xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f40976bd01032f4905dde361e709166704581077)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     TypeSize RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1123                                                DebugLoc DL, unsigned Order) {
1124   // We treat variadic dbg_values differently at this stage.
1125   if (DI->hasArgList()) {
1126     // For variadic dbg_values we will now insert an undef.
1127     // FIXME: We can potentially recover these!
1128     SmallVector<SDDbgOperand, 2> Locs;
1129     for (const Value *V : DI->getValues()) {
1130       auto Undef = UndefValue::get(V->getType());
1131       Locs.push_back(SDDbgOperand::fromConst(Undef));
1132     }
1133     SDDbgValue *SDV = DAG.getDbgValueList(
1134         DI->getVariable(), DI->getExpression(), Locs, {},
1135         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1136     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1137   } else {
1138     // TODO: Dangling debug info will eventually either be resolved or produce
1139     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1140     // between the original dbg.value location and its resolved DBG_VALUE,
1141     // which we should ideally fill with an extra Undef DBG_VALUE.
1142     assert(DI->getNumVariableLocationOps() == 1 &&
1143            "DbgValueInst without an ArgList should have a single location "
1144            "operand.");
1145     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1146   }
1147 }
1148 
1149 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1150                                                 const DIExpression *Expr) {
1151   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1152     const DbgValueInst *DI = DDI.getDI();
1153     DIVariable *DanglingVariable = DI->getVariable();
1154     DIExpression *DanglingExpr = DI->getExpression();
1155     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1156       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1157       return true;
1158     }
1159     return false;
1160   };
1161 
1162   for (auto &DDIMI : DanglingDebugInfoMap) {
1163     DanglingDebugInfoVector &DDIV = DDIMI.second;
1164 
1165     // If debug info is to be dropped, run it through final checks to see
1166     // whether it can be salvaged.
1167     for (auto &DDI : DDIV)
1168       if (isMatchingDbgValue(DDI))
1169         salvageUnresolvedDbgValue(DDI);
1170 
1171     erase_if(DDIV, isMatchingDbgValue);
1172   }
1173 }
1174 
1175 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1176 // generate the debug data structures now that we've seen its definition.
1177 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1178                                                    SDValue Val) {
1179   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1180   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1181     return;
1182 
1183   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1184   for (auto &DDI : DDIV) {
1185     const DbgValueInst *DI = DDI.getDI();
1186     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1187     assert(DI && "Ill-formed DanglingDebugInfo");
1188     DebugLoc dl = DDI.getdl();
1189     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1190     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1191     DILocalVariable *Variable = DI->getVariable();
1192     DIExpression *Expr = DI->getExpression();
1193     assert(Variable->isValidLocationForIntrinsic(dl) &&
1194            "Expected inlined-at fields to agree");
1195     SDDbgValue *SDV;
1196     if (Val.getNode()) {
1197       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1198       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1199       // we couldn't resolve it directly when examining the DbgValue intrinsic
1200       // in the first place we should not be more successful here). Unless we
1201       // have some test case that prove this to be correct we should avoid
1202       // calling EmitFuncArgumentDbgValue here.
1203       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1204         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1205                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1206         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1207         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1208         // inserted after the definition of Val when emitting the instructions
1209         // after ISel. An alternative could be to teach
1210         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1211         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1212                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1213                    << ValSDNodeOrder << "\n");
1214         SDV = getDbgValue(Val, Variable, Expr, dl,
1215                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1216         DAG.AddDbgValue(SDV, false);
1217       } else
1218         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1219                           << "in EmitFuncArgumentDbgValue\n");
1220     } else {
1221       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1222       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1223       auto SDV =
1224           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1225       DAG.AddDbgValue(SDV, false);
1226     }
1227   }
1228   DDIV.clear();
1229 }
1230 
1231 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1232   assert(!DDI.getDI()->hasArgList() &&
1233          "Not implemented for variadic dbg_values");
1234   Value *V = DDI.getDI()->getValue(0);
1235   DILocalVariable *Var = DDI.getDI()->getVariable();
1236   DIExpression *Expr = DDI.getDI()->getExpression();
1237   DebugLoc DL = DDI.getdl();
1238   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1239   unsigned SDOrder = DDI.getSDNodeOrder();
1240   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1241   // that DW_OP_stack_value is desired.
1242   assert(isa<DbgValueInst>(DDI.getDI()));
1243   bool StackValue = true;
1244 
1245   // Can this Value can be encoded without any further work?
1246   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1247     return;
1248 
1249   // Attempt to salvage back through as many instructions as possible. Bail if
1250   // a non-instruction is seen, such as a constant expression or global
1251   // variable. FIXME: Further work could recover those too.
1252   while (isa<Instruction>(V)) {
1253     Instruction &VAsInst = *cast<Instruction>(V);
1254     // Temporary "0", awaiting real implementation.
1255     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0);
1256 
1257     // If we cannot salvage any further, and haven't yet found a suitable debug
1258     // expression, bail out.
1259     if (!NewExpr)
1260       break;
1261 
1262     // New value and expr now represent this debuginfo.
1263     V = VAsInst.getOperand(0);
1264     Expr = NewExpr;
1265 
1266     // Some kind of simplification occurred: check whether the operand of the
1267     // salvaged debug expression can be encoded in this DAG.
1268     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1269                          /*IsVariadic=*/false)) {
1270       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1271                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1272       return;
1273     }
1274   }
1275 
1276   // This was the final opportunity to salvage this debug information, and it
1277   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1278   // any earlier variable location.
1279   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1280   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1281   DAG.AddDbgValue(SDV, false);
1282 
1283   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1284                     << "\n");
1285   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1286                     << "\n");
1287 }
1288 
1289 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1290                                            DILocalVariable *Var,
1291                                            DIExpression *Expr, DebugLoc dl,
1292                                            DebugLoc InstDL, unsigned Order,
1293                                            bool IsVariadic) {
1294   if (Values.empty())
1295     return true;
1296   SDDbgValue::LocOpVector LocationOps;
1297   SDDbgValue::SDNodeVector Dependencies;
1298   for (const Value *V : Values) {
1299     // Constant value.
1300     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1301         isa<ConstantPointerNull>(V)) {
1302       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1303       continue;
1304     }
1305 
1306     // If the Value is a frame index, we can create a FrameIndex debug value
1307     // without relying on the DAG at all.
1308     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1309       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1310       if (SI != FuncInfo.StaticAllocaMap.end()) {
1311         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1312         continue;
1313       }
1314     }
1315 
1316     // Do not use getValue() in here; we don't want to generate code at
1317     // this point if it hasn't been done yet.
1318     SDValue N = NodeMap[V];
1319     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1320       N = UnusedArgNodeMap[V];
1321     if (N.getNode()) {
1322       // Only emit func arg dbg value for non-variadic dbg.values for now.
1323       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1324         return true;
1325       Dependencies.push_back(N.getNode());
1326       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1327         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1328         // describe stack slot locations.
1329         //
1330         // Consider "int x = 0; int *px = &x;". There are two kinds of
1331         // interesting debug values here after optimization:
1332         //
1333         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1334         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1335         //
1336         // Both describe the direct values of their associated variables.
1337         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1338         continue;
1339       }
1340       LocationOps.emplace_back(
1341           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1342       continue;
1343     }
1344 
1345     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1346     // Special rules apply for the first dbg.values of parameter variables in a
1347     // function. Identify them by the fact they reference Argument Values, that
1348     // they're parameters, and they are parameters of the current function. We
1349     // need to let them dangle until they get an SDNode.
1350     bool IsParamOfFunc =
1351         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1352     if (IsParamOfFunc)
1353       return false;
1354 
1355     // The value is not used in this block yet (or it would have an SDNode).
1356     // We still want the value to appear for the user if possible -- if it has
1357     // an associated VReg, we can refer to that instead.
1358     auto VMI = FuncInfo.ValueMap.find(V);
1359     if (VMI != FuncInfo.ValueMap.end()) {
1360       unsigned Reg = VMI->second;
1361       // If this is a PHI node, it may be split up into several MI PHI nodes
1362       // (in FunctionLoweringInfo::set).
1363       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1364                        V->getType(), None);
1365       if (RFV.occupiesMultipleRegs()) {
1366         // FIXME: We could potentially support variadic dbg_values here.
1367         if (IsVariadic)
1368           return false;
1369         unsigned Offset = 0;
1370         unsigned BitsToDescribe = 0;
1371         if (auto VarSize = Var->getSizeInBits())
1372           BitsToDescribe = *VarSize;
1373         if (auto Fragment = Expr->getFragmentInfo())
1374           BitsToDescribe = Fragment->SizeInBits;
1375         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1376           // Bail out if all bits are described already.
1377           if (Offset >= BitsToDescribe)
1378             break;
1379           // TODO: handle scalable vectors.
1380           unsigned RegisterSize = RegAndSize.second;
1381           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1382                                       ? BitsToDescribe - Offset
1383                                       : RegisterSize;
1384           auto FragmentExpr = DIExpression::createFragmentExpression(
1385               Expr, Offset, FragmentSize);
1386           if (!FragmentExpr)
1387             continue;
1388           SDDbgValue *SDV = DAG.getVRegDbgValue(
1389               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1390           DAG.AddDbgValue(SDV, false);
1391           Offset += RegisterSize;
1392         }
1393         return true;
1394       }
1395       // We can use simple vreg locations for variadic dbg_values as well.
1396       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1397       continue;
1398     }
1399     // We failed to create a SDDbgOperand for V.
1400     return false;
1401   }
1402 
1403   // We have created a SDDbgOperand for each Value in Values.
1404   // Should use Order instead of SDNodeOrder?
1405   assert(!LocationOps.empty());
1406   SDDbgValue *SDV =
1407       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1408                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1409   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1410   return true;
1411 }
1412 
1413 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1414   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1415   for (auto &Pair : DanglingDebugInfoMap)
1416     for (auto &DDI : Pair.second)
1417       salvageUnresolvedDbgValue(DDI);
1418   clearDanglingDebugInfo();
1419 }
1420 
1421 /// getCopyFromRegs - If there was virtual register allocated for the value V
1422 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1423 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1424   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1425   SDValue Result;
1426 
1427   if (It != FuncInfo.ValueMap.end()) {
1428     Register InReg = It->second;
1429 
1430     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1431                      DAG.getDataLayout(), InReg, Ty,
1432                      None); // This is not an ABI copy.
1433     SDValue Chain = DAG.getEntryNode();
1434     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1435                                  V);
1436     resolveDanglingDebugInfo(V, Result);
1437   }
1438 
1439   return Result;
1440 }
1441 
1442 /// getValue - Return an SDValue for the given Value.
1443 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1444   // If we already have an SDValue for this value, use it. It's important
1445   // to do this first, so that we don't create a CopyFromReg if we already
1446   // have a regular SDValue.
1447   SDValue &N = NodeMap[V];
1448   if (N.getNode()) return N;
1449 
1450   // If there's a virtual register allocated and initialized for this
1451   // value, use it.
1452   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1453     return copyFromReg;
1454 
1455   // Otherwise create a new SDValue and remember it.
1456   SDValue Val = getValueImpl(V);
1457   NodeMap[V] = Val;
1458   resolveDanglingDebugInfo(V, Val);
1459   return Val;
1460 }
1461 
1462 /// getNonRegisterValue - Return an SDValue for the given Value, but
1463 /// don't look in FuncInfo.ValueMap for a virtual register.
1464 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1465   // If we already have an SDValue for this value, use it.
1466   SDValue &N = NodeMap[V];
1467   if (N.getNode()) {
1468     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1469       // Remove the debug location from the node as the node is about to be used
1470       // in a location which may differ from the original debug location.  This
1471       // is relevant to Constant and ConstantFP nodes because they can appear
1472       // as constant expressions inside PHI nodes.
1473       N->setDebugLoc(DebugLoc());
1474     }
1475     return N;
1476   }
1477 
1478   // Otherwise create a new SDValue and remember it.
1479   SDValue Val = getValueImpl(V);
1480   NodeMap[V] = Val;
1481   resolveDanglingDebugInfo(V, Val);
1482   return Val;
1483 }
1484 
1485 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1486 /// Create an SDValue for the given value.
1487 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1489 
1490   if (const Constant *C = dyn_cast<Constant>(V)) {
1491     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1492 
1493     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1494       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1495 
1496     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1497       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1498 
1499     if (isa<ConstantPointerNull>(C)) {
1500       unsigned AS = V->getType()->getPointerAddressSpace();
1501       return DAG.getConstant(0, getCurSDLoc(),
1502                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1503     }
1504 
1505     if (match(C, m_VScale(DAG.getDataLayout())))
1506       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1507 
1508     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1509       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1510 
1511     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1512       return DAG.getUNDEF(VT);
1513 
1514     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1515       visit(CE->getOpcode(), *CE);
1516       SDValue N1 = NodeMap[V];
1517       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1518       return N1;
1519     }
1520 
1521     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1522       SmallVector<SDValue, 4> Constants;
1523       for (const Use &U : C->operands()) {
1524         SDNode *Val = getValue(U).getNode();
1525         // If the operand is an empty aggregate, there are no values.
1526         if (!Val) continue;
1527         // Add each leaf value from the operand to the Constants list
1528         // to form a flattened list of all the values.
1529         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1530           Constants.push_back(SDValue(Val, i));
1531       }
1532 
1533       return DAG.getMergeValues(Constants, getCurSDLoc());
1534     }
1535 
1536     if (const ConstantDataSequential *CDS =
1537           dyn_cast<ConstantDataSequential>(C)) {
1538       SmallVector<SDValue, 4> Ops;
1539       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1540         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1541         // Add each leaf value from the operand to the Constants list
1542         // to form a flattened list of all the values.
1543         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1544           Ops.push_back(SDValue(Val, i));
1545       }
1546 
1547       if (isa<ArrayType>(CDS->getType()))
1548         return DAG.getMergeValues(Ops, getCurSDLoc());
1549       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1550     }
1551 
1552     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1553       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1554              "Unknown struct or array constant!");
1555 
1556       SmallVector<EVT, 4> ValueVTs;
1557       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1558       unsigned NumElts = ValueVTs.size();
1559       if (NumElts == 0)
1560         return SDValue(); // empty struct
1561       SmallVector<SDValue, 4> Constants(NumElts);
1562       for (unsigned i = 0; i != NumElts; ++i) {
1563         EVT EltVT = ValueVTs[i];
1564         if (isa<UndefValue>(C))
1565           Constants[i] = DAG.getUNDEF(EltVT);
1566         else if (EltVT.isFloatingPoint())
1567           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1568         else
1569           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1570       }
1571 
1572       return DAG.getMergeValues(Constants, getCurSDLoc());
1573     }
1574 
1575     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1576       return DAG.getBlockAddress(BA, VT);
1577 
1578     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1579       return getValue(Equiv->getGlobalValue());
1580 
1581     VectorType *VecTy = cast<VectorType>(V->getType());
1582 
1583     // Now that we know the number and type of the elements, get that number of
1584     // elements into the Ops array based on what kind of constant it is.
1585     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1586       SmallVector<SDValue, 16> Ops;
1587       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1588       for (unsigned i = 0; i != NumElements; ++i)
1589         Ops.push_back(getValue(CV->getOperand(i)));
1590 
1591       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1592     } else if (isa<ConstantAggregateZero>(C)) {
1593       EVT EltVT =
1594           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1595 
1596       SDValue Op;
1597       if (EltVT.isFloatingPoint())
1598         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1599       else
1600         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1601 
1602       if (isa<ScalableVectorType>(VecTy))
1603         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1604       else {
1605         SmallVector<SDValue, 16> Ops;
1606         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1607         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1608       }
1609     }
1610     llvm_unreachable("Unknown vector constant");
1611   }
1612 
1613   // If this is a static alloca, generate it as the frameindex instead of
1614   // computation.
1615   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1616     DenseMap<const AllocaInst*, int>::iterator SI =
1617       FuncInfo.StaticAllocaMap.find(AI);
1618     if (SI != FuncInfo.StaticAllocaMap.end())
1619       return DAG.getFrameIndex(SI->second,
1620                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1621   }
1622 
1623   // If this is an instruction which fast-isel has deferred, select it now.
1624   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1625     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1626 
1627     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1628                      Inst->getType(), None);
1629     SDValue Chain = DAG.getEntryNode();
1630     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1631   }
1632 
1633   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1634     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1635   }
1636   llvm_unreachable("Can't get register for value!");
1637 }
1638 
1639 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1640   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1641   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1642   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1643   bool IsSEH = isAsynchronousEHPersonality(Pers);
1644   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1645   if (!IsSEH)
1646     CatchPadMBB->setIsEHScopeEntry();
1647   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1648   if (IsMSVCCXX || IsCoreCLR)
1649     CatchPadMBB->setIsEHFuncletEntry();
1650 }
1651 
1652 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1653   // Update machine-CFG edge.
1654   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1655   FuncInfo.MBB->addSuccessor(TargetMBB);
1656   TargetMBB->setIsEHCatchretTarget(true);
1657   DAG.getMachineFunction().setHasEHCatchret(true);
1658 
1659   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1660   bool IsSEH = isAsynchronousEHPersonality(Pers);
1661   if (IsSEH) {
1662     // If this is not a fall-through branch or optimizations are switched off,
1663     // emit the branch.
1664     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1665         TM.getOptLevel() == CodeGenOpt::None)
1666       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1667                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1668     return;
1669   }
1670 
1671   // Figure out the funclet membership for the catchret's successor.
1672   // This will be used by the FuncletLayout pass to determine how to order the
1673   // BB's.
1674   // A 'catchret' returns to the outer scope's color.
1675   Value *ParentPad = I.getCatchSwitchParentPad();
1676   const BasicBlock *SuccessorColor;
1677   if (isa<ConstantTokenNone>(ParentPad))
1678     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1679   else
1680     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1681   assert(SuccessorColor && "No parent funclet for catchret!");
1682   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1683   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1684 
1685   // Create the terminator node.
1686   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1687                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1688                             DAG.getBasicBlock(SuccessorColorMBB));
1689   DAG.setRoot(Ret);
1690 }
1691 
1692 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1693   // Don't emit any special code for the cleanuppad instruction. It just marks
1694   // the start of an EH scope/funclet.
1695   FuncInfo.MBB->setIsEHScopeEntry();
1696   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1697   if (Pers != EHPersonality::Wasm_CXX) {
1698     FuncInfo.MBB->setIsEHFuncletEntry();
1699     FuncInfo.MBB->setIsCleanupFuncletEntry();
1700   }
1701 }
1702 
1703 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1704 // not match, it is OK to add only the first unwind destination catchpad to the
1705 // successors, because there will be at least one invoke instruction within the
1706 // catch scope that points to the next unwind destination, if one exists, so
1707 // CFGSort cannot mess up with BB sorting order.
1708 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1709 // call within them, and catchpads only consisting of 'catch (...)' have a
1710 // '__cxa_end_catch' call within them, both of which generate invokes in case
1711 // the next unwind destination exists, i.e., the next unwind destination is not
1712 // the caller.)
1713 //
1714 // Having at most one EH pad successor is also simpler and helps later
1715 // transformations.
1716 //
1717 // For example,
1718 // current:
1719 //   invoke void @foo to ... unwind label %catch.dispatch
1720 // catch.dispatch:
1721 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1722 // catch.start:
1723 //   ...
1724 //   ... in this BB or some other child BB dominated by this BB there will be an
1725 //   invoke that points to 'next' BB as an unwind destination
1726 //
1727 // next: ; We don't need to add this to 'current' BB's successor
1728 //   ...
1729 static void findWasmUnwindDestinations(
1730     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1731     BranchProbability Prob,
1732     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1733         &UnwindDests) {
1734   while (EHPadBB) {
1735     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1736     if (isa<CleanupPadInst>(Pad)) {
1737       // Stop on cleanup pads.
1738       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1739       UnwindDests.back().first->setIsEHScopeEntry();
1740       break;
1741     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1742       // Add the catchpad handlers to the possible destinations. We don't
1743       // continue to the unwind destination of the catchswitch for wasm.
1744       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1745         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1746         UnwindDests.back().first->setIsEHScopeEntry();
1747       }
1748       break;
1749     } else {
1750       continue;
1751     }
1752   }
1753 }
1754 
1755 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1756 /// many places it could ultimately go. In the IR, we have a single unwind
1757 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1758 /// This function skips over imaginary basic blocks that hold catchswitch
1759 /// instructions, and finds all the "real" machine
1760 /// basic block destinations. As those destinations may not be successors of
1761 /// EHPadBB, here we also calculate the edge probability to those destinations.
1762 /// The passed-in Prob is the edge probability to EHPadBB.
1763 static void findUnwindDestinations(
1764     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1765     BranchProbability Prob,
1766     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1767         &UnwindDests) {
1768   EHPersonality Personality =
1769     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1770   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1771   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1772   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1773   bool IsSEH = isAsynchronousEHPersonality(Personality);
1774 
1775   if (IsWasmCXX) {
1776     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1777     assert(UnwindDests.size() <= 1 &&
1778            "There should be at most one unwind destination for wasm");
1779     return;
1780   }
1781 
1782   while (EHPadBB) {
1783     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1784     BasicBlock *NewEHPadBB = nullptr;
1785     if (isa<LandingPadInst>(Pad)) {
1786       // Stop on landingpads. They are not funclets.
1787       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1788       break;
1789     } else if (isa<CleanupPadInst>(Pad)) {
1790       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1791       // personalities.
1792       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1793       UnwindDests.back().first->setIsEHScopeEntry();
1794       UnwindDests.back().first->setIsEHFuncletEntry();
1795       break;
1796     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1797       // Add the catchpad handlers to the possible destinations.
1798       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1799         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1800         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1801         if (IsMSVCCXX || IsCoreCLR)
1802           UnwindDests.back().first->setIsEHFuncletEntry();
1803         if (!IsSEH)
1804           UnwindDests.back().first->setIsEHScopeEntry();
1805       }
1806       NewEHPadBB = CatchSwitch->getUnwindDest();
1807     } else {
1808       continue;
1809     }
1810 
1811     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1812     if (BPI && NewEHPadBB)
1813       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1814     EHPadBB = NewEHPadBB;
1815   }
1816 }
1817 
1818 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1819   // Update successor info.
1820   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1821   auto UnwindDest = I.getUnwindDest();
1822   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1823   BranchProbability UnwindDestProb =
1824       (BPI && UnwindDest)
1825           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1826           : BranchProbability::getZero();
1827   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1828   for (auto &UnwindDest : UnwindDests) {
1829     UnwindDest.first->setIsEHPad();
1830     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1831   }
1832   FuncInfo.MBB->normalizeSuccProbs();
1833 
1834   // Create the terminator node.
1835   SDValue Ret =
1836       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1837   DAG.setRoot(Ret);
1838 }
1839 
1840 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1841   report_fatal_error("visitCatchSwitch not yet implemented!");
1842 }
1843 
1844 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1845   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1846   auto &DL = DAG.getDataLayout();
1847   SDValue Chain = getControlRoot();
1848   SmallVector<ISD::OutputArg, 8> Outs;
1849   SmallVector<SDValue, 8> OutVals;
1850 
1851   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1852   // lower
1853   //
1854   //   %val = call <ty> @llvm.experimental.deoptimize()
1855   //   ret <ty> %val
1856   //
1857   // differently.
1858   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1859     LowerDeoptimizingReturn();
1860     return;
1861   }
1862 
1863   if (!FuncInfo.CanLowerReturn) {
1864     unsigned DemoteReg = FuncInfo.DemoteRegister;
1865     const Function *F = I.getParent()->getParent();
1866 
1867     // Emit a store of the return value through the virtual register.
1868     // Leave Outs empty so that LowerReturn won't try to load return
1869     // registers the usual way.
1870     SmallVector<EVT, 1> PtrValueVTs;
1871     ComputeValueVTs(TLI, DL,
1872                     F->getReturnType()->getPointerTo(
1873                         DAG.getDataLayout().getAllocaAddrSpace()),
1874                     PtrValueVTs);
1875 
1876     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1877                                         DemoteReg, PtrValueVTs[0]);
1878     SDValue RetOp = getValue(I.getOperand(0));
1879 
1880     SmallVector<EVT, 4> ValueVTs, MemVTs;
1881     SmallVector<uint64_t, 4> Offsets;
1882     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1883                     &Offsets);
1884     unsigned NumValues = ValueVTs.size();
1885 
1886     SmallVector<SDValue, 4> Chains(NumValues);
1887     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1888     for (unsigned i = 0; i != NumValues; ++i) {
1889       // An aggregate return value cannot wrap around the address space, so
1890       // offsets to its parts don't wrap either.
1891       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1892                                            TypeSize::Fixed(Offsets[i]));
1893 
1894       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1895       if (MemVTs[i] != ValueVTs[i])
1896         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1897       Chains[i] = DAG.getStore(
1898           Chain, getCurSDLoc(), Val,
1899           // FIXME: better loc info would be nice.
1900           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1901           commonAlignment(BaseAlign, Offsets[i]));
1902     }
1903 
1904     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1905                         MVT::Other, Chains);
1906   } else if (I.getNumOperands() != 0) {
1907     SmallVector<EVT, 4> ValueVTs;
1908     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1909     unsigned NumValues = ValueVTs.size();
1910     if (NumValues) {
1911       SDValue RetOp = getValue(I.getOperand(0));
1912 
1913       const Function *F = I.getParent()->getParent();
1914 
1915       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1916           I.getOperand(0)->getType(), F->getCallingConv(),
1917           /*IsVarArg*/ false);
1918 
1919       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1920       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1921                                           Attribute::SExt))
1922         ExtendKind = ISD::SIGN_EXTEND;
1923       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1924                                                Attribute::ZExt))
1925         ExtendKind = ISD::ZERO_EXTEND;
1926 
1927       LLVMContext &Context = F->getContext();
1928       bool RetInReg = F->getAttributes().hasAttribute(
1929           AttributeList::ReturnIndex, Attribute::InReg);
1930 
1931       for (unsigned j = 0; j != NumValues; ++j) {
1932         EVT VT = ValueVTs[j];
1933 
1934         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1935           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1936 
1937         CallingConv::ID CC = F->getCallingConv();
1938 
1939         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1940         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1941         SmallVector<SDValue, 4> Parts(NumParts);
1942         getCopyToParts(DAG, getCurSDLoc(),
1943                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1944                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1945 
1946         // 'inreg' on function refers to return value
1947         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1948         if (RetInReg)
1949           Flags.setInReg();
1950 
1951         if (I.getOperand(0)->getType()->isPointerTy()) {
1952           Flags.setPointer();
1953           Flags.setPointerAddrSpace(
1954               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1955         }
1956 
1957         if (NeedsRegBlock) {
1958           Flags.setInConsecutiveRegs();
1959           if (j == NumValues - 1)
1960             Flags.setInConsecutiveRegsLast();
1961         }
1962 
1963         // Propagate extension type if any
1964         if (ExtendKind == ISD::SIGN_EXTEND)
1965           Flags.setSExt();
1966         else if (ExtendKind == ISD::ZERO_EXTEND)
1967           Flags.setZExt();
1968 
1969         for (unsigned i = 0; i < NumParts; ++i) {
1970           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1971                                         VT, /*isfixed=*/true, 0, 0));
1972           OutVals.push_back(Parts[i]);
1973         }
1974       }
1975     }
1976   }
1977 
1978   // Push in swifterror virtual register as the last element of Outs. This makes
1979   // sure swifterror virtual register will be returned in the swifterror
1980   // physical register.
1981   const Function *F = I.getParent()->getParent();
1982   if (TLI.supportSwiftError() &&
1983       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1984     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1985     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1986     Flags.setSwiftError();
1987     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1988                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1989                                   true /*isfixed*/, 1 /*origidx*/,
1990                                   0 /*partOffs*/));
1991     // Create SDNode for the swifterror virtual register.
1992     OutVals.push_back(
1993         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1994                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1995                         EVT(TLI.getPointerTy(DL))));
1996   }
1997 
1998   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1999   CallingConv::ID CallConv =
2000     DAG.getMachineFunction().getFunction().getCallingConv();
2001   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2002       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2003 
2004   // Verify that the target's LowerReturn behaved as expected.
2005   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2006          "LowerReturn didn't return a valid chain!");
2007 
2008   // Update the DAG with the new chain value resulting from return lowering.
2009   DAG.setRoot(Chain);
2010 }
2011 
2012 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2013 /// created for it, emit nodes to copy the value into the virtual
2014 /// registers.
2015 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2016   // Skip empty types
2017   if (V->getType()->isEmptyTy())
2018     return;
2019 
2020   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2021   if (VMI != FuncInfo.ValueMap.end()) {
2022     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2023     CopyValueToVirtualRegister(V, VMI->second);
2024   }
2025 }
2026 
2027 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2028 /// the current basic block, add it to ValueMap now so that we'll get a
2029 /// CopyTo/FromReg.
2030 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2031   // No need to export constants.
2032   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2033 
2034   // Already exported?
2035   if (FuncInfo.isExportedInst(V)) return;
2036 
2037   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2038   CopyValueToVirtualRegister(V, Reg);
2039 }
2040 
2041 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2042                                                      const BasicBlock *FromBB) {
2043   // The operands of the setcc have to be in this block.  We don't know
2044   // how to export them from some other block.
2045   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2046     // Can export from current BB.
2047     if (VI->getParent() == FromBB)
2048       return true;
2049 
2050     // Is already exported, noop.
2051     return FuncInfo.isExportedInst(V);
2052   }
2053 
2054   // If this is an argument, we can export it if the BB is the entry block or
2055   // if it is already exported.
2056   if (isa<Argument>(V)) {
2057     if (FromBB == &FromBB->getParent()->getEntryBlock())
2058       return true;
2059 
2060     // Otherwise, can only export this if it is already exported.
2061     return FuncInfo.isExportedInst(V);
2062   }
2063 
2064   // Otherwise, constants can always be exported.
2065   return true;
2066 }
2067 
2068 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2069 BranchProbability
2070 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2071                                         const MachineBasicBlock *Dst) const {
2072   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2073   const BasicBlock *SrcBB = Src->getBasicBlock();
2074   const BasicBlock *DstBB = Dst->getBasicBlock();
2075   if (!BPI) {
2076     // If BPI is not available, set the default probability as 1 / N, where N is
2077     // the number of successors.
2078     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2079     return BranchProbability(1, SuccSize);
2080   }
2081   return BPI->getEdgeProbability(SrcBB, DstBB);
2082 }
2083 
2084 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2085                                                MachineBasicBlock *Dst,
2086                                                BranchProbability Prob) {
2087   if (!FuncInfo.BPI)
2088     Src->addSuccessorWithoutProb(Dst);
2089   else {
2090     if (Prob.isUnknown())
2091       Prob = getEdgeProbability(Src, Dst);
2092     Src->addSuccessor(Dst, Prob);
2093   }
2094 }
2095 
2096 static bool InBlock(const Value *V, const BasicBlock *BB) {
2097   if (const Instruction *I = dyn_cast<Instruction>(V))
2098     return I->getParent() == BB;
2099   return true;
2100 }
2101 
2102 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2103 /// This function emits a branch and is used at the leaves of an OR or an
2104 /// AND operator tree.
2105 void
2106 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2107                                                   MachineBasicBlock *TBB,
2108                                                   MachineBasicBlock *FBB,
2109                                                   MachineBasicBlock *CurBB,
2110                                                   MachineBasicBlock *SwitchBB,
2111                                                   BranchProbability TProb,
2112                                                   BranchProbability FProb,
2113                                                   bool InvertCond) {
2114   const BasicBlock *BB = CurBB->getBasicBlock();
2115 
2116   // If the leaf of the tree is a comparison, merge the condition into
2117   // the caseblock.
2118   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2119     // The operands of the cmp have to be in this block.  We don't know
2120     // how to export them from some other block.  If this is the first block
2121     // of the sequence, no exporting is needed.
2122     if (CurBB == SwitchBB ||
2123         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2124          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2125       ISD::CondCode Condition;
2126       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2127         ICmpInst::Predicate Pred =
2128             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2129         Condition = getICmpCondCode(Pred);
2130       } else {
2131         const FCmpInst *FC = cast<FCmpInst>(Cond);
2132         FCmpInst::Predicate Pred =
2133             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2134         Condition = getFCmpCondCode(Pred);
2135         if (TM.Options.NoNaNsFPMath)
2136           Condition = getFCmpCodeWithoutNaN(Condition);
2137       }
2138 
2139       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2140                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2141       SL->SwitchCases.push_back(CB);
2142       return;
2143     }
2144   }
2145 
2146   // Create a CaseBlock record representing this branch.
2147   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2148   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2149                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2150   SL->SwitchCases.push_back(CB);
2151 }
2152 
2153 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2154                                                MachineBasicBlock *TBB,
2155                                                MachineBasicBlock *FBB,
2156                                                MachineBasicBlock *CurBB,
2157                                                MachineBasicBlock *SwitchBB,
2158                                                Instruction::BinaryOps Opc,
2159                                                BranchProbability TProb,
2160                                                BranchProbability FProb,
2161                                                bool InvertCond) {
2162   // Skip over not part of the tree and remember to invert op and operands at
2163   // next level.
2164   Value *NotCond;
2165   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2166       InBlock(NotCond, CurBB->getBasicBlock())) {
2167     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2168                          !InvertCond);
2169     return;
2170   }
2171 
2172   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2173   const Value *BOpOp0, *BOpOp1;
2174   // Compute the effective opcode for Cond, taking into account whether it needs
2175   // to be inverted, e.g.
2176   //   and (not (or A, B)), C
2177   // gets lowered as
2178   //   and (and (not A, not B), C)
2179   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2180   if (BOp) {
2181     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2182                ? Instruction::And
2183                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2184                       ? Instruction::Or
2185                       : (Instruction::BinaryOps)0);
2186     if (InvertCond) {
2187       if (BOpc == Instruction::And)
2188         BOpc = Instruction::Or;
2189       else if (BOpc == Instruction::Or)
2190         BOpc = Instruction::And;
2191     }
2192   }
2193 
2194   // If this node is not part of the or/and tree, emit it as a branch.
2195   // Note that all nodes in the tree should have same opcode.
2196   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2197   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2198       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2199       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2200     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2201                                  TProb, FProb, InvertCond);
2202     return;
2203   }
2204 
2205   //  Create TmpBB after CurBB.
2206   MachineFunction::iterator BBI(CurBB);
2207   MachineFunction &MF = DAG.getMachineFunction();
2208   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2209   CurBB->getParent()->insert(++BBI, TmpBB);
2210 
2211   if (Opc == Instruction::Or) {
2212     // Codegen X | Y as:
2213     // BB1:
2214     //   jmp_if_X TBB
2215     //   jmp TmpBB
2216     // TmpBB:
2217     //   jmp_if_Y TBB
2218     //   jmp FBB
2219     //
2220 
2221     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2222     // The requirement is that
2223     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2224     //     = TrueProb for original BB.
2225     // Assuming the original probabilities are A and B, one choice is to set
2226     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2227     // A/(1+B) and 2B/(1+B). This choice assumes that
2228     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2229     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2230     // TmpBB, but the math is more complicated.
2231 
2232     auto NewTrueProb = TProb / 2;
2233     auto NewFalseProb = TProb / 2 + FProb;
2234     // Emit the LHS condition.
2235     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2236                          NewFalseProb, InvertCond);
2237 
2238     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2239     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2240     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2241     // Emit the RHS condition into TmpBB.
2242     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2243                          Probs[1], InvertCond);
2244   } else {
2245     assert(Opc == Instruction::And && "Unknown merge op!");
2246     // Codegen X & Y as:
2247     // BB1:
2248     //   jmp_if_X TmpBB
2249     //   jmp FBB
2250     // TmpBB:
2251     //   jmp_if_Y TBB
2252     //   jmp FBB
2253     //
2254     //  This requires creation of TmpBB after CurBB.
2255 
2256     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2257     // The requirement is that
2258     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2259     //     = FalseProb for original BB.
2260     // Assuming the original probabilities are A and B, one choice is to set
2261     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2262     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2263     // TrueProb for BB1 * FalseProb for TmpBB.
2264 
2265     auto NewTrueProb = TProb + FProb / 2;
2266     auto NewFalseProb = FProb / 2;
2267     // Emit the LHS condition.
2268     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2269                          NewFalseProb, InvertCond);
2270 
2271     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2272     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2273     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2274     // Emit the RHS condition into TmpBB.
