op0); 3120 3121 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3122 3123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3124 SmallVector<EVT, 4> ValValueVTs; 3125 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3126 3127 unsigned NumValValues = ValValueVTs.size(); 3128 3129 // Ignore a extractvalue that produces an empty object 3130 if (!NumValValues) { 3131 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3132 return; 3133 } 3134 3135 SmallVector<SDValue, 4> Values(NumValValues); 3136 3137 SDValue Agg = getValue(Op0); 3138 // Copy out the selected value(s). 3139 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3140 Values[i - LinearIndex] = 3141 OutOfUndef ? 3142 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3143 SDValue(Agg.getNode(), Agg.getResNo() + i); 3144 3145 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3146 DAG.getVTList(ValValueVTs), Values)); 3147 } 3148 3149 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3150 Value *Op0 = I.getOperand(0); 3151 // Note that the pointer operand may be a vector of pointers. Take the scalar 3152 // element which holds a pointer. 3153 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3154 SDValue N = getValue(Op0); 3155 SDLoc dl = getCurSDLoc(); 3156 3157 // Normalize Vector GEP - all scalar operands should be converted to the 3158 // splat vector. 3159 unsigned VectorWidth = I.getType()->isVectorTy() ? 3160 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3161 3162 if (VectorWidth && !N.getValueType().isVector()) { 3163 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3164 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3165 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3166 } 3167 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3168 GTI != E; ++GTI) { 3169 const Value *Idx = GTI.getOperand(); 3170 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3171 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3172 if (Field) { 3173 // N = N + Offset 3174 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3175 3176 // In an inbouds GEP with an offset that is nonnegative even when 3177 // interpreted as signed, assume there is no unsigned overflow. 3178 SDNodeFlags Flags; 3179 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3180 Flags.setNoUnsignedWrap(true); 3181 3182 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3183 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3184 } 3185 } else { 3186 MVT PtrTy = 3187 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3188 unsigned PtrSize = PtrTy.getSizeInBits(); 3189 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3190 3191 // If this is a scalar constant or a splat vector of constants, 3192 // handle it quickly. 3193 const auto *CI = dyn_cast<ConstantInt>(Idx); 3194 if (!CI && isa<ConstantDataVector>(Idx) && 3195 cast<ConstantDataVector>(Idx)->getSplatValue()) 3196 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3197 3198 if (CI) { 3199 if (CI->isZero()) 3200 continue; 3201 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3202 SDValue OffsVal = VectorWidth ? 3203 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3204 DAG.getConstant(Offs, dl, PtrTy); 3205 3206 // In an inbouds GEP with an offset that is nonnegative even when 3207 // interpreted as signed, assume there is no unsigned overflow. 3208 SDNodeFlags Flags; 3209 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3210 Flags.setNoUnsignedWrap(true); 3211 3212 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3213 continue; 3214 } 3215 3216 // N = N + Idx * ElementSize; 3217 SDValue IdxN = getValue(Idx); 3218 3219 if (!IdxN.getValueType().isVector() && VectorWidth) { 3220 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3221 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3222 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3223 } 3224 // If the index is smaller or larger than intptr_t, truncate or extend 3225 // it. 3226 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3227 3228 // If this is a multiply by a power of two, turn it into a shl 3229 // immediately. This is a very common case. 3230 if (ElementSize != 1) { 3231 if (ElementSize.isPowerOf2()) { 3232 unsigned Amt = ElementSize.logBase2(); 3233 IdxN = DAG.getNode(ISD::SHL, dl, 3234 N.getValueType(), IdxN, 3235 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3236 } else { 3237 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3238 IdxN = DAG.getNode(ISD::MUL, dl, 3239 N.getValueType(), IdxN, Scale); 3240 } 3241 } 3242 3243 N = DAG.getNode(ISD::ADD, dl, 3244 N.getValueType(), N, IdxN); 3245 } 3246 } 3247 3248 setValue(&I, N); 3249 } 3250 3251 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3252 // If this is a fixed sized alloca in the entry block of the function, 3253 // allocate it statically on the stack. 3254 if (FuncInfo.StaticAllocaMap.count(&I)) 3255 return; // getValue will auto-populate this. 3256 3257 SDLoc dl = getCurSDLoc(); 3258 Type *Ty = I.getAllocatedType(); 3259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3260 auto &DL = DAG.getDataLayout(); 3261 uint64_t TySize = DL.getTypeAllocSize(Ty); 3262 unsigned Align = 3263 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3264 3265 SDValue AllocSize = getValue(I.getArraySize()); 3266 3267 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3268 if (AllocSize.getValueType() != IntPtr) 3269 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3270 3271 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3272 AllocSize, 3273 DAG.getConstant(TySize, dl, IntPtr)); 3274 3275 // Handle alignment. If the requested alignment is less than or equal to 3276 // the stack alignment, ignore it. If the size is greater than or equal to 3277 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3278 unsigned StackAlign = 3279 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3280 if (Align <= StackAlign) 3281 Align = 0; 3282 3283 // Round the size of the allocation up to the stack alignment size 3284 // by add SA-1 to the size. This doesn't overflow because we're computing 3285 // an address inside an alloca. 3286 SDNodeFlags Flags; 3287 Flags.setNoUnsignedWrap(true); 3288 AllocSize = DAG.getNode(ISD::ADD, dl, 3289 AllocSize.getValueType(), AllocSize, 3290 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3291 3292 // Mask out the low bits for alignment purposes. 3293 AllocSize = DAG.getNode(ISD::AND, dl, 3294 AllocSize.getValueType(), AllocSize, 3295 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3296 dl)); 3297 3298 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3299 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3300 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3301 setValue(&I, DSA); 3302 DAG.setRoot(DSA.getValue(1)); 3303 3304 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3305 } 3306 3307 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3308 if (I.isAtomic()) 3309 return visitAtomicLoad(I); 3310 3311 const Value *SV = I.getOperand(0); 3312 SDValue Ptr = getValue(SV); 3313 3314 Type *Ty = I.getType(); 3315 3316 bool isVolatile = I.isVolatile(); 3317 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3318 3319 // The IR notion of invariant_load only guarantees that all *non-faulting* 3320 // invariant loads result in the same value. The MI notion of invariant load 3321 // guarantees that the load can be legally moved to any location within its 3322 // containing function. The MI notion of invariant_load is stronger than the 3323 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3324 // with a guarantee that the location being loaded from is dereferenceable 3325 // throughout the function's lifetime. 3326 3327 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3328 isDereferenceablePointer(SV, DAG.getDataLayout()); 3329 unsigned Alignment = I.getAlignment(); 3330 3331 AAMDNodes AAInfo; 3332 I.getAAMetadata(AAInfo); 3333 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3334 3335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3336 SmallVector<EVT, 4> ValueVTs; 3337 SmallVector<uint64_t, 4> Offsets; 3338 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3339 unsigned NumValues = ValueVTs.size(); 3340 if (NumValues == 0) 3341 return; 3342 3343 SDValue Root; 3344 bool ConstantMemory = false; 3345 if (isVolatile || NumValues > MaxParallelChains) 3346 // Serialize volatile loads with other side effects. 3347 Root = getRoot(); 3348 else if (AA->pointsToConstantMemory(MemoryLocation( 3349 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3350 // Do not serialize (non-volatile) loads of constant memory with anything. 3351 Root = DAG.getEntryNode(); 3352 ConstantMemory = true; 3353 } else { 3354 // Do not serialize non-volatile loads against each other. 3355 Root = DAG.getRoot(); 3356 } 3357 3358 SDLoc dl = getCurSDLoc(); 3359 3360 if (isVolatile) 3361 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3362 3363 // An aggregate load cannot wrap around the address space, so offsets to its 3364 // parts don't wrap either. 3365 SDNodeFlags Flags; 3366 Flags.setNoUnsignedWrap(true); 3367 3368 SmallVector<SDValue, 4> Values(NumValues); 3369 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3370 EVT PtrVT = Ptr.getValueType(); 3371 unsigned ChainI = 0; 3372 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3373 // Serializing loads here may result in excessive register pressure, and 3374 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3375 // could recover a bit by hoisting nodes upward in the chain by recognizing 3376 // they are side-effect free or do not alias. The optimizer should really 3377 // avoid this case by converting large object/array copies to llvm.memcpy 3378 // (MaxParallelChains should always remain as failsafe). 3379 if (ChainI == MaxParallelChains) { 3380 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3381 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3382 makeArrayRef(Chains.data(), ChainI)); 3383 Root = Chain; 3384 ChainI = 0; 3385 } 3386 SDValue A = DAG.getNode(ISD::ADD, dl, 3387 PtrVT, Ptr, 3388 DAG.getConstant(Offsets[i], dl, PtrVT), 3389 &Flags); 3390 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3391 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3392 isNonTemporal, isInvariant, Alignment, AAInfo, 3393 Ranges); 3394 3395 Values[i] = L; 3396 Chains[ChainI] = L.getValue(1); 3397 } 3398 3399 if (!ConstantMemory) { 3400 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3401 makeArrayRef(Chains.data(), ChainI)); 3402 if (isVolatile) 3403 DAG.setRoot(Chain); 3404 else 3405 PendingLoads.push_back(Chain); 3406 } 3407 3408 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3409 DAG.getVTList(ValueVTs), Values)); 3410 } 3411 3412 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3413 if (I.isAtomic()) 3414 return visitAtomicStore(I); 3415 3416 const Value *SrcV = I.getOperand(0); 3417 const Value *PtrV = I.getOperand(1); 3418 3419 SmallVector<EVT, 4> ValueVTs; 3420 SmallVector<uint64_t, 4> Offsets; 3421 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3422 SrcV->getType(), ValueVTs, &Offsets); 3423 unsigned NumValues = ValueVTs.size(); 3424 if (NumValues == 0) 3425 return; 3426 3427 // Get the lowered operands. Note that we do this after 3428 // checking if NumResults is zero, because with zero results 3429 // the operands won't have values in the map. 3430 SDValue Src = getValue(SrcV); 3431 SDValue Ptr = getValue(PtrV); 3432 3433 SDValue Root = getRoot(); 3434 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3435 EVT PtrVT = Ptr.getValueType(); 3436 bool isVolatile = I.isVolatile(); 3437 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3438 unsigned Alignment = I.getAlignment(); 3439 SDLoc dl = getCurSDLoc(); 3440 3441 AAMDNodes AAInfo; 3442 I.getAAMetadata(AAInfo); 3443 3444 // An aggregate load cannot wrap around the address space, so offsets to its 3445 // parts don't wrap either. 3446 SDNodeFlags Flags; 3447 Flags.setNoUnsignedWrap(true); 3448 3449 unsigned ChainI = 0; 3450 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3451 // See visitLoad comments. 3452 if (ChainI == MaxParallelChains) { 3453 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3454 makeArrayRef(Chains.data(), ChainI)); 3455 Root = Chain; 3456 ChainI = 0; 3457 } 3458 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3459 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3460 SDValue St = DAG.getStore(Root, dl, 3461 SDValue(Src.getNode(), Src.getResNo() + i), 3462 Add, MachinePointerInfo(PtrV, Offsets[i]), 3463 isVolatile, isNonTemporal, Alignment, AAInfo); 3464 Chains[ChainI] = St; 3465 } 3466 3467 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3468 makeArrayRef(Chains.data(), ChainI)); 3469 DAG.setRoot(StoreNode); 3470 } 3471 3472 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3473 SDLoc sdl = getCurSDLoc(); 3474 3475 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3476 Value *PtrOperand = I.getArgOperand(1); 3477 SDValue Ptr = getValue(PtrOperand); 3478 SDValue Src0 = getValue(I.getArgOperand(0)); 3479 SDValue Mask = getValue(I.getArgOperand(3)); 3480 EVT VT = Src0.getValueType(); 3481 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3482 if (!Alignment) 3483 Alignment = DAG.getEVTAlignment(VT); 3484 3485 AAMDNodes AAInfo; 3486 I.getAAMetadata(AAInfo); 3487 3488 MachineMemOperand *MMO = 3489 DAG.getMachineFunction(). 3490 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3491 MachineMemOperand::MOStore, VT.getStoreSize(), 3492 Alignment, AAInfo); 3493 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3494 MMO, false); 3495 DAG.setRoot(StoreNode); 3496 setValue(&I, StoreNode); 3497 } 3498 3499 // Get a uniform base for the Gather/Scatter intrinsic. 3500 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3501 // We try to represent it as a base pointer + vector of indices. 3502 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3503 // The first operand of the GEP may be a single pointer or a vector of pointers 3504 // Example: 3505 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3506 // or 3507 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3508 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3509 // 3510 // When the first GEP operand is a single pointer - it is the uniform base we 3511 // are looking for. If first operand of the GEP is a splat vector - we 3512 // extract the spalt value and use it as a uniform base. 3513 // In all other cases the function returns 'false'. 3514 // 3515 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3516 SelectionDAGBuilder* SDB) { 3517 3518 SelectionDAG& DAG = SDB->DAG; 3519 LLVMContext &Context = *DAG.getContext(); 3520 3521 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3522 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3523 if (!GEP || GEP->getNumOperands() > 2) 3524 return false; 3525 3526 const Value *GEPPtr = GEP->getPointerOperand(); 3527 if (!GEPPtr->getType()->isVectorTy()) 3528 Ptr = GEPPtr; 3529 else if (!(Ptr = getSplatValue(GEPPtr))) 3530 return false; 3531 3532 Value *IndexVal = GEP->getOperand(1); 3533 3534 // The operands of the GEP may be defined in another basic block. 3535 // In this case we'll not find nodes for the operands. 3536 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3537 return false; 3538 3539 Base = SDB->getValue(Ptr); 3540 Index = SDB->getValue(IndexVal); 3541 3542 // Suppress sign extension. 3543 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3544 if (SDB->findValue(Sext->getOperand(0))) { 3545 IndexVal = Sext->getOperand(0); 3546 Index = SDB->getValue(IndexVal); 3547 } 3548 } 3549 if (!Index.getValueType().isVector()) { 3550 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3551 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3552 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3553 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3554 } 3555 return true; 3556 } 3557 3558 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3559 SDLoc sdl = getCurSDLoc(); 3560 3561 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3562 const Value *Ptr = I.getArgOperand(1); 3563 SDValue Src0 = getValue(I.getArgOperand(0)); 3564 SDValue Mask = getValue(I.getArgOperand(3)); 3565 EVT VT = Src0.getValueType(); 3566 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3567 if (!Alignment) 3568 Alignment = DAG.getEVTAlignment(VT); 3569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3570 3571 AAMDNodes AAInfo; 3572 I.getAAMetadata(AAInfo); 3573 3574 SDValue Base; 3575 SDValue Index; 3576 const Value *BasePtr = Ptr; 3577 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3578 3579 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3580 MachineMemOperand *MMO = DAG.getMachineFunction(). 3581 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3582 MachineMemOperand::MOStore, VT.getStoreSize(), 3583 Alignment, AAInfo); 3584 if (!UniformBase) { 3585 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3586 Index = getValue(Ptr); 3587 } 3588 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3589 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3590 Ops, MMO); 3591 DAG.setRoot(Scatter); 3592 setValue(&I, Scatter); 3593 } 3594 3595 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3596 SDLoc sdl = getCurSDLoc(); 3597 3598 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3599 Value *PtrOperand = I.getArgOperand(0); 3600 SDValue Ptr = getValue(PtrOperand); 3601 SDValue Src0 = getValue(I.getArgOperand(3)); 3602 SDValue Mask = getValue(I.getArgOperand(2)); 3603 3604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3605 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3606 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3607 if (!Alignment) 3608 Alignment = DAG.getEVTAlignment(VT); 3609 3610 AAMDNodes AAInfo; 3611 I.getAAMetadata(AAInfo); 3612 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3613 3614 SDValue InChain = DAG.getRoot(); 3615 if (AA->pointsToConstantMemory(MemoryLocation( 3616 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3617 AAInfo))) { 3618 // Do not serialize (non-volatile) loads of constant memory with anything. 3619 InChain = DAG.getEntryNode(); 3620 } 3621 3622 MachineMemOperand *MMO = 3623 DAG.getMachineFunction(). 3624 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3625 MachineMemOperand::MOLoad, VT.getStoreSize(), 3626 Alignment, AAInfo, Ranges); 3627 3628 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3629 ISD::NON_EXTLOAD); 3630 SDValue OutChain = Load.getValue(1); 3631 DAG.setRoot(OutChain); 3632 setValue(&I, Load); 3633 } 3634 3635 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3636 SDLoc sdl = getCurSDLoc(); 3637 3638 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3639 const Value *Ptr = I.getArgOperand(0); 3640 SDValue Src0 = getValue(I.getArgOperand(3)); 3641 SDValue Mask = getValue(I.getArgOperand(2)); 3642 3643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3644 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3645 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3646 if (!Alignment) 3647 Alignment = DAG.getEVTAlignment(VT); 3648 3649 AAMDNodes AAInfo; 3650 I.getAAMetadata(AAInfo); 3651 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3652 3653 SDValue Root = DAG.getRoot(); 3654 SDValue Base; 3655 SDValue Index; 3656 const Value *BasePtr = Ptr; 3657 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3658 bool ConstantMemory = false; 3659 if (UniformBase && 3660 AA->pointsToConstantMemory(MemoryLocation( 3661 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3662 AAInfo))) { 3663 // Do not serialize (non-volatile) loads of constant memory with anything. 3664 Root = DAG.getEntryNode(); 3665 ConstantMemory = true; 3666 } 3667 3668 MachineMemOperand *MMO = 3669 DAG.getMachineFunction(). 3670 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3671 MachineMemOperand::MOLoad, VT.getStoreSize(), 3672 Alignment, AAInfo, Ranges); 3673 3674 if (!UniformBase) { 3675 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3676 Index = getValue(Ptr); 3677 } 3678 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3679 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3680 Ops, MMO); 3681 3682 SDValue OutChain = Gather.getValue(1); 3683 if (!ConstantMemory) 3684 PendingLoads.push_back(OutChain); 3685 setValue(&I, Gather); 3686 } 3687 3688 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3689 SDLoc dl = getCurSDLoc(); 3690 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3691 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3692 SynchronizationScope Scope = I.getSynchScope(); 3693 3694 SDValue InChain = getRoot(); 3695 3696 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3697 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3698 SDValue L = DAG.getAtomicCmpSwap( 3699 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3700 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3701 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3702 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3703 3704 SDValue OutChain = L.getValue(2); 3705 3706 setValue(&I, L); 3707 DAG.setRoot(OutChain); 3708 } 3709 3710 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3711 SDLoc dl = getCurSDLoc(); 3712 ISD::NodeType NT; 3713 switch (I.getOperation()) { 3714 default: llvm_unreachable("Unknown atomicrmw operation"); 3715 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3716 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3717 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3718 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3719 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3720 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3721 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3722 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3723 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3724 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3725 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3726 } 3727 AtomicOrdering Order = I.getOrdering(); 3728 SynchronizationScope Scope = I.getSynchScope(); 3729 3730 SDValue InChain = getRoot(); 3731 3732 SDValue L = 3733 DAG.getAtomic(NT, dl, 3734 getValue(I.getValOperand()).getSimpleValueType(), 3735 InChain, 3736 getValue(I.getPointerOperand()), 3737 getValue(I.getValOperand()), 3738 I.getPointerOperand(), 3739 /* Alignment=*/ 0, Order, Scope); 3740 3741 SDValue OutChain = L.getValue(1); 3742 3743 setValue(&I, L); 3744 DAG.setRoot(OutChain); 3745 } 3746 3747 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3748 SDLoc dl = getCurSDLoc(); 3749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3750 SDValue Ops[3]; 3751 Ops[0] = getRoot(); 3752 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3753 TLI.getPointerTy(DAG.getDataLayout())); 3754 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3755 TLI.getPointerTy(DAG.getDataLayout())); 3756 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3757 } 3758 3759 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3760 SDLoc dl = getCurSDLoc(); 3761 AtomicOrdering Order = I.getOrdering(); 3762 SynchronizationScope Scope = I.getSynchScope(); 3763 3764 SDValue InChain = getRoot(); 3765 3766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3767 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3768 3769 if (I.getAlignment() < VT.getSizeInBits() / 8) 3770 report_fatal_error("Cannot generate unaligned atomic load"); 3771 3772 MachineMemOperand *MMO = 3773 DAG.getMachineFunction(). 3774 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3775 MachineMemOperand::MOVolatile | 3776 MachineMemOperand::MOLoad, 3777 VT.getStoreSize(), 3778 I.getAlignment() ? I.getAlignment() : 3779 DAG.getEVTAlignment(VT)); 3780 3781 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3782 SDValue L = 3783 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3784 getValue(I.getPointerOperand()), MMO, 3785 Order, Scope); 3786 3787 SDValue OutChain = L.getValue(1); 3788 3789 setValue(&I, L); 3790 DAG.setRoot(OutChain); 3791 } 3792 3793 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3794 SDLoc dl = getCurSDLoc(); 3795 3796 AtomicOrdering Order = I.getOrdering(); 3797 SynchronizationScope Scope = I.getSynchScope(); 3798 3799 SDValue InChain = getRoot(); 3800 3801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3802 EVT VT = 3803 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3804 3805 if (I.getAlignment() < VT.getSizeInBits() / 8) 3806 report_fatal_error("Cannot generate unaligned atomic store"); 3807 3808 SDValue OutChain = 3809 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3810 InChain, 3811 getValue(I.getPointerOperand()), 3812 getValue(I.getValueOperand()), 3813 I.getPointerOperand(), I.getAlignment(), 3814 Order, Scope); 3815 3816 DAG.setRoot(OutChain); 3817 } 3818 3819 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3820 /// node. 3821 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3822 unsigned Intrinsic) { 3823 bool HasChain = !I.doesNotAccessMemory(); 3824 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3825 3826 // Build the operand list. 3827 SmallVector<SDValue, 8> Ops; 3828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3829 if (OnlyLoad) { 3830 // We don't need to serialize loads against other loads. 