xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f4223918de0aa08443ef9910e7237cfecdca60ac)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/GCStrategy.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfo.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetFrameLowering.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetIntrinsicInfo.h"
57 #include "llvm/Target/TargetLibraryInfo.h"
58 #include "llvm/Target/TargetLowering.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include "llvm/Target/TargetSelectionDAGInfo.h"
61 #include <algorithm>
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "isel"
65 
66 /// LimitFloatPrecision - Generate low-precision inline sequences for
67 /// some float libcalls (6, 8 or 12 bits).
68 static unsigned LimitFloatPrecision;
69 
70 static cl::opt<unsigned, true>
71 LimitFPPrecision("limit-float-precision",
72                  cl::desc("Generate low-precision inline sequences "
73                           "for some float libcalls"),
74                  cl::location(LimitFloatPrecision),
75                  cl::init(0));
76 
77 // Limit the width of DAG chains. This is important in general to prevent
78 // prevent DAG-based analysis from blowing up. For example, alias analysis and
79 // load clustering may not complete in reasonable time. It is difficult to
80 // recognize and avoid this situation within each individual analysis, and
81 // future analyses are likely to have the same behavior. Limiting DAG width is
82 // the safe approach, and will be especially important with global DAGs.
83 //
84 // MaxParallelChains default is arbitrarily high to avoid affecting
85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
86 // sequence over this should have been converted to llvm.memcpy by the
87 // frontend. It easy to induce this behavior with .ll code such as:
88 // %buffer = alloca [4096 x i8]
89 // %data = load [4096 x i8]* %argPtr
90 // store [4096 x i8] %data, [4096 x i8]* %buffer
91 static const unsigned MaxParallelChains = 64;
92 
93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
94                                       const SDValue *Parts, unsigned NumParts,
95                                       MVT PartVT, EVT ValueVT, const Value *V);
96 
97 /// getCopyFromParts - Create a value that contains the specified legal parts
98 /// combined into the value they represent.  If the parts combine to a type
99 /// larger then ValueVT then AssertOp can be used to specify whether the extra
100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
101 /// (ISD::AssertSext).
102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
103                                 const SDValue *Parts,
104                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
105                                 const Value *V,
106                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
107   if (ValueVT.isVector())
108     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
109                                   PartVT, ValueVT, V);
110 
111   assert(NumParts > 0 && "No parts to assemble!");
112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
113   SDValue Val = Parts[0];
114 
115   if (NumParts > 1) {
116     // Assemble the value from multiple parts.
117     if (ValueVT.isInteger()) {
118       unsigned PartBits = PartVT.getSizeInBits();
119       unsigned ValueBits = ValueVT.getSizeInBits();
120 
121       // Assemble the power of 2 part.
122       unsigned RoundParts = NumParts & (NumParts - 1) ?
123         1 << Log2_32(NumParts) : NumParts;
124       unsigned RoundBits = PartBits * RoundParts;
125       EVT RoundVT = RoundBits == ValueBits ?
126         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
127       SDValue Lo, Hi;
128 
129       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
130 
131       if (RoundParts > 2) {
132         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
133                               PartVT, HalfVT, V);
134         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
135                               RoundParts / 2, PartVT, HalfVT, V);
136       } else {
137         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
138         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
139       }
140 
141       if (TLI.isBigEndian())
142         std::swap(Lo, Hi);
143 
144       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
145 
146       if (RoundParts < NumParts) {
147         // Assemble the trailing non-power-of-2 part.
148         unsigned OddParts = NumParts - RoundParts;
149         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
150         Hi = getCopyFromParts(DAG, DL,
151                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
152 
153         // Combine the round and odd parts.
154         Lo = Val;
155         if (TLI.isBigEndian())
156           std::swap(Lo, Hi);
157         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
158         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
159         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
160                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
161                                          TLI.getPointerTy()));
162         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
163         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
164       }
165     } else if (PartVT.isFloatingPoint()) {
166       // FP split into multiple FP parts (for ppcf128)
167       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
168              "Unexpected split");
169       SDValue Lo, Hi;
170       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
171       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
172       if (TLI.isBigEndian())
173         std::swap(Lo, Hi);
174       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
175     } else {
176       // FP split into integer parts (soft fp)
177       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
178              !PartVT.isVector() && "Unexpected split");
179       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
180       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
181     }
182   }
183 
184   // There is now one part, held in Val.  Correct it to match ValueVT.
185   EVT PartEVT = Val.getValueType();
186 
187   if (PartEVT == ValueVT)
188     return Val;
189 
190   if (PartEVT.isInteger() && ValueVT.isInteger()) {
191     if (ValueVT.bitsLT(PartEVT)) {
192       // For a truncate, see if we have any information to
193       // indicate whether the truncated bits will always be
194       // zero or sign-extension.
195       if (AssertOp != ISD::DELETED_NODE)
196         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
197                           DAG.getValueType(ValueVT));
198       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
199     }
200     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
201   }
202 
203   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
204     // FP_ROUND's are always exact here.
205     if (ValueVT.bitsLT(Val.getValueType()))
206       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
207                          DAG.getTargetConstant(1, TLI.getPointerTy()));
208 
209     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
210   }
211 
212   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214 
215   llvm_unreachable("Unknown mismatch!");
216 }
217 
218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
219                                               const Twine &ErrMsg) {
220   const Instruction *I = dyn_cast_or_null<Instruction>(V);
221   if (!V)
222     return Ctx.emitError(ErrMsg);
223 
224   const char *AsmError = ", possible invalid constraint for vector type";
225   if (const CallInst *CI = dyn_cast<CallInst>(I))
226     if (isa<InlineAsm>(CI->getCalledValue()))
227       return Ctx.emitError(I, ErrMsg + AsmError);
228 
229   return Ctx.emitError(I, ErrMsg);
230 }
231 
232 /// getCopyFromPartsVector - Create a value that contains the specified legal
233 /// parts combined into the value they represent.  If the parts combine to a
234 /// type larger then ValueVT then AssertOp can be used to specify whether the
235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
236 /// ValueVT (ISD::AssertSext).
237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
238                                       const SDValue *Parts, unsigned NumParts,
239                                       MVT PartVT, EVT ValueVT, const Value *V) {
240   assert(ValueVT.isVector() && "Not a vector value");
241   assert(NumParts > 0 && "No parts to assemble!");
242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
243   SDValue Val = Parts[0];
244 
245   // Handle a multi-element vector.
246   if (NumParts > 1) {
247     EVT IntermediateVT;
248     MVT RegisterVT;
249     unsigned NumIntermediates;
250     unsigned NumRegs =
251     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
252                                NumIntermediates, RegisterVT);
253     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
254     NumParts = NumRegs; // Silence a compiler warning.
255     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
256     assert(RegisterVT == Parts[0].getSimpleValueType() &&
257            "Part type doesn't match part!");
258 
259     // Assemble the parts into intermediate operands.
260     SmallVector<SDValue, 8> Ops(NumIntermediates);
261     if (NumIntermediates == NumParts) {
262       // If the register was not expanded, truncate or copy the value,
263       // as appropriate.
264       for (unsigned i = 0; i != NumParts; ++i)
265         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
266                                   PartVT, IntermediateVT, V);
267     } else if (NumParts > 0) {
268       // If the intermediate type was expanded, build the intermediate
269       // operands from the parts.
270       assert(NumParts % NumIntermediates == 0 &&
271              "Must expand into a divisible number of parts!");
272       unsigned Factor = NumParts / NumIntermediates;
273       for (unsigned i = 0; i != NumIntermediates; ++i)
274         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
275                                   PartVT, IntermediateVT, V);
276     }
277 
278     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
279     // intermediate operands.
280     Val = DAG.getNode(IntermediateVT.isVector() ?
281                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
282                       ValueVT, &Ops[0], NumIntermediates);
283   }
284 
285   // There is now one part, held in Val.  Correct it to match ValueVT.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isVector()) {
292     // If the element type of the source/dest vectors are the same, but the
293     // parts vector has more elements than the value vector, then we have a
294     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
295     // elements we want.
296     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
297       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
298              "Cannot narrow, it would be a lossy transformation");
299       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
300                          DAG.getConstant(0, TLI.getVectorIdxTy()));
301     }
302 
303     // Vector/Vector bitcast.
304     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
305       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
308       "Cannot handle this kind of promotion");
309     // Promoted vector extract
310     bool Smaller = ValueVT.bitsLE(PartEVT);
311     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
312                        DL, ValueVT, Val);
313 
314   }
315 
316   // Trivial bitcast if the types are the same size and the destination
317   // vector type is legal.
318   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
319       TLI.isTypeLegal(ValueVT))
320     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
321 
322   // Handle cases such as i8 -> <1 x i1>
323   if (ValueVT.getVectorNumElements() != 1) {
324     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
325                                       "non-trivial scalar-to-vector conversion");
326     return DAG.getUNDEF(ValueVT);
327   }
328 
329   if (ValueVT.getVectorNumElements() == 1 &&
330       ValueVT.getVectorElementType() != PartEVT) {
331     bool Smaller = ValueVT.bitsLE(PartEVT);
332     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
333                        DL, ValueVT.getScalarType(), Val);
334   }
335 
336   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
337 }
338 
339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
340                                  SDValue Val, SDValue *Parts, unsigned NumParts,
341                                  MVT PartVT, const Value *V);
342 
343 /// getCopyToParts - Create a series of nodes that contain the specified value
344 /// split into legal parts.  If the parts contain more bits than Val, then, for
345 /// integers, ExtendKind can be used to specify how to generate the extra bits.
346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
347                            SDValue Val, SDValue *Parts, unsigned NumParts,
348                            MVT PartVT, const Value *V,
349                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
350   EVT ValueVT = Val.getValueType();
351 
352   // Handle the vector case separately.
353   if (ValueVT.isVector())
354     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
355 
356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357   unsigned PartBits = PartVT.getSizeInBits();
358   unsigned OrigNumParts = NumParts;
359   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
360 
361   if (NumParts == 0)
362     return;
363 
364   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
365   EVT PartEVT = PartVT;
366   if (PartEVT == ValueVT) {
367     assert(NumParts == 1 && "No-op copy with multiple parts!");
368     Parts[0] = Val;
369     return;
370   }
371 
372   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
373     // If the parts cover more bits than the value has, promote the value.
374     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
375       assert(NumParts == 1 && "Do not know what to promote to!");
376       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
377     } else {
378       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
379              ValueVT.isInteger() &&
380              "Unknown mismatch!");
381       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
383       if (PartVT == MVT::x86mmx)
384         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
385     }
386   } else if (PartBits == ValueVT.getSizeInBits()) {
387     // Different types of the same size.
388     assert(NumParts == 1 && PartEVT != ValueVT);
389     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391     // If the parts cover less bits than value has, truncate the value.
392     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
393            ValueVT.isInteger() &&
394            "Unknown mismatch!");
395     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
396     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
397     if (PartVT == MVT::x86mmx)
398       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
399   }
400 
401   // The value may have changed - recompute ValueVT.
402   ValueVT = Val.getValueType();
403   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
404          "Failed to tile the value with PartVT!");
405 
406   if (NumParts == 1) {
407     if (PartEVT != ValueVT)
408       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
409                                         "scalar-to-vector conversion failed");
410 
411     Parts[0] = Val;
412     return;
413   }
414 
415   // Expand the value into multiple parts.
416   if (NumParts & (NumParts - 1)) {
417     // The number of parts is not a power of 2.  Split off and copy the tail.
418     assert(PartVT.isInteger() && ValueVT.isInteger() &&
419            "Do not know what to expand to!");
420     unsigned RoundParts = 1 << Log2_32(NumParts);
421     unsigned RoundBits = RoundParts * PartBits;
422     unsigned OddParts = NumParts - RoundParts;
423     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                  DAG.getIntPtrConstant(RoundBits));
425     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426 
427     if (TLI.isBigEndian())
428       // The odd parts were reversed by getCopyToParts - unreverse them.
429       std::reverse(Parts + RoundParts, Parts + NumParts);
430 
431     NumParts = RoundParts;
432     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434   }
435 
436   // The number of parts is a power of 2.  Repeatedly bisect the value using
437   // EXTRACT_ELEMENT.
438   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                          EVT::getIntegerVT(*DAG.getContext(),
440                                            ValueVT.getSizeInBits()),
441                          Val);
442 
443   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444     for (unsigned i = 0; i < NumParts; i += StepSize) {
445       unsigned ThisBits = StepSize * PartBits / 2;
446       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447       SDValue &Part0 = Parts[i];
448       SDValue &Part1 = Parts[i+StepSize/2];
449 
450       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                           ThisVT, Part0, DAG.getIntPtrConstant(1));
452       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                           ThisVT, Part0, DAG.getIntPtrConstant(0));
454 
455       if (ThisBits == PartBits && ThisVT != PartVT) {
456         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458       }
459     }
460   }
461 
462   if (TLI.isBigEndian())
463     std::reverse(Parts, Parts + OrigNumParts);
464 }
465 
466 
467 /// getCopyToPartsVector - Create a series of nodes that contain the specified
468 /// value split into legal parts.
469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470                                  SDValue Val, SDValue *Parts, unsigned NumParts,
471                                  MVT PartVT, const Value *V) {
472   EVT ValueVT = Val.getValueType();
473   assert(ValueVT.isVector() && "Not a vector");
474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475 
476   if (NumParts == 1) {
477     EVT PartEVT = PartVT;
478     if (PartEVT == ValueVT) {
479       // Nothing to do.
480     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481       // Bitconvert vector->vector case.
482       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483     } else if (PartVT.isVector() &&
484                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486       EVT ElementVT = PartVT.getVectorElementType();
487       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488       // undef elements.
489       SmallVector<SDValue, 16> Ops;
490       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                   ElementVT, Val, DAG.getConstant(i,
493                                                   TLI.getVectorIdxTy())));
494 
495       for (unsigned i = ValueVT.getVectorNumElements(),
496            e = PartVT.getVectorNumElements(); i != e; ++i)
497         Ops.push_back(DAG.getUNDEF(ElementVT));
498 
499       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
500 
501       // FIXME: Use CONCAT for 2x -> 4x.
502 
503       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505     } else if (PartVT.isVector() &&
506                PartEVT.getVectorElementType().bitsGE(
507                  ValueVT.getVectorElementType()) &&
508                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509 
510       // Promoted vector extract
511       bool Smaller = PartEVT.bitsLE(ValueVT);
512       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                         DL, PartVT, Val);
514     } else{
515       // Vector -> scalar conversion.
516       assert(ValueVT.getVectorNumElements() == 1 &&
517              "Only trivial vector-to-scalar conversions should get here!");
518       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                         PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
520 
521       bool Smaller = ValueVT.bitsLE(PartVT);
522       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                          DL, PartVT, Val);
524     }
525 
526     Parts[0] = Val;
527     return;
528   }
529 
530   // Handle a multi-element vector.
531   EVT IntermediateVT;
532   MVT RegisterVT;
533   unsigned NumIntermediates;
534   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                 IntermediateVT,
536                                                 NumIntermediates, RegisterVT);
537   unsigned NumElements = ValueVT.getVectorNumElements();
538 
539   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540   NumParts = NumRegs; // Silence a compiler warning.
541   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542 
543   // Split the vector into intermediate operands.
544   SmallVector<SDValue, 8> Ops(NumIntermediates);
545   for (unsigned i = 0; i != NumIntermediates; ++i) {
546     if (IntermediateVT.isVector())
547       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                            IntermediateVT, Val,
549                    DAG.getConstant(i * (NumElements / NumIntermediates),
550                                    TLI.getVectorIdxTy()));
551     else
552       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
553                            IntermediateVT, Val,
554                            DAG.getConstant(i, TLI.getVectorIdxTy()));
555   }
556 
557   // Split the intermediate operands into legal parts.
558   if (NumParts == NumIntermediates) {
559     // If the register was not expanded, promote or copy the value,
560     // as appropriate.
561     for (unsigned i = 0; i != NumParts; ++i)
562       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
563   } else if (NumParts > 0) {
564     // If the intermediate type was expanded, split each the value into
565     // legal parts.
566     assert(NumParts % NumIntermediates == 0 &&
567            "Must expand into a divisible number of parts!");
568     unsigned Factor = NumParts / NumIntermediates;
569     for (unsigned i = 0; i != NumIntermediates; ++i)
570       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
571   }
572 }
573 
574 namespace {
575   /// RegsForValue - This struct represents the registers (physical or virtual)
576   /// that a particular set of values is assigned, and the type information
577   /// about the value. The most common situation is to represent one value at a
578   /// time, but struct or array values are handled element-wise as multiple
579   /// values.  The splitting of aggregates is performed recursively, so that we
580   /// never have aggregate-typed registers. The values at this point do not
581   /// necessarily have legal types, so each value may require one or more
582   /// registers of some legal type.
583   ///
584   struct RegsForValue {
585     /// ValueVTs - The value types of the values, which may not be legal, and
586     /// may need be promoted or synthesized from one or more registers.
587     ///
588     SmallVector<EVT, 4> ValueVTs;
589 
590     /// RegVTs - The value types of the registers. This is the same size as
591     /// ValueVTs and it records, for each value, what the type of the assigned
592     /// register or registers are. (Individual values are never synthesized
593     /// from more than one type of register.)
594     ///
595     /// With virtual registers, the contents of RegVTs is redundant with TLI's
596     /// getRegisterType member function, however when with physical registers
597     /// it is necessary to have a separate record of the types.
598     ///
599     SmallVector<MVT, 4> RegVTs;
600 
601     /// Regs - This list holds the registers assigned to the values.
602     /// Each legal or promoted value requires one register, and each
603     /// expanded value requires multiple registers.
604     ///
605     SmallVector<unsigned, 4> Regs;
606 
607     RegsForValue() {}
608 
609     RegsForValue(const SmallVector<unsigned, 4> &regs,
610                  MVT regvt, EVT valuevt)
611       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
612 
613     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
614                  unsigned Reg, Type *Ty) {
615       ComputeValueVTs(tli, Ty, ValueVTs);
616 
617       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
618         EVT ValueVT = ValueVTs[Value];
619         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
620         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
621         for (unsigned i = 0; i != NumRegs; ++i)
622           Regs.push_back(Reg + i);
623         RegVTs.push_back(RegisterVT);
624         Reg += NumRegs;
625       }
626     }
627 
628     /// append - Add the specified values to this one.
629     void append(const RegsForValue &RHS) {
630       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
631       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
632       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
633     }
634 
635     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
636     /// this value and returns the result as a ValueVTs value.  This uses
637     /// Chain/Flag as the input and updates them for the output Chain/Flag.
638     /// If the Flag pointer is NULL, no flag is used.
639     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
640                             SDLoc dl,
641                             SDValue &Chain, SDValue *Flag,
642                             const Value *V = nullptr) const;
643 
644     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
645     /// specified value into the registers specified by this object.  This uses
646     /// Chain/Flag as the input and updates them for the output Chain/Flag.
647     /// If the Flag pointer is NULL, no flag is used.
648     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
649                        SDValue &Chain, SDValue *Flag, const Value *V) const;
650 
651     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
652     /// operand list.  This adds the code marker, matching input operand index
653     /// (if applicable), and includes the number of values added into it.
654     void AddInlineAsmOperands(unsigned Kind,
655                               bool HasMatching, unsigned MatchingIdx,
656                               SelectionDAG &DAG,
657                               std::vector<SDValue> &Ops) const;
658   };
659 }
660 
661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
662 /// this value and returns the result as a ValueVT value.  This uses
663 /// Chain/Flag as the input and updates them for the output Chain/Flag.
664 /// If the Flag pointer is NULL, no flag is used.
665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
666                                       FunctionLoweringInfo &FuncInfo,
667                                       SDLoc dl,
668                                       SDValue &Chain, SDValue *Flag,
669                                       const Value *V) const {
670   // A Value with type {} or [0 x %t] needs no registers.
671   if (ValueVTs.empty())
672     return SDValue();
673 
674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675 
676   // Assemble the legal parts into the final values.
677   SmallVector<SDValue, 4> Values(ValueVTs.size());
678   SmallVector<SDValue, 8> Parts;
679   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
680     // Copy the legal parts from the registers.
681     EVT ValueVT = ValueVTs[Value];
682     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
683     MVT RegisterVT = RegVTs[Value];
684 
685     Parts.resize(NumRegs);
686     for (unsigned i = 0; i != NumRegs; ++i) {
687       SDValue P;
688       if (!Flag) {
689         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
690       } else {
691         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
692         *Flag = P.getValue(2);
693       }
694 
695       Chain = P.getValue(1);
696       Parts[i] = P;
697 
698       // If the source register was virtual and if we know something about it,
699       // add an assert node.
700       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
701           !RegisterVT.isInteger() || RegisterVT.isVector())
702         continue;
703 
704       const FunctionLoweringInfo::LiveOutInfo *LOI =
705         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
706       if (!LOI)
707         continue;
708 
709       unsigned RegSize = RegisterVT.getSizeInBits();
710       unsigned NumSignBits = LOI->NumSignBits;
711       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
712 
713       if (NumZeroBits == RegSize) {
714         // The current value is a zero.
715         // Explicitly express that as it would be easier for
716         // optimizations to kick in.
717         Parts[i] = DAG.getConstant(0, RegisterVT);
718         continue;
719       }
720 
721       // FIXME: We capture more information than the dag can represent.  For
722       // now, just use the tightest assertzext/assertsext possible.
723       bool isSExt = true;
724       EVT FromVT(MVT::Other);
725       if (NumSignBits == RegSize)
726         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
727       else if (NumZeroBits >= RegSize-1)
728         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
729       else if (NumSignBits > RegSize-8)
730         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
731       else if (NumZeroBits >= RegSize-8)
732         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
733       else if (NumSignBits > RegSize-16)
734         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
735       else if (NumZeroBits >= RegSize-16)
736         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
737       else if (NumSignBits > RegSize-32)
738         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
739       else if (NumZeroBits >= RegSize-32)
740         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
741       else
742         continue;
743 
744       // Add an assertion node.
745       assert(FromVT != MVT::Other);
746       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
747                              RegisterVT, P, DAG.getValueType(FromVT));
748     }
749 
750     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
751                                      NumRegs, RegisterVT, ValueVT, V);
752     Part += NumRegs;
753     Parts.clear();
754   }
755 
756   return DAG.getNode(ISD::MERGE_VALUES, dl,
757                      DAG.getVTList(ValueVTs),
758                      &Values[0], ValueVTs.size());
759 }
760 
761 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
762 /// specified value into the registers specified by this object.  This uses
763 /// Chain/Flag as the input and updates them for the output Chain/Flag.
764 /// If the Flag pointer is NULL, no flag is used.
765 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
766                                  SDValue &Chain, SDValue *Flag,
767                                  const Value *V) const {
768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
769 
770   // Get the list of the values's legal parts.
771   unsigned NumRegs = Regs.size();
772   SmallVector<SDValue, 8> Parts(NumRegs);
773   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
774     EVT ValueVT = ValueVTs[Value];
775     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
776     MVT RegisterVT = RegVTs[Value];
777     ISD::NodeType ExtendKind =
778       TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
779 
780     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
781                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
782     Part += NumParts;
783   }
784 
785   // Copy the parts into the registers.
786   SmallVector<SDValue, 8> Chains(NumRegs);
787   for (unsigned i = 0; i != NumRegs; ++i) {
788     SDValue Part;
789     if (!Flag) {
790       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
791     } else {
792       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
793       *Flag = Part.getValue(1);
794     }
795 
796     Chains[i] = Part.getValue(0);
797   }
798 
799   if (NumRegs == 1 || Flag)
800     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
801     // flagged to it. That is the CopyToReg nodes and the user are considered
802     // a single scheduling unit. If we create a TokenFactor and return it as
803     // chain, then the TokenFactor is both a predecessor (operand) of the
804     // user as well as a successor (the TF operands are flagged to the user).
805     // c1, f1 = CopyToReg
806     // c2, f2 = CopyToReg
807     // c3     = TokenFactor c1, c2
808     // ...
809     //        = op c3, ..., f2
810     Chain = Chains[NumRegs-1];
811   else
812     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
813 }
814 
815 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
816 /// operand list.  This adds the code marker and includes the number of
817 /// values added into it.
818 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
819                                         unsigned MatchingIdx,
820                                         SelectionDAG &DAG,
821                                         std::vector<SDValue> &Ops) const {
822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
823 
824   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
825   if (HasMatching)
826     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
827   else if (!Regs.empty() &&
828            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
829     // Put the register class of the virtual registers in the flag word.  That
830     // way, later passes can recompute register class constraints for inline
831     // assembly as well as normal instructions.
832     // Don't do this for tied operands that can use the regclass information
833     // from the def.
834     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
835     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
836     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
837   }
838 
839   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
840   Ops.push_back(Res);
841 
842   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
843   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
844     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
845     MVT RegisterVT = RegVTs[Value];
846     for (unsigned i = 0; i != NumRegs; ++i) {
847       assert(Reg < Regs.size() && "Mismatch in # registers expected");
848       unsigned TheReg = Regs[Reg++];
849       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
850 
851       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
852         // If we clobbered the stack pointer, MFI should know about it.
853         assert(DAG.getMachineFunction().getFrameInfo()->
854             hasInlineAsmWithSPAdjust());
855       }
856     }
857   }
858 }
859 
860 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
861                                const TargetLibraryInfo *li) {
862   AA = &aa;
863   GFI = gfi;
864   LibInfo = li;
865   DL = DAG.getTarget().getDataLayout();
866   Context = DAG.getContext();
867   LPadToCallSiteMap.clear();
868 }
869 
870 /// clear - Clear out the current SelectionDAG and the associated
871 /// state and prepare this SelectionDAGBuilder object to be used
872 /// for a new block. This doesn't clear out information about
873 /// additional blocks that are needed to complete switch lowering
874 /// or PHI node updating; that information is cleared out as it is
875 /// consumed.
876 void SelectionDAGBuilder::clear() {
877   NodeMap.clear();
878   UnusedArgNodeMap.clear();
879   PendingLoads.clear();
880   PendingExports.clear();
881   CurInst = nullptr;
882   HasTailCall = false;
883   SDNodeOrder = LowestSDNodeOrder;
884 }
885 
886 /// clearDanglingDebugInfo - Clear the dangling debug information
887 /// map. This function is separated from the clear so that debug
888 /// information that is dangling in a basic block can be properly
889 /// resolved in a different basic block. This allows the
890 /// SelectionDAG to resolve dangling debug information attached
891 /// to PHI nodes.
892 void SelectionDAGBuilder::clearDanglingDebugInfo() {
893   DanglingDebugInfoMap.clear();
894 }
895 
896 /// getRoot - Return the current virtual root of the Selection DAG,
897 /// flushing any PendingLoad items. This must be done before emitting
898 /// a store or any other node that may need to be ordered after any
899 /// prior load instructions.
900 ///
901 SDValue SelectionDAGBuilder::getRoot() {
902   if (PendingLoads.empty())
903     return DAG.getRoot();
904 
905   if (PendingLoads.size() == 1) {
906     SDValue Root = PendingLoads[0];
907     DAG.setRoot(Root);
908     PendingLoads.clear();
909     return Root;
910   }
911 
912   // Otherwise, we have to make a token factor node.
913   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
914                                &PendingLoads[0], PendingLoads.size());
915   PendingLoads.clear();
916   DAG.setRoot(Root);
917   return Root;
918 }
919 
920 /// getControlRoot - Similar to getRoot, but instead of flushing all the
921 /// PendingLoad items, flush all the PendingExports items. It is necessary
922 /// to do this before emitting a terminator instruction.
923 ///
924 SDValue SelectionDAGBuilder::getControlRoot() {
925   SDValue Root = DAG.getRoot();
926 
927   if (PendingExports.empty())
928     return Root;
929 
930   // Turn all of the CopyToReg chains into one factored node.
931   if (Root.getOpcode() != ISD::EntryToken) {
932     unsigned i = 0, e = PendingExports.size();
933     for (; i != e; ++i) {
934       assert(PendingExports[i].getNode()->getNumOperands() > 1);
935       if (PendingExports[i].getNode()->getOperand(0) == Root)
936         break;  // Don't add the root if we already indirectly depend on it.
937     }
938 
939     if (i == e)
940       PendingExports.push_back(Root);
941   }
942 
943   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
944                      &PendingExports[0],
945                      PendingExports.size());
946   PendingExports.clear();
947   DAG.setRoot(Root);
948   return Root;
949 }
950 
951 void SelectionDAGBuilder::visit(const Instruction &I) {
952   // Set up outgoing PHI node register values before emitting the terminator.
953   if (isa<TerminatorInst>(&I))
954     HandlePHINodesInSuccessorBlocks(I.getParent());
955 
956   ++SDNodeOrder;
957 
958   CurInst = &I;
959 
960   visit(I.getOpcode(), I);
961 
962   if (!isa<TerminatorInst>(&I) && !HasTailCall)
963     CopyToExportRegsIfNeeded(&I);
964 
965   CurInst = nullptr;
966 }
967 
968 void SelectionDAGBuilder::visitPHI(const PHINode &) {
969   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
970 }
971 
972 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
973   // Note: this doesn't use InstVisitor, because it has to work with
974   // ConstantExpr's in addition to instructions.
975   switch (Opcode) {
976   default: llvm_unreachable("Unknown instruction type encountered!");
977     // Build the switch statement using the Instruction.def file.
978 #define HANDLE_INST(NUM, OPCODE, CLASS) \
979     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
980 #include "llvm/IR/Instruction.def"
981   }
982 }
983 
984 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
985 // generate the debug data structures now that we've seen its definition.
986 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
987                                                    SDValue Val) {
988   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
989   if (DDI.getDI()) {
990     const DbgValueInst *DI = DDI.getDI();
991     DebugLoc dl = DDI.getdl();
992     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
993     MDNode *Variable = DI->getVariable();
994     uint64_t Offset = DI->getOffset();
995     // FIXME: This does not handle indirect values at offset 0.
996     bool IsIndirect = (Offset != 0);
997     SDDbgValue *SDV;
998     if (Val.getNode()) {
999       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000         SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                               Val.getResNo(), IsIndirect,
1002 			      Offset, dl, DbgSDNodeOrder);
1003         DAG.AddDbgValue(SDV, Val.getNode(), false);
1004       }
1005     } else
1006       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1007     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1008   }
1009 }
1010 
1011 /// getValue - Return an SDValue for the given Value.