2275     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2276                          Probs[1], InvertCond);
2277   }
2278 }
2279 
2280 /// If the set of cases should be emitted as a series of branches, return true.
2281 /// If we should emit this as a bunch of and/or'd together conditions, return
2282 /// false.
2283 bool
2284 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2285   if (Cases.size() != 2) return true;
2286 
2287   // If this is two comparisons of the same values or'd or and'd together, they
2288   // will get folded into a single comparison, so don't emit two blocks.
2289   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2290        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2291       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2292        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2293     return false;
2294   }
2295 
2296   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2297   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2298   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2299       Cases[0].CC == Cases[1].CC &&
2300       isa<Constant>(Cases[0].CmpRHS) &&
2301       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2302     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2303       return false;
2304     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2305       return false;
2306   }
2307 
2308   return true;
2309 }
2310 
2311 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2312   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2313 
2314   // Update machine-CFG edges.
2315   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2316 
2317   if (I.isUnconditional()) {
2318     // Update machine-CFG edges.
2319     BrMBB->addSuccessor(Succ0MBB);
2320 
2321     // If this is not a fall-through branch or optimizations are switched off,
2322     // emit the branch.
2323     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2324       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2325                               MVT::Other, getControlRoot(),
2326                               DAG.getBasicBlock(Succ0MBB)));
2327 
2328     return;
2329   }
2330 
2331   // If this condition is one of the special cases we handle, do special stuff
2332   // now.
2333   const Value *CondVal = I.getCondition();
2334   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2335 
2336   // If this is a series of conditions that are or'd or and'd together, emit
2337   // this as a sequence of branches instead of setcc's with and/or operations.
2338   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2339   // unpredictable branches, and vector extracts because those jumps are likely
2340   // expensive for any target), this should improve performance.
2341   // For example, instead of something like:
2342   //     cmp A, B
2343   //     C = seteq
2344   //     cmp D, E
2345   //     F = setle
2346   //     or C, F
2347   //     jnz foo
2348   // Emit:
2349   //     cmp A, B
2350   //     je foo
2351   //     cmp D, E
2352   //     jle foo
2353   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2354   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2355       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2356     Value *Vec;
2357     const Value *BOp0, *BOp1;
2358     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2359     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2360       Opcode = Instruction::And;
2361     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2362       Opcode = Instruction::Or;
2363 
2364     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2365                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2366       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2367                            getEdgeProbability(BrMBB, Succ0MBB),
2368                            getEdgeProbability(BrMBB, Succ1MBB),
2369                            /*InvertCond=*/false);
2370       // If the compares in later blocks need to use values not currently
2371       // exported from this block, export them now.  This block should always
2372       // be the first entry.
2373       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2374 
2375       // Allow some cases to be rejected.
2376       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2377         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2378           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2379           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2380         }
2381 
2382         // Emit the branch for this block.
2383         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2384         SL->SwitchCases.erase(SL->SwitchCases.begin());
2385         return;
2386       }
2387 
2388       // Okay, we decided not to do this, remove any inserted MBB's and clear
2389       // SwitchCases.
2390       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2391         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2392 
2393       SL->SwitchCases.clear();
2394     }
2395   }
2396 
2397   // Create a CaseBlock record representing this branch.
2398   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2399                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2400 
2401   // Use visitSwitchCase to actually insert the fast branch sequence for this
2402   // cond branch.
2403   visitSwitchCase(CB, BrMBB);
2404 }
2405 
2406 /// visitSwitchCase - Emits the necessary code to represent a single node in
2407 /// the binary search tree resulting from lowering a switch instruction.
2408 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2409                                           MachineBasicBlock *SwitchBB) {
2410   SDValue Cond;
2411   SDValue CondLHS = getValue(CB.CmpLHS);
2412   SDLoc dl = CB.DL;
2413 
2414   if (CB.CC == ISD::SETTRUE) {
2415     // Branch or fall through to TrueBB.
2416     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2417     SwitchBB->normalizeSuccProbs();
2418     if (CB.TrueBB != NextBlock(SwitchBB)) {
2419       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2420                               DAG.getBasicBlock(CB.TrueBB)));
2421     }
2422     return;
2423   }
2424 
2425   auto &TLI = DAG.getTargetLoweringInfo();
2426   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2427 
2428   // Build the setcc now.
2429   if (!CB.CmpMHS) {
2430     // Fold "(X == true)" to X and "(X == false)" to !X to
2431     // handle common cases produced by branch lowering.
2432     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2433         CB.CC == ISD::SETEQ)
2434       Cond = CondLHS;
2435     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2436              CB.CC == ISD::SETEQ) {
2437       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2438       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2439     } else {
2440       SDValue CondRHS = getValue(CB.CmpRHS);
2441 
2442       // If a pointer's DAG type is larger than its memory type then the DAG
2443       // values are zero-extended. This breaks signed comparisons so truncate
2444       // back to the underlying type before doing the compare.
2445       if (CondLHS.getValueType() != MemVT) {
2446         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2447         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2448       }
2449       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2450     }
2451   } else {
2452     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2453 
2454     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2455     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2456 
2457     SDValue CmpOp = getValue(CB.CmpMHS);
2458     EVT VT = CmpOp.getValueType();
2459 
2460     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2461       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2462                           ISD::SETLE);
2463     } else {
2464       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2465                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2466       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2467                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2468     }
2469   }
2470 
2471   // Update successor info
2472   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2473   // TrueBB and FalseBB are always different unless the incoming IR is
2474   // degenerate. This only happens when running llc on weird IR.
2475   if (CB.TrueBB != CB.FalseBB)
2476     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2477   SwitchBB->normalizeSuccProbs();
2478 
2479   // If the lhs block is the next block, invert the condition so that we can
2480   // fall through to the lhs instead of the rhs block.
2481   if (CB.TrueBB == NextBlock(SwitchBB)) {
2482     std::swap(CB.TrueBB, CB.FalseBB);
2483     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2484     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2485   }
2486 
2487   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2488                                MVT::Other, getControlRoot(), Cond,
2489                                DAG.getBasicBlock(CB.TrueBB));
2490 
2491   // Insert the false branch. Do this even if it's a fall through branch,
2492   // this makes it easier to do DAG optimizations which require inverting
2493   // the branch condition.
2494   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2495                        DAG.getBasicBlock(CB.FalseBB));
2496 
2497   DAG.setRoot(BrCond);
2498 }
2499 
2500 /// visitJumpTable - Emit JumpTable node in the current MBB
2501 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2502   // Emit the code for the jump table
2503   assert(JT.Reg != -1U && "Should lower JT Header first!");
2504   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2505   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2506                                      JT.Reg, PTy);
2507   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2508   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2509                                     MVT::Other, Index.getValue(1),
2510                                     Table, Index);
2511   DAG.setRoot(BrJumpTable);
2512 }
2513 
2514 /// visitJumpTableHeader - This function emits necessary code to produce index
2515 /// in the JumpTable from switch case.
2516 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2517                                                JumpTableHeader &JTH,
2518                                                MachineBasicBlock *SwitchBB) {
2519   SDLoc dl = getCurSDLoc();
2520 
2521   // Subtract the lowest switch case value from the value being switched on.
2522   SDValue SwitchOp = getValue(JTH.SValue);
2523   EVT VT = SwitchOp.getValueType();
2524   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2525                             DAG.getConstant(JTH.First, dl, VT));
2526 
2527   // The SDNode we just created, which holds the value being switched on minus
2528   // the smallest case value, needs to be copied to a virtual register so it
2529   // can be used as an index into the jump table in a subsequent basic block.
2530   // This value may be smaller or larger than the target's pointer type, and
2531   // therefore require extension or truncating.
2532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2533   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2534 
2535   unsigned JumpTableReg =
2536       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2537   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2538                                     JumpTableReg, SwitchOp);
2539   JT.Reg = JumpTableReg;
2540 
2541   if (!JTH.OmitRangeCheck) {
2542     // Emit the range check for the jump table, and branch to the default block
2543     // for the switch statement if the value being switched on exceeds the
2544     // largest case in the switch.
2545     SDValue CMP = DAG.getSetCC(
2546         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2547                                    Sub.getValueType()),
2548         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2549 
2550     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2551                                  MVT::Other, CopyTo, CMP,
2552                                  DAG.getBasicBlock(JT.Default));
2553 
2554     // Avoid emitting unnecessary branches to the next block.
2555     if (JT.MBB != NextBlock(SwitchBB))
2556       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2557                            DAG.getBasicBlock(JT.MBB));
2558 
2559     DAG.setRoot(BrCond);
2560   } else {
2561     // Avoid emitting unnecessary branches to the next block.
2562     if (JT.MBB != NextBlock(SwitchBB))
2563       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2564                               DAG.getBasicBlock(JT.MBB)));
2565     else
2566       DAG.setRoot(CopyTo);
2567   }
2568 }
2569 
2570 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2571 /// variable if there exists one.
2572 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2573                                  SDValue &Chain) {
2574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2575   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2576   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2577   MachineFunction &MF = DAG.getMachineFunction();
2578   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2579   MachineSDNode *Node =
2580       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2581   if (Global) {
2582     MachinePointerInfo MPInfo(Global);
2583     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2584                  MachineMemOperand::MODereferenceable;
2585     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2586         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2587     DAG.setNodeMemRefs(Node, {MemRef});
2588   }
2589   if (PtrTy != PtrMemTy)
2590     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2591   return SDValue(Node, 0);
2592 }
2593 
2594 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2595 /// tail spliced into a stack protector check success bb.
2596 ///
2597 /// For a high level explanation of how this fits into the stack protector
2598 /// generation see the comment on the declaration of class
2599 /// StackProtectorDescriptor.
2600 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2601                                                   MachineBasicBlock *ParentBB) {
2602 
2603   // First create the loads to the guard/stack slot for the comparison.
2604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2605   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2606   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2607 
2608   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2609   int FI = MFI.getStackProtectorIndex();
2610 
2611   SDValue Guard;
2612   SDLoc dl = getCurSDLoc();
2613   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2614   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2615   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2616 
2617   // Generate code to load the content of the guard slot.
2618   SDValue GuardVal = DAG.getLoad(
2619       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2620       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2621       MachineMemOperand::MOVolatile);
2622 
2623   if (TLI.useStackGuardXorFP())
2624     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2625 
2626   // Retrieve guard check function, nullptr if instrumentation is inlined.
2627   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2628     // The target provides a guard check function to validate the guard value.
2629     // Generate a call to that function with the content of the guard slot as
2630     // argument.
2631     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2632     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2633 
2634     TargetLowering::ArgListTy Args;
2635     TargetLowering::ArgListEntry Entry;
2636     Entry.Node = GuardVal;
2637     Entry.Ty = FnTy->getParamType(0);
2638     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2639       Entry.IsInReg = true;
2640     Args.push_back(Entry);
2641 
2642     TargetLowering::CallLoweringInfo CLI(DAG);
2643     CLI.setDebugLoc(getCurSDLoc())
2644         .setChain(DAG.getEntryNode())
2645         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2646                    getValue(GuardCheckFn), std::move(Args));
2647 
2648     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2649     DAG.setRoot(Result.second);
2650     return;
2651   }
2652 
2653   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2654   // Otherwise, emit a volatile load to retrieve the stack guard value.
2655   SDValue Chain = DAG.getEntryNode();
2656   if (TLI.useLoadStackGuardNode()) {
2657     Guard = getLoadStackGuard(DAG, dl, Chain);
2658   } else {
2659     const Value *IRGuard = TLI.getSDagStackGuard(M);
2660     SDValue GuardPtr = getValue(IRGuard);
2661 
2662     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2663                         MachinePointerInfo(IRGuard, 0), Align,
2664                         MachineMemOperand::MOVolatile);
2665   }
2666 
2667   // Perform the comparison via a getsetcc.
2668   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2669                                                         *DAG.getContext(),
2670                                                         Guard.getValueType()),
2671                              Guard, GuardVal, ISD::SETNE);
2672 
2673   // If the guard/stackslot do not equal, branch to failure MBB.
2674   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2675                                MVT::Other, GuardVal.getOperand(0),
2676                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2677   // Otherwise branch to success MBB.
2678   SDValue Br = DAG.getNode(ISD::BR, dl,
2679                            MVT::Other, BrCond,
2680                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2681 
2682   DAG.setRoot(Br);
2683 }
2684 
2685 /// Codegen the failure basic block for a stack protector check.
2686 ///
2687 /// A failure stack protector machine basic block consists simply of a call to
2688 /// __stack_chk_fail().
2689 ///
2690 /// For a high level explanation of how this fits into the stack protector
2691 /// generation see the comment on the declaration of class
2692 /// StackProtectorDescriptor.
2693 void
2694 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2696   TargetLowering::MakeLibCallOptions CallOptions;
2697   CallOptions.setDiscardResult(true);
2698   SDValue Chain =
2699       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2700                       None, CallOptions, getCurSDLoc()).second;
2701   // On PS4, the "return address" must still be within the calling function,
2702   // even if it's at the very end, so emit an explicit TRAP here.
2703   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2704   if (TM.getTargetTriple().isPS4CPU())
2705     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2706   // WebAssembly needs an unreachable instruction after a non-returning call,
2707   // because the function return type can be different from __stack_chk_fail's
2708   // return type (void).
2709   if (TM.getTargetTriple().isWasm())
2710     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2711 
2712   DAG.setRoot(Chain);
2713 }
2714 
2715 /// visitBitTestHeader - This function emits necessary code to produce value
2716 /// suitable for "bit tests"
2717 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2718                                              MachineBasicBlock *SwitchBB) {
2719   SDLoc dl = getCurSDLoc();
2720 
2721   // Subtract the minimum value.
2722   SDValue SwitchOp = getValue(B.SValue);
2723   EVT VT = SwitchOp.getValueType();
2724   SDValue RangeSub =
2725       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2726 
2727   // Determine the type of the test operands.
2728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2729   bool UsePtrType = false;
2730   if (!TLI.isTypeLegal(VT)) {
2731     UsePtrType = true;
2732   } else {
2733     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2734       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2735         // Switch table case range are encoded into series of masks.
2736         // Just use pointer type, it's guaranteed to fit.
2737         UsePtrType = true;
2738         break;
2739       }
2740   }
2741   SDValue Sub = RangeSub;
2742   if (UsePtrType) {
2743     VT = TLI.getPointerTy(DAG.getDataLayout());
2744     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2745   }
2746 
2747   B.RegVT = VT.getSimpleVT();
2748   B.Reg = FuncInfo.CreateReg(B.RegVT);
2749   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2750 
2751   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2752 
2753   if (!B.OmitRangeCheck)
2754     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2755   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2756   SwitchBB->normalizeSuccProbs();
2757 
2758   SDValue Root = CopyTo;
2759   if (!B.OmitRangeCheck) {
2760     // Conditional branch to the default block.
2761     SDValue RangeCmp = DAG.getSetCC(dl,
2762         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2763                                RangeSub.getValueType()),
2764         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2765         ISD::SETUGT);
2766 
2767     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2768                        DAG.getBasicBlock(B.Default));
2769   }
2770 
2771   // Avoid emitting unnecessary branches to the next block.
2772   if (MBB != NextBlock(SwitchBB))
2773     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2774 
2775   DAG.setRoot(Root);
2776 }
2777 
2778 /// visitBitTestCase - this function produces one "bit test"
2779 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2780                                            MachineBasicBlock* NextMBB,
2781                                            BranchProbability BranchProbToNext,
2782                                            unsigned Reg,
2783                                            BitTestCase &B,
2784                                            MachineBasicBlock *SwitchBB) {
2785   SDLoc dl = getCurSDLoc();
2786   MVT VT = BB.RegVT;
2787   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2788   SDValue Cmp;
2789   unsigned PopCount = countPopulation(B.Mask);
2790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2791   if (PopCount == 1) {
2792     // Testing for a single bit; just compare the shift count with what it
2793     // would need to be to shift a 1 bit in that position.
2794     Cmp = DAG.getSetCC(
2795         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2796         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2797         ISD::SETEQ);
2798   } else if (PopCount == BB.Range) {
2799     // There is only one zero bit in the range, test for it directly.
2800     Cmp = DAG.getSetCC(
2801         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2802         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2803         ISD::SETNE);
2804   } else {
2805     // Make desired shift
2806     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2807                                     DAG.getConstant(1, dl, VT), ShiftOp);
2808 
2809     // Emit bit tests and jumps
2810     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2811                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2812     Cmp = DAG.getSetCC(
2813         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2814         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2815   }
2816 
2817   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2818   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2819   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2820   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2821   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2822   // one as they are relative probabilities (and thus work more like weights),
2823   // and hence we need to normalize them to let the sum of them become one.
2824   SwitchBB->normalizeSuccProbs();
2825 
2826   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2827                               MVT::Other, getControlRoot(),
2828                               Cmp, DAG.getBasicBlock(B.TargetBB));
2829 
2830   // Avoid emitting unnecessary branches to the next block.
2831   if (NextMBB != NextBlock(SwitchBB))
2832     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2833                         DAG.getBasicBlock(NextMBB));
2834 
2835   DAG.setRoot(BrAnd);
2836 }
2837 
2838 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2839   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2840 
2841   // Retrieve successors. Look through artificial IR level blocks like
2842   // catchswitch for successors.
2843   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2844   const BasicBlock *EHPadBB = I.getSuccessor(1);
2845 
2846   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2847   // have to do anything here to lower funclet bundles.
2848   assert(!I.hasOperandBundlesOtherThan(
2849              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2850               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2851               LLVMContext::OB_cfguardtarget,
2852               LLVMContext::OB_clang_arc_attachedcall}) &&
2853          "Cannot lower invokes with arbitrary operand bundles yet!");
2854 
2855   const Value *Callee(I.getCalledOperand());
2856   const Function *Fn = dyn_cast<Function>(Callee);
2857   if (isa<InlineAsm>(Callee))
2858     visitInlineAsm(I);
2859   else if (Fn && Fn->isIntrinsic()) {
2860     switch (Fn->getIntrinsicID()) {
2861     default:
2862       llvm_unreachable("Cannot invoke this intrinsic");
2863     case Intrinsic::donothing:
2864       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2865       break;
2866     case Intrinsic::experimental_patchpoint_void:
2867     case Intrinsic::experimental_patchpoint_i64:
2868       visitPatchpoint(I, EHPadBB);
2869       break;
2870     case Intrinsic::experimental_gc_statepoint:
2871       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2872       break;
2873     case Intrinsic::wasm_rethrow: {
2874       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2875       // special because it can be invoked, so we manually lower it to a DAG
2876       // node here.
2877       SmallVector<SDValue, 8> Ops;
2878       Ops.push_back(getRoot()); // inchain
2879       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2880       Ops.push_back(
2881           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2882                                 TLI.getPointerTy(DAG.getDataLayout())));
2883       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2884       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2885       break;
2886     }
2887     }
2888   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2889     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2890     // Eventually we will support lowering the @llvm.experimental.deoptimize
2891     // intrinsic, and right now there are no plans to support other intrinsics
2892     // with deopt state.
2893     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2894   } else {
2895     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2896   }
2897 
2898   // If the value of the invoke is used outside of its defining block, make it
2899   // available as a virtual register.
2900   // We already took care of the exported value for the statepoint instruction
2901   // during call to the LowerStatepoint.
2902   if (!isa<GCStatepointInst>(I)) {
2903     CopyToExportRegsIfNeeded(&I);
2904   }
2905 
2906   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2907   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2908   BranchProbability EHPadBBProb =
2909       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2910           : BranchProbability::getZero();
2911   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2912 
2913   // Update successor info.
2914   addSuccessorWithProb(InvokeMBB, Return);
2915   for (auto &UnwindDest : UnwindDests) {
2916     UnwindDest.first->setIsEHPad();
2917     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2918   }
2919   InvokeMBB->normalizeSuccProbs();
2920 
2921   // Drop into normal successor.
2922   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2923                           DAG.getBasicBlock(Return)));
2924 }
2925 
2926 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2927   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2928 
2929   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2930   // have to do anything here to lower funclet bundles.
2931   assert(!I.hasOperandBundlesOtherThan(
2932              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2933          "Cannot lower callbrs with arbitrary operand bundles yet!");
2934 
2935   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2936   visitInlineAsm(I);
2937   CopyToExportRegsIfNeeded(&I);
2938 
2939   // Retrieve successors.
2940   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2941 
2942   // Update successor info.
2943   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2944   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2945     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2946     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2947     Target->setIsInlineAsmBrIndirectTarget();
2948   }
2949   CallBrMBB->normalizeSuccProbs();
2950 
2951   // Drop into default successor.
2952   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2953                           MVT::Other, getControlRoot(),
2954                           DAG.getBasicBlock(Return)));
2955 }
2956 
2957 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2958   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2959 }
2960 
2961 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2962   assert(FuncInfo.MBB->isEHPad() &&
2963          "Call to landingpad not in landing pad!");
2964 
2965   // If there aren't registers to copy the values into (e.g., during SjLj
2966   // exceptions), then don't bother to create these DAG nodes.
2967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2968   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2969   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2970       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2971     return;
2972 
2973   // If landingpad's return type is token type, we don't create DAG nodes
2974   // for its exception pointer and selector value. The extraction of exception
2975   // pointer or selector value from token type landingpads is not currently
2976   // supported.
2977   if (LP.getType()->isTokenTy())
2978     return;
2979 
2980   SmallVector<EVT, 2> ValueVTs;
2981   SDLoc dl = getCurSDLoc();
2982   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2983   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2984 
2985   // Get the two live-in registers as SDValues. The physregs have already been
2986   // copied into virtual registers.
2987   SDValue Ops[2];
2988   if (FuncInfo.ExceptionPointerVirtReg) {
2989     Ops[0] = DAG.getZExtOrTrunc(
2990         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2991                            FuncInfo.ExceptionPointerVirtReg,
2992                            TLI.getPointerTy(DAG.getDataLayout())),
2993         dl, ValueVTs[0]);
2994   } else {
2995     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2996   }
2997   Ops[1] = DAG.getZExtOrTrunc(
2998       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2999                          FuncInfo.ExceptionSelectorVirtReg,
3000                          TLI.getPointerTy(DAG.getDataLayout())),
3001       dl, ValueVTs[1]);
3002 
3003   // Merge into one.
3004   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3005                             DAG.getVTList(ValueVTs), Ops);
3006   setValue(&LP, Res);
3007 }
3008 
3009 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3010                                            MachineBasicBlock *Last) {
3011   // Update JTCases.
3012   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3013     if (SL->JTCases[i].first.HeaderBB == First)
3014       SL->JTCases[i].first.HeaderBB = Last;
3015 
3016   // Update BitTestCases.
3017   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3018     if (SL->BitTestCases[i].Parent == First)
3019       SL->BitTestCases[i].Parent = Last;
3020 }
3021 
3022 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3023   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3024 
3025   // Update machine-CFG edges with unique successors.
3026   SmallSet<BasicBlock*, 32> Done;
3027   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3028     BasicBlock *BB = I.getSuccessor(i);
3029     bool Inserted = Done.insert(BB).second;
3030     if (!Inserted)
3031         continue;
3032 
3033     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3034     addSuccessorWithProb(IndirectBrMBB, Succ);
3035   }
3036   IndirectBrMBB->normalizeSuccProbs();
3037 
3038   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3039                           MVT::Other, getControlRoot(),
3040                           getValue(I.getAddress())));
3041 }
3042 
3043 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3044   if (!DAG.getTarget().Options.TrapUnreachable)
3045     return;
3046 
3047   // We may be able to ignore unreachable behind a noreturn call.
3048   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3049     const BasicBlock &BB = *I.getParent();
3050     if (&I != &BB.front()) {
3051       BasicBlock::const_iterator PredI =
3052         std::prev(BasicBlock::const_iterator(&I));
3053       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3054         if (Call->doesNotReturn())
3055           return;
3056       }
3057     }
3058   }
3059 
3060   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3061 }
3062 
3063 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3064   SDNodeFlags Flags;
3065 
3066   SDValue Op = getValue(I.getOperand(0));
3067   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3068                                     Op, Flags);
3069   setValue(&I, UnNodeValue);
3070 }
3071 
3072 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3073   SDNodeFlags Flags;
3074   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3075     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3076     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3077   }
3078   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3079     Flags.setExact(ExactOp->isExact());
3080   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3081     Flags.copyFMF(*FPOp);
3082 
3083   SDValue Op1 = getValue(I.getOperand(0));
3084   SDValue Op2 = getValue(I.getOperand(1));
3085   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3086                                      Op1, Op2, Flags);
3087   setValue(&I, BinNodeValue);
3088 }
3089 
3090 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3091   SDValue Op1 = getValue(I.getOperand(0));
3092   SDValue Op2 = getValue(I.getOperand(1));
3093 
3094   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3095       Op1.getValueType(), DAG.getDataLayout());
3096 
3097   // Coerce the shift amount to the right type if we can.
3098   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3099     unsigned ShiftSize = ShiftTy.getSizeInBits();
3100     unsigned Op2Size = Op2.getValueSizeInBits();
3101     SDLoc DL = getCurSDLoc();
3102 
3103     // If the operand is smaller than the shift count type, promote it.
3104     if (ShiftSize > Op2Size)
3105       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3106 
3107     // If the operand is larger than the shift count type but the shift
3108     // count type has enough bits to represent any shift value, truncate
3109     // it now. This is a common case and it exposes the truncate to
3110     // optimization early.
3111     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3112       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3113     // Otherwise we'll need to temporarily settle for some other convenient
3114     // type.  Type legalization will make adjustments once the shiftee is split.
3115     else
3116       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3117   }
3118 
3119   bool nuw = false;
3120   bool nsw = false;
3121   bool exact = false;
3122 
3123   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3124 
3125     if (const OverflowingBinaryOperator *OFBinOp =
3126             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3127       nuw = OFBinOp->hasNoUnsignedWrap();
3128       nsw = OFBinOp->hasNoSignedWrap();
3129     }
3130     if (const PossiblyExactOperator *ExactOp =
3131             dyn_cast<const PossiblyExactOperator>(&I))
3132       exact = ExactOp->isExact();
3133   }
3134   SDNodeFlags Flags;
3135   Flags.setExact(exact);
3136   Flags.setNoSignedWrap(nsw);
3137   Flags.setNoUnsignedWrap(nuw);
3138   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3139                             Flags);
3140   setValue(&I, Res);
3141 }
3142 
3143 void SelectionDAGBuilder::visitSDiv(const User &I) {
3144   SDValue Op1 = getValue(I.getOperand(0));
3145   SDValue Op2 = getValue(I.getOperand(1));
3146 
3147   SDNodeFlags Flags;
3148   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3149                  cast<PossiblyExactOperator>(&I)->isExact());
3150   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3151                            Op2, Flags));
3152 }
3153 
3154 void SelectionDAGBuilder::visitICmp(const User &I) {
3155   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3156   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3157     predicate = IC->getPredicate();
3158   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3159     predicate = ICmpInst::Predicate(IC->getPredicate());
3160   SDValue Op1 = getValue(I.getOperand(0));
3161   SDValue Op2 = getValue(I.getOperand(1));
3162   ISD::CondCode Opcode = getICmpCondCode(predicate);
3163 
3164   auto &TLI = DAG.getTargetLoweringInfo();
3165   EVT MemVT =
3166       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3167 
3168   // If a pointer's DAG type is larger than its memory type then the DAG values
3169   // are zero-extended. This breaks signed comparisons so truncate back to the
3170   // underlying type before doing the compare.
3171   if (Op1.getValueType() != MemVT) {
3172     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3173     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3174   }
3175 
3176   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3177                                                         I.getType());
3178   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3179 }
3180 
3181 void SelectionDAGBuilder::visitFCmp(const User &I) {
3182   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3183   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3184     predicate = FC->getPredicate();
3185   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3186     predicate = FCmpInst::Predicate(FC->getPredicate());
3187   SDValue Op1 = getValue(I.getOperand(0));
3188   SDValue Op2 = getValue(I.getOperand(1));
3189 
3190   ISD::CondCode Condition = getFCmpCondCode(predicate);
3191   auto *FPMO = cast<FPMathOperator>(&I);
3192   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3193     Condition = getFCmpCodeWithoutNaN(Condition);
3194 
3195   SDNodeFlags Flags;
3196   Flags.copyFMF(*FPMO);
3197   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3198 
3199   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3200                                                         I.getType());
3201   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3202 }
3203 
3204 // Check if the condition of the select has one use or two users that are both
3205 // selects with the same condition.
3206 static bool hasOnlySelectUsers(const Value *Cond) {
3207   return llvm::all_of(Cond->users(), [](const Value *V) {
3208     return isa<SelectInst>(V);
3209   });
3210 }
3211 
3212 void SelectionDAGBuilder::visitSelect(const User &I) {
3213   SmallVector<EVT, 4> ValueVTs;
3214   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3215                   ValueVTs);
3216   unsigned NumValues = ValueVTs.size();
3217   if (NumValues == 0) return;
3218 
3219   SmallVector<SDValue, 4> Values(NumValues);
3220   SDValue Cond     = getValue(I.getOperand(0));
3221   SDValue LHSVal   = getValue(I.getOperand(1));
3222   SDValue RHSVal   = getValue(I.getOperand(2));
3223   SmallVector<SDValue, 1> BaseOps(1, Cond);
3224   ISD::NodeType OpCode =
3225       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3226 
3227   bool IsUnaryAbs = false;
3228   bool Negate = false;
3229 
3230   SDNodeFlags Flags;
3231   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3232     Flags.copyFMF(*FPOp);
3233 
3234   // Min/max matching is only viable if all output VTs are the same.
3235   if (is_splat(ValueVTs)) {
3236     EVT VT = ValueVTs[0];
3237     LLVMContext &Ctx = *DAG.getContext();
3238     auto &TLI = DAG.getTargetLoweringInfo();
3239 
3240     // We care about the legality of the operation after it has been type
3241     // legalized.
3242     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3243       VT = TLI.getTypeToTransformTo(Ctx, VT);
3244 
3245     // If the vselect is legal, assume we want to leave this as a vector setcc +
3246     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3247     // min/max is legal on the scalar type.
3248     bool UseScalarMinMax = VT.isVector() &&
3249       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3250 
3251     Value *LHS, *RHS;
3252     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3253     ISD::NodeType Opc = ISD::DELETED_NODE;
3254     switch (SPR.Flavor) {
3255     case SPF_UMAX:    Opc = ISD::UMAX; break;
3256     case SPF_UMIN:    Opc = ISD::UMIN; break;
3257     case SPF_SMAX:    Opc = ISD::SMAX; break;
3258     case SPF_SMIN:    Opc = ISD::SMIN; break;
3259     case SPF_FMINNUM:
3260       switch (SPR.NaNBehavior) {
3261       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3262       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3263       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3264       case SPNB_RETURNS_ANY: {
3265         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3266           Opc = ISD::FMINNUM;
3267         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3268           Opc = ISD::FMINIMUM;
3269         else if (UseScalarMinMax)
3270           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3271             ISD::FMINNUM : ISD::FMINIMUM;
3272         break;
3273       }
3274       }
3275       break;
3276     case SPF_FMAXNUM:
3277       switch (SPR.NaNBehavior) {
3278       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3279       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3280       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3281       case SPNB_RETURNS_ANY:
3282 
3283         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3284           Opc = ISD::FMAXNUM;
3285         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3286           Opc = ISD::FMAXIMUM;
3287         else if (UseScalarMinMax)
3288           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3289             ISD::FMAXNUM : ISD::FMAXIMUM;
3290         break;
3291       }
3292       break;
3293     case SPF_NABS:
3294       Negate = true;
3295       LLVM_FALLTHROUGH;
3296     case SPF_ABS:
3297       IsUnaryAbs = true;
3298       Opc = ISD::ABS;
3299       break;
3300     default: break;
3301     }
3302 
3303     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3304         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3305          (UseScalarMinMax &&
3306           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3307         // If the underlying comparison instruction is used by any other
3308         // instruction, the consumed instructions won't be destroyed, so it is
3309         // not profitable to convert to a min/max.
3310         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3311       OpCode = Opc;
3312       LHSVal = getValue(LHS);
3313       RHSVal = getValue(RHS);
3314       BaseOps.clear();
3315     }
3316 
3317     if (IsUnaryAbs) {
3318       OpCode = Opc;
3319       LHSVal = getValue(LHS);
3320       BaseOps.clear();
3321     }
3322   }
3323 
3324   if (IsUnaryAbs) {
3325     for (unsigned i = 0; i != NumValues; ++i) {
3326       SDLoc dl = getCurSDLoc();
3327       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3328       Values[i] =
3329           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3330       if (Negate)
3331         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3332                                 Values[i]);
3333     }
3334   } else {
3335     for (unsigned i = 0; i != NumValues; ++i) {
3336       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3337       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3338       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3339       Values[i] = DAG.getNode(
3340           OpCode, getCurSDLoc(),
3341           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3342     }
3343   }
3344 
3345   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3346                            DAG.getVTList(ValueVTs), Values));
3347 }
3348 
3349 void SelectionDAGBuilder::visitTrunc(const User &I) {
3350   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3351   SDValue N = getValue(I.getOperand(0));
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3355 }
3356 
3357 void SelectionDAGBuilder::visitZExt(const User &I) {
3358   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3359   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3360   SDValue N = getValue(I.getOperand(0));
3361   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3362                                                         I.getType());
3363   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3364 }
3365 
3366 void SelectionDAGBuilder::visitSExt(const User &I) {
3367   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3368   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3369   SDValue N = getValue(I.getOperand(0));
3370   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3371                                                         I.getType());
3372   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3373 }
3374 
3375 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3376   // FPTrunc is never a no-op cast, no need to check
3377   SDValue N = getValue(I.getOperand(0));
3378   SDLoc dl = getCurSDLoc();
3379   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3380   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3381   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3382                            DAG.getTargetConstant(
3383                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3384 }
3385 
3386 void SelectionDAGBuilder::visitFPExt(const User &I) {
3387   // FPExt is never a no-op cast, no need to check
3388   SDValue N = getValue(I.getOperand(0));
3389   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390                                                         I.getType());
3391   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3392 }
3393 
3394 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3395   // FPToUI is never a no-op cast, no need to check
3396   SDValue N = getValue(I.getOperand(0));
3397   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3398                                                         I.getType());
3399   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3400 }
3401 
3402 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3403   // FPToSI is never a no-op cast, no need to check
3404   SDValue N = getValue(I.getOperand(0));
3405   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406                                                         I.getType());
3407   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3408 }
3409 
3410 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3411   // UIToFP is never a no-op cast, no need to check
3412   SDValue N = getValue(I.getOperand(0));
3413   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3414                                                         I.getType());
3415   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3416 }
3417 
3418 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3419   // SIToFP is never a no-op cast, no need to check
3420   SDValue N = getValue(I.getOperand(0));
3421   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3422                                                         I.getType());
3423   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3424 }
3425 
3426 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3427   // What to do depends on the size of the integer and the size of the pointer.
3428   // We can either truncate, zero extend, or no-op, accordingly.
3429   SDValue N = getValue(I.getOperand(0));
3430   auto &TLI = DAG.getTargetLoweringInfo();
3431   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3432                                                         I.getType());
3433   EVT PtrMemVT =
3434       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3435   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3436   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3437   setValue(&I, N);
3438 }
3439 
3440 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3441   // What to do depends on the size of the integer and the size of the pointer.
3442   // We can either truncate, zero extend, or no-op, accordingly.
3443   SDValue N = getValue(I.getOperand(0));
3444   auto &TLI = DAG.getTargetLoweringInfo();
3445   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3446   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3447   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3448   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3449   setValue(&I, N);
3450 }
3451 
3452 void SelectionDAGBuilder::visitBitCast(const User &I) {
3453   SDValue N = getValue(I.getOperand(0));
3454   SDLoc dl = getCurSDLoc();
3455   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3456                                                         I.getType());
3457 
3458   // BitCast assures us that source and destination are the same size so this is
3459   // either a BITCAST or a no-op.
3460   if (DestVT != N.getValueType())
3461     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3462                              DestVT, N)); // convert types.
3463   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3464   // might fold any kind of constant expression to an integer constant and that
3465   // is not what we are looking for. Only recognize a bitcast of a genuine
3466   // constant integer as an opaque constant.
3467   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3468     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3469                                  /*isOpaque*/true));
3470   else
3471     setValue(&I, N);            // noop cast.