3831 Ops.push_back(DAG.getRoot()); 3832 } else { 3833 Ops.push_back(getRoot()); 3834 } 3835 } 3836 3837 // Info is set by getTgtMemInstrinsic 3838 TargetLowering::IntrinsicInfo Info; 3839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3840 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3841 3842 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3843 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3844 Info.opc == ISD::INTRINSIC_W_CHAIN) 3845 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3846 TLI.getPointerTy(DAG.getDataLayout()))); 3847 3848 // Add all operands of the call to the operand list. 3849 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3850 SDValue Op = getValue(I.getArgOperand(i)); 3851 Ops.push_back(Op); 3852 } 3853 3854 SmallVector<EVT, 4> ValueVTs; 3855 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3856 3857 if (HasChain) 3858 ValueVTs.push_back(MVT::Other); 3859 3860 SDVTList VTs = DAG.getVTList(ValueVTs); 3861 3862 // Create the node. 3863 SDValue Result; 3864 if (IsTgtIntrinsic) { 3865 // This is target intrinsic that touches memory 3866 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3867 VTs, Ops, Info.memVT, 3868 MachinePointerInfo(Info.ptrVal, Info.offset), 3869 Info.align, Info.vol, 3870 Info.readMem, Info.writeMem, Info.size); 3871 } else if (!HasChain) { 3872 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3873 } else if (!I.getType()->isVoidTy()) { 3874 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3875 } else { 3876 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3877 } 3878 3879 if (HasChain) { 3880 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3881 if (OnlyLoad) 3882 PendingLoads.push_back(Chain); 3883 else 3884 DAG.setRoot(Chain); 3885 } 3886 3887 if (!I.getType()->isVoidTy()) { 3888 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3889 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3890 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3891 } else 3892 Result = lowerRangeToAssertZExt(DAG, I, Result); 3893 3894 setValue(&I, Result); 3895 } 3896 } 3897 3898 /// GetSignificand - Get the significand and build it into a floating-point 3899 /// number with exponent of 1: 3900 /// 3901 /// Op = (Op & 0x007fffff) | 0x3f800000; 3902 /// 3903 /// where Op is the hexadecimal representation of floating point value. 3904 static SDValue 3905 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3906 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3907 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3908 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3909 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3910 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3911 } 3912 3913 /// GetExponent - Get the exponent: 3914 /// 3915 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3916 /// 3917 /// where Op is the hexadecimal representation of floating point value. 3918 static SDValue 3919 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3920 SDLoc dl) { 3921 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3922 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3923 SDValue t1 = DAG.getNode( 3924 ISD::SRL, dl, MVT::i32, t0, 3925 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3926 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3927 DAG.getConstant(127, dl, MVT::i32)); 3928 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3929 } 3930 3931 /// getF32Constant - Get 32-bit floating point constant. 3932 static SDValue 3933 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3934 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3935 MVT::f32); 3936 } 3937 3938 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3939 SelectionDAG &DAG) { 3940 // TODO: What fast-math-flags should be set on the floating-point nodes? 3941 3942 // IntegerPartOfX = ((int32_t)(t0); 3943 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3944 3945 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3946 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3947 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3948 3949 // IntegerPartOfX <<= 23; 3950 IntegerPartOfX = DAG.getNode( 3951 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3952 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3953 DAG.getDataLayout()))); 3954 3955 SDValue TwoToFractionalPartOfX; 3956 if (LimitFloatPrecision <= 6) { 3957 // For floating-point precision of 6: 3958 // 3959 // TwoToFractionalPartOfX = 3960 // 0.997535578f + 3961 // (0.735607626f + 0.252464424f * x) * x; 3962 // 3963 // error 0.0144103317, which is 6 bits 3964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3965 getF32Constant(DAG, 0x3e814304, dl)); 3966 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3967 getF32Constant(DAG, 0x3f3c50c8, dl)); 3968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3969 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3970 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3971 } else if (LimitFloatPrecision <= 12) { 3972 // For floating-point precision of 12: 3973 // 3974 // TwoToFractionalPartOfX = 3975 // 0.999892986f + 3976 // (0.696457318f + 3977 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3978 // 3979 // error 0.000107046256, which is 13 to 14 bits 3980 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3981 getF32Constant(DAG, 0x3da235e3, dl)); 3982 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3983 getF32Constant(DAG, 0x3e65b8f3, dl)); 3984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3985 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3986 getF32Constant(DAG, 0x3f324b07, dl)); 3987 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3988 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3989 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3990 } else { // LimitFloatPrecision <= 18 3991 // For floating-point precision of 18: 3992 // 3993 // TwoToFractionalPartOfX = 3994 // 0.999999982f + 3995 // (0.693148872f + 3996 // (0.240227044f + 3997 // (0.554906021e-1f + 3998 // (0.961591928e-2f + 3999 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4000 // error 2.47208000*10^(-7), which is better than 18 bits 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4002 getF32Constant(DAG, 0x3924b03e, dl)); 4003 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4004 getF32Constant(DAG, 0x3ab24b87, dl)); 4005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4007 getF32Constant(DAG, 0x3c1d8c17, dl)); 4008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4009 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4010 getF32Constant(DAG, 0x3d634a1d, dl)); 4011 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4012 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4013 getF32Constant(DAG, 0x3e75fe14, dl)); 4014 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4015 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4016 getF32Constant(DAG, 0x3f317234, dl)); 4017 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4018 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4019 getF32Constant(DAG, 0x3f800000, dl)); 4020 } 4021 4022 // Add the exponent into the result in integer domain. 4023 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4024 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4025 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4026 } 4027 4028 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4029 /// limited-precision mode. 4030 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4031 const TargetLowering &TLI) { 4032 if (Op.getValueType() == MVT::f32 && 4033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4034 4035 // Put the exponent in the right bit position for later addition to the 4036 // final result: 4037 // 4038 // #define LOG2OFe 1.4426950f 4039 // t0 = Op * LOG2OFe 4040 4041 // TODO: What fast-math-flags should be set here? 4042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4043 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4044 return getLimitedPrecisionExp2(t0, dl, DAG); 4045 } 4046 4047 // No special expansion. 4048 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4049 } 4050 4051 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4052 /// limited-precision mode. 4053 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4054 const TargetLowering &TLI) { 4055 4056 // TODO: What fast-math-flags should be set on the floating-point nodes? 4057 4058 if (Op.getValueType() == MVT::f32 && 4059 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4060 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4061 4062 // Scale the exponent by log(2) [0.69314718f]. 4063 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4064 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4065 getF32Constant(DAG, 0x3f317218, dl)); 4066 4067 // Get the significand and build it into a floating-point number with 4068 // exponent of 1. 4069 SDValue X = GetSignificand(DAG, Op1, dl); 4070 4071 SDValue LogOfMantissa; 4072 if (LimitFloatPrecision <= 6) { 4073 // For floating-point precision of 6: 4074 // 4075 // LogofMantissa = 4076 // -1.1609546f + 4077 // (1.4034025f - 0.23903021f * x) * x; 4078 // 4079 // error 0.0034276066, which is better than 8 bits 4080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4081 getF32Constant(DAG, 0xbe74c456, dl)); 4082 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4083 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4085 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4086 getF32Constant(DAG, 0x3f949a29, dl)); 4087 } else if (LimitFloatPrecision <= 12) { 4088 // For floating-point precision of 12: 4089 // 4090 // LogOfMantissa = 4091 // -1.7417939f + 4092 // (2.8212026f + 4093 // (-1.4699568f + 4094 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4095 // 4096 // error 0.000061011436, which is 14 bits 4097 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4098 getF32Constant(DAG, 0xbd67b6d6, dl)); 4099 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4100 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4101 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4102 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4103 getF32Constant(DAG, 0x3fbc278b, dl)); 4104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4105 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4106 getF32Constant(DAG, 0x40348e95, dl)); 4107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4108 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4109 getF32Constant(DAG, 0x3fdef31a, dl)); 4110 } else { // LimitFloatPrecision <= 18 4111 // For floating-point precision of 18: 4112 // 4113 // LogOfMantissa = 4114 // -2.1072184f + 4115 // (4.2372794f + 4116 // (-3.7029485f + 4117 // (2.2781945f + 4118 // (-0.87823314f + 4119 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4120 // 4121 // error 0.0000023660568, which is better than 18 bits 4122 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4123 getF32Constant(DAG, 0xbc91e5ac, dl)); 4124 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4125 getF32Constant(DAG, 0x3e4350aa, dl)); 4126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4127 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4128 getF32Constant(DAG, 0x3f60d3e3, dl)); 4129 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4130 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4131 getF32Constant(DAG, 0x4011cdf0, dl)); 4132 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4133 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4134 getF32Constant(DAG, 0x406cfd1c, dl)); 4135 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4136 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4137 getF32Constant(DAG, 0x408797cb, dl)); 4138 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4139 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4140 getF32Constant(DAG, 0x4006dcab, dl)); 4141 } 4142 4143 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4144 } 4145 4146 // No special expansion. 4147 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4148 } 4149 4150 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4151 /// limited-precision mode. 4152 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4153 const TargetLowering &TLI) { 4154 4155 // TODO: What fast-math-flags should be set on the floating-point nodes? 4156 4157 if (Op.getValueType() == MVT::f32 && 4158 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4159 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4160 4161 // Get the exponent. 4162 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4163 4164 // Get the significand and build it into a floating-point number with 4165 // exponent of 1. 4166 SDValue X = GetSignificand(DAG, Op1, dl); 4167 4168 // Different possible minimax approximations of significand in 4169 // floating-point for various degrees of accuracy over [1,2]. 4170 SDValue Log2ofMantissa; 4171 if (LimitFloatPrecision <= 6) { 4172 // For floating-point precision of 6: 4173 // 4174 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4175 // 4176 // error 0.0049451742, which is more than 7 bits 4177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4178 getF32Constant(DAG, 0xbeb08fe0, dl)); 4179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4180 getF32Constant(DAG, 0x40019463, dl)); 4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4182 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4183 getF32Constant(DAG, 0x3fd6633d, dl)); 4184 } else if (LimitFloatPrecision <= 12) { 4185 // For floating-point precision of 12: 4186 // 4187 // Log2ofMantissa = 4188 // -2.51285454f + 4189 // (4.07009056f + 4190 // (-2.12067489f + 4191 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4192 // 4193 // error 0.0000876136000, which is better than 13 bits 4194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4195 getF32Constant(DAG, 0xbda7262e, dl)); 4196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4197 getF32Constant(DAG, 0x3f25280b, dl)); 4198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4199 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4200 getF32Constant(DAG, 0x4007b923, dl)); 4201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4203 getF32Constant(DAG, 0x40823e2f, dl)); 4204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4205 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4206 getF32Constant(DAG, 0x4020d29c, dl)); 4207 } else { // LimitFloatPrecision <= 18 4208 // For floating-point precision of 18: 4209 // 4210 // Log2ofMantissa = 4211 // -3.0400495f + 4212 // (6.1129976f + 4213 // (-5.3420409f + 4214 // (3.2865683f + 4215 // (-1.2669343f + 4216 // (0.27515199f - 4217 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4218 // 4219 // error 0.0000018516, which is better than 18 bits 4220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0xbcd2769e, dl)); 4222 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4223 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4225 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3fa22ae7, dl)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x40525723, dl)); 4230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4231 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4232 getF32Constant(DAG, 0x40aaf200, dl)); 4233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4234 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4235 getF32Constant(DAG, 0x40c39dad, dl)); 4236 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4237 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4238 getF32Constant(DAG, 0x4042902c, dl)); 4239 } 4240 4241 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4242 } 4243 4244 // No special expansion. 4245 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4246 } 4247 4248 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4249 /// limited-precision mode. 4250 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4251 const TargetLowering &TLI) { 4252 4253 // TODO: What fast-math-flags should be set on the floating-point nodes? 4254 4255 if (Op.getValueType() == MVT::f32 && 4256 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4257 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4258 4259 // Scale the exponent by log10(2) [0.30102999f]. 4260 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4261 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4262 getF32Constant(DAG, 0x3e9a209a, dl)); 4263 4264 // Get the significand and build it into a floating-point number with 4265 // exponent of 1. 4266 SDValue X = GetSignificand(DAG, Op1, dl); 4267 4268 SDValue Log10ofMantissa; 4269 if (LimitFloatPrecision <= 6) { 4270 // For floating-point precision of 6: 4271 // 4272 // Log10ofMantissa = 4273 // -0.50419619f + 4274 // (0.60948995f - 0.10380950f * x) * x; 4275 // 4276 // error 0.0014886165, which is 6 bits 4277 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4278 getF32Constant(DAG, 0xbdd49a13, dl)); 4279 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4280 getF32Constant(DAG, 0x3f1c0789, dl)); 4281 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4282 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4283 getF32Constant(DAG, 0x3f011300, dl)); 4284 } else if (LimitFloatPrecision <= 12) { 4285 // For floating-point precision of 12: 4286 // 4287 // Log10ofMantissa = 4288 // -0.64831180f + 4289 // (0.91751397f + 4290 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4291 // 4292 // error 0.00019228036, which is better than 12 bits 4293 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4294 getF32Constant(DAG, 0x3d431f31, dl)); 4295 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4296 getF32Constant(DAG, 0x3ea21fb2, dl)); 4297 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4298 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4299 getF32Constant(DAG, 0x3f6ae232, dl)); 4300 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4301 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4302 getF32Constant(DAG, 0x3f25f7c3, dl)); 4303 } else { // LimitFloatPrecision <= 18 4304 // For floating-point precision of 18: 4305 // 4306 // Log10ofMantissa = 4307 // -0.84299375f + 4308 // (1.5327582f + 4309 // (-1.0688956f + 4310 // (0.49102474f + 4311 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4312 // 4313 // error 0.0000037995730, which is better than 18 bits 4314 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4315 getF32Constant(DAG, 0x3c5d51ce, dl)); 4316 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4317 getF32Constant(DAG, 0x3e00685a, dl)); 4318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4319 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4320 getF32Constant(DAG, 0x3efb6798, dl)); 4321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4322 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4323 getF32Constant(DAG, 0x3f88d192, dl)); 4324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4325 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4326 getF32Constant(DAG, 0x3fc4316c, dl)); 4327 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4328 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4329 getF32Constant(DAG, 0x3f57ce70, dl)); 4330 } 4331 4332 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4333 } 4334 4335 // No special expansion. 4336 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4337 } 4338 4339 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4340 /// limited-precision mode. 4341 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4342 const TargetLowering &TLI) { 4343 if (Op.getValueType() == MVT::f32 && 4344 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4345 return getLimitedPrecisionExp2(Op, dl, DAG); 4346 4347 // No special expansion. 4348 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4349 } 4350 4351 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4352 /// limited-precision mode with x == 10.0f. 4353 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4354 SelectionDAG &DAG, const TargetLowering &TLI) { 4355 bool IsExp10 = false; 4356 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4357 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4358 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4359 APFloat Ten(10.0f); 4360 IsExp10 = LHSC->isExactlyValue(Ten); 4361 } 4362 } 4363 4364 // TODO: What fast-math-flags should be set on the FMUL node? 4365 if (IsExp10) { 4366 // Put the exponent in the right bit position for later addition to the 4367 // final result: 4368 // 4369 // #define LOG2OF10 3.3219281f 4370 // t0 = Op * LOG2OF10; 4371 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4372 getF32Constant(DAG, 0x40549a78, dl)); 4373 return getLimitedPrecisionExp2(t0, dl, DAG); 4374 } 4375 4376 // No special expansion. 4377 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4378 } 4379 4380 4381 /// ExpandPowI - Expand a llvm.powi intrinsic. 4382 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4383 SelectionDAG &DAG) { 4384 // If RHS is a constant, we can expand this out to a multiplication tree, 4385 // otherwise we end up lowering to a call to __powidf2 (for example). When 4386 // optimizing for size, we only want to do this if the expansion would produce 4387 // a small number of multiplies, otherwise we do the full expansion. 4388 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4389 // Get the exponent as a positive value. 4390 unsigned Val = RHSC->getSExtValue(); 4391 if ((int)Val < 0) Val = -Val; 4392 4393 // powi(x, 0) -> 1.0 4394 if (Val == 0) 4395 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4396 4397 const Function *F = DAG.getMachineFunction().getFunction(); 4398 if (!F->optForSize() || 4399 // If optimizing for size, don't insert too many multiplies. 4400 // This inserts up to 5 multiplies. 4401 countPopulation(Val) + Log2_32(Val) < 7) { 4402 // We use the simple binary decomposition method to generate the multiply 4403 // sequence. There are more optimal ways to do this (for example, 4404 // powi(x,15) generates one more multiply than it should), but this has 4405 // the benefit of being both really simple and much better than a libcall. 4406 SDValue Res; // Logically starts equal to 1.0 4407 SDValue CurSquare = LHS; 4408 // TODO: Intrinsics should have fast-math-flags that propagate to these 4409 // nodes. 4410 while (Val) { 4411 if (Val & 1) { 4412 if (Res.getNode()) 4413 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4414 else 4415 Res = CurSquare; // 1.0*CurSquare. 4416 } 4417 4418 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4419 CurSquare, CurSquare); 4420 Val >>= 1; 4421 } 4422 4423 // If the original was negative, invert the result, producing 1/(x*x*x). 4424 if (RHSC->getSExtValue() < 0) 4425 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4426 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4427 return Res; 4428 } 4429 } 4430 4431 // Otherwise, expand to a libcall. 4432 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4433 } 4434 4435 // getUnderlyingArgReg - Find underlying register used for a truncated or 4436 // bitcasted argument. 4437 static unsigned getUnderlyingArgReg(const SDValue &N) { 4438 switch (N.getOpcode()) { 4439 case ISD::CopyFromReg: 4440 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4441 case ISD::BITCAST: 4442 case ISD::AssertZext: 4443 case ISD::AssertSext: 4444 case ISD::TRUNCATE: 4445 return getUnderlyingArgReg(N.getOperand(0)); 4446 default: 4447 return 0; 4448 } 4449 } 4450 4451 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4452 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4453 /// At the end of instruction selection, they will be inserted to the entry BB. 4454 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4455 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4456 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4457 const Argument *Arg = dyn_cast<Argument>(V); 4458 if (!Arg) 4459 return false; 4460 4461 MachineFunction &MF = DAG.getMachineFunction(); 4462 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4463 4464 // Ignore inlined function arguments here. 4465 // 4466 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4467 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4468 return false; 4469 4470 Optional<MachineOperand> Op; 4471 // Some arguments' frame index is recorded during argument lowering. 4472 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4473 Op = MachineOperand::CreateFI(FI); 4474 4475 if (!Op && N.getNode()) { 4476 unsigned Reg = getUnderlyingArgReg(N); 4477 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4478 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4479 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4480 if (PR) 4481 Reg = PR; 4482 } 4483 if (Reg) 4484 Op = MachineOperand::CreateReg(Reg, false); 4485 } 4486 4487 if (!Op) { 4488 // Check if ValueMap has reg number. 4489 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4490 if (VMI != FuncInfo.ValueMap.end()) 4491 Op = MachineOperand::CreateReg(VMI->second, false); 4492 } 4493 4494 if (!Op && N.getNode()) 4495 // Check if frame index is available. 