1012 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1013   // If we already have an SDValue for this value, use it. It's important
1014   // to do this first, so that we don't create a CopyFromReg if we already
1015   // have a regular SDValue.
1016   SDValue &N = NodeMap[V];
1017   if (N.getNode()) return N;
1018 
1019   // If there's a virtual register allocated and initialized for this
1020   // value, use it.
1021   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1022   if (It != FuncInfo.ValueMap.end()) {
1023     unsigned InReg = It->second;
1024     RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1025                      InReg, V->getType());
1026     SDValue Chain = DAG.getEntryNode();
1027     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1028     resolveDanglingDebugInfo(V, N);
1029     return N;
1030   }
1031 
1032   // Otherwise create a new SDValue and remember it.
1033   SDValue Val = getValueImpl(V);
1034   NodeMap[V] = Val;
1035   resolveDanglingDebugInfo(V, Val);
1036   return Val;
1037 }
1038 
1039 /// getNonRegisterValue - Return an SDValue for the given Value, but
1040 /// don't look in FuncInfo.ValueMap for a virtual register.
1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it.
1043   SDValue &N = NodeMap[V];
1044   if (N.getNode()) return N;
1045 
1046   // Otherwise create a new SDValue and remember it.
1047   SDValue Val = getValueImpl(V);
1048   NodeMap[V] = Val;
1049   resolveDanglingDebugInfo(V, Val);
1050   return Val;
1051 }
1052 
1053 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1054 /// Create an SDValue for the given value.
1055 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1056   const TargetLowering *TLI = TM.getTargetLowering();
1057 
1058   if (const Constant *C = dyn_cast<Constant>(V)) {
1059     EVT VT = TLI->getValueType(V->getType(), true);
1060 
1061     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1062       return DAG.getConstant(*CI, VT);
1063 
1064     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1065       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1066 
1067     if (isa<ConstantPointerNull>(C)) {
1068       unsigned AS = V->getType()->getPointerAddressSpace();
1069       return DAG.getConstant(0, TLI->getPointerTy(AS));
1070     }
1071 
1072     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1073       return DAG.getConstantFP(*CFP, VT);
1074 
1075     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1076       return DAG.getUNDEF(VT);
1077 
1078     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1079       visit(CE->getOpcode(), *CE);
1080       SDValue N1 = NodeMap[V];
1081       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1082       return N1;
1083     }
1084 
1085     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1086       SmallVector<SDValue, 4> Constants;
1087       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1088            OI != OE; ++OI) {
1089         SDNode *Val = getValue(*OI).getNode();
1090         // If the operand is an empty aggregate, there are no values.
1091         if (!Val) continue;
1092         // Add each leaf value from the operand to the Constants list
1093         // to form a flattened list of all the values.
1094         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1095           Constants.push_back(SDValue(Val, i));
1096       }
1097 
1098       return DAG.getMergeValues(&Constants[0], Constants.size(),
1099                                 getCurSDLoc());
1100     }
1101 
1102     if (const ConstantDataSequential *CDS =
1103           dyn_cast<ConstantDataSequential>(C)) {
1104       SmallVector<SDValue, 4> Ops;
1105       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1106         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1107         // Add each leaf value from the operand to the Constants list
1108         // to form a flattened list of all the values.
1109         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1110           Ops.push_back(SDValue(Val, i));
1111       }
1112 
1113       if (isa<ArrayType>(CDS->getType()))
1114         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1115       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1116                                       VT, &Ops[0], Ops.size());
1117     }
1118 
1119     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1120       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1121              "Unknown struct or array constant!");
1122 
1123       SmallVector<EVT, 4> ValueVTs;
1124       ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1125       unsigned NumElts = ValueVTs.size();
1126       if (NumElts == 0)
1127         return SDValue(); // empty struct
1128       SmallVector<SDValue, 4> Constants(NumElts);
1129       for (unsigned i = 0; i != NumElts; ++i) {
1130         EVT EltVT = ValueVTs[i];
1131         if (isa<UndefValue>(C))
1132           Constants[i] = DAG.getUNDEF(EltVT);
1133         else if (EltVT.isFloatingPoint())
1134           Constants[i] = DAG.getConstantFP(0, EltVT);
1135         else
1136           Constants[i] = DAG.getConstant(0, EltVT);
1137       }
1138 
1139       return DAG.getMergeValues(&Constants[0], NumElts,
1140                                 getCurSDLoc());
1141     }
1142 
1143     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1144       return DAG.getBlockAddress(BA, VT);
1145 
1146     VectorType *VecTy = cast<VectorType>(V->getType());
1147     unsigned NumElements = VecTy->getNumElements();
1148 
1149     // Now that we know the number and type of the elements, get that number of
1150     // elements into the Ops array based on what kind of constant it is.
1151     SmallVector<SDValue, 16> Ops;
1152     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1153       for (unsigned i = 0; i != NumElements; ++i)
1154         Ops.push_back(getValue(CV->getOperand(i)));
1155     } else {
1156       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1157       EVT EltVT = TLI->getValueType(VecTy->getElementType());
1158 
1159       SDValue Op;
1160       if (EltVT.isFloatingPoint())
1161         Op = DAG.getConstantFP(0, EltVT);
1162       else
1163         Op = DAG.getConstant(0, EltVT);
1164       Ops.assign(NumElements, Op);
1165     }
1166 
1167     // Create a BUILD_VECTOR node.
1168     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1169                                     VT, &Ops[0], Ops.size());
1170   }
1171 
1172   // If this is a static alloca, generate it as the frameindex instead of
1173   // computation.
1174   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1175     DenseMap<const AllocaInst*, int>::iterator SI =
1176       FuncInfo.StaticAllocaMap.find(AI);
1177     if (SI != FuncInfo.StaticAllocaMap.end())
1178       return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1179   }
1180 
1181   // If this is an instruction which fast-isel has deferred, select it now.
1182   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1183     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1184     RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1185     SDValue Chain = DAG.getEntryNode();
1186     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1187   }
1188 
1189   llvm_unreachable("Can't get register for value!");
1190 }
1191 
1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1193   const TargetLowering *TLI = TM.getTargetLowering();
1194   SDValue Chain = getControlRoot();
1195   SmallVector<ISD::OutputArg, 8> Outs;
1196   SmallVector<SDValue, 8> OutVals;
1197 
1198   if (!FuncInfo.CanLowerReturn) {
1199     unsigned DemoteReg = FuncInfo.DemoteRegister;
1200     const Function *F = I.getParent()->getParent();
1201 
1202     // Emit a store of the return value through the virtual register.
1203     // Leave Outs empty so that LowerReturn won't try to load return
1204     // registers the usual way.
1205     SmallVector<EVT, 1> PtrValueVTs;
1206     ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1207                     PtrValueVTs);
1208 
1209     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1210     SDValue RetOp = getValue(I.getOperand(0));
1211 
1212     SmallVector<EVT, 4> ValueVTs;
1213     SmallVector<uint64_t, 4> Offsets;
1214     ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1215     unsigned NumValues = ValueVTs.size();
1216 
1217     SmallVector<SDValue, 4> Chains(NumValues);
1218     for (unsigned i = 0; i != NumValues; ++i) {
1219       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1220                                 RetPtr.getValueType(), RetPtr,
1221                                 DAG.getIntPtrConstant(Offsets[i]));
1222       Chains[i] =
1223         DAG.getStore(Chain, getCurSDLoc(),
1224                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1225                      // FIXME: better loc info would be nice.
1226                      Add, MachinePointerInfo(), false, false, 0);
1227     }
1228 
1229     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1230                         MVT::Other, &Chains[0], NumValues);
1231   } else if (I.getNumOperands() != 0) {
1232     SmallVector<EVT, 4> ValueVTs;
1233     ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1234     unsigned NumValues = ValueVTs.size();
1235     if (NumValues) {
1236       SDValue RetOp = getValue(I.getOperand(0));
1237       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1238         EVT VT = ValueVTs[j];
1239 
1240         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1241 
1242         const Function *F = I.getParent()->getParent();
1243         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1244                                             Attribute::SExt))
1245           ExtendKind = ISD::SIGN_EXTEND;
1246         else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1247                                                  Attribute::ZExt))
1248           ExtendKind = ISD::ZERO_EXTEND;
1249 
1250         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1251           VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1252 
1253         unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1254         MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1255         SmallVector<SDValue, 4> Parts(NumParts);
1256         getCopyToParts(DAG, getCurSDLoc(),
1257                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1258                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1259 
1260         // 'inreg' on function refers to return value
1261         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1262         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1263                                             Attribute::InReg))
1264           Flags.setInReg();
1265 
1266         // Propagate extension type if any
1267         if (ExtendKind == ISD::SIGN_EXTEND)
1268           Flags.setSExt();
1269         else if (ExtendKind == ISD::ZERO_EXTEND)
1270           Flags.setZExt();
1271 
1272         for (unsigned i = 0; i < NumParts; ++i) {
1273           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1274                                         VT, /*isfixed=*/true, 0, 0));
1275           OutVals.push_back(Parts[i]);
1276         }
1277       }
1278     }
1279   }
1280 
1281   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1282   CallingConv::ID CallConv =
1283     DAG.getMachineFunction().getFunction()->getCallingConv();
1284   Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1285                                               Outs, OutVals, getCurSDLoc(),
1286                                               DAG);
1287 
1288   // Verify that the target's LowerReturn behaved as expected.
1289   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1290          "LowerReturn didn't return a valid chain!");
1291 
1292   // Update the DAG with the new chain value resulting from return lowering.
1293   DAG.setRoot(Chain);
1294 }
1295 
1296 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1297 /// created for it, emit nodes to copy the value into the virtual
1298 /// registers.
1299 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1300   // Skip empty types
1301   if (V->getType()->isEmptyTy())
1302     return;
1303 
1304   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1305   if (VMI != FuncInfo.ValueMap.end()) {
1306     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1307     CopyValueToVirtualRegister(V, VMI->second);
1308   }
1309 }
1310 
1311 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1312 /// the current basic block, add it to ValueMap now so that we'll get a
1313 /// CopyTo/FromReg.
1314 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1315   // No need to export constants.
1316   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1317 
1318   // Already exported?
1319   if (FuncInfo.isExportedInst(V)) return;
1320 
1321   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1322   CopyValueToVirtualRegister(V, Reg);
1323 }
1324 
1325 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1326                                                      const BasicBlock *FromBB) {
1327   // The operands of the setcc have to be in this block.  We don't know
1328   // how to export them from some other block.
1329   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1330     // Can export from current BB.
1331     if (VI->getParent() == FromBB)
1332       return true;
1333 
1334     // Is already exported, noop.
1335     return FuncInfo.isExportedInst(V);
1336   }
1337 
1338   // If this is an argument, we can export it if the BB is the entry block or
1339   // if it is already exported.
1340   if (isa<Argument>(V)) {
1341     if (FromBB == &FromBB->getParent()->getEntryBlock())
1342       return true;
1343 
1344     // Otherwise, can only export this if it is already exported.
1345     return FuncInfo.isExportedInst(V);
1346   }
1347 
1348   // Otherwise, constants can always be exported.
1349   return true;
1350 }
1351 
1352 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1353 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1354                                             const MachineBasicBlock *Dst) const {
1355   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1356   if (!BPI)
1357     return 0;
1358   const BasicBlock *SrcBB = Src->getBasicBlock();
1359   const BasicBlock *DstBB = Dst->getBasicBlock();
1360   return BPI->getEdgeWeight(SrcBB, DstBB);
1361 }
1362 
1363 void SelectionDAGBuilder::
1364 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1365                        uint32_t Weight /* = 0 */) {
1366   if (!Weight)
1367     Weight = getEdgeWeight(Src, Dst);
1368   Src->addSuccessor(Dst, Weight);
1369 }
1370 
1371 
1372 static bool InBlock(const Value *V, const BasicBlock *BB) {
1373   if (const Instruction *I = dyn_cast<Instruction>(V))
1374     return I->getParent() == BB;
1375   return true;
1376 }
1377 
1378 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1379 /// This function emits a branch and is used at the leaves of an OR or an
1380 /// AND operator tree.
1381 ///
1382 void
1383 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1384                                                   MachineBasicBlock *TBB,
1385                                                   MachineBasicBlock *FBB,
1386                                                   MachineBasicBlock *CurBB,
1387                                                   MachineBasicBlock *SwitchBB,
1388                                                   uint32_t TWeight,
1389                                                   uint32_t FWeight) {
1390   const BasicBlock *BB = CurBB->getBasicBlock();
1391 
1392   // If the leaf of the tree is a comparison, merge the condition into
1393   // the caseblock.
1394   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1395     // The operands of the cmp have to be in this block.  We don't know
1396     // how to export them from some other block.  If this is the first block
1397     // of the sequence, no exporting is needed.
1398     if (CurBB == SwitchBB ||
1399         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1400          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1401       ISD::CondCode Condition;
1402       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1403         Condition = getICmpCondCode(IC->getPredicate());
1404       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1405         Condition = getFCmpCondCode(FC->getPredicate());
1406         if (TM.Options.NoNaNsFPMath)
1407           Condition = getFCmpCodeWithoutNaN(Condition);
1408       } else {
1409         Condition = ISD::SETEQ; // silence warning.
1410         llvm_unreachable("Unknown compare instruction");
1411       }
1412 
1413       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1414                    TBB, FBB, CurBB, TWeight, FWeight);
1415       SwitchCases.push_back(CB);
1416       return;
1417     }
1418   }
1419 
1420   // Create a CaseBlock record representing this branch.
1421   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1422                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1423   SwitchCases.push_back(CB);
1424 }
1425 
1426 /// Scale down both weights to fit into uint32_t.
1427 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1428   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1429   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1430   NewTrue = NewTrue / Scale;
1431   NewFalse = NewFalse / Scale;
1432 }
1433 
1434 /// FindMergedConditions - If Cond is an expression like
1435 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1436                                                MachineBasicBlock *TBB,
1437                                                MachineBasicBlock *FBB,
1438                                                MachineBasicBlock *CurBB,
1439                                                MachineBasicBlock *SwitchBB,
1440                                                unsigned Opc, uint32_t TWeight,
1441                                                uint32_t FWeight) {
1442   // If this node is not part of the or/and tree, emit it as a branch.
1443   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1444   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1445       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1446       BOp->getParent() != CurBB->getBasicBlock() ||
1447       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1448       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1449     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1450                                  TWeight, FWeight);
1451     return;
1452   }
1453 
1454   //  Create TmpBB after CurBB.
1455   MachineFunction::iterator BBI = CurBB;
1456   MachineFunction &MF = DAG.getMachineFunction();
1457   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1458   CurBB->getParent()->insert(++BBI, TmpBB);
1459 
1460   if (Opc == Instruction::Or) {
1461     // Codegen X | Y as:
1462     // BB1:
1463     //   jmp_if_X TBB
1464     //   jmp TmpBB
1465     // TmpBB:
1466     //   jmp_if_Y TBB
1467     //   jmp FBB
1468     //
1469 
1470     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1471     // The requirement is that
1472     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1473     //     = TrueProb for orignal BB.
1474     // Assuming the orignal weights are A and B, one choice is to set BB1's
1475     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1476     // assumes that
1477     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1478     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1479     // TmpBB, but the math is more complicated.
1480 
1481     uint64_t NewTrueWeight = TWeight;
1482     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1483     ScaleWeights(NewTrueWeight, NewFalseWeight);
1484     // Emit the LHS condition.
1485     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1486                          NewTrueWeight, NewFalseWeight);
1487 
1488     NewTrueWeight = TWeight;
1489     NewFalseWeight = 2 * (uint64_t)FWeight;
1490     ScaleWeights(NewTrueWeight, NewFalseWeight);
1491     // Emit the RHS condition into TmpBB.
1492     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1493                          NewTrueWeight, NewFalseWeight);
1494   } else {
1495     assert(Opc == Instruction::And && "Unknown merge op!");
1496     // Codegen X & Y as:
1497     // BB1:
1498     //   jmp_if_X TmpBB
1499     //   jmp FBB
1500     // TmpBB:
1501     //   jmp_if_Y TBB
1502     //   jmp FBB
1503     //
1504     //  This requires creation of TmpBB after CurBB.
1505 
1506     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1507     // The requirement is that
1508     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1509     //     = FalseProb for orignal BB.
1510     // Assuming the orignal weights are A and B, one choice is to set BB1's
1511     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1512     // assumes that
1513     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1514 
1515     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1516     uint64_t NewFalseWeight = FWeight;
1517     ScaleWeights(NewTrueWeight, NewFalseWeight);
1518     // Emit the LHS condition.
1519     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1520                          NewTrueWeight, NewFalseWeight);
1521 
1522     NewTrueWeight = 2 * (uint64_t)TWeight;
1523     NewFalseWeight = FWeight;
1524     ScaleWeights(NewTrueWeight, NewFalseWeight);
1525     // Emit the RHS condition into TmpBB.
1526     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1527                          NewTrueWeight, NewFalseWeight);
1528   }
1529 }
1530 
1531 /// If the set of cases should be emitted as a series of branches, return true.
1532 /// If we should emit this as a bunch of and/or'd together conditions, return
1533 /// false.
1534 bool
1535 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1536   if (Cases.size() != 2) return true;
1537 
1538   // If this is two comparisons of the same values or'd or and'd together, they
1539   // will get folded into a single comparison, so don't emit two blocks.
1540   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1541        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1542       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1543        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1544     return false;
1545   }
1546 
1547   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1548   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1549   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1550       Cases[0].CC == Cases[1].CC &&
1551       isa<Constant>(Cases[0].CmpRHS) &&
1552       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1553     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1554       return false;
1555     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1556       return false;
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1563   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1564 
1565   // Update machine-CFG edges.
1566   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1567 
1568   // Figure out which block is immediately after the current one.
1569   MachineBasicBlock *NextBlock = nullptr;
1570   MachineFunction::iterator BBI = BrMBB;
1571   if (++BBI != FuncInfo.MF->end())
1572     NextBlock = BBI;
1573 
1574   if (I.isUnconditional()) {
1575     // Update machine-CFG edges.
1576     BrMBB->addSuccessor(Succ0MBB);
1577 
1578     // If this is not a fall-through branch or optimizations are switched off,
1579     // emit the branch.
1580     if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1581       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1582                               MVT::Other, getControlRoot(),
1583                               DAG.getBasicBlock(Succ0MBB)));
1584 
1585     return;
1586   }
1587 
1588   // If this condition is one of the special cases we handle, do special stuff
1589   // now.
1590   const Value *CondVal = I.getCondition();
1591   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1592 
1593   // If this is a series of conditions that are or'd or and'd together, emit
1594   // this as a sequence of branches instead of setcc's with and/or operations.
1595   // As long as jumps are not expensive, this should improve performance.
1596   // For example, instead of something like:
1597   //     cmp A, B
1598   //     C = seteq
1599   //     cmp D, E
1600   //     F = setle
1601   //     or C, F
1602   //     jnz foo
1603   // Emit:
1604   //     cmp A, B
1605   //     je foo
1606   //     cmp D, E
1607   //     jle foo
1608   //
1609   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1610     if (!TM.getTargetLowering()->isJumpExpensive() &&
1611         BOp->hasOneUse() &&
1612         (BOp->getOpcode() == Instruction::And ||
1613          BOp->getOpcode() == Instruction::Or)) {
1614       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1615                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1616                            getEdgeWeight(BrMBB, Succ1MBB));
1617       // If the compares in later blocks need to use values not currently
1618       // exported from this block, export them now.  This block should always
1619       // be the first entry.
1620       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1621 
1622       // Allow some cases to be rejected.
1623       if (ShouldEmitAsBranches(SwitchCases)) {
1624         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1625           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1626           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1627         }
1628 
1629         // Emit the branch for this block.
1630         visitSwitchCase(SwitchCases[0], BrMBB);
1631         SwitchCases.erase(SwitchCases.begin());
1632         return;
1633       }
1634 
1635       // Okay, we decided not to do this, remove any inserted MBB's and clear
1636       // SwitchCases.
1637       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1638         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1639 
1640       SwitchCases.clear();
1641     }
1642   }
1643 
1644   // Create a CaseBlock record representing this branch.
1645   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1646                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1647 
1648   // Use visitSwitchCase to actually insert the fast branch sequence for this
1649   // cond branch.
1650   visitSwitchCase(CB, BrMBB);
1651 }
1652 
1653 /// visitSwitchCase - Emits the necessary code to represent a single node in
1654 /// the binary search tree resulting from lowering a switch instruction.
1655 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1656                                           MachineBasicBlock *SwitchBB) {
1657   SDValue Cond;
1658   SDValue CondLHS = getValue(CB.CmpLHS);
1659   SDLoc dl = getCurSDLoc();
1660 
1661   // Build the setcc now.
1662   if (!CB.CmpMHS) {
1663     // Fold "(X == true)" to X and "(X == false)" to !X to
1664     // handle common cases produced by branch lowering.
1665     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1666         CB.CC == ISD::SETEQ)
1667       Cond = CondLHS;
1668     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1669              CB.CC == ISD::SETEQ) {
1670       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1671       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1672     } else
1673       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1674   } else {
1675     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1676 
1677     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1678     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1679 
1680     SDValue CmpOp = getValue(CB.CmpMHS);
1681     EVT VT = CmpOp.getValueType();
1682 
1683     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1684       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1685                           ISD::SETLE);
1686     } else {
1687       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1688                                 VT, CmpOp, DAG.getConstant(Low, VT));
1689       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1690                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1691     }
1692   }
1693 
1694   // Update successor info
1695   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1696   // TrueBB and FalseBB are always different unless the incoming IR is
1697   // degenerate. This only happens when running llc on weird IR.
1698   if (CB.TrueBB != CB.FalseBB)
1699     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1700 
1701   // Set NextBlock to be the MBB immediately after the current one, if any.
1702   // This is used to avoid emitting unnecessary branches to the next block.
1703   MachineBasicBlock *NextBlock = nullptr;
1704   MachineFunction::iterator BBI = SwitchBB;
1705   if (++BBI != FuncInfo.MF->end())
1706     NextBlock = BBI;
1707 
1708   // If the lhs block is the next block, invert the condition so that we can
1709   // fall through to the lhs instead of the rhs block.
1710   if (CB.TrueBB == NextBlock) {
1711     std::swap(CB.TrueBB, CB.FalseBB);
1712     SDValue True = DAG.getConstant(1, Cond.getValueType());
1713     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1714   }
1715 
1716   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1717                                MVT::Other, getControlRoot(), Cond,
1718                                DAG.getBasicBlock(CB.TrueBB));
1719 
1720   // Insert the false branch. Do this even if it's a fall through branch,
1721   // this makes it easier to do DAG optimizations which require inverting
1722   // the branch condition.
1723   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1724                        DAG.getBasicBlock(CB.FalseBB));
1725 
1726   DAG.setRoot(BrCond);
1727 }
1728 
1729 /// visitJumpTable - Emit JumpTable node in the current MBB
1730 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1731   // Emit the code for the jump table
1732   assert(JT.Reg != -1U && "Should lower JT Header first!");
1733   EVT PTy = TM.getTargetLowering()->getPointerTy();
1734   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1735                                      JT.Reg, PTy);
1736   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1737   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1738                                     MVT::Other, Index.getValue(1),
1739                                     Table, Index);
1740   DAG.setRoot(BrJumpTable);
1741 }
1742 
1743 /// visitJumpTableHeader - This function emits necessary code to produce index
1744 /// in the JumpTable from switch case.
1745 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1746                                                JumpTableHeader &JTH,
1747                                                MachineBasicBlock *SwitchBB) {
1748   // Subtract the lowest switch case value from the value being switched on and
1749   // conditional branch to default mbb if the result is greater than the
1750   // difference between smallest and largest cases.
1751   SDValue SwitchOp = getValue(JTH.SValue);
1752   EVT VT = SwitchOp.getValueType();
1753   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1754                             DAG.getConstant(JTH.First, VT));
1755 
1756   // The SDNode we just created, which holds the value being switched on minus
1757   // the smallest case value, needs to be copied to a virtual register so it
1758   // can be used as an index into the jump table in a subsequent basic block.
1759   // This value may be smaller or larger than the target's pointer type, and
1760   // therefore require extension or truncating.
1761   const TargetLowering *TLI = TM.getTargetLowering();
1762   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1763 
1764   unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1765   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1766                                     JumpTableReg, SwitchOp);
1767   JT.Reg = JumpTableReg;
1768 
1769   // Emit the range check for the jump table, and branch to the default block
1770   // for the switch statement if the value being switched on exceeds the largest
1771   // case in the switch.
1772   SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1773                              TLI->getSetCCResultType(*DAG.getContext(),
1774                                                      Sub.getValueType()),
1775                              Sub,
1776                              DAG.getConstant(JTH.Last - JTH.First,VT),
1777                              ISD::SETUGT);
1778 
1779   // Set NextBlock to be the MBB immediately after the current one, if any.
1780   // This is used to avoid emitting unnecessary branches to the next block.
1781   MachineBasicBlock *NextBlock = nullptr;
1782   MachineFunction::iterator BBI = SwitchBB;
1783 
1784   if (++BBI != FuncInfo.MF->end())
1785     NextBlock = BBI;
1786 
1787   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1788                                MVT::Other, CopyTo, CMP,
1789                                DAG.getBasicBlock(JT.Default));
1790 
1791   if (JT.MBB != NextBlock)
1792     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1793                          DAG.getBasicBlock(JT.MBB));
1794 
1795   DAG.setRoot(BrCond);
1796 }
1797 
1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1799 /// tail spliced into a stack protector check success bb.
1800 ///
1801 /// For a high level explanation of how this fits into the stack protector
1802 /// generation see the comment on the declaration of class
1803 /// StackProtectorDescriptor.
1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1805                                                   MachineBasicBlock *ParentBB) {
1806 
1807   // First create the loads to the guard/stack slot for the comparison.
1808   const TargetLowering *TLI = TM.getTargetLowering();
1809   EVT PtrTy = TLI->getPointerTy();
1810 
1811   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1812   int FI = MFI->getStackProtectorIndex();
1813 
1814   const Value *IRGuard = SPD.getGuard();
1815   SDValue GuardPtr = getValue(IRGuard);
1816   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1817 
1818   unsigned Align =
1819     TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1820   SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1821                               GuardPtr, MachinePointerInfo(IRGuard, 0),
1822                               true, false, false, Align);
1823 
1824   SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1825                                   StackSlotPtr,
1826                                   MachinePointerInfo::getFixedStack(FI),
1827                                   true, false, false, Align);
1828 
1829   // Perform the comparison via a subtract/getsetcc.
1830   EVT VT = Guard.getValueType();
1831   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1832 
1833   SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1834                              TLI->getSetCCResultType(*DAG.getContext(),
1835                                                      Sub.getValueType()),
1836                              Sub, DAG.getConstant(0, VT),
1837                              ISD::SETNE);
1838 
1839   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1840   // branch to failure MBB.
1841   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1842                                MVT::Other, StackSlot.getOperand(0),
1843                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1844   // Otherwise branch to success MBB.
1845   SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1846                            MVT::Other, BrCond,
1847                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1848 
1849   DAG.setRoot(Br);
1850 }
1851 
1852 /// Codegen the failure basic block for a stack protector check.
1853 ///
1854 /// A failure stack protector machine basic block consists simply of a call to
1855 /// __stack_chk_fail().
1856 ///
1857 /// For a high level explanation of how this fits into the stack protector
1858 /// generation see the comment on the declaration of class
1859 /// StackProtectorDescriptor.
1860 void
1861 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1862   const TargetLowering *TLI = TM.getTargetLowering();
1863   SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1864                                    MVT::isVoid, nullptr, 0, false,
1865                                    getCurSDLoc(), false, false).second;
1866   DAG.setRoot(Chain);
1867 }
1868 
1869 /// visitBitTestHeader - This function emits necessary code to produce value
1870 /// suitable for "bit tests"
1871 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1872                                              MachineBasicBlock *SwitchBB) {
1873   // Subtract the minimum value
1874   SDValue SwitchOp = getValue(B.SValue);
1875   EVT VT = SwitchOp.getValueType();
1876   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1877                             DAG.getConstant(B.First, VT));
1878 
1879   // Check range
1880   const TargetLowering *TLI = TM.getTargetLowering();
1881   SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1882                                   TLI->getSetCCResultType(*DAG.getContext(),
1883                                                          Sub.getValueType()),
1884                                   Sub, DAG.getConstant(B.Range, VT),
1885                                   ISD::SETUGT);
1886 
1887   // Determine the type of the test operands.
1888   bool UsePtrType = false;
1889   if (!TLI->isTypeLegal(VT))
1890     UsePtrType = true;
1891   else {
1892     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1893       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1894         // Switch table case range are encoded into series of masks.
1895         // Just use pointer type, it's guaranteed to fit.
1896         UsePtrType = true;
1897         break;
1898       }
1899   }
1900   if (UsePtrType) {
1901     VT = TLI->getPointerTy();
1902     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1903   }
1904 
1905   B.RegVT = VT.getSimpleVT();
1906   B.Reg = FuncInfo.CreateReg(B.RegVT);
1907   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1908                                     B.Reg, Sub);
1909 
1910   // Set NextBlock to be the MBB immediately after the current one, if any.
1911   // This is used to avoid emitting unnecessary branches to the next block.
1912   MachineBasicBlock *NextBlock = nullptr;
1913   MachineFunction::iterator BBI = SwitchBB;
1914   if (++BBI != FuncInfo.MF->end())
1915     NextBlock = BBI;
1916 
1917   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1918 
1919   addSuccessorWithWeight(SwitchBB, B.Default);
1920   addSuccessorWithWeight(SwitchBB, MBB);
1921 
1922   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1923                                 MVT::Other, CopyTo, RangeCmp,
1924                                 DAG.getBasicBlock(B.Default));
1925 
1926   if (MBB != NextBlock)
1927     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1928                           DAG.getBasicBlock(MBB));
1929 
1930   DAG.setRoot(BrRange);
1931 }
1932 
1933 /// visitBitTestCase - this function produces one "bit test"
1934 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1935                                            MachineBasicBlock* NextMBB,
1936                                            uint32_t BranchWeightToNext,
1937                                            unsigned Reg,
1938                                            BitTestCase &B,
1939                                            MachineBasicBlock *SwitchBB) {
1940   MVT VT = BB.RegVT;
1941   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1942                                        Reg, VT);
1943   SDValue Cmp;
1944   unsigned PopCount = CountPopulation_64(B.Mask);
1945   const TargetLowering *TLI = TM.getTargetLowering();
1946   if (PopCount == 1) {
1947     // Testing for a single bit; just compare the shift count with what it
1948     // would need to be to shift a 1 bit in that position.