3472 }
3473 
3474 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3476   const Value *SV = I.getOperand(0);
3477   SDValue N = getValue(SV);
3478   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3479 
3480   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3481   unsigned DestAS = I.getType()->getPointerAddressSpace();
3482 
3483   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3484     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3485 
3486   setValue(&I, N);
3487 }
3488 
3489 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3491   SDValue InVec = getValue(I.getOperand(0));
3492   SDValue InVal = getValue(I.getOperand(1));
3493   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3494                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3495   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3496                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3497                            InVec, InVal, InIdx));
3498 }
3499 
3500 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3502   SDValue InVec = getValue(I.getOperand(0));
3503   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3504                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3505   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3506                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3507                            InVec, InIdx));
3508 }
3509 
3510 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3511   SDValue Src1 = getValue(I.getOperand(0));
3512   SDValue Src2 = getValue(I.getOperand(1));
3513   ArrayRef<int> Mask;
3514   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3515     Mask = SVI->getShuffleMask();
3516   else
3517     Mask = cast<ConstantExpr>(I).getShuffleMask();
3518   SDLoc DL = getCurSDLoc();
3519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3520   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3521   EVT SrcVT = Src1.getValueType();
3522 
3523   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3524       VT.isScalableVector()) {
3525     // Canonical splat form of first element of first input vector.
3526     SDValue FirstElt =
3527         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3528                     DAG.getVectorIdxConstant(0, DL));
3529     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3530     return;
3531   }
3532 
3533   // For now, we only handle splats for scalable vectors.
3534   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3535   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3536   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3537 
3538   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3539   unsigned MaskNumElts = Mask.size();
3540 
3541   if (SrcNumElts == MaskNumElts) {
3542     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3543     return;
3544   }
3545 
3546   // Normalize the shuffle vector since mask and vector length don't match.
3547   if (SrcNumElts < MaskNumElts) {
3548     // Mask is longer than the source vectors. We can use concatenate vector to
3549     // make the mask and vectors lengths match.
3550 
3551     if (MaskNumElts % SrcNumElts == 0) {
3552       // Mask length is a multiple of the source vector length.
3553       // Check if the shuffle is some kind of concatenation of the input
3554       // vectors.
3555       unsigned NumConcat = MaskNumElts / SrcNumElts;
3556       bool IsConcat = true;
3557       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3558       for (unsigned i = 0; i != MaskNumElts; ++i) {
3559         int Idx = Mask[i];
3560         if (Idx < 0)
3561           continue;
3562         // Ensure the indices in each SrcVT sized piece are sequential and that
3563         // the same source is used for the whole piece.
3564         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3565             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3566              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3567           IsConcat = false;
3568           break;
3569         }
3570         // Remember which source this index came from.
3571         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3572       }
3573 
3574       // The shuffle is concatenating multiple vectors together. Just emit
3575       // a CONCAT_VECTORS operation.
3576       if (IsConcat) {
3577         SmallVector<SDValue, 8> ConcatOps;
3578         for (auto Src : ConcatSrcs) {
3579           if (Src < 0)
3580             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3581           else if (Src == 0)
3582             ConcatOps.push_back(Src1);
3583           else
3584             ConcatOps.push_back(Src2);
3585         }
3586         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3587         return;
3588       }
3589     }
3590 
3591     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3592     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3593     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3594                                     PaddedMaskNumElts);
3595 
3596     // Pad both vectors with undefs to make them the same length as the mask.
3597     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3598 
3599     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3600     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3601     MOps1[0] = Src1;
3602     MOps2[0] = Src2;
3603 
3604     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3605     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3606 
3607     // Readjust mask for new input vector length.
3608     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3609     for (unsigned i = 0; i != MaskNumElts; ++i) {
3610       int Idx = Mask[i];
3611       if (Idx >= (int)SrcNumElts)
3612         Idx -= SrcNumElts - PaddedMaskNumElts;
3613       MappedOps[i] = Idx;
3614     }
3615 
3616     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3617 
3618     // If the concatenated vector was padded, extract a subvector with the
3619     // correct number of elements.
3620     if (MaskNumElts != PaddedMaskNumElts)
3621       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3622                            DAG.getVectorIdxConstant(0, DL));
3623 
3624     setValue(&I, Result);
3625     return;
3626   }
3627 
3628   if (SrcNumElts > MaskNumElts) {
3629     // Analyze the access pattern of the vector to see if we can extract
3630     // two subvectors and do the shuffle.
3631     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3632     bool CanExtract = true;
3633     for (int Idx : Mask) {
3634       unsigned Input = 0;
3635       if (Idx < 0)
3636         continue;
3637 
3638       if (Idx >= (int)SrcNumElts) {
3639         Input = 1;
3640         Idx -= SrcNumElts;
3641       }
3642 
3643       // If all the indices come from the same MaskNumElts sized portion of
3644       // the sources we can use extract. Also make sure the extract wouldn't
3645       // extract past the end of the source.
3646       int NewStartIdx = alignDown(Idx, MaskNumElts);
3647       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3648           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3649         CanExtract = false;
3650       // Make sure we always update StartIdx as we use it to track if all
3651       // elements are undef.
3652       StartIdx[Input] = NewStartIdx;
3653     }
3654 
3655     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3656       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3657       return;
3658     }
3659     if (CanExtract) {
3660       // Extract appropriate subvector and generate a vector shuffle
3661       for (unsigned Input = 0; Input < 2; ++Input) {
3662         SDValue &Src = Input == 0 ? Src1 : Src2;
3663         if (StartIdx[Input] < 0)
3664           Src = DAG.getUNDEF(VT);
3665         else {
3666           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3667                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3668         }
3669       }
3670 
3671       // Calculate new mask.
3672       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3673       for (int &Idx : MappedOps) {
3674         if (Idx >= (int)SrcNumElts)
3675           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3676         else if (Idx >= 0)
3677           Idx -= StartIdx[0];
3678       }
3679 
3680       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3681       return;
3682     }
3683   }
3684 
3685   // We can't use either concat vectors or extract subvectors so fall back to
3686   // replacing the shuffle with extract and build vector.
3687   // to insert and build vector.
3688   EVT EltVT = VT.getVectorElementType();
3689   SmallVector<SDValue,8> Ops;
3690   for (int Idx : Mask) {
3691     SDValue Res;
3692 
3693     if (Idx < 0) {
3694       Res = DAG.getUNDEF(EltVT);
3695     } else {
3696       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3697       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3698 
3699       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3700                         DAG.getVectorIdxConstant(Idx, DL));
3701     }
3702 
3703     Ops.push_back(Res);
3704   }
3705 
3706   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3707 }
3708 
3709 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3710   ArrayRef<unsigned> Indices;
3711   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3712     Indices = IV->getIndices();
3713   else
3714     Indices = cast<ConstantExpr>(&I)->getIndices();
3715 
3716   const Value *Op0 = I.getOperand(0);
3717   const Value *Op1 = I.getOperand(1);
3718   Type *AggTy = I.getType();
3719   Type *ValTy = Op1->getType();
3720   bool IntoUndef = isa<UndefValue>(Op0);
3721   bool FromUndef = isa<UndefValue>(Op1);
3722 
3723   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3724 
3725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3726   SmallVector<EVT, 4> AggValueVTs;
3727   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3728   SmallVector<EVT, 4> ValValueVTs;
3729   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3730 
3731   unsigned NumAggValues = AggValueVTs.size();
3732   unsigned NumValValues = ValValueVTs.size();
3733   SmallVector<SDValue, 4> Values(NumAggValues);
3734 
3735   // Ignore an insertvalue that produces an empty object
3736   if (!NumAggValues) {
3737     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3738     return;
3739   }
3740 
3741   SDValue Agg = getValue(Op0);
3742   unsigned i = 0;
3743   // Copy the beginning value(s) from the original aggregate.
3744   for (; i != LinearIndex; ++i)
3745     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3746                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3747   // Copy values from the inserted value(s).
3748   if (NumValValues) {
3749     SDValue Val = getValue(Op1);
3750     for (; i != LinearIndex + NumValValues; ++i)
3751       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3752                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3753   }
3754   // Copy remaining value(s) from the original aggregate.
3755   for (; i != NumAggValues; ++i)
3756     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3757                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3758 
3759   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3760                            DAG.getVTList(AggValueVTs), Values));
3761 }
3762 
3763 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3764   ArrayRef<unsigned> Indices;
3765   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3766     Indices = EV->getIndices();
3767   else
3768     Indices = cast<ConstantExpr>(&I)->getIndices();
3769 
3770   const Value *Op0 = I.getOperand(0);
3771   Type *AggTy = Op0->getType();
3772   Type *ValTy = I.getType();
3773   bool OutOfUndef = isa<UndefValue>(Op0);
3774 
3775   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3776 
3777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3778   SmallVector<EVT, 4> ValValueVTs;
3779   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3780 
3781   unsigned NumValValues = ValValueVTs.size();
3782 
3783   // Ignore a extractvalue that produces an empty object
3784   if (!NumValValues) {
3785     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3786     return;
3787   }
3788 
3789   SmallVector<SDValue, 4> Values(NumValValues);
3790 
3791   SDValue Agg = getValue(Op0);
3792   // Copy out the selected value(s).
3793   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3794     Values[i - LinearIndex] =
3795       OutOfUndef ?
3796         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3797         SDValue(Agg.getNode(), Agg.getResNo() + i);
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(ValValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3804   Value *Op0 = I.getOperand(0);
3805   // Note that the pointer operand may be a vector of pointers. Take the scalar
3806   // element which holds a pointer.
3807   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3808   SDValue N = getValue(Op0);
3809   SDLoc dl = getCurSDLoc();
3810   auto &TLI = DAG.getTargetLoweringInfo();
3811 
3812   // Normalize Vector GEP - all scalar operands should be converted to the
3813   // splat vector.
3814   bool IsVectorGEP = I.getType()->isVectorTy();
3815   ElementCount VectorElementCount =
3816       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3817                   : ElementCount::getFixed(0);
3818 
3819   if (IsVectorGEP && !N.getValueType().isVector()) {
3820     LLVMContext &Context = *DAG.getContext();
3821     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3822     if (VectorElementCount.isScalable())
3823       N = DAG.getSplatVector(VT, dl, N);
3824     else
3825       N = DAG.getSplatBuildVector(VT, dl, N);
3826   }
3827 
3828   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3829        GTI != E; ++GTI) {
3830     const Value *Idx = GTI.getOperand();
3831     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3832       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3833       if (Field) {
3834         // N = N + Offset
3835         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3836 
3837         // In an inbounds GEP with an offset that is nonnegative even when
3838         // interpreted as signed, assume there is no unsigned overflow.
3839         SDNodeFlags Flags;
3840         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3841           Flags.setNoUnsignedWrap(true);
3842 
3843         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3844                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3845       }
3846     } else {
3847       // IdxSize is the width of the arithmetic according to IR semantics.
3848       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3849       // (and fix up the result later).
3850       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3851       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3852       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3853       // We intentionally mask away the high bits here; ElementSize may not
3854       // fit in IdxTy.
3855       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3856       bool ElementScalable = ElementSize.isScalable();
3857 
3858       // If this is a scalar constant or a splat vector of constants,
3859       // handle it quickly.
3860       const auto *C = dyn_cast<Constant>(Idx);
3861       if (C && isa<VectorType>(C->getType()))
3862         C = C->getSplatValue();
3863 
3864       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3865       if (CI && CI->isZero())
3866         continue;
3867       if (CI && !ElementScalable) {
3868         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3869         LLVMContext &Context = *DAG.getContext();
3870         SDValue OffsVal;
3871         if (IsVectorGEP)
3872           OffsVal = DAG.getConstant(
3873               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3874         else
3875           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3876 
3877         // In an inbounds GEP with an offset that is nonnegative even when
3878         // interpreted as signed, assume there is no unsigned overflow.
3879         SDNodeFlags Flags;
3880         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3881           Flags.setNoUnsignedWrap(true);
3882 
3883         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3884 
3885         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3886         continue;
3887       }
3888 
3889       // N = N + Idx * ElementMul;
3890       SDValue IdxN = getValue(Idx);
3891 
3892       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3893         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3894                                   VectorElementCount);
3895         if (VectorElementCount.isScalable())
3896           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3897         else
3898           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3899       }
3900 
3901       // If the index is smaller or larger than intptr_t, truncate or extend
3902       // it.
3903       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3904 
3905       if (ElementScalable) {
3906         EVT VScaleTy = N.getValueType().getScalarType();
3907         SDValue VScale = DAG.getNode(
3908             ISD::VSCALE, dl, VScaleTy,
3909             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3910         if (IsVectorGEP)
3911           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3912         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3913       } else {
3914         // If this is a multiply by a power of two, turn it into a shl
3915         // immediately.  This is a very common case.
3916         if (ElementMul != 1) {
3917           if (ElementMul.isPowerOf2()) {
3918             unsigned Amt = ElementMul.logBase2();
3919             IdxN = DAG.getNode(ISD::SHL, dl,
3920                                N.getValueType(), IdxN,
3921                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3922           } else {
3923             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3924                                             IdxN.getValueType());
3925             IdxN = DAG.getNode(ISD::MUL, dl,
3926                                N.getValueType(), IdxN, Scale);
3927           }
3928         }
3929       }
3930 
3931       N = DAG.getNode(ISD::ADD, dl,
3932                       N.getValueType(), N, IdxN);
3933     }
3934   }
3935 
3936   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3937   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3938   if (IsVectorGEP) {
3939     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3940     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3941   }
3942 
3943   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3944     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3945 
3946   setValue(&I, N);
3947 }
3948 
3949 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3950   // If this is a fixed sized alloca in the entry block of the function,
3951   // allocate it statically on the stack.
3952   if (FuncInfo.StaticAllocaMap.count(&I))
3953     return;   // getValue will auto-populate this.
3954 
3955   SDLoc dl = getCurSDLoc();
3956   Type *Ty = I.getAllocatedType();
3957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3958   auto &DL = DAG.getDataLayout();
3959   uint64_t TySize = DL.getTypeAllocSize(Ty);
3960   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3961 
3962   SDValue AllocSize = getValue(I.getArraySize());
3963 
3964   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3965   if (AllocSize.getValueType() != IntPtr)
3966     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3967 
3968   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3969                           AllocSize,
3970                           DAG.getConstant(TySize, dl, IntPtr));
3971 
3972   // Handle alignment.  If the requested alignment is less than or equal to
3973   // the stack alignment, ignore it.  If the size is greater than or equal to
3974   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3975   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3976   if (*Alignment <= StackAlign)
3977     Alignment = None;
3978 
3979   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3980   // Round the size of the allocation up to the stack alignment size
3981   // by add SA-1 to the size. This doesn't overflow because we're computing
3982   // an address inside an alloca.
3983   SDNodeFlags Flags;
3984   Flags.setNoUnsignedWrap(true);
3985   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3986                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3987 
3988   // Mask out the low bits for alignment purposes.
3989   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3990                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3991 
3992   SDValue Ops[] = {
3993       getRoot(), AllocSize,
3994       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3995   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3996   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3997   setValue(&I, DSA);
3998   DAG.setRoot(DSA.getValue(1));
3999 
4000   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4001 }
4002 
4003 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4004   if (I.isAtomic())
4005     return visitAtomicLoad(I);
4006 
4007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4008   const Value *SV = I.getOperand(0);
4009   if (TLI.supportSwiftError()) {
4010     // Swifterror values can come from either a function parameter with
4011     // swifterror attribute or an alloca with swifterror attribute.
4012     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4013       if (Arg->hasSwiftErrorAttr())
4014         return visitLoadFromSwiftError(I);
4015     }
4016 
4017     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4018       if (Alloca->isSwiftError())
4019         return visitLoadFromSwiftError(I);
4020     }
4021   }
4022 
4023   SDValue Ptr = getValue(SV);
4024 
4025   Type *Ty = I.getType();
4026   Align Alignment = I.getAlign();
4027 
4028   AAMDNodes AAInfo;
4029   I.getAAMetadata(AAInfo);
4030   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4031 
4032   SmallVector<EVT, 4> ValueVTs, MemVTs;
4033   SmallVector<uint64_t, 4> Offsets;
4034   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4035   unsigned NumValues = ValueVTs.size();
4036   if (NumValues == 0)
4037     return;
4038 
4039   bool isVolatile = I.isVolatile();
4040 
4041   SDValue Root;
4042   bool ConstantMemory = false;
4043   if (isVolatile)
4044     // Serialize volatile loads with other side effects.
4045     Root = getRoot();
4046   else if (NumValues > MaxParallelChains)
4047     Root = getMemoryRoot();
4048   else if (AA &&
4049            AA->pointsToConstantMemory(MemoryLocation(
4050                SV,
4051                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4052                AAInfo))) {
4053     // Do not serialize (non-volatile) loads of constant memory with anything.
4054     Root = DAG.getEntryNode();
4055     ConstantMemory = true;
4056   } else {
4057     // Do not serialize non-volatile loads against each other.
4058     Root = DAG.getRoot();
4059   }
4060 
4061   SDLoc dl = getCurSDLoc();
4062 
4063   if (isVolatile)
4064     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4065 
4066   // An aggregate load cannot wrap around the address space, so offsets to its
4067   // parts don't wrap either.
4068   SDNodeFlags Flags;
4069   Flags.setNoUnsignedWrap(true);
4070 
4071   SmallVector<SDValue, 4> Values(NumValues);
4072   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4073   EVT PtrVT = Ptr.getValueType();
4074 
4075   MachineMemOperand::Flags MMOFlags
4076     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4077 
4078   unsigned ChainI = 0;
4079   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4080     // Serializing loads here may result in excessive register pressure, and
4081     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4082     // could recover a bit by hoisting nodes upward in the chain by recognizing
4083     // they are side-effect free or do not alias. The optimizer should really
4084     // avoid this case by converting large object/array copies to llvm.memcpy
4085     // (MaxParallelChains should always remain as failsafe).
4086     if (ChainI == MaxParallelChains) {
4087       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4088       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4089                                   makeArrayRef(Chains.data(), ChainI));
4090       Root = Chain;
4091       ChainI = 0;
4092     }
4093     SDValue A = DAG.getNode(ISD::ADD, dl,
4094                             PtrVT, Ptr,
4095                             DAG.getConstant(Offsets[i], dl, PtrVT),
4096                             Flags);
4097 
4098     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4099                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4100                             MMOFlags, AAInfo, Ranges);
4101     Chains[ChainI] = L.getValue(1);
4102 
4103     if (MemVTs[i] != ValueVTs[i])
4104       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4105 
4106     Values[i] = L;
4107   }
4108 
4109   if (!ConstantMemory) {
4110     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4111                                 makeArrayRef(Chains.data(), ChainI));
4112     if (isVolatile)
4113       DAG.setRoot(Chain);
4114     else
4115       PendingLoads.push_back(Chain);
4116   }
4117 
4118   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4119                            DAG.getVTList(ValueVTs), Values));
4120 }
4121 
4122 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4123   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4124          "call visitStoreToSwiftError when backend supports swifterror");
4125 
4126   SmallVector<EVT, 4> ValueVTs;
4127   SmallVector<uint64_t, 4> Offsets;
4128   const Value *SrcV = I.getOperand(0);
4129   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4130                   SrcV->getType(), ValueVTs, &Offsets);
4131   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4132          "expect a single EVT for swifterror");
4133 
4134   SDValue Src = getValue(SrcV);
4135   // Create a virtual register, then update the virtual register.
4136   Register VReg =
4137       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4138   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4139   // Chain can be getRoot or getControlRoot.
4140   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4141                                       SDValue(Src.getNode(), Src.getResNo()));
4142   DAG.setRoot(CopyNode);
4143 }
4144 
4145 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4146   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4147          "call visitLoadFromSwiftError when backend supports swifterror");
4148 
4149   assert(!I.isVolatile() &&
4150          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4151          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4152          "Support volatile, non temporal, invariant for load_from_swift_error");
4153 
4154   const Value *SV = I.getOperand(0);
4155   Type *Ty = I.getType();
4156   AAMDNodes AAInfo;
4157   I.getAAMetadata(AAInfo);
4158   assert(
4159       (!AA ||
4160        !AA->pointsToConstantMemory(MemoryLocation(
4161            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4162            AAInfo))) &&
4163       "load_from_swift_error should not be constant memory");
4164 
4165   SmallVector<EVT, 4> ValueVTs;
4166   SmallVector<uint64_t, 4> Offsets;
4167   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4168                   ValueVTs, &Offsets);
4169   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4170          "expect a single EVT for swifterror");
4171 
4172   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4173   SDValue L = DAG.getCopyFromReg(
4174       getRoot(), getCurSDLoc(),
4175       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4176 
4177   setValue(&I, L);
4178 }
4179 
4180 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4181   if (I.isAtomic())
4182     return visitAtomicStore(I);
4183 
4184   const Value *SrcV = I.getOperand(0);
4185   const Value *PtrV = I.getOperand(1);
4186 
4187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4188   if (TLI.supportSwiftError()) {
4189     // Swifterror values can come from either a function parameter with
4190     // swifterror attribute or an alloca with swifterror attribute.
4191     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4192       if (Arg->hasSwiftErrorAttr())
4193         return visitStoreToSwiftError(I);
4194     }
4195 
4196     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4197       if (Alloca->isSwiftError())
4198         return visitStoreToSwiftError(I);
4199     }
4200   }
4201 
4202   SmallVector<EVT, 4> ValueVTs, MemVTs;
4203   SmallVector<uint64_t, 4> Offsets;
4204   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4205                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4206   unsigned NumValues = ValueVTs.size();
4207   if (NumValues == 0)
4208     return;
4209 
4210   // Get the lowered operands. Note that we do this after
4211   // checking if NumResults is zero, because with zero results
4212   // the operands won't have values in the map.
4213   SDValue Src = getValue(SrcV);
4214   SDValue Ptr = getValue(PtrV);
4215 
4216   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4217   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4218   SDLoc dl = getCurSDLoc();
4219   Align Alignment = I.getAlign();
4220   AAMDNodes AAInfo;
4221   I.getAAMetadata(AAInfo);
4222 
4223   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4224 
4225   // An aggregate load cannot wrap around the address space, so offsets to its
4226   // parts don't wrap either.
4227   SDNodeFlags Flags;
4228   Flags.setNoUnsignedWrap(true);
4229 
4230   unsigned ChainI = 0;
4231   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4232     // See visitLoad comments.
4233     if (ChainI == MaxParallelChains) {
4234       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4235                                   makeArrayRef(Chains.data(), ChainI));
4236       Root = Chain;
4237       ChainI = 0;
4238     }
4239     SDValue Add =
4240         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4241     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4242     if (MemVTs[i] != ValueVTs[i])
4243       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4244     SDValue St =
4245         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4246                      Alignment, MMOFlags, AAInfo);
4247     Chains[ChainI] = St;
4248   }
4249 
4250   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4251                                   makeArrayRef(Chains.data(), ChainI));
4252   DAG.setRoot(StoreNode);
4253 }
4254 
4255 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4256                                            bool IsCompressing) {
4257   SDLoc sdl = getCurSDLoc();
4258 
4259   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4260                                MaybeAlign &Alignment) {
4261     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4262     Src0 = I.getArgOperand(0);
4263     Ptr = I.getArgOperand(1);
4264     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4265     Mask = I.getArgOperand(3);
4266   };
4267   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4268                                     MaybeAlign &Alignment) {
4269     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4270     Src0 = I.getArgOperand(0);
4271     Ptr = I.getArgOperand(1);
4272     Mask = I.getArgOperand(2);
4273     Alignment = None;
4274   };
4275 
4276   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4277   MaybeAlign Alignment;
4278   if (IsCompressing)
4279     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4280   else
4281     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4282 
4283   SDValue Ptr = getValue(PtrOperand);
4284   SDValue Src0 = getValue(Src0Operand);
4285   SDValue Mask = getValue(MaskOperand);
4286   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4287 
4288   EVT VT = Src0.getValueType();
4289   if (!Alignment)
4290     Alignment = DAG.getEVTAlign(VT);
4291 
4292   AAMDNodes AAInfo;
4293   I.getAAMetadata(AAInfo);
4294 
4295   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4296       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4297       // TODO: Make MachineMemOperands aware of scalable
4298       // vectors.
4299       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4300   SDValue StoreNode =
4301       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4302                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4303   DAG.setRoot(StoreNode);
4304   setValue(&I, StoreNode);
4305 }
4306 
4307 // Get a uniform base for the Gather/Scatter intrinsic.
4308 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4309 // We try to represent it as a base pointer + vector of indices.
4310 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4311 // The first operand of the GEP may be a single pointer or a vector of pointers
4312 // Example:
4313 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4314 //  or
4315 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4316 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4317 //
4318 // When the first GEP operand is a single pointer - it is the uniform base we
4319 // are looking for. If first operand of the GEP is a splat vector - we
4320 // extract the splat value and use it as a uniform base.
4321 // In all other cases the function returns 'false'.
4322 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4323                            ISD::MemIndexType &IndexType, SDValue &Scale,
4324                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4325   SelectionDAG& DAG = SDB->DAG;
4326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4327   const DataLayout &DL = DAG.getDataLayout();
4328 
4329   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4330 
4331   // Handle splat constant pointer.
4332   if (auto *C = dyn_cast<Constant>(Ptr)) {
4333     C = C->getSplatValue();
4334     if (!C)
4335       return false;
4336 
4337     Base = SDB->getValue(C);
4338 
4339     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4340     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4341     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4342     IndexType = ISD::SIGNED_SCALED;
4343     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4344     return true;
4345   }
4346 
4347   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4348   if (!GEP || GEP->getParent() != CurBB)
4349     return false;
4350 
4351   if (GEP->getNumOperands() != 2)
4352     return false;
4353 
4354   const Value *BasePtr = GEP->getPointerOperand();
4355   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4356 
4357   // Make sure the base is scalar and the index is a vector.
4358   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4359     return false;
4360 
4361   Base = SDB->getValue(BasePtr);
4362   Index = SDB->getValue(IndexVal);
4363   IndexType = ISD::SIGNED_SCALED;
4364   Scale = DAG.getTargetConstant(
4365               DL.getTypeAllocSize(GEP->getResultElementType()),
4366               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4367   return true;
4368 }
4369 
4370 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4371   SDLoc sdl = getCurSDLoc();
4372 
4373   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4374   const Value *Ptr = I.getArgOperand(1);
4375   SDValue Src0 = getValue(I.getArgOperand(0));
4376   SDValue Mask = getValue(I.getArgOperand(3));
4377   EVT VT = Src0.getValueType();
4378   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4379                         ->getMaybeAlignValue()
4380                         .getValueOr(DAG.getEVTAlign(VT));
4381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4382 
4383   AAMDNodes AAInfo;
4384   I.getAAMetadata(AAInfo);
4385 
4386   SDValue Base;
4387   SDValue Index;
4388   ISD::MemIndexType IndexType;
4389   SDValue Scale;
4390   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4391                                     I.getParent());
4392 
4393   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4394   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4395       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4396       // TODO: Make MachineMemOperands aware of scalable
4397       // vectors.
4398       MemoryLocation::UnknownSize, Alignment, AAInfo);
4399   if (!UniformBase) {
4400     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4401     Index = getValue(Ptr);
4402     IndexType = ISD::SIGNED_UNSCALED;
4403     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4404   }
4405 
4406   EVT IdxVT = Index.getValueType();
4407   EVT EltTy = IdxVT.getVectorElementType();
4408   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4409     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4410     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4411   }
4412 
4413   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4414   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4415                                          Ops, MMO, IndexType, false);
4416   DAG.setRoot(Scatter);
4417   setValue(&I, Scatter);
4418 }
4419 
4420 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4421   SDLoc sdl = getCurSDLoc();
4422 
4423   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4424                               MaybeAlign &Alignment) {
4425     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4426     Ptr = I.getArgOperand(0);
4427     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4428     Mask = I.getArgOperand(2);
4429     Src0 = I.getArgOperand(3);
4430   };
4431   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4432                                  MaybeAlign &Alignment) {
4433     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4434     Ptr = I.getArgOperand(0);
4435     Alignment = None;
4436     Mask = I.getArgOperand(1);
4437     Src0 = I.getArgOperand(2);
4438   };
4439 
4440   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4441   MaybeAlign Alignment;
4442   if (IsExpanding)
4443     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4444   else
4445     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4446 
4447   SDValue Ptr = getValue(PtrOperand);
4448   SDValue Src0 = getValue(Src0Operand);
4449   SDValue Mask = getValue(MaskOperand);
4450   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4451 
4452   EVT VT = Src0.getValueType();
4453   if (!Alignment)
4454     Alignment = DAG.getEVTAlign(VT);
4455 
4456   AAMDNodes AAInfo;
4457   I.getAAMetadata(AAInfo);
4458   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4459 
4460   // Do not serialize masked loads of constant memory with anything.
4461   MemoryLocation ML;
4462   if (VT.isScalableVector())
4463     ML = MemoryLocation::getAfter(PtrOperand);
4464   else
4465     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4466                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4467                            AAInfo);
4468   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4469 
4470   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4471 
4472   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4473       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4474       // TODO: Make MachineMemOperands aware of scalable
4475       // vectors.
4476       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4477 
4478   SDValue Load =
4479       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4480                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4481   if (AddToChain)
4482     PendingLoads.push_back(Load.getValue(1));
4483   setValue(&I, Load);
4484 }
4485 
4486 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4487   SDLoc sdl = getCurSDLoc();
4488 
4489   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4490   const Value *Ptr = I.getArgOperand(0);
4491   SDValue Src0 = getValue(I.getArgOperand(3));
4492   SDValue Mask = getValue(I.getArgOperand(2));
4493 
4494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4495   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4496   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4497                         ->getMaybeAlignValue()
4498                         .getValueOr(DAG.getEVTAlign(VT));
4499 
4500   AAMDNodes AAInfo;
4501   I.getAAMetadata(AAInfo);
4502   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4503 
4504   SDValue Root = DAG.getRoot();
4505   SDValue Base;
4506   SDValue Index;
4507   ISD::MemIndexType IndexType;
4508   SDValue Scale;
4509   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4510                                     I.getParent());
4511   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4512   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4513       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4514       // TODO: Make MachineMemOperands aware of scalable
4515       // vectors.
4516       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4517 
4518   if (!UniformBase) {
4519     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4520     Index = getValue(Ptr);
4521     IndexType = ISD::SIGNED_UNSCALED;
4522     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4523   }
4524 
4525   EVT IdxVT = Index.getValueType();
4526   EVT EltTy = IdxVT.getVectorElementType();
4527   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4528     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4529     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4530   }
4531 
4532   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4533   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4534                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4535 
4536   PendingLoads.push_back(Gather.getValue(1));
4537   setValue(&I, Gather);
4538 }
4539 
4540 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4541   SDLoc dl = getCurSDLoc();
4542   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4543   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4544   SyncScope::ID SSID = I.getSyncScopeID();
4545 
4546   SDValue InChain = getRoot();
4547 
4548   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4549   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4550 
4551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4552   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4553 
4554   MachineFunction &MF = DAG.getMachineFunction();
4555   MachineMemOperand *MMO = MF.getMachineMemOperand(
4556       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4557       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4558       FailureOrdering);
4559 
4560   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4561                                    dl, MemVT, VTs, InChain,
4562                                    getValue(I.getPointerOperand()),
4563                                    getValue(I.getCompareOperand()),
4564                                    getValue(I.getNewValOperand()), MMO);
4565 
4566   SDValue OutChain = L.getValue(2);
4567 
4568   setValue(&I, L);
4569   DAG.setRoot(OutChain);
4570 }
4571 
4572 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4573   SDLoc dl = getCurSDLoc();
4574   ISD::NodeType NT;
4575   switch (I.getOperation()) {
4576   default: llvm_unreachable("Unknown atomicrmw operation");
4577   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4578   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4579   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4580   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4581   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4582   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4583   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4584   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4585   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4586   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4587   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4588   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4589   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4590   }
4591   AtomicOrdering Ordering = I.getOrdering();
4592   SyncScope::ID SSID = I.getSyncScopeID();
4593 
4594   SDValue InChain = getRoot();
4595 
4596   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4597   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4598   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4599 
4600   MachineFunction &MF = DAG.getMachineFunction();
4601   MachineMemOperand *MMO = MF.getMachineMemOperand(
4602       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4603       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4604 
4605   SDValue L =
4606     DAG.getAtomic(NT, dl, MemVT, InChain,
4607                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4608                   MMO);
4609 
4610   SDValue OutChain = L.getValue(1);
4611 
4612   setValue(&I, L);
4613   DAG.setRoot(OutChain);
4614 }
4615 
4616 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4617   SDLoc dl = getCurSDLoc();
4618   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4619   SDValue Ops[3];
4620   Ops[0] = getRoot();
4621   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4622                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4623   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4624                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4625   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4626 }
4627 
4628 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4629   SDLoc dl = getCurSDLoc();
4630   AtomicOrdering Order = I.getOrdering();
4631   SyncScope::ID SSID = I.getSyncScopeID();
4632 
4633   SDValue InChain = getRoot();
4634 
4635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4636   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4637   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4638 
4639   if (!TLI.supportsUnalignedAtomics() &&
4640       I.getAlignment() < MemVT.getSizeInBits() / 8)
4641     report_fatal_error("Cannot generate unaligned atomic load");
4642 
4643   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4644 
4645   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4646       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4647       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4648 
4649   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4650 
4651   SDValue Ptr = getValue(I.getPointerOperand());
4652 
4653   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4654     // TODO: Once this is better exercised by tests, it should be merged with
4655     // the normal path for loads to prevent future divergence.
4656     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4657     if (MemVT != VT)
4658       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4659 
4660     setValue(&I, L);
4661     SDValue OutChain = L.getValue(1);
4662     if (!I.isUnordered())
4663       DAG.setRoot(OutChain);
4664     else
4665       PendingLoads.push_back(OutChain);
4666     return;
4667   }
4668 
4669   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4670                             Ptr, MMO);
4671 
4672   SDValue OutChain = L.getValue(1);
4673   if (MemVT != VT)
4674     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4675 
4676   setValue(&I, L);
4677   DAG.setRoot(OutChain);
4678 }
4679 
4680 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4681   SDLoc dl = getCurSDLoc();
4682 
4683   AtomicOrdering Ordering = I.getOrdering();
4684   SyncScope::ID SSID = I.getSyncScopeID();
4685 
4686   SDValue InChain = getRoot();
4687 
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   EVT MemVT =
4690       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4691 
4692   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4693     report_fatal_error("Cannot generate unaligned atomic store");
4694 
4695   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4696 
4697   MachineFunction &MF = DAG.getMachineFunction();
4698   MachineMemOperand *MMO = MF.getMachineMemOperand(
4699       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4700       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4701 
4702   SDValue Val = getValue(I.getValueOperand());
4703   if (Val.getValueType() != MemVT)
4704     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4705   SDValue Ptr = getValue(I.getPointerOperand());
4706 
4707   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4708     // TODO: Once this is better exercised by tests, it should be merged with
4709     // the normal path for stores to prevent future divergence.
4710     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4711     DAG.setRoot(S);
4712     return;
4713   }
4714   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4715                                    Ptr, Val, MMO);
4716 
4717 
4718   DAG.setRoot(OutChain);
4719 }
4720 
4721 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4722 /// node.
4723 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4724                                                unsigned Intrinsic) {
4725   // Ignore the callsite's attributes. A specific call site may be marked with
4726   // readnone, but the lowering code will expect the chain based on the
4727   // definition.
4728   const Function *F = I.getCalledFunction();
4729   bool HasChain = !F->doesNotAccessMemory();
4730   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4731 
4732   // Build the operand list.
4733   SmallVector<SDValue, 8> Ops;
4734   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4735     if (OnlyLoad) {
4736       // We don't need to serialize loads against other loads.
4737       Ops.push_back(DAG.getRoot());
4738     } else {
4739       Ops.push_back(getRoot());
4740     }
4741   }
4742 
4743   // Info is set by getTgtMemInstrinsic
4744   TargetLowering::IntrinsicInfo Info;
4745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4746   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4747                                                DAG.getMachineFunction(),
4748                                                Intrinsic);
4749 
4750   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4751   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4752       Info.opc == ISD::INTRINSIC_W_CHAIN)
4753     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4754                                         TLI.getPointerTy(DAG.getDataLayout())));
4755 
4756   // Add all operands of the call to the operand list.
4757   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4758     const Value *Arg = I.getArgOperand(i);
4759     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4760       Ops.push_back(getValue(Arg));
4761       continue;
4762     }
4763 
4764     // Use TargetConstant instead of a regular constant for immarg.