4496 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4497 if (FrameIndexSDNode *FINode = 4498 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4499 Op = MachineOperand::CreateFI(FINode->getIndex()); 4500 4501 if (!Op) 4502 return false; 4503 4504 assert(Variable->isValidLocationForIntrinsic(DL) && 4505 "Expected inlined-at fields to agree"); 4506 if (Op->isReg()) 4507 FuncInfo.ArgDbgValues.push_back( 4508 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4509 Op->getReg(), Offset, Variable, Expr)); 4510 else 4511 FuncInfo.ArgDbgValues.push_back( 4512 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4513 .addOperand(*Op) 4514 .addImm(Offset) 4515 .addMetadata(Variable) 4516 .addMetadata(Expr)); 4517 4518 return true; 4519 } 4520 4521 // VisualStudio defines setjmp as _setjmp 4522 #if defined(_MSC_VER) && defined(setjmp) && \ 4523 !defined(setjmp_undefined_for_msvc) 4524 # pragma push_macro("setjmp") 4525 # undef setjmp 4526 # define setjmp_undefined_for_msvc 4527 #endif 4528 4529 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4530 /// we want to emit this as a call to a named external function, return the name 4531 /// otherwise lower it and return null. 4532 const char * 4533 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 SDLoc sdl = getCurSDLoc(); 4536 DebugLoc dl = getCurDebugLoc(); 4537 SDValue Res; 4538 4539 switch (Intrinsic) { 4540 default: 4541 // By default, turn this into a target intrinsic node. 4542 visitTargetIntrinsic(I, Intrinsic); 4543 return nullptr; 4544 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4545 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4546 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4547 case Intrinsic::returnaddress: 4548 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4549 TLI.getPointerTy(DAG.getDataLayout()), 4550 getValue(I.getArgOperand(0)))); 4551 return nullptr; 4552 case Intrinsic::frameaddress: 4553 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4554 TLI.getPointerTy(DAG.getDataLayout()), 4555 getValue(I.getArgOperand(0)))); 4556 return nullptr; 4557 case Intrinsic::read_register: { 4558 Value *Reg = I.getArgOperand(0); 4559 SDValue Chain = getRoot(); 4560 SDValue RegName = 4561 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4562 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4563 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4564 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4565 setValue(&I, Res); 4566 DAG.setRoot(Res.getValue(1)); 4567 return nullptr; 4568 } 4569 case Intrinsic::write_register: { 4570 Value *Reg = I.getArgOperand(0); 4571 Value *RegValue = I.getArgOperand(1); 4572 SDValue Chain = getRoot(); 4573 SDValue RegName = 4574 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4575 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4576 RegName, getValue(RegValue))); 4577 return nullptr; 4578 } 4579 case Intrinsic::setjmp: 4580 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4581 case Intrinsic::longjmp: 4582 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4583 case Intrinsic::memcpy: { 4584 SDValue Op1 = getValue(I.getArgOperand(0)); 4585 SDValue Op2 = getValue(I.getArgOperand(1)); 4586 SDValue Op3 = getValue(I.getArgOperand(2)); 4587 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4588 if (!Align) 4589 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4590 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4591 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4592 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4593 false, isTC, 4594 MachinePointerInfo(I.getArgOperand(0)), 4595 MachinePointerInfo(I.getArgOperand(1))); 4596 updateDAGForMaybeTailCall(MC); 4597 return nullptr; 4598 } 4599 case Intrinsic::memset: { 4600 SDValue Op1 = getValue(I.getArgOperand(0)); 4601 SDValue Op2 = getValue(I.getArgOperand(1)); 4602 SDValue Op3 = getValue(I.getArgOperand(2)); 4603 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4604 if (!Align) 4605 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4606 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4607 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4608 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4609 isTC, MachinePointerInfo(I.getArgOperand(0))); 4610 updateDAGForMaybeTailCall(MS); 4611 return nullptr; 4612 } 4613 case Intrinsic::memmove: { 4614 SDValue Op1 = getValue(I.getArgOperand(0)); 4615 SDValue Op2 = getValue(I.getArgOperand(1)); 4616 SDValue Op3 = getValue(I.getArgOperand(2)); 4617 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4618 if (!Align) 4619 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4620 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4621 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4622 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4623 isTC, MachinePointerInfo(I.getArgOperand(0)), 4624 MachinePointerInfo(I.getArgOperand(1))); 4625 updateDAGForMaybeTailCall(MM); 4626 return nullptr; 4627 } 4628 case Intrinsic::dbg_declare: { 4629 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4630 DILocalVariable *Variable = DI.getVariable(); 4631 DIExpression *Expression = DI.getExpression(); 4632 const Value *Address = DI.getAddress(); 4633 assert(Variable && "Missing variable"); 4634 if (!Address) { 4635 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4636 return nullptr; 4637 } 4638 4639 // Check if address has undef value. 4640 if (isa<UndefValue>(Address) || 4641 (Address->use_empty() && !isa<Argument>(Address))) { 4642 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4643 return nullptr; 4644 } 4645 4646 SDValue &N = NodeMap[Address]; 4647 if (!N.getNode() && isa<Argument>(Address)) 4648 // Check unused arguments map. 4649 N = UnusedArgNodeMap[Address]; 4650 SDDbgValue *SDV; 4651 if (N.getNode()) { 4652 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4653 Address = BCI->getOperand(0); 4654 // Parameters are handled specially. 4655 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4656 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4657 if (isParameter && FINode) { 4658 // Byval parameter. We have a frame index at this point. 4659 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4660 FINode->getIndex(), 0, dl, SDNodeOrder); 4661 } else if (isa<Argument>(Address)) { 4662 // Address is an argument, so try to emit its dbg value using 4663 // virtual register info from the FuncInfo.ValueMap. 4664 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4665 N); 4666 return nullptr; 4667 } else { 4668 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4669 true, 0, dl, SDNodeOrder); 4670 } 4671 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4672 } else { 4673 // If Address is an argument then try to emit its dbg value using 4674 // virtual register info from the FuncInfo.ValueMap. 4675 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4676 N)) { 4677 // If variable is pinned by a alloca in dominating bb then 4678 // use StaticAllocaMap. 4679 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4680 if (AI->getParent() != DI.getParent()) { 4681 DenseMap<const AllocaInst*, int>::iterator SI = 4682 FuncInfo.StaticAllocaMap.find(AI); 4683 if (SI != FuncInfo.StaticAllocaMap.end()) { 4684 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4685 0, dl, SDNodeOrder); 4686 DAG.AddDbgValue(SDV, nullptr, false); 4687 return nullptr; 4688 } 4689 } 4690 } 4691 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4692 } 4693 } 4694 return nullptr; 4695 } 4696 case Intrinsic::dbg_value: { 4697 const DbgValueInst &DI = cast<DbgValueInst>(I); 4698 assert(DI.getVariable() && "Missing variable"); 4699 4700 DILocalVariable *Variable = DI.getVariable(); 4701 DIExpression *Expression = DI.getExpression(); 4702 uint64_t Offset = DI.getOffset(); 4703 const Value *V = DI.getValue(); 4704 if (!V) 4705 return nullptr; 4706 4707 SDDbgValue *SDV; 4708 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4709 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4710 SDNodeOrder); 4711 DAG.AddDbgValue(SDV, nullptr, false); 4712 } else { 4713 // Do not use getValue() in here; we don't want to generate code at 4714 // this point if it hasn't been done yet. 4715 SDValue N = NodeMap[V]; 4716 if (!N.getNode() && isa<Argument>(V)) 4717 // Check unused arguments map. 4718 N = UnusedArgNodeMap[V]; 4719 if (N.getNode()) { 4720 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4721 false, N)) { 4722 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4723 false, Offset, dl, SDNodeOrder); 4724 DAG.AddDbgValue(SDV, N.getNode(), false); 4725 } 4726 } else if (!V->use_empty() ) { 4727 // Do not call getValue(V) yet, as we don't want to generate code. 4728 // Remember it for later. 4729 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4730 DanglingDebugInfoMap[V] = DDI; 4731 } else { 4732 // We may expand this to cover more cases. One case where we have no 4733 // data available is an unreferenced parameter. 4734 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4735 } 4736 } 4737 4738 // Build a debug info table entry. 4739 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4740 V = BCI->getOperand(0); 4741 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4742 // Don't handle byval struct arguments or VLAs, for example. 4743 if (!AI) { 4744 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4745 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4746 return nullptr; 4747 } 4748 DenseMap<const AllocaInst*, int>::iterator SI = 4749 FuncInfo.StaticAllocaMap.find(AI); 4750 if (SI == FuncInfo.StaticAllocaMap.end()) 4751 return nullptr; // VLAs. 4752 return nullptr; 4753 } 4754 4755 case Intrinsic::eh_typeid_for: { 4756 // Find the type id for the given typeinfo. 4757 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4758 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4759 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4760 setValue(&I, Res); 4761 return nullptr; 4762 } 4763 4764 case Intrinsic::eh_return_i32: 4765 case Intrinsic::eh_return_i64: 4766 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4767 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4768 MVT::Other, 4769 getControlRoot(), 4770 getValue(I.getArgOperand(0)), 4771 getValue(I.getArgOperand(1)))); 4772 return nullptr; 4773 case Intrinsic::eh_unwind_init: 4774 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4775 return nullptr; 4776 case Intrinsic::eh_dwarf_cfa: { 4777 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4778 TLI.getPointerTy(DAG.getDataLayout())); 4779 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4780 CfaArg.getValueType(), 4781 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4782 CfaArg.getValueType()), 4783 CfaArg); 4784 SDValue FA = DAG.getNode( 4785 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4786 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4787 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4788 FA, Offset)); 4789 return nullptr; 4790 } 4791 case Intrinsic::eh_sjlj_callsite: { 4792 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4793 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4794 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4795 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4796 4797 MMI.setCurrentCallSite(CI->getZExtValue()); 4798 return nullptr; 4799 } 4800 case Intrinsic::eh_sjlj_functioncontext: { 4801 // Get and store the index of the function context. 4802 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4803 AllocaInst *FnCtx = 4804 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4805 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4806 MFI->setFunctionContextIndex(FI); 4807 return nullptr; 4808 } 4809 case Intrinsic::eh_sjlj_setjmp: { 4810 SDValue Ops[2]; 4811 Ops[0] = getRoot(); 4812 Ops[1] = getValue(I.getArgOperand(0)); 4813 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4814 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4815 setValue(&I, Op.getValue(0)); 4816 DAG.setRoot(Op.getValue(1)); 4817 return nullptr; 4818 } 4819 case Intrinsic::eh_sjlj_longjmp: { 4820 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4821 getRoot(), getValue(I.getArgOperand(0)))); 4822 return nullptr; 4823 } 4824 case Intrinsic::eh_sjlj_setup_dispatch: { 4825 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4826 getRoot())); 4827 return nullptr; 4828 } 4829 4830 case Intrinsic::masked_gather: 4831 visitMaskedGather(I); 4832 return nullptr; 4833 case Intrinsic::masked_load: 4834 visitMaskedLoad(I); 4835 return nullptr; 4836 case Intrinsic::masked_scatter: 4837 visitMaskedScatter(I); 4838 return nullptr; 4839 case Intrinsic::masked_store: 4840 visitMaskedStore(I); 4841 return nullptr; 4842 case Intrinsic::x86_mmx_pslli_w: 4843 case Intrinsic::x86_mmx_pslli_d: 4844 case Intrinsic::x86_mmx_pslli_q: 4845 case Intrinsic::x86_mmx_psrli_w: 4846 case Intrinsic::x86_mmx_psrli_d: 4847 case Intrinsic::x86_mmx_psrli_q: 4848 case Intrinsic::x86_mmx_psrai_w: 4849 case Intrinsic::x86_mmx_psrai_d: { 4850 SDValue ShAmt = getValue(I.getArgOperand(1)); 4851 if (isa<ConstantSDNode>(ShAmt)) { 4852 visitTargetIntrinsic(I, Intrinsic); 4853 return nullptr; 4854 } 4855 unsigned NewIntrinsic = 0; 4856 EVT ShAmtVT = MVT::v2i32; 4857 switch (Intrinsic) { 4858 case Intrinsic::x86_mmx_pslli_w: 4859 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4860 break; 4861 case Intrinsic::x86_mmx_pslli_d: 4862 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4863 break; 4864 case Intrinsic::x86_mmx_pslli_q: 4865 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4866 break; 4867 case Intrinsic::x86_mmx_psrli_w: 4868 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4869 break; 4870 case Intrinsic::x86_mmx_psrli_d: 4871 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4872 break; 4873 case Intrinsic::x86_mmx_psrli_q: 4874 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4875 break; 4876 case Intrinsic::x86_mmx_psrai_w: 4877 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4878 break; 4879 case Intrinsic::x86_mmx_psrai_d: 4880 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4881 break; 4882 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4883 } 4884 4885 // The vector shift intrinsics with scalars uses 32b shift amounts but 4886 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4887 // to be zero. 4888 // We must do this early because v2i32 is not a legal type. 4889 SDValue ShOps[2]; 4890 ShOps[0] = ShAmt; 4891 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4892 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4893 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4894 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4895 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4896 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4897 getValue(I.getArgOperand(0)), ShAmt); 4898 setValue(&I, Res); 4899 return nullptr; 4900 } 4901 case Intrinsic::convertff: 4902 case Intrinsic::convertfsi: 4903 case Intrinsic::convertfui: 4904 case Intrinsic::convertsif: 4905 case Intrinsic::convertuif: 4906 case Intrinsic::convertss: 4907 case Intrinsic::convertsu: 4908 case Intrinsic::convertus: 4909 case Intrinsic::convertuu: { 4910 ISD::CvtCode Code = ISD::CVT_INVALID; 4911 switch (Intrinsic) { 4912 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4913 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4914 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4915 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4916 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4917 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4918 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4919 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4920 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4921 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4922 } 4923 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4924 const Value *Op1 = I.getArgOperand(0); 4925 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4926 DAG.getValueType(DestVT), 4927 DAG.getValueType(getValue(Op1).getValueType()), 4928 getValue(I.getArgOperand(1)), 4929 getValue(I.getArgOperand(2)), 4930 Code); 4931 setValue(&I, Res); 4932 return nullptr; 4933 } 4934 case Intrinsic::powi: 4935 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4936 getValue(I.getArgOperand(1)), DAG)); 4937 return nullptr; 4938 case Intrinsic::log: 4939 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4940 return nullptr; 4941 case Intrinsic::log2: 4942 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4943 return nullptr; 4944 case Intrinsic::log10: 4945 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4946 return nullptr; 4947 case Intrinsic::exp: 4948 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4949 return nullptr; 4950 case Intrinsic::exp2: 4951 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4952 return nullptr; 4953 case Intrinsic::pow: 4954 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4955 getValue(I.getArgOperand(1)), DAG, TLI)); 4956 return nullptr; 4957 case Intrinsic::sqrt: 4958 case Intrinsic::fabs: 4959 case Intrinsic::sin: 4960 case Intrinsic::cos: 4961 case Intrinsic::floor: 4962 case Intrinsic::ceil: 4963 case Intrinsic::trunc: 4964 case Intrinsic::rint: 4965 case Intrinsic::nearbyint: 4966 case Intrinsic::round: { 4967 unsigned Opcode; 4968 switch (Intrinsic) { 4969 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4970 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4971 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4972 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4973 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4974 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4975 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4976 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4977 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4978 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4979 case Intrinsic::round: Opcode = ISD::FROUND; break; 4980 } 4981 4982 setValue(&I, DAG.getNode(Opcode, sdl, 4983 getValue(I.getArgOperand(0)).getValueType(), 4984 getValue(I.getArgOperand(0)))); 4985 return nullptr; 4986 } 4987 case Intrinsic::minnum: 4988 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4989 getValue(I.getArgOperand(0)).getValueType(), 4990 getValue(I.getArgOperand(0)), 4991 getValue(I.getArgOperand(1)))); 4992 return nullptr; 4993 case Intrinsic::maxnum: 4994 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4995 getValue(I.getArgOperand(0)).getValueType(), 4996 getValue(I.getArgOperand(0)), 4997 getValue(I.getArgOperand(1)))); 4998 return nullptr; 4999 case Intrinsic::copysign: 5000 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5001 getValue(I.getArgOperand(0)).getValueType(), 5002 getValue(I.getArgOperand(0)), 5003 getValue(I.getArgOperand(1)))); 5004 return nullptr; 5005 case Intrinsic::fma: 5006 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5007 getValue(I.getArgOperand(0)).getValueType(), 5008 getValue(I.getArgOperand(0)), 5009 getValue(I.getArgOperand(1)), 5010 getValue(I.getArgOperand(2)))); 5011 return nullptr; 5012 case Intrinsic::fmuladd: { 5013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5014 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5015 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5016 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5017 getValue(I.getArgOperand(0)).getValueType(), 5018 getValue(I.getArgOperand(0)), 5019 getValue(I.getArgOperand(1)), 5020 getValue(I.getArgOperand(2)))); 5021 } else { 5022 // TODO: Intrinsic calls should have fast-math-flags. 5023 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5024 getValue(I.getArgOperand(0)).getValueType(), 5025 getValue(I.getArgOperand(0)), 5026 getValue(I.getArgOperand(1))); 5027 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5028 getValue(I.getArgOperand(0)).getValueType(), 5029 Mul, 5030 getValue(I.getArgOperand(2))); 5031 setValue(&I, Add); 5032 } 5033 return nullptr; 5034 } 5035 case Intrinsic::convert_to_fp16: 5036 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5037 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5038 getValue(I.getArgOperand(0)), 5039 DAG.getTargetConstant(0, sdl, 5040 MVT::i32)))); 5041 return nullptr; 5042 case Intrinsic::convert_from_fp16: 5043 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5044 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5045 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5046 getValue(I.getArgOperand(0))))); 5047 return nullptr; 5048 case Intrinsic::pcmarker: { 5049 SDValue Tmp = getValue(I.getArgOperand(0)); 5050 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5051 return nullptr; 5052 } 5053 case Intrinsic::readcyclecounter: { 5054 SDValue Op = getRoot(); 5055 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5056 DAG.getVTList(MVT::i64, MVT::Other), Op); 5057 setValue(&I, Res); 5058 DAG.setRoot(Res.getValue(1)); 5059 return nullptr; 5060 } 5061 case Intrinsic::bitreverse: 5062 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5063 getValue(I.getArgOperand(0)).getValueType(), 5064 getValue(I.getArgOperand(0)))); 5065 return nullptr; 5066 case Intrinsic::bswap: 5067 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5068 getValue(I.getArgOperand(0)).getValueType(), 5069 getValue(I.getArgOperand(0)))); 5070 return nullptr; 5071 case Intrinsic::cttz: { 5072 SDValue Arg = getValue(I.getArgOperand(0)); 5073 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5074 EVT Ty = Arg.getValueType(); 5075 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5076 sdl, Ty, Arg)); 5077 return nullptr; 5078 } 5079 case Intrinsic::ctlz: { 5080 SDValue Arg = getValue(I.getArgOperand(0)); 5081 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5082 EVT Ty = Arg.getValueType(); 5083 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5084 sdl, Ty, Arg)); 5085 return nullptr; 5086 } 5087 case Intrinsic::ctpop: { 5088 SDValue Arg = getValue(I.getArgOperand(0)); 5089 EVT Ty = Arg.getValueType(); 5090 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5091 return nullptr; 5092 } 5093 case Intrinsic::stacksave: { 5094 SDValue Op = getRoot(); 5095 Res = DAG.getNode( 5096 ISD::STACKSAVE, sdl, 5097 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5098 setValue(&I, Res); 5099 DAG.setRoot(Res.getValue(1)); 5100 return nullptr; 5101 } 5102 case Intrinsic::stackrestore: { 5103 Res = getValue(I.getArgOperand(0)); 5104 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5105 return nullptr; 5106 } 5107 case Intrinsic::get_dynamic_area_offset: { 5108 SDValue Op = getRoot(); 5109 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5110 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5111 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5112 // target. 5113 if (PtrTy != ResTy) 5114 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5115 " intrinsic!"); 5116 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5117 Op); 5118 DAG.setRoot(Op); 5119 setValue(&I, Res); 5120 return nullptr; 5121 } 5122 case Intrinsic::stackprotector: { 5123 // Emit code into the DAG to store the stack guard onto the stack. 5124 MachineFunction &MF = DAG.getMachineFunction(); 5125 MachineFrameInfo *MFI = MF.getFrameInfo(); 5126 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5127 SDValue Src, Chain = getRoot(); 5128 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5129 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5130 5131 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5132 // global variable __stack_chk_guard. 5133 if (!GV) 5134 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5135 if (BC->getOpcode() == Instruction::BitCast) 5136 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5137 5138 if (GV && TLI.useLoadStackGuardNode()) { 5139 // Emit a LOAD_STACK_GUARD node. 5140 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5141 sdl, PtrTy, Chain); 5142 MachinePointerInfo MPInfo(GV); 5143 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5144 unsigned Flags = MachineMemOperand::MOLoad | 5145 MachineMemOperand::MOInvariant; 5146 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5147 PtrTy.getSizeInBits() / 8, 5148 DAG.getEVTAlignment(PtrTy)); 5149 Node->setMemRefs(MemRefs, MemRefs + 1); 5150 5151 // Copy the guard value to a virtual register so that it can be 5152 // retrieved in the epilogue. 5153 Src = SDValue(Node, 0); 5154 const TargetRegisterClass *RC = 5155 TLI.getRegClassFor(Src.getSimpleValueType()); 5156 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5157 5158 SPDescriptor.setGuardReg(Reg); 5159 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5160 } else { 5161 Src = getValue(I.getArgOperand(0)); // The guard's value. 5162 } 5163 5164 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5165 5166 int FI = FuncInfo.StaticAllocaMap[Slot]; 5167 MFI->setStackProtectorIndex(FI); 5168 5169 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5170 5171 // Store the stack protector onto the stack. 5172 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5173 DAG.getMachineFunction(), FI), 5174 true, false, 0); 5175 setValue(&I, Res); 5176 DAG.setRoot(Res); 5177 return nullptr; 5178 } 5179 case Intrinsic::objectsize: { 5180 // If we don't know by now, we're never going to know. 5181 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5182 5183 assert(CI && "Non-constant type in __builtin_object_size?"); 5184 5185 SDValue Arg = getValue(I.getCalledValue()); 5186 EVT Ty = Arg.getValueType(); 5187 5188 if (CI->isZero()) 5189 Res = DAG.getConstant(-1ULL, sdl, Ty); 5190 else 5191 Res = DAG.getConstant(0, sdl, Ty); 5192 5193 setValue(&I, Res); 5194 return nullptr; 5195 } 5196 case Intrinsic::annotation: 5197 case Intrinsic::ptr_annotation: 5198 // Drop the intrinsic, but forward the value 5199 setValue(&I, getValue(I.getOperand(0))); 5200 return nullptr; 5201 case Intrinsic::assume: 5202 case Intrinsic::var_annotation: 5203 // Discard annotate attributes and assumptions 5204 return nullptr; 5205 5206 case Intrinsic::init_trampoline: { 5207 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5208 5209 SDValue Ops[6]; 5210 Ops[0] = getRoot(); 5211 Ops[1] = getValue(I.getArgOperand(0)); 5212 Ops[2] = getValue(I.getArgOperand(1)); 5213 Ops[3] = getValue(I.getArgOperand(2)); 5214 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5215 Ops[5] = DAG.getSrcValue(F); 5216 5217 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5218 5219 DAG.setRoot(Res); 5220 return nullptr; 5221 } 5222 case Intrinsic::adjust_trampoline: { 5223 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5224 TLI.getPointerTy(DAG.getDataLayout()), 5225 getValue(I.getArgOperand(0)))); 5226 return nullptr; 5227 } 5228 case Intrinsic::gcroot: { 5229 MachineFunction &MF = DAG.getMachineFunction(); 5230 const Function *F = MF.getFunction(); 5231 (void)F; 5232 assert(F->hasGC() && 5233 "only valid in functions with gc specified, enforced by Verifier"); 5234 assert(GFI && "implied by previous"); 5235 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5236 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5237 5238 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5239 GFI->addStackRoot(FI->getIndex(), TypeMap); 5240 return nullptr; 5241 } 5242 case Intrinsic::gcread: 5243 case Intrinsic::gcwrite: 5244 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5245 case Intrinsic::flt_rounds: 5246 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5247 return nullptr; 5248 5249 case Intrinsic::expect: { 5250 // Just replace __builtin_expect(exp, c) with EXP. 5251 setValue(&I, getValue(I.getArgOperand(0))); 5252 return nullptr; 5253 } 5254 5255 case Intrinsic::debugtrap: 5256 case Intrinsic::trap: { 5257 StringRef TrapFuncName = 5258 I.getAttributes() 5259 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5260 .getValueAsString(); 5261 if (TrapFuncName.empty()) { 5262 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5263 ISD::TRAP : ISD::DEBUGTRAP; 5264 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5265 return nullptr; 5266 } 5267 TargetLowering::ArgListTy Args; 5268 5269 TargetLowering::CallLoweringInfo CLI(DAG); 5270 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5271 CallingConv::C, I.getType(), 5272 DAG.getExternalSymbol(TrapFuncName.data(), 5273 TLI.getPointerTy(DAG.getDataLayout())), 5274 std::move(Args), 0); 5275 5276 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5277 DAG.setRoot(Result.second); 5278 return nullptr; 5279 } 5280 5281 case Intrinsic::uadd_with_overflow: 5282 case Intrinsic::sadd_with_overflow: 5283 case Intrinsic::usub_with_overflow: 5284 case Intrinsic::ssub_with_overflow: 5285 case Intrinsic::umul_with_overflow: 5286 case Intrinsic::smul_with_overflow: { 5287 ISD::NodeType Op; 5288 switch (Intrinsic) { 5289 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5290 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5291 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5292 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5293 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5294 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5295 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5296 } 5297 SDValue Op1 = getValue(I.getArgOperand(0)); 5298 SDValue Op2 = getValue(I.getArgOperand(1)); 5299 5300 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5301 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5302 return nullptr; 5303 } 5304 case Intrinsic::prefetch: { 5305 SDValue Ops[5]; 5306 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5307 Ops[0] = getRoot(); 5308 Ops[1] = getValue(I.getArgOperand(0)); 5309 Ops[2] = getValue(I.getArgOperand(1)); 5310 Ops[3] = getValue(I.getArgOperand(2)); 5311 Ops[4] = getValue(I.getArgOperand(3)); 5312 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5313 DAG.getVTList(MVT::Other), Ops, 5314 EVT::getIntegerVT(*Context, 8), 5315 MachinePointerInfo(I.getArgOperand(0)), 5316 0, /* align */ 5317 false, /* volatile */ 5318 rw==0, /* read */ 5319 rw==1)); /* write */ 5320 return nullptr; 5321 } 5322 case Intrinsic::lifetime_start: 5323 case Intrinsic::lifetime_end: { 5324 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5325 // Stack coloring is not enabled in O0, discard region information. 