1949     Cmp = DAG.getSetCC(getCurSDLoc(),
1950                        TLI->getSetCCResultType(*DAG.getContext(), VT),
1951                        ShiftOp,
1952                        DAG.getConstant(countTrailingZeros(B.Mask), VT),
1953                        ISD::SETEQ);
1954   } else if (PopCount == BB.Range) {
1955     // There is only one zero bit in the range, test for it directly.
1956     Cmp = DAG.getSetCC(getCurSDLoc(),
1957                        TLI->getSetCCResultType(*DAG.getContext(), VT),
1958                        ShiftOp,
1959                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1960                        ISD::SETNE);
1961   } else {
1962     // Make desired shift
1963     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1964                                     DAG.getConstant(1, VT), ShiftOp);
1965 
1966     // Emit bit tests and jumps
1967     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1968                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1969     Cmp = DAG.getSetCC(getCurSDLoc(),
1970                        TLI->getSetCCResultType(*DAG.getContext(), VT),
1971                        AndOp, DAG.getConstant(0, VT),
1972                        ISD::SETNE);
1973   }
1974 
1975   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1976   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1977   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1978   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1979 
1980   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1981                               MVT::Other, getControlRoot(),
1982                               Cmp, DAG.getBasicBlock(B.TargetBB));
1983 
1984   // Set NextBlock to be the MBB immediately after the current one, if any.
1985   // This is used to avoid emitting unnecessary branches to the next block.
1986   MachineBasicBlock *NextBlock = nullptr;
1987   MachineFunction::iterator BBI = SwitchBB;
1988   if (++BBI != FuncInfo.MF->end())
1989     NextBlock = BBI;
1990 
1991   if (NextMBB != NextBlock)
1992     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1993                         DAG.getBasicBlock(NextMBB));
1994 
1995   DAG.setRoot(BrAnd);
1996 }
1997 
1998 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1999   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2000 
2001   // Retrieve successors.
2002   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2003   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
2004 
2005   const Value *Callee(I.getCalledValue());
2006   const Function *Fn = dyn_cast<Function>(Callee);
2007   if (isa<InlineAsm>(Callee))
2008     visitInlineAsm(&I);
2009   else if (Fn && Fn->isIntrinsic()) {
2010     assert(Fn->getIntrinsicID() == Intrinsic::donothing);
2011     // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2012   } else
2013     LowerCallTo(&I, getValue(Callee), false, LandingPad);
2014 
2015   // If the value of the invoke is used outside of its defining block, make it
2016   // available as a virtual register.
2017   CopyToExportRegsIfNeeded(&I);
2018 
2019   // Update successor info
2020   addSuccessorWithWeight(InvokeMBB, Return);
2021   addSuccessorWithWeight(InvokeMBB, LandingPad);
2022 
2023   // Drop into normal successor.
2024   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2025                           MVT::Other, getControlRoot(),
2026                           DAG.getBasicBlock(Return)));
2027 }
2028 
2029 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2030   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2031 }
2032 
2033 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2034   assert(FuncInfo.MBB->isLandingPad() &&
2035          "Call to landingpad not in landing pad!");
2036 
2037   MachineBasicBlock *MBB = FuncInfo.MBB;
2038   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2039   AddLandingPadInfo(LP, MMI, MBB);
2040 
2041   // If there aren't registers to copy the values into (e.g., during SjLj
2042   // exceptions), then don't bother to create these DAG nodes.
2043   const TargetLowering *TLI = TM.getTargetLowering();
2044   if (TLI->getExceptionPointerRegister() == 0 &&
2045       TLI->getExceptionSelectorRegister() == 0)
2046     return;
2047 
2048   SmallVector<EVT, 2> ValueVTs;
2049   ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
2050   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2051 
2052   // Get the two live-in registers as SDValues. The physregs have already been
2053   // copied into virtual registers.
2054   SDValue Ops[2];
2055   Ops[0] = DAG.getZExtOrTrunc(
2056     DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2057                        FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2058     getCurSDLoc(), ValueVTs[0]);
2059   Ops[1] = DAG.getZExtOrTrunc(
2060     DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2061                        FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2062     getCurSDLoc(), ValueVTs[1]);
2063 
2064   // Merge into one.
2065   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2066                             DAG.getVTList(ValueVTs),
2067                             &Ops[0], 2);
2068   setValue(&LP, Res);
2069 }
2070 
2071 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2072 /// small case ranges).
2073 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2074                                                  CaseRecVector& WorkList,
2075                                                  const Value* SV,
2076                                                  MachineBasicBlock *Default,
2077                                                  MachineBasicBlock *SwitchBB) {
2078   // Size is the number of Cases represented by this range.
2079   size_t Size = CR.Range.second - CR.Range.first;
2080   if (Size > 3)
2081     return false;
2082 
2083   // Get the MachineFunction which holds the current MBB.  This is used when
2084   // inserting any additional MBBs necessary to represent the switch.
2085   MachineFunction *CurMF = FuncInfo.MF;
2086 
2087   // Figure out which block is immediately after the current one.
2088   MachineBasicBlock *NextBlock = nullptr;
2089   MachineFunction::iterator BBI = CR.CaseBB;
2090 
2091   if (++BBI != FuncInfo.MF->end())
2092     NextBlock = BBI;
2093 
2094   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2095   // If any two of the cases has the same destination, and if one value
2096   // is the same as the other, but has one bit unset that the other has set,
2097   // use bit manipulation to do two compares at once.  For example:
2098   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2099   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2100   // TODO: Handle cases where CR.CaseBB != SwitchBB.
2101   if (Size == 2 && CR.CaseBB == SwitchBB) {
2102     Case &Small = *CR.Range.first;
2103     Case &Big = *(CR.Range.second-1);
2104 
2105     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2106       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2107       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2108 
2109       // Check that there is only one bit different.
2110       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2111           (SmallValue | BigValue) == BigValue) {
2112         // Isolate the common bit.
2113         APInt CommonBit = BigValue & ~SmallValue;
2114         assert((SmallValue | CommonBit) == BigValue &&
2115                CommonBit.countPopulation() == 1 && "Not a common bit?");
2116 
2117         SDValue CondLHS = getValue(SV);
2118         EVT VT = CondLHS.getValueType();
2119         SDLoc DL = getCurSDLoc();
2120 
2121         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2122                                  DAG.getConstant(CommonBit, VT));
2123         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2124                                     Or, DAG.getConstant(BigValue, VT),
2125                                     ISD::SETEQ);
2126 
2127         // Update successor info.
2128         // Both Small and Big will jump to Small.BB, so we sum up the weights.
2129         addSuccessorWithWeight(SwitchBB, Small.BB,
2130                                Small.ExtraWeight + Big.ExtraWeight);
2131         addSuccessorWithWeight(SwitchBB, Default,
2132           // The default destination is the first successor in IR.
2133           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2134 
2135         // Insert the true branch.
2136         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2137                                      getControlRoot(), Cond,
2138                                      DAG.getBasicBlock(Small.BB));
2139 
2140         // Insert the false branch.
2141         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2142                              DAG.getBasicBlock(Default));
2143 
2144         DAG.setRoot(BrCond);
2145         return true;
2146       }
2147     }
2148   }
2149 
2150   // Order cases by weight so the most likely case will be checked first.
2151   uint32_t UnhandledWeights = 0;
2152   if (BPI) {
2153     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2154       uint32_t IWeight = I->ExtraWeight;
2155       UnhandledWeights += IWeight;
2156       for (CaseItr J = CR.Range.first; J < I; ++J) {
2157         uint32_t JWeight = J->ExtraWeight;
2158         if (IWeight > JWeight)
2159           std::swap(*I, *J);
2160       }
2161     }
2162   }
2163   // Rearrange the case blocks so that the last one falls through if possible.
2164   Case &BackCase = *(CR.Range.second-1);
2165   if (Size > 1 &&
2166       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2167     // The last case block won't fall through into 'NextBlock' if we emit the
2168     // branches in this order.  See if rearranging a case value would help.
2169     // We start at the bottom as it's the case with the least weight.
2170     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2171       if (I->BB == NextBlock) {
2172         std::swap(*I, BackCase);
2173         break;
2174       }
2175   }
2176 
2177   // Create a CaseBlock record representing a conditional branch to
2178   // the Case's target mbb if the value being switched on SV is equal
2179   // to C.
2180   MachineBasicBlock *CurBlock = CR.CaseBB;
2181   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2182     MachineBasicBlock *FallThrough;
2183     if (I != E-1) {
2184       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2185       CurMF->insert(BBI, FallThrough);
2186 
2187       // Put SV in a virtual register to make it available from the new blocks.
2188       ExportFromCurrentBlock(SV);
2189     } else {
2190       // If the last case doesn't match, go to the default block.
2191       FallThrough = Default;
2192     }
2193 
2194     const Value *RHS, *LHS, *MHS;
2195     ISD::CondCode CC;
2196     if (I->High == I->Low) {
2197       // This is just small small case range :) containing exactly 1 case
2198       CC = ISD::SETEQ;
2199       LHS = SV; RHS = I->High; MHS = nullptr;
2200     } else {
2201       CC = ISD::SETLE;
2202       LHS = I->Low; MHS = SV; RHS = I->High;
2203     }
2204 
2205     // The false weight should be sum of all un-handled cases.
2206     UnhandledWeights -= I->ExtraWeight;
2207     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2208                  /* me */ CurBlock,
2209                  /* trueweight */ I->ExtraWeight,
2210                  /* falseweight */ UnhandledWeights);
2211 
2212     // If emitting the first comparison, just call visitSwitchCase to emit the
2213     // code into the current block.  Otherwise, push the CaseBlock onto the
2214     // vector to be later processed by SDISel, and insert the node's MBB
2215     // before the next MBB.
2216     if (CurBlock == SwitchBB)
2217       visitSwitchCase(CB, SwitchBB);
2218     else
2219       SwitchCases.push_back(CB);
2220 
2221     CurBlock = FallThrough;
2222   }
2223 
2224   return true;
2225 }
2226 
2227 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2228   return TLI.supportJumpTables() &&
2229           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2230            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2231 }
2232 
2233 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2234   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2235   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2236   return (LastExt - FirstExt + 1ULL);
2237 }
2238 
2239 /// handleJTSwitchCase - Emit jumptable for current switch case range
2240 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2241                                              CaseRecVector &WorkList,
2242                                              const Value *SV,
2243                                              MachineBasicBlock *Default,
2244                                              MachineBasicBlock *SwitchBB) {
2245   Case& FrontCase = *CR.Range.first;
2246   Case& BackCase  = *(CR.Range.second-1);
2247 
2248   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2249   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2250 
2251   APInt TSize(First.getBitWidth(), 0);
2252   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2253     TSize += I->size();
2254 
2255   const TargetLowering *TLI = TM.getTargetLowering();
2256   if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2257     return false;
2258 
2259   APInt Range = ComputeRange(First, Last);
2260   // The density is TSize / Range. Require at least 40%.
2261   // It should not be possible for IntTSize to saturate for sane code, but make
2262   // sure we handle Range saturation correctly.
2263   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2264   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2265   if (IntTSize * 10 < IntRange * 4)
2266     return false;
2267 
2268   DEBUG(dbgs() << "Lowering jump table\n"
2269                << "First entry: " << First << ". Last entry: " << Last << '\n'
2270                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2271 
2272   // Get the MachineFunction which holds the current MBB.  This is used when
2273   // inserting any additional MBBs necessary to represent the switch.
2274   MachineFunction *CurMF = FuncInfo.MF;
2275 
2276   // Figure out which block is immediately after the current one.
2277   MachineFunction::iterator BBI = CR.CaseBB;
2278   ++BBI;
2279 
2280   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2281 
2282   // Create a new basic block to hold the code for loading the address
2283   // of the jump table, and jumping to it.  Update successor information;
2284   // we will either branch to the default case for the switch, or the jump
2285   // table.
2286   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287   CurMF->insert(BBI, JumpTableBB);
2288 
2289   addSuccessorWithWeight(CR.CaseBB, Default);
2290   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2291 
2292   // Build a vector of destination BBs, corresponding to each target
2293   // of the jump table. If the value of the jump table slot corresponds to
2294   // a case statement, push the case's BB onto the vector, otherwise, push
2295   // the default BB.
2296   std::vector<MachineBasicBlock*> DestBBs;
2297   APInt TEI = First;
2298   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2299     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2300     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2301 
2302     if (Low.sle(TEI) && TEI.sle(High)) {
2303       DestBBs.push_back(I->BB);
2304       if (TEI==High)
2305         ++I;
2306     } else {
2307       DestBBs.push_back(Default);
2308     }
2309   }
2310 
2311   // Calculate weight for each unique destination in CR.
2312   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2313   if (FuncInfo.BPI)
2314     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2315       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2316           DestWeights.find(I->BB);
2317       if (Itr != DestWeights.end())
2318         Itr->second += I->ExtraWeight;
2319       else
2320         DestWeights[I->BB] = I->ExtraWeight;
2321     }
2322 
2323   // Update successor info. Add one edge to each unique successor.
2324   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2325   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2326          E = DestBBs.end(); I != E; ++I) {
2327     if (!SuccsHandled[(*I)->getNumber()]) {
2328       SuccsHandled[(*I)->getNumber()] = true;
2329       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2330           DestWeights.find(*I);
2331       addSuccessorWithWeight(JumpTableBB, *I,
2332                              Itr != DestWeights.end() ? Itr->second : 0);
2333     }
2334   }
2335 
2336   // Create a jump table index for this jump table.
2337   unsigned JTEncoding = TLI->getJumpTableEncoding();
2338   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2339                        ->createJumpTableIndex(DestBBs);
2340 
2341   // Set the jump table information so that we can codegen it as a second
2342   // MachineBasicBlock
2343   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2344   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2345   if (CR.CaseBB == SwitchBB)
2346     visitJumpTableHeader(JT, JTH, SwitchBB);
2347 
2348   JTCases.push_back(JumpTableBlock(JTH, JT));
2349   return true;
2350 }
2351 
2352 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2353 /// 2 subtrees.
2354 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2355                                                   CaseRecVector& WorkList,
2356                                                   const Value* SV,
2357                                                   MachineBasicBlock* Default,
2358                                                   MachineBasicBlock* SwitchBB) {
2359   // Get the MachineFunction which holds the current MBB.  This is used when
2360   // inserting any additional MBBs necessary to represent the switch.
2361   MachineFunction *CurMF = FuncInfo.MF;
2362 
2363   // Figure out which block is immediately after the current one.
2364   MachineFunction::iterator BBI = CR.CaseBB;
2365   ++BBI;
2366 
2367   Case& FrontCase = *CR.Range.first;
2368   Case& BackCase  = *(CR.Range.second-1);
2369   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2370 
2371   // Size is the number of Cases represented by this range.
2372   unsigned Size = CR.Range.second - CR.Range.first;
2373 
2374   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2375   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2376   double FMetric = 0;
2377   CaseItr Pivot = CR.Range.first + Size/2;
2378 
2379   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2380   // (heuristically) allow us to emit JumpTable's later.
2381   APInt TSize(First.getBitWidth(), 0);
2382   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2383        I!=E; ++I)
2384     TSize += I->size();
2385 
2386   APInt LSize = FrontCase.size();
2387   APInt RSize = TSize-LSize;
2388   DEBUG(dbgs() << "Selecting best pivot: \n"
2389                << "First: " << First << ", Last: " << Last <<'\n'
2390                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2391   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2392        J!=E; ++I, ++J) {
2393     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2394     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2395     APInt Range = ComputeRange(LEnd, RBegin);
2396     assert((Range - 2ULL).isNonNegative() &&
2397            "Invalid case distance");
2398     // Use volatile double here to avoid excess precision issues on some hosts,
2399     // e.g. that use 80-bit X87 registers.
2400     volatile double LDensity =
2401        (double)LSize.roundToDouble() /
2402                            (LEnd - First + 1ULL).roundToDouble();
2403     volatile double RDensity =
2404       (double)RSize.roundToDouble() /
2405                            (Last - RBegin + 1ULL).roundToDouble();
2406     volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2407     // Should always split in some non-trivial place
2408     DEBUG(dbgs() <<"=>Step\n"
2409                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2410                  << "LDensity: " << LDensity
2411                  << ", RDensity: " << RDensity << '\n'
2412                  << "Metric: " << Metric << '\n');
2413     if (FMetric < Metric) {
2414       Pivot = J;
2415       FMetric = Metric;
2416       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2417     }
2418 
2419     LSize += J->size();
2420     RSize -= J->size();
2421   }
2422 
2423   const TargetLowering *TLI = TM.getTargetLowering();
2424   if (areJTsAllowed(*TLI)) {
2425     // If our case is dense we *really* should handle it earlier!
2426     assert((FMetric > 0) && "Should handle dense range earlier!");
2427   } else {
2428     Pivot = CR.Range.first + Size/2;
2429   }
2430 
2431   CaseRange LHSR(CR.Range.first, Pivot);
2432   CaseRange RHSR(Pivot, CR.Range.second);
2433   const Constant *C = Pivot->Low;
2434   MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2435 
2436   // We know that we branch to the LHS if the Value being switched on is
2437   // less than the Pivot value, C.  We use this to optimize our binary
2438   // tree a bit, by recognizing that if SV is greater than or equal to the
2439   // LHS's Case Value, and that Case Value is exactly one less than the
2440   // Pivot's Value, then we can branch directly to the LHS's Target,
2441   // rather than creating a leaf node for it.
2442   if ((LHSR.second - LHSR.first) == 1 &&
2443       LHSR.first->High == CR.GE &&
2444       cast<ConstantInt>(C)->getValue() ==
2445       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2446     TrueBB = LHSR.first->BB;
2447   } else {
2448     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2449     CurMF->insert(BBI, TrueBB);
2450     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2451 
2452     // Put SV in a virtual register to make it available from the new blocks.
2453     ExportFromCurrentBlock(SV);
2454   }
2455 
2456   // Similar to the optimization above, if the Value being switched on is
2457   // known to be less than the Constant CR.LT, and the current Case Value
2458   // is CR.LT - 1, then we can branch directly to the target block for
2459   // the current Case Value, rather than emitting a RHS leaf node for it.
2460   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2461       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2462       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2463     FalseBB = RHSR.first->BB;
2464   } else {
2465     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2466     CurMF->insert(BBI, FalseBB);
2467     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2468 
2469     // Put SV in a virtual register to make it available from the new blocks.
2470     ExportFromCurrentBlock(SV);
2471   }
2472 
2473   // Create a CaseBlock record representing a conditional branch to
2474   // the LHS node if the value being switched on SV is less than C.
2475   // Otherwise, branch to LHS.
2476   CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2477 
2478   if (CR.CaseBB == SwitchBB)
2479     visitSwitchCase(CB, SwitchBB);
2480   else
2481     SwitchCases.push_back(CB);
2482 
2483   return true;
2484 }
2485 
2486 /// handleBitTestsSwitchCase - if current case range has few destination and
2487 /// range span less, than machine word bitwidth, encode case range into series
2488 /// of masks and emit bit tests with these masks.
2489 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2490                                                    CaseRecVector& WorkList,
2491                                                    const Value* SV,
2492                                                    MachineBasicBlock* Default,
2493                                                    MachineBasicBlock* SwitchBB) {
2494   const TargetLowering *TLI = TM.getTargetLowering();
2495   EVT PTy = TLI->getPointerTy();
2496   unsigned IntPtrBits = PTy.getSizeInBits();
2497 
2498   Case& FrontCase = *CR.Range.first;
2499   Case& BackCase  = *(CR.Range.second-1);
2500 
2501   // Get the MachineFunction which holds the current MBB.  This is used when
2502   // inserting any additional MBBs necessary to represent the switch.
2503   MachineFunction *CurMF = FuncInfo.MF;
2504 
2505   // If target does not have legal shift left, do not emit bit tests at all.
2506   if (!TLI->isOperationLegal(ISD::SHL, PTy))
2507     return false;
2508 
2509   size_t numCmps = 0;
2510   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2511        I!=E; ++I) {
2512     // Single case counts one, case range - two.
2513     numCmps += (I->Low == I->High ? 1 : 2);
2514   }
2515 
2516   // Count unique destinations
2517   SmallSet<MachineBasicBlock*, 4> Dests;
2518   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2519     Dests.insert(I->BB);
2520     if (Dests.size() > 3)
2521       // Don't bother the code below, if there are too much unique destinations
2522       return false;
2523   }
2524   DEBUG(dbgs() << "Total number of unique destinations: "
2525         << Dests.size() << '\n'
2526         << "Total number of comparisons: " << numCmps << '\n');
2527 
2528   // Compute span of values.
2529   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2530   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2531   APInt cmpRange = maxValue - minValue;
2532 
2533   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2534                << "Low bound: " << minValue << '\n'
2535                << "High bound: " << maxValue << '\n');
2536 
2537   if (cmpRange.uge(IntPtrBits) ||
2538       (!(Dests.size() == 1 && numCmps >= 3) &&
2539        !(Dests.size() == 2 && numCmps >= 5) &&
2540        !(Dests.size() >= 3 && numCmps >= 6)))
2541     return false;
2542 
2543   DEBUG(dbgs() << "Emitting bit tests\n");
2544   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2545 
2546   // Optimize the case where all the case values fit in a
2547   // word without having to subtract minValue. In this case,
2548   // we can optimize away the subtraction.
2549   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2550     cmpRange = maxValue;
2551   } else {
2552     lowBound = minValue;
2553   }
2554 
2555   CaseBitsVector CasesBits;
2556   unsigned i, count = 0;
2557 
2558   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2559     MachineBasicBlock* Dest = I->BB;
2560     for (i = 0; i < count; ++i)
2561       if (Dest == CasesBits[i].BB)
2562         break;
2563 
2564     if (i == count) {
2565       assert((count < 3) && "Too much destinations to test!");
2566       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2567       count++;
2568     }
2569 
2570     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2571     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2572 
2573     uint64_t lo = (lowValue - lowBound).getZExtValue();
2574     uint64_t hi = (highValue - lowBound).getZExtValue();
2575     CasesBits[i].ExtraWeight += I->ExtraWeight;
2576 
2577     for (uint64_t j = lo; j <= hi; j++) {
2578       CasesBits[i].Mask |=  1ULL << j;
2579       CasesBits[i].Bits++;
2580     }
2581 
2582   }
2583   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2584 
2585   BitTestInfo BTC;
2586 
2587   // Figure out which block is immediately after the current one.
2588   MachineFunction::iterator BBI = CR.CaseBB;
2589   ++BBI;
2590 
2591   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2592 
2593   DEBUG(dbgs() << "Cases:\n");
2594   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2595     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2596                  << ", Bits: " << CasesBits[i].Bits
2597                  << ", BB: " << CasesBits[i].BB << '\n');
2598 
2599     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2600     CurMF->insert(BBI, CaseBB);
2601     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2602                               CaseBB,
2603                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2604 
2605     // Put SV in a virtual register to make it available from the new blocks.
2606     ExportFromCurrentBlock(SV);
2607   }
2608 
2609   BitTestBlock BTB(lowBound, cmpRange, SV,
2610                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2611                    CR.CaseBB, Default, BTC);
2612 
2613   if (CR.CaseBB == SwitchBB)
2614     visitBitTestHeader(BTB, SwitchBB);
2615 
2616   BitTestCases.push_back(BTB);
2617 
2618   return true;
2619 }
2620 
2621 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2622 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2623                                        const SwitchInst& SI) {
2624   size_t numCmps = 0;
2625 
2626   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2627   // Start with "simple" cases
2628   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2629        i != e; ++i) {
2630     const BasicBlock *SuccBB = i.getCaseSuccessor();
2631     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2632 
2633     uint32_t ExtraWeight =
2634       BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2635 
2636     Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2637                          SMBB, ExtraWeight));
2638   }
2639   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2640 
2641   // Merge case into clusters
2642   if (Cases.size() >= 2)
2643     // Must recompute end() each iteration because it may be
2644     // invalidated by erase if we hold on to it
2645     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2646          J != Cases.end(); ) {
2647       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2648       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2649       MachineBasicBlock* nextBB = J->BB;
2650       MachineBasicBlock* currentBB = I->BB;
2651 
2652       // If the two neighboring cases go to the same destination, merge them
2653       // into a single case.
2654       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2655         I->High = J->High;
2656         I->ExtraWeight += J->ExtraWeight;
2657         J = Cases.erase(J);
2658       } else {
2659         I = J++;
2660       }
2661     }
2662 
2663   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2664     if (I->Low != I->High)
2665       // A range counts double, since it requires two compares.
2666       ++numCmps;
2667   }
2668 
2669   return numCmps;
2670 }
2671 
2672 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2673                                            MachineBasicBlock *Last) {
2674   // Update JTCases.
2675   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2676     if (JTCases[i].first.HeaderBB == First)
2677       JTCases[i].first.HeaderBB = Last;
2678 
2679   // Update BitTestCases.
2680   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2681     if (BitTestCases[i].Parent == First)
2682       BitTestCases[i].Parent = Last;
2683 }
2684 
2685 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2686   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2687 
2688   // Figure out which block is immediately after the current one.
2689   MachineBasicBlock *NextBlock = nullptr;
2690   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2691 
2692   // If there is only the default destination, branch to it if it is not the
2693   // next basic block.  Otherwise, just fall through.
2694   if (!SI.getNumCases()) {
2695     // Update machine-CFG edges.
2696 
2697     // If this is not a fall-through branch, emit the branch.
2698     SwitchMBB->addSuccessor(Default);
2699     if (Default != NextBlock)
2700       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2701                               MVT::Other, getControlRoot(),
2702                               DAG.getBasicBlock(Default)));
2703 
2704     return;
2705   }
2706 
2707   // If there are any non-default case statements, create a vector of Cases
2708   // representing each one, and sort the vector so that we can efficiently
2709   // create a binary search tree from them.
2710   CaseVector Cases;
2711   size_t numCmps = Clusterify(Cases, SI);
2712   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2713                << ". Total compares: " << numCmps << '\n');
2714   (void)numCmps;
2715 
2716   // Get the Value to be switched on and default basic blocks, which will be
2717   // inserted into CaseBlock records, representing basic blocks in the binary
2718   // search tree.
2719   const Value *SV = SI.getCondition();
2720 
2721   // Push the initial CaseRec onto the worklist
2722   CaseRecVector WorkList;
2723   WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2724                              CaseRange(Cases.begin(),Cases.end())));
2725 
2726   while (!WorkList.empty()) {
2727     // Grab a record representing a case range to process off the worklist
2728     CaseRec CR = WorkList.back();
2729     WorkList.pop_back();
2730 
2731     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2732       continue;
2733 
2734     // If the range has few cases (two or less) emit a series of specific
2735     // tests.
2736     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2737       continue;
2738 
2739     // If the switch has more than N blocks, and is at least 40% dense, and the
2740     // target supports indirect branches, then emit a jump table rather than
2741     // lowering the switch to a binary tree of conditional branches.
2742     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2743     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2744       continue;
2745 
2746     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2747     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2748     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2749   }
2750 }
2751 
2752 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2753   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2754 
2755   // Update machine-CFG edges with unique successors.
2756   SmallSet<BasicBlock*, 32> Done;
2757   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2758     BasicBlock *BB = I.getSuccessor(i);
2759     bool Inserted = Done.insert(BB);
2760     if (!Inserted)
2761         continue;
2762 
2763     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2764     addSuccessorWithWeight(IndirectBrMBB, Succ);
2765   }
2766 
2767   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2768                           MVT::Other, getControlRoot(),
2769                           getValue(I.getAddress())));
2770 }
2771 
2772 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2773   if (DAG.getTarget().Options.TrapUnreachable)
2774     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2775 }
2776 
2777 void SelectionDAGBuilder::visitFSub(const User &I) {
2778   // -0.0 - X --> fneg
2779   Type *Ty = I.getType();
2780   if (isa<Constant>(I.getOperand(0)) &&
2781       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2782     SDValue Op2 = getValue(I.getOperand(1));
2783     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2784                              Op2.getValueType(), Op2));
2785     return;
2786   }
2787 
2788   visitBinary(I, ISD::FSUB);
2789 }
2790 
2791 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2792   SDValue Op1 = getValue(I.getOperand(0));
2793   SDValue Op2 = getValue(I.getOperand(1));
2794   setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2795                            Op1.getValueType(), Op1, Op2));
2796 }
2797 
2798 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2799   SDValue Op1 = getValue(I.getOperand(0));
2800   SDValue Op2 = getValue(I.getOperand(1));
2801 
2802   EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2803 
2804   // Coerce the shift amount to the right type if we can.
2805   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2806     unsigned ShiftSize = ShiftTy.getSizeInBits();
2807     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2808     SDLoc DL = getCurSDLoc();
2809 
2810     // If the operand is smaller than the shift count type, promote it.
2811     if (ShiftSize > Op2Size)
2812       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2813 
2814     // If the operand is larger than the shift count type but the shift
2815     // count type has enough bits to represent any shift value, truncate
2816     // it now. This is a common case and it exposes the truncate to
2817     // optimization early.
2818     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2819       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2820     // Otherwise we'll need to temporarily settle for some other convenient
2821     // type.  Type legalization will make adjustments once the shiftee is split.
2822     else
2823       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2824   }
2825 
2826   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2827                            Op1.getValueType(), Op1, Op2));
2828 }
2829 
2830 void SelectionDAGBuilder::visitSDiv(const User &I) {
2831   SDValue Op1 = getValue(I.getOperand(0));
2832   SDValue Op2 = getValue(I.getOperand(1));
2833 
2834   // Turn exact SDivs into multiplications.
2835   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2836   // exact bit.