4765     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4766     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4767       assert(CI->getBitWidth() <= 64 &&
4768              "large intrinsic immediates not handled");
4769       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4770     } else {
4771       Ops.push_back(
4772           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4773     }
4774   }
4775 
4776   SmallVector<EVT, 4> ValueVTs;
4777   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4778 
4779   if (HasChain)
4780     ValueVTs.push_back(MVT::Other);
4781 
4782   SDVTList VTs = DAG.getVTList(ValueVTs);
4783 
4784   // Create the node.
4785   SDValue Result;
4786   if (IsTgtIntrinsic) {
4787     // This is target intrinsic that touches memory
4788     AAMDNodes AAInfo;
4789     I.getAAMetadata(AAInfo);
4790     Result =
4791         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4792                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4793                                 Info.align, Info.flags, Info.size, AAInfo);
4794   } else if (!HasChain) {
4795     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4796   } else if (!I.getType()->isVoidTy()) {
4797     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4798   } else {
4799     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4800   }
4801 
4802   if (HasChain) {
4803     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4804     if (OnlyLoad)
4805       PendingLoads.push_back(Chain);
4806     else
4807       DAG.setRoot(Chain);
4808   }
4809 
4810   if (!I.getType()->isVoidTy()) {
4811     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4812       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4813       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4814     } else
4815       Result = lowerRangeToAssertZExt(DAG, I, Result);
4816 
4817     MaybeAlign Alignment = I.getRetAlign();
4818     if (!Alignment)
4819       Alignment = F->getAttributes().getRetAlignment();
4820     // Insert `assertalign` node if there's an alignment.
4821     if (InsertAssertAlign && Alignment) {
4822       Result =
4823           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4824     }
4825 
4826     setValue(&I, Result);
4827   }
4828 }
4829 
4830 /// GetSignificand - Get the significand and build it into a floating-point
4831 /// number with exponent of 1:
4832 ///
4833 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4834 ///
4835 /// where Op is the hexadecimal representation of floating point value.
4836 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4837   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4838                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4839   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4840                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4841   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4842 }
4843 
4844 /// GetExponent - Get the exponent:
4845 ///
4846 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4847 ///
4848 /// where Op is the hexadecimal representation of floating point value.
4849 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4850                            const TargetLowering &TLI, const SDLoc &dl) {
4851   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4852                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4853   SDValue t1 = DAG.getNode(
4854       ISD::SRL, dl, MVT::i32, t0,
4855       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4856   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4857                            DAG.getConstant(127, dl, MVT::i32));
4858   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4859 }
4860 
4861 /// getF32Constant - Get 32-bit floating point constant.
4862 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4863                               const SDLoc &dl) {
4864   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4865                            MVT::f32);
4866 }
4867 
4868 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4869                                        SelectionDAG &DAG) {
4870   // TODO: What fast-math-flags should be set on the floating-point nodes?
4871 
4872   //   IntegerPartOfX = ((int32_t)(t0);
4873   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4874 
4875   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4876   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4877   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4878 
4879   //   IntegerPartOfX <<= 23;
4880   IntegerPartOfX = DAG.getNode(
4881       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4882       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4883                                   DAG.getDataLayout())));
4884 
4885   SDValue TwoToFractionalPartOfX;
4886   if (LimitFloatPrecision <= 6) {
4887     // For floating-point precision of 6:
4888     //
4889     //   TwoToFractionalPartOfX =
4890     //     0.997535578f +
4891     //       (0.735607626f + 0.252464424f * x) * x;
4892     //
4893     // error 0.0144103317, which is 6 bits
4894     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4895                              getF32Constant(DAG, 0x3e814304, dl));
4896     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4897                              getF32Constant(DAG, 0x3f3c50c8, dl));
4898     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4899     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4900                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4901   } else if (LimitFloatPrecision <= 12) {
4902     // For floating-point precision of 12:
4903     //
4904     //   TwoToFractionalPartOfX =
4905     //     0.999892986f +
4906     //       (0.696457318f +
4907     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4908     //
4909     // error 0.000107046256, which is 13 to 14 bits
4910     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4911                              getF32Constant(DAG, 0x3da235e3, dl));
4912     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4913                              getF32Constant(DAG, 0x3e65b8f3, dl));
4914     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4915     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4916                              getF32Constant(DAG, 0x3f324b07, dl));
4917     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4918     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4919                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4920   } else { // LimitFloatPrecision <= 18
4921     // For floating-point precision of 18:
4922     //
4923     //   TwoToFractionalPartOfX =
4924     //     0.999999982f +
4925     //       (0.693148872f +
4926     //         (0.240227044f +
4927     //           (0.554906021e-1f +
4928     //             (0.961591928e-2f +
4929     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4930     // error 2.47208000*10^(-7), which is better than 18 bits
4931     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4932                              getF32Constant(DAG, 0x3924b03e, dl));
4933     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4934                              getF32Constant(DAG, 0x3ab24b87, dl));
4935     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4936     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4937                              getF32Constant(DAG, 0x3c1d8c17, dl));
4938     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4939     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4940                              getF32Constant(DAG, 0x3d634a1d, dl));
4941     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4942     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4943                              getF32Constant(DAG, 0x3e75fe14, dl));
4944     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4945     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4946                               getF32Constant(DAG, 0x3f317234, dl));
4947     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4948     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4949                                          getF32Constant(DAG, 0x3f800000, dl));
4950   }
4951 
4952   // Add the exponent into the result in integer domain.
4953   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4954   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4955                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4956 }
4957 
4958 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4959 /// limited-precision mode.
4960 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4961                          const TargetLowering &TLI, SDNodeFlags Flags) {
4962   if (Op.getValueType() == MVT::f32 &&
4963       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4964 
4965     // Put the exponent in the right bit position for later addition to the
4966     // final result:
4967     //
4968     // t0 = Op * log2(e)
4969 
4970     // TODO: What fast-math-flags should be set here?
4971     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4972                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4973     return getLimitedPrecisionExp2(t0, dl, DAG);
4974   }
4975 
4976   // No special expansion.
4977   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4978 }
4979 
4980 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4981 /// limited-precision mode.
4982 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4983                          const TargetLowering &TLI, SDNodeFlags Flags) {
4984   // TODO: What fast-math-flags should be set on the floating-point nodes?
4985 
4986   if (Op.getValueType() == MVT::f32 &&
4987       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4988     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4989 
4990     // Scale the exponent by log(2).
4991     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4992     SDValue LogOfExponent =
4993         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4994                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4995 
4996     // Get the significand and build it into a floating-point number with
4997     // exponent of 1.
4998     SDValue X = GetSignificand(DAG, Op1, dl);
4999 
5000     SDValue LogOfMantissa;
5001     if (LimitFloatPrecision <= 6) {
5002       // For floating-point precision of 6:
5003       //
5004       //   LogofMantissa =
5005       //     -1.1609546f +
5006       //       (1.4034025f - 0.23903021f * x) * x;
5007       //
5008       // error 0.0034276066, which is better than 8 bits
5009       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5010                                getF32Constant(DAG, 0xbe74c456, dl));
5011       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5012                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5013       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5014       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5015                                   getF32Constant(DAG, 0x3f949a29, dl));
5016     } else if (LimitFloatPrecision <= 12) {
5017       // For floating-point precision of 12:
5018       //
5019       //   LogOfMantissa =
5020       //     -1.7417939f +
5021       //       (2.8212026f +
5022       //         (-1.4699568f +
5023       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5024       //
5025       // error 0.000061011436, which is 14 bits
5026       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5027                                getF32Constant(DAG, 0xbd67b6d6, dl));
5028       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5029                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5030       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5031       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5032                                getF32Constant(DAG, 0x3fbc278b, dl));
5033       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5034       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5035                                getF32Constant(DAG, 0x40348e95, dl));
5036       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5037       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5038                                   getF32Constant(DAG, 0x3fdef31a, dl));
5039     } else { // LimitFloatPrecision <= 18
5040       // For floating-point precision of 18:
5041       //
5042       //   LogOfMantissa =
5043       //     -2.1072184f +
5044       //       (4.2372794f +
5045       //         (-3.7029485f +
5046       //           (2.2781945f +
5047       //             (-0.87823314f +
5048       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5049       //
5050       // error 0.0000023660568, which is better than 18 bits
5051       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5052                                getF32Constant(DAG, 0xbc91e5ac, dl));
5053       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5054                                getF32Constant(DAG, 0x3e4350aa, dl));
5055       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5056       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5057                                getF32Constant(DAG, 0x3f60d3e3, dl));
5058       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5059       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5060                                getF32Constant(DAG, 0x4011cdf0, dl));
5061       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5062       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5063                                getF32Constant(DAG, 0x406cfd1c, dl));
5064       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5065       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5066                                getF32Constant(DAG, 0x408797cb, dl));
5067       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5068       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5069                                   getF32Constant(DAG, 0x4006dcab, dl));
5070     }
5071 
5072     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5073   }
5074 
5075   // No special expansion.
5076   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5077 }
5078 
5079 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5080 /// limited-precision mode.
5081 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5082                           const TargetLowering &TLI, SDNodeFlags Flags) {
5083   // TODO: What fast-math-flags should be set on the floating-point nodes?
5084 
5085   if (Op.getValueType() == MVT::f32 &&
5086       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5087     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5088 
5089     // Get the exponent.
5090     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5091 
5092     // Get the significand and build it into a floating-point number with
5093     // exponent of 1.
5094     SDValue X = GetSignificand(DAG, Op1, dl);
5095 
5096     // Different possible minimax approximations of significand in
5097     // floating-point for various degrees of accuracy over [1,2].
5098     SDValue Log2ofMantissa;
5099     if (LimitFloatPrecision <= 6) {
5100       // For floating-point precision of 6:
5101       //
5102       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5103       //
5104       // error 0.0049451742, which is more than 7 bits
5105       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5106                                getF32Constant(DAG, 0xbeb08fe0, dl));
5107       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5108                                getF32Constant(DAG, 0x40019463, dl));
5109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5110       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5111                                    getF32Constant(DAG, 0x3fd6633d, dl));
5112     } else if (LimitFloatPrecision <= 12) {
5113       // For floating-point precision of 12:
5114       //
5115       //   Log2ofMantissa =
5116       //     -2.51285454f +
5117       //       (4.07009056f +
5118       //         (-2.12067489f +
5119       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5120       //
5121       // error 0.0000876136000, which is better than 13 bits
5122       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5123                                getF32Constant(DAG, 0xbda7262e, dl));
5124       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5125                                getF32Constant(DAG, 0x3f25280b, dl));
5126       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5127       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5128                                getF32Constant(DAG, 0x4007b923, dl));
5129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5130       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5131                                getF32Constant(DAG, 0x40823e2f, dl));
5132       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5133       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5134                                    getF32Constant(DAG, 0x4020d29c, dl));
5135     } else { // LimitFloatPrecision <= 18
5136       // For floating-point precision of 18:
5137       //
5138       //   Log2ofMantissa =
5139       //     -3.0400495f +
5140       //       (6.1129976f +
5141       //         (-5.3420409f +
5142       //           (3.2865683f +
5143       //             (-1.2669343f +
5144       //               (0.27515199f -
5145       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5146       //
5147       // error 0.0000018516, which is better than 18 bits
5148       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5149                                getF32Constant(DAG, 0xbcd2769e, dl));
5150       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5151                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5152       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5153       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5154                                getF32Constant(DAG, 0x3fa22ae7, dl));
5155       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5156       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5157                                getF32Constant(DAG, 0x40525723, dl));
5158       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5159       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5160                                getF32Constant(DAG, 0x40aaf200, dl));
5161       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5162       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5163                                getF32Constant(DAG, 0x40c39dad, dl));
5164       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5165       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5166                                    getF32Constant(DAG, 0x4042902c, dl));
5167     }
5168 
5169     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5170   }
5171 
5172   // No special expansion.
5173   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5174 }
5175 
5176 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5177 /// limited-precision mode.
5178 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5179                            const TargetLowering &TLI, SDNodeFlags Flags) {
5180   // TODO: What fast-math-flags should be set on the floating-point nodes?
5181 
5182   if (Op.getValueType() == MVT::f32 &&
5183       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5184     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5185 
5186     // Scale the exponent by log10(2) [0.30102999f].
5187     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5188     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5189                                         getF32Constant(DAG, 0x3e9a209a, dl));
5190 
5191     // Get the significand and build it into a floating-point number with
5192     // exponent of 1.
5193     SDValue X = GetSignificand(DAG, Op1, dl);
5194 
5195     SDValue Log10ofMantissa;
5196     if (LimitFloatPrecision <= 6) {
5197       // For floating-point precision of 6:
5198       //
5199       //   Log10ofMantissa =
5200       //     -0.50419619f +
5201       //       (0.60948995f - 0.10380950f * x) * x;
5202       //
5203       // error 0.0014886165, which is 6 bits
5204       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5205                                getF32Constant(DAG, 0xbdd49a13, dl));
5206       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5207                                getF32Constant(DAG, 0x3f1c0789, dl));
5208       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5209       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5210                                     getF32Constant(DAG, 0x3f011300, dl));
5211     } else if (LimitFloatPrecision <= 12) {
5212       // For floating-point precision of 12:
5213       //
5214       //   Log10ofMantissa =
5215       //     -0.64831180f +
5216       //       (0.91751397f +
5217       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5218       //
5219       // error 0.00019228036, which is better than 12 bits
5220       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5221                                getF32Constant(DAG, 0x3d431f31, dl));
5222       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5223                                getF32Constant(DAG, 0x3ea21fb2, dl));
5224       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5225       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5226                                getF32Constant(DAG, 0x3f6ae232, dl));
5227       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5228       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5229                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5230     } else { // LimitFloatPrecision <= 18
5231       // For floating-point precision of 18:
5232       //
5233       //   Log10ofMantissa =
5234       //     -0.84299375f +
5235       //       (1.5327582f +
5236       //         (-1.0688956f +
5237       //           (0.49102474f +
5238       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5239       //
5240       // error 0.0000037995730, which is better than 18 bits
5241       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5242                                getF32Constant(DAG, 0x3c5d51ce, dl));
5243       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5244                                getF32Constant(DAG, 0x3e00685a, dl));
5245       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5246       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5247                                getF32Constant(DAG, 0x3efb6798, dl));
5248       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5249       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5250                                getF32Constant(DAG, 0x3f88d192, dl));
5251       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5252       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5253                                getF32Constant(DAG, 0x3fc4316c, dl));
5254       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5255       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5256                                     getF32Constant(DAG, 0x3f57ce70, dl));
5257     }
5258 
5259     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5260   }
5261 
5262   // No special expansion.
5263   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5264 }
5265 
5266 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5267 /// limited-precision mode.
5268 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5269                           const TargetLowering &TLI, SDNodeFlags Flags) {
5270   if (Op.getValueType() == MVT::f32 &&
5271       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5272     return getLimitedPrecisionExp2(Op, dl, DAG);
5273 
5274   // No special expansion.
5275   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5276 }
5277 
5278 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5279 /// limited-precision mode with x == 10.0f.
5280 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5281                          SelectionDAG &DAG, const TargetLowering &TLI,
5282                          SDNodeFlags Flags) {
5283   bool IsExp10 = false;
5284   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5285       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5286     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5287       APFloat Ten(10.0f);
5288       IsExp10 = LHSC->isExactlyValue(Ten);
5289     }
5290   }
5291 
5292   // TODO: What fast-math-flags should be set on the FMUL node?
5293   if (IsExp10) {
5294     // Put the exponent in the right bit position for later addition to the
5295     // final result:
5296     //
5297     //   #define LOG2OF10 3.3219281f
5298     //   t0 = Op * LOG2OF10;
5299     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5300                              getF32Constant(DAG, 0x40549a78, dl));
5301     return getLimitedPrecisionExp2(t0, dl, DAG);
5302   }
5303 
5304   // No special expansion.
5305   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5306 }
5307 
5308 /// ExpandPowI - Expand a llvm.powi intrinsic.
5309 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5310                           SelectionDAG &DAG) {
5311   // If RHS is a constant, we can expand this out to a multiplication tree,
5312   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5313   // optimizing for size, we only want to do this if the expansion would produce
5314   // a small number of multiplies, otherwise we do the full expansion.
5315   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5316     // Get the exponent as a positive value.
5317     unsigned Val = RHSC->getSExtValue();
5318     if ((int)Val < 0) Val = -Val;
5319 
5320     // powi(x, 0) -> 1.0
5321     if (Val == 0)
5322       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5323 
5324     bool OptForSize = DAG.shouldOptForSize();
5325     if (!OptForSize ||
5326         // If optimizing for size, don't insert too many multiplies.
5327         // This inserts up to 5 multiplies.
5328         countPopulation(Val) + Log2_32(Val) < 7) {
5329       // We use the simple binary decomposition method to generate the multiply
5330       // sequence.  There are more optimal ways to do this (for example,
5331       // powi(x,15) generates one more multiply than it should), but this has
5332       // the benefit of being both really simple and much better than a libcall.
5333       SDValue Res;  // Logically starts equal to 1.0
5334       SDValue CurSquare = LHS;
5335       // TODO: Intrinsics should have fast-math-flags that propagate to these
5336       // nodes.
5337       while (Val) {
5338         if (Val & 1) {
5339           if (Res.getNode())
5340             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5341           else
5342             Res = CurSquare;  // 1.0*CurSquare.
5343         }
5344 
5345         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5346                                 CurSquare, CurSquare);
5347         Val >>= 1;
5348       }
5349 
5350       // If the original was negative, invert the result, producing 1/(x*x*x).
5351       if (RHSC->getSExtValue() < 0)
5352         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5353                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5354       return Res;
5355     }
5356   }
5357 
5358   // Otherwise, expand to a libcall.
5359   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5360 }
5361 
5362 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5363                             SDValue LHS, SDValue RHS, SDValue Scale,
5364                             SelectionDAG &DAG, const TargetLowering &TLI) {
5365   EVT VT = LHS.getValueType();
5366   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5367   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5368   LLVMContext &Ctx = *DAG.getContext();
5369 
5370   // If the type is legal but the operation isn't, this node might survive all
5371   // the way to operation legalization. If we end up there and we do not have
5372   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5373   // node.
5374 
5375   // Coax the legalizer into expanding the node during type legalization instead
5376   // by bumping the size by one bit. This will force it to Promote, enabling the
5377   // early expansion and avoiding the need to expand later.
5378 
5379   // We don't have to do this if Scale is 0; that can always be expanded, unless
5380   // it's a saturating signed operation. Those can experience true integer
5381   // division overflow, a case which we must avoid.
5382 
5383   // FIXME: We wouldn't have to do this (or any of the early
5384   // expansion/promotion) if it was possible to expand a libcall of an
5385   // illegal type during operation legalization. But it's not, so things
5386   // get a bit hacky.
5387   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5388   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5389       (TLI.isTypeLegal(VT) ||
5390        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5391     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5392         Opcode, VT, ScaleInt);
5393     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5394       EVT PromVT;
5395       if (VT.isScalarInteger())
5396         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5397       else if (VT.isVector()) {
5398         PromVT = VT.getVectorElementType();
5399         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5400         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5401       } else
5402         llvm_unreachable("Wrong VT for DIVFIX?");
5403       if (Signed) {
5404         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5405         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5406       } else {
5407         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5408         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5409       }
5410       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5411       // For saturating operations, we need to shift up the LHS to get the
5412       // proper saturation width, and then shift down again afterwards.
5413       if (Saturating)
5414         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5415                           DAG.getConstant(1, DL, ShiftTy));
5416       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5417       if (Saturating)
5418         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5419                           DAG.getConstant(1, DL, ShiftTy));
5420       return DAG.getZExtOrTrunc(Res, DL, VT);
5421     }
5422   }
5423 
5424   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5425 }
5426 
5427 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5428 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5429 static void
5430 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5431                      const SDValue &N) {
5432   switch (N.getOpcode()) {
5433   case ISD::CopyFromReg: {
5434     SDValue Op = N.getOperand(1);
5435     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5436                       Op.getValueType().getSizeInBits());
5437     return;
5438   }
5439   case ISD::BITCAST:
5440   case ISD::AssertZext:
5441   case ISD::AssertSext:
5442   case ISD::TRUNCATE:
5443     getUnderlyingArgRegs(Regs, N.getOperand(0));
5444     return;
5445   case ISD::BUILD_PAIR:
5446   case ISD::BUILD_VECTOR:
5447   case ISD::CONCAT_VECTORS:
5448     for (SDValue Op : N->op_values())
5449       getUnderlyingArgRegs(Regs, Op);
5450     return;
5451   default:
5452     return;
5453   }
5454 }
5455 
5456 /// If the DbgValueInst is a dbg_value of a function argument, create the
5457 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5458 /// instruction selection, they will be inserted to the entry BB.
5459 /// We don't currently support this for variadic dbg_values, as they shouldn't
5460 /// appear for function arguments or in the prologue.
5461 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5462     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5463     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5464   const Argument *Arg = dyn_cast<Argument>(V);
5465   if (!Arg)
5466     return false;
5467 
5468   if (!IsDbgDeclare) {
5469     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5470     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5471     // the entry block.
5472     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5473     if (!IsInEntryBlock)
5474       return false;
5475 
5476     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5477     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5478     // variable that also is a param.
5479     //
5480     // Although, if we are at the top of the entry block already, we can still
5481     // emit using ArgDbgValue. This might catch some situations when the
5482     // dbg.value refers to an argument that isn't used in the entry block, so
5483     // any CopyToReg node would be optimized out and the only way to express
5484     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5485     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5486     // we should only emit as ArgDbgValue if the Variable is an argument to the
5487     // current function, and the dbg.value intrinsic is found in the entry
5488     // block.
5489     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5490         !DL->getInlinedAt();
5491     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5492     if (!IsInPrologue && !VariableIsFunctionInputArg)
5493       return false;
5494 
5495     // Here we assume that a function argument on IR level only can be used to
5496     // describe one input parameter on source level. If we for example have
5497     // source code like this
5498     //
5499     //    struct A { long x, y; };
5500     //    void foo(struct A a, long b) {
5501     //      ...
5502     //      b = a.x;
5503     //      ...
5504     //    }
5505     //
5506     // and IR like this
5507     //
5508     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5509     //  entry:
5510     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5511     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5512     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5513     //    ...
5514     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5515     //    ...
5516     //
5517     // then the last dbg.value is describing a parameter "b" using a value that
5518     // is an argument. But since we already has used %a1 to describe a parameter
5519     // we should not handle that last dbg.value here (that would result in an
5520     // incorrect hoisting of the DBG_VALUE to the function entry).
5521     // Notice that we allow one dbg.value per IR level argument, to accommodate
5522     // for the situation with fragments above.
5523     if (VariableIsFunctionInputArg) {
5524       unsigned ArgNo = Arg->getArgNo();
5525       if (ArgNo >= FuncInfo.DescribedArgs.size())
5526         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5527       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5528         return false;
5529       FuncInfo.DescribedArgs.set(ArgNo);
5530     }
5531   }
5532 
5533   MachineFunction &MF = DAG.getMachineFunction();
5534   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5535 
5536   bool IsIndirect = false;
5537   Optional<MachineOperand> Op;
5538   // Some arguments' frame index is recorded during argument lowering.
5539   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5540   if (FI != std::numeric_limits<int>::max())
5541     Op = MachineOperand::CreateFI(FI);
5542 
5543   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5544   if (!Op && N.getNode()) {
5545     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5546     Register Reg;
5547     if (ArgRegsAndSizes.size() == 1)
5548       Reg = ArgRegsAndSizes.front().first;
5549 
5550     if (Reg && Reg.isVirtual()) {
5551       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5552       Register PR = RegInfo.getLiveInPhysReg(Reg);
5553       if (PR)
5554         Reg = PR;
5555     }
5556     if (Reg) {
5557       Op = MachineOperand::CreateReg(Reg, false);
5558       IsIndirect = IsDbgDeclare;
5559     }
5560   }
5561 
5562   if (!Op && N.getNode()) {
5563     // Check if frame index is available.
5564     SDValue LCandidate = peekThroughBitcasts(N);
5565     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5566       if (FrameIndexSDNode *FINode =
5567           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5568         Op = MachineOperand::CreateFI(FINode->getIndex());
5569   }
5570 
5571   if (!Op) {
5572     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5573     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5574                                          SplitRegs) {
5575       unsigned Offset = 0;
5576       for (auto RegAndSize : SplitRegs) {
5577         // If the expression is already a fragment, the current register
5578         // offset+size might extend beyond the fragment. In this case, only
5579         // the register bits that are inside the fragment are relevant.
5580         int RegFragmentSizeInBits = RegAndSize.second;
5581         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5582           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5583           // The register is entirely outside the expression fragment,
5584           // so is irrelevant for debug info.
5585           if (Offset >= ExprFragmentSizeInBits)
5586             break;
5587           // The register is partially outside the expression fragment, only
5588           // the low bits within the fragment are relevant for debug info.
5589           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5590             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5591           }
5592         }
5593 
5594         auto FragmentExpr = DIExpression::createFragmentExpression(
5595             Expr, Offset, RegFragmentSizeInBits);
5596         Offset += RegAndSize.second;
5597         // If a valid fragment expression cannot be created, the variable's
5598         // correct value cannot be determined and so it is set as Undef.
5599         if (!FragmentExpr) {
5600           SDDbgValue *SDV = DAG.getConstantDbgValue(
5601               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5602           DAG.AddDbgValue(SDV, false);
5603           continue;
5604         }
5605         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5606         FuncInfo.ArgDbgValues.push_back(
5607           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5608                   RegAndSize.first, Variable, *FragmentExpr));
5609       }
5610     };
5611 
5612     // Check if ValueMap has reg number.
5613     DenseMap<const Value *, Register>::const_iterator
5614       VMI = FuncInfo.ValueMap.find(V);
5615     if (VMI != FuncInfo.ValueMap.end()) {
5616       const auto &TLI = DAG.getTargetLoweringInfo();
5617       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5618                        V->getType(), None);
5619       if (RFV.occupiesMultipleRegs()) {
5620         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5621         return true;
5622       }
5623 
5624       Op = MachineOperand::CreateReg(VMI->second, false);
5625       IsIndirect = IsDbgDeclare;
5626     } else if (ArgRegsAndSizes.size() > 1) {
5627       // This was split due to the calling convention, and no virtual register
5628       // mapping exists for the value.
5629       splitMultiRegDbgValue(ArgRegsAndSizes);
5630       return true;
5631     }
5632   }
5633 
5634   if (!Op)
5635     return false;
5636 
5637   assert(Variable->isValidLocationForIntrinsic(DL) &&
5638          "Expected inlined-at fields to agree");
5639   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5640   FuncInfo.ArgDbgValues.push_back(
5641       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5642               *Op, Variable, Expr));
5643 
5644   return true;
5645 }
5646 
5647 /// Return the appropriate SDDbgValue based on N.
5648 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5649                                              DILocalVariable *Variable,
5650                                              DIExpression *Expr,
5651                                              const DebugLoc &dl,
5652                                              unsigned DbgSDNodeOrder) {
5653   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5654     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5655     // stack slot locations.
5656     //
5657     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5658     // debug values here after optimization:
5659     //
5660     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5661     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5662     //
5663     // Both describe the direct values of their associated variables.
5664     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5665                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5666   }
5667   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5668                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5669 }
5670 
5671 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5672   switch (Intrinsic) {
5673   case Intrinsic::smul_fix:
5674     return ISD::SMULFIX;
5675   case Intrinsic::umul_fix:
5676     return ISD::UMULFIX;
5677   case Intrinsic::smul_fix_sat:
5678     return ISD::SMULFIXSAT;
5679   case Intrinsic::umul_fix_sat:
5680     return ISD::UMULFIXSAT;
5681   case Intrinsic::sdiv_fix:
5682     return ISD::SDIVFIX;
5683   case Intrinsic::udiv_fix:
5684     return ISD::UDIVFIX;
5685   case Intrinsic::sdiv_fix_sat:
5686     return ISD::SDIVFIXSAT;
5687   case Intrinsic::udiv_fix_sat:
5688     return ISD::UDIVFIXSAT;
5689   default:
5690     llvm_unreachable("Unhandled fixed point intrinsic");
5691   }
5692 }
5693 
5694 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5695                                            const char *FunctionName) {
5696   assert(FunctionName && "FunctionName must not be nullptr");
5697   SDValue Callee = DAG.getExternalSymbol(
5698       FunctionName,
5699       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5700   LowerCallTo(I, Callee, I.isTailCall());
5701 }
5702 
5703 /// Given a @llvm.call.preallocated.setup, return the corresponding
5704 /// preallocated call.
5705 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5706   assert(cast<CallBase>(PreallocatedSetup)
5707                  ->getCalledFunction()
5708                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5709          "expected call_preallocated_setup Value");
5710   for (auto *U : PreallocatedSetup->users()) {
5711     auto *UseCall = cast<CallBase>(U);
5712     const Function *Fn = UseCall->getCalledFunction();
5713     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5714       return UseCall;
5715     }
5716   }
5717   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5718 }
5719 
5720 /// Lower the call to the specified intrinsic function.
5721 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5722                                              unsigned Intrinsic) {
5723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5724   SDLoc sdl = getCurSDLoc();
5725   DebugLoc dl = getCurDebugLoc();
5726   SDValue Res;
5727 
5728   SDNodeFlags Flags;
5729   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5730     Flags.copyFMF(*FPOp);
5731 
5732   switch (Intrinsic) {
5733   default:
5734     // By default, turn this into a target intrinsic node.
5735     visitTargetIntrinsic(I, Intrinsic);
5736     return;
5737   case Intrinsic::vscale: {
5738     match(&I, m_VScale(DAG.getDataLayout()));
5739     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5740     setValue(&I,
5741              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5742     return;
5743   }
5744   case Intrinsic::vastart:  visitVAStart(I); return;
5745   case Intrinsic::vaend:    visitVAEnd(I); return;
5746   case Intrinsic::vacopy:   visitVACopy(I); return;
5747   case Intrinsic::returnaddress:
5748     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5749                              TLI.getPointerTy(DAG.getDataLayout()),
5750                              getValue(I.getArgOperand(0))));
5751     return;
5752   case Intrinsic::addressofreturnaddress:
5753     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5754                              TLI.getPointerTy(DAG.getDataLayout())));
5755     return;
5756   case Intrinsic::sponentry:
5757     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5758                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5759     return;
5760   case Intrinsic::frameaddress:
5761     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5762                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5763                              getValue(I.getArgOperand(0))));
5764     return;
5765   case Intrinsic::read_volatile_register:
5766   case Intrinsic::read_register: {
5767     Value *Reg = I.getArgOperand(0);
5768     SDValue Chain = getRoot();
5769     SDValue RegName =
5770         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5771     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5772     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5773       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5774     setValue(&I, Res);
5775     DAG.setRoot(Res.getValue(1));
5776     return;
5777   }
5778   case Intrinsic::write_register: {
5779     Value *Reg = I.getArgOperand(0);
5780     Value *RegValue = I.getArgOperand(1);
5781     SDValue Chain = getRoot();
5782     SDValue RegName =
5783         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5784     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5785                             RegName, getValue(RegValue)));
5786     return;
5787   }
5788   case Intrinsic::memcpy: {
5789     const auto &MCI = cast<MemCpyInst>(I);
5790     SDValue Op1 = getValue(I.getArgOperand(0));
5791     SDValue Op2 = getValue(I.getArgOperand(1));
5792     SDValue Op3 = getValue(I.getArgOperand(2));
5793     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5794     Align DstAlign = MCI.getDestAlign().valueOrOne();
5795     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5796     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5797     bool isVol = MCI.isVolatile();
5798     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5799     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5800     // node.
5801     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5802     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5803                                /* AlwaysInline */ false, isTC,
5804                                MachinePointerInfo(I.getArgOperand(0)),
5805                                MachinePointerInfo(I.getArgOperand(1)));
5806     updateDAGForMaybeTailCall(MC);
5807     return;
5808   }
5809   case Intrinsic::memcpy_inline: {
5810     const auto &MCI = cast<MemCpyInlineInst>(I);
5811     SDValue Dst = getValue(I.getArgOperand(0));
5812     SDValue Src = getValue(I.getArgOperand(1));
5813     SDValue Size = getValue(I.getArgOperand(2));
5814     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5815     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5816     Align DstAlign = MCI.getDestAlign().valueOrOne();
5817     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5818     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5819     bool isVol = MCI.isVolatile();
5820     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5821     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5822     // node.
5823     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5824                                /* AlwaysInline */ true, isTC,
5825                                MachinePointerInfo(I.getArgOperand(0)),
5826                                MachinePointerInfo(I.getArgOperand(1)));
5827     updateDAGForMaybeTailCall(MC);
5828     return;
5829   }
5830   case Intrinsic::memset: {
5831     const auto &MSI = cast<MemSetInst>(I);
5832     SDValue Op1 = getValue(I.getArgOperand(0));
5833     SDValue Op2 = getValue(I.getArgOperand(1));
5834     SDValue Op3 = getValue(I.getArgOperand(2));
5835     // @llvm.memset defines 0 and 1 to both mean no alignment.
5836     Align Alignment = MSI.getDestAlign().valueOrOne();
5837     bool isVol = MSI.isVolatile();
5838     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5839     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5840     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5841                                MachinePointerInfo(I.getArgOperand(0)));
5842     updateDAGForMaybeTailCall(MS);
5843     return;
5844   }
5845   case Intrinsic::memmove: {
5846     const auto &MMI = cast<MemMoveInst>(I);
5847     SDValue Op1 = getValue(I.getArgOperand(0));
5848     SDValue Op2 = getValue(I.getArgOperand(1));
5849     SDValue Op3 = getValue(I.getArgOperand(2));
5850     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5851     Align DstAlign = MMI.getDestAlign().valueOrOne();
5852     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5853     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5854     bool isVol = MMI.isVolatile();
5855     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5856     // FIXME: Support passing different dest/src alignments to the memmove DAG
5857     // node.
5858     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5859     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5860                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5861                                 MachinePointerInfo(I.getArgOperand(1)));
5862     updateDAGForMaybeTailCall(MM);
5863     return;
5864   }
5865   case Intrinsic::memcpy_element_unordered_atomic: {
5866     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5867     SDValue Dst = getValue(MI.getRawDest());
5868     SDValue Src = getValue(MI.getRawSource());
5869     SDValue Length = getValue(MI.getLength());
5870 
5871     unsigned DstAlign = MI.getDestAlignment();
5872     unsigned SrcAlign = MI.getSourceAlignment();
5873     Type *LengthTy = MI.getLength()->getType();
5874     unsigned ElemSz = MI.getElementSizeInBytes();
5875     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5876     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5877                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5878                                      MachinePointerInfo(MI.getRawDest()),
5879                                      MachinePointerInfo(MI.getRawSource()));
5880     updateDAGForMaybeTailCall(MC);
5881     return;
5882   }
5883   case Intrinsic::memmove_element_unordered_atomic: {
5884     auto &MI = cast<AtomicMemMoveInst>(I);
5885     SDValue Dst = getValue(MI.getRawDest());
5886     SDValue Src = getValue(MI.getRawSource());
5887     SDValue Length = getValue(MI.getLength());
5888 
5889     unsigned DstAlign = MI.getDestAlignment();
5890     unsigned SrcAlign = MI.getSourceAlignment();
5891     Type *LengthTy = MI.getLength()->getType();
5892     unsigned ElemSz = MI.getElementSizeInBytes();
5893     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5894     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5895                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5896                                       MachinePointerInfo(MI.getRawDest()),
5897                                       MachinePointerInfo(MI.getRawSource()));
5898     updateDAGForMaybeTailCall(MC);
5899     return;
5900   }
5901   case Intrinsic::memset_element_unordered_atomic: {
5902     auto &MI = cast<AtomicMemSetInst>(I);
5903     SDValue Dst = getValue(MI.getRawDest());
5904     SDValue Val = getValue(MI.getValue());
5905     SDValue Length = getValue(MI.getLength());
5906 
5907     unsigned DstAlign = MI.getDestAlignment();
5908     Type *LengthTy = MI.getLength()->getType();
5909     unsigned ElemSz = MI.getElementSizeInBytes();
5910     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5911     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5912                                      LengthTy, ElemSz, isTC,
5913                                      MachinePointerInfo(MI.getRawDest()));
5914     updateDAGForMaybeTailCall(MC);
5915     return;
5916   }
5917   case Intrinsic::call_preallocated_setup: {
5918     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5919     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5920     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5921                               getRoot(), SrcValue);
5922     setValue(&I, Res);
5923     DAG.setRoot(Res);
5924     return;
5925   }
5926   case Intrinsic::call_preallocated_arg: {
5927     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5928     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5929     SDValue Ops[3];
5930     Ops[0] = getRoot();
5931     Ops[1] = SrcValue;
5932     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5933                                    MVT::i32); // arg index
5934     SDValue Res = DAG.getNode(
5935         ISD::PREALLOCATED_ARG, sdl,
5936         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5937     setValue(&I, Res);
5938     DAG.setRoot(Res.getValue(1));
5939     return;
5940   }
5941   case Intrinsic::dbg_addr:
5942   case Intrinsic::dbg_declare: {
5943     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5944     // they are non-variadic.