5326 if (TM.getOptLevel() == CodeGenOpt::None) 5327 return nullptr; 5328 5329 SmallVector<Value *, 4> Allocas; 5330 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5331 5332 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5333 E = Allocas.end(); Object != E; ++Object) { 5334 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5335 5336 // Could not find an Alloca. 5337 if (!LifetimeObject) 5338 continue; 5339 5340 // First check that the Alloca is static, otherwise it won't have a 5341 // valid frame index. 5342 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5343 if (SI == FuncInfo.StaticAllocaMap.end()) 5344 return nullptr; 5345 5346 int FI = SI->second; 5347 5348 SDValue Ops[2]; 5349 Ops[0] = getRoot(); 5350 Ops[1] = 5351 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5352 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5353 5354 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5355 DAG.setRoot(Res); 5356 } 5357 return nullptr; 5358 } 5359 case Intrinsic::invariant_start: 5360 // Discard region information. 5361 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5362 return nullptr; 5363 case Intrinsic::invariant_end: 5364 // Discard region information. 5365 return nullptr; 5366 case Intrinsic::stackprotectorcheck: { 5367 // Do not actually emit anything for this basic block. Instead we initialize 5368 // the stack protector descriptor and export the guard variable so we can 5369 // access it in FinishBasicBlock. 5370 const BasicBlock *BB = I.getParent(); 5371 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5372 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5373 5374 // Flush our exports since we are going to process a terminator. 5375 (void)getControlRoot(); 5376 return nullptr; 5377 } 5378 case Intrinsic::clear_cache: 5379 return TLI.getClearCacheBuiltinName(); 5380 case Intrinsic::donothing: 5381 // ignore 5382 return nullptr; 5383 case Intrinsic::experimental_stackmap: { 5384 visitStackmap(I); 5385 return nullptr; 5386 } 5387 case Intrinsic::experimental_patchpoint_void: 5388 case Intrinsic::experimental_patchpoint_i64: { 5389 visitPatchpoint(&I); 5390 return nullptr; 5391 } 5392 case Intrinsic::experimental_gc_statepoint: { 5393 LowerStatepoint(ImmutableStatepoint(&I)); 5394 return nullptr; 5395 } 5396 case Intrinsic::experimental_gc_result: { 5397 visitGCResult(I); 5398 return nullptr; 5399 } 5400 case Intrinsic::experimental_gc_relocate: { 5401 visitGCRelocate(cast<GCRelocateInst>(I)); 5402 return nullptr; 5403 } 5404 case Intrinsic::instrprof_increment: 5405 llvm_unreachable("instrprof failed to lower an increment"); 5406 case Intrinsic::instrprof_value_profile: 5407 llvm_unreachable("instrprof failed to lower a value profiling call"); 5408 case Intrinsic::localescape: { 5409 MachineFunction &MF = DAG.getMachineFunction(); 5410 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5411 5412 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5413 // is the same on all targets. 5414 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5415 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5416 if (isa<ConstantPointerNull>(Arg)) 5417 continue; // Skip null pointers. They represent a hole in index space. 5418 AllocaInst *Slot = cast<AllocaInst>(Arg); 5419 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5420 "can only escape static allocas"); 5421 int FI = FuncInfo.StaticAllocaMap[Slot]; 5422 MCSymbol *FrameAllocSym = 5423 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5424 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5425 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5426 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5427 .addSym(FrameAllocSym) 5428 .addFrameIndex(FI); 5429 } 5430 5431 return nullptr; 5432 } 5433 5434 case Intrinsic::localrecover: { 5435 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5436 MachineFunction &MF = DAG.getMachineFunction(); 5437 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5438 5439 // Get the symbol that defines the frame offset. 5440 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5441 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5442 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5443 MCSymbol *FrameAllocSym = 5444 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5445 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5446 5447 // Create a MCSymbol for the label to avoid any target lowering 5448 // that would make this PC relative. 5449 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5450 SDValue OffsetVal = 5451 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5452 5453 // Add the offset to the FP. 5454 Value *FP = I.getArgOperand(1); 5455 SDValue FPVal = getValue(FP); 5456 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5457 setValue(&I, Add); 5458 5459 return nullptr; 5460 } 5461 5462 case Intrinsic::eh_exceptionpointer: 5463 case Intrinsic::eh_exceptioncode: { 5464 // Get the exception pointer vreg, copy from it, and resize it to fit. 5465 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5466 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5467 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5468 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5469 SDValue N = 5470 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5471 if (Intrinsic == Intrinsic::eh_exceptioncode) 5472 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5473 setValue(&I, N); 5474 return nullptr; 5475 } 5476 5477 case Intrinsic::experimental_deoptimize: 5478 LowerDeoptimizeCall(&I); 5479 return nullptr; 5480 } 5481 } 5482 5483 std::pair<SDValue, SDValue> 5484 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5485 const BasicBlock *EHPadBB) { 5486 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5487 MCSymbol *BeginLabel = nullptr; 5488 5489 if (EHPadBB) { 5490 // Insert a label before the invoke call to mark the try range. This can be 5491 // used to detect deletion of the invoke via the MachineModuleInfo. 5492 BeginLabel = MMI.getContext().createTempSymbol(); 5493 5494 // For SjLj, keep track of which landing pads go with which invokes 5495 // so as to maintain the ordering of pads in the LSDA. 5496 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5497 if (CallSiteIndex) { 5498 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5499 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5500 5501 // Now that the call site is handled, stop tracking it. 5502 MMI.setCurrentCallSite(0); 5503 } 5504 5505 // Both PendingLoads and PendingExports must be flushed here; 5506 // this call might not return. 5507 (void)getRoot(); 5508 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5509 5510 CLI.setChain(getRoot()); 5511 } 5512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5513 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5514 5515 assert((CLI.IsTailCall || Result.second.getNode()) && 5516 "Non-null chain expected with non-tail call!"); 5517 assert((Result.second.getNode() || !Result.first.getNode()) && 5518 "Null value expected with tail call!"); 5519 5520 if (!Result.second.getNode()) { 5521 // As a special case, a null chain means that a tail call has been emitted 5522 // and the DAG root is already updated. 5523 HasTailCall = true; 5524 5525 // Since there's no actual continuation from this block, nothing can be 5526 // relying on us setting vregs for them. 5527 PendingExports.clear(); 5528 } else { 5529 DAG.setRoot(Result.second); 5530 } 5531 5532 if (EHPadBB) { 5533 // Insert a label at the end of the invoke call to mark the try range. This 5534 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5535 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5536 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5537 5538 // Inform MachineModuleInfo of range. 5539 if (MMI.hasEHFunclets()) { 5540 assert(CLI.CS); 5541 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5542 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5543 BeginLabel, EndLabel); 5544 } else { 5545 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5546 } 5547 } 5548 5549 return Result; 5550 } 5551 5552 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5553 bool isTailCall, 5554 const BasicBlock *EHPadBB) { 5555 FunctionType *FTy = CS.getFunctionType(); 5556 Type *RetTy = CS.getType(); 5557 5558 TargetLowering::ArgListTy Args; 5559 TargetLowering::ArgListEntry Entry; 5560 Args.reserve(CS.arg_size()); 5561 5562 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5563 i != e; ++i) { 5564 const Value *V = *i; 5565 5566 // Skip empty types 5567 if (V->getType()->isEmptyTy()) 5568 continue; 5569 5570 SDValue ArgNode = getValue(V); 5571 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5572 5573 // Skip the first return-type Attribute to get to params. 5574 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5575 Args.push_back(Entry); 5576 5577 // If we have an explicit sret argument that is an Instruction, (i.e., it 5578 // might point to function-local memory), we can't meaningfully tail-call. 5579 if (Entry.isSRet && isa<Instruction>(V)) 5580 isTailCall = false; 5581 } 5582 5583 // Check if target-independent constraints permit a tail call here. 5584 // Target-dependent constraints are checked within TLI->LowerCallTo. 5585 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5586 isTailCall = false; 5587 5588 TargetLowering::CallLoweringInfo CLI(DAG); 5589 CLI.setDebugLoc(getCurSDLoc()) 5590 .setChain(getRoot()) 5591 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5592 .setTailCall(isTailCall) 5593 .setConvergent(CS.isConvergent()); 5594 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5595 5596 if (Result.first.getNode()) { 5597 const Instruction *Inst = CS.getInstruction(); 5598 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5599 setValue(Inst, Result.first); 5600 } 5601 } 5602 5603 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5604 /// value is equal or not-equal to zero. 5605 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5606 for (const User *U : V->users()) { 5607 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5608 if (IC->isEquality()) 5609 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5610 if (C->isNullValue()) 5611 continue; 5612 // Unknown instruction. 5613 return false; 5614 } 5615 return true; 5616 } 5617 5618 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5619 Type *LoadTy, 5620 SelectionDAGBuilder &Builder) { 5621 5622 // Check to see if this load can be trivially constant folded, e.g. if the 5623 // input is from a string literal. 5624 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5625 // Cast pointer to the type we really want to load. 5626 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5627 PointerType::getUnqual(LoadTy)); 5628 5629 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5630 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5631 return Builder.getValue(LoadCst); 5632 } 5633 5634 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5635 // still constant memory, the input chain can be the entry node. 5636 SDValue Root; 5637 bool ConstantMemory = false; 5638 5639 // Do not serialize (non-volatile) loads of constant memory with anything. 5640 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5641 Root = Builder.DAG.getEntryNode(); 5642 ConstantMemory = true; 5643 } else { 5644 // Do not serialize non-volatile loads against each other. 5645 Root = Builder.DAG.getRoot(); 5646 } 5647 5648 SDValue Ptr = Builder.getValue(PtrVal); 5649 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5650 Ptr, MachinePointerInfo(PtrVal), 5651 false /*volatile*/, 5652 false /*nontemporal*/, 5653 false /*isinvariant*/, 1 /* align=1 */); 5654 5655 if (!ConstantMemory) 5656 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5657 return LoadVal; 5658 } 5659 5660 /// processIntegerCallValue - Record the value for an instruction that 5661 /// produces an integer result, converting the type where necessary. 5662 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5663 SDValue Value, 5664 bool IsSigned) { 5665 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5666 I.getType(), true); 5667 if (IsSigned) 5668 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5669 else 5670 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5671 setValue(&I, Value); 5672 } 5673 5674 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5675 /// If so, return true and lower it, otherwise return false and it will be 5676 /// lowered like a normal call. 5677 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5678 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5679 if (I.getNumArgOperands() != 3) 5680 return false; 5681 5682 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5683 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5684 !I.getArgOperand(2)->getType()->isIntegerTy() || 5685 !I.getType()->isIntegerTy()) 5686 return false; 5687 5688 const Value *Size = I.getArgOperand(2); 5689 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5690 if (CSize && CSize->getZExtValue() == 0) { 5691 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5692 I.getType(), true); 5693 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5694 return true; 5695 } 5696 5697 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5698 std::pair<SDValue, SDValue> Res = 5699 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5700 getValue(LHS), getValue(RHS), getValue(Size), 5701 MachinePointerInfo(LHS), 5702 MachinePointerInfo(RHS)); 5703 if (Res.first.getNode()) { 5704 processIntegerCallValue(I, Res.first, true); 5705 PendingLoads.push_back(Res.second); 5706 return true; 5707 } 5708 5709 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5710 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5711 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5712 bool ActuallyDoIt = true; 5713 MVT LoadVT; 5714 Type *LoadTy; 5715 switch (CSize->getZExtValue()) { 5716 default: 5717 LoadVT = MVT::Other; 5718 LoadTy = nullptr; 5719 ActuallyDoIt = false; 5720 break; 5721 case 2: 5722 LoadVT = MVT::i16; 5723 LoadTy = Type::getInt16Ty(CSize->getContext()); 5724 break; 5725 case 4: 5726 LoadVT = MVT::i32; 5727 LoadTy = Type::getInt32Ty(CSize->getContext()); 5728 break; 5729 case 8: 5730 LoadVT = MVT::i64; 5731 LoadTy = Type::getInt64Ty(CSize->getContext()); 5732 break; 5733 /* 5734 case 16: 5735 LoadVT = MVT::v4i32; 5736 LoadTy = Type::getInt32Ty(CSize->getContext()); 5737 LoadTy = VectorType::get(LoadTy, 4); 5738 break; 5739 */ 5740 } 5741 5742 // This turns into unaligned loads. We only do this if the target natively 5743 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5744 // we'll only produce a small number of byte loads. 5745 5746 // Require that we can find a legal MVT, and only do this if the target 5747 // supports unaligned loads of that type. Expanding into byte loads would 5748 // bloat the code. 5749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5750 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5751 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5752 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5753 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5754 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5755 // TODO: Check alignment of src and dest ptrs. 5756 if (!TLI.isTypeLegal(LoadVT) || 5757 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5758 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5759 ActuallyDoIt = false; 5760 } 5761 5762 if (ActuallyDoIt) { 5763 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5764 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5765 5766 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5767 ISD::SETNE); 5768 processIntegerCallValue(I, Res, false); 5769 return true; 5770 } 5771 } 5772 5773 5774 return false; 5775 } 5776 5777 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5778 /// form. If so, return true and lower it, otherwise return false and it 5779 /// will be lowered like a normal call. 5780 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5781 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5782 if (I.getNumArgOperands() != 3) 5783 return false; 5784 5785 const Value *Src = I.getArgOperand(0); 5786 const Value *Char = I.getArgOperand(1); 5787 const Value *Length = I.getArgOperand(2); 5788 if (!Src->getType()->isPointerTy() || 5789 !Char->getType()->isIntegerTy() || 5790 !Length->getType()->isIntegerTy() || 5791 !I.getType()->isPointerTy()) 5792 return false; 5793 5794 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5795 std::pair<SDValue, SDValue> Res = 5796 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5797 getValue(Src), getValue(Char), getValue(Length), 5798 MachinePointerInfo(Src)); 5799 if (Res.first.getNode()) { 5800 setValue(&I, Res.first); 5801 PendingLoads.push_back(Res.second); 5802 return true; 5803 } 5804 5805 return false; 5806 } 5807 5808 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5809 /// optimized form. If so, return true and lower it, otherwise return false 5810 /// and it will be lowered like a normal call. 5811 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5812 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5813 if (I.getNumArgOperands() != 2) 5814 return false; 5815 5816 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5817 if (!Arg0->getType()->isPointerTy() || 5818 !Arg1->getType()->isPointerTy() || 5819 !I.getType()->isPointerTy()) 5820 return false; 5821 5822 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5823 std::pair<SDValue, SDValue> Res = 5824 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5825 getValue(Arg0), getValue(Arg1), 5826 MachinePointerInfo(Arg0), 5827 MachinePointerInfo(Arg1), isStpcpy); 5828 if (Res.first.getNode()) { 5829 setValue(&I, Res.first); 5830 DAG.setRoot(Res.second); 5831 return true; 5832 } 5833 5834 return false; 5835 } 5836 5837 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5838 /// If so, return true and lower it, otherwise return false and it will be 5839 /// lowered like a normal call. 5840 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5841 // Verify that the prototype makes sense. int strcmp(void*,void*) 5842 if (I.getNumArgOperands() != 2) 5843 return false; 5844 5845 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5846 if (!Arg0->getType()->isPointerTy() || 5847 !Arg1->getType()->isPointerTy() || 5848 !I.getType()->isIntegerTy()) 5849 return false; 5850 5851 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5852 std::pair<SDValue, SDValue> Res = 5853 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5854 getValue(Arg0), getValue(Arg1), 5855 MachinePointerInfo(Arg0), 5856 MachinePointerInfo(Arg1)); 5857 if (Res.first.getNode()) { 5858 processIntegerCallValue(I, Res.first, true); 5859 PendingLoads.push_back(Res.second); 5860 return true; 5861 } 5862 5863 return false; 5864 } 5865 5866 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5867 /// form. If so, return true and lower it, otherwise return false and it 5868 /// will be lowered like a normal call. 5869 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5870 // Verify that the prototype makes sense. size_t strlen(char *) 5871 if (I.getNumArgOperands() != 1) 5872 return false; 5873 5874 const Value *Arg0 = I.getArgOperand(0); 5875 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5876 return false; 5877 5878 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5879 std::pair<SDValue, SDValue> Res = 5880 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5881 getValue(Arg0), MachinePointerInfo(Arg0)); 5882 if (Res.first.getNode()) { 5883 processIntegerCallValue(I, Res.first, false); 5884 PendingLoads.push_back(Res.second); 5885 return true; 5886 } 5887 5888 return false; 5889 } 5890 5891 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5892 /// form. If so, return true and lower it, otherwise return false and it 5893 /// will be lowered like a normal call. 5894 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5895 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5896 if (I.getNumArgOperands() != 2) 5897 return false; 5898 5899 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5900 if (!Arg0->getType()->isPointerTy() || 5901 !Arg1->getType()->isIntegerTy() || 5902 !I.getType()->isIntegerTy()) 5903 return false; 5904 5905 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5906 std::pair<SDValue, SDValue> Res = 5907 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5908 getValue(Arg0), getValue(Arg1), 5909 MachinePointerInfo(Arg0)); 5910 if (Res.first.getNode()) { 5911 processIntegerCallValue(I, Res.first, false); 5912 PendingLoads.push_back(Res.second); 5913 return true; 5914 } 5915 5916 return false; 5917 } 5918 5919 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5920 /// operation (as expected), translate it to an SDNode with the specified opcode 5921 /// and return true. 5922 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5923 unsigned Opcode) { 5924 // Sanity check that it really is a unary floating-point call. 5925 if (I.getNumArgOperands() != 1 || 5926 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5927 I.getType() != I.getArgOperand(0)->getType() || 5928 !I.onlyReadsMemory()) 5929 return false; 5930 5931 SDValue Tmp = getValue(I.getArgOperand(0)); 5932 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5933 return true; 5934 } 5935 5936 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5937 /// operation (as expected), translate it to an SDNode with the specified opcode 5938 /// and return true. 5939 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5940 unsigned Opcode) { 5941 // Sanity check that it really is a binary floating-point call. 5942 if (I.getNumArgOperands() != 2 || 5943 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5944 I.getType() != I.getArgOperand(0)->getType() || 5945 I.getType() != I.getArgOperand(1)->getType() || 5946 !I.onlyReadsMemory()) 5947 return false; 5948 5949 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5950 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5951 EVT VT = Tmp0.getValueType(); 5952 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5953 return true; 5954 } 5955 5956 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5957 // Handle inline assembly differently. 