2837   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2838       !isa<ConstantSDNode>(Op1) &&
2839       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2840     setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2841                                                         getCurSDLoc(), DAG));
2842   else
2843     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2844                              Op1, Op2));
2845 }
2846 
2847 void SelectionDAGBuilder::visitICmp(const User &I) {
2848   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2849   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2850     predicate = IC->getPredicate();
2851   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2852     predicate = ICmpInst::Predicate(IC->getPredicate());
2853   SDValue Op1 = getValue(I.getOperand(0));
2854   SDValue Op2 = getValue(I.getOperand(1));
2855   ISD::CondCode Opcode = getICmpCondCode(predicate);
2856 
2857   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2858   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2859 }
2860 
2861 void SelectionDAGBuilder::visitFCmp(const User &I) {
2862   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2863   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2864     predicate = FC->getPredicate();
2865   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2866     predicate = FCmpInst::Predicate(FC->getPredicate());
2867   SDValue Op1 = getValue(I.getOperand(0));
2868   SDValue Op2 = getValue(I.getOperand(1));
2869   ISD::CondCode Condition = getFCmpCondCode(predicate);
2870   if (TM.Options.NoNaNsFPMath)
2871     Condition = getFCmpCodeWithoutNaN(Condition);
2872   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2873   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2874 }
2875 
2876 void SelectionDAGBuilder::visitSelect(const User &I) {
2877   SmallVector<EVT, 4> ValueVTs;
2878   ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2879   unsigned NumValues = ValueVTs.size();
2880   if (NumValues == 0) return;
2881 
2882   SmallVector<SDValue, 4> Values(NumValues);
2883   SDValue Cond     = getValue(I.getOperand(0));
2884   SDValue TrueVal  = getValue(I.getOperand(1));
2885   SDValue FalseVal = getValue(I.getOperand(2));
2886   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2887     ISD::VSELECT : ISD::SELECT;
2888 
2889   for (unsigned i = 0; i != NumValues; ++i)
2890     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2891                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2892                             Cond,
2893                             SDValue(TrueVal.getNode(),
2894                                     TrueVal.getResNo() + i),
2895                             SDValue(FalseVal.getNode(),
2896                                     FalseVal.getResNo() + i));
2897 
2898   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2899                            DAG.getVTList(ValueVTs),
2900                            &Values[0], NumValues));
2901 }
2902 
2903 void SelectionDAGBuilder::visitTrunc(const User &I) {
2904   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2905   SDValue N = getValue(I.getOperand(0));
2906   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2907   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2908 }
2909 
2910 void SelectionDAGBuilder::visitZExt(const User &I) {
2911   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2912   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2913   SDValue N = getValue(I.getOperand(0));
2914   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2915   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2916 }
2917 
2918 void SelectionDAGBuilder::visitSExt(const User &I) {
2919   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2920   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2921   SDValue N = getValue(I.getOperand(0));
2922   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2923   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2924 }
2925 
2926 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2927   // FPTrunc is never a no-op cast, no need to check
2928   SDValue N = getValue(I.getOperand(0));
2929   const TargetLowering *TLI = TM.getTargetLowering();
2930   EVT DestVT = TLI->getValueType(I.getType());
2931   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2932                            DestVT, N,
2933                            DAG.getTargetConstant(0, TLI->getPointerTy())));
2934 }
2935 
2936 void SelectionDAGBuilder::visitFPExt(const User &I) {
2937   // FPExt is never a no-op cast, no need to check
2938   SDValue N = getValue(I.getOperand(0));
2939   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2940   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2941 }
2942 
2943 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2944   // FPToUI is never a no-op cast, no need to check
2945   SDValue N = getValue(I.getOperand(0));
2946   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2947   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2948 }
2949 
2950 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2951   // FPToSI is never a no-op cast, no need to check
2952   SDValue N = getValue(I.getOperand(0));
2953   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2954   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2955 }
2956 
2957 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2958   // UIToFP is never a no-op cast, no need to check
2959   SDValue N = getValue(I.getOperand(0));
2960   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2961   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2962 }
2963 
2964 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2965   // SIToFP is never a no-op cast, no need to check
2966   SDValue N = getValue(I.getOperand(0));
2967   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2968   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2969 }
2970 
2971 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2972   // What to do depends on the size of the integer and the size of the pointer.
2973   // We can either truncate, zero extend, or no-op, accordingly.
2974   SDValue N = getValue(I.getOperand(0));
2975   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2976   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2977 }
2978 
2979 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2980   // What to do depends on the size of the integer and the size of the pointer.
2981   // We can either truncate, zero extend, or no-op, accordingly.
2982   SDValue N = getValue(I.getOperand(0));
2983   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2984   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2985 }
2986 
2987 void SelectionDAGBuilder::visitBitCast(const User &I) {
2988   SDValue N = getValue(I.getOperand(0));
2989   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2990 
2991   // BitCast assures us that source and destination are the same size so this is
2992   // either a BITCAST or a no-op.
2993   if (DestVT != N.getValueType())
2994     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2995                              DestVT, N)); // convert types.
2996   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2997   // might fold any kind of constant expression to an integer constant and that
2998   // is not what we are looking for. Only regcognize a bitcast of a genuine
2999   // constant integer as an opaque constant.
3000   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3001     setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3002                                  /*isOpaque*/true));
3003   else
3004     setValue(&I, N);            // noop cast.
3005 }
3006 
3007 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3009   const Value *SV = I.getOperand(0);
3010   SDValue N = getValue(SV);
3011   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3012 
3013   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3014   unsigned DestAS = I.getType()->getPointerAddressSpace();
3015 
3016   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3017     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3018 
3019   setValue(&I, N);
3020 }
3021 
3022 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3023   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3024   SDValue InVec = getValue(I.getOperand(0));
3025   SDValue InVal = getValue(I.getOperand(1));
3026   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3027                                      getCurSDLoc(), TLI.getVectorIdxTy());
3028   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3029                            TM.getTargetLowering()->getValueType(I.getType()),
3030                            InVec, InVal, InIdx));
3031 }
3032 
3033 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3035   SDValue InVec = getValue(I.getOperand(0));
3036   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3037                                      getCurSDLoc(), TLI.getVectorIdxTy());
3038   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3039                            TM.getTargetLowering()->getValueType(I.getType()),
3040                            InVec, InIdx));
3041 }
3042 
3043 // Utility for visitShuffleVector - Return true if every element in Mask,
3044 // beginning from position Pos and ending in Pos+Size, falls within the
3045 // specified sequential range [L, L+Pos). or is undef.
3046 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3047                                 unsigned Pos, unsigned Size, int Low) {
3048   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3049     if (Mask[i] >= 0 && Mask[i] != Low)
3050       return false;
3051   return true;
3052 }
3053 
3054 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3055   SDValue Src1 = getValue(I.getOperand(0));
3056   SDValue Src2 = getValue(I.getOperand(1));
3057 
3058   SmallVector<int, 8> Mask;
3059   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3060   unsigned MaskNumElts = Mask.size();
3061 
3062   const TargetLowering *TLI = TM.getTargetLowering();
3063   EVT VT = TLI->getValueType(I.getType());
3064   EVT SrcVT = Src1.getValueType();
3065   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3066 
3067   if (SrcNumElts == MaskNumElts) {
3068     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3069                                       &Mask[0]));
3070     return;
3071   }
3072 
3073   // Normalize the shuffle vector since mask and vector length don't match.
3074   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3075     // Mask is longer than the source vectors and is a multiple of the source
3076     // vectors.  We can use concatenate vector to make the mask and vectors
3077     // lengths match.
3078     if (SrcNumElts*2 == MaskNumElts) {
3079       // First check for Src1 in low and Src2 in high
3080       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3081           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3082         // The shuffle is concatenating two vectors together.
3083         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3084                                  VT, Src1, Src2));
3085         return;
3086       }
3087       // Then check for Src2 in low and Src1 in high
3088       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3089           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3090         // The shuffle is concatenating two vectors together.
3091         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3092                                  VT, Src2, Src1));
3093         return;
3094       }
3095     }
3096 
3097     // Pad both vectors with undefs to make them the same length as the mask.
3098     unsigned NumConcat = MaskNumElts / SrcNumElts;
3099     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3100     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3101     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3102 
3103     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3104     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3105     MOps1[0] = Src1;
3106     MOps2[0] = Src2;
3107 
3108     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3109                                                   getCurSDLoc(), VT,
3110                                                   &MOps1[0], NumConcat);
3111     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3112                                                   getCurSDLoc(), VT,
3113                                                   &MOps2[0], NumConcat);
3114 
3115     // Readjust mask for new input vector length.
3116     SmallVector<int, 8> MappedOps;
3117     for (unsigned i = 0; i != MaskNumElts; ++i) {
3118       int Idx = Mask[i];
3119       if (Idx >= (int)SrcNumElts)
3120         Idx -= SrcNumElts - MaskNumElts;
3121       MappedOps.push_back(Idx);
3122     }
3123 
3124     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3125                                       &MappedOps[0]));
3126     return;
3127   }
3128 
3129   if (SrcNumElts > MaskNumElts) {
3130     // Analyze the access pattern of the vector to see if we can extract
3131     // two subvectors and do the shuffle. The analysis is done by calculating
3132     // the range of elements the mask access on both vectors.
3133     int MinRange[2] = { static_cast<int>(SrcNumElts),
3134                         static_cast<int>(SrcNumElts)};
3135     int MaxRange[2] = {-1, -1};
3136 
3137     for (unsigned i = 0; i != MaskNumElts; ++i) {
3138       int Idx = Mask[i];
3139       unsigned Input = 0;
3140       if (Idx < 0)
3141         continue;
3142 
3143       if (Idx >= (int)SrcNumElts) {
3144         Input = 1;
3145         Idx -= SrcNumElts;
3146       }
3147       if (Idx > MaxRange[Input])
3148         MaxRange[Input] = Idx;
3149       if (Idx < MinRange[Input])
3150         MinRange[Input] = Idx;
3151     }
3152 
3153     // Check if the access is smaller than the vector size and can we find
3154     // a reasonable extract index.
3155     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3156                                    // Extract.
3157     int StartIdx[2];  // StartIdx to extract from
3158     for (unsigned Input = 0; Input < 2; ++Input) {
3159       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3160         RangeUse[Input] = 0; // Unused
3161         StartIdx[Input] = 0;
3162         continue;
3163       }
3164 
3165       // Find a good start index that is a multiple of the mask length. Then
3166       // see if the rest of the elements are in range.
3167       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3168       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3169           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3170         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3171     }
3172 
3173     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3174       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3175       return;
3176     }
3177     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3178       // Extract appropriate subvector and generate a vector shuffle
3179       for (unsigned Input = 0; Input < 2; ++Input) {
3180         SDValue &Src = Input == 0 ? Src1 : Src2;
3181         if (RangeUse[Input] == 0)
3182           Src = DAG.getUNDEF(VT);
3183         else
3184           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3185                             Src, DAG.getConstant(StartIdx[Input],
3186                                                  TLI->getVectorIdxTy()));
3187       }
3188 
3189       // Calculate new mask.
3190       SmallVector<int, 8> MappedOps;
3191       for (unsigned i = 0; i != MaskNumElts; ++i) {
3192         int Idx = Mask[i];
3193         if (Idx >= 0) {
3194           if (Idx < (int)SrcNumElts)
3195             Idx -= StartIdx[0];
3196           else
3197             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3198         }
3199         MappedOps.push_back(Idx);
3200       }
3201 
3202       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3203                                         &MappedOps[0]));
3204       return;
3205     }
3206   }
3207 
3208   // We can't use either concat vectors or extract subvectors so fall back to
3209   // replacing the shuffle with extract and build vector.
3210   // to insert and build vector.
3211   EVT EltVT = VT.getVectorElementType();
3212   EVT IdxVT = TLI->getVectorIdxTy();
3213   SmallVector<SDValue,8> Ops;
3214   for (unsigned i = 0; i != MaskNumElts; ++i) {
3215     int Idx = Mask[i];
3216     SDValue Res;
3217 
3218     if (Idx < 0) {
3219       Res = DAG.getUNDEF(EltVT);
3220     } else {
3221       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3222       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3223 
3224       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3225                         EltVT, Src, DAG.getConstant(Idx, IdxVT));
3226     }
3227 
3228     Ops.push_back(Res);
3229   }
3230 
3231   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3232                            VT, &Ops[0], Ops.size()));
3233 }
3234 
3235 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3236   const Value *Op0 = I.getOperand(0);
3237   const Value *Op1 = I.getOperand(1);
3238   Type *AggTy = I.getType();
3239   Type *ValTy = Op1->getType();
3240   bool IntoUndef = isa<UndefValue>(Op0);
3241   bool FromUndef = isa<UndefValue>(Op1);
3242 
3243   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3244 
3245   const TargetLowering *TLI = TM.getTargetLowering();
3246   SmallVector<EVT, 4> AggValueVTs;
3247   ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3248   SmallVector<EVT, 4> ValValueVTs;
3249   ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3250 
3251   unsigned NumAggValues = AggValueVTs.size();
3252   unsigned NumValValues = ValValueVTs.size();
3253   SmallVector<SDValue, 4> Values(NumAggValues);
3254 
3255   SDValue Agg = getValue(Op0);
3256   unsigned i = 0;
3257   // Copy the beginning value(s) from the original aggregate.
3258   for (; i != LinearIndex; ++i)
3259     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3260                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3261   // Copy values from the inserted value(s).
3262   if (NumValValues) {
3263     SDValue Val = getValue(Op1);
3264     for (; i != LinearIndex + NumValValues; ++i)
3265       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3266                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3267   }
3268   // Copy remaining value(s) from the original aggregate.
3269   for (; i != NumAggValues; ++i)
3270     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3271                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3272 
3273   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3274                            DAG.getVTList(AggValueVTs),
3275                            &Values[0], NumAggValues));
3276 }
3277 
3278 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3279   const Value *Op0 = I.getOperand(0);
3280   Type *AggTy = Op0->getType();
3281   Type *ValTy = I.getType();
3282   bool OutOfUndef = isa<UndefValue>(Op0);
3283 
3284   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3285 
3286   const TargetLowering *TLI = TM.getTargetLowering();
3287   SmallVector<EVT, 4> ValValueVTs;
3288   ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3289 
3290   unsigned NumValValues = ValValueVTs.size();
3291 
3292   // Ignore a extractvalue that produces an empty object
3293   if (!NumValValues) {
3294     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3295     return;
3296   }
3297 
3298   SmallVector<SDValue, 4> Values(NumValValues);
3299 
3300   SDValue Agg = getValue(Op0);
3301   // Copy out the selected value(s).
3302   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3303     Values[i - LinearIndex] =
3304       OutOfUndef ?
3305         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3306         SDValue(Agg.getNode(), Agg.getResNo() + i);
3307 
3308   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3309                            DAG.getVTList(ValValueVTs),
3310                            &Values[0], NumValValues));
3311 }
3312 
3313 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3314   Value *Op0 = I.getOperand(0);
3315   // Note that the pointer operand may be a vector of pointers. Take the scalar
3316   // element which holds a pointer.
3317   Type *Ty = Op0->getType()->getScalarType();
3318   unsigned AS = Ty->getPointerAddressSpace();
3319   SDValue N = getValue(Op0);
3320 
3321   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3322        OI != E; ++OI) {
3323     const Value *Idx = *OI;
3324     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3325       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3326       if (Field) {
3327         // N = N + Offset
3328         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3329         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3330                         DAG.getConstant(Offset, N.getValueType()));
3331       }
3332 
3333       Ty = StTy->getElementType(Field);
3334     } else {
3335       Ty = cast<SequentialType>(Ty)->getElementType();
3336 
3337       // If this is a constant subscript, handle it quickly.
3338       const TargetLowering *TLI = TM.getTargetLowering();
3339       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3340         if (CI->isZero()) continue;
3341         uint64_t Offs =
3342             DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3343         SDValue OffsVal;
3344         EVT PTy = TLI->getPointerTy(AS);
3345         unsigned PtrBits = PTy.getSizeInBits();
3346         if (PtrBits < 64)
3347           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3348                                 DAG.getConstant(Offs, MVT::i64));
3349         else
3350           OffsVal = DAG.getConstant(Offs, PTy);
3351 
3352         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3353                         OffsVal);
3354         continue;
3355       }
3356 
3357       // N = N + Idx * ElementSize;
3358       APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3359                                 DL->getTypeAllocSize(Ty));
3360       SDValue IdxN = getValue(Idx);
3361 
3362       // If the index is smaller or larger than intptr_t, truncate or extend
3363       // it.
3364       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3365 
3366       // If this is a multiply by a power of two, turn it into a shl
3367       // immediately.  This is a very common case.
3368       if (ElementSize != 1) {
3369         if (ElementSize.isPowerOf2()) {
3370           unsigned Amt = ElementSize.logBase2();
3371           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3372                              N.getValueType(), IdxN,
3373                              DAG.getConstant(Amt, IdxN.getValueType()));
3374         } else {
3375           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3376           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3377                              N.getValueType(), IdxN, Scale);
3378         }
3379       }
3380 
3381       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3382                       N.getValueType(), N, IdxN);
3383     }
3384   }
3385 
3386   setValue(&I, N);
3387 }
3388 
3389 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3390   // If this is a fixed sized alloca in the entry block of the function,
3391   // allocate it statically on the stack.
3392   if (FuncInfo.StaticAllocaMap.count(&I))
3393     return;   // getValue will auto-populate this.
3394 
3395   Type *Ty = I.getAllocatedType();
3396   const TargetLowering *TLI = TM.getTargetLowering();
3397   uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3398   unsigned Align =
3399     std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3400              I.getAlignment());
3401 
3402   SDValue AllocSize = getValue(I.getArraySize());
3403 
3404   EVT IntPtr = TLI->getPointerTy();
3405   if (AllocSize.getValueType() != IntPtr)
3406     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3407 
3408   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3409                           AllocSize,
3410                           DAG.getConstant(TySize, IntPtr));
3411 
3412   // Handle alignment.  If the requested alignment is less than or equal to
3413   // the stack alignment, ignore it.  If the size is greater than or equal to
3414   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3415   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3416   if (Align <= StackAlign)
3417     Align = 0;
3418 
3419   // Round the size of the allocation up to the stack alignment size
3420   // by add SA-1 to the size.
3421   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3422                           AllocSize.getValueType(), AllocSize,
3423                           DAG.getIntPtrConstant(StackAlign-1));
3424 
3425   // Mask out the low bits for alignment purposes.
3426   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3427                           AllocSize.getValueType(), AllocSize,
3428                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3429 
3430   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3431   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3432   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3433                             VTs, Ops, 3);
3434   setValue(&I, DSA);
3435   DAG.setRoot(DSA.getValue(1));
3436 
3437   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3438 }
3439 
3440 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3441   if (I.isAtomic())
3442     return visitAtomicLoad(I);
3443 
3444   const Value *SV = I.getOperand(0);
3445   SDValue Ptr = getValue(SV);
3446 
3447   Type *Ty = I.getType();
3448 
3449   bool isVolatile = I.isVolatile();
3450   bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3451   bool isInvariant = I.getMetadata("invariant.load") != nullptr;
3452   unsigned Alignment = I.getAlignment();
3453   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3454   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3455 
3456   SmallVector<EVT, 4> ValueVTs;
3457   SmallVector<uint64_t, 4> Offsets;
3458   ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3459   unsigned NumValues = ValueVTs.size();
3460   if (NumValues == 0)
3461     return;
3462 
3463   SDValue Root;
3464   bool ConstantMemory = false;
3465   if (isVolatile || NumValues > MaxParallelChains)
3466     // Serialize volatile loads with other side effects.
3467     Root = getRoot();
3468   else if (AA->pointsToConstantMemory(
3469              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3470     // Do not serialize (non-volatile) loads of constant memory with anything.
3471     Root = DAG.getEntryNode();
3472     ConstantMemory = true;
3473   } else {
3474     // Do not serialize non-volatile loads against each other.
3475     Root = DAG.getRoot();
3476   }
3477 
3478   const TargetLowering *TLI = TM.getTargetLowering();
3479   if (isVolatile)
3480     Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3481 
3482   SmallVector<SDValue, 4> Values(NumValues);
3483   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3484                                           NumValues));
3485   EVT PtrVT = Ptr.getValueType();
3486   unsigned ChainI = 0;
3487   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3488     // Serializing loads here may result in excessive register pressure, and
3489     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3490     // could recover a bit by hoisting nodes upward in the chain by recognizing
3491     // they are side-effect free or do not alias. The optimizer should really
3492     // avoid this case by converting large object/array copies to llvm.memcpy
3493     // (MaxParallelChains should always remain as failsafe).
3494     if (ChainI == MaxParallelChains) {
3495       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3496       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3497                                   MVT::Other, &Chains[0], ChainI);
3498       Root = Chain;
3499       ChainI = 0;
3500     }
3501     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3502                             PtrVT, Ptr,
3503                             DAG.getConstant(Offsets[i], PtrVT));
3504     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3505                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3506                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
3507                             Ranges);
3508 
3509     Values[i] = L;
3510     Chains[ChainI] = L.getValue(1);
3511   }
3512 
3513   if (!ConstantMemory) {
3514     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3515                                 MVT::Other, &Chains[0], ChainI);
3516     if (isVolatile)
3517       DAG.setRoot(Chain);
3518     else
3519       PendingLoads.push_back(Chain);
3520   }
3521 
3522   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3523                            DAG.getVTList(ValueVTs),
3524                            &Values[0], NumValues));
3525 }
3526 
3527 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3528   if (I.isAtomic())
3529     return visitAtomicStore(I);
3530 
3531   const Value *SrcV = I.getOperand(0);
3532   const Value *PtrV = I.getOperand(1);
3533 
3534   SmallVector<EVT, 4> ValueVTs;
3535   SmallVector<uint64_t, 4> Offsets;
3536   ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3537   unsigned NumValues = ValueVTs.size();
3538   if (NumValues == 0)
3539     return;
3540 
3541   // Get the lowered operands. Note that we do this after
3542   // checking if NumResults is zero, because with zero results
3543   // the operands won't have values in the map.
3544   SDValue Src = getValue(SrcV);
3545   SDValue Ptr = getValue(PtrV);
3546 
3547   SDValue Root = getRoot();
3548   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3549                                           NumValues));
3550   EVT PtrVT = Ptr.getValueType();
3551   bool isVolatile = I.isVolatile();
3552   bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3553   unsigned Alignment = I.getAlignment();
3554   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3555 
3556   unsigned ChainI = 0;
3557   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3558     // See visitLoad comments.
3559     if (ChainI == MaxParallelChains) {
3560       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3561                                   MVT::Other, &Chains[0], ChainI);
3562       Root = Chain;
3563       ChainI = 0;
3564     }
3565     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3566                               DAG.getConstant(Offsets[i], PtrVT));
3567     SDValue St = DAG.getStore(Root, getCurSDLoc(),
3568                               SDValue(Src.getNode(), Src.getResNo() + i),
3569                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3570                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3571     Chains[ChainI] = St;
3572   }
3573 
3574   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3575                                   MVT::Other, &Chains[0], ChainI);
3576   DAG.setRoot(StoreNode);
3577 }
3578 
3579 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3580                                     SynchronizationScope Scope,
3581                                     bool Before, SDLoc dl,
3582                                     SelectionDAG &DAG,
3583                                     const TargetLowering &TLI) {
3584   // Fence, if necessary
3585   if (Before) {
3586     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3587       Order = Release;
3588     else if (Order == Acquire || Order == Monotonic)
3589       return Chain;
3590   } else {
3591     if (Order == AcquireRelease)
3592       Order = Acquire;
3593     else if (Order == Release || Order == Monotonic)
3594       return Chain;
3595   }
3596   SDValue Ops[3];
3597   Ops[0] = Chain;
3598   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3599   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3600   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3601 }
3602 
3603 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3604   SDLoc dl = getCurSDLoc();
3605   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3606   AtomicOrdering FailureOrder = I.getFailureOrdering();
3607   SynchronizationScope Scope = I.getSynchScope();
3608 
3609   SDValue InChain = getRoot();
3610 
3611   const TargetLowering *TLI = TM.getTargetLowering();
3612   if (TLI->getInsertFencesForAtomic())
3613     InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
3614                                    DAG, *TLI);
3615 
3616   SDValue L =
3617     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3618                   getValue(I.getCompareOperand()).getSimpleValueType(),
3619                   InChain,
3620                   getValue(I.getPointerOperand()),
3621                   getValue(I.getCompareOperand()),
3622                   getValue(I.getNewValOperand()),
3623                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3624                   TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
3625                   TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder,
3626                   Scope);
3627 
3628   SDValue OutChain = L.getValue(1);
3629 
3630   if (TLI->getInsertFencesForAtomic())
3631     OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
3632                                     DAG, *TLI);
3633 
3634   setValue(&I, L);
3635   DAG.setRoot(OutChain);
3636 }
3637 
3638 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3639   SDLoc dl = getCurSDLoc();
3640   ISD::NodeType NT;
3641   switch (I.getOperation()) {
3642   default: llvm_unreachable("Unknown atomicrmw operation");
3643   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3644   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3645   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3646   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3647   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3648   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3649   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3650   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3651   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3652   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3653   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3654   }
3655   AtomicOrdering Order = I.getOrdering();
3656   SynchronizationScope Scope = I.getSynchScope();
3657 
3658   SDValue InChain = getRoot();
3659 
3660   const TargetLowering *TLI = TM.getTargetLowering();
3661   if (TLI->getInsertFencesForAtomic())
3662     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3663                                    DAG, *TLI);
3664 
3665   SDValue L =
3666     DAG.getAtomic(NT, dl,
3667                   getValue(I.getValOperand()).getSimpleValueType(),
3668                   InChain,
3669                   getValue(I.getPointerOperand()),
3670                   getValue(I.getValOperand()),
3671                   I.getPointerOperand(), 0 /* Alignment */,
3672                   TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3673                   Scope);
3674 
3675   SDValue OutChain = L.getValue(1);
3676 
3677   if (TLI->getInsertFencesForAtomic())
3678     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3679                                     DAG, *TLI);
3680 
3681   setValue(&I, L);
3682   DAG.setRoot(OutChain);
3683 }
3684 
3685 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3686   SDLoc dl = getCurSDLoc();
3687   const TargetLowering *TLI = TM.getTargetLowering();
3688   SDValue Ops[3];
3689   Ops[0] = getRoot();
3690   Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3691   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3692   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3693 }
3694 
3695 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3696   SDLoc dl = getCurSDLoc();
3697   AtomicOrdering Order = I.getOrdering();
3698   SynchronizationScope Scope = I.getSynchScope();
3699 
3700   SDValue InChain = getRoot();
3701 
3702   const TargetLowering *TLI = TM.getTargetLowering();
3703   EVT VT = TLI->getValueType(I.getType());
3704 
3705   if (I.getAlignment() < VT.getSizeInBits() / 8)
3706     report_fatal_error("Cannot generate unaligned atomic load");
3707 
3708   MachineMemOperand *MMO =
3709       DAG.getMachineFunction().
3710       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3711                            MachineMemOperand::MOVolatile |
3712                            MachineMemOperand::MOLoad,
3713                            VT.getStoreSize(),
3714                            I.getAlignment() ? I.getAlignment() :
3715                                               DAG.getEVTAlignment(VT));
3716 
3717   InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3718   SDValue L =
3719       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3720                     getValue(I.getPointerOperand()), MMO,
3721                     TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3722                     Scope);
3723 
3724   SDValue OutChain = L.getValue(1);
3725 
3726   if (TLI->getInsertFencesForAtomic())
3727     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3728                                     DAG, *TLI);
3729 
3730   setValue(&I, L);
3731   DAG.setRoot(OutChain);
3732 }
3733 
3734 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3735   SDLoc dl = getCurSDLoc();
3736 
3737   AtomicOrdering Order = I.getOrdering();
3738   SynchronizationScope Scope = I.getSynchScope();
3739 
3740   SDValue InChain = getRoot();
3741 
3742   const TargetLowering *TLI = TM.getTargetLowering();
3743   EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3744 
3745   if (I.getAlignment() < VT.getSizeInBits() / 8)
3746     report_fatal_error("Cannot generate unaligned atomic store");
3747 
3748   if (TLI->getInsertFencesForAtomic())
3749     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3750                                    DAG, *TLI);
3751 
3752   SDValue OutChain =
3753     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3754                   InChain,
3755                   getValue(I.getPointerOperand()),
3756                   getValue(I.getValueOperand()),
3757                   I.getPointerOperand(), I.getAlignment(),
3758                   TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3759                   Scope);
3760 
3761   if (TLI->getInsertFencesForAtomic())
3762     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3763                                     DAG, *TLI);
3764 
3765   DAG.setRoot(OutChain);
3766 }
3767 
3768 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3769 /// node.
3770 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3771                                                unsigned Intrinsic) {
3772   bool HasChain = !I.doesNotAccessMemory();
3773   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3774 
3775   // Build the operand list.
3776   SmallVector<SDValue, 8> Ops;
3777   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3778     if (OnlyLoad) {
3779       // We don't need to serialize loads against other loads.
3780       Ops.push_back(DAG.getRoot());
3781     } else {
3782       Ops.push_back(getRoot());
3783     }
3784   }
3785 
3786   // Info is set by getTgtMemInstrinsic
3787   TargetLowering::IntrinsicInfo Info;
3788   const TargetLowering *TLI = TM.getTargetLowering();
3789   bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3790 
3791   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3792   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3793       Info.opc == ISD::INTRINSIC_W_CHAIN)
3794     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3795 
3796   // Add all operands of the call to the operand list.
3797   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3798     SDValue Op = getValue(I.getArgOperand(i));
3799     Ops.push_back(Op);
3800   }
3801 
3802   SmallVector<EVT, 4> ValueVTs;
3803   ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3804 
3805   if (HasChain)
3806     ValueVTs.push_back(MVT::Other);
3807 
3808   SDVTList VTs = DAG.getVTList(ValueVTs);
3809 
3810   // Create the node.
3811   SDValue Result;
3812   if (IsTgtIntrinsic) {
3813     // This is target intrinsic that touches memory
3814     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3815                                      VTs, &Ops[0], Ops.size(),
3816                                      Info.memVT,
3817                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3818                                      Info.align, Info.vol,
3819                                      Info.readMem, Info.writeMem);
3820   } else if (!HasChain) {
3821     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3822                          VTs, &Ops[0], Ops.size());
3823   } else if (!I.getType()->isVoidTy()) {
3824     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3825                          VTs, &Ops[0], Ops.size());
3826   } else {
3827     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3828                          VTs, &Ops[0], Ops.size());
3829   }
3830 
3831   if (HasChain) {
3832     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3833     if (OnlyLoad)
3834       PendingLoads.push_back(Chain);
3835     else
3836       DAG.setRoot(Chain);
3837   }
3838 
3839   if (!I.getType()->isVoidTy()) {
3840     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3841       EVT VT = TLI->getValueType(PTy);
3842       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3843     }
3844 
3845     setValue(&I, Result);
3846   }
3847 }
3848 
3849 /// GetSignificand - Get the significand and build it into a floating-point
3850 /// number with exponent of 1:
3851 ///
3852 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3853 ///
3854 /// where Op is the hexadecimal representation of floating point value.