5945     const auto &DI = cast<DbgVariableIntrinsic>(I);
5946     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5947     DILocalVariable *Variable = DI.getVariable();
5948     DIExpression *Expression = DI.getExpression();
5949     dropDanglingDebugInfo(Variable, Expression);
5950     assert(Variable && "Missing variable");
5951     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5952                       << "\n");
5953     // Check if address has undef value.
5954     const Value *Address = DI.getVariableLocationOp(0);
5955     if (!Address || isa<UndefValue>(Address) ||
5956         (Address->use_empty() && !isa<Argument>(Address))) {
5957       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5958                         << " (bad/undef/unused-arg address)\n");
5959       return;
5960     }
5961 
5962     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5963 
5964     // Check if this variable can be described by a frame index, typically
5965     // either as a static alloca or a byval parameter.
5966     int FI = std::numeric_limits<int>::max();
5967     if (const auto *AI =
5968             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5969       if (AI->isStaticAlloca()) {
5970         auto I = FuncInfo.StaticAllocaMap.find(AI);
5971         if (I != FuncInfo.StaticAllocaMap.end())
5972           FI = I->second;
5973       }
5974     } else if (const auto *Arg = dyn_cast<Argument>(
5975                    Address->stripInBoundsConstantOffsets())) {
5976       FI = FuncInfo.getArgumentFrameIndex(Arg);
5977     }
5978 
5979     // llvm.dbg.addr is control dependent and always generates indirect
5980     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5981     // the MachineFunction variable table.
5982     if (FI != std::numeric_limits<int>::max()) {
5983       if (Intrinsic == Intrinsic::dbg_addr) {
5984         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5985             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
5986             dl, SDNodeOrder);
5987         DAG.AddDbgValue(SDV, isParameter);
5988       } else {
5989         LLVM_DEBUG(dbgs() << "Skipping " << DI
5990                           << " (variable info stashed in MF side table)\n");
5991       }
5992       return;
5993     }
5994 
5995     SDValue &N = NodeMap[Address];
5996     if (!N.getNode() && isa<Argument>(Address))
5997       // Check unused arguments map.
5998       N = UnusedArgNodeMap[Address];
5999     SDDbgValue *SDV;
6000     if (N.getNode()) {
6001       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6002         Address = BCI->getOperand(0);
6003       // Parameters are handled specially.
6004       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6005       if (isParameter && FINode) {
6006         // Byval parameter. We have a frame index at this point.
6007         SDV =
6008             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6009                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6010       } else if (isa<Argument>(Address)) {
6011         // Address is an argument, so try to emit its dbg value using
6012         // virtual register info from the FuncInfo.ValueMap.
6013         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6014         return;
6015       } else {
6016         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6017                               true, dl, SDNodeOrder);
6018       }
6019       DAG.AddDbgValue(SDV, isParameter);
6020     } else {
6021       // If Address is an argument then try to emit its dbg value using
6022       // virtual register info from the FuncInfo.ValueMap.
6023       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6024                                     N)) {
6025         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6026                           << " (could not emit func-arg dbg_value)\n");
6027       }
6028     }
6029     return;
6030   }
6031   case Intrinsic::dbg_label: {
6032     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6033     DILabel *Label = DI.getLabel();
6034     assert(Label && "Missing label");
6035 
6036     SDDbgLabel *SDV;
6037     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6038     DAG.AddDbgLabel(SDV);
6039     return;
6040   }
6041   case Intrinsic::dbg_value: {
6042     const DbgValueInst &DI = cast<DbgValueInst>(I);
6043     assert(DI.getVariable() && "Missing variable");
6044 
6045     DILocalVariable *Variable = DI.getVariable();
6046     DIExpression *Expression = DI.getExpression();
6047     dropDanglingDebugInfo(Variable, Expression);
6048     SmallVector<Value *, 4> Values(DI.getValues());
6049     if (Values.empty())
6050       return;
6051 
6052     if (std::count(Values.begin(), Values.end(), nullptr))
6053       return;
6054 
6055     bool IsVariadic = DI.hasArgList();
6056     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6057                           SDNodeOrder, IsVariadic))
6058       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6059     return;
6060   }
6061 
6062   case Intrinsic::eh_typeid_for: {
6063     // Find the type id for the given typeinfo.
6064     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6065     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6066     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6067     setValue(&I, Res);
6068     return;
6069   }
6070 
6071   case Intrinsic::eh_return_i32:
6072   case Intrinsic::eh_return_i64:
6073     DAG.getMachineFunction().setCallsEHReturn(true);
6074     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6075                             MVT::Other,
6076                             getControlRoot(),
6077                             getValue(I.getArgOperand(0)),
6078                             getValue(I.getArgOperand(1))));
6079     return;
6080   case Intrinsic::eh_unwind_init:
6081     DAG.getMachineFunction().setCallsUnwindInit(true);
6082     return;
6083   case Intrinsic::eh_dwarf_cfa:
6084     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6085                              TLI.getPointerTy(DAG.getDataLayout()),
6086                              getValue(I.getArgOperand(0))));
6087     return;
6088   case Intrinsic::eh_sjlj_callsite: {
6089     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6090     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6091     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6092     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6093 
6094     MMI.setCurrentCallSite(CI->getZExtValue());
6095     return;
6096   }
6097   case Intrinsic::eh_sjlj_functioncontext: {
6098     // Get and store the index of the function context.
6099     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6100     AllocaInst *FnCtx =
6101       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6102     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6103     MFI.setFunctionContextIndex(FI);
6104     return;
6105   }
6106   case Intrinsic::eh_sjlj_setjmp: {
6107     SDValue Ops[2];
6108     Ops[0] = getRoot();
6109     Ops[1] = getValue(I.getArgOperand(0));
6110     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6111                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6112     setValue(&I, Op.getValue(0));
6113     DAG.setRoot(Op.getValue(1));
6114     return;
6115   }
6116   case Intrinsic::eh_sjlj_longjmp:
6117     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6118                             getRoot(), getValue(I.getArgOperand(0))));
6119     return;
6120   case Intrinsic::eh_sjlj_setup_dispatch:
6121     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6122                             getRoot()));
6123     return;
6124   case Intrinsic::masked_gather:
6125     visitMaskedGather(I);
6126     return;
6127   case Intrinsic::masked_load:
6128     visitMaskedLoad(I);
6129     return;
6130   case Intrinsic::masked_scatter:
6131     visitMaskedScatter(I);
6132     return;
6133   case Intrinsic::masked_store:
6134     visitMaskedStore(I);
6135     return;
6136   case Intrinsic::masked_expandload:
6137     visitMaskedLoad(I, true /* IsExpanding */);
6138     return;
6139   case Intrinsic::masked_compressstore:
6140     visitMaskedStore(I, true /* IsCompressing */);
6141     return;
6142   case Intrinsic::powi:
6143     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6144                             getValue(I.getArgOperand(1)), DAG));
6145     return;
6146   case Intrinsic::log:
6147     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6148     return;
6149   case Intrinsic::log2:
6150     setValue(&I,
6151              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6152     return;
6153   case Intrinsic::log10:
6154     setValue(&I,
6155              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6156     return;
6157   case Intrinsic::exp:
6158     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6159     return;
6160   case Intrinsic::exp2:
6161     setValue(&I,
6162              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6163     return;
6164   case Intrinsic::pow:
6165     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6166                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6167     return;
6168   case Intrinsic::sqrt:
6169   case Intrinsic::fabs:
6170   case Intrinsic::sin:
6171   case Intrinsic::cos:
6172   case Intrinsic::floor:
6173   case Intrinsic::ceil:
6174   case Intrinsic::trunc:
6175   case Intrinsic::rint:
6176   case Intrinsic::nearbyint:
6177   case Intrinsic::round:
6178   case Intrinsic::roundeven:
6179   case Intrinsic::canonicalize: {
6180     unsigned Opcode;
6181     switch (Intrinsic) {
6182     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6183     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6184     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6185     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6186     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6187     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6188     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6189     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6190     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6191     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6192     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6193     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6194     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6195     }
6196 
6197     setValue(&I, DAG.getNode(Opcode, sdl,
6198                              getValue(I.getArgOperand(0)).getValueType(),
6199                              getValue(I.getArgOperand(0)), Flags));
6200     return;
6201   }
6202   case Intrinsic::lround:
6203   case Intrinsic::llround:
6204   case Intrinsic::lrint:
6205   case Intrinsic::llrint: {
6206     unsigned Opcode;
6207     switch (Intrinsic) {
6208     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6209     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6210     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6211     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6212     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6213     }
6214 
6215     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6216     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6217                              getValue(I.getArgOperand(0))));
6218     return;
6219   }
6220   case Intrinsic::minnum:
6221     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6222                              getValue(I.getArgOperand(0)).getValueType(),
6223                              getValue(I.getArgOperand(0)),
6224                              getValue(I.getArgOperand(1)), Flags));
6225     return;
6226   case Intrinsic::maxnum:
6227     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6228                              getValue(I.getArgOperand(0)).getValueType(),
6229                              getValue(I.getArgOperand(0)),
6230                              getValue(I.getArgOperand(1)), Flags));
6231     return;
6232   case Intrinsic::minimum:
6233     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6234                              getValue(I.getArgOperand(0)).getValueType(),
6235                              getValue(I.getArgOperand(0)),
6236                              getValue(I.getArgOperand(1)), Flags));
6237     return;
6238   case Intrinsic::maximum:
6239     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6240                              getValue(I.getArgOperand(0)).getValueType(),
6241                              getValue(I.getArgOperand(0)),
6242                              getValue(I.getArgOperand(1)), Flags));
6243     return;
6244   case Intrinsic::copysign:
6245     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6246                              getValue(I.getArgOperand(0)).getValueType(),
6247                              getValue(I.getArgOperand(0)),
6248                              getValue(I.getArgOperand(1)), Flags));
6249     return;
6250   case Intrinsic::fma:
6251     setValue(&I, DAG.getNode(
6252                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6253                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6254                      getValue(I.getArgOperand(2)), Flags));
6255     return;
6256 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6257   case Intrinsic::INTRINSIC:
6258 #include "llvm/IR/ConstrainedOps.def"
6259     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6260     return;
6261 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6262 #include "llvm/IR/VPIntrinsics.def"
6263     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6264     return;
6265   case Intrinsic::fmuladd: {
6266     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6267     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6268         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6269       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6270                                getValue(I.getArgOperand(0)).getValueType(),
6271                                getValue(I.getArgOperand(0)),
6272                                getValue(I.getArgOperand(1)),
6273                                getValue(I.getArgOperand(2)), Flags));
6274     } else {
6275       // TODO: Intrinsic calls should have fast-math-flags.
6276       SDValue Mul = DAG.getNode(
6277           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6278           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6279       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6280                                 getValue(I.getArgOperand(0)).getValueType(),
6281                                 Mul, getValue(I.getArgOperand(2)), Flags);
6282       setValue(&I, Add);
6283     }
6284     return;
6285   }
6286   case Intrinsic::convert_to_fp16:
6287     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6288                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6289                                          getValue(I.getArgOperand(0)),
6290                                          DAG.getTargetConstant(0, sdl,
6291                                                                MVT::i32))));
6292     return;
6293   case Intrinsic::convert_from_fp16:
6294     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6295                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6296                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6297                                          getValue(I.getArgOperand(0)))));
6298     return;
6299   case Intrinsic::fptosi_sat: {
6300     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6301     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6302     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6303                              getValue(I.getArgOperand(0)), SatW));
6304     return;
6305   }
6306   case Intrinsic::fptoui_sat: {
6307     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6308     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6309     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6310                              getValue(I.getArgOperand(0)), SatW));
6311     return;
6312   }
6313   case Intrinsic::set_rounding:
6314     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6315                       {getRoot(), getValue(I.getArgOperand(0))});
6316     setValue(&I, Res);
6317     DAG.setRoot(Res.getValue(0));
6318     return;
6319   case Intrinsic::pcmarker: {
6320     SDValue Tmp = getValue(I.getArgOperand(0));
6321     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6322     return;
6323   }
6324   case Intrinsic::readcyclecounter: {
6325     SDValue Op = getRoot();
6326     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6327                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6328     setValue(&I, Res);
6329     DAG.setRoot(Res.getValue(1));
6330     return;
6331   }
6332   case Intrinsic::bitreverse:
6333     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6334                              getValue(I.getArgOperand(0)).getValueType(),
6335                              getValue(I.getArgOperand(0))));
6336     return;
6337   case Intrinsic::bswap:
6338     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6339                              getValue(I.getArgOperand(0)).getValueType(),
6340                              getValue(I.getArgOperand(0))));
6341     return;
6342   case Intrinsic::cttz: {
6343     SDValue Arg = getValue(I.getArgOperand(0));
6344     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6345     EVT Ty = Arg.getValueType();
6346     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6347                              sdl, Ty, Arg));
6348     return;
6349   }
6350   case Intrinsic::ctlz: {
6351     SDValue Arg = getValue(I.getArgOperand(0));
6352     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6353     EVT Ty = Arg.getValueType();
6354     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6355                              sdl, Ty, Arg));
6356     return;
6357   }
6358   case Intrinsic::ctpop: {
6359     SDValue Arg = getValue(I.getArgOperand(0));
6360     EVT Ty = Arg.getValueType();
6361     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6362     return;
6363   }
6364   case Intrinsic::fshl:
6365   case Intrinsic::fshr: {
6366     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6367     SDValue X = getValue(I.getArgOperand(0));
6368     SDValue Y = getValue(I.getArgOperand(1));
6369     SDValue Z = getValue(I.getArgOperand(2));
6370     EVT VT = X.getValueType();
6371 
6372     if (X == Y) {
6373       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6374       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6375     } else {
6376       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6377       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6378     }
6379     return;
6380   }
6381   case Intrinsic::sadd_sat: {
6382     SDValue Op1 = getValue(I.getArgOperand(0));
6383     SDValue Op2 = getValue(I.getArgOperand(1));
6384     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6385     return;
6386   }
6387   case Intrinsic::uadd_sat: {
6388     SDValue Op1 = getValue(I.getArgOperand(0));
6389     SDValue Op2 = getValue(I.getArgOperand(1));
6390     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6391     return;
6392   }
6393   case Intrinsic::ssub_sat: {
6394     SDValue Op1 = getValue(I.getArgOperand(0));
6395     SDValue Op2 = getValue(I.getArgOperand(1));
6396     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6397     return;
6398   }
6399   case Intrinsic::usub_sat: {
6400     SDValue Op1 = getValue(I.getArgOperand(0));
6401     SDValue Op2 = getValue(I.getArgOperand(1));
6402     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6403     return;
6404   }
6405   case Intrinsic::sshl_sat: {
6406     SDValue Op1 = getValue(I.getArgOperand(0));
6407     SDValue Op2 = getValue(I.getArgOperand(1));
6408     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6409     return;
6410   }
6411   case Intrinsic::ushl_sat: {
6412     SDValue Op1 = getValue(I.getArgOperand(0));
6413     SDValue Op2 = getValue(I.getArgOperand(1));
6414     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6415     return;
6416   }
6417   case Intrinsic::smul_fix:
6418   case Intrinsic::umul_fix:
6419   case Intrinsic::smul_fix_sat:
6420   case Intrinsic::umul_fix_sat: {
6421     SDValue Op1 = getValue(I.getArgOperand(0));
6422     SDValue Op2 = getValue(I.getArgOperand(1));
6423     SDValue Op3 = getValue(I.getArgOperand(2));
6424     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6425                              Op1.getValueType(), Op1, Op2, Op3));
6426     return;
6427   }
6428   case Intrinsic::sdiv_fix:
6429   case Intrinsic::udiv_fix:
6430   case Intrinsic::sdiv_fix_sat:
6431   case Intrinsic::udiv_fix_sat: {
6432     SDValue Op1 = getValue(I.getArgOperand(0));
6433     SDValue Op2 = getValue(I.getArgOperand(1));
6434     SDValue Op3 = getValue(I.getArgOperand(2));
6435     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6436                               Op1, Op2, Op3, DAG, TLI));
6437     return;
6438   }
6439   case Intrinsic::smax: {
6440     SDValue Op1 = getValue(I.getArgOperand(0));
6441     SDValue Op2 = getValue(I.getArgOperand(1));
6442     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6443     return;
6444   }
6445   case Intrinsic::smin: {
6446     SDValue Op1 = getValue(I.getArgOperand(0));
6447     SDValue Op2 = getValue(I.getArgOperand(1));
6448     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6449     return;
6450   }
6451   case Intrinsic::umax: {
6452     SDValue Op1 = getValue(I.getArgOperand(0));
6453     SDValue Op2 = getValue(I.getArgOperand(1));
6454     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6455     return;
6456   }
6457   case Intrinsic::umin: {
6458     SDValue Op1 = getValue(I.getArgOperand(0));
6459     SDValue Op2 = getValue(I.getArgOperand(1));
6460     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6461     return;
6462   }
6463   case Intrinsic::abs: {
6464     // TODO: Preserve "int min is poison" arg in SDAG?
6465     SDValue Op1 = getValue(I.getArgOperand(0));
6466     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6467     return;
6468   }
6469   case Intrinsic::stacksave: {
6470     SDValue Op = getRoot();
6471     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6472     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6473     setValue(&I, Res);
6474     DAG.setRoot(Res.getValue(1));
6475     return;
6476   }
6477   case Intrinsic::stackrestore:
6478     Res = getValue(I.getArgOperand(0));
6479     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6480     return;
6481   case Intrinsic::get_dynamic_area_offset: {
6482     SDValue Op = getRoot();
6483     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6484     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6485     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6486     // target.
6487     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6488       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6489                          " intrinsic!");
6490     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6491                       Op);
6492     DAG.setRoot(Op);
6493     setValue(&I, Res);
6494     return;
6495   }
6496   case Intrinsic::stackguard: {
6497     MachineFunction &MF = DAG.getMachineFunction();
6498     const Module &M = *MF.getFunction().getParent();
6499     SDValue Chain = getRoot();
6500     if (TLI.useLoadStackGuardNode()) {
6501       Res = getLoadStackGuard(DAG, sdl, Chain);
6502     } else {
6503       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6504       const Value *Global = TLI.getSDagStackGuard(M);
6505       Align Align = DL->getPrefTypeAlign(Global->getType());
6506       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6507                         MachinePointerInfo(Global, 0), Align,
6508                         MachineMemOperand::MOVolatile);
6509     }
6510     if (TLI.useStackGuardXorFP())
6511       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6512     DAG.setRoot(Chain);
6513     setValue(&I, Res);
6514     return;
6515   }
6516   case Intrinsic::stackprotector: {
6517     // Emit code into the DAG to store the stack guard onto the stack.
6518     MachineFunction &MF = DAG.getMachineFunction();
6519     MachineFrameInfo &MFI = MF.getFrameInfo();
6520     SDValue Src, Chain = getRoot();
6521 
6522     if (TLI.useLoadStackGuardNode())
6523       Src = getLoadStackGuard(DAG, sdl, Chain);
6524     else
6525       Src = getValue(I.getArgOperand(0));   // The guard's value.
6526 
6527     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6528 
6529     int FI = FuncInfo.StaticAllocaMap[Slot];
6530     MFI.setStackProtectorIndex(FI);
6531     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6532 
6533     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6534 
6535     // Store the stack protector onto the stack.
6536     Res = DAG.getStore(
6537         Chain, sdl, Src, FIN,
6538         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6539         MaybeAlign(), MachineMemOperand::MOVolatile);
6540     setValue(&I, Res);
6541     DAG.setRoot(Res);
6542     return;
6543   }
6544   case Intrinsic::objectsize:
6545     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6546 
6547   case Intrinsic::is_constant:
6548     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6549 
6550   case Intrinsic::annotation:
6551   case Intrinsic::ptr_annotation:
6552   case Intrinsic::launder_invariant_group:
6553   case Intrinsic::strip_invariant_group:
6554     // Drop the intrinsic, but forward the value
6555     setValue(&I, getValue(I.getOperand(0)));
6556     return;
6557 
6558   case Intrinsic::assume:
6559   case Intrinsic::experimental_noalias_scope_decl:
6560   case Intrinsic::var_annotation:
6561   case Intrinsic::sideeffect:
6562     // Discard annotate attributes, noalias scope declarations, assumptions, and
6563     // artificial side-effects.
6564     return;
6565 
6566   case Intrinsic::codeview_annotation: {
6567     // Emit a label associated with this metadata.
6568     MachineFunction &MF = DAG.getMachineFunction();
6569     MCSymbol *Label =
6570         MF.getMMI().getContext().createTempSymbol("annotation", true);
6571     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6572     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6573     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6574     DAG.setRoot(Res);
6575     return;
6576   }
6577 
6578   case Intrinsic::init_trampoline: {
6579     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6580 
6581     SDValue Ops[6];
6582     Ops[0] = getRoot();
6583     Ops[1] = getValue(I.getArgOperand(0));
6584     Ops[2] = getValue(I.getArgOperand(1));
6585     Ops[3] = getValue(I.getArgOperand(2));
6586     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6587     Ops[5] = DAG.getSrcValue(F);
6588 
6589     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6590 
6591     DAG.setRoot(Res);
6592     return;
6593   }
6594   case Intrinsic::adjust_trampoline:
6595     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6596                              TLI.getPointerTy(DAG.getDataLayout()),
6597                              getValue(I.getArgOperand(0))));
6598     return;
6599   case Intrinsic::gcroot: {
6600     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6601            "only valid in functions with gc specified, enforced by Verifier");
6602     assert(GFI && "implied by previous");
6603     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6604     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6605 
6606     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6607     GFI->addStackRoot(FI->getIndex(), TypeMap);
6608     return;
6609   }
6610   case Intrinsic::gcread:
6611   case Intrinsic::gcwrite:
6612     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6613   case Intrinsic::flt_rounds:
6614     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6615     setValue(&I, Res);
6616     DAG.setRoot(Res.getValue(1));
6617     return;
6618 
6619   case Intrinsic::expect:
6620     // Just replace __builtin_expect(exp, c) with EXP.
6621     setValue(&I, getValue(I.getArgOperand(0)));
6622     return;
6623 
6624   case Intrinsic::ubsantrap:
6625   case Intrinsic::debugtrap:
6626   case Intrinsic::trap: {
6627     StringRef TrapFuncName =
6628         I.getAttributes()
6629             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6630             .getValueAsString();
6631     if (TrapFuncName.empty()) {
6632       switch (Intrinsic) {
6633       case Intrinsic::trap:
6634         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6635         break;
6636       case Intrinsic::debugtrap:
6637         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6638         break;
6639       case Intrinsic::ubsantrap:
6640         DAG.setRoot(DAG.getNode(
6641             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6642             DAG.getTargetConstant(
6643                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6644                 MVT::i32)));
6645         break;
6646       default: llvm_unreachable("unknown trap intrinsic");
6647       }
6648       return;
6649     }
6650     TargetLowering::ArgListTy Args;
6651     if (Intrinsic == Intrinsic::ubsantrap) {
6652       Args.push_back(TargetLoweringBase::ArgListEntry());
6653       Args[0].Val = I.getArgOperand(0);
6654       Args[0].Node = getValue(Args[0].Val);
6655       Args[0].Ty = Args[0].Val->getType();
6656     }
6657 
6658     TargetLowering::CallLoweringInfo CLI(DAG);
6659     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6660         CallingConv::C, I.getType(),
6661         DAG.getExternalSymbol(TrapFuncName.data(),
6662                               TLI.getPointerTy(DAG.getDataLayout())),
6663         std::move(Args));
6664 
6665     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6666     DAG.setRoot(Result.second);
6667     return;
6668   }
6669 
6670   case Intrinsic::uadd_with_overflow:
6671   case Intrinsic::sadd_with_overflow:
6672   case Intrinsic::usub_with_overflow:
6673   case Intrinsic::ssub_with_overflow:
6674   case Intrinsic::umul_with_overflow:
6675   case Intrinsic::smul_with_overflow: {
6676     ISD::NodeType Op;
6677     switch (Intrinsic) {
6678     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6679     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6680     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6681     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6682     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6683     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6684     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6685     }
6686     SDValue Op1 = getValue(I.getArgOperand(0));
6687     SDValue Op2 = getValue(I.getArgOperand(1));
6688 
6689     EVT ResultVT = Op1.getValueType();
6690     EVT OverflowVT = MVT::i1;
6691     if (ResultVT.isVector())
6692       OverflowVT = EVT::getVectorVT(
6693           *Context, OverflowVT, ResultVT.getVectorElementCount());
6694 
6695     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6696     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6697     return;
6698   }
6699   case Intrinsic::prefetch: {
6700     SDValue Ops[5];
6701     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6702     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6703     Ops[0] = DAG.getRoot();
6704     Ops[1] = getValue(I.getArgOperand(0));
6705     Ops[2] = getValue(I.getArgOperand(1));
6706     Ops[3] = getValue(I.getArgOperand(2));
6707     Ops[4] = getValue(I.getArgOperand(3));
6708     SDValue Result = DAG.getMemIntrinsicNode(
6709         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6710         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6711         /* align */ None, Flags);
6712 
6713     // Chain the prefetch in parallell with any pending loads, to stay out of
6714     // the way of later optimizations.
6715     PendingLoads.push_back(Result);
6716     Result = getRoot();
6717     DAG.setRoot(Result);
6718     return;
6719   }
6720   case Intrinsic::lifetime_start:
6721   case Intrinsic::lifetime_end: {
6722     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6723     // Stack coloring is not enabled in O0, discard region information.
6724     if (TM.getOptLevel() == CodeGenOpt::None)
6725       return;
6726 
6727     const int64_t ObjectSize =
6728         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6729     Value *const ObjectPtr = I.getArgOperand(1);
6730     SmallVector<const Value *, 4> Allocas;
6731     getUnderlyingObjects(ObjectPtr, Allocas);
6732 
6733     for (const Value *Alloca : Allocas) {
6734       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6735 
6736       // Could not find an Alloca.
6737       if (!LifetimeObject)
6738         continue;
6739 
6740       // First check that the Alloca is static, otherwise it won't have a
6741       // valid frame index.
6742       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6743       if (SI == FuncInfo.StaticAllocaMap.end())
6744         return;
6745 
6746       const int FrameIndex = SI->second;
6747       int64_t Offset;
6748       if (GetPointerBaseWithConstantOffset(
6749               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6750         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6751       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6752                                 Offset);
6753       DAG.setRoot(Res);
6754     }
6755     return;
6756   }
6757   case Intrinsic::pseudoprobe: {
6758     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6759     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6760     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6761     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6762     DAG.setRoot(Res);
6763     return;
6764   }
6765   case Intrinsic::invariant_start:
6766     // Discard region information.
6767     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6768     return;
6769   case Intrinsic::invariant_end:
6770     // Discard region information.
6771     return;
6772   case Intrinsic::clear_cache:
6773     /// FunctionName may be null.
6774     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6775       lowerCallToExternalSymbol(I, FunctionName);
6776     return;
6777   case Intrinsic::donothing:
6778     // ignore
6779     return;
6780   case Intrinsic::experimental_stackmap:
6781     visitStackmap(I);
6782     return;
6783   case Intrinsic::experimental_patchpoint_void:
6784   case Intrinsic::experimental_patchpoint_i64:
6785     visitPatchpoint(I);
6786     return;
6787   case Intrinsic::experimental_gc_statepoint:
6788     LowerStatepoint(cast<GCStatepointInst>(I));
6789     return;
6790   case Intrinsic::experimental_gc_result:
6791     visitGCResult(cast<GCResultInst>(I));
6792     return;
6793   case Intrinsic::experimental_gc_relocate:
6794     visitGCRelocate(cast<GCRelocateInst>(I));
6795     return;
6796   case Intrinsic::instrprof_increment:
6797     llvm_unreachable("instrprof failed to lower an increment");
6798   case Intrinsic::instrprof_value_profile:
6799     llvm_unreachable("instrprof failed to lower a value profiling call");
6800   case Intrinsic::localescape: {
6801     MachineFunction &MF = DAG.getMachineFunction();
6802     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6803 
6804     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6805     // is the same on all targets.
6806     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6807       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6808       if (isa<ConstantPointerNull>(Arg))
6809         continue; // Skip null pointers. They represent a hole in index space.
6810       AllocaInst *Slot = cast<AllocaInst>(Arg);
6811       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6812              "can only escape static allocas");
6813       int FI = FuncInfo.StaticAllocaMap[Slot];
6814       MCSymbol *FrameAllocSym =
6815           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6816               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6817       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6818               TII->get(TargetOpcode::LOCAL_ESCAPE))
6819           .addSym(FrameAllocSym)
6820           .addFrameIndex(FI);
6821     }
6822 
6823     return;
6824   }
6825 
6826   case Intrinsic::localrecover: {
6827     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6828     MachineFunction &MF = DAG.getMachineFunction();
6829 
6830     // Get the symbol that defines the frame offset.
6831     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6832     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6833     unsigned IdxVal =
6834         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6835     MCSymbol *FrameAllocSym =
6836         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6837             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6838 
6839     Value *FP = I.getArgOperand(1);
6840     SDValue FPVal = getValue(FP);
6841     EVT PtrVT = FPVal.getValueType();
6842 
6843     // Create a MCSymbol for the label to avoid any target lowering
6844     // that would make this PC relative.
6845     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6846     SDValue OffsetVal =
6847         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6848 
6849     // Add the offset to the FP.
6850     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6851     setValue(&I, Add);
6852 
6853     return;
6854   }
6855 
6856   case Intrinsic::eh_exceptionpointer:
6857   case Intrinsic::eh_exceptioncode: {
6858     // Get the exception pointer vreg, copy from it, and resize it to fit.
6859     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6860     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6861     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6862     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6863     SDValue N =
6864         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6865     if (Intrinsic == Intrinsic::eh_exceptioncode)
6866       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6867     setValue(&I, N);
6868     return;
6869   }
6870   case Intrinsic::xray_customevent: {
6871     // Here we want to make sure that the intrinsic behaves as if it has a
6872     // specific calling convention, and only for x86_64.
6873     // FIXME: Support other platforms later.
6874     const auto &Triple = DAG.getTarget().getTargetTriple();
6875     if (Triple.getArch() != Triple::x86_64)
6876       return;
6877 
6878     SDLoc DL = getCurSDLoc();
6879     SmallVector<SDValue, 8> Ops;
6880 
6881     // We want to say that we always want the arguments in registers.
6882     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6883     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6884     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6885     SDValue Chain = getRoot();
6886     Ops.push_back(LogEntryVal);
6887     Ops.push_back(StrSizeVal);
6888     Ops.push_back(Chain);
6889 
6890     // We need to enforce the calling convention for the callsite, so that
6891     // argument ordering is enforced correctly, and that register allocation can
6892     // see that some registers may be assumed clobbered and have to preserve
6893     // them across calls to the intrinsic.
6894     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6895                                            DL, NodeTys, Ops);
6896     SDValue patchableNode = SDValue(MN, 0);
6897     DAG.setRoot(patchableNode);
6898     setValue(&I, patchableNode);
6899     return;
6900   }
6901   case Intrinsic::xray_typedevent: {
6902     // Here we want to make sure that the intrinsic behaves as if it has a
6903     // specific calling convention, and only for x86_64.
6904     // FIXME: Support other platforms later.
6905     const auto &Triple = DAG.getTarget().getTargetTriple();
6906     if (Triple.getArch() != Triple::x86_64)
6907       return;
6908 
6909     SDLoc DL = getCurSDLoc();
6910     SmallVector<SDValue, 8> Ops;
6911 
6912     // We want to say that we always want the arguments in registers.
6913     // It's unclear to me how manipulating the selection DAG here forces callers
6914     // to provide arguments in registers instead of on the stack.
6915     SDValue LogTypeId = getValue(I.getArgOperand(0));
6916     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6917     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6918     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6919     SDValue Chain = getRoot();
6920     Ops.push_back(LogTypeId);
6921     Ops.push_back(LogEntryVal);
6922     Ops.push_back(StrSizeVal);
6923     Ops.push_back(Chain);
6924 
6925     // We need to enforce the calling convention for the callsite, so that
6926     // argument ordering is enforced correctly, and that register allocation can
6927     // see that some registers may be assumed clobbered and have to preserve
6928     // them across calls to the intrinsic.
6929     MachineSDNode *MN = DAG.getMachineNode(
6930         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6931     SDValue patchableNode = SDValue(MN, 0);
6932     DAG.setRoot(patchableNode);
6933     setValue(&I, patchableNode);
6934     return;
6935   }
6936   case Intrinsic::experimental_deoptimize:
6937     LowerDeoptimizeCall(&I);
6938     return;
6939 
6940   case Intrinsic::vector_reduce_fadd:
6941   case Intrinsic::vector_reduce_fmul:
6942   case Intrinsic::vector_reduce_add:
6943   case Intrinsic::vector_reduce_mul:
6944   case Intrinsic::vector_reduce_and:
6945   case Intrinsic::vector_reduce_or:
6946   case Intrinsic::vector_reduce_xor:
6947   case Intrinsic::vector_reduce_smax:
6948   case Intrinsic::vector_reduce_smin:
6949   case Intrinsic::vector_reduce_umax:
6950   case Intrinsic::vector_reduce_umin:
6951   case Intrinsic::vector_reduce_fmax:
6952   case Intrinsic::vector_reduce_fmin:
6953     visitVectorReduce(I, Intrinsic);
6954     return;
6955 
6956   case Intrinsic::icall_branch_funnel: {
6957     SmallVector<SDValue, 16> Ops;
6958     Ops.push_back(getValue(I.getArgOperand(0)));
6959 
6960     int64_t Offset;
6961     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6962         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6963     if (!Base)
6964       report_fatal_error(
6965           "llvm.icall.branch.funnel operand must be a GlobalValue");
6966     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6967 
6968     struct BranchFunnelTarget {
6969       int64_t Offset;
6970       SDValue Target;
6971     };
6972     SmallVector<BranchFunnelTarget, 8> Targets;
6973 
6974     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6975       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6976           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6977       if (ElemBase != Base)
6978         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6979                            "to the same GlobalValue");
6980 
6981       SDValue Val = getValue(I.getArgOperand(Op + 1));
6982       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6983       if (!GA)
6984         report_fatal_error(
6985             "llvm.icall.branch.funnel operand must be a GlobalValue");
6986       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6987                                      GA->getGlobal(), getCurSDLoc(),
6988                                      Val.getValueType(), GA->getOffset())});
6989     }
6990     llvm::sort(Targets,
6991                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6992                  return T1.Offset < T2.Offset;
6993                });
6994 
6995     for (auto &T : Targets) {
6996       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6997       Ops.push_back(T.Target);
6998     }
6999 
7000     Ops.push_back(DAG.getRoot()); // Chain
7001     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7002                                  getCurSDLoc(), MVT::Other, Ops),
7003               0);
7004     DAG.setRoot(N);
7005     setValue(&I, N);
7006     HasTailCall = true;
7007     return;
7008   }
7009 
7010   case Intrinsic::wasm_landingpad_index:
7011     // Information this intrinsic contained has been transferred to
7012     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7013     // delete it now.