5958 if (isa<InlineAsm>(I.getCalledValue())) { 5959 visitInlineAsm(&I); 5960 return; 5961 } 5962 5963 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5964 ComputeUsesVAFloatArgument(I, &MMI); 5965 5966 const char *RenameFn = nullptr; 5967 if (Function *F = I.getCalledFunction()) { 5968 if (F->isDeclaration()) { 5969 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5970 if (unsigned IID = II->getIntrinsicID(F)) { 5971 RenameFn = visitIntrinsicCall(I, IID); 5972 if (!RenameFn) 5973 return; 5974 } 5975 } 5976 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5977 RenameFn = visitIntrinsicCall(I, IID); 5978 if (!RenameFn) 5979 return; 5980 } 5981 } 5982 5983 // Check for well-known libc/libm calls. If the function is internal, it 5984 // can't be a library call. 5985 LibFunc::Func Func; 5986 if (!F->hasLocalLinkage() && F->hasName() && 5987 LibInfo->getLibFunc(F->getName(), Func) && 5988 LibInfo->hasOptimizedCodeGen(Func)) { 5989 switch (Func) { 5990 default: break; 5991 case LibFunc::copysign: 5992 case LibFunc::copysignf: 5993 case LibFunc::copysignl: 5994 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5995 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5996 I.getType() == I.getArgOperand(0)->getType() && 5997 I.getType() == I.getArgOperand(1)->getType() && 5998 I.onlyReadsMemory()) { 5999 SDValue LHS = getValue(I.getArgOperand(0)); 6000 SDValue RHS = getValue(I.getArgOperand(1)); 6001 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6002 LHS.getValueType(), LHS, RHS)); 6003 return; 6004 } 6005 break; 6006 case LibFunc::fabs: 6007 case LibFunc::fabsf: 6008 case LibFunc::fabsl: 6009 if (visitUnaryFloatCall(I, ISD::FABS)) 6010 return; 6011 break; 6012 case LibFunc::fmin: 6013 case LibFunc::fminf: 6014 case LibFunc::fminl: 6015 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6016 return; 6017 break; 6018 case LibFunc::fmax: 6019 case LibFunc::fmaxf: 6020 case LibFunc::fmaxl: 6021 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6022 return; 6023 break; 6024 case LibFunc::sin: 6025 case LibFunc::sinf: 6026 case LibFunc::sinl: 6027 if (visitUnaryFloatCall(I, ISD::FSIN)) 6028 return; 6029 break; 6030 case LibFunc::cos: 6031 case LibFunc::cosf: 6032 case LibFunc::cosl: 6033 if (visitUnaryFloatCall(I, ISD::FCOS)) 6034 return; 6035 break; 6036 case LibFunc::sqrt: 6037 case LibFunc::sqrtf: 6038 case LibFunc::sqrtl: 6039 case LibFunc::sqrt_finite: 6040 case LibFunc::sqrtf_finite: 6041 case LibFunc::sqrtl_finite: 6042 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6043 return; 6044 break; 6045 case LibFunc::floor: 6046 case LibFunc::floorf: 6047 case LibFunc::floorl: 6048 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6049 return; 6050 break; 6051 case LibFunc::nearbyint: 6052 case LibFunc::nearbyintf: 6053 case LibFunc::nearbyintl: 6054 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6055 return; 6056 break; 6057 case LibFunc::ceil: 6058 case LibFunc::ceilf: 6059 case LibFunc::ceill: 6060 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6061 return; 6062 break; 6063 case LibFunc::rint: 6064 case LibFunc::rintf: 6065 case LibFunc::rintl: 6066 if (visitUnaryFloatCall(I, ISD::FRINT)) 6067 return; 6068 break; 6069 case LibFunc::round: 6070 case LibFunc::roundf: 6071 case LibFunc::roundl: 6072 if (visitUnaryFloatCall(I, ISD::FROUND)) 6073 return; 6074 break; 6075 case LibFunc::trunc: 6076 case LibFunc::truncf: 6077 case LibFunc::truncl: 6078 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6079 return; 6080 break; 6081 case LibFunc::log2: 6082 case LibFunc::log2f: 6083 case LibFunc::log2l: 6084 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6085 return; 6086 break; 6087 case LibFunc::exp2: 6088 case LibFunc::exp2f: 6089 case LibFunc::exp2l: 6090 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6091 return; 6092 break; 6093 case LibFunc::memcmp: 6094 if (visitMemCmpCall(I)) 6095 return; 6096 break; 6097 case LibFunc::memchr: 6098 if (visitMemChrCall(I)) 6099 return; 6100 break; 6101 case LibFunc::strcpy: 6102 if (visitStrCpyCall(I, false)) 6103 return; 6104 break; 6105 case LibFunc::stpcpy: 6106 if (visitStrCpyCall(I, true)) 6107 return; 6108 break; 6109 case LibFunc::strcmp: 6110 if (visitStrCmpCall(I)) 6111 return; 6112 break; 6113 case LibFunc::strlen: 6114 if (visitStrLenCall(I)) 6115 return; 6116 break; 6117 case LibFunc::strnlen: 6118 if (visitStrNLenCall(I)) 6119 return; 6120 break; 6121 } 6122 } 6123 } 6124 6125 SDValue Callee; 6126 if (!RenameFn) 6127 Callee = getValue(I.getCalledValue()); 6128 else 6129 Callee = DAG.getExternalSymbol( 6130 RenameFn, 6131 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6132 6133 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6134 // have to do anything here to lower funclet bundles. 6135 assert(!I.hasOperandBundlesOtherThan( 6136 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6137 "Cannot lower calls with arbitrary operand bundles!"); 6138 6139 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6140 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6141 else 6142 // Check if we can potentially perform a tail call. More detailed checking 6143 // is be done within LowerCallTo, after more information about the call is 6144 // known. 6145 LowerCallTo(&I, Callee, I.isTailCall()); 6146 } 6147 6148 namespace { 6149 6150 /// AsmOperandInfo - This contains information for each constraint that we are 6151 /// lowering. 6152 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6153 public: 6154 /// CallOperand - If this is the result output operand or a clobber 6155 /// this is null, otherwise it is the incoming operand to the CallInst. 6156 /// This gets modified as the asm is processed. 6157 SDValue CallOperand; 6158 6159 /// AssignedRegs - If this is a register or register class operand, this 6160 /// contains the set of register corresponding to the operand. 6161 RegsForValue AssignedRegs; 6162 6163 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6164 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6165 } 6166 6167 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6168 /// corresponds to. If there is no Value* for this operand, it returns 6169 /// MVT::Other. 6170 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6171 const DataLayout &DL) const { 6172 if (!CallOperandVal) return MVT::Other; 6173 6174 if (isa<BasicBlock>(CallOperandVal)) 6175 return TLI.getPointerTy(DL); 6176 6177 llvm::Type *OpTy = CallOperandVal->getType(); 6178 6179 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6180 // If this is an indirect operand, the operand is a pointer to the 6181 // accessed type. 6182 if (isIndirect) { 6183 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6184 if (!PtrTy) 6185 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6186 OpTy = PtrTy->getElementType(); 6187 } 6188 6189 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6190 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6191 if (STy->getNumElements() == 1) 6192 OpTy = STy->getElementType(0); 6193 6194 // If OpTy is not a single value, it may be a struct/union that we 6195 // can tile with integers. 6196 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6197 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6198 switch (BitSize) { 6199 default: break; 6200 case 1: 6201 case 8: 6202 case 16: 6203 case 32: 6204 case 64: 6205 case 128: 6206 OpTy = IntegerType::get(Context, BitSize); 6207 break; 6208 } 6209 } 6210 6211 return TLI.getValueType(DL, OpTy, true); 6212 } 6213 }; 6214 6215 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6216 6217 } // end anonymous namespace 6218 6219 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6220 /// specified operand. We prefer to assign virtual registers, to allow the 6221 /// register allocator to handle the assignment process. However, if the asm 6222 /// uses features that we can't model on machineinstrs, we have SDISel do the 6223 /// allocation. This produces generally horrible, but correct, code. 6224 /// 6225 /// OpInfo describes the operand. 6226 /// 6227 static void GetRegistersForValue(SelectionDAG &DAG, 6228 const TargetLowering &TLI, 6229 SDLoc DL, 6230 SDISelAsmOperandInfo &OpInfo) { 6231 LLVMContext &Context = *DAG.getContext(); 6232 6233 MachineFunction &MF = DAG.getMachineFunction(); 6234 SmallVector<unsigned, 4> Regs; 6235 6236 // If this is a constraint for a single physreg, or a constraint for a 6237 // register class, find it. 6238 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6239 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6240 OpInfo.ConstraintCode, 6241 OpInfo.ConstraintVT); 6242 6243 unsigned NumRegs = 1; 6244 if (OpInfo.ConstraintVT != MVT::Other) { 6245 // If this is a FP input in an integer register (or visa versa) insert a bit 6246 // cast of the input value. More generally, handle any case where the input 6247 // value disagrees with the register class we plan to stick this in. 6248 if (OpInfo.Type == InlineAsm::isInput && 6249 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6250 // Try to convert to the first EVT that the reg class contains. If the 6251 // types are identical size, use a bitcast to convert (e.g. two differing 6252 // vector types). 6253 MVT RegVT = *PhysReg.second->vt_begin(); 6254 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6255 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6256 RegVT, OpInfo.CallOperand); 6257 OpInfo.ConstraintVT = RegVT; 6258 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6259 // If the input is a FP value and we want it in FP registers, do a 6260 // bitcast to the corresponding integer type. This turns an f64 value 6261 // into i64, which can be passed with two i32 values on a 32-bit 6262 // machine. 6263 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6264 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6265 RegVT, OpInfo.CallOperand); 6266 OpInfo.ConstraintVT = RegVT; 6267 } 6268 } 6269 6270 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6271 } 6272 6273 MVT RegVT; 6274 EVT ValueVT = OpInfo.ConstraintVT; 6275 6276 // If this is a constraint for a specific physical register, like {r17}, 6277 // assign it now. 6278 if (unsigned AssignedReg = PhysReg.first) { 6279 const TargetRegisterClass *RC = PhysReg.second; 6280 if (OpInfo.ConstraintVT == MVT::Other) 6281 ValueVT = *RC->vt_begin(); 6282 6283 // Get the actual register value type. This is important, because the user 6284 // may have asked for (e.g.) the AX register in i32 type. We need to 6285 // remember that AX is actually i16 to get the right extension. 6286 RegVT = *RC->vt_begin(); 6287 6288 // This is a explicit reference to a physical register. 6289 Regs.push_back(AssignedReg); 6290 6291 // If this is an expanded reference, add the rest of the regs to Regs. 6292 if (NumRegs != 1) { 6293 TargetRegisterClass::iterator I = RC->begin(); 6294 for (; *I != AssignedReg; ++I) 6295 assert(I != RC->end() && "Didn't find reg!"); 6296 6297 // Already added the first reg. 6298 --NumRegs; ++I; 6299 for (; NumRegs; --NumRegs, ++I) { 6300 assert(I != RC->end() && "Ran out of registers to allocate!"); 6301 Regs.push_back(*I); 6302 } 6303 } 6304 6305 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6306 return; 6307 } 6308 6309 // Otherwise, if this was a reference to an LLVM register class, create vregs 6310 // for this reference. 6311 if (const TargetRegisterClass *RC = PhysReg.second) { 6312 RegVT = *RC->vt_begin(); 6313 if (OpInfo.ConstraintVT == MVT::Other) 6314 ValueVT = RegVT; 6315 6316 // Create the appropriate number of virtual registers. 6317 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6318 for (; NumRegs; --NumRegs) 6319 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6320 6321 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6322 return; 6323 } 6324 6325 // Otherwise, we couldn't allocate enough registers for this. 6326 } 6327 6328 /// visitInlineAsm - Handle a call to an InlineAsm object. 6329 /// 6330 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6331 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6332 6333 /// ConstraintOperands - Information about all of the constraints. 6334 SDISelAsmOperandInfoVector ConstraintOperands; 6335 6336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6337 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6338 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6339 6340 bool hasMemory = false; 6341 6342 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6343 unsigned ResNo = 0; // ResNo - The result number of the next output. 6344 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6345 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6346 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6347 6348 MVT OpVT = MVT::Other; 6349 6350 // Compute the value type for each operand. 6351 switch (OpInfo.Type) { 6352 case InlineAsm::isOutput: 6353 // Indirect outputs just consume an argument. 6354 if (OpInfo.isIndirect) { 6355 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6356 break; 6357 } 6358 6359 // The return value of the call is this value. As such, there is no 6360 // corresponding argument. 6361 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6362 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6363 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6364 STy->getElementType(ResNo)); 6365 } else { 6366 assert(ResNo == 0 && "Asm only has one result!"); 6367 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6368 } 6369 ++ResNo; 6370 break; 6371 case InlineAsm::isInput: 6372 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6373 break; 6374 case InlineAsm::isClobber: 6375 // Nothing to do. 6376 break; 6377 } 6378 6379 // If this is an input or an indirect output, process the call argument. 6380 // BasicBlocks are labels, currently appearing only in asm's. 6381 if (OpInfo.CallOperandVal) { 6382 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6383 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6384 } else { 6385 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6386 } 6387 6388 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6389 DAG.getDataLayout()).getSimpleVT(); 6390 } 6391 6392 OpInfo.ConstraintVT = OpVT; 6393 6394 // Indirect operand accesses access memory. 6395 if (OpInfo.isIndirect) 6396 hasMemory = true; 6397 else { 6398 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6399 TargetLowering::ConstraintType 6400 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6401 if (CType == TargetLowering::C_Memory) { 6402 hasMemory = true; 6403 break; 6404 } 6405 } 6406 } 6407 } 6408 6409 SDValue Chain, Flag; 6410 6411 // We won't need to flush pending loads if this asm doesn't touch 6412 // memory and is nonvolatile. 6413 if (hasMemory || IA->hasSideEffects()) 6414 Chain = getRoot(); 6415 else 6416 Chain = DAG.getRoot(); 6417 6418 // Second pass over the constraints: compute which constraint option to use 6419 // and assign registers to constraints that want a specific physreg. 6420 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6421 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6422 6423 // If this is an output operand with a matching input operand, look up the 6424 // matching input. If their types mismatch, e.g. one is an integer, the 6425 // other is floating point, or their sizes are different, flag it as an 6426 // error. 6427 if (OpInfo.hasMatchingInput()) { 6428 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6429 6430 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6431 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6432 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6433 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6434 OpInfo.ConstraintVT); 6435 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6436 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6437 Input.ConstraintVT); 6438 if ((OpInfo.ConstraintVT.isInteger() != 6439 Input.ConstraintVT.isInteger()) || 6440 (MatchRC.second != InputRC.second)) { 6441 report_fatal_error("Unsupported asm: input constraint" 6442 " with a matching output constraint of" 6443 " incompatible type!"); 6444 } 6445 Input.ConstraintVT = OpInfo.ConstraintVT; 6446 } 6447 } 6448 6449 // Compute the constraint code and ConstraintType to use. 6450 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6451 6452 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6453 OpInfo.Type == InlineAsm::isClobber) 6454 continue; 6455 6456 // If this is a memory input, and if the operand is not indirect, do what we 6457 // need to to provide an address for the memory input. 6458 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6459 !OpInfo.isIndirect) { 6460 assert((OpInfo.isMultipleAlternative || 6461 (OpInfo.Type == InlineAsm::isInput)) && 6462 "Can only indirectify direct input operands!"); 6463 6464 // Memory operands really want the address of the value. If we don't have 6465 // an indirect input, put it in the constpool if we can, otherwise spill 6466 // it to a stack slot. 6467 // TODO: This isn't quite right. We need to handle these according to 6468 // the addressing mode that the constraint wants. Also, this may take 6469 // an additional register for the computation and we don't want that 6470 // either. 6471 6472 // If the operand is a float, integer, or vector constant, spill to a 6473 // constant pool entry to get its address. 6474 const Value *OpVal = OpInfo.CallOperandVal; 6475 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6476 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6477 OpInfo.CallOperand = DAG.getConstantPool( 6478 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6479 } else { 6480 // Otherwise, create a stack slot and emit a store to it before the 6481 // asm. 6482 Type *Ty = OpVal->getType(); 6483 auto &DL = DAG.getDataLayout(); 6484 uint64_t TySize = DL.getTypeAllocSize(Ty); 6485 unsigned Align = DL.getPrefTypeAlignment(Ty); 6486 MachineFunction &MF = DAG.getMachineFunction(); 6487 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6488 SDValue StackSlot = 6489 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6490 Chain = DAG.getStore( 6491 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6492 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6493 false, false, 0); 6494 OpInfo.CallOperand = StackSlot; 6495 } 6496 6497 // There is no longer a Value* corresponding to this operand. 6498 OpInfo.CallOperandVal = nullptr; 6499 6500 // It is now an indirect operand. 6501 OpInfo.isIndirect = true; 6502 } 6503 6504 // If this constraint is for a specific register, allocate it before 6505 // anything else. 6506 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6507 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6508 } 6509 6510 // Second pass - Loop over all of the operands, assigning virtual or physregs 6511 // to register class operands. 6512 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6513 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6514 6515 // C_Register operands have already been allocated, Other/Memory don't need 6516 // to be. 6517 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6518 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6519 } 6520 6521 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6522 std::vector<SDValue> AsmNodeOperands; 6523 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6524 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6525 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6526 6527 // If we have a !srcloc metadata node associated with it, we want to attach 6528 // this to the ultimately generated inline asm machineinstr. To do this, we 6529 // pass in the third operand as this (potentially null) inline asm MDNode. 6530 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6531 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6532 6533 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6534 // bits as operand 3. 6535 unsigned ExtraInfo = 0; 6536 if (IA->hasSideEffects()) 6537 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6538 if (IA->isAlignStack()) 6539 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6540 // Set the asm dialect. 6541 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6542 6543 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6544 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6545 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6546 6547 // Compute the constraint code and ConstraintType to use. 6548 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6549 6550 // Ideally, we would only check against memory constraints. However, the 6551 // meaning of an other constraint can be target-specific and we can't easily 6552 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6553 // for other constriants as well. 6554 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6555 OpInfo.ConstraintType == TargetLowering::C_Other) { 6556 if (OpInfo.Type == InlineAsm::isInput) 6557 ExtraInfo |= InlineAsm::Extra_MayLoad; 6558 else if (OpInfo.Type == InlineAsm::isOutput) 6559 ExtraInfo |= InlineAsm::Extra_MayStore; 6560 else if (OpInfo.Type == InlineAsm::isClobber) 6561 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6562 } 6563 } 6564 6565 AsmNodeOperands.push_back(DAG.getTargetConstant( 6566 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6567 6568 // Loop over all of the inputs, copying the operand values into the 6569 // appropriate registers and processing the output regs. 6570 RegsForValue RetValRegs; 6571 6572 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6573 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6574 6575 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6576 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6577 6578 switch (OpInfo.Type) { 6579 case InlineAsm::isOutput: { 6580 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6581 OpInfo.ConstraintType != TargetLowering::C_Register) { 6582 // Memory output, or 'other' output (e.g. 'X' constraint). 6583 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6584 6585 unsigned ConstraintID = 6586 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6587 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6588 "Failed to convert memory constraint code to constraint id."); 6589 6590 // Add information to the INLINEASM node to know about this output. 6591 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6592 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6593 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6594 MVT::i32)); 6595 AsmNodeOperands.push_back(OpInfo.CallOperand); 6596 break; 6597 } 6598 6599 // Otherwise, this is a register or register class output. 6600 6601 // Copy the output from the appropriate register. Find a register that 6602 // we can use. 6603 if (OpInfo.AssignedRegs.Regs.empty()) { 6604 LLVMContext &Ctx = *DAG.getContext(); 6605 Ctx.emitError(CS.getInstruction(), 6606 "couldn't allocate output register for constraint '" + 6607 Twine(OpInfo.ConstraintCode) + "'"); 6608 return; 6609 } 6610 6611 // If this is an indirect operand, store through the pointer after the 6612 // asm. 6613 if (OpInfo.isIndirect) { 6614 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6615 OpInfo.CallOperandVal)); 6616 } else { 6617 // This is the result value of the call. 6618 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6619 // Concatenate this output onto the outputs list. 6620 RetValRegs.append(OpInfo.AssignedRegs); 6621 } 6622 6623 // Add information to the INLINEASM node to know that this register is 6624 // set. 6625 OpInfo.AssignedRegs 6626 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6627 ? InlineAsm::Kind_RegDefEarlyClobber 6628 : InlineAsm::Kind_RegDef, 6629 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6630 break; 6631 } 6632 case InlineAsm::isInput: { 6633 SDValue InOperandVal = OpInfo.CallOperand; 6634 6635 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6636 // If this is required to match an output register we have already set, 6637 // just use its register. 6638 unsigned OperandNo = OpInfo.getMatchedOperand(); 6639 6640 // Scan until we find the definition we already emitted of this operand. 6641 // When we find it, create a RegsForValue operand. 6642 unsigned CurOp = InlineAsm::Op_FirstOperand; 6643 for (; OperandNo; --OperandNo) { 6644 // Advance to the next operand. 6645 unsigned OpFlag = 6646 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6647 assert((InlineAsm::isRegDefKind(OpFlag) || 6648 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6649 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6650 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6651 } 6652 6653 unsigned OpFlag = 6654 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6655 if (InlineAsm::isRegDefKind(OpFlag) || 6656 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6657 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6658 if (OpInfo.isIndirect) { 6659 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6660 LLVMContext &Ctx = *DAG.getContext(); 6661 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6662 " don't know how to handle tied " 6663 "indirect register inputs"); 6664 return; 6665 } 6666 6667 RegsForValue MatchedRegs; 6668 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6669 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6670 MatchedRegs.RegVTs.push_back(RegVT); 6671 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6672 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6673 i != e; ++i) { 6674 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6675 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6676 else { 6677 LLVMContext &Ctx = *DAG.getContext(); 6678 Ctx.emitError(CS.getInstruction(), 6679 "inline asm error: This value" 6680 " type register class is not natively supported!"); 6681 return; 6682 } 6683 } 6684 SDLoc dl = getCurSDLoc(); 6685 // Use the produced MatchedRegs object to 6686 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6687 Chain, &Flag, CS.getInstruction()); 6688 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6689 true, OpInfo.getMatchedOperand(), dl, 6690 DAG, AsmNodeOperands); 6691 break; 6692 } 6693 6694 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6695 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6696 "Unexpected number of operands"); 6697 // Add information to the INLINEASM node to know about this input. 6698 // See InlineAsm.h isUseOperandTiedToDef. 6699 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6700 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6701 OpInfo.getMatchedOperand()); 6702 AsmNodeOperands.push_back(DAG.getTargetConstant( 6703 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6704 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6705 break; 6706 } 6707 6708 // Treat indirect 'X' constraint as memory. 6709 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6710 OpInfo.isIndirect) 6711 OpInfo.ConstraintType = TargetLowering::C_Memory; 6712 6713 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6714 std::vector<SDValue> Ops; 6715 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6716 Ops, DAG); 6717 if (Ops.empty()) { 6718 LLVMContext &Ctx = *DAG.getContext(); 6719 Ctx.emitError(CS.getInstruction(), 6720 "invalid operand for inline asm constraint '" + 6721 Twine(OpInfo.ConstraintCode) + "'"); 6722 return; 6723 } 6724 6725 // Add information to the INLINEASM node to know about this input. 