3855 static SDValue
3856 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3857   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3858                            DAG.getConstant(0x007fffff, MVT::i32));
3859   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3860                            DAG.getConstant(0x3f800000, MVT::i32));
3861   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3862 }
3863 
3864 /// GetExponent - Get the exponent:
3865 ///
3866 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3867 ///
3868 /// where Op is the hexadecimal representation of floating point value.
3869 static SDValue
3870 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3871             SDLoc dl) {
3872   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3873                            DAG.getConstant(0x7f800000, MVT::i32));
3874   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3875                            DAG.getConstant(23, TLI.getPointerTy()));
3876   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3877                            DAG.getConstant(127, MVT::i32));
3878   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3879 }
3880 
3881 /// getF32Constant - Get 32-bit floating point constant.
3882 static SDValue
3883 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3884   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3885                            MVT::f32);
3886 }
3887 
3888 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3889 /// limited-precision mode.
3890 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3891                          const TargetLowering &TLI) {
3892   if (Op.getValueType() == MVT::f32 &&
3893       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3894 
3895     // Put the exponent in the right bit position for later addition to the
3896     // final result:
3897     //
3898     //   #define LOG2OFe 1.4426950f
3899     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3900     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3901                              getF32Constant(DAG, 0x3fb8aa3b));
3902     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3903 
3904     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3905     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3906     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3907 
3908     //   IntegerPartOfX <<= 23;
3909     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3910                                  DAG.getConstant(23, TLI.getPointerTy()));
3911 
3912     SDValue TwoToFracPartOfX;
3913     if (LimitFloatPrecision <= 6) {
3914       // For floating-point precision of 6:
3915       //
3916       //   TwoToFractionalPartOfX =
3917       //     0.997535578f +
3918       //       (0.735607626f + 0.252464424f * x) * x;
3919       //
3920       // error 0.0144103317, which is 6 bits
3921       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                                getF32Constant(DAG, 0x3e814304));
3923       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                                getF32Constant(DAG, 0x3f3c50c8));
3925       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                                      getF32Constant(DAG, 0x3f7f5e7e));
3928     } else if (LimitFloatPrecision <= 12) {
3929       // For floating-point precision of 12:
3930       //
3931       //   TwoToFractionalPartOfX =
3932       //     0.999892986f +
3933       //       (0.696457318f +
3934       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3935       //
3936       // 0.000107046256 error, which is 13 to 14 bits
3937       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3938                                getF32Constant(DAG, 0x3da235e3));
3939       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3940                                getF32Constant(DAG, 0x3e65b8f3));
3941       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3942       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3943                                getF32Constant(DAG, 0x3f324b07));
3944       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3945       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3946                                      getF32Constant(DAG, 0x3f7ff8fd));
3947     } else { // LimitFloatPrecision <= 18
3948       // For floating-point precision of 18:
3949       //
3950       //   TwoToFractionalPartOfX =
3951       //     0.999999982f +
3952       //       (0.693148872f +
3953       //         (0.240227044f +
3954       //           (0.554906021e-1f +
3955       //             (0.961591928e-2f +
3956       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3957       //
3958       // error 2.47208000*10^(-7), which is better than 18 bits
3959       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3960                                getF32Constant(DAG, 0x3924b03e));
3961       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3962                                getF32Constant(DAG, 0x3ab24b87));
3963       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3964       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3965                                getF32Constant(DAG, 0x3c1d8c17));
3966       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3967       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3968                                getF32Constant(DAG, 0x3d634a1d));
3969       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3970       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3971                                getF32Constant(DAG, 0x3e75fe14));
3972       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3973       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3974                                 getF32Constant(DAG, 0x3f317234));
3975       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3976       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3977                                      getF32Constant(DAG, 0x3f800000));
3978     }
3979 
3980     // Add the exponent into the result in integer domain.
3981     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3982     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3983                        DAG.getNode(ISD::ADD, dl, MVT::i32,
3984                                    t13, IntegerPartOfX));
3985   }
3986 
3987   // No special expansion.
3988   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3989 }
3990 
3991 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3992 /// limited-precision mode.
3993 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3994                          const TargetLowering &TLI) {
3995   if (Op.getValueType() == MVT::f32 &&
3996       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3997     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3998 
3999     // Scale the exponent by log(2) [0.69314718f].
4000     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4001     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4002                                         getF32Constant(DAG, 0x3f317218));
4003 
4004     // Get the significand and build it into a floating-point number with
4005     // exponent of 1.
4006     SDValue X = GetSignificand(DAG, Op1, dl);
4007 
4008     SDValue LogOfMantissa;
4009     if (LimitFloatPrecision <= 6) {
4010       // For floating-point precision of 6:
4011       //
4012       //   LogofMantissa =
4013       //     -1.1609546f +
4014       //       (1.4034025f - 0.23903021f * x) * x;
4015       //
4016       // error 0.0034276066, which is better than 8 bits
4017       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4018                                getF32Constant(DAG, 0xbe74c456));
4019       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4020                                getF32Constant(DAG, 0x3fb3a2b1));
4021       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4022       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4023                                   getF32Constant(DAG, 0x3f949a29));
4024     } else if (LimitFloatPrecision <= 12) {
4025       // For floating-point precision of 12:
4026       //
4027       //   LogOfMantissa =
4028       //     -1.7417939f +
4029       //       (2.8212026f +
4030       //         (-1.4699568f +
4031       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4032       //
4033       // error 0.000061011436, which is 14 bits
4034       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4035                                getF32Constant(DAG, 0xbd67b6d6));
4036       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4037                                getF32Constant(DAG, 0x3ee4f4b8));
4038       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4039       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4040                                getF32Constant(DAG, 0x3fbc278b));
4041       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4042       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4043                                getF32Constant(DAG, 0x40348e95));
4044       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4045       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4046                                   getF32Constant(DAG, 0x3fdef31a));
4047     } else { // LimitFloatPrecision <= 18
4048       // For floating-point precision of 18:
4049       //
4050       //   LogOfMantissa =
4051       //     -2.1072184f +
4052       //       (4.2372794f +
4053       //         (-3.7029485f +
4054       //           (2.2781945f +
4055       //             (-0.87823314f +
4056       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4057       //
4058       // error 0.0000023660568, which is better than 18 bits
4059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4060                                getF32Constant(DAG, 0xbc91e5ac));
4061       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4062                                getF32Constant(DAG, 0x3e4350aa));
4063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4064       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4065                                getF32Constant(DAG, 0x3f60d3e3));
4066       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4067       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4068                                getF32Constant(DAG, 0x4011cdf0));
4069       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4070       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4071                                getF32Constant(DAG, 0x406cfd1c));
4072       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4073       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4074                                getF32Constant(DAG, 0x408797cb));
4075       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4076       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4077                                   getF32Constant(DAG, 0x4006dcab));
4078     }
4079 
4080     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4081   }
4082 
4083   // No special expansion.
4084   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4085 }
4086 
4087 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4088 /// limited-precision mode.
4089 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4090                           const TargetLowering &TLI) {
4091   if (Op.getValueType() == MVT::f32 &&
4092       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4093     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4094 
4095     // Get the exponent.
4096     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4097 
4098     // Get the significand and build it into a floating-point number with
4099     // exponent of 1.
4100     SDValue X = GetSignificand(DAG, Op1, dl);
4101 
4102     // Different possible minimax approximations of significand in
4103     // floating-point for various degrees of accuracy over [1,2].
4104     SDValue Log2ofMantissa;
4105     if (LimitFloatPrecision <= 6) {
4106       // For floating-point precision of 6:
4107       //
4108       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4109       //
4110       // error 0.0049451742, which is more than 7 bits
4111       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4112                                getF32Constant(DAG, 0xbeb08fe0));
4113       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4114                                getF32Constant(DAG, 0x40019463));
4115       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4116       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4117                                    getF32Constant(DAG, 0x3fd6633d));
4118     } else if (LimitFloatPrecision <= 12) {
4119       // For floating-point precision of 12:
4120       //
4121       //   Log2ofMantissa =
4122       //     -2.51285454f +
4123       //       (4.07009056f +
4124       //         (-2.12067489f +
4125       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4126       //
4127       // error 0.0000876136000, which is better than 13 bits
4128       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                                getF32Constant(DAG, 0xbda7262e));
4130       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4131                                getF32Constant(DAG, 0x3f25280b));
4132       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4133       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4134                                getF32Constant(DAG, 0x4007b923));
4135       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                                getF32Constant(DAG, 0x40823e2f));
4138       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4140                                    getF32Constant(DAG, 0x4020d29c));
4141     } else { // LimitFloatPrecision <= 18
4142       // For floating-point precision of 18:
4143       //
4144       //   Log2ofMantissa =
4145       //     -3.0400495f +
4146       //       (6.1129976f +
4147       //         (-5.3420409f +
4148       //           (3.2865683f +
4149       //             (-1.2669343f +
4150       //               (0.27515199f -
4151       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4152       //
4153       // error 0.0000018516, which is better than 18 bits
4154       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4155                                getF32Constant(DAG, 0xbcd2769e));
4156       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4157                                getF32Constant(DAG, 0x3e8ce0b9));
4158       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4159       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4160                                getF32Constant(DAG, 0x3fa22ae7));
4161       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4162       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4163                                getF32Constant(DAG, 0x40525723));
4164       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4165       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4166                                getF32Constant(DAG, 0x40aaf200));
4167       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4168       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4169                                getF32Constant(DAG, 0x40c39dad));
4170       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4171       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4172                                    getF32Constant(DAG, 0x4042902c));
4173     }
4174 
4175     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4176   }
4177 
4178   // No special expansion.
4179   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4180 }
4181 
4182 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4183 /// limited-precision mode.
4184 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4185                            const TargetLowering &TLI) {
4186   if (Op.getValueType() == MVT::f32 &&
4187       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4188     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4189 
4190     // Scale the exponent by log10(2) [0.30102999f].
4191     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4192     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4193                                         getF32Constant(DAG, 0x3e9a209a));
4194 
4195     // Get the significand and build it into a floating-point number with
4196     // exponent of 1.
4197     SDValue X = GetSignificand(DAG, Op1, dl);
4198 
4199     SDValue Log10ofMantissa;
4200     if (LimitFloatPrecision <= 6) {
4201       // For floating-point precision of 6:
4202       //
4203       //   Log10ofMantissa =
4204       //     -0.50419619f +
4205       //       (0.60948995f - 0.10380950f * x) * x;
4206       //
4207       // error 0.0014886165, which is 6 bits
4208       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4209                                getF32Constant(DAG, 0xbdd49a13));
4210       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4211                                getF32Constant(DAG, 0x3f1c0789));
4212       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4213       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4214                                     getF32Constant(DAG, 0x3f011300));
4215     } else if (LimitFloatPrecision <= 12) {
4216       // For floating-point precision of 12:
4217       //
4218       //   Log10ofMantissa =
4219       //     -0.64831180f +
4220       //       (0.91751397f +
4221       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4222       //
4223       // error 0.00019228036, which is better than 12 bits
4224       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4225                                getF32Constant(DAG, 0x3d431f31));
4226       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4227                                getF32Constant(DAG, 0x3ea21fb2));
4228       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4229       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4230                                getF32Constant(DAG, 0x3f6ae232));
4231       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4232       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4233                                     getF32Constant(DAG, 0x3f25f7c3));
4234     } else { // LimitFloatPrecision <= 18
4235       // For floating-point precision of 18:
4236       //
4237       //   Log10ofMantissa =
4238       //     -0.84299375f +
4239       //       (1.5327582f +
4240       //         (-1.0688956f +
4241       //           (0.49102474f +
4242       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4243       //
4244       // error 0.0000037995730, which is better than 18 bits
4245       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4246                                getF32Constant(DAG, 0x3c5d51ce));
4247       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4248                                getF32Constant(DAG, 0x3e00685a));
4249       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4250       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4251                                getF32Constant(DAG, 0x3efb6798));
4252       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4253       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4254                                getF32Constant(DAG, 0x3f88d192));
4255       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4256       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4257                                getF32Constant(DAG, 0x3fc4316c));
4258       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4259       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4260                                     getF32Constant(DAG, 0x3f57ce70));
4261     }
4262 
4263     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4264   }
4265 
4266   // No special expansion.
4267   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4268 }
4269 
4270 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4271 /// limited-precision mode.
4272 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4273                           const TargetLowering &TLI) {
4274   if (Op.getValueType() == MVT::f32 &&
4275       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4276     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4277 
4278     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4279     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4280     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4281 
4282     //   IntegerPartOfX <<= 23;
4283     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4284                                  DAG.getConstant(23, TLI.getPointerTy()));
4285 
4286     SDValue TwoToFractionalPartOfX;
4287     if (LimitFloatPrecision <= 6) {
4288       // For floating-point precision of 6:
4289       //
4290       //   TwoToFractionalPartOfX =
4291       //     0.997535578f +
4292       //       (0.735607626f + 0.252464424f * x) * x;
4293       //
4294       // error 0.0144103317, which is 6 bits
4295       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4296                                getF32Constant(DAG, 0x3e814304));
4297       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4298                                getF32Constant(DAG, 0x3f3c50c8));
4299       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4300       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4301                                            getF32Constant(DAG, 0x3f7f5e7e));
4302     } else if (LimitFloatPrecision <= 12) {
4303       // For floating-point precision of 12:
4304       //
4305       //   TwoToFractionalPartOfX =
4306       //     0.999892986f +
4307       //       (0.696457318f +
4308       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4309       //
4310       // error 0.000107046256, which is 13 to 14 bits
4311       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4312                                getF32Constant(DAG, 0x3da235e3));
4313       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4314                                getF32Constant(DAG, 0x3e65b8f3));
4315       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4316       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4317                                getF32Constant(DAG, 0x3f324b07));
4318       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4319       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4320                                            getF32Constant(DAG, 0x3f7ff8fd));
4321     } else { // LimitFloatPrecision <= 18
4322       // For floating-point precision of 18:
4323       //
4324       //   TwoToFractionalPartOfX =
4325       //     0.999999982f +
4326       //       (0.693148872f +
4327       //         (0.240227044f +
4328       //           (0.554906021e-1f +
4329       //             (0.961591928e-2f +
4330       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4331       // error 2.47208000*10^(-7), which is better than 18 bits
4332       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4333                                getF32Constant(DAG, 0x3924b03e));
4334       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4335                                getF32Constant(DAG, 0x3ab24b87));
4336       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4337       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4338                                getF32Constant(DAG, 0x3c1d8c17));
4339       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4340       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4341                                getF32Constant(DAG, 0x3d634a1d));
4342       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4343       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4344                                getF32Constant(DAG, 0x3e75fe14));
4345       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4346       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4347                                 getF32Constant(DAG, 0x3f317234));
4348       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4349       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4350                                            getF32Constant(DAG, 0x3f800000));
4351     }
4352 
4353     // Add the exponent into the result in integer domain.
4354     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4355                               TwoToFractionalPartOfX);
4356     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4357                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4358                                    t13, IntegerPartOfX));
4359   }
4360 
4361   // No special expansion.
4362   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4363 }
4364 
4365 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4366 /// limited-precision mode with x == 10.0f.
4367 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4368                          SelectionDAG &DAG, const TargetLowering &TLI) {
4369   bool IsExp10 = false;
4370   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4371       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4372     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4373       APFloat Ten(10.0f);
4374       IsExp10 = LHSC->isExactlyValue(Ten);
4375     }
4376   }
4377 
4378   if (IsExp10) {
4379     // Put the exponent in the right bit position for later addition to the
4380     // final result:
4381     //
4382     //   #define LOG2OF10 3.3219281f
4383     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4384     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4385                              getF32Constant(DAG, 0x40549a78));
4386     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4387 
4388     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4389     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4390     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4391 
4392     //   IntegerPartOfX <<= 23;
4393     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4394                                  DAG.getConstant(23, TLI.getPointerTy()));
4395 
4396     SDValue TwoToFractionalPartOfX;
4397     if (LimitFloatPrecision <= 6) {
4398       // For floating-point precision of 6:
4399       //
4400       //   twoToFractionalPartOfX =
4401       //     0.997535578f +
4402       //       (0.735607626f + 0.252464424f * x) * x;
4403       //
4404       // error 0.0144103317, which is 6 bits
4405       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4406                                getF32Constant(DAG, 0x3e814304));
4407       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4408                                getF32Constant(DAG, 0x3f3c50c8));
4409       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4410       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4411                                            getF32Constant(DAG, 0x3f7f5e7e));
4412     } else if (LimitFloatPrecision <= 12) {
4413       // For floating-point precision of 12:
4414       //
4415       //   TwoToFractionalPartOfX =
4416       //     0.999892986f +
4417       //       (0.696457318f +
4418       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4419       //
4420       // error 0.000107046256, which is 13 to 14 bits
4421       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4422                                getF32Constant(DAG, 0x3da235e3));
4423       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4424                                getF32Constant(DAG, 0x3e65b8f3));
4425       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4426       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4427                                getF32Constant(DAG, 0x3f324b07));
4428       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4429       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4430                                            getF32Constant(DAG, 0x3f7ff8fd));
4431     } else { // LimitFloatPrecision <= 18
4432       // For floating-point precision of 18:
4433       //
4434       //   TwoToFractionalPartOfX =
4435       //     0.999999982f +
4436       //       (0.693148872f +
4437       //         (0.240227044f +
4438       //           (0.554906021e-1f +
4439       //             (0.961591928e-2f +
4440       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4441       // error 2.47208000*10^(-7), which is better than 18 bits
4442       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4443                                getF32Constant(DAG, 0x3924b03e));
4444       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4445                                getF32Constant(DAG, 0x3ab24b87));
4446       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4447       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4448                                getF32Constant(DAG, 0x3c1d8c17));
4449       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4450       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4451                                getF32Constant(DAG, 0x3d634a1d));
4452       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4453       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4454                                getF32Constant(DAG, 0x3e75fe14));
4455       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4456       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4457                                 getF32Constant(DAG, 0x3f317234));
4458       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4459       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4460                                            getF32Constant(DAG, 0x3f800000));
4461     }
4462 
4463     SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4464     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4465                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4466                                    t13, IntegerPartOfX));
4467   }
4468 
4469   // No special expansion.
4470   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4471 }
4472 
4473 
4474 /// ExpandPowI - Expand a llvm.powi intrinsic.
4475 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4476                           SelectionDAG &DAG) {
4477   // If RHS is a constant, we can expand this out to a multiplication tree,
4478   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4479   // optimizing for size, we only want to do this if the expansion would produce
4480   // a small number of multiplies, otherwise we do the full expansion.
4481   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4482     // Get the exponent as a positive value.
4483     unsigned Val = RHSC->getSExtValue();
4484     if ((int)Val < 0) Val = -Val;
4485 
4486     // powi(x, 0) -> 1.0
4487     if (Val == 0)
4488       return DAG.getConstantFP(1.0, LHS.getValueType());
4489 
4490     const Function *F = DAG.getMachineFunction().getFunction();
4491     if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4492                                          Attribute::OptimizeForSize) ||
4493         // If optimizing for size, don't insert too many multiplies.  This
4494         // inserts up to 5 multiplies.
4495         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4496       // We use the simple binary decomposition method to generate the multiply
4497       // sequence.  There are more optimal ways to do this (for example,
4498       // powi(x,15) generates one more multiply than it should), but this has
4499       // the benefit of being both really simple and much better than a libcall.
4500       SDValue Res;  // Logically starts equal to 1.0
4501       SDValue CurSquare = LHS;
4502       while (Val) {
4503         if (Val & 1) {
4504           if (Res.getNode())
4505             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4506           else
4507             Res = CurSquare;  // 1.0*CurSquare.
4508         }
4509 
4510         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4511                                 CurSquare, CurSquare);
4512         Val >>= 1;
4513       }
4514 
4515       // If the original was negative, invert the result, producing 1/(x*x*x).
4516       if (RHSC->getSExtValue() < 0)
4517         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4518                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4519       return Res;
4520     }
4521   }
4522 
4523   // Otherwise, expand to a libcall.
4524   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4525 }
4526 
4527 // getTruncatedArgReg - Find underlying register used for an truncated
4528 // argument.
4529 static unsigned getTruncatedArgReg(const SDValue &N) {
4530   if (N.getOpcode() != ISD::TRUNCATE)
4531     return 0;
4532 
4533   const SDValue &Ext = N.getOperand(0);
4534   if (Ext.getOpcode() == ISD::AssertZext ||
4535       Ext.getOpcode() == ISD::AssertSext) {
4536     const SDValue &CFR = Ext.getOperand(0);
4537     if (CFR.getOpcode() == ISD::CopyFromReg)
4538       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4539     if (CFR.getOpcode() == ISD::TRUNCATE)
4540       return getTruncatedArgReg(CFR);
4541   }
4542   return 0;
4543 }
4544 
4545 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4546 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4547 /// At the end of instruction selection, they will be inserted to the entry BB.
4548 bool
4549 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4550                                               int64_t Offset,
4551                                               const SDValue &N) {
4552   const Argument *Arg = dyn_cast<Argument>(V);
4553   if (!Arg)
4554     return false;
4555 
4556   MachineFunction &MF = DAG.getMachineFunction();
4557   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4558 
4559   // Ignore inlined function arguments here.
4560   DIVariable DV(Variable);
4561   if (DV.isInlinedFnArgument(MF.getFunction()))
4562     return false;
4563 
4564   Optional<MachineOperand> Op;
4565   // Some arguments' frame index is recorded during argument lowering.
4566   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4567     Op = MachineOperand::CreateFI(FI);
4568 
4569   if (!Op && N.getNode()) {
4570     unsigned Reg;
4571     if (N.getOpcode() == ISD::CopyFromReg)
4572       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4573     else
4574       Reg = getTruncatedArgReg(N);
4575     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4576       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4577       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4578       if (PR)
4579         Reg = PR;
4580     }
4581     if (Reg)
4582       Op = MachineOperand::CreateReg(Reg, false);
4583   }
4584 
4585   if (!Op) {
4586     // Check if ValueMap has reg number.
4587     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4588     if (VMI != FuncInfo.ValueMap.end())
4589       Op = MachineOperand::CreateReg(VMI->second, false);
4590   }
4591 
4592   if (!Op && N.getNode())
4593     // Check if frame index is available.
4594     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4595       if (FrameIndexSDNode *FINode =
4596           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4597         Op = MachineOperand::CreateFI(FINode->getIndex());
4598 
4599   if (!Op)
4600     return false;
4601 
4602   // FIXME: This does not handle register-indirect values at offset 0.
4603   bool IsIndirect = Offset != 0;
4604   if (Op->isReg())
4605     FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4606                                             TII->get(TargetOpcode::DBG_VALUE),
4607                                             IsIndirect,
4608                                             Op->getReg(), Offset, Variable));
4609   else
4610     FuncInfo.ArgDbgValues.push_back(
4611       BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4612           .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4613 
4614   return true;
4615 }
4616 
4617 // VisualStudio defines setjmp as _setjmp
4618 #if defined(_MSC_VER) && defined(setjmp) && \
4619                          !defined(setjmp_undefined_for_msvc)
4620 #  pragma push_macro("setjmp")
4621 #  undef setjmp
4622 #  define setjmp_undefined_for_msvc
4623 #endif
4624 
4625 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4626 /// we want to emit this as a call to a named external function, return the name
4627 /// otherwise lower it and return null.
4628 const char *
4629 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4630   const TargetLowering *TLI = TM.getTargetLowering();
4631   SDLoc sdl = getCurSDLoc();
4632   DebugLoc dl = getCurDebugLoc();
4633   SDValue Res;
4634 
4635   switch (Intrinsic) {
4636   default:
4637     // By default, turn this into a target intrinsic node.
4638     visitTargetIntrinsic(I, Intrinsic);
4639     return nullptr;
4640   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4641   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4642   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4643   case Intrinsic::returnaddress:
4644     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4645                              getValue(I.getArgOperand(0))));
4646     return nullptr;
4647   case Intrinsic::frameaddress:
4648     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4649                              getValue(I.getArgOperand(0))));
4650     return nullptr;
4651   case Intrinsic::setjmp:
4652     return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4653   case Intrinsic::longjmp:
4654     return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4655   case Intrinsic::memcpy: {
4656     // Assert for address < 256 since we support only user defined address
4657     // spaces.
4658     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4659            < 256 &&
4660            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4661            < 256 &&
4662            "Unknown address space");
4663     SDValue Op1 = getValue(I.getArgOperand(0));
4664     SDValue Op2 = getValue(I.getArgOperand(1));
4665     SDValue Op3 = getValue(I.getArgOperand(2));
4666     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4667     if (!Align)
4668       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4669     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4670     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4671                               MachinePointerInfo(I.getArgOperand(0)),
4672                               MachinePointerInfo(I.getArgOperand(1))));
4673     return nullptr;
4674   }
4675   case Intrinsic::memset: {
4676     // Assert for address < 256 since we support only user defined address
4677     // spaces.
4678     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4679            < 256 &&
4680            "Unknown address space");
4681     SDValue Op1 = getValue(I.getArgOperand(0));
4682     SDValue Op2 = getValue(I.getArgOperand(1));
4683     SDValue Op3 = getValue(I.getArgOperand(2));
4684     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4685     if (!Align)
4686       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4687     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4688     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4689                               MachinePointerInfo(I.getArgOperand(0))));
4690     return nullptr;
4691   }
4692   case Intrinsic::memmove: {
4693     // Assert for address < 256 since we support only user defined address
4694     // spaces.
4695     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4696            < 256 &&
4697            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4698            < 256 &&
4699            "Unknown address space");
4700     SDValue Op1 = getValue(I.getArgOperand(0));
4701     SDValue Op2 = getValue(I.getArgOperand(1));
4702     SDValue Op3 = getValue(I.getArgOperand(2));
4703     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4704     if (!Align)
4705       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4706     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4707     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4708                                MachinePointerInfo(I.getArgOperand(0)),
4709                                MachinePointerInfo(I.getArgOperand(1))));
4710     return nullptr;
4711   }
4712   case Intrinsic::dbg_declare: {
4713     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4714     MDNode *Variable = DI.getVariable();
4715     const Value *Address = DI.getAddress();
4716     DIVariable DIVar(Variable);
4717     assert((!DIVar || DIVar.isVariable()) &&
4718       "Variable in DbgDeclareInst should be either null or a DIVariable.");
4719     if (!Address || !DIVar) {
4720       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4721       return nullptr;
4722     }
4723 
4724     // Check if address has undef value.
4725     if (isa<UndefValue>(Address) ||
4726         (Address->use_empty() && !isa<Argument>(Address))) {
4727       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4728       return nullptr;
4729     }
4730 
4731     SDValue &N = NodeMap[Address];
4732     if (!N.getNode() && isa<Argument>(Address))
4733       // Check unused arguments map.
4734       N = UnusedArgNodeMap[Address];
4735     SDDbgValue *SDV;
4736     if (N.getNode()) {
4737       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4738         Address = BCI->getOperand(0);
4739       // Parameters are handled specially.
4740       bool isParameter =
4741         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4742          isa<Argument>(Address));
4743 
4744       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4745 
4746       if (isParameter && !AI) {
4747         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4748         if (FINode)
4749           // Byval parameter.  We have a frame index at this point.
4750           SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
4751 					  0, dl, SDNodeOrder);
4752         else {
4753           // Address is an argument, so try to emit its dbg value using
4754           // virtual register info from the FuncInfo.ValueMap.
4755           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4756           return nullptr;
4757         }
4758       } else if (AI)
4759         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4760                               true, 0, dl, SDNodeOrder);
4761       else {
4762         // Can't do anything with other non-AI cases yet.
4763         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4764         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4765         DEBUG(Address->dump());
4766         return nullptr;
4767       }
4768       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4769     } else {
4770       // If Address is an argument then try to emit its dbg value using
4771       // virtual register info from the FuncInfo.ValueMap.
4772       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4773         // If variable is pinned by a alloca in dominating bb then
4774         // use StaticAllocaMap.
4775         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4776           if (AI->getParent() != DI.getParent()) {
4777             DenseMap<const AllocaInst*, int>::iterator SI =
4778               FuncInfo.StaticAllocaMap.find(AI);
4779             if (SI != FuncInfo.StaticAllocaMap.end()) {
4780               SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
4781                                               0, dl, SDNodeOrder);
4782               DAG.AddDbgValue(SDV, nullptr, false);
4783               return nullptr;
4784             }
4785           }
4786         }
4787         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4788       }
4789     }
4790     return nullptr;
4791   }
4792   case Intrinsic::dbg_value: {
4793     const DbgValueInst &DI = cast<DbgValueInst>(I);
4794     DIVariable DIVar(DI.getVariable());
4795     assert((!DIVar || DIVar.isVariable()) &&
4796       "Variable in DbgValueInst should be either null or a DIVariable.");
4797     if (!DIVar)
4798       return nullptr;
4799 
4800     MDNode *Variable = DI.getVariable();
4801     uint64_t Offset = DI.getOffset();
4802     const Value *V = DI.getValue();
4803     if (!V)
4804       return nullptr;
4805 
4806     SDDbgValue *SDV;
4807     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4808       SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4809       DAG.AddDbgValue(SDV, nullptr, false);
4810     } else {
4811       // Do not use getValue() in here; we don't want to generate code at
4812       // this point if it hasn't been done yet.
4813       SDValue N = NodeMap[V];
4814       if (!N.getNode() && isa<Argument>(V))
4815         // Check unused arguments map.
4816         N = UnusedArgNodeMap[V];
4817       if (N.getNode()) {
4818         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4819 	  // A dbg.value for an alloca is always indirect.
4820 	  bool IsIndirect(isa<AllocaInst>(V));
4821           SDV = DAG.getDbgValue(Variable, N.getNode(),
4822                                 N.getResNo(), IsIndirect,
4823 				Offset, dl, SDNodeOrder);
4824           DAG.AddDbgValue(SDV, N.getNode(), false);
4825         }
4826       } else if (!V->use_empty() ) {
4827         // Do not call getValue(V) yet, as we don't want to generate code.
4828         // Remember it for later.