7014     return;
7015 
7016   case Intrinsic::aarch64_settag:
7017   case Intrinsic::aarch64_settag_zero: {
7018     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7019     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7020     SDValue Val = TSI.EmitTargetCodeForSetTag(
7021         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7022         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7023         ZeroMemory);
7024     DAG.setRoot(Val);
7025     setValue(&I, Val);
7026     return;
7027   }
7028   case Intrinsic::ptrmask: {
7029     SDValue Ptr = getValue(I.getOperand(0));
7030     SDValue Const = getValue(I.getOperand(1));
7031 
7032     EVT PtrVT = Ptr.getValueType();
7033     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7034                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7035     return;
7036   }
7037   case Intrinsic::get_active_lane_mask: {
7038     auto DL = getCurSDLoc();
7039     SDValue Index = getValue(I.getOperand(0));
7040     SDValue TripCount = getValue(I.getOperand(1));
7041     Type *ElementTy = I.getOperand(0)->getType();
7042     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7043     unsigned VecWidth = VT.getVectorNumElements();
7044 
7045     SmallVector<SDValue, 16> OpsTripCount;
7046     SmallVector<SDValue, 16> OpsIndex;
7047     SmallVector<SDValue, 16> OpsStepConstants;
7048     for (unsigned i = 0; i < VecWidth; i++) {
7049       OpsTripCount.push_back(TripCount);
7050       OpsIndex.push_back(Index);
7051       OpsStepConstants.push_back(
7052           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7053     }
7054 
7055     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7056 
7057     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7058     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7059     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7060     SDValue VectorInduction = DAG.getNode(
7061        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7062     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7063     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7064                                  VectorTripCount, ISD::CondCode::SETULT);
7065     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7066                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7067                              SetCC));
7068     return;
7069   }
7070   case Intrinsic::experimental_vector_insert: {
7071     auto DL = getCurSDLoc();
7072 
7073     SDValue Vec = getValue(I.getOperand(0));
7074     SDValue SubVec = getValue(I.getOperand(1));
7075     SDValue Index = getValue(I.getOperand(2));
7076 
7077     // The intrinsic's index type is i64, but the SDNode requires an index type
7078     // suitable for the target. Convert the index as required.
7079     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7080     if (Index.getValueType() != VectorIdxTy)
7081       Index = DAG.getVectorIdxConstant(
7082           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7083 
7084     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7085     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7086                              Index));
7087     return;
7088   }
7089   case Intrinsic::experimental_vector_extract: {
7090     auto DL = getCurSDLoc();
7091 
7092     SDValue Vec = getValue(I.getOperand(0));
7093     SDValue Index = getValue(I.getOperand(1));
7094     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7095 
7096     // The intrinsic's index type is i64, but the SDNode requires an index type
7097     // suitable for the target. Convert the index as required.
7098     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7099     if (Index.getValueType() != VectorIdxTy)
7100       Index = DAG.getVectorIdxConstant(
7101           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7102 
7103     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7104     return;
7105   }
7106   case Intrinsic::experimental_vector_reverse:
7107     visitVectorReverse(I);
7108     return;
7109   case Intrinsic::experimental_vector_splice:
7110     visitVectorSplice(I);
7111     return;
7112   }
7113 }
7114 
7115 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7116     const ConstrainedFPIntrinsic &FPI) {
7117   SDLoc sdl = getCurSDLoc();
7118 
7119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7120   SmallVector<EVT, 4> ValueVTs;
7121   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7122   ValueVTs.push_back(MVT::Other); // Out chain
7123 
7124   // We do not need to serialize constrained FP intrinsics against
7125   // each other or against (nonvolatile) loads, so they can be
7126   // chained like loads.
7127   SDValue Chain = DAG.getRoot();
7128   SmallVector<SDValue, 4> Opers;
7129   Opers.push_back(Chain);
7130   if (FPI.isUnaryOp()) {
7131     Opers.push_back(getValue(FPI.getArgOperand(0)));
7132   } else if (FPI.isTernaryOp()) {
7133     Opers.push_back(getValue(FPI.getArgOperand(0)));
7134     Opers.push_back(getValue(FPI.getArgOperand(1)));
7135     Opers.push_back(getValue(FPI.getArgOperand(2)));
7136   } else {
7137     Opers.push_back(getValue(FPI.getArgOperand(0)));
7138     Opers.push_back(getValue(FPI.getArgOperand(1)));
7139   }
7140 
7141   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7142     assert(Result.getNode()->getNumValues() == 2);
7143 
7144     // Push node to the appropriate list so that future instructions can be
7145     // chained up correctly.
7146     SDValue OutChain = Result.getValue(1);
7147     switch (EB) {
7148     case fp::ExceptionBehavior::ebIgnore:
7149       // The only reason why ebIgnore nodes still need to be chained is that
7150       // they might depend on the current rounding mode, and therefore must
7151       // not be moved across instruction that may change that mode.
7152       LLVM_FALLTHROUGH;
7153     case fp::ExceptionBehavior::ebMayTrap:
7154       // These must not be moved across calls or instructions that may change
7155       // floating-point exception masks.
7156       PendingConstrainedFP.push_back(OutChain);
7157       break;
7158     case fp::ExceptionBehavior::ebStrict:
7159       // These must not be moved across calls or instructions that may change
7160       // floating-point exception masks or read floating-point exception flags.
7161       // In addition, they cannot be optimized out even if unused.
7162       PendingConstrainedFPStrict.push_back(OutChain);
7163       break;
7164     }
7165   };
7166 
7167   SDVTList VTs = DAG.getVTList(ValueVTs);
7168   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7169 
7170   SDNodeFlags Flags;
7171   if (EB == fp::ExceptionBehavior::ebIgnore)
7172     Flags.setNoFPExcept(true);
7173 
7174   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7175     Flags.copyFMF(*FPOp);
7176 
7177   unsigned Opcode;
7178   switch (FPI.getIntrinsicID()) {
7179   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7180 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7181   case Intrinsic::INTRINSIC:                                                   \
7182     Opcode = ISD::STRICT_##DAGN;                                               \
7183     break;
7184 #include "llvm/IR/ConstrainedOps.def"
7185   case Intrinsic::experimental_constrained_fmuladd: {
7186     Opcode = ISD::STRICT_FMA;
7187     // Break fmuladd into fmul and fadd.
7188     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7189         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7190                                         ValueVTs[0])) {
7191       Opers.pop_back();
7192       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7193       pushOutChain(Mul, EB);
7194       Opcode = ISD::STRICT_FADD;
7195       Opers.clear();
7196       Opers.push_back(Mul.getValue(1));
7197       Opers.push_back(Mul.getValue(0));
7198       Opers.push_back(getValue(FPI.getArgOperand(2)));
7199     }
7200     break;
7201   }
7202   }
7203 
7204   // A few strict DAG nodes carry additional operands that are not
7205   // set up by the default code above.
7206   switch (Opcode) {
7207   default: break;
7208   case ISD::STRICT_FP_ROUND:
7209     Opers.push_back(
7210         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7211     break;
7212   case ISD::STRICT_FSETCC:
7213   case ISD::STRICT_FSETCCS: {
7214     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7215     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7216     if (TM.Options.NoNaNsFPMath)
7217       Condition = getFCmpCodeWithoutNaN(Condition);
7218     Opers.push_back(DAG.getCondCode(Condition));
7219     break;
7220   }
7221   }
7222 
7223   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7224   pushOutChain(Result, EB);
7225 
7226   SDValue FPResult = Result.getValue(0);
7227   setValue(&FPI, FPResult);
7228 }
7229 
7230 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7231   Optional<unsigned> ResOPC;
7232   switch (VPIntrin.getIntrinsicID()) {
7233 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7234 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7235 #define END_REGISTER_VP_INTRINSIC(...) break;
7236 #include "llvm/IR/VPIntrinsics.def"
7237   }
7238 
7239   if (!ResOPC.hasValue())
7240     llvm_unreachable(
7241         "Inconsistency: no SDNode available for this VPIntrinsic!");
7242 
7243   return ResOPC.getValue();
7244 }
7245 
7246 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7247     const VPIntrinsic &VPIntrin) {
7248   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7249 
7250   SmallVector<EVT, 4> ValueVTs;
7251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7252   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7253   SDVTList VTs = DAG.getVTList(ValueVTs);
7254 
7255   // Request operands.
7256   SmallVector<SDValue, 7> OpValues;
7257   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7258     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7259 
7260   SDLoc DL = getCurSDLoc();
7261   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7262   setValue(&VPIntrin, Result);
7263 }
7264 
7265 std::pair<SDValue, SDValue>
7266 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7267                                     const BasicBlock *EHPadBB) {
7268   MachineFunction &MF = DAG.getMachineFunction();
7269   MachineModuleInfo &MMI = MF.getMMI();
7270   MCSymbol *BeginLabel = nullptr;
7271 
7272   if (EHPadBB) {
7273     // Insert a label before the invoke call to mark the try range.  This can be
7274     // used to detect deletion of the invoke via the MachineModuleInfo.
7275     BeginLabel = MMI.getContext().createTempSymbol();
7276 
7277     // For SjLj, keep track of which landing pads go with which invokes
7278     // so as to maintain the ordering of pads in the LSDA.
7279     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7280     if (CallSiteIndex) {
7281       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7282       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7283 
7284       // Now that the call site is handled, stop tracking it.
7285       MMI.setCurrentCallSite(0);
7286     }
7287 
7288     // Both PendingLoads and PendingExports must be flushed here;
7289     // this call might not return.
7290     (void)getRoot();
7291     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7292 
7293     CLI.setChain(getRoot());
7294   }
7295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7296   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7297 
7298   assert((CLI.IsTailCall || Result.second.getNode()) &&
7299          "Non-null chain expected with non-tail call!");
7300   assert((Result.second.getNode() || !Result.first.getNode()) &&
7301          "Null value expected with tail call!");
7302 
7303   if (!Result.second.getNode()) {
7304     // As a special case, a null chain means that a tail call has been emitted
7305     // and the DAG root is already updated.
7306     HasTailCall = true;
7307 
7308     // Since there's no actual continuation from this block, nothing can be
7309     // relying on us setting vregs for them.
7310     PendingExports.clear();
7311   } else {
7312     DAG.setRoot(Result.second);
7313   }
7314 
7315   if (EHPadBB) {
7316     // Insert a label at the end of the invoke call to mark the try range.  This
7317     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7318     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7319     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7320 
7321     // Inform MachineModuleInfo of range.
7322     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7323     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7324     // actually use outlined funclets and their LSDA info style.
7325     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7326       assert(CLI.CB);
7327       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7328       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7329     } else if (!isScopedEHPersonality(Pers)) {
7330       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7331     }
7332   }
7333 
7334   return Result;
7335 }
7336 
7337 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7338                                       bool isTailCall,
7339                                       const BasicBlock *EHPadBB) {
7340   auto &DL = DAG.getDataLayout();
7341   FunctionType *FTy = CB.getFunctionType();
7342   Type *RetTy = CB.getType();
7343 
7344   TargetLowering::ArgListTy Args;
7345   Args.reserve(CB.arg_size());
7346 
7347   const Value *SwiftErrorVal = nullptr;
7348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7349 
7350   if (isTailCall) {
7351     // Avoid emitting tail calls in functions with the disable-tail-calls
7352     // attribute.
7353     auto *Caller = CB.getParent()->getParent();
7354     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7355         "true")
7356       isTailCall = false;
7357 
7358     // We can't tail call inside a function with a swifterror argument. Lowering
7359     // does not support this yet. It would have to move into the swifterror
7360     // register before the call.
7361     if (TLI.supportSwiftError() &&
7362         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7363       isTailCall = false;
7364   }
7365 
7366   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7367     TargetLowering::ArgListEntry Entry;
7368     const Value *V = *I;
7369 
7370     // Skip empty types
7371     if (V->getType()->isEmptyTy())
7372       continue;
7373 
7374     SDValue ArgNode = getValue(V);
7375     Entry.Node = ArgNode; Entry.Ty = V->getType();
7376 
7377     Entry.setAttributes(&CB, I - CB.arg_begin());
7378 
7379     // Use swifterror virtual register as input to the call.
7380     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7381       SwiftErrorVal = V;
7382       // We find the virtual register for the actual swifterror argument.
7383       // Instead of using the Value, we use the virtual register instead.
7384       Entry.Node =
7385           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7386                           EVT(TLI.getPointerTy(DL)));
7387     }
7388 
7389     Args.push_back(Entry);
7390 
7391     // If we have an explicit sret argument that is an Instruction, (i.e., it
7392     // might point to function-local memory), we can't meaningfully tail-call.
7393     if (Entry.IsSRet && isa<Instruction>(V))
7394       isTailCall = false;
7395   }
7396 
7397   // If call site has a cfguardtarget operand bundle, create and add an
7398   // additional ArgListEntry.
7399   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7400     TargetLowering::ArgListEntry Entry;
7401     Value *V = Bundle->Inputs[0];
7402     SDValue ArgNode = getValue(V);
7403     Entry.Node = ArgNode;
7404     Entry.Ty = V->getType();
7405     Entry.IsCFGuardTarget = true;
7406     Args.push_back(Entry);
7407   }
7408 
7409   // Check if target-independent constraints permit a tail call here.
7410   // Target-dependent constraints are checked within TLI->LowerCallTo.
7411   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7412     isTailCall = false;
7413 
7414   // Disable tail calls if there is an swifterror argument. Targets have not
7415   // been updated to support tail calls.
7416   if (TLI.supportSwiftError() && SwiftErrorVal)
7417     isTailCall = false;
7418 
7419   TargetLowering::CallLoweringInfo CLI(DAG);
7420   CLI.setDebugLoc(getCurSDLoc())
7421       .setChain(getRoot())
7422       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7423       .setTailCall(isTailCall)
7424       .setConvergent(CB.isConvergent())
7425       .setIsPreallocated(
7426           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7427   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7428 
7429   if (Result.first.getNode()) {
7430     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7431     setValue(&CB, Result.first);
7432   }
7433 
7434   // The last element of CLI.InVals has the SDValue for swifterror return.
7435   // Here we copy it to a virtual register and update SwiftErrorMap for
7436   // book-keeping.
7437   if (SwiftErrorVal && TLI.supportSwiftError()) {
7438     // Get the last element of InVals.
7439     SDValue Src = CLI.InVals.back();
7440     Register VReg =
7441         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7442     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7443     DAG.setRoot(CopyNode);
7444   }
7445 }
7446 
7447 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7448                              SelectionDAGBuilder &Builder) {
7449   // Check to see if this load can be trivially constant folded, e.g. if the
7450   // input is from a string literal.
7451   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7452     // Cast pointer to the type we really want to load.
7453     Type *LoadTy =
7454         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7455     if (LoadVT.isVector())
7456       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7457 
7458     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7459                                          PointerType::getUnqual(LoadTy));
7460 
7461     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7462             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7463       return Builder.getValue(LoadCst);
7464   }
7465 
7466   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7467   // still constant memory, the input chain can be the entry node.
7468   SDValue Root;
7469   bool ConstantMemory = false;
7470 
7471   // Do not serialize (non-volatile) loads of constant memory with anything.
7472   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7473     Root = Builder.DAG.getEntryNode();
7474     ConstantMemory = true;
7475   } else {
7476     // Do not serialize non-volatile loads against each other.
7477     Root = Builder.DAG.getRoot();
7478   }
7479 
7480   SDValue Ptr = Builder.getValue(PtrVal);
7481   SDValue LoadVal =
7482       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7483                           MachinePointerInfo(PtrVal), Align(1));
7484 
7485   if (!ConstantMemory)
7486     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7487   return LoadVal;
7488 }
7489 
7490 /// Record the value for an instruction that produces an integer result,
7491 /// converting the type where necessary.
7492 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7493                                                   SDValue Value,
7494                                                   bool IsSigned) {
7495   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7496                                                     I.getType(), true);
7497   if (IsSigned)
7498     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7499   else
7500     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7501   setValue(&I, Value);
7502 }
7503 
7504 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7505 /// true and lower it. Otherwise return false, and it will be lowered like a
7506 /// normal call.
7507 /// The caller already checked that \p I calls the appropriate LibFunc with a
7508 /// correct prototype.
7509 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7510   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7511   const Value *Size = I.getArgOperand(2);
7512   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7513   if (CSize && CSize->getZExtValue() == 0) {
7514     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7515                                                           I.getType(), true);
7516     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7517     return true;
7518   }
7519 
7520   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7521   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7522       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7523       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7524   if (Res.first.getNode()) {
7525     processIntegerCallValue(I, Res.first, true);
7526     PendingLoads.push_back(Res.second);
7527     return true;
7528   }
7529 
7530   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7531   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7532   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7533     return false;
7534 
7535   // If the target has a fast compare for the given size, it will return a
7536   // preferred load type for that size. Require that the load VT is legal and
7537   // that the target supports unaligned loads of that type. Otherwise, return
7538   // INVALID.
7539   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7540     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7541     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7542     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7543       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7544       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7545       // TODO: Check alignment of src and dest ptrs.
7546       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7547       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7548       if (!TLI.isTypeLegal(LVT) ||
7549           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7550           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7551         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7552     }
7553 
7554     return LVT;
7555   };
7556 
7557   // This turns into unaligned loads. We only do this if the target natively
7558   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7559   // we'll only produce a small number of byte loads.
7560   MVT LoadVT;
7561   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7562   switch (NumBitsToCompare) {
7563   default:
7564     return false;
7565   case 16:
7566     LoadVT = MVT::i16;
7567     break;
7568   case 32:
7569     LoadVT = MVT::i32;
7570     break;
7571   case 64:
7572   case 128:
7573   case 256:
7574     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7575     break;
7576   }
7577 
7578   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7579     return false;
7580 
7581   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7582   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7583 
7584   // Bitcast to a wide integer type if the loads are vectors.
7585   if (LoadVT.isVector()) {
7586     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7587     LoadL = DAG.getBitcast(CmpVT, LoadL);
7588     LoadR = DAG.getBitcast(CmpVT, LoadR);
7589   }
7590 
7591   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7592   processIntegerCallValue(I, Cmp, false);
7593   return true;
7594 }
7595 
7596 /// See if we can lower a memchr call into an optimized form. If so, return
7597 /// true and lower it. Otherwise return false, and it will be lowered like a
7598 /// normal call.
7599 /// The caller already checked that \p I calls the appropriate LibFunc with a
7600 /// correct prototype.
7601 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7602   const Value *Src = I.getArgOperand(0);
7603   const Value *Char = I.getArgOperand(1);
7604   const Value *Length = I.getArgOperand(2);
7605 
7606   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7607   std::pair<SDValue, SDValue> Res =
7608     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7609                                 getValue(Src), getValue(Char), getValue(Length),
7610                                 MachinePointerInfo(Src));
7611   if (Res.first.getNode()) {
7612     setValue(&I, Res.first);
7613     PendingLoads.push_back(Res.second);
7614     return true;
7615   }
7616 
7617   return false;
7618 }
7619 
7620 /// See if we can lower a mempcpy call into an optimized form. If so, return
7621 /// true and lower it. Otherwise return false, and it will be lowered like a
7622 /// normal call.
7623 /// The caller already checked that \p I calls the appropriate LibFunc with a
7624 /// correct prototype.
7625 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7626   SDValue Dst = getValue(I.getArgOperand(0));
7627   SDValue Src = getValue(I.getArgOperand(1));
7628   SDValue Size = getValue(I.getArgOperand(2));
7629 
7630   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7631   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7632   // DAG::getMemcpy needs Alignment to be defined.
7633   Align Alignment = std::min(DstAlign, SrcAlign);
7634 
7635   bool isVol = false;
7636   SDLoc sdl = getCurSDLoc();
7637 
7638   // In the mempcpy context we need to pass in a false value for isTailCall
7639   // because the return pointer needs to be adjusted by the size of
7640   // the copied memory.
7641   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7642   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7643                              /*isTailCall=*/false,
7644                              MachinePointerInfo(I.getArgOperand(0)),
7645                              MachinePointerInfo(I.getArgOperand(1)));
7646   assert(MC.getNode() != nullptr &&
7647          "** memcpy should not be lowered as TailCall in mempcpy context **");
7648   DAG.setRoot(MC);
7649 
7650   // Check if Size needs to be truncated or extended.
7651   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7652 
7653   // Adjust return pointer to point just past the last dst byte.
7654   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7655                                     Dst, Size);
7656   setValue(&I, DstPlusSize);
7657   return true;
7658 }
7659 
7660 /// See if we can lower a strcpy call into an optimized form.  If so, return
7661 /// true and lower it, otherwise return false and it will be lowered like a
7662 /// normal call.
7663 /// The caller already checked that \p I calls the appropriate LibFunc with a
7664 /// correct prototype.
7665 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7666   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7667 
7668   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7669   std::pair<SDValue, SDValue> Res =
7670     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7671                                 getValue(Arg0), getValue(Arg1),
7672                                 MachinePointerInfo(Arg0),
7673                                 MachinePointerInfo(Arg1), isStpcpy);
7674   if (Res.first.getNode()) {
7675     setValue(&I, Res.first);
7676     DAG.setRoot(Res.second);
7677     return true;
7678   }
7679 
7680   return false;
7681 }
7682 
7683 /// See if we can lower a strcmp call into an optimized form.  If so, return
7684 /// true and lower it, otherwise return false and it will be lowered like a
7685 /// normal call.
7686 /// The caller already checked that \p I calls the appropriate LibFunc with a
7687 /// correct prototype.
7688 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7689   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7690 
7691   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7692   std::pair<SDValue, SDValue> Res =
7693     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7694                                 getValue(Arg0), getValue(Arg1),
7695                                 MachinePointerInfo(Arg0),
7696                                 MachinePointerInfo(Arg1));
7697   if (Res.first.getNode()) {
7698     processIntegerCallValue(I, Res.first, true);
7699     PendingLoads.push_back(Res.second);
7700     return true;
7701   }
7702 
7703   return false;
7704 }
7705 
7706 /// See if we can lower a strlen call into an optimized form.  If so, return
7707 /// true and lower it, otherwise return false and it will be lowered like a
7708 /// normal call.
7709 /// The caller already checked that \p I calls the appropriate LibFunc with a
7710 /// correct prototype.
7711 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7712   const Value *Arg0 = I.getArgOperand(0);
7713 
7714   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7715   std::pair<SDValue, SDValue> Res =
7716     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7717                                 getValue(Arg0), MachinePointerInfo(Arg0));
7718   if (Res.first.getNode()) {
7719     processIntegerCallValue(I, Res.first, false);
7720     PendingLoads.push_back(Res.second);
7721     return true;
7722   }
7723 
7724   return false;
7725 }
7726 
7727 /// See if we can lower a strnlen call into an optimized form.  If so, return
7728 /// true and lower it, otherwise return false and it will be lowered like a
7729 /// normal call.
7730 /// The caller already checked that \p I calls the appropriate LibFunc with a
7731 /// correct prototype.
7732 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7733   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7734 
7735   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7736   std::pair<SDValue, SDValue> Res =
7737     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7738                                  getValue(Arg0), getValue(Arg1),
7739                                  MachinePointerInfo(Arg0));
7740   if (Res.first.getNode()) {
7741     processIntegerCallValue(I, Res.first, false);
7742     PendingLoads.push_back(Res.second);
7743     return true;
7744   }
7745 
7746   return false;
7747 }
7748 
7749 /// See if we can lower a unary floating-point operation into an SDNode with
7750 /// the specified Opcode.  If so, return true and lower it, otherwise return
7751 /// false and it will be lowered like a normal call.
7752 /// The caller already checked that \p I calls the appropriate LibFunc with a
7753 /// correct prototype.
7754 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7755                                               unsigned Opcode) {
7756   // We already checked this call's prototype; verify it doesn't modify errno.
7757   if (!I.onlyReadsMemory())
7758     return false;
7759 
7760   SDNodeFlags Flags;
7761   Flags.copyFMF(cast<FPMathOperator>(I));
7762 
7763   SDValue Tmp = getValue(I.getArgOperand(0));
7764   setValue(&I,
7765            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7766   return true;
7767 }
7768 
7769 /// See if we can lower a binary floating-point operation into an SDNode with
7770 /// the specified Opcode. If so, return true and lower it. Otherwise return
7771 /// false, and it will be lowered like a normal call.
7772 /// The caller already checked that \p I calls the appropriate LibFunc with a
7773 /// correct prototype.
7774 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7775                                                unsigned Opcode) {
7776   // We already checked this call's prototype; verify it doesn't modify errno.
7777   if (!I.onlyReadsMemory())
7778     return false;
7779 
7780   SDNodeFlags Flags;
7781   Flags.copyFMF(cast<FPMathOperator>(I));
7782 
7783   SDValue Tmp0 = getValue(I.getArgOperand(0));
7784   SDValue Tmp1 = getValue(I.getArgOperand(1));
7785   EVT VT = Tmp0.getValueType();
7786   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7787   return true;
7788 }
7789 
7790 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7791   // Handle inline assembly differently.
7792   if (I.isInlineAsm()) {
7793     visitInlineAsm(I);
7794     return;
7795   }
7796 
7797   if (Function *F = I.getCalledFunction()) {
7798     if (F->isDeclaration()) {
7799       // Is this an LLVM intrinsic or a target-specific intrinsic?
7800       unsigned IID = F->getIntrinsicID();
7801       if (!IID)
7802         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7803           IID = II->getIntrinsicID(F);
7804 
7805       if (IID) {
7806         visitIntrinsicCall(I, IID);
7807         return;
7808       }
7809     }
7810 
7811     // Check for well-known libc/libm calls.  If the function is internal, it
7812     // can't be a library call.  Don't do the check if marked as nobuiltin for
7813     // some reason or the call site requires strict floating point semantics.
7814     LibFunc Func;
7815     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7816         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7817         LibInfo->hasOptimizedCodeGen(Func)) {
7818       switch (Func) {
7819       default: break;
7820       case LibFunc_bcmp:
7821         if (visitMemCmpBCmpCall(I))
7822           return;
7823         break;
7824       case LibFunc_copysign:
7825       case LibFunc_copysignf:
7826       case LibFunc_copysignl:
7827         // We already checked this call's prototype; verify it doesn't modify
7828         // errno.
7829         if (I.onlyReadsMemory()) {
7830           SDValue LHS = getValue(I.getArgOperand(0));
7831           SDValue RHS = getValue(I.getArgOperand(1));
7832           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7833                                    LHS.getValueType(), LHS, RHS));
7834           return;
7835         }
7836         break;
7837       case LibFunc_fabs:
7838       case LibFunc_fabsf:
7839       case LibFunc_fabsl:
7840         if (visitUnaryFloatCall(I, ISD::FABS))
7841           return;
7842         break;
7843       case LibFunc_fmin:
7844       case LibFunc_fminf:
7845       case LibFunc_fminl:
7846         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7847           return;
7848         break;
7849       case LibFunc_fmax:
7850       case LibFunc_fmaxf:
7851       case LibFunc_fmaxl:
7852         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7853           return;
7854         break;
7855       case LibFunc_sin:
7856       case LibFunc_sinf:
7857       case LibFunc_sinl:
7858         if (visitUnaryFloatCall(I, ISD::FSIN))
7859           return;
7860         break;
7861       case LibFunc_cos:
7862       case LibFunc_cosf:
7863       case LibFunc_cosl:
7864         if (visitUnaryFloatCall(I, ISD::FCOS))
7865           return;
7866         break;
7867       case LibFunc_sqrt:
7868       case LibFunc_sqrtf:
7869       case LibFunc_sqrtl:
7870       case LibFunc_sqrt_finite:
7871       case LibFunc_sqrtf_finite:
7872       case LibFunc_sqrtl_finite:
7873         if (visitUnaryFloatCall(I, ISD::FSQRT))
7874           return;
7875         break;
7876       case LibFunc_floor:
7877       case LibFunc_floorf:
7878       case LibFunc_floorl:
7879         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7880           return;
7881         break;
7882       case LibFunc_nearbyint:
7883       case LibFunc_nearbyintf:
7884       case LibFunc_nearbyintl:
7885         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7886           return;
7887         break;
7888       case LibFunc_ceil:
7889       case LibFunc_ceilf:
7890       case LibFunc_ceill:
7891         if (visitUnaryFloatCall(I, ISD::FCEIL))
7892           return;
7893         break;
7894       case LibFunc_rint:
7895       case LibFunc_rintf:
7896       case LibFunc_rintl:
7897         if (visitUnaryFloatCall(I, ISD::FRINT))
7898           return;
7899         break;
7900       case LibFunc_round:
7901       case LibFunc_roundf:
7902       case LibFunc_roundl:
7903         if (visitUnaryFloatCall(I, ISD::FROUND))
7904           return;
7905         break;
7906       case LibFunc_trunc:
7907       case LibFunc_truncf:
7908       case LibFunc_truncl:
7909         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7910           return;
7911         break;
7912       case LibFunc_log2:
7913       case LibFunc_log2f:
7914       case LibFunc_log2l:
7915         if (visitUnaryFloatCall(I, ISD::FLOG2))
7916           return;
7917         break;
7918       case LibFunc_exp2:
7919       case LibFunc_exp2f:
7920       case LibFunc_exp2l:
7921         if (visitUnaryFloatCall(I, ISD::FEXP2))
7922           return;
7923         break;
7924       case LibFunc_memcmp:
7925         if (visitMemCmpBCmpCall(I))
7926           return;
7927         break;
7928       case LibFunc_mempcpy:
7929         if (visitMemPCpyCall(I))
7930           return;
7931         break;
7932       case LibFunc_memchr:
7933         if (visitMemChrCall(I))
7934           return;
7935         break;
7936       case LibFunc_strcpy:
7937         if (visitStrCpyCall(I, false))
7938           return;
7939         break;
7940       case LibFunc_stpcpy:
7941         if (visitStrCpyCall(I, true))
7942           return;
7943         break;
7944       case LibFunc_strcmp:
7945         if (visitStrCmpCall(I))
7946           return;
7947         break;
7948       case LibFunc_strlen:
7949         if (visitStrLenCall(I))
7950           return;
7951         break;
7952       case LibFunc_strnlen:
7953         if (visitStrNLenCall(I))
7954           return;
7955         break;
7956       }
7957     }
7958   }
7959 
7960   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7961   // have to do anything here to lower funclet bundles.
7962   // CFGuardTarget bundles are lowered in LowerCallTo.
7963   assert(!I.hasOperandBundlesOtherThan(
7964              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7965               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
7966               LLVMContext::OB_clang_arc_attachedcall}) &&
7967          "Cannot lower calls with arbitrary operand bundles!");
7968 
7969   SDValue Callee = getValue(I.getCalledOperand());
7970 
7971   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7972     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7973   else
7974     // Check if we can potentially perform a tail call. More detailed checking
7975     // is be done within LowerCallTo, after more information about the call is
7976     // known.
7977     LowerCallTo(I, Callee, I.isTailCall());
7978 }
7979 
7980 namespace {
7981 
7982 /// AsmOperandInfo - This contains information for each constraint that we are
7983 /// lowering.
7984 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7985 public:
7986   /// CallOperand - If this is the result output operand or a clobber
7987   /// this is null, otherwise it is the incoming operand to the CallInst.
7988   /// This gets modified as the asm is processed.
7989   SDValue CallOperand;
7990 
7991   /// AssignedRegs - If this is a register or register class operand, this
7992   /// contains the set of register corresponding to the operand.
7993   RegsForValue AssignedRegs;
7994 
7995   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7996     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7997   }
7998 
7999   /// Whether or not this operand accesses memory
8000   bool hasMemory(const TargetLowering &TLI) const {
8001     // Indirect operand accesses access memory.
8002     if (isIndirect)
8003       return true;
8004 
8005     for (const auto &Code : Codes)
8006       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8007         return true;
8008 
8009     return false;
8010   }
8011 
8012   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8013   /// corresponds to.  If there is no Value* for this operand, it returns
8014   /// MVT::Other.
8015   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8016                            const DataLayout &DL) const {
8017     if (!CallOperandVal) return MVT::Other;
8018 
8019     if (isa<BasicBlock>(CallOperandVal))
8020       return TLI.getProgramPointerTy(DL);
8021 
8022     llvm::Type *OpTy = CallOperandVal->getType();
8023 
8024     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8025     // If this is an indirect operand, the operand is a pointer to the
8026     // accessed type.
8027     if (isIndirect) {
8028       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8029       if (!PtrTy)
8030         report_fatal_error("Indirect operand for inline asm not a pointer!");
8031       OpTy = PtrTy->getElementType();
8032     }
8033 
8034     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8035     if (StructType *STy = dyn_cast<StructType>(OpTy))
8036       if (STy->getNumElements() == 1)
8037         OpTy = STy->getElementType(0);
8038 
8039     // If OpTy is not a single value, it may be a struct/union that we
8040     // can tile with integers.
8041     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8042       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8043       switch (BitSize) {
8044       default: break;
8045       case 1:
8046       case 8:
8047       case 16:
8048       case 32:
8049       case 64:
8050       case 128:
8051         OpTy = IntegerType::get(Context, BitSize);
8052         break;
8053       }
8054     }
8055 
8056     return TLI.getValueType(DL, OpTy, true);
8057   }
8058 };
8059 
8060 
8061 } // end anonymous namespace
8062 
8063 /// Make sure that the output operand \p OpInfo and its corresponding input
8064 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8065 /// out).
8066 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8067                                SDISelAsmOperandInfo &MatchingOpInfo,
8068                                SelectionDAG &DAG) {
8069   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8070     return;
8071 
8072   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8073   const auto &TLI = DAG.getTargetLoweringInfo();
8074 
8075   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8076       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8077                                        OpInfo.ConstraintVT);
8078   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8079       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8080                                        MatchingOpInfo.ConstraintVT);
8081   if ((OpInfo.ConstraintVT.isInteger() !=
8082        MatchingOpInfo.ConstraintVT.isInteger()) ||
8083       (MatchRC.second != InputRC.second)) {
8084     // FIXME: error out in a more elegant fashion
8085     report_fatal_error("Unsupported asm: input constraint"
8086                        " with a matching output constraint of"
8087                        " incompatible type!");
8088   }
8089   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8090 }
8091 
8092 /// Get a direct memory input to behave well as an indirect operand.
8093 /// This may introduce stores, hence the need for a \p Chain.
8094 /// \return The (possibly updated) chain.
8095 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8096                                         SDISelAsmOperandInfo &OpInfo,
8097                                         SelectionDAG &DAG) {
8098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8099 
8100   // If we don't have an indirect input, put it in the constpool if we can,
8101   // otherwise spill it to a stack slot.
8102   // TODO: This isn't quite right. We need to handle these according to
8103   // the addressing mode that the constraint wants. Also, this may take
8104   // an additional register for the computation and we don't want that
8105   // either.
8106 
8107   // If the operand is a float, integer, or vector constant, spill to a
8108   // constant pool entry to get its address.
8109   const Value *OpVal = OpInfo.CallOperandVal;
8110   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8111       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8112     OpInfo.CallOperand = DAG.getConstantPool(
8113         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8114     return Chain;
8115   }
8116 
8117   // Otherwise, create a stack slot and emit a store to it before the asm.
8118   Type *Ty = OpVal->getType();
8119   auto &DL = DAG.getDataLayout();
8120   uint64_t TySize = DL.getTypeAllocSize(Ty);
8121   MachineFunction &MF = DAG.getMachineFunction();
8122   int SSFI = MF.getFrameInfo().CreateStackObject(
8123       TySize, DL.getPrefTypeAlign(Ty), false);
8124   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8125   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8126                             MachinePointerInfo::getFixedStack(MF, SSFI),
8127                             TLI.getMemValueType(DL, Ty));
8128   OpInfo.CallOperand = StackSlot;
8129 
8130   return Chain;
8131 }
8132 
8133 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8134 /// specified operand.  We prefer to assign virtual registers, to allow the
8135 /// register allocator to handle the assignment process.  However, if the asm
8136 /// uses features that we can't model on machineinstrs, we have SDISel do the
8137 /// allocation.  This produces generally horrible, but correct, code.
8138 ///
8139 ///   OpInfo describes the operand
8140 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8141 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8142                                  SDISelAsmOperandInfo &OpInfo,
8143                                  SDISelAsmOperandInfo &RefOpInfo) {
8144   LLVMContext &Context = *DAG.getContext();
8145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8146 
8147   MachineFunction &MF = DAG.getMachineFunction();
8148   SmallVector<unsigned, 4> Regs;
8149   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8150 
8151   // No work to do for memory operations.
8152   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8153     return;
8154 
8155   // If this is a constraint for a single physreg, or a constraint for a
8156   // register class, find it.
8157   unsigned AssignedReg;
8158   const TargetRegisterClass *RC;
8159   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8160       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8161   // RC is unset only on failure. Return immediately.
8162   if (!RC)
8163     return;
8164 
8165   // Get the actual register value type.  This is important, because the user
8166   // may have asked for (e.g.) the AX register in i32 type.  We need to
8167   // remember that AX is actually i16 to get the right extension.