6726 unsigned ResOpType = 6727 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6728 AsmNodeOperands.push_back(DAG.getTargetConstant( 6729 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6730 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6731 break; 6732 } 6733 6734 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6735 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6736 assert(InOperandVal.getValueType() == 6737 TLI.getPointerTy(DAG.getDataLayout()) && 6738 "Memory operands expect pointer values"); 6739 6740 unsigned ConstraintID = 6741 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6742 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6743 "Failed to convert memory constraint code to constraint id."); 6744 6745 // Add information to the INLINEASM node to know about this input. 6746 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6747 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6748 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6749 getCurSDLoc(), 6750 MVT::i32)); 6751 AsmNodeOperands.push_back(InOperandVal); 6752 break; 6753 } 6754 6755 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6756 OpInfo.ConstraintType == TargetLowering::C_Register) && 6757 "Unknown constraint type!"); 6758 6759 // TODO: Support this. 6760 if (OpInfo.isIndirect) { 6761 LLVMContext &Ctx = *DAG.getContext(); 6762 Ctx.emitError(CS.getInstruction(), 6763 "Don't know how to handle indirect register inputs yet " 6764 "for constraint '" + 6765 Twine(OpInfo.ConstraintCode) + "'"); 6766 return; 6767 } 6768 6769 // Copy the input into the appropriate registers. 6770 if (OpInfo.AssignedRegs.Regs.empty()) { 6771 LLVMContext &Ctx = *DAG.getContext(); 6772 Ctx.emitError(CS.getInstruction(), 6773 "couldn't allocate input reg for constraint '" + 6774 Twine(OpInfo.ConstraintCode) + "'"); 6775 return; 6776 } 6777 6778 SDLoc dl = getCurSDLoc(); 6779 6780 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6781 Chain, &Flag, CS.getInstruction()); 6782 6783 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6784 dl, DAG, AsmNodeOperands); 6785 break; 6786 } 6787 case InlineAsm::isClobber: { 6788 // Add the clobbered value to the operand list, so that the register 6789 // allocator is aware that the physreg got clobbered. 6790 if (!OpInfo.AssignedRegs.Regs.empty()) 6791 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6792 false, 0, getCurSDLoc(), DAG, 6793 AsmNodeOperands); 6794 break; 6795 } 6796 } 6797 } 6798 6799 // Finish up input operands. Set the input chain and add the flag last. 6800 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6801 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6802 6803 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6804 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6805 Flag = Chain.getValue(1); 6806 6807 // If this asm returns a register value, copy the result from that register 6808 // and set it as the value of the call. 6809 if (!RetValRegs.Regs.empty()) { 6810 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6811 Chain, &Flag, CS.getInstruction()); 6812 6813 // FIXME: Why don't we do this for inline asms with MRVs? 6814 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6815 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6816 6817 // If any of the results of the inline asm is a vector, it may have the 6818 // wrong width/num elts. This can happen for register classes that can 6819 // contain multiple different value types. The preg or vreg allocated may 6820 // not have the same VT as was expected. Convert it to the right type 6821 // with bit_convert. 6822 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6823 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6824 ResultType, Val); 6825 6826 } else if (ResultType != Val.getValueType() && 6827 ResultType.isInteger() && Val.getValueType().isInteger()) { 6828 // If a result value was tied to an input value, the computed result may 6829 // have a wider width than the expected result. Extract the relevant 6830 // portion. 6831 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6832 } 6833 6834 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6835 } 6836 6837 setValue(CS.getInstruction(), Val); 6838 // Don't need to use this as a chain in this case. 6839 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6840 return; 6841 } 6842 6843 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6844 6845 // Process indirect outputs, first output all of the flagged copies out of 6846 // physregs. 6847 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6848 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6849 const Value *Ptr = IndirectStoresToEmit[i].second; 6850 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6851 Chain, &Flag, IA); 6852 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6853 } 6854 6855 // Emit the non-flagged stores from the physregs. 6856 SmallVector<SDValue, 8> OutChains; 6857 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6858 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6859 StoresToEmit[i].first, 6860 getValue(StoresToEmit[i].second), 6861 MachinePointerInfo(StoresToEmit[i].second), 6862 false, false, 0); 6863 OutChains.push_back(Val); 6864 } 6865 6866 if (!OutChains.empty()) 6867 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6868 6869 DAG.setRoot(Chain); 6870 } 6871 6872 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6873 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6874 MVT::Other, getRoot(), 6875 getValue(I.getArgOperand(0)), 6876 DAG.getSrcValue(I.getArgOperand(0)))); 6877 } 6878 6879 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6881 const DataLayout &DL = DAG.getDataLayout(); 6882 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6883 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6884 DAG.getSrcValue(I.getOperand(0)), 6885 DL.getABITypeAlignment(I.getType())); 6886 setValue(&I, V); 6887 DAG.setRoot(V.getValue(1)); 6888 } 6889 6890 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6891 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6892 MVT::Other, getRoot(), 6893 getValue(I.getArgOperand(0)), 6894 DAG.getSrcValue(I.getArgOperand(0)))); 6895 } 6896 6897 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6898 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6899 MVT::Other, getRoot(), 6900 getValue(I.getArgOperand(0)), 6901 getValue(I.getArgOperand(1)), 6902 DAG.getSrcValue(I.getArgOperand(0)), 6903 DAG.getSrcValue(I.getArgOperand(1)))); 6904 } 6905 6906 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6907 const Instruction &I, 6908 SDValue Op) { 6909 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6910 if (!Range) 6911 return Op; 6912 6913 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6914 if (!Lo->isNullValue()) 6915 return Op; 6916 6917 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6918 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6919 6920 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6921 6922 SDLoc SL = getCurSDLoc(); 6923 6924 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6925 Op, DAG.getValueType(SmallVT)); 6926 unsigned NumVals = Op.getNode()->getNumValues(); 6927 if (NumVals == 1) 6928 return ZExt; 6929 6930 SmallVector<SDValue, 4> Ops; 6931 6932 Ops.push_back(ZExt); 6933 for (unsigned I = 1; I != NumVals; ++I) 6934 Ops.push_back(Op.getValue(I)); 6935 6936 return DAG.getMergeValues(Ops, SL); 6937 } 6938 6939 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 6940 /// the call being lowered. 6941 /// 6942 /// This is a helper for lowering intrinsics that follow a target calling 6943 /// convention or require stack pointer adjustment. Only a subset of the 6944 /// intrinsic's operands need to participate in the calling convention. 6945 void SelectionDAGBuilder::populateCallLoweringInfo( 6946 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 6947 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 6948 bool IsPatchPoint) { 6949 TargetLowering::ArgListTy Args; 6950 Args.reserve(NumArgs); 6951 6952 // Populate the argument list. 6953 // Attributes for args start at offset 1, after the return attribute. 6954 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6955 ArgI != ArgE; ++ArgI) { 6956 const Value *V = CS->getOperand(ArgI); 6957 6958 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6959 6960 TargetLowering::ArgListEntry Entry; 6961 Entry.Node = getValue(V); 6962 Entry.Ty = V->getType(); 6963 Entry.setAttributes(&CS, AttrI); 6964 Args.push_back(Entry); 6965 } 6966 6967 CLI.setDebugLoc(getCurSDLoc()) 6968 .setChain(getRoot()) 6969 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 6970 NumArgs) 6971 .setDiscardResult(CS->use_empty()) 6972 .setIsPatchPoint(IsPatchPoint); 6973 } 6974 6975 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6976 /// or patchpoint target node's operand list. 6977 /// 6978 /// Constants are converted to TargetConstants purely as an optimization to 6979 /// avoid constant materialization and register allocation. 6980 /// 6981 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6982 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6983 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6984 /// address materialization and register allocation, but may also be required 6985 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6986 /// alloca in the entry block, then the runtime may assume that the alloca's 6987 /// StackMap location can be read immediately after compilation and that the 6988 /// location is valid at any point during execution (this is similar to the 6989 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6990 /// only available in a register, then the runtime would need to trap when 6991 /// execution reaches the StackMap in order to read the alloca's location. 6992 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6993 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6994 SelectionDAGBuilder &Builder) { 6995 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6996 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6997 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6998 Ops.push_back( 6999 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7000 Ops.push_back( 7001 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7002 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7003 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7004 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7005 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7006 } else 7007 Ops.push_back(OpVal); 7008 } 7009 } 7010 7011 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7012 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7013 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7014 // [live variables...]) 7015 7016 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7017 7018 SDValue Chain, InFlag, Callee, NullPtr; 7019 SmallVector<SDValue, 32> Ops; 7020 7021 SDLoc DL = getCurSDLoc(); 7022 Callee = getValue(CI.getCalledValue()); 7023 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7024 7025 // The stackmap intrinsic only records the live variables (the arguemnts 7026 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7027 // intrinsic, this won't be lowered to a function call. This means we don't 7028 // have to worry about calling conventions and target specific lowering code. 7029 // Instead we perform the call lowering right here. 7030 // 7031 // chain, flag = CALLSEQ_START(chain, 0) 7032 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7033 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7034 // 7035 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7036 InFlag = Chain.getValue(1); 7037 7038 // Add the <id> and <numBytes> constants. 7039 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7040 Ops.push_back(DAG.getTargetConstant( 7041 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7042 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7043 Ops.push_back(DAG.getTargetConstant( 7044 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7045 MVT::i32)); 7046 7047 // Push live variables for the stack map. 7048 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7049 7050 // We are not pushing any register mask info here on the operands list, 7051 // because the stackmap doesn't clobber anything. 7052 7053 // Push the chain and the glue flag. 7054 Ops.push_back(Chain); 7055 Ops.push_back(InFlag); 7056 7057 // Create the STACKMAP node. 7058 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7059 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7060 Chain = SDValue(SM, 0); 7061 InFlag = Chain.getValue(1); 7062 7063 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7064 7065 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7066 7067 // Set the root to the target-lowered call chain. 7068 DAG.setRoot(Chain); 7069 7070 // Inform the Frame Information that we have a stackmap in this function. 7071 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7072 } 7073 7074 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7075 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7076 const BasicBlock *EHPadBB) { 7077 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7078 // i32 <numBytes>, 7079 // i8* <target>, 7080 // i32 <numArgs>, 7081 // [Args...], 7082 // [live variables...]) 7083 7084 CallingConv::ID CC = CS.getCallingConv(); 7085 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7086 bool HasDef = !CS->getType()->isVoidTy(); 7087 SDLoc dl = getCurSDLoc(); 7088 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7089 7090 // Handle immediate and symbolic callees. 7091 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7092 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7093 /*isTarget=*/true); 7094 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7095 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7096 SDLoc(SymbolicCallee), 7097 SymbolicCallee->getValueType(0)); 7098 7099 // Get the real number of arguments participating in the call <numArgs> 7100 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7101 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7102 7103 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7104 // Intrinsics include all meta-operands up to but not including CC. 7105 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7106 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7107 "Not enough arguments provided to the patchpoint intrinsic"); 7108 7109 // For AnyRegCC the arguments are lowered later on manually. 7110 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7111 Type *ReturnTy = 7112 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7113 7114 TargetLowering::CallLoweringInfo CLI(DAG); 7115 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7116 true); 7117 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7118 7119 SDNode *CallEnd = Result.second.getNode(); 7120 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7121 CallEnd = CallEnd->getOperand(0).getNode(); 7122 7123 /// Get a call instruction from the call sequence chain. 7124 /// Tail calls are not allowed. 7125 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7126 "Expected a callseq node."); 7127 SDNode *Call = CallEnd->getOperand(0).getNode(); 7128 bool HasGlue = Call->getGluedNode(); 7129 7130 // Replace the target specific call node with the patchable intrinsic. 7131 SmallVector<SDValue, 8> Ops; 7132 7133 // Add the <id> and <numBytes> constants. 7134 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7135 Ops.push_back(DAG.getTargetConstant( 7136 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7137 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7138 Ops.push_back(DAG.getTargetConstant( 7139 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7140 MVT::i32)); 7141 7142 // Add the callee. 7143 Ops.push_back(Callee); 7144 7145 // Adjust <numArgs> to account for any arguments that have been passed on the 7146 // stack instead. 7147 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7148 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7149 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7150 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7151 7152 // Add the calling convention 7153 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7154 7155 // Add the arguments we omitted previously. The register allocator should 7156 // place these in any free register. 7157 if (IsAnyRegCC) 7158 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7159 Ops.push_back(getValue(CS.getArgument(i))); 7160 7161 // Push the arguments from the call instruction up to the register mask. 7162 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7163 Ops.append(Call->op_begin() + 2, e); 7164 7165 // Push live variables for the stack map. 7166 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7167 7168 // Push the register mask info. 7169 if (HasGlue) 7170 Ops.push_back(*(Call->op_end()-2)); 7171 else 7172 Ops.push_back(*(Call->op_end()-1)); 7173 7174 // Push the chain (this is originally the first operand of the call, but 7175 // becomes now the last or second to last operand). 7176 Ops.push_back(*(Call->op_begin())); 7177 7178 // Push the glue flag (last operand). 7179 if (HasGlue) 7180 Ops.push_back(*(Call->op_end()-1)); 7181 7182 SDVTList NodeTys; 7183 if (IsAnyRegCC && HasDef) { 7184 // Create the return types based on the intrinsic definition 7185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7186 SmallVector<EVT, 3> ValueVTs; 7187 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7188 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7189 7190 // There is always a chain and a glue type at the end 7191 ValueVTs.push_back(MVT::Other); 7192 ValueVTs.push_back(MVT::Glue); 7193 NodeTys = DAG.getVTList(ValueVTs); 7194 } else 7195 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7196 7197 // Replace the target specific call node with a PATCHPOINT node. 7198 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7199 dl, NodeTys, Ops); 7200 7201 // Update the NodeMap. 7202 if (HasDef) { 7203 if (IsAnyRegCC) 7204 setValue(CS.getInstruction(), SDValue(MN, 0)); 7205 else 7206 setValue(CS.getInstruction(), Result.first); 7207 } 7208 7209 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7210 // call sequence. Furthermore the location of the chain and glue can change 7211 // when the AnyReg calling convention is used and the intrinsic returns a 7212 // value. 7213 if (IsAnyRegCC && HasDef) { 7214 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7215 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7216 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7217 } else 7218 DAG.ReplaceAllUsesWith(Call, MN); 7219 DAG.DeleteNode(Call); 7220 7221 // Inform the Frame Information that we have a patchpoint in this function. 7222 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7223 } 7224 7225 /// Returns an AttributeSet representing the attributes applied to the return 7226 /// value of the given call. 7227 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7228 SmallVector<Attribute::AttrKind, 2> Attrs; 7229 if (CLI.RetSExt) 7230 Attrs.push_back(Attribute::SExt); 7231 if (CLI.RetZExt) 7232 Attrs.push_back(Attribute::ZExt); 7233 if (CLI.IsInReg) 7234 Attrs.push_back(Attribute::InReg); 7235 7236 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7237 Attrs); 7238 } 7239 7240 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7241 /// implementation, which just calls LowerCall. 7242 /// FIXME: When all targets are 7243 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7244 std::pair<SDValue, SDValue> 7245 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7246 // Handle the incoming return values from the call. 7247 CLI.Ins.clear(); 7248 Type *OrigRetTy = CLI.RetTy; 7249 SmallVector<EVT, 4> RetTys; 7250 SmallVector<uint64_t, 4> Offsets; 7251 auto &DL = CLI.DAG.getDataLayout(); 7252 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7253 7254 SmallVector<ISD::OutputArg, 4> Outs; 7255 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7256 7257 bool CanLowerReturn = 7258 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7259 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7260 7261 SDValue DemoteStackSlot; 7262 int DemoteStackIdx = -100; 7263 if (!CanLowerReturn) { 7264 // FIXME: equivalent assert? 7265 // assert(!CS.hasInAllocaArgument() && 7266 // "sret demotion is incompatible with inalloca"); 7267 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7268 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7269 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7270 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7271 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7272 7273 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7274 ArgListEntry Entry; 7275 Entry.Node = DemoteStackSlot; 7276 Entry.Ty = StackSlotPtrType; 7277 Entry.isSExt = false; 7278 Entry.isZExt = false; 7279 Entry.isInReg = false; 7280 Entry.isSRet = true; 7281 Entry.isNest = false; 7282 Entry.isByVal = false; 7283 Entry.isReturned = false; 7284 Entry.isSwiftSelf = false; 7285 Entry.Alignment = Align; 7286 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7287 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7288 7289 // sret demotion isn't compatible with tail-calls, since the sret argument 7290 // points into the callers stack frame. 7291 CLI.IsTailCall = false; 7292 } else { 7293 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7294 EVT VT = RetTys[I]; 7295 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7296 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7297 for (unsigned i = 0; i != NumRegs; ++i) { 7298 ISD::InputArg MyFlags; 7299 MyFlags.VT = RegisterVT; 7300 MyFlags.ArgVT = VT; 7301 MyFlags.Used = CLI.IsReturnValueUsed; 7302 if (CLI.RetSExt) 7303 MyFlags.Flags.setSExt(); 7304 if (CLI.RetZExt) 7305 MyFlags.Flags.setZExt(); 7306 if (CLI.IsInReg) 7307 MyFlags.Flags.setInReg(); 7308 CLI.Ins.push_back(MyFlags); 7309 } 7310 } 7311 } 7312 7313 // Handle all of the outgoing arguments. 7314 CLI.Outs.clear(); 7315 CLI.OutVals.clear(); 7316 ArgListTy &Args = CLI.getArgs(); 7317 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7318 SmallVector<EVT, 4> ValueVTs; 7319 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7320 Type *FinalType = Args[i].Ty; 7321 if (Args[i].isByVal) 7322 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7323 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7324 FinalType, CLI.CallConv, CLI.IsVarArg); 7325 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7326 ++Value) { 7327 EVT VT = ValueVTs[Value]; 7328 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7329 SDValue Op = SDValue(Args[i].Node.getNode(), 7330 Args[i].Node.getResNo() + Value); 7331 ISD::ArgFlagsTy Flags; 7332 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7333 7334 if (Args[i].isZExt) 7335 Flags.setZExt(); 7336 if (Args[i].isSExt) 7337 Flags.setSExt(); 7338 if (Args[i].isInReg) 7339 Flags.setInReg(); 7340 if (Args[i].isSRet) 7341 Flags.setSRet(); 7342 if (Args[i].isSwiftSelf) 7343 Flags.setSwiftSelf(); 7344 if (Args[i].isByVal) 7345 Flags.setByVal(); 7346 if (Args[i].isInAlloca) { 7347 Flags.setInAlloca(); 7348 // Set the byval flag for CCAssignFn callbacks that don't know about 7349 // inalloca. This way we can know how many bytes we should've allocated 7350 // and how many bytes a callee cleanup function will pop. If we port 7351 // inalloca to more targets, we'll have to add custom inalloca handling 7352 // in the various CC lowering callbacks. 7353 Flags.setByVal(); 7354 } 7355 if (Args[i].isByVal || Args[i].isInAlloca) { 7356 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7357 Type *ElementTy = Ty->getElementType(); 7358 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7359 // For ByVal, alignment should come from FE. BE will guess if this 7360 // info is not there but there are cases it cannot get right. 7361 unsigned FrameAlign; 7362 if (Args[i].Alignment) 7363 FrameAlign = Args[i].Alignment; 7364 else 7365 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7366 Flags.setByValAlign(FrameAlign); 7367 } 7368 if (Args[i].isNest) 7369 Flags.setNest(); 7370 if (NeedsRegBlock) 7371 Flags.setInConsecutiveRegs(); 7372 Flags.setOrigAlign(OriginalAlignment); 7373 7374 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7375 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7376 SmallVector<SDValue, 4> Parts(NumParts); 7377 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7378 7379 if (Args[i].isSExt) 7380 ExtendKind = ISD::SIGN_EXTEND; 7381 else if (Args[i].isZExt) 7382 ExtendKind = ISD::ZERO_EXTEND; 7383 7384 // Conservatively only handle 'returned' on non-vectors for now 7385 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7386 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7387 "unexpected use of 'returned'"); 7388 // Before passing 'returned' to the target lowering code, ensure that 7389 // either the register MVT and the actual EVT are the same size or that 7390 // the return value and argument are extended in the same way; in these 7391 // cases it's safe to pass the argument register value unchanged as the 7392 // return register value (although it's at the target's option whether 7393 // to do so) 7394 // TODO: allow code generation to take advantage of partially preserved 7395 // registers rather than clobbering the entire register when the 7396 // parameter extension method is not compatible with the return 7397 // extension method 7398 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7399 (ExtendKind != ISD::ANY_EXTEND && 7400 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7401 Flags.setReturned(); 7402 } 7403 7404 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7405 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7406 7407 for (unsigned j = 0; j != NumParts; ++j) { 7408 // if it isn't first piece, alignment must be 1 7409 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7410 i < CLI.NumFixedArgs, 7411 i, j*Parts[j].getValueType().getStoreSize()); 7412 if (NumParts > 1 && j == 0) 7413 MyFlags.Flags.setSplit(); 7414 else if (j != 0) { 7415 MyFlags.Flags.setOrigAlign(1); 7416 if (j == NumParts - 1) 7417 MyFlags.Flags.setSplitEnd(); 7418 } 7419 7420 CLI.Outs.push_back(MyFlags); 7421 CLI.OutVals.push_back(Parts[j]); 7422 } 7423 7424 if (NeedsRegBlock && Value == NumValues - 1) 7425 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7426 } 7427 } 7428 7429 SmallVector<SDValue, 4> InVals; 7430 CLI.Chain = LowerCall(CLI, InVals); 7431 7432 // Verify that the target's LowerCall behaved as expected. 