4829         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4830         DanglingDebugInfoMap[V] = DDI;
4831       } else {
4832         // We may expand this to cover more cases.  One case where we have no
4833         // data available is an unreferenced parameter.
4834         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4835       }
4836     }
4837 
4838     // Build a debug info table entry.
4839     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4840       V = BCI->getOperand(0);
4841     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4842     // Don't handle byval struct arguments or VLAs, for example.
4843     if (!AI) {
4844       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4845       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4846       return nullptr;
4847     }
4848     DenseMap<const AllocaInst*, int>::iterator SI =
4849       FuncInfo.StaticAllocaMap.find(AI);
4850     if (SI == FuncInfo.StaticAllocaMap.end())
4851       return nullptr; // VLAs.
4852     return nullptr;
4853   }
4854 
4855   case Intrinsic::eh_typeid_for: {
4856     // Find the type id for the given typeinfo.
4857     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4858     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4859     Res = DAG.getConstant(TypeID, MVT::i32);
4860     setValue(&I, Res);
4861     return nullptr;
4862   }
4863 
4864   case Intrinsic::eh_return_i32:
4865   case Intrinsic::eh_return_i64:
4866     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4867     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4868                             MVT::Other,
4869                             getControlRoot(),
4870                             getValue(I.getArgOperand(0)),
4871                             getValue(I.getArgOperand(1))));
4872     return nullptr;
4873   case Intrinsic::eh_unwind_init:
4874     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4875     return nullptr;
4876   case Intrinsic::eh_dwarf_cfa: {
4877     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4878                                         TLI->getPointerTy());
4879     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4880                                  CfaArg.getValueType(),
4881                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4882                                              CfaArg.getValueType()),
4883                                  CfaArg);
4884     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4885                              TLI->getPointerTy(),
4886                              DAG.getConstant(0, TLI->getPointerTy()));
4887     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4888                              FA, Offset));
4889     return nullptr;
4890   }
4891   case Intrinsic::eh_sjlj_callsite: {
4892     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4893     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4894     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4895     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4896 
4897     MMI.setCurrentCallSite(CI->getZExtValue());
4898     return nullptr;
4899   }
4900   case Intrinsic::eh_sjlj_functioncontext: {
4901     // Get and store the index of the function context.
4902     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4903     AllocaInst *FnCtx =
4904       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4905     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4906     MFI->setFunctionContextIndex(FI);
4907     return nullptr;
4908   }
4909   case Intrinsic::eh_sjlj_setjmp: {
4910     SDValue Ops[2];
4911     Ops[0] = getRoot();
4912     Ops[1] = getValue(I.getArgOperand(0));
4913     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4914                              DAG.getVTList(MVT::i32, MVT::Other),
4915                              Ops, 2);
4916     setValue(&I, Op.getValue(0));
4917     DAG.setRoot(Op.getValue(1));
4918     return nullptr;
4919   }
4920   case Intrinsic::eh_sjlj_longjmp: {
4921     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4922                             getRoot(), getValue(I.getArgOperand(0))));
4923     return nullptr;
4924   }
4925 
4926   case Intrinsic::x86_mmx_pslli_w:
4927   case Intrinsic::x86_mmx_pslli_d:
4928   case Intrinsic::x86_mmx_pslli_q:
4929   case Intrinsic::x86_mmx_psrli_w:
4930   case Intrinsic::x86_mmx_psrli_d:
4931   case Intrinsic::x86_mmx_psrli_q:
4932   case Intrinsic::x86_mmx_psrai_w:
4933   case Intrinsic::x86_mmx_psrai_d: {
4934     SDValue ShAmt = getValue(I.getArgOperand(1));
4935     if (isa<ConstantSDNode>(ShAmt)) {
4936       visitTargetIntrinsic(I, Intrinsic);
4937       return nullptr;
4938     }
4939     unsigned NewIntrinsic = 0;
4940     EVT ShAmtVT = MVT::v2i32;
4941     switch (Intrinsic) {
4942     case Intrinsic::x86_mmx_pslli_w:
4943       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4944       break;
4945     case Intrinsic::x86_mmx_pslli_d:
4946       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4947       break;
4948     case Intrinsic::x86_mmx_pslli_q:
4949       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4950       break;
4951     case Intrinsic::x86_mmx_psrli_w:
4952       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4953       break;
4954     case Intrinsic::x86_mmx_psrli_d:
4955       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4956       break;
4957     case Intrinsic::x86_mmx_psrli_q:
4958       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4959       break;
4960     case Intrinsic::x86_mmx_psrai_w:
4961       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4962       break;
4963     case Intrinsic::x86_mmx_psrai_d:
4964       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4965       break;
4966     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4967     }
4968 
4969     // The vector shift intrinsics with scalars uses 32b shift amounts but
4970     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4971     // to be zero.
4972     // We must do this early because v2i32 is not a legal type.
4973     SDValue ShOps[2];
4974     ShOps[0] = ShAmt;
4975     ShOps[1] = DAG.getConstant(0, MVT::i32);
4976     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4977     EVT DestVT = TLI->getValueType(I.getType());
4978     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4979     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4980                        DAG.getConstant(NewIntrinsic, MVT::i32),
4981                        getValue(I.getArgOperand(0)), ShAmt);
4982     setValue(&I, Res);
4983     return nullptr;
4984   }
4985   case Intrinsic::x86_avx_vinsertf128_pd_256:
4986   case Intrinsic::x86_avx_vinsertf128_ps_256:
4987   case Intrinsic::x86_avx_vinsertf128_si_256:
4988   case Intrinsic::x86_avx2_vinserti128: {
4989     EVT DestVT = TLI->getValueType(I.getType());
4990     EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4991     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4992                    ElVT.getVectorNumElements();
4993     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4994                       getValue(I.getArgOperand(0)),
4995                       getValue(I.getArgOperand(1)),
4996                       DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4997     setValue(&I, Res);
4998     return nullptr;
4999   }
5000   case Intrinsic::x86_avx_vextractf128_pd_256:
5001   case Intrinsic::x86_avx_vextractf128_ps_256:
5002   case Intrinsic::x86_avx_vextractf128_si_256:
5003   case Intrinsic::x86_avx2_vextracti128: {
5004     EVT DestVT = TLI->getValueType(I.getType());
5005     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5006                    DestVT.getVectorNumElements();
5007     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5008                       getValue(I.getArgOperand(0)),
5009                       DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5010     setValue(&I, Res);
5011     return nullptr;
5012   }
5013   case Intrinsic::convertff:
5014   case Intrinsic::convertfsi:
5015   case Intrinsic::convertfui:
5016   case Intrinsic::convertsif:
5017   case Intrinsic::convertuif:
5018   case Intrinsic::convertss:
5019   case Intrinsic::convertsu:
5020   case Intrinsic::convertus:
5021   case Intrinsic::convertuu: {
5022     ISD::CvtCode Code = ISD::CVT_INVALID;
5023     switch (Intrinsic) {
5024     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5025     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5026     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5027     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5028     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5029     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5030     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5031     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5032     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5033     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5034     }
5035     EVT DestVT = TLI->getValueType(I.getType());
5036     const Value *Op1 = I.getArgOperand(0);
5037     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5038                                DAG.getValueType(DestVT),
5039                                DAG.getValueType(getValue(Op1).getValueType()),
5040                                getValue(I.getArgOperand(1)),
5041                                getValue(I.getArgOperand(2)),
5042                                Code);
5043     setValue(&I, Res);
5044     return nullptr;
5045   }
5046   case Intrinsic::powi:
5047     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5048                             getValue(I.getArgOperand(1)), DAG));
5049     return nullptr;
5050   case Intrinsic::log:
5051     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5052     return nullptr;
5053   case Intrinsic::log2:
5054     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5055     return nullptr;
5056   case Intrinsic::log10:
5057     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5058     return nullptr;
5059   case Intrinsic::exp:
5060     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5061     return nullptr;
5062   case Intrinsic::exp2:
5063     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5064     return nullptr;
5065   case Intrinsic::pow:
5066     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5067                            getValue(I.getArgOperand(1)), DAG, *TLI));
5068     return nullptr;
5069   case Intrinsic::sqrt:
5070   case Intrinsic::fabs:
5071   case Intrinsic::sin:
5072   case Intrinsic::cos:
5073   case Intrinsic::floor:
5074   case Intrinsic::ceil:
5075   case Intrinsic::trunc:
5076   case Intrinsic::rint:
5077   case Intrinsic::nearbyint:
5078   case Intrinsic::round: {
5079     unsigned Opcode;
5080     switch (Intrinsic) {
5081     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5082     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5083     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5084     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5085     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5086     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5087     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5088     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5089     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5090     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5091     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5092     }
5093 
5094     setValue(&I, DAG.getNode(Opcode, sdl,
5095                              getValue(I.getArgOperand(0)).getValueType(),
5096                              getValue(I.getArgOperand(0))));
5097     return nullptr;
5098   }
5099   case Intrinsic::copysign:
5100     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5101                              getValue(I.getArgOperand(0)).getValueType(),
5102                              getValue(I.getArgOperand(0)),
5103                              getValue(I.getArgOperand(1))));
5104     return nullptr;
5105   case Intrinsic::fma:
5106     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5107                              getValue(I.getArgOperand(0)).getValueType(),
5108                              getValue(I.getArgOperand(0)),
5109                              getValue(I.getArgOperand(1)),
5110                              getValue(I.getArgOperand(2))));
5111     return nullptr;
5112   case Intrinsic::fmuladd: {
5113     EVT VT = TLI->getValueType(I.getType());
5114     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5115         TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5116       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5117                                getValue(I.getArgOperand(0)).getValueType(),
5118                                getValue(I.getArgOperand(0)),
5119                                getValue(I.getArgOperand(1)),
5120                                getValue(I.getArgOperand(2))));
5121     } else {
5122       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5123                                 getValue(I.getArgOperand(0)).getValueType(),
5124                                 getValue(I.getArgOperand(0)),
5125                                 getValue(I.getArgOperand(1)));
5126       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5127                                 getValue(I.getArgOperand(0)).getValueType(),
5128                                 Mul,
5129                                 getValue(I.getArgOperand(2)));
5130       setValue(&I, Add);
5131     }
5132     return nullptr;
5133   }
5134   case Intrinsic::convert_to_fp16:
5135     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5136                              MVT::i16, getValue(I.getArgOperand(0))));
5137     return nullptr;
5138   case Intrinsic::convert_from_fp16:
5139     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5140                              MVT::f32, getValue(I.getArgOperand(0))));
5141     return nullptr;
5142   case Intrinsic::pcmarker: {
5143     SDValue Tmp = getValue(I.getArgOperand(0));
5144     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5145     return nullptr;
5146   }
5147   case Intrinsic::readcyclecounter: {
5148     SDValue Op = getRoot();
5149     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5150                       DAG.getVTList(MVT::i64, MVT::Other),
5151                       &Op, 1);
5152     setValue(&I, Res);
5153     DAG.setRoot(Res.getValue(1));
5154     return nullptr;
5155   }
5156   case Intrinsic::bswap:
5157     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5158                              getValue(I.getArgOperand(0)).getValueType(),
5159                              getValue(I.getArgOperand(0))));
5160     return nullptr;
5161   case Intrinsic::cttz: {
5162     SDValue Arg = getValue(I.getArgOperand(0));
5163     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5164     EVT Ty = Arg.getValueType();
5165     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5166                              sdl, Ty, Arg));
5167     return nullptr;
5168   }
5169   case Intrinsic::ctlz: {
5170     SDValue Arg = getValue(I.getArgOperand(0));
5171     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5172     EVT Ty = Arg.getValueType();
5173     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5174                              sdl, Ty, Arg));
5175     return nullptr;
5176   }
5177   case Intrinsic::ctpop: {
5178     SDValue Arg = getValue(I.getArgOperand(0));
5179     EVT Ty = Arg.getValueType();
5180     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5181     return nullptr;
5182   }
5183   case Intrinsic::stacksave: {
5184     SDValue Op = getRoot();
5185     Res = DAG.getNode(ISD::STACKSAVE, sdl,
5186                       DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5187     setValue(&I, Res);
5188     DAG.setRoot(Res.getValue(1));
5189     return nullptr;
5190   }
5191   case Intrinsic::stackrestore: {
5192     Res = getValue(I.getArgOperand(0));
5193     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5194     return nullptr;
5195   }
5196   case Intrinsic::stackprotector: {
5197     // Emit code into the DAG to store the stack guard onto the stack.
5198     MachineFunction &MF = DAG.getMachineFunction();
5199     MachineFrameInfo *MFI = MF.getFrameInfo();
5200     EVT PtrTy = TLI->getPointerTy();
5201 
5202     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5203     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5204 
5205     int FI = FuncInfo.StaticAllocaMap[Slot];
5206     MFI->setStackProtectorIndex(FI);
5207 
5208     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5209 
5210     // Store the stack protector onto the stack.
5211     Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5212                        MachinePointerInfo::getFixedStack(FI),
5213                        true, false, 0);
5214     setValue(&I, Res);
5215     DAG.setRoot(Res);
5216     return nullptr;
5217   }
5218   case Intrinsic::objectsize: {
5219     // If we don't know by now, we're never going to know.
5220     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5221 
5222     assert(CI && "Non-constant type in __builtin_object_size?");
5223 
5224     SDValue Arg = getValue(I.getCalledValue());
5225     EVT Ty = Arg.getValueType();
5226 
5227     if (CI->isZero())
5228       Res = DAG.getConstant(-1ULL, Ty);
5229     else
5230       Res = DAG.getConstant(0, Ty);
5231 
5232     setValue(&I, Res);
5233     return nullptr;
5234   }
5235   case Intrinsic::annotation:
5236   case Intrinsic::ptr_annotation:
5237     // Drop the intrinsic, but forward the value
5238     setValue(&I, getValue(I.getOperand(0)));
5239     return nullptr;
5240   case Intrinsic::var_annotation:
5241     // Discard annotate attributes
5242     return nullptr;
5243 
5244   case Intrinsic::init_trampoline: {
5245     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5246 
5247     SDValue Ops[6];
5248     Ops[0] = getRoot();
5249     Ops[1] = getValue(I.getArgOperand(0));
5250     Ops[2] = getValue(I.getArgOperand(1));
5251     Ops[3] = getValue(I.getArgOperand(2));
5252     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5253     Ops[5] = DAG.getSrcValue(F);
5254 
5255     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5256 
5257     DAG.setRoot(Res);
5258     return nullptr;
5259   }
5260   case Intrinsic::adjust_trampoline: {
5261     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5262                              TLI->getPointerTy(),
5263                              getValue(I.getArgOperand(0))));
5264     return nullptr;
5265   }
5266   case Intrinsic::gcroot:
5267     if (GFI) {
5268       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5269       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5270 
5271       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5272       GFI->addStackRoot(FI->getIndex(), TypeMap);
5273     }
5274     return nullptr;
5275   case Intrinsic::gcread:
5276   case Intrinsic::gcwrite:
5277     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5278   case Intrinsic::flt_rounds:
5279     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5280     return nullptr;
5281 
5282   case Intrinsic::expect: {
5283     // Just replace __builtin_expect(exp, c) with EXP.
5284     setValue(&I, getValue(I.getArgOperand(0)));
5285     return nullptr;
5286   }
5287 
5288   case Intrinsic::debugtrap:
5289   case Intrinsic::trap: {
5290     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5291     if (TrapFuncName.empty()) {
5292       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5293         ISD::TRAP : ISD::DEBUGTRAP;
5294       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5295       return nullptr;
5296     }
5297     TargetLowering::ArgListTy Args;
5298     TargetLowering::
5299     CallLoweringInfo CLI(getRoot(), I.getType(),
5300                  false, false, false, false, 0, CallingConv::C,
5301                  /*isTailCall=*/false,
5302                  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5303                  DAG.getExternalSymbol(TrapFuncName.data(),
5304                                        TLI->getPointerTy()),
5305                  Args, DAG, sdl);
5306     std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5307     DAG.setRoot(Result.second);
5308     return nullptr;
5309   }
5310 
5311   case Intrinsic::uadd_with_overflow:
5312   case Intrinsic::sadd_with_overflow:
5313   case Intrinsic::usub_with_overflow:
5314   case Intrinsic::ssub_with_overflow:
5315   case Intrinsic::umul_with_overflow:
5316   case Intrinsic::smul_with_overflow: {
5317     ISD::NodeType Op;
5318     switch (Intrinsic) {
5319     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5320     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5321     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5322     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5323     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5324     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5325     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5326     }
5327     SDValue Op1 = getValue(I.getArgOperand(0));
5328     SDValue Op2 = getValue(I.getArgOperand(1));
5329 
5330     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5331     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5332     return nullptr;
5333   }
5334   case Intrinsic::prefetch: {
5335     SDValue Ops[5];
5336     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5337     Ops[0] = getRoot();
5338     Ops[1] = getValue(I.getArgOperand(0));
5339     Ops[2] = getValue(I.getArgOperand(1));
5340     Ops[3] = getValue(I.getArgOperand(2));
5341     Ops[4] = getValue(I.getArgOperand(3));
5342     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5343                                         DAG.getVTList(MVT::Other),
5344                                         &Ops[0], 5,
5345                                         EVT::getIntegerVT(*Context, 8),
5346                                         MachinePointerInfo(I.getArgOperand(0)),
5347                                         0, /* align */
5348                                         false, /* volatile */
5349                                         rw==0, /* read */
5350                                         rw==1)); /* write */
5351     return nullptr;
5352   }
5353   case Intrinsic::lifetime_start:
5354   case Intrinsic::lifetime_end: {
5355     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5356     // Stack coloring is not enabled in O0, discard region information.
5357     if (TM.getOptLevel() == CodeGenOpt::None)
5358       return nullptr;
5359 
5360     SmallVector<Value *, 4> Allocas;
5361     GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5362 
5363     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5364            E = Allocas.end(); Object != E; ++Object) {
5365       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5366 
5367       // Could not find an Alloca.
5368       if (!LifetimeObject)
5369         continue;
5370 
5371       int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5372 
5373       SDValue Ops[2];
5374       Ops[0] = getRoot();
5375       Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5376       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5377 
5378       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5379       DAG.setRoot(Res);
5380     }
5381     return nullptr;
5382   }
5383   case Intrinsic::invariant_start:
5384     // Discard region information.
5385     setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5386     return nullptr;
5387   case Intrinsic::invariant_end:
5388     // Discard region information.
5389     return nullptr;
5390   case Intrinsic::stackprotectorcheck: {
5391     // Do not actually emit anything for this basic block. Instead we initialize
5392     // the stack protector descriptor and export the guard variable so we can
5393     // access it in FinishBasicBlock.
5394     const BasicBlock *BB = I.getParent();
5395     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5396     ExportFromCurrentBlock(SPDescriptor.getGuard());
5397 
5398     // Flush our exports since we are going to process a terminator.
5399     (void)getControlRoot();
5400     return nullptr;
5401   }
5402   case Intrinsic::clear_cache:
5403     return TLI->getClearCacheBuiltinName();
5404   case Intrinsic::donothing:
5405     // ignore
5406     return nullptr;
5407   case Intrinsic::experimental_stackmap: {
5408     visitStackmap(I);
5409     return nullptr;
5410   }
5411   case Intrinsic::experimental_patchpoint_void:
5412   case Intrinsic::experimental_patchpoint_i64: {
5413     visitPatchpoint(I);
5414     return nullptr;
5415   }
5416   }
5417 }
5418 
5419 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5420                                       bool isTailCall,
5421                                       MachineBasicBlock *LandingPad) {
5422   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5423   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5424   Type *RetTy = FTy->getReturnType();
5425   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5426   MCSymbol *BeginLabel = nullptr;
5427 
5428   TargetLowering::ArgListTy Args;
5429   TargetLowering::ArgListEntry Entry;
5430   Args.reserve(CS.arg_size());
5431 
5432   // Check whether the function can return without sret-demotion.
5433   SmallVector<ISD::OutputArg, 4> Outs;
5434   const TargetLowering *TLI = TM.getTargetLowering();
5435   GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5436 
5437   bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5438                                             DAG.getMachineFunction(),
5439                                             FTy->isVarArg(), Outs,
5440                                             FTy->getContext());
5441 
5442   SDValue DemoteStackSlot;
5443   int DemoteStackIdx = -100;
5444 
5445   if (!CanLowerReturn) {
5446     assert(!CS.hasInAllocaArgument() &&
5447            "sret demotion is incompatible with inalloca");
5448     uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5449                       FTy->getReturnType());
5450     unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5451                       FTy->getReturnType());
5452     MachineFunction &MF = DAG.getMachineFunction();
5453     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5454     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5455 
5456     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5457     Entry.Node = DemoteStackSlot;
5458     Entry.Ty = StackSlotPtrType;
5459     Entry.isSExt = false;
5460     Entry.isZExt = false;
5461     Entry.isInReg = false;
5462     Entry.isSRet = true;
5463     Entry.isNest = false;
5464     Entry.isByVal = false;
5465     Entry.isReturned = false;
5466     Entry.Alignment = Align;
5467     Args.push_back(Entry);
5468     RetTy = Type::getVoidTy(FTy->getContext());
5469   }
5470 
5471   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5472        i != e; ++i) {
5473     const Value *V = *i;
5474 
5475     // Skip empty types
5476     if (V->getType()->isEmptyTy())
5477       continue;
5478 
5479     SDValue ArgNode = getValue(V);
5480     Entry.Node = ArgNode; Entry.Ty = V->getType();
5481 
5482     // Skip the first return-type Attribute to get to params.
5483     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5484     Args.push_back(Entry);
5485   }
5486 
5487   if (LandingPad) {
5488     // Insert a label before the invoke call to mark the try range.  This can be
5489     // used to detect deletion of the invoke via the MachineModuleInfo.
5490     BeginLabel = MMI.getContext().CreateTempSymbol();
5491 
5492     // For SjLj, keep track of which landing pads go with which invokes
5493     // so as to maintain the ordering of pads in the LSDA.
5494     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5495     if (CallSiteIndex) {
5496       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5497       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5498 
5499       // Now that the call site is handled, stop tracking it.
5500       MMI.setCurrentCallSite(0);
5501     }
5502 
5503     // Both PendingLoads and PendingExports must be flushed here;
5504     // this call might not return.
5505     (void)getRoot();
5506     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5507   }
5508 
5509   // Check if target-independent constraints permit a tail call here.
5510   // Target-dependent constraints are checked within TLI->LowerCallTo.
5511   if (isTailCall && !isInTailCallPosition(CS, *TLI))
5512     isTailCall = false;
5513 
5514   TargetLowering::
5515   CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5516                        getCurSDLoc(), CS);
5517   std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5518   assert((isTailCall || Result.second.getNode()) &&
5519          "Non-null chain expected with non-tail call!");
5520   assert((Result.second.getNode() || !Result.first.getNode()) &&
5521          "Null value expected with tail call!");
5522   if (Result.first.getNode()) {
5523     setValue(CS.getInstruction(), Result.first);
5524   } else if (!CanLowerReturn && Result.second.getNode()) {
5525     // The instruction result is the result of loading from the
5526     // hidden sret parameter.
5527     SmallVector<EVT, 1> PVTs;
5528     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5529 
5530     ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5531     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5532     EVT PtrVT = PVTs[0];
5533 
5534     SmallVector<EVT, 4> RetTys;
5535     SmallVector<uint64_t, 4> Offsets;
5536     RetTy = FTy->getReturnType();
5537     ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5538 
5539     unsigned NumValues = RetTys.size();
5540     SmallVector<SDValue, 4> Values(NumValues);
5541     SmallVector<SDValue, 4> Chains(NumValues);
5542 
5543     for (unsigned i = 0; i < NumValues; ++i) {
5544       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5545                                 DemoteStackSlot,
5546                                 DAG.getConstant(Offsets[i], PtrVT));
5547       SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5548                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5549                               false, false, false, 1);
5550       Values[i] = L;
5551       Chains[i] = L.getValue(1);
5552     }
5553 
5554     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5555                                 MVT::Other, &Chains[0], NumValues);
5556     PendingLoads.push_back(Chain);
5557 
5558     setValue(CS.getInstruction(),
5559              DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5560                          DAG.getVTList(RetTys),
5561                          &Values[0], Values.size()));
5562   }
5563 
5564   if (!Result.second.getNode()) {
5565     // As a special case, a null chain means that a tail call has been emitted
5566     // and the DAG root is already updated.
5567     HasTailCall = true;
5568 
5569     // Since there's no actual continuation from this block, nothing can be
5570     // relying on us setting vregs for them.
5571     PendingExports.clear();
5572   } else {
5573     DAG.setRoot(Result.second);
5574   }
5575 
5576   if (LandingPad) {
5577     // Insert a label at the end of the invoke call to mark the try range.  This
5578     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5579     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5580     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5581 
5582     // Inform MachineModuleInfo of range.
5583     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5584   }
5585 }
5586 
5587 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5588 /// value is equal or not-equal to zero.
5589 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5590   for (const User *U : V->users()) {
5591     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5592       if (IC->isEquality())
5593         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5594           if (C->isNullValue())
5595             continue;
5596     // Unknown instruction.
5597     return false;
5598   }
5599   return true;
5600 }
5601 
5602 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5603                              Type *LoadTy,
5604                              SelectionDAGBuilder &Builder) {
5605 
5606   // Check to see if this load can be trivially constant folded, e.g. if the
5607   // input is from a string literal.
5608   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5609     // Cast pointer to the type we really want to load.
5610     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5611                                          PointerType::getUnqual(LoadTy));
5612 
5613     if (const Constant *LoadCst =
5614           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5615                                        Builder.DL))
5616       return Builder.getValue(LoadCst);
5617   }
5618 
5619   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5620   // still constant memory, the input chain can be the entry node.
5621   SDValue Root;
5622   bool ConstantMemory = false;
5623 
5624   // Do not serialize (non-volatile) loads of constant memory with anything.
5625   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5626     Root = Builder.DAG.getEntryNode();
5627     ConstantMemory = true;
5628   } else {
5629     // Do not serialize non-volatile loads against each other.
5630     Root = Builder.DAG.getRoot();
5631   }
5632 
5633   SDValue Ptr = Builder.getValue(PtrVal);
5634   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5635                                         Ptr, MachinePointerInfo(PtrVal),
5636                                         false /*volatile*/,
5637                                         false /*nontemporal*/,
5638                                         false /*isinvariant*/, 1 /* align=1 */);
5639 
5640   if (!ConstantMemory)
5641     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5642   return LoadVal;
5643 }
5644 
5645 /// processIntegerCallValue - Record the value for an instruction that
5646 /// produces an integer result, converting the type where necessary.
5647 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5648                                                   SDValue Value,
5649                                                   bool IsSigned) {
5650   EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5651   if (IsSigned)
5652     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5653   else
5654     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5655   setValue(&I, Value);
5656 }
5657 
5658 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5659 /// If so, return true and lower it, otherwise return false and it will be
5660 /// lowered like a normal call.
5661 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5662   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5663   if (I.getNumArgOperands() != 3)
5664     return false;
5665 
5666   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5667   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5668       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5669       !I.getType()->isIntegerTy())
5670     return false;
5671 
5672   const Value *Size = I.getArgOperand(2);
5673   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5674   if (CSize && CSize->getZExtValue() == 0) {
5675     EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5676     setValue(&I, DAG.getConstant(0, CallVT));
5677     return true;
5678   }
5679 
5680   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5681   std::pair<SDValue, SDValue> Res =
5682     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5683                                 getValue(LHS), getValue(RHS), getValue(Size),
5684                                 MachinePointerInfo(LHS),
5685                                 MachinePointerInfo(RHS));
5686   if (Res.first.getNode()) {
5687     processIntegerCallValue(I, Res.first, true);
5688     PendingLoads.push_back(Res.second);
5689     return true;
5690   }
5691 
5692   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5693   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5694   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5695     bool ActuallyDoIt = true;
5696     MVT LoadVT;
5697     Type *LoadTy;
5698     switch (CSize->getZExtValue()) {
5699     default:
5700       LoadVT = MVT::Other;
5701       LoadTy = nullptr;
5702       ActuallyDoIt = false;
5703       break;
5704     case 2:
5705       LoadVT = MVT::i16;
5706       LoadTy = Type::getInt16Ty(CSize->getContext());
5707       break;
5708     case 4:
5709       LoadVT = MVT::i32;
5710       LoadTy = Type::getInt32Ty(CSize->getContext());
5711       break;
5712     case 8:
5713       LoadVT = MVT::i64;
5714       LoadTy = Type::getInt64Ty(CSize->getContext());
5715       break;
5716         /*
5717     case 16:
5718       LoadVT = MVT::v4i32;
5719       LoadTy = Type::getInt32Ty(CSize->getContext());
5720       LoadTy = VectorType::get(LoadTy, 4);
5721       break;
5722          */
5723     }
5724 
5725     // This turns into unaligned loads.  We only do this if the target natively
5726     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5727     // we'll only produce a small number of byte loads.
5728 
5729     // Require that we can find a legal MVT, and only do this if the target
5730     // supports unaligned loads of that type.  Expanding into byte loads would
5731     // bloat the code.
5732     const TargetLowering *TLI = TM.getTargetLowering();
5733     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5734       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5735       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5736       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5737       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5738       if (!TLI->isTypeLegal(LoadVT) ||
5739           !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
5740           !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
5741         ActuallyDoIt = false;
5742     }
5743 
5744     if (ActuallyDoIt) {
5745       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5746       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5747 
5748       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5749                                  ISD::SETNE);
5750       processIntegerCallValue(I, Res, false);
5751       return true;
5752     }
5753   }
5754 
5755 
5756   return false;
5757 }
5758 
5759 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5760 /// form.  If so, return true and lower it, otherwise return false and it
5761 /// will be lowered like a normal call.
5762 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5763   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5764   if (I.getNumArgOperands() != 3)
5765     return false;
5766 
5767   const Value *Src = I.getArgOperand(0);
5768   const Value *Char = I.getArgOperand(1);
5769   const Value *Length = I.getArgOperand(2);
5770   if (!Src->getType()->isPointerTy() ||
5771       !Char->getType()->isIntegerTy() ||
5772       !Length->getType()->isIntegerTy() ||
5773       !I.getType()->isPointerTy())
5774     return false;
5775 
5776   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5777   std::pair<SDValue, SDValue> Res =
5778     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5779                                 getValue(Src), getValue(Char), getValue(Length),
5780                                 MachinePointerInfo(Src));
5781   if (Res.first.getNode()) {
5782     setValue(&I, Res.first);
5783     PendingLoads.push_back(Res.second);
5784     return true;
5785   }
5786 
5787   return false;
5788 }
5789 
5790 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5791 /// optimized form.  If so, return true and lower it, otherwise return false
5792 /// and it will be lowered like a normal call.