8168   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8169 
8170   if (OpInfo.ConstraintVT != MVT::Other) {
8171     // If this is an FP operand in an integer register (or visa versa), or more
8172     // generally if the operand value disagrees with the register class we plan
8173     // to stick it in, fix the operand type.
8174     //
8175     // If this is an input value, the bitcast to the new type is done now.
8176     // Bitcast for output value is done at the end of visitInlineAsm().
8177     if ((OpInfo.Type == InlineAsm::isOutput ||
8178          OpInfo.Type == InlineAsm::isInput) &&
8179         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8180       // Try to convert to the first EVT that the reg class contains.  If the
8181       // types are identical size, use a bitcast to convert (e.g. two differing
8182       // vector types).  Note: output bitcast is done at the end of
8183       // visitInlineAsm().
8184       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8185         // Exclude indirect inputs while they are unsupported because the code
8186         // to perform the load is missing and thus OpInfo.CallOperand still
8187         // refers to the input address rather than the pointed-to value.
8188         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8189           OpInfo.CallOperand =
8190               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8191         OpInfo.ConstraintVT = RegVT;
8192         // If the operand is an FP value and we want it in integer registers,
8193         // use the corresponding integer type. This turns an f64 value into
8194         // i64, which can be passed with two i32 values on a 32-bit machine.
8195       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8196         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8197         if (OpInfo.Type == InlineAsm::isInput)
8198           OpInfo.CallOperand =
8199               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8200         OpInfo.ConstraintVT = VT;
8201       }
8202     }
8203   }
8204 
8205   // No need to allocate a matching input constraint since the constraint it's
8206   // matching to has already been allocated.
8207   if (OpInfo.isMatchingInputConstraint())
8208     return;
8209 
8210   EVT ValueVT = OpInfo.ConstraintVT;
8211   if (OpInfo.ConstraintVT == MVT::Other)
8212     ValueVT = RegVT;
8213 
8214   // Initialize NumRegs.
8215   unsigned NumRegs = 1;
8216   if (OpInfo.ConstraintVT != MVT::Other)
8217     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8218 
8219   // If this is a constraint for a specific physical register, like {r17},
8220   // assign it now.
8221 
8222   // If this associated to a specific register, initialize iterator to correct
8223   // place. If virtual, make sure we have enough registers
8224 
8225   // Initialize iterator if necessary
8226   TargetRegisterClass::iterator I = RC->begin();
8227   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8228 
8229   // Do not check for single registers.
8230   if (AssignedReg) {
8231       for (; *I != AssignedReg; ++I)
8232         assert(I != RC->end() && "AssignedReg should be member of RC");
8233   }
8234 
8235   for (; NumRegs; --NumRegs, ++I) {
8236     assert(I != RC->end() && "Ran out of registers to allocate!");
8237     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8238     Regs.push_back(R);
8239   }
8240 
8241   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8242 }
8243 
8244 static unsigned
8245 findMatchingInlineAsmOperand(unsigned OperandNo,
8246                              const std::vector<SDValue> &AsmNodeOperands) {
8247   // Scan until we find the definition we already emitted of this operand.
8248   unsigned CurOp = InlineAsm::Op_FirstOperand;
8249   for (; OperandNo; --OperandNo) {
8250     // Advance to the next operand.
8251     unsigned OpFlag =
8252         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8253     assert((InlineAsm::isRegDefKind(OpFlag) ||
8254             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8255             InlineAsm::isMemKind(OpFlag)) &&
8256            "Skipped past definitions?");
8257     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8258   }
8259   return CurOp;
8260 }
8261 
8262 namespace {
8263 
8264 class ExtraFlags {
8265   unsigned Flags = 0;
8266 
8267 public:
8268   explicit ExtraFlags(const CallBase &Call) {
8269     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8270     if (IA->hasSideEffects())
8271       Flags |= InlineAsm::Extra_HasSideEffects;
8272     if (IA->isAlignStack())
8273       Flags |= InlineAsm::Extra_IsAlignStack;
8274     if (Call.isConvergent())
8275       Flags |= InlineAsm::Extra_IsConvergent;
8276     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8277   }
8278 
8279   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8280     // Ideally, we would only check against memory constraints.  However, the
8281     // meaning of an Other constraint can be target-specific and we can't easily
8282     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8283     // for Other constraints as well.
8284     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8285         OpInfo.ConstraintType == TargetLowering::C_Other) {
8286       if (OpInfo.Type == InlineAsm::isInput)
8287         Flags |= InlineAsm::Extra_MayLoad;
8288       else if (OpInfo.Type == InlineAsm::isOutput)
8289         Flags |= InlineAsm::Extra_MayStore;
8290       else if (OpInfo.Type == InlineAsm::isClobber)
8291         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8292     }
8293   }
8294 
8295   unsigned get() const { return Flags; }
8296 };
8297 
8298 } // end anonymous namespace
8299 
8300 /// visitInlineAsm - Handle a call to an InlineAsm object.
8301 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8302   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8303 
8304   /// ConstraintOperands - Information about all of the constraints.
8305   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8306 
8307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8308   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8309       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8310 
8311   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8312   // AsmDialect, MayLoad, MayStore).
8313   bool HasSideEffect = IA->hasSideEffects();
8314   ExtraFlags ExtraInfo(Call);
8315 
8316   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8317   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8318   unsigned NumMatchingOps = 0;
8319   for (auto &T : TargetConstraints) {
8320     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8321     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8322 
8323     // Compute the value type for each operand.
8324     if (OpInfo.Type == InlineAsm::isInput ||
8325         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8326       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8327 
8328       // Process the call argument. BasicBlocks are labels, currently appearing
8329       // only in asm's.
8330       if (isa<CallBrInst>(Call) &&
8331           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8332                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8333                         NumMatchingOps) &&
8334           (NumMatchingOps == 0 ||
8335            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8336                         NumMatchingOps))) {
8337         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8338         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8339         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8340       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8341         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8342       } else {
8343         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8344       }
8345 
8346       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8347                                            DAG.getDataLayout());
8348       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8349     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8350       // The return value of the call is this value.  As such, there is no
8351       // corresponding argument.
8352       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8353       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8354         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8355             DAG.getDataLayout(), STy->getElementType(ResNo));
8356       } else {
8357         assert(ResNo == 0 && "Asm only has one result!");
8358         OpInfo.ConstraintVT =
8359             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8360       }
8361       ++ResNo;
8362     } else {
8363       OpInfo.ConstraintVT = MVT::Other;
8364     }
8365 
8366     if (OpInfo.hasMatchingInput())
8367       ++NumMatchingOps;
8368 
8369     if (!HasSideEffect)
8370       HasSideEffect = OpInfo.hasMemory(TLI);
8371 
8372     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8373     // FIXME: Could we compute this on OpInfo rather than T?
8374 
8375     // Compute the constraint code and ConstraintType to use.
8376     TLI.ComputeConstraintToUse(T, SDValue());
8377 
8378     if (T.ConstraintType == TargetLowering::C_Immediate &&
8379         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8380       // We've delayed emitting a diagnostic like the "n" constraint because
8381       // inlining could cause an integer showing up.
8382       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8383                                           "' expects an integer constant "
8384                                           "expression");
8385 
8386     ExtraInfo.update(T);
8387   }
8388 
8389 
8390   // We won't need to flush pending loads if this asm doesn't touch
8391   // memory and is nonvolatile.
8392   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8393 
8394   bool IsCallBr = isa<CallBrInst>(Call);
8395   if (IsCallBr) {
8396     // If this is a callbr we need to flush pending exports since inlineasm_br
8397     // is a terminator. We need to do this before nodes are glued to
8398     // the inlineasm_br node.
8399     Chain = getControlRoot();
8400   }
8401 
8402   // Second pass over the constraints: compute which constraint option to use.
8403   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8404     // If this is an output operand with a matching input operand, look up the
8405     // matching input. If their types mismatch, e.g. one is an integer, the
8406     // other is floating point, or their sizes are different, flag it as an
8407     // error.
8408     if (OpInfo.hasMatchingInput()) {
8409       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8410       patchMatchingInput(OpInfo, Input, DAG);
8411     }
8412 
8413     // Compute the constraint code and ConstraintType to use.
8414     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8415 
8416     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8417         OpInfo.Type == InlineAsm::isClobber)
8418       continue;
8419 
8420     // If this is a memory input, and if the operand is not indirect, do what we
8421     // need to provide an address for the memory input.
8422     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8423         !OpInfo.isIndirect) {
8424       assert((OpInfo.isMultipleAlternative ||
8425               (OpInfo.Type == InlineAsm::isInput)) &&
8426              "Can only indirectify direct input operands!");
8427 
8428       // Memory operands really want the address of the value.
8429       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8430 
8431       // There is no longer a Value* corresponding to this operand.
8432       OpInfo.CallOperandVal = nullptr;
8433 
8434       // It is now an indirect operand.
8435       OpInfo.isIndirect = true;
8436     }
8437 
8438   }
8439 
8440   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8441   std::vector<SDValue> AsmNodeOperands;
8442   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8443   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8444       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8445 
8446   // If we have a !srcloc metadata node associated with it, we want to attach
8447   // this to the ultimately generated inline asm machineinstr.  To do this, we
8448   // pass in the third operand as this (potentially null) inline asm MDNode.
8449   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8450   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8451 
8452   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8453   // bits as operand 3.
8454   AsmNodeOperands.push_back(DAG.getTargetConstant(
8455       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8456 
8457   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8458   // this, assign virtual and physical registers for inputs and otput.
8459   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8460     // Assign Registers.
8461     SDISelAsmOperandInfo &RefOpInfo =
8462         OpInfo.isMatchingInputConstraint()
8463             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8464             : OpInfo;
8465     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8466 
8467     auto DetectWriteToReservedRegister = [&]() {
8468       const MachineFunction &MF = DAG.getMachineFunction();
8469       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8470       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8471         if (Register::isPhysicalRegister(Reg) &&
8472             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8473           const char *RegName = TRI.getName(Reg);
8474           emitInlineAsmError(Call, "write to reserved register '" +
8475                                        Twine(RegName) + "'");
8476           return true;
8477         }
8478       }
8479       return false;
8480     };
8481 
8482     switch (OpInfo.Type) {
8483     case InlineAsm::isOutput:
8484       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8485         unsigned ConstraintID =
8486             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8487         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8488                "Failed to convert memory constraint code to constraint id.");
8489 
8490         // Add information to the INLINEASM node to know about this output.
8491         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8492         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8493         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8494                                                         MVT::i32));
8495         AsmNodeOperands.push_back(OpInfo.CallOperand);
8496       } else {
8497         // Otherwise, this outputs to a register (directly for C_Register /
8498         // C_RegisterClass, and a target-defined fashion for
8499         // C_Immediate/C_Other). Find a register that we can use.
8500         if (OpInfo.AssignedRegs.Regs.empty()) {
8501           emitInlineAsmError(
8502               Call, "couldn't allocate output register for constraint '" +
8503                         Twine(OpInfo.ConstraintCode) + "'");
8504           return;
8505         }
8506 
8507         if (DetectWriteToReservedRegister())
8508           return;
8509 
8510         // Add information to the INLINEASM node to know that this register is
8511         // set.
8512         OpInfo.AssignedRegs.AddInlineAsmOperands(
8513             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8514                                   : InlineAsm::Kind_RegDef,
8515             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8516       }
8517       break;
8518 
8519     case InlineAsm::isInput: {
8520       SDValue InOperandVal = OpInfo.CallOperand;
8521 
8522       if (OpInfo.isMatchingInputConstraint()) {
8523         // If this is required to match an output register we have already set,
8524         // just use its register.
8525         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8526                                                   AsmNodeOperands);
8527         unsigned OpFlag =
8528           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8529         if (InlineAsm::isRegDefKind(OpFlag) ||
8530             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8531           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8532           if (OpInfo.isIndirect) {
8533             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8534             emitInlineAsmError(Call, "inline asm not supported yet: "
8535                                      "don't know how to handle tied "
8536                                      "indirect register inputs");
8537             return;
8538           }
8539 
8540           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8541           SmallVector<unsigned, 4> Regs;
8542 
8543           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8544             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8545             MachineRegisterInfo &RegInfo =
8546                 DAG.getMachineFunction().getRegInfo();
8547             for (unsigned i = 0; i != NumRegs; ++i)
8548               Regs.push_back(RegInfo.createVirtualRegister(RC));
8549           } else {
8550             emitInlineAsmError(Call,
8551                                "inline asm error: This value type register "
8552                                "class is not natively supported!");
8553             return;
8554           }
8555 
8556           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8557 
8558           SDLoc dl = getCurSDLoc();
8559           // Use the produced MatchedRegs object to
8560           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8561           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8562                                            true, OpInfo.getMatchedOperand(), dl,
8563                                            DAG, AsmNodeOperands);
8564           break;
8565         }
8566 
8567         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8568         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8569                "Unexpected number of operands");
8570         // Add information to the INLINEASM node to know about this input.
8571         // See InlineAsm.h isUseOperandTiedToDef.
8572         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8573         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8574                                                     OpInfo.getMatchedOperand());
8575         AsmNodeOperands.push_back(DAG.getTargetConstant(
8576             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8577         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8578         break;
8579       }
8580 
8581       // Treat indirect 'X' constraint as memory.
8582       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8583           OpInfo.isIndirect)
8584         OpInfo.ConstraintType = TargetLowering::C_Memory;
8585 
8586       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8587           OpInfo.ConstraintType == TargetLowering::C_Other) {
8588         std::vector<SDValue> Ops;
8589         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8590                                           Ops, DAG);
8591         if (Ops.empty()) {
8592           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8593             if (isa<ConstantSDNode>(InOperandVal)) {
8594               emitInlineAsmError(Call, "value out of range for constraint '" +
8595                                            Twine(OpInfo.ConstraintCode) + "'");
8596               return;
8597             }
8598 
8599           emitInlineAsmError(Call,
8600                              "invalid operand for inline asm constraint '" +
8601                                  Twine(OpInfo.ConstraintCode) + "'");
8602           return;
8603         }
8604 
8605         // Add information to the INLINEASM node to know about this input.
8606         unsigned ResOpType =
8607           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8608         AsmNodeOperands.push_back(DAG.getTargetConstant(
8609             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8610         llvm::append_range(AsmNodeOperands, Ops);
8611         break;
8612       }
8613 
8614       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8615         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8616         assert(InOperandVal.getValueType() ==
8617                    TLI.getPointerTy(DAG.getDataLayout()) &&
8618                "Memory operands expect pointer values");
8619 
8620         unsigned ConstraintID =
8621             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8622         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8623                "Failed to convert memory constraint code to constraint id.");
8624 
8625         // Add information to the INLINEASM node to know about this input.
8626         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8627         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8628         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8629                                                         getCurSDLoc(),
8630                                                         MVT::i32));
8631         AsmNodeOperands.push_back(InOperandVal);
8632         break;
8633       }
8634 
8635       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8636               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8637              "Unknown constraint type!");
8638 
8639       // TODO: Support this.
8640       if (OpInfo.isIndirect) {
8641         emitInlineAsmError(
8642             Call, "Don't know how to handle indirect register inputs yet "
8643                   "for constraint '" +
8644                       Twine(OpInfo.ConstraintCode) + "'");
8645         return;
8646       }
8647 
8648       // Copy the input into the appropriate registers.
8649       if (OpInfo.AssignedRegs.Regs.empty()) {
8650         emitInlineAsmError(Call,
8651                            "couldn't allocate input reg for constraint '" +
8652                                Twine(OpInfo.ConstraintCode) + "'");
8653         return;
8654       }
8655 
8656       if (DetectWriteToReservedRegister())
8657         return;
8658 
8659       SDLoc dl = getCurSDLoc();
8660 
8661       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8662                                         &Call);
8663 
8664       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8665                                                dl, DAG, AsmNodeOperands);
8666       break;
8667     }
8668     case InlineAsm::isClobber:
8669       // Add the clobbered value to the operand list, so that the register
8670       // allocator is aware that the physreg got clobbered.
8671       if (!OpInfo.AssignedRegs.Regs.empty())
8672         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8673                                                  false, 0, getCurSDLoc(), DAG,
8674                                                  AsmNodeOperands);
8675       break;
8676     }
8677   }
8678 
8679   // Finish up input operands.  Set the input chain and add the flag last.
8680   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8681   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8682 
8683   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8684   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8685                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8686   Flag = Chain.getValue(1);
8687 
8688   // Do additional work to generate outputs.
8689 
8690   SmallVector<EVT, 1> ResultVTs;
8691   SmallVector<SDValue, 1> ResultValues;
8692   SmallVector<SDValue, 8> OutChains;
8693 
8694   llvm::Type *CallResultType = Call.getType();
8695   ArrayRef<Type *> ResultTypes;
8696   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8697     ResultTypes = StructResult->elements();
8698   else if (!CallResultType->isVoidTy())
8699     ResultTypes = makeArrayRef(CallResultType);
8700 
8701   auto CurResultType = ResultTypes.begin();
8702   auto handleRegAssign = [&](SDValue V) {
8703     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8704     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8705     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8706     ++CurResultType;
8707     // If the type of the inline asm call site return value is different but has
8708     // same size as the type of the asm output bitcast it.  One example of this
8709     // is for vectors with different width / number of elements.  This can
8710     // happen for register classes that can contain multiple different value
8711     // types.  The preg or vreg allocated may not have the same VT as was
8712     // expected.
8713     //
8714     // This can also happen for a return value that disagrees with the register
8715     // class it is put in, eg. a double in a general-purpose register on a
8716     // 32-bit machine.
8717     if (ResultVT != V.getValueType() &&
8718         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8719       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8720     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8721              V.getValueType().isInteger()) {
8722       // If a result value was tied to an input value, the computed result
8723       // may have a wider width than the expected result.  Extract the
8724       // relevant portion.
8725       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8726     }
8727     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8728     ResultVTs.push_back(ResultVT);
8729     ResultValues.push_back(V);
8730   };
8731 
8732   // Deal with output operands.
8733   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8734     if (OpInfo.Type == InlineAsm::isOutput) {
8735       SDValue Val;
8736       // Skip trivial output operands.
8737       if (OpInfo.AssignedRegs.Regs.empty())
8738         continue;
8739 
8740       switch (OpInfo.ConstraintType) {
8741       case TargetLowering::C_Register:
8742       case TargetLowering::C_RegisterClass:
8743         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8744                                                   Chain, &Flag, &Call);
8745         break;
8746       case TargetLowering::C_Immediate:
8747       case TargetLowering::C_Other:
8748         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8749                                               OpInfo, DAG);
8750         break;
8751       case TargetLowering::C_Memory:
8752         break; // Already handled.
8753       case TargetLowering::C_Unknown:
8754         assert(false && "Unexpected unknown constraint");
8755       }
8756 
8757       // Indirect output manifest as stores. Record output chains.
8758       if (OpInfo.isIndirect) {
8759         const Value *Ptr = OpInfo.CallOperandVal;
8760         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8761         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8762                                      MachinePointerInfo(Ptr));
8763         OutChains.push_back(Store);
8764       } else {
8765         // generate CopyFromRegs to associated registers.
8766         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8767         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8768           for (const SDValue &V : Val->op_values())
8769             handleRegAssign(V);
8770         } else
8771           handleRegAssign(Val);
8772       }
8773     }
8774   }
8775 
8776   // Set results.
8777   if (!ResultValues.empty()) {
8778     assert(CurResultType == ResultTypes.end() &&
8779            "Mismatch in number of ResultTypes");
8780     assert(ResultValues.size() == ResultTypes.size() &&
8781            "Mismatch in number of output operands in asm result");
8782 
8783     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8784                             DAG.getVTList(ResultVTs), ResultValues);
8785     setValue(&Call, V);
8786   }
8787 
8788   // Collect store chains.
8789   if (!OutChains.empty())
8790     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8791 
8792   // Only Update Root if inline assembly has a memory effect.
8793   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8794     DAG.setRoot(Chain);
8795 }
8796 
8797 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8798                                              const Twine &Message) {
8799   LLVMContext &Ctx = *DAG.getContext();
8800   Ctx.emitError(&Call, Message);
8801 
8802   // Make sure we leave the DAG in a valid state
8803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8804   SmallVector<EVT, 1> ValueVTs;
8805   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8806 
8807   if (ValueVTs.empty())
8808     return;
8809 
8810   SmallVector<SDValue, 1> Ops;
8811   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8812     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8813 
8814   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8815 }
8816 
8817 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8818   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8819                           MVT::Other, getRoot(),
8820                           getValue(I.getArgOperand(0)),
8821                           DAG.getSrcValue(I.getArgOperand(0))));
8822 }
8823 
8824 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8826   const DataLayout &DL = DAG.getDataLayout();
8827   SDValue V = DAG.getVAArg(
8828       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8829       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8830       DL.getABITypeAlign(I.getType()).value());
8831   DAG.setRoot(V.getValue(1));
8832 
8833   if (I.getType()->isPointerTy())
8834     V = DAG.getPtrExtOrTrunc(
8835         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8836   setValue(&I, V);
8837 }
8838 
8839 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8840   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8841                           MVT::Other, getRoot(),
8842                           getValue(I.getArgOperand(0)),
8843                           DAG.getSrcValue(I.getArgOperand(0))));
8844 }
8845 
8846 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8847   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8848                           MVT::Other, getRoot(),
8849                           getValue(I.getArgOperand(0)),
8850                           getValue(I.getArgOperand(1)),
8851                           DAG.getSrcValue(I.getArgOperand(0)),
8852                           DAG.getSrcValue(I.getArgOperand(1))));
8853 }
8854 
8855 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8856                                                     const Instruction &I,
8857                                                     SDValue Op) {
8858   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8859   if (!Range)
8860     return Op;
8861 
8862   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8863   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8864     return Op;
8865 
8866   APInt Lo = CR.getUnsignedMin();
8867   if (!Lo.isMinValue())
8868     return Op;
8869 
8870   APInt Hi = CR.getUnsignedMax();
8871   unsigned Bits = std::max(Hi.getActiveBits(),
8872                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8873 
8874   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8875 
8876   SDLoc SL = getCurSDLoc();
8877 
8878   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8879                              DAG.getValueType(SmallVT));
8880   unsigned NumVals = Op.getNode()->getNumValues();
8881   if (NumVals == 1)
8882     return ZExt;
8883 
8884   SmallVector<SDValue, 4> Ops;
8885 
8886   Ops.push_back(ZExt);
8887   for (unsigned I = 1; I != NumVals; ++I)
8888     Ops.push_back(Op.getValue(I));
8889 
8890   return DAG.getMergeValues(Ops, SL);
8891 }
8892 
8893 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8894 /// the call being lowered.
8895 ///
8896 /// This is a helper for lowering intrinsics that follow a target calling
8897 /// convention or require stack pointer adjustment. Only a subset of the
8898 /// intrinsic's operands need to participate in the calling convention.
8899 void SelectionDAGBuilder::populateCallLoweringInfo(
8900     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8901     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8902     bool IsPatchPoint) {
8903   TargetLowering::ArgListTy Args;
8904   Args.reserve(NumArgs);
8905 
8906   // Populate the argument list.
8907   // Attributes for args start at offset 1, after the return attribute.
8908   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8909        ArgI != ArgE; ++ArgI) {
8910     const Value *V = Call->getOperand(ArgI);
8911 
8912     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8913 
8914     TargetLowering::ArgListEntry Entry;
8915     Entry.Node = getValue(V);
8916     Entry.Ty = V->getType();
8917     Entry.setAttributes(Call, ArgI);
8918     Args.push_back(Entry);
8919   }
8920 
8921   CLI.setDebugLoc(getCurSDLoc())
8922       .setChain(getRoot())
8923       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8924       .setDiscardResult(Call->use_empty())
8925       .setIsPatchPoint(IsPatchPoint)
8926       .setIsPreallocated(
8927           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8928 }
8929 
8930 /// Add a stack map intrinsic call's live variable operands to a stackmap
8931 /// or patchpoint target node's operand list.
8932 ///
8933 /// Constants are converted to TargetConstants purely as an optimization to
8934 /// avoid constant materialization and register allocation.
8935 ///
8936 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8937 /// generate addess computation nodes, and so FinalizeISel can convert the
8938 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8939 /// address materialization and register allocation, but may also be required
8940 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8941 /// alloca in the entry block, then the runtime may assume that the alloca's
8942 /// StackMap location can be read immediately after compilation and that the
8943 /// location is valid at any point during execution (this is similar to the
8944 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8945 /// only available in a register, then the runtime would need to trap when
8946 /// execution reaches the StackMap in order to read the alloca's location.
8947 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8948                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8949                                 SelectionDAGBuilder &Builder) {
8950   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8951     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8952     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8953       Ops.push_back(
8954         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8955       Ops.push_back(
8956         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8957     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8958       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8959       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8960           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8961     } else
8962       Ops.push_back(OpVal);
8963   }
8964 }
8965 
8966 /// Lower llvm.experimental.stackmap directly to its target opcode.
8967 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8968   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8969   //                                  [live variables...])
8970 
8971   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8972 
8973   SDValue Chain, InFlag, Callee, NullPtr;
8974   SmallVector<SDValue, 32> Ops;
8975 
8976   SDLoc DL = getCurSDLoc();
8977   Callee = getValue(CI.getCalledOperand());
8978   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8979 
8980   // The stackmap intrinsic only records the live variables (the arguments
8981   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8982   // intrinsic, this won't be lowered to a function call. This means we don't
8983   // have to worry about calling conventions and target specific lowering code.
8984   // Instead we perform the call lowering right here.
8985   //
8986   // chain, flag = CALLSEQ_START(chain, 0, 0)
8987   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8988   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8989   //
8990   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8991   InFlag = Chain.getValue(1);
8992 
8993   // Add the <id> and <numBytes> constants.
8994   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8995   Ops.push_back(DAG.getTargetConstant(
8996                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8997   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8998   Ops.push_back(DAG.getTargetConstant(
8999                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9000                   MVT::i32));
9001 
9002   // Push live variables for the stack map.
9003   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9004 
9005   // We are not pushing any register mask info here on the operands list,
9006   // because the stackmap doesn't clobber anything.
9007 
9008   // Push the chain and the glue flag.
9009   Ops.push_back(Chain);
9010   Ops.push_back(InFlag);
9011 
9012   // Create the STACKMAP node.
9013   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9014   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9015   Chain = SDValue(SM, 0);
9016   InFlag = Chain.getValue(1);
9017 
9018   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9019 
9020   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9021 
9022   // Set the root to the target-lowered call chain.
9023   DAG.setRoot(Chain);
9024 
9025   // Inform the Frame Information that we have a stackmap in this function.
9026   FuncInfo.MF->getFrameInfo().setHasStackMap();
9027 }
9028 
9029 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9030 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9031                                           const BasicBlock *EHPadBB) {
9032   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9033   //                                                 i32 <numBytes>,
9034   //                                                 i8* <target>,
9035   //                                                 i32 <numArgs>,
9036   //                                                 [Args...],
9037   //                                                 [live variables...])
9038 
9039   CallingConv::ID CC = CB.getCallingConv();
9040   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9041   bool HasDef = !CB.getType()->isVoidTy();
9042   SDLoc dl = getCurSDLoc();
9043   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9044 
9045   // Handle immediate and symbolic callees.
9046   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9047     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9048                                    /*isTarget=*/true);
9049   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9050     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9051                                          SDLoc(SymbolicCallee),
9052                                          SymbolicCallee->getValueType(0));
9053 
9054   // Get the real number of arguments participating in the call <numArgs>
9055   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9056   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9057 
9058   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9059   // Intrinsics include all meta-operands up to but not including CC.
9060   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9061   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9062          "Not enough arguments provided to the patchpoint intrinsic");
9063 
9064   // For AnyRegCC the arguments are lowered later on manually.
9065   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9066   Type *ReturnTy =
9067       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9068 
9069   TargetLowering::CallLoweringInfo CLI(DAG);
9070   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9071                            ReturnTy, true);
9072   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9073 
9074   SDNode *CallEnd = Result.second.getNode();
9075   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9076     CallEnd = CallEnd->getOperand(0).getNode();
9077 
9078   /// Get a call instruction from the call sequence chain.
9079   /// Tail calls are not allowed.
9080   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9081          "Expected a callseq node.");
9082   SDNode *Call = CallEnd->getOperand(0).getNode();
9083   bool HasGlue = Call->getGluedNode();
9084 
9085   // Replace the target specific call node with the patchable intrinsic.
9086   SmallVector<SDValue, 8> Ops;
9087 
9088   // Add the <id> and <numBytes> constants.
9089   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9090   Ops.push_back(DAG.getTargetConstant(
9091                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9092   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9093   Ops.push_back(DAG.getTargetConstant(
9094                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9095                   MVT::i32));
9096 
9097   // Add the callee.
9098   Ops.push_back(Callee);
9099 
9100   // Adjust <numArgs> to account for any arguments that have been passed on the
9101   // stack instead.
9102   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9103   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9104   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9105   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9106 
9107   // Add the calling convention
9108   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9109 
9110   // Add the arguments we omitted previously. The register allocator should
9111   // place these in any free register.
9112   if (IsAnyRegCC)
9113     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9114       Ops.push_back(getValue(CB.getArgOperand(i)));
9115 
9116   // Push the arguments from the call instruction up to the register mask.
9117   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9118   Ops.append(Call->op_begin() + 2, e);
9119 
9120   // Push live variables for the stack map.
9121   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9122 
9123   // Push the register mask info.
9124   if (HasGlue)
9125     Ops.push_back(*(Call->op_end()-2));
9126   else
9127     Ops.push_back(*(Call->op_end()-1));
9128 
9129   // Push the chain (this is originally the first operand of the call, but
9130   // becomes now the last or second to last operand).
9131   Ops.push_back(*(Call->op_begin()));
9132 
9133   // Push the glue flag (last operand).
9134   if (HasGlue)
9135     Ops.push_back(*(Call->op_end()-1));
9136 
9137   SDVTList NodeTys;
9138   if (IsAnyRegCC && HasDef) {
9139     // Create the return types based on the intrinsic definition
9140     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9141     SmallVector<EVT, 3> ValueVTs;
9142     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9143     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9144 
9145     // There is always a chain and a glue type at the end
9146     ValueVTs.push_back(MVT::Other);
9147     ValueVTs.push_back(MVT::Glue);
9148     NodeTys = DAG.getVTList(ValueVTs);
9149   } else
9150     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9151 
9152   // Replace the target specific call node with a PATCHPOINT node.
9153   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9154                                          dl, NodeTys, Ops);
9155 
9156   // Update the NodeMap.
9157   if (HasDef) {
9158     if (IsAnyRegCC)
9159       setValue(&CB, SDValue(MN, 0));
9160     else
9161       setValue(&CB, Result.first);
9162   }
9163 
9164   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9165   // call sequence. Furthermore the location of the chain and glue can change
9166   // when the AnyReg calling convention is used and the intrinsic returns a
9167   // value.
9168   if (IsAnyRegCC && HasDef) {
9169     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9170     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9171     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9172   } else
9173     DAG.ReplaceAllUsesWith(Call, MN);
9174   DAG.DeleteNode(Call);
9175 
9176   // Inform the Frame Information that we have a patchpoint in this function.
9177   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9178 }
9179 
9180 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9181                                             unsigned Intrinsic) {
9182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9183   SDValue Op1 = getValue(I.getArgOperand(0));
9184   SDValue Op2;
9185   if (I.getNumArgOperands() > 1)
9186     Op2 = getValue(I.getArgOperand(1));
9187   SDLoc dl = getCurSDLoc();
9188   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9189   SDValue Res;
9190   SDNodeFlags SDFlags;
9191   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9192     SDFlags.copyFMF(*FPMO);
9193 
9194   switch (Intrinsic) {
9195   case Intrinsic::vector_reduce_fadd:
9196     if (SDFlags.hasAllowReassociation())
9197       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9198                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9199                         SDFlags);
9200     else
9201       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9202     break;
9203   case Intrinsic::vector_reduce_fmul:
9204     if (SDFlags.hasAllowReassociation())
9205       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9206                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9207                         SDFlags);
9208     else
9209       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9210     break;
9211   case Intrinsic::vector_reduce_add:
9212     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9213     break;
9214   case Intrinsic::vector_reduce_mul:
9215     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9216     break;
9217   case Intrinsic::vector_reduce_and:
9218     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9219     break;
9220   case Intrinsic::vector_reduce_or:
9221     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9222     break;
9223   case Intrinsic::vector_reduce_xor:
9224     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9225     break;
9226   case Intrinsic::vector_reduce_smax:
9227     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9228     break;
9229   case Intrinsic::vector_reduce_smin:
9230     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9231     break;
9232   case Intrinsic::vector_reduce_umax:
9233     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9234     break;
9235   case Intrinsic::vector_reduce_umin:
9236     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9237     break;
9238   case Intrinsic::vector_reduce_fmax:
9239     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9240     break;
9241   case Intrinsic::vector_reduce_fmin:
9242     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9243     break;
9244   default:
9245     llvm_unreachable("Unhandled vector reduce intrinsic");
9246   }
9247   setValue(&I, Res);
9248 }
9249 
9250 /// Returns an AttributeList representing the attributes applied to the return
9251 /// value of the given call.
9252 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9253   SmallVector<Attribute::AttrKind, 2> Attrs;
9254   if (CLI.RetSExt)
9255     Attrs.push_back(Attribute::SExt);
9256   if (CLI.RetZExt)
9257     Attrs.push_back(Attribute::ZExt);
9258   if (CLI.IsInReg)
9259     Attrs.push_back(Attribute::InReg);
9260 
9261   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9262                             Attrs);
9263 }
9264 
9265 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9266 /// implementation, which just calls LowerCall.
9267 /// FIXME: When all targets are
9268 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9269 std::pair<SDValue, SDValue>
9270 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9271   // Handle the incoming return values from the call.
9272   CLI.Ins.clear();
9273   Type *OrigRetTy = CLI.RetTy;
9274   SmallVector<EVT, 4> RetTys;
9275   SmallVector<uint64_t, 4> Offsets;
9276   auto &DL = CLI.DAG.getDataLayout();
9277   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9278 
9279   if (CLI.IsPostTypeLegalization) {
9280     // If we are lowering a libcall after legalization, split the return type.
9281     SmallVector<EVT, 4> OldRetTys;
9282     SmallVector<uint64_t, 4> OldOffsets;
9283     RetTys.swap(OldRetTys);
9284     Offsets.swap(OldOffsets);
9285 
9286     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9287       EVT RetVT = OldRetTys[i];
9288       uint64_t Offset = OldOffsets[i];
9289       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9290       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9291       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9292       RetTys.append(NumRegs, RegisterVT);
9293       for (unsigned j = 0; j != NumRegs; ++j)
9294         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9295     }
9296   }
9297 
9298   SmallVector<ISD::OutputArg, 4> Outs;
9299   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9300 
9301   bool CanLowerReturn =
9302       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9303                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9304 
9305   SDValue DemoteStackSlot;
9306   int DemoteStackIdx = -100;
9307   if (!CanLowerReturn) {
9308     // FIXME: equivalent assert?
9309     // assert(!CS.hasInAllocaArgument() &&
9310     //        "sret demotion is incompatible with inalloca");
9311     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9312     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9313     MachineFunction &MF = CLI.DAG.getMachineFunction();
9314     DemoteStackIdx =
9315         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9316     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9317                                               DL.getAllocaAddrSpace());
9318 
9319     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9320     ArgListEntry Entry;
9321     Entry.Node = DemoteStackSlot;
9322     Entry.Ty = StackSlotPtrType;
9323     Entry.IsSExt = false;
9324     Entry.IsZExt = false;
9325     Entry.IsInReg = false;
9326     Entry.IsSRet = true;
9327     Entry.IsNest = false;
9328     Entry.IsByVal = false;
9329     Entry.IsByRef = false;
9330     Entry.IsReturned = false;
9331     Entry.IsSwiftSelf = false;
9332     Entry.IsSwiftError = false;
9333     Entry.IsCFGuardTarget = false;
9334     Entry.Alignment = Alignment;
9335     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9336     CLI.NumFixedArgs += 1;
9337     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9338 
9339     // sret demotion isn't compatible with tail-calls, since the sret argument
9340     // points into the callers stack frame.