7433 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7434 "LowerCall didn't return a valid chain!"); 7435 assert((!CLI.IsTailCall || InVals.empty()) && 7436 "LowerCall emitted a return value for a tail call!"); 7437 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7438 "LowerCall didn't emit the correct number of values!"); 7439 7440 // For a tail call, the return value is merely live-out and there aren't 7441 // any nodes in the DAG representing it. Return a special value to 7442 // indicate that a tail call has been emitted and no more Instructions 7443 // should be processed in the current block. 7444 if (CLI.IsTailCall) { 7445 CLI.DAG.setRoot(CLI.Chain); 7446 return std::make_pair(SDValue(), SDValue()); 7447 } 7448 7449 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7450 assert(InVals[i].getNode() && 7451 "LowerCall emitted a null value!"); 7452 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7453 "LowerCall emitted a value with the wrong type!"); 7454 }); 7455 7456 SmallVector<SDValue, 4> ReturnValues; 7457 if (!CanLowerReturn) { 7458 // The instruction result is the result of loading from the 7459 // hidden sret parameter. 7460 SmallVector<EVT, 1> PVTs; 7461 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7462 7463 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7464 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7465 EVT PtrVT = PVTs[0]; 7466 7467 unsigned NumValues = RetTys.size(); 7468 ReturnValues.resize(NumValues); 7469 SmallVector<SDValue, 4> Chains(NumValues); 7470 7471 // An aggregate return value cannot wrap around the address space, so 7472 // offsets to its parts don't wrap either. 7473 SDNodeFlags Flags; 7474 Flags.setNoUnsignedWrap(true); 7475 7476 for (unsigned i = 0; i < NumValues; ++i) { 7477 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7478 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7479 PtrVT), &Flags); 7480 SDValue L = CLI.DAG.getLoad( 7481 RetTys[i], CLI.DL, CLI.Chain, Add, 7482 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7483 DemoteStackIdx, Offsets[i]), 7484 false, false, false, 1); 7485 ReturnValues[i] = L; 7486 Chains[i] = L.getValue(1); 7487 } 7488 7489 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7490 } else { 7491 // Collect the legal value parts into potentially illegal values 7492 // that correspond to the original function's return values. 7493 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7494 if (CLI.RetSExt) 7495 AssertOp = ISD::AssertSext; 7496 else if (CLI.RetZExt) 7497 AssertOp = ISD::AssertZext; 7498 unsigned CurReg = 0; 7499 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7500 EVT VT = RetTys[I]; 7501 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7502 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7503 7504 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7505 NumRegs, RegisterVT, VT, nullptr, 7506 AssertOp)); 7507 CurReg += NumRegs; 7508 } 7509 7510 // For a function returning void, there is no return value. We can't create 7511 // such a node, so we just return a null return value in that case. In 7512 // that case, nothing will actually look at the value. 7513 if (ReturnValues.empty()) 7514 return std::make_pair(SDValue(), CLI.Chain); 7515 } 7516 7517 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7518 CLI.DAG.getVTList(RetTys), ReturnValues); 7519 return std::make_pair(Res, CLI.Chain); 7520 } 7521 7522 void TargetLowering::LowerOperationWrapper(SDNode *N, 7523 SmallVectorImpl<SDValue> &Results, 7524 SelectionDAG &DAG) const { 7525 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7526 Results.push_back(Res); 7527 } 7528 7529 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7530 llvm_unreachable("LowerOperation not implemented for this target!"); 7531 } 7532 7533 void 7534 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7535 SDValue Op = getNonRegisterValue(V); 7536 assert((Op.getOpcode() != ISD::CopyFromReg || 7537 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7538 "Copy from a reg to the same reg!"); 7539 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7540 7541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7542 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7543 V->getType()); 7544 SDValue Chain = DAG.getEntryNode(); 7545 7546 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7547 FuncInfo.PreferredExtendType.end()) 7548 ? ISD::ANY_EXTEND 7549 : FuncInfo.PreferredExtendType[V]; 7550 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7551 PendingExports.push_back(Chain); 7552 } 7553 7554 #include "llvm/CodeGen/SelectionDAGISel.h" 7555 7556 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7557 /// entry block, return true. This includes arguments used by switches, since 7558 /// the switch may expand into multiple basic blocks. 7559 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7560 // With FastISel active, we may be splitting blocks, so force creation 7561 // of virtual registers for all non-dead arguments. 7562 if (FastISel) 7563 return A->use_empty(); 7564 7565 const BasicBlock &Entry = A->getParent()->front(); 7566 for (const User *U : A->users()) 7567 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7568 return false; // Use not in entry block. 7569 7570 return true; 7571 } 7572 7573 void SelectionDAGISel::LowerArguments(const Function &F) { 7574 SelectionDAG &DAG = SDB->DAG; 7575 SDLoc dl = SDB->getCurSDLoc(); 7576 const DataLayout &DL = DAG.getDataLayout(); 7577 SmallVector<ISD::InputArg, 16> Ins; 7578 7579 if (!FuncInfo->CanLowerReturn) { 7580 // Put in an sret pointer parameter before all the other parameters. 7581 SmallVector<EVT, 1> ValueVTs; 7582 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7583 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7584 7585 // NOTE: Assuming that a pointer will never break down to more than one VT 7586 // or one register. 7587 ISD::ArgFlagsTy Flags; 7588 Flags.setSRet(); 7589 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7590 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7591 ISD::InputArg::NoArgIndex, 0); 7592 Ins.push_back(RetArg); 7593 } 7594 7595 // Set up the incoming argument description vector. 7596 unsigned Idx = 1; 7597 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7598 I != E; ++I, ++Idx) { 7599 SmallVector<EVT, 4> ValueVTs; 7600 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7601 bool isArgValueUsed = !I->use_empty(); 7602 unsigned PartBase = 0; 7603 Type *FinalType = I->getType(); 7604 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7605 FinalType = cast<PointerType>(FinalType)->getElementType(); 7606 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7607 FinalType, F.getCallingConv(), F.isVarArg()); 7608 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7609 Value != NumValues; ++Value) { 7610 EVT VT = ValueVTs[Value]; 7611 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7612 ISD::ArgFlagsTy Flags; 7613 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7614 7615 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7616 Flags.setZExt(); 7617 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7618 Flags.setSExt(); 7619 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7620 Flags.setInReg(); 7621 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7622 Flags.setSRet(); 7623 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7624 Flags.setSwiftSelf(); 7625 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7626 Flags.setByVal(); 7627 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7628 Flags.setInAlloca(); 7629 // Set the byval flag for CCAssignFn callbacks that don't know about 7630 // inalloca. This way we can know how many bytes we should've allocated 7631 // and how many bytes a callee cleanup function will pop. If we port 7632 // inalloca to more targets, we'll have to add custom inalloca handling 7633 // in the various CC lowering callbacks. 7634 Flags.setByVal(); 7635 } 7636 if (F.getCallingConv() == CallingConv::X86_INTR) { 7637 // IA Interrupt passes frame (1st parameter) by value in the stack. 7638 if (Idx == 1) 7639 Flags.setByVal(); 7640 } 7641 if (Flags.isByVal() || Flags.isInAlloca()) { 7642 PointerType *Ty = cast<PointerType>(I->getType()); 7643 Type *ElementTy = Ty->getElementType(); 7644 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7645 // For ByVal, alignment should be passed from FE. BE will guess if 7646 // this info is not there but there are cases it cannot get right. 7647 unsigned FrameAlign; 7648 if (F.getParamAlignment(Idx)) 7649 FrameAlign = F.getParamAlignment(Idx); 7650 else 7651 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7652 Flags.setByValAlign(FrameAlign); 7653 } 7654 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7655 Flags.setNest(); 7656 if (NeedsRegBlock) 7657 Flags.setInConsecutiveRegs(); 7658 Flags.setOrigAlign(OriginalAlignment); 7659 7660 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7661 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7662 for (unsigned i = 0; i != NumRegs; ++i) { 7663 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7664 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7665 if (NumRegs > 1 && i == 0) 7666 MyFlags.Flags.setSplit(); 7667 // if it isn't first piece, alignment must be 1 7668 else if (i > 0) { 7669 MyFlags.Flags.setOrigAlign(1); 7670 if (i == NumRegs - 1) 7671 MyFlags.Flags.setSplitEnd(); 7672 } 7673 Ins.push_back(MyFlags); 7674 } 7675 if (NeedsRegBlock && Value == NumValues - 1) 7676 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7677 PartBase += VT.getStoreSize(); 7678 } 7679 } 7680 7681 // Call the target to set up the argument values. 7682 SmallVector<SDValue, 8> InVals; 7683 SDValue NewRoot = TLI->LowerFormalArguments( 7684 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7685 7686 // Verify that the target's LowerFormalArguments behaved as expected. 7687 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7688 "LowerFormalArguments didn't return a valid chain!"); 7689 assert(InVals.size() == Ins.size() && 7690 "LowerFormalArguments didn't emit the correct number of values!"); 7691 DEBUG({ 7692 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7693 assert(InVals[i].getNode() && 7694 "LowerFormalArguments emitted a null value!"); 7695 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7696 "LowerFormalArguments emitted a value with the wrong type!"); 7697 } 7698 }); 7699 7700 // Update the DAG with the new chain value resulting from argument lowering. 7701 DAG.setRoot(NewRoot); 7702 7703 // Set up the argument values. 7704 unsigned i = 0; 7705 Idx = 1; 7706 if (!FuncInfo->CanLowerReturn) { 7707 // Create a virtual register for the sret pointer, and put in a copy 7708 // from the sret argument into it. 7709 SmallVector<EVT, 1> ValueVTs; 7710 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7711 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7712 MVT VT = ValueVTs[0].getSimpleVT(); 7713 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7714 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7715 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7716 RegVT, VT, nullptr, AssertOp); 7717 7718 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7719 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7720 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7721 FuncInfo->DemoteRegister = SRetReg; 7722 NewRoot = 7723 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7724 DAG.setRoot(NewRoot); 7725 7726 // i indexes lowered arguments. Bump it past the hidden sret argument. 7727 // Idx indexes LLVM arguments. Don't touch it. 7728 ++i; 7729 } 7730 7731 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7732 ++I, ++Idx) { 7733 SmallVector<SDValue, 4> ArgValues; 7734 SmallVector<EVT, 4> ValueVTs; 7735 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7736 unsigned NumValues = ValueVTs.size(); 7737 7738 // If this argument is unused then remember its value. It is used to generate 7739 // debugging information. 7740 if (I->use_empty() && NumValues) { 7741 SDB->setUnusedArgValue(&*I, InVals[i]); 7742 7743 // Also remember any frame index for use in FastISel. 7744 if (FrameIndexSDNode *FI = 7745 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7746 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7747 } 7748 7749 for (unsigned Val = 0; Val != NumValues; ++Val) { 7750 EVT VT = ValueVTs[Val]; 7751 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7752 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7753 7754 if (!I->use_empty()) { 7755 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7756 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7757 AssertOp = ISD::AssertSext; 7758 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7759 AssertOp = ISD::AssertZext; 7760 7761 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7762 NumParts, PartVT, VT, 7763 nullptr, AssertOp)); 7764 } 7765 7766 i += NumParts; 7767 } 7768 7769 // We don't need to do anything else for unused arguments. 7770 if (ArgValues.empty()) 7771 continue; 7772 7773 // Note down frame index. 7774 if (FrameIndexSDNode *FI = 7775 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7776 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7777 7778 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7779 SDB->getCurSDLoc()); 7780 7781 SDB->setValue(&*I, Res); 7782 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7783 if (LoadSDNode *LNode = 7784 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7785 if (FrameIndexSDNode *FI = 7786 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7787 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7788 } 7789 7790 // If this argument is live outside of the entry block, insert a copy from 7791 // wherever we got it to the vreg that other BB's will reference it as. 7792 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7793 // If we can, though, try to skip creating an unnecessary vreg. 7794 // FIXME: This isn't very clean... it would be nice to make this more 7795 // general. It's also subtly incompatible with the hacks FastISel 7796 // uses with vregs. 7797 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7798 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7799 FuncInfo->ValueMap[&*I] = Reg; 7800 continue; 7801 } 7802 } 7803 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7804 FuncInfo->InitializeRegForValue(&*I); 7805 SDB->CopyToExportRegsIfNeeded(&*I); 7806 } 7807 } 7808 7809 assert(i == InVals.size() && "Argument register count mismatch!"); 7810 7811 // Finally, if the target has anything special to do, allow it to do so. 7812 EmitFunctionEntryCode(); 7813 } 7814 7815 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7816 /// ensure constants are generated when needed. Remember the virtual registers 7817 /// that need to be added to the Machine PHI nodes as input. We cannot just 7818 /// directly add them, because expansion might result in multiple MBB's for one 7819 /// BB. As such, the start of the BB might correspond to a different MBB than 7820 /// the end. 7821 /// 7822 void 7823 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7824 const TerminatorInst *TI = LLVMBB->getTerminator(); 7825 7826 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7827 7828 // Check PHI nodes in successors that expect a value to be available from this 7829 // block. 7830 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7831 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7832 if (!isa<PHINode>(SuccBB->begin())) continue; 7833 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7834 7835 // If this terminator has multiple identical successors (common for 7836 // switches), only handle each succ once. 7837 if (!SuccsHandled.insert(SuccMBB).second) 7838 continue; 7839 7840 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7841 7842 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7843 // nodes and Machine PHI nodes, but the incoming operands have not been 7844 // emitted yet. 7845 for (BasicBlock::const_iterator I = SuccBB->begin(); 7846 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7847 // Ignore dead phi's. 7848 if (PN->use_empty()) continue; 7849 7850 // Skip empty types 7851 if (PN->getType()->isEmptyTy()) 7852 continue; 7853 7854 unsigned Reg; 7855 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7856 7857 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7858 unsigned &RegOut = ConstantsOut[C]; 7859 if (RegOut == 0) { 7860 RegOut = FuncInfo.CreateRegs(C->getType()); 7861 CopyValueToVirtualRegister(C, RegOut); 7862 } 7863 Reg = RegOut; 7864 } else { 7865 DenseMap<const Value *, unsigned>::iterator I = 7866 FuncInfo.ValueMap.find(PHIOp); 7867 if (I != FuncInfo.ValueMap.end()) 7868 Reg = I->second; 7869 else { 7870 assert(isa<AllocaInst>(PHIOp) && 7871 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7872 "Didn't codegen value into a register!??"); 7873 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7874 CopyValueToVirtualRegister(PHIOp, Reg); 7875 } 7876 } 7877 7878 // Remember that this register needs to added to the machine PHI node as 7879 // the input for this MBB. 7880 SmallVector<EVT, 4> ValueVTs; 7881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7882 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7883 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7884 EVT VT = ValueVTs[vti]; 7885 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7886 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7887 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7888 Reg += NumRegisters; 7889 } 7890 } 7891 } 7892 7893 ConstantsOut.clear(); 7894 } 7895 7896 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7897 /// is 0. 7898 MachineBasicBlock * 7899 SelectionDAGBuilder::StackProtectorDescriptor:: 7900 AddSuccessorMBB(const BasicBlock *BB, 7901 MachineBasicBlock *ParentMBB, 7902 bool IsLikely, 7903 MachineBasicBlock *SuccMBB) { 7904 // If SuccBB has not been created yet, create it. 7905 if (!SuccMBB) { 7906 MachineFunction *MF = ParentMBB->getParent(); 7907 MachineFunction::iterator BBI(ParentMBB); 7908 SuccMBB = MF->CreateMachineBasicBlock(BB); 7909 MF->insert(++BBI, SuccMBB); 7910 } 7911 // Add it as a successor of ParentMBB. 7912 ParentMBB->addSuccessor( 7913 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7914 return SuccMBB; 7915 } 7916 7917 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7918 MachineFunction::iterator I(MBB); 7919 if (++I == FuncInfo.MF->end()) 7920 return nullptr; 7921 return &*I; 7922 } 7923 7924 /// During lowering new call nodes can be created (such as memset, etc.). 7925 /// Those will become new roots of the current DAG, but complications arise 7926 /// when they are tail calls. In such cases, the call lowering will update 7927 /// the root, but the builder still needs to know that a tail call has been 7928 /// lowered in order to avoid generating an additional return. 7929 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7930 // If the node is null, we do have a tail call. 7931 if (MaybeTC.getNode() != nullptr) 7932 DAG.setRoot(MaybeTC); 7933 else 7934 HasTailCall = true; 7935 } 7936 7937 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7938 unsigned *TotalCases, unsigned First, 7939 unsigned Last, 7940 unsigned Density) { 7941 assert(Last >= First); 7942 assert(TotalCases[Last] >= TotalCases[First]); 7943 7944 APInt LowCase = Clusters[First].Low->getValue(); 7945 APInt HighCase = Clusters[Last].High->getValue(); 7946 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7947 7948 // FIXME: A range of consecutive cases has 100% density, but only requires one 7949 // comparison to lower. We should discriminate against such consecutive ranges 7950 // in jump tables. 7951 7952 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7953 uint64_t Range = Diff + 1; 7954 7955 uint64_t NumCases = 7956 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7957 7958 assert(NumCases < UINT64_MAX / 100); 7959 assert(Range >= NumCases); 7960 7961 return NumCases * 100 >= Range * Density; 7962 } 7963 7964 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7965 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7966 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7967 } 7968 7969 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7970 unsigned First, unsigned Last, 7971 const SwitchInst *SI, 7972 MachineBasicBlock *DefaultMBB, 7973 CaseCluster &JTCluster) { 7974 assert(First <= Last); 7975 7976 auto Prob = BranchProbability::getZero(); 7977 unsigned NumCmps = 0; 7978 std::vector<MachineBasicBlock*> Table; 7979 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7980 7981 // Initialize probabilities in JTProbs. 7982 for (unsigned I = First; I <= Last; ++I) 7983 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7984 7985 for (unsigned I = First; I <= Last; ++I) { 7986 assert(Clusters[I].Kind == CC_Range); 7987 Prob += Clusters[I].Prob; 7988 APInt Low = Clusters[I].Low->getValue(); 7989 APInt High = Clusters[I].High->getValue(); 7990 NumCmps += (Low == High) ? 1 : 2; 7991 if (I != First) { 7992 // Fill the gap between this and the previous cluster. 7993 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7994 assert(PreviousHigh.slt(Low)); 7995 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7996 for (uint64_t J = 0; J < Gap; J++) 7997 Table.push_back(DefaultMBB); 7998 } 7999 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8000 for (uint64_t J = 0; J < ClusterSize; ++J) 8001 Table.push_back(Clusters[I].MBB); 8002 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8003 } 8004 8005 unsigned NumDests = JTProbs.size(); 8006 if (isSuitableForBitTests(NumDests, NumCmps, 8007 Clusters[First].Low->getValue(), 8008 Clusters[Last].High->getValue())) { 8009 // Clusters[First..Last] should be lowered as bit tests instead. 8010 return false; 8011 } 8012 8013 // Create the MBB that will load from and jump through the table. 8014 // Note: We create it here, but it's not inserted into the function yet. 8015 MachineFunction *CurMF = FuncInfo.MF; 8016 MachineBasicBlock *JumpTableMBB = 8017 CurMF->CreateMachineBasicBlock(SI->getParent()); 8018 8019 // Add successors. Note: use table order for determinism. 8020 SmallPtrSet<MachineBasicBlock *, 8> Done; 8021 for (MachineBasicBlock *Succ : Table) { 8022 if (Done.count(Succ)) 8023 continue; 8024 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8025 Done.insert(Succ); 8026 } 8027 JumpTableMBB->normalizeSuccProbs(); 8028 8029 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8030 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8031 ->createJumpTableIndex(Table); 8032 8033 // Set up the jump table info. 8034 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8035 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8036 Clusters[Last].High->getValue(), SI->getCondition(), 8037 nullptr, false); 8038 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8039 8040 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8041 JTCases.size() - 1, Prob); 8042 return true; 8043 } 8044 8045 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8046 const SwitchInst *SI, 8047 MachineBasicBlock *DefaultMBB) { 8048 #ifndef NDEBUG 8049 // Clusters must be non-empty, sorted, and only contain Range clusters. 8050 assert(!Clusters.empty()); 8051 for (CaseCluster &C : Clusters) 8052 assert(C.Kind == CC_Range); 8053 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8054 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8055 #endif 8056 8057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8058 if (!areJTsAllowed(TLI)) 8059 return; 8060 8061 const int64_t N = Clusters.size(); 8062 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8063 8064 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8065 SmallVector<unsigned, 8> TotalCases(N); 8066 8067 for (unsigned i = 0; i < N; ++i) { 8068 APInt Hi = Clusters[i].High->getValue(); 8069 APInt Lo = Clusters[i].Low->getValue(); 8070 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8071 if (i != 0) 8072 TotalCases[i] += TotalCases[i - 1]; 8073 } 8074 8075 unsigned MinDensity = JumpTableDensity; 8076 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8077 MinDensity = OptsizeJumpTableDensity; 8078 if (N >= MinJumpTableSize 8079 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8080 // Cheap case: the whole range might be suitable for jump table. 8081 CaseCluster JTCluster; 8082 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8083 Clusters[0] = JTCluster; 8084 Clusters.resize(1); 8085 return; 8086 } 8087 } 8088 8089 // The algorithm below is not suitable for -O0. 8090 if (TM.getOptLevel() == CodeGenOpt::None) 8091 return; 8092 8093 // Split Clusters into minimum number of dense partitions. The algorithm uses 8094 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8095 // for the Case Statement'" (1994), but builds the MinPartitions array in 8096 // reverse order to make it easier to reconstruct the partitions in ascending 8097 // order. In the choice between two optimal partitionings, it picks the one 8098 // which yields more jump tables. 8099 8100 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8101 SmallVector<unsigned, 8> MinPartitions(N); 8102 // LastElement[i] is the last element of the partition starting at i. 8103 SmallVector<unsigned, 8> LastElement(N); 8104 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8105 SmallVector<unsigned, 8> NumTables(N); 8106 8107 // Base case: There is only one way to partition Clusters[N-1]. 8108 MinPartitions[N - 1] = 1; 8109 LastElement[N - 1] = N - 1; 8110 assert(MinJumpTableSize > 1); 8111 NumTables[N - 1] = 0; 8112 8113 // Note: loop indexes are signed to avoid underflow. 