5793 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5794   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5795   if (I.getNumArgOperands() != 2)
5796     return false;
5797 
5798   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5799   if (!Arg0->getType()->isPointerTy() ||
5800       !Arg1->getType()->isPointerTy() ||
5801       !I.getType()->isPointerTy())
5802     return false;
5803 
5804   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5805   std::pair<SDValue, SDValue> Res =
5806     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5807                                 getValue(Arg0), getValue(Arg1),
5808                                 MachinePointerInfo(Arg0),
5809                                 MachinePointerInfo(Arg1), isStpcpy);
5810   if (Res.first.getNode()) {
5811     setValue(&I, Res.first);
5812     DAG.setRoot(Res.second);
5813     return true;
5814   }
5815 
5816   return false;
5817 }
5818 
5819 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5820 /// If so, return true and lower it, otherwise return false and it will be
5821 /// lowered like a normal call.
5822 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5823   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5824   if (I.getNumArgOperands() != 2)
5825     return false;
5826 
5827   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5828   if (!Arg0->getType()->isPointerTy() ||
5829       !Arg1->getType()->isPointerTy() ||
5830       !I.getType()->isIntegerTy())
5831     return false;
5832 
5833   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5834   std::pair<SDValue, SDValue> Res =
5835     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5836                                 getValue(Arg0), getValue(Arg1),
5837                                 MachinePointerInfo(Arg0),
5838                                 MachinePointerInfo(Arg1));
5839   if (Res.first.getNode()) {
5840     processIntegerCallValue(I, Res.first, true);
5841     PendingLoads.push_back(Res.second);
5842     return true;
5843   }
5844 
5845   return false;
5846 }
5847 
5848 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5849 /// form.  If so, return true and lower it, otherwise return false and it
5850 /// will be lowered like a normal call.
5851 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5852   // Verify that the prototype makes sense.  size_t strlen(char *)
5853   if (I.getNumArgOperands() != 1)
5854     return false;
5855 
5856   const Value *Arg0 = I.getArgOperand(0);
5857   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5858     return false;
5859 
5860   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5861   std::pair<SDValue, SDValue> Res =
5862     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5863                                 getValue(Arg0), MachinePointerInfo(Arg0));
5864   if (Res.first.getNode()) {
5865     processIntegerCallValue(I, Res.first, false);
5866     PendingLoads.push_back(Res.second);
5867     return true;
5868   }
5869 
5870   return false;
5871 }
5872 
5873 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5874 /// form.  If so, return true and lower it, otherwise return false and it
5875 /// will be lowered like a normal call.
5876 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5877   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5878   if (I.getNumArgOperands() != 2)
5879     return false;
5880 
5881   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5882   if (!Arg0->getType()->isPointerTy() ||
5883       !Arg1->getType()->isIntegerTy() ||
5884       !I.getType()->isIntegerTy())
5885     return false;
5886 
5887   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5888   std::pair<SDValue, SDValue> Res =
5889     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5890                                  getValue(Arg0), getValue(Arg1),
5891                                  MachinePointerInfo(Arg0));
5892   if (Res.first.getNode()) {
5893     processIntegerCallValue(I, Res.first, false);
5894     PendingLoads.push_back(Res.second);
5895     return true;
5896   }
5897 
5898   return false;
5899 }
5900 
5901 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5902 /// operation (as expected), translate it to an SDNode with the specified opcode
5903 /// and return true.
5904 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5905                                               unsigned Opcode) {
5906   // Sanity check that it really is a unary floating-point call.
5907   if (I.getNumArgOperands() != 1 ||
5908       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5909       I.getType() != I.getArgOperand(0)->getType() ||
5910       !I.onlyReadsMemory())
5911     return false;
5912 
5913   SDValue Tmp = getValue(I.getArgOperand(0));
5914   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5915   return true;
5916 }
5917 
5918 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5919   // Handle inline assembly differently.
5920   if (isa<InlineAsm>(I.getCalledValue())) {
5921     visitInlineAsm(&I);
5922     return;
5923   }
5924 
5925   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5926   ComputeUsesVAFloatArgument(I, &MMI);
5927 
5928   const char *RenameFn = nullptr;
5929   if (Function *F = I.getCalledFunction()) {
5930     if (F->isDeclaration()) {
5931       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5932         if (unsigned IID = II->getIntrinsicID(F)) {
5933           RenameFn = visitIntrinsicCall(I, IID);
5934           if (!RenameFn)
5935             return;
5936         }
5937       }
5938       if (unsigned IID = F->getIntrinsicID()) {
5939         RenameFn = visitIntrinsicCall(I, IID);
5940         if (!RenameFn)
5941           return;
5942       }
5943     }
5944 
5945     // Check for well-known libc/libm calls.  If the function is internal, it
5946     // can't be a library call.
5947     LibFunc::Func Func;
5948     if (!F->hasLocalLinkage() && F->hasName() &&
5949         LibInfo->getLibFunc(F->getName(), Func) &&
5950         LibInfo->hasOptimizedCodeGen(Func)) {
5951       switch (Func) {
5952       default: break;
5953       case LibFunc::copysign:
5954       case LibFunc::copysignf:
5955       case LibFunc::copysignl:
5956         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5957             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5958             I.getType() == I.getArgOperand(0)->getType() &&
5959             I.getType() == I.getArgOperand(1)->getType() &&
5960             I.onlyReadsMemory()) {
5961           SDValue LHS = getValue(I.getArgOperand(0));
5962           SDValue RHS = getValue(I.getArgOperand(1));
5963           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5964                                    LHS.getValueType(), LHS, RHS));
5965           return;
5966         }
5967         break;
5968       case LibFunc::fabs:
5969       case LibFunc::fabsf:
5970       case LibFunc::fabsl:
5971         if (visitUnaryFloatCall(I, ISD::FABS))
5972           return;
5973         break;
5974       case LibFunc::sin:
5975       case LibFunc::sinf:
5976       case LibFunc::sinl:
5977         if (visitUnaryFloatCall(I, ISD::FSIN))
5978           return;
5979         break;
5980       case LibFunc::cos:
5981       case LibFunc::cosf:
5982       case LibFunc::cosl:
5983         if (visitUnaryFloatCall(I, ISD::FCOS))
5984           return;
5985         break;
5986       case LibFunc::sqrt:
5987       case LibFunc::sqrtf:
5988       case LibFunc::sqrtl:
5989       case LibFunc::sqrt_finite:
5990       case LibFunc::sqrtf_finite:
5991       case LibFunc::sqrtl_finite:
5992         if (visitUnaryFloatCall(I, ISD::FSQRT))
5993           return;
5994         break;
5995       case LibFunc::floor:
5996       case LibFunc::floorf:
5997       case LibFunc::floorl:
5998         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5999           return;
6000         break;
6001       case LibFunc::nearbyint:
6002       case LibFunc::nearbyintf:
6003       case LibFunc::nearbyintl:
6004         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6005           return;
6006         break;
6007       case LibFunc::ceil:
6008       case LibFunc::ceilf:
6009       case LibFunc::ceill:
6010         if (visitUnaryFloatCall(I, ISD::FCEIL))
6011           return;
6012         break;
6013       case LibFunc::rint:
6014       case LibFunc::rintf:
6015       case LibFunc::rintl:
6016         if (visitUnaryFloatCall(I, ISD::FRINT))
6017           return;
6018         break;
6019       case LibFunc::round:
6020       case LibFunc::roundf:
6021       case LibFunc::roundl:
6022         if (visitUnaryFloatCall(I, ISD::FROUND))
6023           return;
6024         break;
6025       case LibFunc::trunc:
6026       case LibFunc::truncf:
6027       case LibFunc::truncl:
6028         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6029           return;
6030         break;
6031       case LibFunc::log2:
6032       case LibFunc::log2f:
6033       case LibFunc::log2l:
6034         if (visitUnaryFloatCall(I, ISD::FLOG2))
6035           return;
6036         break;
6037       case LibFunc::exp2:
6038       case LibFunc::exp2f:
6039       case LibFunc::exp2l:
6040         if (visitUnaryFloatCall(I, ISD::FEXP2))
6041           return;
6042         break;
6043       case LibFunc::memcmp:
6044         if (visitMemCmpCall(I))
6045           return;
6046         break;
6047       case LibFunc::memchr:
6048         if (visitMemChrCall(I))
6049           return;
6050         break;
6051       case LibFunc::strcpy:
6052         if (visitStrCpyCall(I, false))
6053           return;
6054         break;
6055       case LibFunc::stpcpy:
6056         if (visitStrCpyCall(I, true))
6057           return;
6058         break;
6059       case LibFunc::strcmp:
6060         if (visitStrCmpCall(I))
6061           return;
6062         break;
6063       case LibFunc::strlen:
6064         if (visitStrLenCall(I))
6065           return;
6066         break;
6067       case LibFunc::strnlen:
6068         if (visitStrNLenCall(I))
6069           return;
6070         break;
6071       }
6072     }
6073   }
6074 
6075   SDValue Callee;
6076   if (!RenameFn)
6077     Callee = getValue(I.getCalledValue());
6078   else
6079     Callee = DAG.getExternalSymbol(RenameFn,
6080                                    TM.getTargetLowering()->getPointerTy());
6081 
6082   // Check if we can potentially perform a tail call. More detailed checking is
6083   // be done within LowerCallTo, after more information about the call is known.
6084   LowerCallTo(&I, Callee, I.isTailCall());
6085 }
6086 
6087 namespace {
6088 
6089 /// AsmOperandInfo - This contains information for each constraint that we are
6090 /// lowering.
6091 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6092 public:
6093   /// CallOperand - If this is the result output operand or a clobber
6094   /// this is null, otherwise it is the incoming operand to the CallInst.
6095   /// This gets modified as the asm is processed.
6096   SDValue CallOperand;
6097 
6098   /// AssignedRegs - If this is a register or register class operand, this
6099   /// contains the set of register corresponding to the operand.
6100   RegsForValue AssignedRegs;
6101 
6102   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6103     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6104   }
6105 
6106   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6107   /// corresponds to.  If there is no Value* for this operand, it returns
6108   /// MVT::Other.
6109   EVT getCallOperandValEVT(LLVMContext &Context,
6110                            const TargetLowering &TLI,
6111                            const DataLayout *DL) const {
6112     if (!CallOperandVal) return MVT::Other;
6113 
6114     if (isa<BasicBlock>(CallOperandVal))
6115       return TLI.getPointerTy();
6116 
6117     llvm::Type *OpTy = CallOperandVal->getType();
6118 
6119     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6120     // If this is an indirect operand, the operand is a pointer to the
6121     // accessed type.
6122     if (isIndirect) {
6123       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6124       if (!PtrTy)
6125         report_fatal_error("Indirect operand for inline asm not a pointer!");
6126       OpTy = PtrTy->getElementType();
6127     }
6128 
6129     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6130     if (StructType *STy = dyn_cast<StructType>(OpTy))
6131       if (STy->getNumElements() == 1)
6132         OpTy = STy->getElementType(0);
6133 
6134     // If OpTy is not a single value, it may be a struct/union that we
6135     // can tile with integers.
6136     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6137       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6138       switch (BitSize) {
6139       default: break;
6140       case 1:
6141       case 8:
6142       case 16:
6143       case 32:
6144       case 64:
6145       case 128:
6146         OpTy = IntegerType::get(Context, BitSize);
6147         break;
6148       }
6149     }
6150 
6151     return TLI.getValueType(OpTy, true);
6152   }
6153 };
6154 
6155 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6156 
6157 } // end anonymous namespace
6158 
6159 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6160 /// specified operand.  We prefer to assign virtual registers, to allow the
6161 /// register allocator to handle the assignment process.  However, if the asm
6162 /// uses features that we can't model on machineinstrs, we have SDISel do the
6163 /// allocation.  This produces generally horrible, but correct, code.
6164 ///
6165 ///   OpInfo describes the operand.
6166 ///
6167 static void GetRegistersForValue(SelectionDAG &DAG,
6168                                  const TargetLowering &TLI,
6169                                  SDLoc DL,
6170                                  SDISelAsmOperandInfo &OpInfo) {
6171   LLVMContext &Context = *DAG.getContext();
6172 
6173   MachineFunction &MF = DAG.getMachineFunction();
6174   SmallVector<unsigned, 4> Regs;
6175 
6176   // If this is a constraint for a single physreg, or a constraint for a
6177   // register class, find it.
6178   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6179     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6180                                      OpInfo.ConstraintVT);
6181 
6182   unsigned NumRegs = 1;
6183   if (OpInfo.ConstraintVT != MVT::Other) {
6184     // If this is a FP input in an integer register (or visa versa) insert a bit
6185     // cast of the input value.  More generally, handle any case where the input
6186     // value disagrees with the register class we plan to stick this in.
6187     if (OpInfo.Type == InlineAsm::isInput &&
6188         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6189       // Try to convert to the first EVT that the reg class contains.  If the
6190       // types are identical size, use a bitcast to convert (e.g. two differing
6191       // vector types).
6192       MVT RegVT = *PhysReg.second->vt_begin();
6193       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6194         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6195                                          RegVT, OpInfo.CallOperand);
6196         OpInfo.ConstraintVT = RegVT;
6197       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6198         // If the input is a FP value and we want it in FP registers, do a
6199         // bitcast to the corresponding integer type.  This turns an f64 value
6200         // into i64, which can be passed with two i32 values on a 32-bit
6201         // machine.
6202         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6203         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6204                                          RegVT, OpInfo.CallOperand);
6205         OpInfo.ConstraintVT = RegVT;
6206       }
6207     }
6208 
6209     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6210   }
6211 
6212   MVT RegVT;
6213   EVT ValueVT = OpInfo.ConstraintVT;
6214 
6215   // If this is a constraint for a specific physical register, like {r17},
6216   // assign it now.
6217   if (unsigned AssignedReg = PhysReg.first) {
6218     const TargetRegisterClass *RC = PhysReg.second;
6219     if (OpInfo.ConstraintVT == MVT::Other)
6220       ValueVT = *RC->vt_begin();
6221 
6222     // Get the actual register value type.  This is important, because the user
6223     // may have asked for (e.g.) the AX register in i32 type.  We need to
6224     // remember that AX is actually i16 to get the right extension.
6225     RegVT = *RC->vt_begin();
6226 
6227     // This is a explicit reference to a physical register.
6228     Regs.push_back(AssignedReg);
6229 
6230     // If this is an expanded reference, add the rest of the regs to Regs.
6231     if (NumRegs != 1) {
6232       TargetRegisterClass::iterator I = RC->begin();
6233       for (; *I != AssignedReg; ++I)
6234         assert(I != RC->end() && "Didn't find reg!");
6235 
6236       // Already added the first reg.
6237       --NumRegs; ++I;
6238       for (; NumRegs; --NumRegs, ++I) {
6239         assert(I != RC->end() && "Ran out of registers to allocate!");
6240         Regs.push_back(*I);
6241       }
6242     }
6243 
6244     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6245     return;
6246   }
6247 
6248   // Otherwise, if this was a reference to an LLVM register class, create vregs
6249   // for this reference.
6250   if (const TargetRegisterClass *RC = PhysReg.second) {
6251     RegVT = *RC->vt_begin();
6252     if (OpInfo.ConstraintVT == MVT::Other)
6253       ValueVT = RegVT;
6254 
6255     // Create the appropriate number of virtual registers.
6256     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6257     for (; NumRegs; --NumRegs)
6258       Regs.push_back(RegInfo.createVirtualRegister(RC));
6259 
6260     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6261     return;
6262   }
6263 
6264   // Otherwise, we couldn't allocate enough registers for this.
6265 }
6266 
6267 /// visitInlineAsm - Handle a call to an InlineAsm object.
6268 ///
6269 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6270   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6271 
6272   /// ConstraintOperands - Information about all of the constraints.
6273   SDISelAsmOperandInfoVector ConstraintOperands;
6274 
6275   const TargetLowering *TLI = TM.getTargetLowering();
6276   TargetLowering::AsmOperandInfoVector
6277     TargetConstraints = TLI->ParseConstraints(CS);
6278 
6279   bool hasMemory = false;
6280 
6281   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6282   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6283   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6284     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6285     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6286 
6287     MVT OpVT = MVT::Other;
6288 
6289     // Compute the value type for each operand.
6290     switch (OpInfo.Type) {
6291     case InlineAsm::isOutput:
6292       // Indirect outputs just consume an argument.
6293       if (OpInfo.isIndirect) {
6294         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6295         break;
6296       }
6297 
6298       // The return value of the call is this value.  As such, there is no
6299       // corresponding argument.
6300       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6301       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6302         OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6303       } else {
6304         assert(ResNo == 0 && "Asm only has one result!");
6305         OpVT = TLI->getSimpleValueType(CS.getType());
6306       }
6307       ++ResNo;
6308       break;
6309     case InlineAsm::isInput:
6310       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6311       break;
6312     case InlineAsm::isClobber:
6313       // Nothing to do.
6314       break;
6315     }
6316 
6317     // If this is an input or an indirect output, process the call argument.
6318     // BasicBlocks are labels, currently appearing only in asm's.
6319     if (OpInfo.CallOperandVal) {
6320       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6321         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6322       } else {
6323         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6324       }
6325 
6326       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
6327         getSimpleVT();
6328     }
6329 
6330     OpInfo.ConstraintVT = OpVT;
6331 
6332     // Indirect operand accesses access memory.
6333     if (OpInfo.isIndirect)
6334       hasMemory = true;
6335     else {
6336       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6337         TargetLowering::ConstraintType
6338           CType = TLI->getConstraintType(OpInfo.Codes[j]);
6339         if (CType == TargetLowering::C_Memory) {
6340           hasMemory = true;
6341           break;
6342         }
6343       }
6344     }
6345   }
6346 
6347   SDValue Chain, Flag;
6348 
6349   // We won't need to flush pending loads if this asm doesn't touch
6350   // memory and is nonvolatile.
6351   if (hasMemory || IA->hasSideEffects())
6352     Chain = getRoot();
6353   else
6354     Chain = DAG.getRoot();
6355 
6356   // Second pass over the constraints: compute which constraint option to use
6357   // and assign registers to constraints that want a specific physreg.
6358   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6359     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6360 
6361     // If this is an output operand with a matching input operand, look up the
6362     // matching input. If their types mismatch, e.g. one is an integer, the
6363     // other is floating point, or their sizes are different, flag it as an
6364     // error.
6365     if (OpInfo.hasMatchingInput()) {
6366       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6367 
6368       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6369         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6370           TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6371                                             OpInfo.ConstraintVT);
6372         std::pair<unsigned, const TargetRegisterClass*> InputRC =
6373           TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6374                                             Input.ConstraintVT);
6375         if ((OpInfo.ConstraintVT.isInteger() !=
6376              Input.ConstraintVT.isInteger()) ||
6377             (MatchRC.second != InputRC.second)) {
6378           report_fatal_error("Unsupported asm: input constraint"
6379                              " with a matching output constraint of"
6380                              " incompatible type!");
6381         }
6382         Input.ConstraintVT = OpInfo.ConstraintVT;
6383       }
6384     }
6385 
6386     // Compute the constraint code and ConstraintType to use.
6387     TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6388 
6389     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6390         OpInfo.Type == InlineAsm::isClobber)
6391       continue;
6392 
6393     // If this is a memory input, and if the operand is not indirect, do what we
6394     // need to to provide an address for the memory input.
6395     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6396         !OpInfo.isIndirect) {
6397       assert((OpInfo.isMultipleAlternative ||
6398               (OpInfo.Type == InlineAsm::isInput)) &&
6399              "Can only indirectify direct input operands!");
6400 
6401       // Memory operands really want the address of the value.  If we don't have
6402       // an indirect input, put it in the constpool if we can, otherwise spill
6403       // it to a stack slot.
6404       // TODO: This isn't quite right. We need to handle these according to
6405       // the addressing mode that the constraint wants. Also, this may take
6406       // an additional register for the computation and we don't want that
6407       // either.
6408 
6409       // If the operand is a float, integer, or vector constant, spill to a
6410       // constant pool entry to get its address.
6411       const Value *OpVal = OpInfo.CallOperandVal;
6412       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6413           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6414         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6415                                                  TLI->getPointerTy());
6416       } else {
6417         // Otherwise, create a stack slot and emit a store to it before the
6418         // asm.
6419         Type *Ty = OpVal->getType();
6420         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6421         unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6422         MachineFunction &MF = DAG.getMachineFunction();
6423         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6424         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6425         Chain = DAG.getStore(Chain, getCurSDLoc(),
6426                              OpInfo.CallOperand, StackSlot,
6427                              MachinePointerInfo::getFixedStack(SSFI),
6428                              false, false, 0);
6429         OpInfo.CallOperand = StackSlot;
6430       }
6431 
6432       // There is no longer a Value* corresponding to this operand.
6433       OpInfo.CallOperandVal = nullptr;
6434 
6435       // It is now an indirect operand.
6436       OpInfo.isIndirect = true;
6437     }
6438 
6439     // If this constraint is for a specific register, allocate it before
6440     // anything else.
6441     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6442       GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6443   }
6444 
6445   // Second pass - Loop over all of the operands, assigning virtual or physregs
6446   // to register class operands.
6447   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6448     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6449 
6450     // C_Register operands have already been allocated, Other/Memory don't need
6451     // to be.
6452     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6453       GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6454   }
6455 
6456   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6457   std::vector<SDValue> AsmNodeOperands;
6458   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6459   AsmNodeOperands.push_back(
6460           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6461                                       TLI->getPointerTy()));
6462 
6463   // If we have a !srcloc metadata node associated with it, we want to attach
6464   // this to the ultimately generated inline asm machineinstr.  To do this, we
6465   // pass in the third operand as this (potentially null) inline asm MDNode.
6466   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6467   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6468 
6469   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6470   // bits as operand 3.
6471   unsigned ExtraInfo = 0;
6472   if (IA->hasSideEffects())
6473     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6474   if (IA->isAlignStack())
6475     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6476   // Set the asm dialect.
6477   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6478 
6479   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6480   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6481     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6482 
6483     // Compute the constraint code and ConstraintType to use.
6484     TLI->ComputeConstraintToUse(OpInfo, SDValue());
6485 
6486     // Ideally, we would only check against memory constraints.  However, the
6487     // meaning of an other constraint can be target-specific and we can't easily
6488     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6489     // for other constriants as well.
6490     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6491         OpInfo.ConstraintType == TargetLowering::C_Other) {
6492       if (OpInfo.Type == InlineAsm::isInput)
6493         ExtraInfo |= InlineAsm::Extra_MayLoad;
6494       else if (OpInfo.Type == InlineAsm::isOutput)
6495         ExtraInfo |= InlineAsm::Extra_MayStore;
6496       else if (OpInfo.Type == InlineAsm::isClobber)
6497         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6498     }
6499   }
6500 
6501   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6502                                                   TLI->getPointerTy()));
6503 
6504   // Loop over all of the inputs, copying the operand values into the
6505   // appropriate registers and processing the output regs.
6506   RegsForValue RetValRegs;
6507 
6508   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6509   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6510 
6511   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6512     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6513 
6514     switch (OpInfo.Type) {
6515     case InlineAsm::isOutput: {
6516       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6517           OpInfo.ConstraintType != TargetLowering::C_Register) {
6518         // Memory output, or 'other' output (e.g. 'X' constraint).
6519         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6520 
6521         // Add information to the INLINEASM node to know about this output.
6522         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6523         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6524                                                         TLI->getPointerTy()));
6525         AsmNodeOperands.push_back(OpInfo.CallOperand);
6526         break;
6527       }
6528 
6529       // Otherwise, this is a register or register class output.
6530 
6531       // Copy the output from the appropriate register.  Find a register that
6532       // we can use.
6533       if (OpInfo.AssignedRegs.Regs.empty()) {
6534         LLVMContext &Ctx = *DAG.getContext();
6535         Ctx.emitError(CS.getInstruction(),
6536                       "couldn't allocate output register for constraint '" +
6537                           Twine(OpInfo.ConstraintCode) + "'");
6538         return;
6539       }
6540 
6541       // If this is an indirect operand, store through the pointer after the
6542       // asm.
6543       if (OpInfo.isIndirect) {
6544         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6545                                                       OpInfo.CallOperandVal));
6546       } else {
6547         // This is the result value of the call.
6548         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6549         // Concatenate this output onto the outputs list.
6550         RetValRegs.append(OpInfo.AssignedRegs);
6551       }
6552 
6553       // Add information to the INLINEASM node to know that this register is
6554       // set.
6555       OpInfo.AssignedRegs
6556           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6557                                     ? InlineAsm::Kind_RegDefEarlyClobber
6558                                     : InlineAsm::Kind_RegDef,
6559                                 false, 0, DAG, AsmNodeOperands);
6560       break;
6561     }
6562     case InlineAsm::isInput: {
6563       SDValue InOperandVal = OpInfo.CallOperand;
6564 
6565       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6566         // If this is required to match an output register we have already set,
6567         // just use its register.
6568         unsigned OperandNo = OpInfo.getMatchedOperand();
6569 
6570         // Scan until we find the definition we already emitted of this operand.
6571         // When we find it, create a RegsForValue operand.
6572         unsigned CurOp = InlineAsm::Op_FirstOperand;
6573         for (; OperandNo; --OperandNo) {
6574           // Advance to the next operand.
6575           unsigned OpFlag =
6576             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6577           assert((InlineAsm::isRegDefKind(OpFlag) ||
6578                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6579                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6580           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6581         }
6582 
6583         unsigned OpFlag =
6584           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6585         if (InlineAsm::isRegDefKind(OpFlag) ||
6586             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6587           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6588           if (OpInfo.isIndirect) {
6589             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6590             LLVMContext &Ctx = *DAG.getContext();
6591             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6592                                                " don't know how to handle tied "
6593                                                "indirect register inputs");
6594             return;
6595           }
6596 
6597           RegsForValue MatchedRegs;
6598           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6599           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6600           MatchedRegs.RegVTs.push_back(RegVT);
6601           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6602           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6603                i != e; ++i) {
6604             if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6605               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6606             else {
6607               LLVMContext &Ctx = *DAG.getContext();
6608               Ctx.emitError(CS.getInstruction(),
6609                             "inline asm error: This value"
6610                             " type register class is not natively supported!");
6611               return;
6612             }
6613           }
6614           // Use the produced MatchedRegs object to
6615           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6616                                     Chain, &Flag, CS.getInstruction());
6617           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6618                                            true, OpInfo.getMatchedOperand(),
6619                                            DAG, AsmNodeOperands);
6620           break;
6621         }
6622 
6623         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6624         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6625                "Unexpected number of operands");
6626         // Add information to the INLINEASM node to know about this input.
6627         // See InlineAsm.h isUseOperandTiedToDef.
6628         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6629                                                     OpInfo.getMatchedOperand());
6630         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6631                                                         TLI->getPointerTy()));
6632         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6633         break;
6634       }
6635 
6636       // Treat indirect 'X' constraint as memory.
6637       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6638           OpInfo.isIndirect)
6639         OpInfo.ConstraintType = TargetLowering::C_Memory;
6640 
6641       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6642         std::vector<SDValue> Ops;
6643         TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6644                                           Ops, DAG);
6645         if (Ops.empty()) {
6646           LLVMContext &Ctx = *DAG.getContext();
6647           Ctx.emitError(CS.getInstruction(),
6648                         "invalid operand for inline asm constraint '" +
6649                             Twine(OpInfo.ConstraintCode) + "'");
6650           return;
6651         }
6652 
6653         // Add information to the INLINEASM node to know about this input.
6654         unsigned ResOpType =
6655           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6656         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6657                                                         TLI->getPointerTy()));
6658         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6659         break;
6660       }
6661 
6662       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6663         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6664         assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6665                "Memory operands expect pointer values");
6666 
6667         // Add information to the INLINEASM node to know about this input.
6668         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6669         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6670                                                         TLI->getPointerTy()));
6671         AsmNodeOperands.push_back(InOperandVal);
6672         break;
6673       }
6674 
6675       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6676               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6677              "Unknown constraint type!");
6678 
6679       // TODO: Support this.
6680       if (OpInfo.isIndirect) {
6681         LLVMContext &Ctx = *DAG.getContext();
6682         Ctx.emitError(CS.getInstruction(),
6683                       "Don't know how to handle indirect register inputs yet "
6684                       "for constraint '" +
6685                           Twine(OpInfo.ConstraintCode) + "'");
6686         return;
6687       }
6688 
6689       // Copy the input into the appropriate registers.
6690       if (OpInfo.AssignedRegs.Regs.empty()) {
6691         LLVMContext &Ctx = *DAG.getContext();
6692         Ctx.emitError(CS.getInstruction(),
6693                       "couldn't allocate input reg for constraint '" +
6694                           Twine(OpInfo.ConstraintCode) + "'");
6695         return;
6696       }
6697 
6698       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6699                                         Chain, &Flag, CS.getInstruction());
6700 
6701       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6702                                                DAG, AsmNodeOperands);
6703       break;
6704     }
6705     case InlineAsm::isClobber: {
6706       // Add the clobbered value to the operand list, so that the register
6707       // allocator is aware that the physreg got clobbered.
6708       if (!OpInfo.AssignedRegs.Regs.empty())
6709         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6710                                                  false, 0, DAG,
6711                                                  AsmNodeOperands);
6712       break;
6713     }
6714     }
6715   }
6716 
6717   // Finish up input operands.  Set the input chain and add the flag last.
6718   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6719   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6720 
6721   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6722                       DAG.getVTList(MVT::Other, MVT::Glue),
6723                       &AsmNodeOperands[0], AsmNodeOperands.size());
6724   Flag = Chain.getValue(1);
6725 
6726   // If this asm returns a register value, copy the result from that register
6727   // and set it as the value of the call.
6728   if (!RetValRegs.Regs.empty()) {
6729     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6730                                              Chain, &Flag, CS.getInstruction());
6731 
6732     // FIXME: Why don't we do this for inline asms with MRVs?
6733     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6734       EVT ResultType = TLI->getValueType(CS.getType());
6735 
6736       // If any of the results of the inline asm is a vector, it may have the
6737       // wrong width/num elts.  This can happen for register classes that can
6738       // contain multiple different value types.  The preg or vreg allocated may
6739       // not have the same VT as was expected.  Convert it to the right type
6740       // with bit_convert.
6741       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6742         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6743                           ResultType, Val);
6744 
6745       } else if (ResultType != Val.getValueType() &&
6746                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6747         // If a result value was tied to an input value, the computed result may
6748         // have a wider width than the expected result.  Extract the relevant
6749         // portion.
6750         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6751       }
6752 
6753       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6754     }
6755 
6756     setValue(CS.getInstruction(), Val);
6757     // Don't need to use this as a chain in this case.
6758     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6759       return;
6760   }
6761 
6762   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6763 
6764   // Process indirect outputs, first output all of the flagged copies out of
6765   // physregs.
6766   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6767     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6768     const Value *Ptr = IndirectStoresToEmit[i].second;
6769     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6770                                              Chain, &Flag, IA);
6771     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6772   }
6773 
6774   // Emit the non-flagged stores from the physregs.
6775   SmallVector<SDValue, 8> OutChains;
6776   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6777     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6778                                StoresToEmit[i].first,
6779                                getValue(StoresToEmit[i].second),
6780                                MachinePointerInfo(StoresToEmit[i].second),
6781                                false, false, 0);
6782     OutChains.push_back(Val);
6783   }
6784 
6785   if (!OutChains.empty())
6786     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6787                         &OutChains[0], OutChains.size());
6788 
6789   DAG.setRoot(Chain);
6790 }
6791 
6792 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6793   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6794                           MVT::Other, getRoot(),
6795                           getValue(I.getArgOperand(0)),
6796                           DAG.getSrcValue(I.getArgOperand(0))));
6797 }
6798 
6799 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6800   const TargetLowering *TLI = TM.getTargetLowering();
6801   const DataLayout &DL = *TLI->getDataLayout();
6802   SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6803                            getRoot(), getValue(I.getOperand(0)),
6804                            DAG.getSrcValue(I.getOperand(0)),
6805                            DL.getABITypeAlignment(I.getType()));
6806   setValue(&I, V);
6807   DAG.setRoot(V.getValue(1));
6808 }
6809 
6810 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6811   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6812                           MVT::Other, getRoot(),
6813                           getValue(I.getArgOperand(0)),
6814                           DAG.getSrcValue(I.getArgOperand(0))));
6815 }
6816 
6817 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6818   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6819                           MVT::Other, getRoot(),
6820                           getValue(I.getArgOperand(0)),
6821                           getValue(I.getArgOperand(1)),
6822                           DAG.getSrcValue(I.getArgOperand(0)),
6823                           DAG.getSrcValue(I.getArgOperand(1))));
6824 }
6825 
6826 /// \brief Lower an argument list according to the target calling convention.
6827 ///
6828 /// \return A tuple of <return-value, token-chain>
6829 ///
6830 /// This is a helper for lowering intrinsics that follow a target calling
6831 /// convention or require stack pointer adjustment. Only a subset of the
6832 /// intrinsic's operands need to participate in the calling convention.
6833 std::pair<SDValue, SDValue>
6834 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6835                                        unsigned NumArgs, SDValue Callee,
6836                                        bool useVoidTy) {
6837   TargetLowering::ArgListTy Args;
6838   Args.reserve(NumArgs);
6839 
6840   // Populate the argument list.
6841   // Attributes for args start at offset 1, after the return attribute.
6842   ImmutableCallSite CS(&CI);
6843   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6844        ArgI != ArgE; ++ArgI) {
6845     const Value *V = CI.getOperand(ArgI);
6846 
6847     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6848 
6849     TargetLowering::ArgListEntry Entry;
6850     Entry.Node = getValue(V);
6851     Entry.Ty = V->getType();
6852     Entry.setAttributes(&CS, AttrI);
6853     Args.push_back(Entry);
6854   }
6855 
6856   Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6857   TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
6858     /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
6859     CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
6860     /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
6861 
6862   const TargetLowering *TLI = TM.getTargetLowering();
6863   return TLI->LowerCallTo(CLI);
6864 }
6865 
6866 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6867 /// or patchpoint target node's operand list.
6868 ///
6869 /// Constants are converted to TargetConstants purely as an optimization to
6870 /// avoid constant materialization and register allocation.
6871 ///
6872 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6873 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6874 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6875 /// address materialization and register allocation, but may also be required
6876 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6877 /// alloca in the entry block, then the runtime may assume that the alloca's
6878 /// StackMap location can be read immediately after compilation and that the
6879 /// location is valid at any point during execution (this is similar to the
6880 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6881 /// only available in a register, then the runtime would need to trap when
6882 /// execution reaches the StackMap in order to read the alloca's location.
6883 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
6884                                 SmallVectorImpl<SDValue> &Ops,
6885                                 SelectionDAGBuilder &Builder) {
6886   for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
6887     SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
6888     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6889       Ops.push_back(
6890         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6891       Ops.push_back(
6892         Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6893     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6894       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6895       Ops.push_back(
6896         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6897     } else
6898       Ops.push_back(OpVal);
6899   }
6900 }
6901 
6902 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6903 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6904   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6905   //                                  [live variables...])
6906 
6907   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6908 
6909   SDValue Chain, InFlag, Callee, NullPtr;
6910   SmallVector<SDValue, 32> Ops;
6911 
6912   SDLoc DL = getCurSDLoc();
6913   Callee = getValue(CI.getCalledValue());
6914   NullPtr = DAG.getIntPtrConstant(0, true);
6915 
6916   // The stackmap intrinsic only records the live variables (the arguemnts
6917   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6918   // intrinsic, this won't be lowered to a function call. This means we don't
6919   // have to worry about calling conventions and target specific lowering code.
6920   // Instead we perform the call lowering right here.
6921   //
6922   // chain, flag = CALLSEQ_START(chain, 0)
6923   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6924   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6925   //
6926   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6927   InFlag = Chain.getValue(1);
6928 
6929   // Add the <id> and <numBytes> constants.
6930   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6931   Ops.push_back(DAG.getTargetConstant(
6932                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6933   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6934   Ops.push_back(DAG.getTargetConstant(
6935                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6936 
6937   // Push live variables for the stack map.
6938   addStackMapLiveVars(CI, 2, Ops, *this);
6939 
6940   // We are not pushing any register mask info here on the operands list,
6941   // because the stackmap doesn't clobber anything.
6942 
6943   // Push the chain and the glue flag.
6944   Ops.push_back(Chain);
6945   Ops.push_back(InFlag);
6946 
6947   // Create the STACKMAP node.
6948   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6949   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6950   Chain = SDValue(SM, 0);
6951   InFlag = Chain.getValue(1);
6952 
6953   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6954 
6955   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6956 
6957   // Set the root to the target-lowered call chain.
6958   DAG.setRoot(Chain);
6959 
6960   // Inform the Frame Information that we have a stackmap in this function.
6961   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6962 }
6963 
6964 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6965 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6966   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6967   //                                                 i32 <numBytes>,
6968   //                                                 i8* <target>,
6969   //                                                 i32 <numArgs>,
6970   //                                                 [Args...],
6971   //                                                 [live variables...])
6972 
6973   CallingConv::ID CC = CI.getCallingConv();
6974   bool isAnyRegCC = CC == CallingConv::AnyReg;
6975   bool hasDef = !CI.getType()->isVoidTy();
6976   SDValue Callee = getValue(CI.getOperand(2)); // <target>
6977 
6978   // Get the real number of arguments participating in the call <numArgs>
6979   SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
6980   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6981 
6982   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6983   // Intrinsics include all meta-operands up to but not including CC.
6984   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6985   assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
6986          "Not enough arguments provided to the patchpoint intrinsic");
6987 
6988   // For AnyRegCC the arguments are lowered later on manually.
6989   unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6990   std::pair<SDValue, SDValue> Result =
6991     LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
6992 
6993   // Set the root to the target-lowered call chain.
6994   SDValue Chain = Result.second;
6995   DAG.setRoot(Chain);
6996 
6997   SDNode *CallEnd = Chain.getNode();
6998   if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6999     CallEnd = CallEnd->getOperand(0).getNode();
7000 
7001   /// Get a call instruction from the call sequence chain.
7002   /// Tail calls are not allowed.
7003   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7004          "Expected a callseq node.");
7005   SDNode *Call = CallEnd->getOperand(0).getNode();
7006   bool hasGlue = Call->getGluedNode();
7007 
7008   // Replace the target specific call node with the patchable intrinsic.
7009   SmallVector<SDValue, 8> Ops;
7010 
7011   // Add the <id> and <numBytes> constants.
7012   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7013   Ops.push_back(DAG.getTargetConstant(
7014                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7015   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7016   Ops.push_back(DAG.getTargetConstant(
7017                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7018 
7019   // Assume that the Callee is a constant address.
7020   // FIXME: handle function symbols in the future.
7021   Ops.push_back(
7022     DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7023                           /*isTarget=*/true));
7024 
7025   // Adjust <numArgs> to account for any arguments that have been passed on the
7026   // stack instead.
7027   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7028   unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
7029   NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
7030   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7031 
7032   // Add the calling convention
7033   Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7034 
7035   // Add the arguments we omitted previously. The register allocator should
7036   // place these in any free register.
7037   if (isAnyRegCC)
7038     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7039       Ops.push_back(getValue(CI.getArgOperand(i)));
7040 
7041   // Push the arguments from the call instruction up to the register mask.
7042   SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
7043   for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
7044     Ops.push_back(*i);
7045 
7046   // Push live variables for the stack map.
7047   addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
7048 
7049   // Push the register mask info.
7050   if (hasGlue)
7051     Ops.push_back(*(Call->op_end()-2));
7052   else
7053     Ops.push_back(*(Call->op_end()-1));
7054 
7055   // Push the chain (this is originally the first operand of the call, but
7056   // becomes now the last or second to last operand).
7057   Ops.push_back(*(Call->op_begin()));
7058 
7059   // Push the glue flag (last operand).
7060   if (hasGlue)
7061     Ops.push_back(*(Call->op_end()-1));
7062 
7063   SDVTList NodeTys;
7064   if (isAnyRegCC && hasDef) {
7065     // Create the return types based on the intrinsic definition
7066     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7067     SmallVector<EVT, 3> ValueVTs;
7068     ComputeValueVTs(TLI, CI.getType(), ValueVTs);
7069     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7070 
7071     // There is always a chain and a glue type at the end
7072     ValueVTs.push_back(MVT::Other);
7073     ValueVTs.push_back(MVT::Glue);
7074     NodeTys = DAG.getVTList(ValueVTs);
7075   } else
7076     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7077 
7078   // Replace the target specific call node with a PATCHPOINT node.
7079   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7080                                          getCurSDLoc(), NodeTys, Ops);
7081 
7082   // Update the NodeMap.
7083   if (hasDef) {
7084     if (isAnyRegCC)
7085       setValue(&CI, SDValue(MN, 0));
7086     else
7087       setValue(&CI, Result.first);
7088   }
7089 
7090   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7091   // call sequence. Furthermore the location of the chain and glue can change
7092   // when the AnyReg calling convention is used and the intrinsic returns a
7093   // value.
7094   if (isAnyRegCC && hasDef) {
7095     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7096     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7097     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7098   } else
7099     DAG.ReplaceAllUsesWith(Call, MN);
7100   DAG.DeleteNode(Call);
7101 
7102   // Inform the Frame Information that we have a patchpoint in this function.
7103   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7104 }
7105 
7106 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7107 /// implementation, which just calls LowerCall.
7108 /// FIXME: When all targets are
7109 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7110 std::pair<SDValue, SDValue>
7111 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7112   // Handle the incoming return values from the call.
7113   CLI.Ins.clear();
7114   SmallVector<EVT, 4> RetTys;
7115   ComputeValueVTs(*this, CLI.RetTy, RetTys);
7116   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7117     EVT VT = RetTys[I];
7118     MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7119     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7120     for (unsigned i = 0; i != NumRegs; ++i) {
7121       ISD::InputArg MyFlags;
7122       MyFlags.VT = RegisterVT;
7123       MyFlags.ArgVT = VT;
7124       MyFlags.Used = CLI.IsReturnValueUsed;
7125       if (CLI.RetSExt)
7126         MyFlags.Flags.setSExt();
7127       if (CLI.RetZExt)
7128         MyFlags.Flags.setZExt();
7129       if (CLI.IsInReg)
7130         MyFlags.Flags.setInReg();
7131       CLI.Ins.push_back(MyFlags);
7132     }
7133   }
7134 
7135   // Handle all of the outgoing arguments.
7136   CLI.Outs.clear();
7137   CLI.OutVals.clear();
7138   ArgListTy &Args = CLI.Args;
7139   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7140     SmallVector<EVT, 4> ValueVTs;
7141     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7142     for (unsigned Value = 0, NumValues = ValueVTs.size();
7143          Value != NumValues; ++Value) {
7144       EVT VT = ValueVTs[Value];
7145       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7146       SDValue Op = SDValue(Args[i].Node.getNode(),
7147                            Args[i].Node.getResNo() + Value);
7148       ISD::ArgFlagsTy Flags;
7149       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7150 
7151       if (Args[i].isZExt)
7152         Flags.setZExt();
7153       if (Args[i].isSExt)
7154         Flags.setSExt();
7155       if (Args[i].isInReg)
7156         Flags.setInReg();
7157       if (Args[i].isSRet)
7158         Flags.setSRet();
7159       if (Args[i].isByVal)
7160         Flags.setByVal();
7161       if (Args[i].isInAlloca) {
7162         Flags.setInAlloca();
7163         // Set the byval flag for CCAssignFn callbacks that don't know about
7164         // inalloca.  This way we can know how many bytes we should've allocated
7165         // and how many bytes a callee cleanup function will pop.  If we port
7166         // inalloca to more targets, we'll have to add custom inalloca handling
7167         // in the various CC lowering callbacks.
7168         Flags.setByVal();
7169       }
7170       if (Args[i].isByVal || Args[i].isInAlloca) {
7171         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7172         Type *ElementTy = Ty->getElementType();
7173         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7174         // For ByVal, alignment should come from FE.  BE will guess if this
7175         // info is not there but there are cases it cannot get right.
7176         unsigned FrameAlign;
7177         if (Args[i].Alignment)
7178           FrameAlign = Args[i].Alignment;
7179         else
7180           FrameAlign = getByValTypeAlignment(ElementTy);
7181         Flags.setByValAlign(FrameAlign);
7182       }
7183       if (Args[i].isNest)
7184         Flags.setNest();
7185       Flags.setOrigAlign(OriginalAlignment);
7186 
7187       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7188       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7189       SmallVector<SDValue, 4> Parts(NumParts);
7190       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7191 
7192       if (Args[i].isSExt)
7193         ExtendKind = ISD::SIGN_EXTEND;
7194       else if (Args[i].isZExt)
7195         ExtendKind = ISD::ZERO_EXTEND;
7196 
7197       // Conservatively only handle 'returned' on non-vectors for now
7198       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7199         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7200                "unexpected use of 'returned'");
7201         // Before passing 'returned' to the target lowering code, ensure that
7202         // either the register MVT and the actual EVT are the same size or that
7203         // the return value and argument are extended in the same way; in these
7204         // cases it's safe to pass the argument register value unchanged as the
7205         // return register value (although it's at the target's option whether
7206         // to do so)
7207         // TODO: allow code generation to take advantage of partially preserved
7208         // registers rather than clobbering the entire register when the
7209         // parameter extension method is not compatible with the return
7210         // extension method
7211         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7212             (ExtendKind != ISD::ANY_EXTEND &&
7213              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7214         Flags.setReturned();
7215       }
7216 
7217       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7218                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7219 
7220       for (unsigned j = 0; j != NumParts; ++j) {
7221         // if it isn't first piece, alignment must be 1
7222         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7223                                i < CLI.NumFixedArgs,
7224                                i, j*Parts[j].getValueType().getStoreSize());
7225         if (NumParts > 1 && j == 0)
7226           MyFlags.Flags.setSplit();
7227         else if (j != 0)
7228           MyFlags.Flags.setOrigAlign(1);
7229 
7230         CLI.Outs.push_back(MyFlags);
7231         CLI.OutVals.push_back(Parts[j]);
7232       }
7233     }
7234   }
7235 
7236   SmallVector<SDValue, 4> InVals;
7237   CLI.Chain = LowerCall(CLI, InVals);
7238 
7239   // Verify that the target's LowerCall behaved as expected.
7240   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7241          "LowerCall didn't return a valid chain!");
7242   assert((!CLI.IsTailCall || InVals.empty()) &&
7243          "LowerCall emitted a return value for a tail call!");
7244   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7245          "LowerCall didn't emit the correct number of values!");
7246 
7247   // For a tail call, the return value is merely live-out and there aren't
7248   // any nodes in the DAG representing it. Return a special value to
7249   // indicate that a tail call has been emitted and no more Instructions
7250   // should be processed in the current block.
7251   if (CLI.IsTailCall) {
7252     CLI.DAG.setRoot(CLI.Chain);
7253     return std::make_pair(SDValue(), SDValue());
7254   }
7255 
7256   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7257           assert(InVals[i].getNode() &&
7258                  "LowerCall emitted a null value!");
7259           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7260                  "LowerCall emitted a value with the wrong type!");
7261         });
7262 
7263   // Collect the legal value parts into potentially illegal values
7264   // that correspond to the original function's return values.
7265   ISD::NodeType AssertOp = ISD::DELETED_NODE;
7266   if (CLI.RetSExt)
7267     AssertOp = ISD::AssertSext;
7268   else if (CLI.RetZExt)
7269     AssertOp = ISD::AssertZext;
7270   SmallVector<SDValue, 4> ReturnValues;
7271   unsigned CurReg = 0;
7272   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7273     EVT VT = RetTys[I];
7274     MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7275     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7276 
7277     ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7278                                             NumRegs, RegisterVT, VT, nullptr,
7279                                             AssertOp));
7280     CurReg += NumRegs;
7281   }
7282 
7283   // For a function returning void, there is no return value. We can't create
7284   // such a node, so we just return a null return value in that case. In
7285   // that case, nothing will actually look at the value.
7286   if (ReturnValues.empty())
7287     return std::make_pair(SDValue(), CLI.Chain);
7288 
7289   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7290                                 CLI.DAG.getVTList(RetTys),
7291                             &ReturnValues[0], ReturnValues.size());
7292   return std::make_pair(Res, CLI.Chain);
7293 }
7294 
7295 void TargetLowering::LowerOperationWrapper(SDNode *N,
7296                                            SmallVectorImpl<SDValue> &Results,
7297                                            SelectionDAG &DAG) const {
7298   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7299   if (Res.getNode())
7300     Results.push_back(Res);
7301 }
7302 
7303 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7304   llvm_unreachable("LowerOperation not implemented for this target!");
7305 }
7306 
7307 void
7308 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7309   SDValue Op = getNonRegisterValue(V);
7310   assert((Op.getOpcode() != ISD::CopyFromReg ||
7311           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7312          "Copy from a reg to the same reg!");
7313   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7314 
7315   const TargetLowering *TLI = TM.getTargetLowering();
7316   RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7317   SDValue Chain = DAG.getEntryNode();
7318   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
7319   PendingExports.push_back(Chain);
7320 }
7321 
7322 #include "llvm/CodeGen/SelectionDAGISel.h"
7323 
7324 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7325 /// entry block, return true.  This includes arguments used by switches, since
7326 /// the switch may expand into multiple basic blocks.
7327 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7328   // With FastISel active, we may be splitting blocks, so force creation
7329   // of virtual registers for all non-dead arguments.
7330   if (FastISel)
7331     return A->use_empty();
7332 
7333   const BasicBlock *Entry = A->getParent()->begin();
7334   for (const User *U : A->users())
7335     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7336       return false;  // Use not in entry block.
7337 
7338   return true;
7339 }
7340 
7341 void SelectionDAGISel::LowerArguments(const Function &F) {
7342   SelectionDAG &DAG = SDB->DAG;
7343   SDLoc dl = SDB->getCurSDLoc();
7344   const TargetLowering *TLI = getTargetLowering();
7345   const DataLayout *DL = TLI->getDataLayout();
7346   SmallVector<ISD::InputArg, 16> Ins;
7347 
7348   if (!FuncInfo->CanLowerReturn) {
7349     // Put in an sret pointer parameter before all the other parameters.
7350     SmallVector<EVT, 1> ValueVTs;
7351     ComputeValueVTs(*getTargetLowering(),
7352                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7353 
7354     // NOTE: Assuming that a pointer will never break down to more than one VT
7355     // or one register.
7356     ISD::ArgFlagsTy Flags;
7357     Flags.setSRet();
7358     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7359     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7360     Ins.push_back(RetArg);
7361   }
7362 
7363   // Set up the incoming argument description vector.
7364   unsigned Idx = 1;
7365   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7366        I != E; ++I, ++Idx) {
7367     SmallVector<EVT, 4> ValueVTs;
7368     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7369     bool isArgValueUsed = !I->use_empty();
7370     unsigned PartBase = 0;
7371     for (unsigned Value = 0, NumValues = ValueVTs.size();
7372          Value != NumValues; ++Value) {
7373       EVT VT = ValueVTs[Value];
7374       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7375       ISD::ArgFlagsTy Flags;
7376       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7377 
7378       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7379         Flags.setZExt();
7380       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7381         Flags.setSExt();
7382       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7383         Flags.setInReg();
7384       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7385         Flags.setSRet();
7386       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7387         Flags.setByVal();
7388       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7389         Flags.setInAlloca();
7390         // Set the byval flag for CCAssignFn callbacks that don't know about
7391         // inalloca.  This way we can know how many bytes we should've allocated
7392         // and how many bytes a callee cleanup function will pop.  If we port
7393         // inalloca to more targets, we'll have to add custom inalloca handling
7394         // in the various CC lowering callbacks.
7395         Flags.setByVal();
7396       }
7397       if (Flags.isByVal() || Flags.isInAlloca()) {
7398         PointerType *Ty = cast<PointerType>(I->getType());
7399         Type *ElementTy = Ty->getElementType();
7400         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7401         // For ByVal, alignment should be passed from FE.  BE will guess if
7402         // this info is not there but there are cases it cannot get right.
7403         unsigned FrameAlign;
7404         if (F.getParamAlignment(Idx))
7405           FrameAlign = F.getParamAlignment(Idx);
7406         else
7407           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7408         Flags.setByValAlign(FrameAlign);
7409       }
7410       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7411         Flags.setNest();
7412       Flags.setOrigAlign(OriginalAlignment);
7413 
7414       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7415       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7416       for (unsigned i = 0; i != NumRegs; ++i) {
7417         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7418                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7419         if (NumRegs > 1 && i == 0)
7420           MyFlags.Flags.setSplit();
7421         // if it isn't first piece, alignment must be 1
7422         else if (i > 0)
7423           MyFlags.Flags.setOrigAlign(1);
7424         Ins.push_back(MyFlags);
7425       }
7426       PartBase += VT.getStoreSize();
7427     }
7428   }
7429 
7430   // Call the target to set up the argument values.
7431   SmallVector<SDValue, 8> InVals;
7432   SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7433                                               F.isVarArg(), Ins,
7434                                               dl, DAG, InVals);
7435 
7436   // Verify that the target's LowerFormalArguments behaved as expected.
7437   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7438          "LowerFormalArguments didn't return a valid chain!");
7439   assert(InVals.size() == Ins.size() &&
7440          "LowerFormalArguments didn't emit the correct number of values!");
7441   DEBUG({
7442       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7443         assert(InVals[i].getNode() &&
7444                "LowerFormalArguments emitted a null value!");
7445         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7446                "LowerFormalArguments emitted a value with the wrong type!");
7447       }
7448     });
7449 
7450   // Update the DAG with the new chain value resulting from argument lowering.
7451   DAG.setRoot(NewRoot);
7452 
7453   // Set up the argument values.
7454   unsigned i = 0;
7455   Idx = 1;
7456   if (!FuncInfo->CanLowerReturn) {
7457     // Create a virtual register for the sret pointer, and put in a copy
7458     // from the sret argument into it.
7459     SmallVector<EVT, 1> ValueVTs;
7460     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7461     MVT VT = ValueVTs[0].getSimpleVT();
7462     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7463     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7464     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7465                                         RegVT, VT, nullptr, AssertOp);
7466 
7467     MachineFunction& MF = SDB->DAG.getMachineFunction();
7468     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7469     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7470     FuncInfo->DemoteRegister = SRetReg;
7471     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7472                                     SRetReg, ArgValue);
7473     DAG.setRoot(NewRoot);
7474 
7475     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7476     // Idx indexes LLVM arguments.  Don't touch it.
7477     ++i;
7478   }
7479 
7480   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7481       ++I, ++Idx) {
7482     SmallVector<SDValue, 4> ArgValues;
7483     SmallVector<EVT, 4> ValueVTs;
7484     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7485     unsigned NumValues = ValueVTs.size();
7486 
7487     // If this argument is unused then remember its value. It is used to generate
7488     // debugging information.
7489     if (I->use_empty() && NumValues) {
7490       SDB->setUnusedArgValue(I, InVals[i]);
7491 
7492       // Also remember any frame index for use in FastISel.
7493       if (FrameIndexSDNode *FI =
7494           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7495         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7496     }
7497 
7498     for (unsigned Val = 0; Val != NumValues; ++Val) {
7499       EVT VT = ValueVTs[Val];
7500       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7501       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7502 
7503       if (!I->use_empty()) {
7504         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7505         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7506           AssertOp = ISD::AssertSext;
7507         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7508           AssertOp = ISD::AssertZext;
7509 
7510         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7511                                              NumParts, PartVT, VT,
7512                                              nullptr, AssertOp));
7513       }
7514 
7515       i += NumParts;
7516     }
7517 
7518     // We don't need to do anything else for unused arguments.
7519     if (ArgValues.empty())
7520       continue;
7521 
7522     // Note down frame index.
7523     if (FrameIndexSDNode *FI =
7524         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7525       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7526 
7527     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7528                                      SDB->getCurSDLoc());
7529 
7530     SDB->setValue(I, Res);
7531     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7532       if (LoadSDNode *LNode =
7533           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7534         if (FrameIndexSDNode *FI =
7535             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7536         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7537     }
7538 
7539     // If this argument is live outside of the entry block, insert a copy from
7540     // wherever we got it to the vreg that other BB's will reference it as.
7541     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7542       // If we can, though, try to skip creating an unnecessary vreg.
7543       // FIXME: This isn't very clean... it would be nice to make this more
7544       // general.  It's also subtly incompatible with the hacks FastISel
7545       // uses with vregs.
7546       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7547       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7548         FuncInfo->ValueMap[I] = Reg;
7549         continue;
7550       }
7551     }
7552     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7553       FuncInfo->InitializeRegForValue(I);
7554       SDB->CopyToExportRegsIfNeeded(I);
7555     }
7556   }
7557 
7558   assert(i == InVals.size() && "Argument register count mismatch!");
7559 
7560   // Finally, if the target has anything special to do, allow it to do so.
7561   // FIXME: this should insert code into the DAG!
7562   EmitFunctionEntryCode();
7563 }
7564 
7565 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7566 /// ensure constants are generated when needed.  Remember the virtual registers
7567 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7568 /// directly add them, because expansion might result in multiple MBB's for one
7569 /// BB.  As such, the start of the BB might correspond to a different MBB than
7570 /// the end.
7571 ///
7572 void
7573 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7574   const TerminatorInst *TI = LLVMBB->getTerminator();
7575 
7576   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7577 
7578   // Check successor nodes' PHI nodes that expect a constant to be available
7579   // from this block.
7580   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7581     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7582     if (!isa<PHINode>(SuccBB->begin())) continue;
7583     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7584 
7585     // If this terminator has multiple identical successors (common for
7586     // switches), only handle each succ once.
7587     if (!SuccsHandled.insert(SuccMBB)) continue;
7588 
7589     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7590 
7591     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7592     // nodes and Machine PHI nodes, but the incoming operands have not been
7593     // emitted yet.
7594     for (BasicBlock::const_iterator I = SuccBB->begin();
7595          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7596       // Ignore dead phi's.
7597       if (PN->use_empty()) continue;
7598 
7599       // Skip empty types
7600       if (PN->getType()->isEmptyTy())
7601         continue;
7602 
7603       unsigned Reg;
7604       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7605 
7606       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7607         unsigned &RegOut = ConstantsOut[C];
7608         if (RegOut == 0) {
7609           RegOut = FuncInfo.CreateRegs(C->getType());
7610           CopyValueToVirtualRegister(C, RegOut);
7611         }
7612         Reg = RegOut;
7613       } else {
7614         DenseMap<const Value *, unsigned>::iterator I =
7615           FuncInfo.ValueMap.find(PHIOp);
7616         if (I != FuncInfo.ValueMap.end())
7617           Reg = I->second;
7618         else {
7619           assert(isa<AllocaInst>(PHIOp) &&
7620                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7621                  "Didn't codegen value into a register!??");
7622           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7623           CopyValueToVirtualRegister(PHIOp, Reg);
7624         }
7625       }
7626 
7627       // Remember that this register needs to added to the machine PHI node as
7628       // the input for this MBB.
7629       SmallVector<EVT, 4> ValueVTs;
7630       const TargetLowering *TLI = TM.getTargetLowering();
7631       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7632       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7633         EVT VT = ValueVTs[vti];
7634         unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7635         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7636           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7637         Reg += NumRegisters;
7638       }
7639     }
7640   }
7641 
7642   ConstantsOut.clear();
7643 }
7644 
7645 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7646 /// is 0.
7647 MachineBasicBlock *
7648 SelectionDAGBuilder::StackProtectorDescriptor::
7649 AddSuccessorMBB(const BasicBlock *BB,
7650                 MachineBasicBlock *ParentMBB,
7651                 MachineBasicBlock *SuccMBB) {
7652   // If SuccBB has not been created yet, create it.
7653   if (!SuccMBB) {
7654     MachineFunction *MF = ParentMBB->getParent();
7655     MachineFunction::iterator BBI = ParentMBB;
7656     SuccMBB = MF->CreateMachineBasicBlock(BB);
7657     MF->insert(++BBI, SuccMBB);
7658   }
7659   // Add it as a successor of ParentMBB.
7660   ParentMBB->addSuccessor(SuccMBB);
7661   return SuccMBB;
7662 }
7663