8114 for (int64_t i = N - 2; i >= 0; i--) { 8115 // Find optimal partitioning of Clusters[i..N-1]. 8116 // Baseline: Put Clusters[i] into a partition on its own. 8117 MinPartitions[i] = MinPartitions[i + 1] + 1; 8118 LastElement[i] = i; 8119 NumTables[i] = NumTables[i + 1]; 8120 8121 // Search for a solution that results in fewer partitions. 8122 for (int64_t j = N - 1; j > i; j--) { 8123 // Try building a partition from Clusters[i..j]. 8124 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8125 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8126 bool IsTable = j - i + 1 >= MinJumpTableSize; 8127 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8128 8129 // If this j leads to fewer partitions, or same number of partitions 8130 // with more lookup tables, it is a better partitioning. 8131 if (NumPartitions < MinPartitions[i] || 8132 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8133 MinPartitions[i] = NumPartitions; 8134 LastElement[i] = j; 8135 NumTables[i] = Tables; 8136 } 8137 } 8138 } 8139 } 8140 8141 // Iterate over the partitions, replacing some with jump tables in-place. 8142 unsigned DstIndex = 0; 8143 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8144 Last = LastElement[First]; 8145 assert(Last >= First); 8146 assert(DstIndex <= First); 8147 unsigned NumClusters = Last - First + 1; 8148 8149 CaseCluster JTCluster; 8150 if (NumClusters >= MinJumpTableSize && 8151 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8152 Clusters[DstIndex++] = JTCluster; 8153 } else { 8154 for (unsigned I = First; I <= Last; ++I) 8155 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8156 } 8157 } 8158 Clusters.resize(DstIndex); 8159 } 8160 8161 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8162 // FIXME: Using the pointer type doesn't seem ideal. 8163 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8164 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8165 return Range <= BW; 8166 } 8167 8168 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8169 unsigned NumCmps, 8170 const APInt &Low, 8171 const APInt &High) { 8172 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8173 // range of cases both require only one branch to lower. Just looking at the 8174 // number of clusters and destinations should be enough to decide whether to 8175 // build bit tests. 8176 8177 // To lower a range with bit tests, the range must fit the bitwidth of a 8178 // machine word. 8179 if (!rangeFitsInWord(Low, High)) 8180 return false; 8181 8182 // Decide whether it's profitable to lower this range with bit tests. Each 8183 // destination requires a bit test and branch, and there is an overall range 8184 // check branch. For a small number of clusters, separate comparisons might be 8185 // cheaper, and for many destinations, splitting the range might be better. 8186 return (NumDests == 1 && NumCmps >= 3) || 8187 (NumDests == 2 && NumCmps >= 5) || 8188 (NumDests == 3 && NumCmps >= 6); 8189 } 8190 8191 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8192 unsigned First, unsigned Last, 8193 const SwitchInst *SI, 8194 CaseCluster &BTCluster) { 8195 assert(First <= Last); 8196 if (First == Last) 8197 return false; 8198 8199 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8200 unsigned NumCmps = 0; 8201 for (int64_t I = First; I <= Last; ++I) { 8202 assert(Clusters[I].Kind == CC_Range); 8203 Dests.set(Clusters[I].MBB->getNumber()); 8204 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8205 } 8206 unsigned NumDests = Dests.count(); 8207 8208 APInt Low = Clusters[First].Low->getValue(); 8209 APInt High = Clusters[Last].High->getValue(); 8210 assert(Low.slt(High)); 8211 8212 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8213 return false; 8214 8215 APInt LowBound; 8216 APInt CmpRange; 8217 8218 const int BitWidth = DAG.getTargetLoweringInfo() 8219 .getPointerTy(DAG.getDataLayout()) 8220 .getSizeInBits(); 8221 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8222 8223 // Check if the clusters cover a contiguous range such that no value in the 8224 // range will jump to the default statement. 8225 bool ContiguousRange = true; 8226 for (int64_t I = First + 1; I <= Last; ++I) { 8227 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8228 ContiguousRange = false; 8229 break; 8230 } 8231 } 8232 8233 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8234 // Optimize the case where all the case values fit in a word without having 8235 // to subtract minValue. In this case, we can optimize away the subtraction. 8236 LowBound = APInt::getNullValue(Low.getBitWidth()); 8237 CmpRange = High; 8238 ContiguousRange = false; 8239 } else { 8240 LowBound = Low; 8241 CmpRange = High - Low; 8242 } 8243 8244 CaseBitsVector CBV; 8245 auto TotalProb = BranchProbability::getZero(); 8246 for (unsigned i = First; i <= Last; ++i) { 8247 // Find the CaseBits for this destination. 8248 unsigned j; 8249 for (j = 0; j < CBV.size(); ++j) 8250 if (CBV[j].BB == Clusters[i].MBB) 8251 break; 8252 if (j == CBV.size()) 8253 CBV.push_back( 8254 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8255 CaseBits *CB = &CBV[j]; 8256 8257 // Update Mask, Bits and ExtraProb. 8258 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8259 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8260 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8261 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8262 CB->Bits += Hi - Lo + 1; 8263 CB->ExtraProb += Clusters[i].Prob; 8264 TotalProb += Clusters[i].Prob; 8265 } 8266 8267 BitTestInfo BTI; 8268 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8269 // Sort by probability first, number of bits second. 8270 if (a.ExtraProb != b.ExtraProb) 8271 return a.ExtraProb > b.ExtraProb; 8272 return a.Bits > b.Bits; 8273 }); 8274 8275 for (auto &CB : CBV) { 8276 MachineBasicBlock *BitTestBB = 8277 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8278 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8279 } 8280 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8281 SI->getCondition(), -1U, MVT::Other, false, 8282 ContiguousRange, nullptr, nullptr, std::move(BTI), 8283 TotalProb); 8284 8285 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8286 BitTestCases.size() - 1, TotalProb); 8287 return true; 8288 } 8289 8290 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8291 const SwitchInst *SI) { 8292 // Partition Clusters into as few subsets as possible, where each subset has a 8293 // range that fits in a machine word and has <= 3 unique destinations. 8294 8295 #ifndef NDEBUG 8296 // Clusters must be sorted and contain Range or JumpTable clusters. 8297 assert(!Clusters.empty()); 8298 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8299 for (const CaseCluster &C : Clusters) 8300 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8301 for (unsigned i = 1; i < Clusters.size(); ++i) 8302 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8303 #endif 8304 8305 // The algorithm below is not suitable for -O0. 8306 if (TM.getOptLevel() == CodeGenOpt::None) 8307 return; 8308 8309 // If target does not have legal shift left, do not emit bit tests at all. 8310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8311 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8312 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8313 return; 8314 8315 int BitWidth = PTy.getSizeInBits(); 8316 const int64_t N = Clusters.size(); 8317 8318 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8319 SmallVector<unsigned, 8> MinPartitions(N); 8320 // LastElement[i] is the last element of the partition starting at i. 8321 SmallVector<unsigned, 8> LastElement(N); 8322 8323 // FIXME: This might not be the best algorithm for finding bit test clusters. 8324 8325 // Base case: There is only one way to partition Clusters[N-1]. 8326 MinPartitions[N - 1] = 1; 8327 LastElement[N - 1] = N - 1; 8328 8329 // Note: loop indexes are signed to avoid underflow. 8330 for (int64_t i = N - 2; i >= 0; --i) { 8331 // Find optimal partitioning of Clusters[i..N-1]. 8332 // Baseline: Put Clusters[i] into a partition on its own. 8333 MinPartitions[i] = MinPartitions[i + 1] + 1; 8334 LastElement[i] = i; 8335 8336 // Search for a solution that results in fewer partitions. 8337 // Note: the search is limited by BitWidth, reducing time complexity. 8338 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8339 // Try building a partition from Clusters[i..j]. 8340 8341 // Check the range. 8342 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8343 Clusters[j].High->getValue())) 8344 continue; 8345 8346 // Check nbr of destinations and cluster types. 8347 // FIXME: This works, but doesn't seem very efficient. 8348 bool RangesOnly = true; 8349 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8350 for (int64_t k = i; k <= j; k++) { 8351 if (Clusters[k].Kind != CC_Range) { 8352 RangesOnly = false; 8353 break; 8354 } 8355 Dests.set(Clusters[k].MBB->getNumber()); 8356 } 8357 if (!RangesOnly || Dests.count() > 3) 8358 break; 8359 8360 // Check if it's a better partition. 8361 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8362 if (NumPartitions < MinPartitions[i]) { 8363 // Found a better partition. 8364 MinPartitions[i] = NumPartitions; 8365 LastElement[i] = j; 8366 } 8367 } 8368 } 8369 8370 // Iterate over the partitions, replacing with bit-test clusters in-place. 8371 unsigned DstIndex = 0; 8372 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8373 Last = LastElement[First]; 8374 assert(First <= Last); 8375 assert(DstIndex <= First); 8376 8377 CaseCluster BitTestCluster; 8378 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8379 Clusters[DstIndex++] = BitTestCluster; 8380 } else { 8381 size_t NumClusters = Last - First + 1; 8382 std::memmove(&Clusters[DstIndex], &Clusters[First], 8383 sizeof(Clusters[0]) * NumClusters); 8384 DstIndex += NumClusters; 8385 } 8386 } 8387 Clusters.resize(DstIndex); 8388 } 8389 8390 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8391 MachineBasicBlock *SwitchMBB, 8392 MachineBasicBlock *DefaultMBB) { 8393 MachineFunction *CurMF = FuncInfo.MF; 8394 MachineBasicBlock *NextMBB = nullptr; 8395 MachineFunction::iterator BBI(W.MBB); 8396 if (++BBI != FuncInfo.MF->end()) 8397 NextMBB = &*BBI; 8398 8399 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8400 8401 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8402 8403 if (Size == 2 && W.MBB == SwitchMBB) { 8404 // If any two of the cases has the same destination, and if one value 8405 // is the same as the other, but has one bit unset that the other has set, 8406 // use bit manipulation to do two compares at once. For example: 8407 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8408 // TODO: This could be extended to merge any 2 cases in switches with 3 8409 // cases. 8410 // TODO: Handle cases where W.CaseBB != SwitchBB. 8411 CaseCluster &Small = *W.FirstCluster; 8412 CaseCluster &Big = *W.LastCluster; 8413 8414 if (Small.Low == Small.High && Big.Low == Big.High && 8415 Small.MBB == Big.MBB) { 8416 const APInt &SmallValue = Small.Low->getValue(); 8417 const APInt &BigValue = Big.Low->getValue(); 8418 8419 // Check that there is only one bit different. 8420 APInt CommonBit = BigValue ^ SmallValue; 8421 if (CommonBit.isPowerOf2()) { 8422 SDValue CondLHS = getValue(Cond); 8423 EVT VT = CondLHS.getValueType(); 8424 SDLoc DL = getCurSDLoc(); 8425 8426 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8427 DAG.getConstant(CommonBit, DL, VT)); 8428 SDValue Cond = DAG.getSetCC( 8429 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8430 ISD::SETEQ); 8431 8432 // Update successor info. 8433 // Both Small and Big will jump to Small.BB, so we sum up the 8434 // probabilities. 8435 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8436 if (BPI) 8437 addSuccessorWithProb( 8438 SwitchMBB, DefaultMBB, 8439 // The default destination is the first successor in IR. 8440 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8441 else 8442 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8443 8444 // Insert the true branch. 8445 SDValue BrCond = 8446 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8447 DAG.getBasicBlock(Small.MBB)); 8448 // Insert the false branch. 8449 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8450 DAG.getBasicBlock(DefaultMBB)); 8451 8452 DAG.setRoot(BrCond); 8453 return; 8454 } 8455 } 8456 } 8457 8458 if (TM.getOptLevel() != CodeGenOpt::None) { 8459 // Order cases by probability so the most likely case will be checked first. 8460 std::sort(W.FirstCluster, W.LastCluster + 1, 8461 [](const CaseCluster &a, const CaseCluster &b) { 8462 return a.Prob > b.Prob; 8463 }); 8464 8465 // Rearrange the case blocks so that the last one falls through if possible 8466 // without without changing the order of probabilities. 8467 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8468 --I; 8469 if (I->Prob > W.LastCluster->Prob) 8470 break; 8471 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8472 std::swap(*I, *W.LastCluster); 8473 break; 8474 } 8475 } 8476 } 8477 8478 // Compute total probability. 8479 BranchProbability DefaultProb = W.DefaultProb; 8480 BranchProbability UnhandledProbs = DefaultProb; 8481 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8482 UnhandledProbs += I->Prob; 8483 8484 MachineBasicBlock *CurMBB = W.MBB; 8485 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8486 MachineBasicBlock *Fallthrough; 8487 if (I == W.LastCluster) { 8488 // For the last cluster, fall through to the default destination. 8489 Fallthrough = DefaultMBB; 8490 } else { 8491 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8492 CurMF->insert(BBI, Fallthrough); 8493 // Put Cond in a virtual register to make it available from the new blocks. 8494 ExportFromCurrentBlock(Cond); 8495 } 8496 UnhandledProbs -= I->Prob; 8497 8498 switch (I->Kind) { 8499 case CC_JumpTable: { 8500 // FIXME: Optimize away range check based on pivot comparisons. 8501 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8502 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8503 8504 // The jump block hasn't been inserted yet; insert it here. 8505 MachineBasicBlock *JumpMBB = JT->MBB; 8506 CurMF->insert(BBI, JumpMBB); 8507 8508 auto JumpProb = I->Prob; 8509 auto FallthroughProb = UnhandledProbs; 8510 8511 // If the default statement is a target of the jump table, we evenly 8512 // distribute the default probability to successors of CurMBB. Also 8513 // update the probability on the edge from JumpMBB to Fallthrough. 8514 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8515 SE = JumpMBB->succ_end(); 8516 SI != SE; ++SI) { 8517 if (*SI == DefaultMBB) { 8518 JumpProb += DefaultProb / 2; 8519 FallthroughProb -= DefaultProb / 2; 8520 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8521 JumpMBB->normalizeSuccProbs(); 8522 break; 8523 } 8524 } 8525 8526 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8527 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8528 CurMBB->normalizeSuccProbs(); 8529 8530 // The jump table header will be inserted in our current block, do the 8531 // range check, and fall through to our fallthrough block. 8532 JTH->HeaderBB = CurMBB; 8533 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8534 8535 // If we're in the right place, emit the jump table header right now. 8536 if (CurMBB == SwitchMBB) { 8537 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8538 JTH->Emitted = true; 8539 } 8540 break; 8541 } 8542 case CC_BitTests: { 8543 // FIXME: Optimize away range check based on pivot comparisons. 8544 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8545 8546 // The bit test blocks haven't been inserted yet; insert them here. 8547 for (BitTestCase &BTC : BTB->Cases) 8548 CurMF->insert(BBI, BTC.ThisBB); 8549 8550 // Fill in fields of the BitTestBlock. 8551 BTB->Parent = CurMBB; 8552 BTB->Default = Fallthrough; 8553 8554 BTB->DefaultProb = UnhandledProbs; 8555 // If the cases in bit test don't form a contiguous range, we evenly 8556 // distribute the probability on the edge to Fallthrough to two 8557 // successors of CurMBB. 8558 if (!BTB->ContiguousRange) { 8559 BTB->Prob += DefaultProb / 2; 8560 BTB->DefaultProb -= DefaultProb / 2; 8561 } 8562 8563 // If we're in the right place, emit the bit test header right now. 8564 if (CurMBB == SwitchMBB) { 8565 visitBitTestHeader(*BTB, SwitchMBB); 8566 BTB->Emitted = true; 8567 } 8568 break; 8569 } 8570 case CC_Range: { 8571 const Value *RHS, *LHS, *MHS; 8572 ISD::CondCode CC; 8573 if (I->Low == I->High) { 8574 // Check Cond == I->Low. 8575 CC = ISD::SETEQ; 8576 LHS = Cond; 8577 RHS=I->Low; 8578 MHS = nullptr; 8579 } else { 8580 // Check I->Low <= Cond <= I->High. 8581 CC = ISD::SETLE; 8582 LHS = I->Low; 8583 MHS = Cond; 8584 RHS = I->High; 8585 } 8586 8587 // The false probability is the sum of all unhandled cases. 8588 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8589 UnhandledProbs); 8590 8591 if (CurMBB == SwitchMBB) 8592 visitSwitchCase(CB, SwitchMBB); 8593 else 8594 SwitchCases.push_back(CB); 8595 8596 break; 8597 } 8598 } 8599 CurMBB = Fallthrough; 8600 } 8601 } 8602 8603 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8604 CaseClusterIt First, 8605 CaseClusterIt Last) { 8606 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8607 if (X.Prob != CC.Prob) 8608 return X.Prob > CC.Prob; 8609 8610 // Ties are broken by comparing the case value. 8611 return X.Low->getValue().slt(CC.Low->getValue()); 8612 }); 8613 } 8614 8615 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8616 const SwitchWorkListItem &W, 8617 Value *Cond, 8618 MachineBasicBlock *SwitchMBB) { 8619 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8620 "Clusters not sorted?"); 8621 8622 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8623 8624 // Balance the tree based on branch probabilities to create a near-optimal (in 8625 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8626 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8627 CaseClusterIt LastLeft = W.FirstCluster; 8628 CaseClusterIt FirstRight = W.LastCluster; 8629 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8630 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8631 8632 // Move LastLeft and FirstRight towards each other from opposite directions to 8633 // find a partitioning of the clusters which balances the probability on both 8634 // sides. If LeftProb and RightProb are equal, alternate which side is 8635 // taken to ensure 0-probability nodes are distributed evenly. 8636 unsigned I = 0; 8637 while (LastLeft + 1 < FirstRight) { 8638 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8639 LeftProb += (++LastLeft)->Prob; 8640 else 8641 RightProb += (--FirstRight)->Prob; 8642 I++; 8643 } 8644 8645 for (;;) { 8646 // Our binary search tree differs from a typical BST in that ours can have up 8647 // to three values in each leaf. The pivot selection above doesn't take that 8648 // into account, which means the tree might require more nodes and be less 8649 // efficient. We compensate for this here. 8650 8651 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8652 unsigned NumRight = W.LastCluster - FirstRight + 1; 8653 8654 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8655 // If one side has less than 3 clusters, and the other has more than 3, 8656 // consider taking a cluster from the other side. 8657 8658 if (NumLeft < NumRight) { 8659 // Consider moving the first cluster on the right to the left side. 8660 CaseCluster &CC = *FirstRight; 8661 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8662 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8663 if (LeftSideRank <= RightSideRank) { 8664 // Moving the cluster to the left does not demote it. 8665 ++LastLeft; 8666 ++FirstRight; 8667 continue; 8668 } 8669 } else { 8670 assert(NumRight < NumLeft); 8671 // Consider moving the last element on the left to the right side. 8672 CaseCluster &CC = *LastLeft; 8673 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8674 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8675 if (RightSideRank <= LeftSideRank) { 8676 // Moving the cluster to the right does not demot it. 8677 --LastLeft; 8678 --FirstRight; 8679 continue; 8680 } 8681 } 8682 } 8683 break; 8684 } 8685 8686 assert(LastLeft + 1 == FirstRight); 8687 assert(LastLeft >= W.FirstCluster); 8688 assert(FirstRight <= W.LastCluster); 8689 8690 // Use the first element on the right as pivot since we will make less-than 8691 // comparisons against it. 8692 CaseClusterIt PivotCluster = FirstRight; 8693 assert(PivotCluster > W.FirstCluster); 8694 assert(PivotCluster <= W.LastCluster); 8695 8696 CaseClusterIt FirstLeft = W.FirstCluster; 8697 CaseClusterIt LastRight = W.LastCluster; 8698 8699 const ConstantInt *Pivot = PivotCluster->Low; 8700 8701 // New blocks will be inserted immediately after the current one. 8702 MachineFunction::iterator BBI(W.MBB); 8703 ++BBI; 8704 8705 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8706 // we can branch to its destination directly if it's squeezed exactly in 8707 // between the known lower bound and Pivot - 1. 8708 MachineBasicBlock *LeftMBB; 8709 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8710 FirstLeft->Low == W.GE && 8711 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8712 LeftMBB = FirstLeft->MBB; 8713 } else { 8714 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8715 FuncInfo.MF->insert(BBI, LeftMBB); 8716 WorkList.push_back( 8717 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8718 // Put Cond in a virtual register to make it available from the new blocks. 8719 ExportFromCurrentBlock(Cond); 8720 } 8721 8722 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8723 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8724 // directly if RHS.High equals the current upper bound. 8725 MachineBasicBlock *RightMBB; 8726 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8727 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8728 RightMBB = FirstRight->MBB; 8729 } else { 8730 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8731 FuncInfo.MF->insert(BBI, RightMBB); 8732 WorkList.push_back( 8733 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8734 // Put Cond in a virtual register to make it available from the new blocks. 8735 ExportFromCurrentBlock(Cond); 8736 } 8737 8738 // Create the CaseBlock record that will be used to lower the branch. 8739 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8740 LeftProb, RightProb); 8741 8742 if (W.MBB == SwitchMBB) 8743 visitSwitchCase(CB, SwitchMBB); 8744 else 8745 SwitchCases.push_back(CB); 8746 } 8747 8748 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8749 // Extract cases from the switch. 8750 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8751 CaseClusterVector Clusters; 8752 Clusters.reserve(SI.getNumCases()); 8753 for (auto I : SI.cases()) { 8754 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8755 const ConstantInt *CaseVal = I.getCaseValue(); 8756 BranchProbability Prob = 8757 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8758 : BranchProbability(1, SI.getNumCases() + 1); 8759 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8760 } 8761 8762 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8763 8764 // Cluster adjacent cases with the same destination. We do this at all 8765 // optimization levels because it's cheap to do and will make codegen faster 8766 // if there are many clusters. 8767 sortAndRangeify(Clusters); 8768 8769 if (TM.getOptLevel() != CodeGenOpt::None) { 8770 // Replace an unreachable default with the most popular destination. 8771 // FIXME: Exploit unreachable default more aggressively. 8772 bool UnreachableDefault = 8773 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8774 if (UnreachableDefault && !Clusters.empty()) { 8775 DenseMap<const BasicBlock *, unsigned> Popularity; 8776 unsigned MaxPop = 0; 8777 const BasicBlock *MaxBB = nullptr; 8778 for (auto I : SI.cases()) { 8779 const BasicBlock *BB = I.getCaseSuccessor(); 8780 if (++Popularity[BB] > MaxPop) { 8781 MaxPop = Popularity[BB]; 8782 MaxBB = BB; 8783 } 8784 } 8785 // Set new default. 8786 assert(MaxPop > 0 && MaxBB); 8787 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8788 8789 // Remove cases that were pointing to the destination that is now the 8790 // default. 8791 CaseClusterVector New; 8792 New.reserve(Clusters.size()); 8793 for (CaseCluster &CC : Clusters) { 8794 if (CC.MBB != DefaultMBB) 8795 New.push_back(CC); 8796 } 8797 Clusters = std::move(New); 8798 } 8799 } 8800 8801 // If there is only the default destination, jump there directly. 8802 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8803 if (Clusters.empty()) { 8804 SwitchMBB->addSuccessor(DefaultMBB); 8805 if (DefaultMBB != NextBlock(SwitchMBB)) { 8806 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8807 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8808 } 8809 return; 8810 } 8811 8812 findJumpTables(Clusters, &SI, DefaultMBB); 8813 findBitTestClusters(Clusters, &SI); 8814 8815 DEBUG({ 8816 dbgs() << "Case clusters: "; 8817 for (const CaseCluster &C : Clusters) { 8818 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8819 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8820 8821 C.Low->getValue().print(dbgs(), true); 8822 if (C.Low != C.High) { 8823 dbgs() << '-'; 8824 C.High->getValue().print(dbgs(), true); 8825 } 8826 dbgs() << ' '; 8827 } 8828 dbgs() << '\n'; 8829 }); 8830 8831 assert(!Clusters.empty()); 8832 SwitchWorkList WorkList; 8833 CaseClusterIt First = Clusters.begin(); 8834 CaseClusterIt Last = Clusters.end() - 1; 8835 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8836 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8837 8838 while (!WorkList.empty()) { 8839 SwitchWorkListItem W = WorkList.back(); 8840 WorkList.pop_back(); 8841 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8842 8843 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8844 // For optimized builds, lower large range as a balanced binary tree. 8845 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8846 continue; 8847 } 8848 8849 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8850 } 8851 } 8852