9341     CLI.IsTailCall = false;
9342   } else {
9343     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9344         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9345     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9346       ISD::ArgFlagsTy Flags;
9347       if (NeedsRegBlock) {
9348         Flags.setInConsecutiveRegs();
9349         if (I == RetTys.size() - 1)
9350           Flags.setInConsecutiveRegsLast();
9351       }
9352       EVT VT = RetTys[I];
9353       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9354                                                      CLI.CallConv, VT);
9355       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9356                                                        CLI.CallConv, VT);
9357       for (unsigned i = 0; i != NumRegs; ++i) {
9358         ISD::InputArg MyFlags;
9359         MyFlags.Flags = Flags;
9360         MyFlags.VT = RegisterVT;
9361         MyFlags.ArgVT = VT;
9362         MyFlags.Used = CLI.IsReturnValueUsed;
9363         if (CLI.RetTy->isPointerTy()) {
9364           MyFlags.Flags.setPointer();
9365           MyFlags.Flags.setPointerAddrSpace(
9366               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9367         }
9368         if (CLI.RetSExt)
9369           MyFlags.Flags.setSExt();
9370         if (CLI.RetZExt)
9371           MyFlags.Flags.setZExt();
9372         if (CLI.IsInReg)
9373           MyFlags.Flags.setInReg();
9374         CLI.Ins.push_back(MyFlags);
9375       }
9376     }
9377   }
9378 
9379   // We push in swifterror return as the last element of CLI.Ins.
9380   ArgListTy &Args = CLI.getArgs();
9381   if (supportSwiftError()) {
9382     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9383       if (Args[i].IsSwiftError) {
9384         ISD::InputArg MyFlags;
9385         MyFlags.VT = getPointerTy(DL);
9386         MyFlags.ArgVT = EVT(getPointerTy(DL));
9387         MyFlags.Flags.setSwiftError();
9388         CLI.Ins.push_back(MyFlags);
9389       }
9390     }
9391   }
9392 
9393   // Handle all of the outgoing arguments.
9394   CLI.Outs.clear();
9395   CLI.OutVals.clear();
9396   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9397     SmallVector<EVT, 4> ValueVTs;
9398     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9399     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9400     Type *FinalType = Args[i].Ty;
9401     if (Args[i].IsByVal)
9402       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9403     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9404         FinalType, CLI.CallConv, CLI.IsVarArg);
9405     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9406          ++Value) {
9407       EVT VT = ValueVTs[Value];
9408       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9409       SDValue Op = SDValue(Args[i].Node.getNode(),
9410                            Args[i].Node.getResNo() + Value);
9411       ISD::ArgFlagsTy Flags;
9412 
9413       // Certain targets (such as MIPS), may have a different ABI alignment
9414       // for a type depending on the context. Give the target a chance to
9415       // specify the alignment it wants.
9416       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9417 
9418       if (Args[i].Ty->isPointerTy()) {
9419         Flags.setPointer();
9420         Flags.setPointerAddrSpace(
9421             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9422       }
9423       if (Args[i].IsZExt)
9424         Flags.setZExt();
9425       if (Args[i].IsSExt)
9426         Flags.setSExt();
9427       if (Args[i].IsInReg) {
9428         // If we are using vectorcall calling convention, a structure that is
9429         // passed InReg - is surely an HVA
9430         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9431             isa<StructType>(FinalType)) {
9432           // The first value of a structure is marked
9433           if (0 == Value)
9434             Flags.setHvaStart();
9435           Flags.setHva();
9436         }
9437         // Set InReg Flag
9438         Flags.setInReg();
9439       }
9440       if (Args[i].IsSRet)
9441         Flags.setSRet();
9442       if (Args[i].IsSwiftSelf)
9443         Flags.setSwiftSelf();
9444       if (Args[i].IsSwiftError)
9445         Flags.setSwiftError();
9446       if (Args[i].IsCFGuardTarget)
9447         Flags.setCFGuardTarget();
9448       if (Args[i].IsByVal)
9449         Flags.setByVal();
9450       if (Args[i].IsByRef)
9451         Flags.setByRef();
9452       if (Args[i].IsPreallocated) {
9453         Flags.setPreallocated();
9454         // Set the byval flag for CCAssignFn callbacks that don't know about
9455         // preallocated.  This way we can know how many bytes we should've
9456         // allocated and how many bytes a callee cleanup function will pop.  If
9457         // we port preallocated to more targets, we'll have to add custom
9458         // preallocated handling in the various CC lowering callbacks.
9459         Flags.setByVal();
9460       }
9461       if (Args[i].IsInAlloca) {
9462         Flags.setInAlloca();
9463         // Set the byval flag for CCAssignFn callbacks that don't know about
9464         // inalloca.  This way we can know how many bytes we should've allocated
9465         // and how many bytes a callee cleanup function will pop.  If we port
9466         // inalloca to more targets, we'll have to add custom inalloca handling
9467         // in the various CC lowering callbacks.
9468         Flags.setByVal();
9469       }
9470       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9471         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9472         Type *ElementTy = Ty->getElementType();
9473 
9474         unsigned FrameSize = DL.getTypeAllocSize(
9475             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9476         Flags.setByValSize(FrameSize);
9477 
9478         // info is not there but there are cases it cannot get right.
9479         Align FrameAlign;
9480         if (auto MA = Args[i].Alignment)
9481           FrameAlign = *MA;
9482         else
9483           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9484         Flags.setByValAlign(FrameAlign);
9485       }
9486       if (Args[i].IsNest)
9487         Flags.setNest();
9488       if (NeedsRegBlock)
9489         Flags.setInConsecutiveRegs();
9490       Flags.setOrigAlign(OriginalAlignment);
9491 
9492       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9493                                                  CLI.CallConv, VT);
9494       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9495                                                         CLI.CallConv, VT);
9496       SmallVector<SDValue, 4> Parts(NumParts);
9497       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9498 
9499       if (Args[i].IsSExt)
9500         ExtendKind = ISD::SIGN_EXTEND;
9501       else if (Args[i].IsZExt)
9502         ExtendKind = ISD::ZERO_EXTEND;
9503 
9504       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9505       // for now.
9506       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9507           CanLowerReturn) {
9508         assert((CLI.RetTy == Args[i].Ty ||
9509                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9510                  CLI.RetTy->getPointerAddressSpace() ==
9511                      Args[i].Ty->getPointerAddressSpace())) &&
9512                RetTys.size() == NumValues && "unexpected use of 'returned'");
9513         // Before passing 'returned' to the target lowering code, ensure that
9514         // either the register MVT and the actual EVT are the same size or that
9515         // the return value and argument are extended in the same way; in these
9516         // cases it's safe to pass the argument register value unchanged as the
9517         // return register value (although it's at the target's option whether
9518         // to do so)
9519         // TODO: allow code generation to take advantage of partially preserved
9520         // registers rather than clobbering the entire register when the
9521         // parameter extension method is not compatible with the return
9522         // extension method
9523         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9524             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9525              CLI.RetZExt == Args[i].IsZExt))
9526           Flags.setReturned();
9527       }
9528 
9529       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9530                      CLI.CallConv, ExtendKind);
9531 
9532       for (unsigned j = 0; j != NumParts; ++j) {
9533         // if it isn't first piece, alignment must be 1
9534         // For scalable vectors the scalable part is currently handled
9535         // by individual targets, so we just use the known minimum size here.
9536         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9537                     i < CLI.NumFixedArgs, i,
9538                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9539         if (NumParts > 1 && j == 0)
9540           MyFlags.Flags.setSplit();
9541         else if (j != 0) {
9542           MyFlags.Flags.setOrigAlign(Align(1));
9543           if (j == NumParts - 1)
9544             MyFlags.Flags.setSplitEnd();
9545         }
9546 
9547         CLI.Outs.push_back(MyFlags);
9548         CLI.OutVals.push_back(Parts[j]);
9549       }
9550 
9551       if (NeedsRegBlock && Value == NumValues - 1)
9552         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9553     }
9554   }
9555 
9556   SmallVector<SDValue, 4> InVals;
9557   CLI.Chain = LowerCall(CLI, InVals);
9558 
9559   // Update CLI.InVals to use outside of this function.
9560   CLI.InVals = InVals;
9561 
9562   // Verify that the target's LowerCall behaved as expected.
9563   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9564          "LowerCall didn't return a valid chain!");
9565   assert((!CLI.IsTailCall || InVals.empty()) &&
9566          "LowerCall emitted a return value for a tail call!");
9567   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9568          "LowerCall didn't emit the correct number of values!");
9569 
9570   // For a tail call, the return value is merely live-out and there aren't
9571   // any nodes in the DAG representing it. Return a special value to
9572   // indicate that a tail call has been emitted and no more Instructions
9573   // should be processed in the current block.
9574   if (CLI.IsTailCall) {
9575     CLI.DAG.setRoot(CLI.Chain);
9576     return std::make_pair(SDValue(), SDValue());
9577   }
9578 
9579 #ifndef NDEBUG
9580   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9581     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9582     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9583            "LowerCall emitted a value with the wrong type!");
9584   }
9585 #endif
9586 
9587   SmallVector<SDValue, 4> ReturnValues;
9588   if (!CanLowerReturn) {
9589     // The instruction result is the result of loading from the
9590     // hidden sret parameter.
9591     SmallVector<EVT, 1> PVTs;
9592     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9593 
9594     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9595     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9596     EVT PtrVT = PVTs[0];
9597 
9598     unsigned NumValues = RetTys.size();
9599     ReturnValues.resize(NumValues);
9600     SmallVector<SDValue, 4> Chains(NumValues);
9601 
9602     // An aggregate return value cannot wrap around the address space, so
9603     // offsets to its parts don't wrap either.
9604     SDNodeFlags Flags;
9605     Flags.setNoUnsignedWrap(true);
9606 
9607     MachineFunction &MF = CLI.DAG.getMachineFunction();
9608     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9609     for (unsigned i = 0; i < NumValues; ++i) {
9610       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9611                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9612                                                         PtrVT), Flags);
9613       SDValue L = CLI.DAG.getLoad(
9614           RetTys[i], CLI.DL, CLI.Chain, Add,
9615           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9616                                             DemoteStackIdx, Offsets[i]),
9617           HiddenSRetAlign);
9618       ReturnValues[i] = L;
9619       Chains[i] = L.getValue(1);
9620     }
9621 
9622     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9623   } else {
9624     // Collect the legal value parts into potentially illegal values
9625     // that correspond to the original function's return values.
9626     Optional<ISD::NodeType> AssertOp;
9627     if (CLI.RetSExt)
9628       AssertOp = ISD::AssertSext;
9629     else if (CLI.RetZExt)
9630       AssertOp = ISD::AssertZext;
9631     unsigned CurReg = 0;
9632     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9633       EVT VT = RetTys[I];
9634       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9635                                                      CLI.CallConv, VT);
9636       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9637                                                        CLI.CallConv, VT);
9638 
9639       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9640                                               NumRegs, RegisterVT, VT, nullptr,
9641                                               CLI.CallConv, AssertOp));
9642       CurReg += NumRegs;
9643     }
9644 
9645     // For a function returning void, there is no return value. We can't create
9646     // such a node, so we just return a null return value in that case. In
9647     // that case, nothing will actually look at the value.
9648     if (ReturnValues.empty())
9649       return std::make_pair(SDValue(), CLI.Chain);
9650   }
9651 
9652   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9653                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9654   return std::make_pair(Res, CLI.Chain);
9655 }
9656 
9657 /// Places new result values for the node in Results (their number
9658 /// and types must exactly match those of the original return values of
9659 /// the node), or leaves Results empty, which indicates that the node is not
9660 /// to be custom lowered after all.
9661 void TargetLowering::LowerOperationWrapper(SDNode *N,
9662                                            SmallVectorImpl<SDValue> &Results,
9663                                            SelectionDAG &DAG) const {
9664   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9665 
9666   if (!Res.getNode())
9667     return;
9668 
9669   // If the original node has one result, take the return value from
9670   // LowerOperation as is. It might not be result number 0.
9671   if (N->getNumValues() == 1) {
9672     Results.push_back(Res);
9673     return;
9674   }
9675 
9676   // If the original node has multiple results, then the return node should
9677   // have the same number of results.
9678   assert((N->getNumValues() == Res->getNumValues()) &&
9679       "Lowering returned the wrong number of results!");
9680 
9681   // Places new result values base on N result number.
9682   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9683     Results.push_back(Res.getValue(I));
9684 }
9685 
9686 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9687   llvm_unreachable("LowerOperation not implemented for this target!");
9688 }
9689 
9690 void
9691 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9692   SDValue Op = getNonRegisterValue(V);
9693   assert((Op.getOpcode() != ISD::CopyFromReg ||
9694           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9695          "Copy from a reg to the same reg!");
9696   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9697 
9698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9699   // If this is an InlineAsm we have to match the registers required, not the
9700   // notional registers required by the type.
9701 
9702   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9703                    None); // This is not an ABI copy.
9704   SDValue Chain = DAG.getEntryNode();
9705 
9706   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9707                               FuncInfo.PreferredExtendType.end())
9708                                  ? ISD::ANY_EXTEND
9709                                  : FuncInfo.PreferredExtendType[V];
9710   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9711   PendingExports.push_back(Chain);
9712 }
9713 
9714 #include "llvm/CodeGen/SelectionDAGISel.h"
9715 
9716 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9717 /// entry block, return true.  This includes arguments used by switches, since
9718 /// the switch may expand into multiple basic blocks.
9719 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9720   // With FastISel active, we may be splitting blocks, so force creation
9721   // of virtual registers for all non-dead arguments.
9722   if (FastISel)
9723     return A->use_empty();
9724 
9725   const BasicBlock &Entry = A->getParent()->front();
9726   for (const User *U : A->users())
9727     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9728       return false;  // Use not in entry block.
9729 
9730   return true;
9731 }
9732 
9733 using ArgCopyElisionMapTy =
9734     DenseMap<const Argument *,
9735              std::pair<const AllocaInst *, const StoreInst *>>;
9736 
9737 /// Scan the entry block of the function in FuncInfo for arguments that look
9738 /// like copies into a local alloca. Record any copied arguments in
9739 /// ArgCopyElisionCandidates.
9740 static void
9741 findArgumentCopyElisionCandidates(const DataLayout &DL,
9742                                   FunctionLoweringInfo *FuncInfo,
9743                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9744   // Record the state of every static alloca used in the entry block. Argument
9745   // allocas are all used in the entry block, so we need approximately as many
9746   // entries as we have arguments.
9747   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9748   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9749   unsigned NumArgs = FuncInfo->Fn->arg_size();
9750   StaticAllocas.reserve(NumArgs * 2);
9751 
9752   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9753     if (!V)
9754       return nullptr;
9755     V = V->stripPointerCasts();
9756     const auto *AI = dyn_cast<AllocaInst>(V);
9757     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9758       return nullptr;
9759     auto Iter = StaticAllocas.insert({AI, Unknown});
9760     return &Iter.first->second;
9761   };
9762 
9763   // Look for stores of arguments to static allocas. Look through bitcasts and
9764   // GEPs to handle type coercions, as long as the alloca is fully initialized
9765   // by the store. Any non-store use of an alloca escapes it and any subsequent
9766   // unanalyzed store might write it.
9767   // FIXME: Handle structs initialized with multiple stores.
9768   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9769     // Look for stores, and handle non-store uses conservatively.
9770     const auto *SI = dyn_cast<StoreInst>(&I);
9771     if (!SI) {
9772       // We will look through cast uses, so ignore them completely.
9773       if (I.isCast())
9774         continue;
9775       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9776       // to allocas.
9777       if (I.isDebugOrPseudoInst())
9778         continue;
9779       // This is an unknown instruction. Assume it escapes or writes to all
9780       // static alloca operands.
9781       for (const Use &U : I.operands()) {
9782         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9783           *Info = StaticAllocaInfo::Clobbered;
9784       }
9785       continue;
9786     }
9787 
9788     // If the stored value is a static alloca, mark it as escaped.
9789     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9790       *Info = StaticAllocaInfo::Clobbered;
9791 
9792     // Check if the destination is a static alloca.
9793     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9794     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9795     if (!Info)
9796       continue;
9797     const AllocaInst *AI = cast<AllocaInst>(Dst);
9798 
9799     // Skip allocas that have been initialized or clobbered.
9800     if (*Info != StaticAllocaInfo::Unknown)
9801       continue;
9802 
9803     // Check if the stored value is an argument, and that this store fully
9804     // initializes the alloca. Don't elide copies from the same argument twice.
9805     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9806     const auto *Arg = dyn_cast<Argument>(Val);
9807     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9808         Arg->getType()->isEmptyTy() ||
9809         DL.getTypeStoreSize(Arg->getType()) !=
9810             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9811         ArgCopyElisionCandidates.count(Arg)) {
9812       *Info = StaticAllocaInfo::Clobbered;
9813       continue;
9814     }
9815 
9816     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9817                       << '\n');
9818 
9819     // Mark this alloca and store for argument copy elision.
9820     *Info = StaticAllocaInfo::Elidable;
9821     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9822 
9823     // Stop scanning if we've seen all arguments. This will happen early in -O0
9824     // builds, which is useful, because -O0 builds have large entry blocks and
9825     // many allocas.
9826     if (ArgCopyElisionCandidates.size() == NumArgs)
9827       break;
9828   }
9829 }
9830 
9831 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9832 /// ArgVal is a load from a suitable fixed stack object.
9833 static void tryToElideArgumentCopy(
9834     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9835     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9836     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9837     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9838     SDValue ArgVal, bool &ArgHasUses) {
9839   // Check if this is a load from a fixed stack object.
9840   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9841   if (!LNode)
9842     return;
9843   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9844   if (!FINode)
9845     return;
9846 
9847   // Check that the fixed stack object is the right size and alignment.
9848   // Look at the alignment that the user wrote on the alloca instead of looking
9849   // at the stack object.
9850   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9851   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9852   const AllocaInst *AI = ArgCopyIter->second.first;
9853   int FixedIndex = FINode->getIndex();
9854   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9855   int OldIndex = AllocaIndex;
9856   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9857   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9858     LLVM_DEBUG(
9859         dbgs() << "  argument copy elision failed due to bad fixed stack "
9860                   "object size\n");
9861     return;
9862   }
9863   Align RequiredAlignment = AI->getAlign();
9864   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9865     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9866                          "greater than stack argument alignment ("
9867                       << DebugStr(RequiredAlignment) << " vs "
9868                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9869     return;
9870   }
9871 
9872   // Perform the elision. Delete the old stack object and replace its only use
9873   // in the variable info map. Mark the stack object as mutable.
9874   LLVM_DEBUG({
9875     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9876            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9877            << '\n';
9878   });
9879   MFI.RemoveStackObject(OldIndex);
9880   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9881   AllocaIndex = FixedIndex;
9882   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9883   Chains.push_back(ArgVal.getValue(1));
9884 
9885   // Avoid emitting code for the store implementing the copy.
9886   const StoreInst *SI = ArgCopyIter->second.second;
9887   ElidedArgCopyInstrs.insert(SI);
9888 
9889   // Check for uses of the argument again so that we can avoid exporting ArgVal
9890   // if it is't used by anything other than the store.
9891   for (const Value *U : Arg.users()) {
9892     if (U != SI) {
9893       ArgHasUses = true;
9894       break;
9895     }
9896   }
9897 }
9898 
9899 void SelectionDAGISel::LowerArguments(const Function &F) {
9900   SelectionDAG &DAG = SDB->DAG;
9901   SDLoc dl = SDB->getCurSDLoc();
9902   const DataLayout &DL = DAG.getDataLayout();
9903   SmallVector<ISD::InputArg, 16> Ins;
9904 
9905   // In Naked functions we aren't going to save any registers.
9906   if (F.hasFnAttribute(Attribute::Naked))
9907     return;
9908 
9909   if (!FuncInfo->CanLowerReturn) {
9910     // Put in an sret pointer parameter before all the other parameters.
9911     SmallVector<EVT, 1> ValueVTs;
9912     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9913                     F.getReturnType()->getPointerTo(
9914                         DAG.getDataLayout().getAllocaAddrSpace()),
9915                     ValueVTs);
9916 
9917     // NOTE: Assuming that a pointer will never break down to more than one VT
9918     // or one register.
9919     ISD::ArgFlagsTy Flags;
9920     Flags.setSRet();
9921     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9922     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9923                          ISD::InputArg::NoArgIndex, 0);
9924     Ins.push_back(RetArg);
9925   }
9926 
9927   // Look for stores of arguments to static allocas. Mark such arguments with a
9928   // flag to ask the target to give us the memory location of that argument if
9929   // available.
9930   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9931   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9932                                     ArgCopyElisionCandidates);
9933 
9934   // Set up the incoming argument description vector.
9935   for (const Argument &Arg : F.args()) {
9936     unsigned ArgNo = Arg.getArgNo();
9937     SmallVector<EVT, 4> ValueVTs;
9938     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9939     bool isArgValueUsed = !Arg.use_empty();
9940     unsigned PartBase = 0;
9941     Type *FinalType = Arg.getType();
9942     if (Arg.hasAttribute(Attribute::ByVal))
9943       FinalType = Arg.getParamByValType();
9944     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9945         FinalType, F.getCallingConv(), F.isVarArg());
9946     for (unsigned Value = 0, NumValues = ValueVTs.size();
9947          Value != NumValues; ++Value) {
9948       EVT VT = ValueVTs[Value];
9949       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9950       ISD::ArgFlagsTy Flags;
9951 
9952       // Certain targets (such as MIPS), may have a different ABI alignment
9953       // for a type depending on the context. Give the target a chance to
9954       // specify the alignment it wants.
9955       const Align OriginalAlignment(
9956           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9957 
9958       if (Arg.getType()->isPointerTy()) {
9959         Flags.setPointer();
9960         Flags.setPointerAddrSpace(
9961             cast<PointerType>(Arg.getType())->getAddressSpace());
9962       }
9963       if (Arg.hasAttribute(Attribute::ZExt))
9964         Flags.setZExt();
9965       if (Arg.hasAttribute(Attribute::SExt))
9966         Flags.setSExt();
9967       if (Arg.hasAttribute(Attribute::InReg)) {
9968         // If we are using vectorcall calling convention, a structure that is
9969         // passed InReg - is surely an HVA
9970         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9971             isa<StructType>(Arg.getType())) {
9972           // The first value of a structure is marked
9973           if (0 == Value)
9974             Flags.setHvaStart();
9975           Flags.setHva();
9976         }
9977         // Set InReg Flag
9978         Flags.setInReg();
9979       }
9980       if (Arg.hasAttribute(Attribute::StructRet))
9981         Flags.setSRet();
9982       if (Arg.hasAttribute(Attribute::SwiftSelf))
9983         Flags.setSwiftSelf();
9984       if (Arg.hasAttribute(Attribute::SwiftError))
9985         Flags.setSwiftError();
9986       if (Arg.hasAttribute(Attribute::ByVal))
9987         Flags.setByVal();
9988       if (Arg.hasAttribute(Attribute::ByRef))
9989         Flags.setByRef();
9990       if (Arg.hasAttribute(Attribute::InAlloca)) {
9991         Flags.setInAlloca();
9992         // Set the byval flag for CCAssignFn callbacks that don't know about
9993         // inalloca.  This way we can know how many bytes we should've allocated
9994         // and how many bytes a callee cleanup function will pop.  If we port
9995         // inalloca to more targets, we'll have to add custom inalloca handling
9996         // in the various CC lowering callbacks.
9997         Flags.setByVal();
9998       }
9999       if (Arg.hasAttribute(Attribute::Preallocated)) {
10000         Flags.setPreallocated();
10001         // Set the byval flag for CCAssignFn callbacks that don't know about
10002         // preallocated.  This way we can know how many bytes we should've
10003         // allocated and how many bytes a callee cleanup function will pop.  If
10004         // we port preallocated to more targets, we'll have to add custom
10005         // preallocated handling in the various CC lowering callbacks.
10006         Flags.setByVal();
10007       }
10008 
10009       Type *ArgMemTy = nullptr;
10010       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10011           Flags.isByRef()) {
10012         if (!ArgMemTy)
10013           ArgMemTy = Arg.getPointeeInMemoryValueType();
10014 
10015         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10016 
10017         // For in-memory arguments, size and alignment should be passed from FE.
10018         // BE will guess if this info is not there but there are cases it cannot
10019         // get right.
10020         MaybeAlign MemAlign = Arg.getParamAlign();
10021         if (!MemAlign)
10022           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10023 
10024         if (Flags.isByRef()) {
10025           Flags.setByRefSize(MemSize);
10026           Flags.setByRefAlign(*MemAlign);
10027         } else {
10028           Flags.setByValSize(MemSize);
10029           Flags.setByValAlign(*MemAlign);
10030         }
10031       }
10032 
10033       if (Arg.hasAttribute(Attribute::Nest))
10034         Flags.setNest();
10035       if (NeedsRegBlock)
10036         Flags.setInConsecutiveRegs();
10037       Flags.setOrigAlign(OriginalAlignment);
10038       if (ArgCopyElisionCandidates.count(&Arg))
10039         Flags.setCopyElisionCandidate();
10040       if (Arg.hasAttribute(Attribute::Returned))
10041         Flags.setReturned();
10042 
10043       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10044           *CurDAG->getContext(), F.getCallingConv(), VT);
10045       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10046           *CurDAG->getContext(), F.getCallingConv(), VT);
10047       for (unsigned i = 0; i != NumRegs; ++i) {
10048         // For scalable vectors, use the minimum size; individual targets
10049         // are responsible for handling scalable vector arguments and
10050         // return values.
10051         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10052                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10053         if (NumRegs > 1 && i == 0)
10054           MyFlags.Flags.setSplit();
10055         // if it isn't first piece, alignment must be 1
10056         else if (i > 0) {
10057           MyFlags.Flags.setOrigAlign(Align(1));
10058           if (i == NumRegs - 1)
10059             MyFlags.Flags.setSplitEnd();
10060         }
10061         Ins.push_back(MyFlags);
10062       }
10063       if (NeedsRegBlock && Value == NumValues - 1)
10064         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10065       PartBase += VT.getStoreSize().getKnownMinSize();
10066     }
10067   }
10068 
10069   // Call the target to set up the argument values.
10070   SmallVector<SDValue, 8> InVals;
10071   SDValue NewRoot = TLI->LowerFormalArguments(
10072       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10073 
10074   // Verify that the target's LowerFormalArguments behaved as expected.
10075   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10076          "LowerFormalArguments didn't return a valid chain!");
10077   assert(InVals.size() == Ins.size() &&
10078          "LowerFormalArguments didn't emit the correct number of values!");
10079   LLVM_DEBUG({
10080     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10081       assert(InVals[i].getNode() &&
10082              "LowerFormalArguments emitted a null value!");
10083       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10084              "LowerFormalArguments emitted a value with the wrong type!");
10085     }
10086   });
10087 
10088   // Update the DAG with the new chain value resulting from argument lowering.
10089   DAG.setRoot(NewRoot);
10090 
10091   // Set up the argument values.
10092   unsigned i = 0;
10093   if (!FuncInfo->CanLowerReturn) {
10094     // Create a virtual register for the sret pointer, and put in a copy
10095     // from the sret argument into it.
10096     SmallVector<EVT, 1> ValueVTs;
10097     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10098                     F.getReturnType()->getPointerTo(
10099                         DAG.getDataLayout().getAllocaAddrSpace()),
10100                     ValueVTs);
10101     MVT VT = ValueVTs[0].getSimpleVT();
10102     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10103     Optional<ISD::NodeType> AssertOp = None;
10104     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10105                                         nullptr, F.getCallingConv(), AssertOp);
10106 
10107     MachineFunction& MF = SDB->DAG.getMachineFunction();
10108     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10109     Register SRetReg =
10110         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10111     FuncInfo->DemoteRegister = SRetReg;
10112     NewRoot =
10113         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10114     DAG.setRoot(NewRoot);
10115 
10116     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10117     ++i;
10118   }
10119 
10120   SmallVector<SDValue, 4> Chains;
10121   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10122   for (const Argument &Arg : F.args()) {
10123     SmallVector<SDValue, 4> ArgValues;
10124     SmallVector<EVT, 4> ValueVTs;
10125     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10126     unsigned NumValues = ValueVTs.size();
10127     if (NumValues == 0)
10128       continue;
10129 
10130     bool ArgHasUses = !Arg.use_empty();
10131 
10132     // Elide the copying store if the target loaded this argument from a
10133     // suitable fixed stack object.
10134     if (Ins[i].Flags.isCopyElisionCandidate()) {
10135       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10136                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10137                              InVals[i], ArgHasUses);
10138     }
10139 
10140     // If this argument is unused then remember its value. It is used to generate
10141     // debugging information.
10142     bool isSwiftErrorArg =
10143         TLI->supportSwiftError() &&
10144         Arg.hasAttribute(Attribute::SwiftError);
10145     if (!ArgHasUses && !isSwiftErrorArg) {
10146       SDB->setUnusedArgValue(&Arg, InVals[i]);
10147 
10148       // Also remember any frame index for use in FastISel.
10149       if (FrameIndexSDNode *FI =
10150           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10151         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10152     }
10153 
10154     for (unsigned Val = 0; Val != NumValues; ++Val) {
10155       EVT VT = ValueVTs[Val];
10156       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10157                                                       F.getCallingConv(), VT);
10158       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10159           *CurDAG->getContext(), F.getCallingConv(), VT);
10160 
10161       // Even an apparent 'unused' swifterror argument needs to be returned. So
10162       // we do generate a copy for it that can be used on return from the
10163       // function.
10164       if (ArgHasUses || isSwiftErrorArg) {
10165         Optional<ISD::NodeType> AssertOp;
10166         if (Arg.hasAttribute(Attribute::SExt))
10167           AssertOp = ISD::AssertSext;
10168         else if (Arg.hasAttribute(Attribute::ZExt))
10169           AssertOp = ISD::AssertZext;
10170 
10171         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10172                                              PartVT, VT, nullptr,
10173                                              F.getCallingConv(), AssertOp));
10174       }
10175 
10176       i += NumParts;
10177     }
10178 
10179     // We don't need to do anything else for unused arguments.
10180     if (ArgValues.empty())
10181       continue;
10182 
10183     // Note down frame index.
10184     if (FrameIndexSDNode *FI =
10185         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10186       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10187 
10188     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10189                                      SDB->getCurSDLoc());
10190 
10191     SDB->setValue(&Arg, Res);
10192     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10193       // We want to associate the argument with the frame index, among
10194       // involved operands, that correspond to the lowest address. The
10195       // getCopyFromParts function, called earlier, is swapping the order of
10196       // the operands to BUILD_PAIR depending on endianness. The result of
10197       // that swapping is that the least significant bits of the argument will
10198       // be in the first operand of the BUILD_PAIR node, and the most
10199       // significant bits will be in the second operand.
10200       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10201       if (LoadSDNode *LNode =
10202           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10203         if (FrameIndexSDNode *FI =
10204             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10205           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10206     }
10207 
10208     // Analyses past this point are naive and don't expect an assertion.
10209     if (Res.getOpcode() == ISD::AssertZext)
10210       Res = Res.getOperand(0);
10211 
10212     // Update the SwiftErrorVRegDefMap.
10213     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10214       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10215       if (Register::isVirtualRegister(Reg))
10216         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10217                                    Reg);
10218     }
10219 
10220     // If this argument is live outside of the entry block, insert a copy from
10221     // wherever we got it to the vreg that other BB's will reference it as.
10222     if (Res.getOpcode() == ISD::CopyFromReg) {
10223       // If we can, though, try to skip creating an unnecessary vreg.
10224       // FIXME: This isn't very clean... it would be nice to make this more
10225       // general.
10226       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10227       if (Register::isVirtualRegister(Reg)) {
10228         FuncInfo->ValueMap[&Arg] = Reg;
10229         continue;
10230       }
10231     }
10232     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10233       FuncInfo->InitializeRegForValue(&Arg);
10234       SDB->CopyToExportRegsIfNeeded(&Arg);
10235     }
10236   }
10237 
10238   if (!Chains.empty()) {
10239     Chains.push_back(NewRoot);
10240     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10241   }
10242 
10243   DAG.setRoot(NewRoot);
10244 
10245   assert(i == InVals.size() && "Argument register count mismatch!");
10246 
10247   // If any argument copy elisions occurred and we have debug info, update the
10248   // stale frame indices used in the dbg.declare variable info table.
10249   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10250   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10251     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10252       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10253       if (I != ArgCopyElisionFrameIndexMap.end())
10254         VI.Slot = I->second;
10255     }
10256   }
10257 
10258   // Finally, if the target has anything special to do, allow it to do so.
10259   emitFunctionEntryCode();
10260 }
10261 
10262 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10263 /// ensure constants are generated when needed.  Remember the virtual registers
10264 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10265 /// directly add them, because expansion might result in multiple MBB's for one
10266 /// BB.  As such, the start of the BB might correspond to a different MBB than
10267 /// the end.
10268 void
10269 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10270   const Instruction *TI = LLVMBB->getTerminator();
10271 
10272   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10273 
10274   // Check PHI nodes in successors that expect a value to be available from this
10275   // block.
10276   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10277     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10278     if (!isa<PHINode>(SuccBB->begin())) continue;
10279     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10280 
10281     // If this terminator has multiple identical successors (common for
10282     // switches), only handle each succ once.
10283     if (!SuccsHandled.insert(SuccMBB).second)
10284       continue;
10285 
10286     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10287 
10288     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10289     // nodes and Machine PHI nodes, but the incoming operands have not been
10290     // emitted yet.
10291     for (const PHINode &PN : SuccBB->phis()) {
10292       // Ignore dead phi's.
10293       if (PN.use_empty())
10294         continue;
10295 
10296       // Skip empty types
10297       if (PN.getType()->isEmptyTy())
10298         continue;
10299 
10300       unsigned Reg;
10301       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10302 
10303       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10304         unsigned &RegOut = ConstantsOut[C];
10305         if (RegOut == 0) {
10306           RegOut = FuncInfo.CreateRegs(C);
10307           CopyValueToVirtualRegister(C, RegOut);
10308         }
10309         Reg = RegOut;
10310       } else {
10311         DenseMap<const Value *, Register>::iterator I =
10312           FuncInfo.ValueMap.find(PHIOp);
10313         if (I != FuncInfo.ValueMap.end())
10314           Reg = I->second;
10315         else {
10316           assert(isa<AllocaInst>(PHIOp) &&
10317                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10318                  "Didn't codegen value into a register!??");
10319           Reg = FuncInfo.CreateRegs(PHIOp);
10320           CopyValueToVirtualRegister(PHIOp, Reg);
10321         }
10322       }
10323 
10324       // Remember that this register needs to added to the machine PHI node as
10325       // the input for this MBB.
10326       SmallVector<EVT, 4> ValueVTs;
10327       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10328       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10329       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10330         EVT VT = ValueVTs[vti];
10331         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10332         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10333           FuncInfo.PHINodesToUpdate.push_back(
10334               std::make_pair(&*MBBI++, Reg + i));
10335         Reg += NumRegisters;
10336       }
10337     }
10338   }
10339 
10340   ConstantsOut.clear();
10341 }
10342 
10343 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10344 /// is 0.
10345 MachineBasicBlock *
10346 SelectionDAGBuilder::StackProtectorDescriptor::
10347 AddSuccessorMBB(const BasicBlock *BB,
10348                 MachineBasicBlock *ParentMBB,
10349                 bool IsLikely,
10350                 MachineBasicBlock *SuccMBB) {
10351   // If SuccBB has not been created yet, create it.
10352   if (!SuccMBB) {
10353     MachineFunction *MF = ParentMBB->getParent();
10354     MachineFunction::iterator BBI(ParentMBB);
10355     SuccMBB = MF->CreateMachineBasicBlock(BB);
10356     MF->insert(++BBI, SuccMBB);
10357   }
10358   // Add it as a successor of ParentMBB.
10359   ParentMBB->addSuccessor(
10360       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10361   return SuccMBB;
10362 }
10363 
10364 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10365   MachineFunction::iterator I(MBB);
10366   if (++I == FuncInfo.MF->end())
10367     return nullptr;
10368   return &*I;
10369 }
10370 
10371 /// During lowering new call nodes can be created (such as memset, etc.).
10372 /// Those will become new roots of the current DAG, but complications arise
10373 /// when they are tail calls. In such cases, the call lowering will update
10374 /// the root, but the builder still needs to know that a tail call has been
10375 /// lowered in order to avoid generating an additional return.
10376 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10377   // If the node is null, we do have a tail call.
10378   if (MaybeTC.getNode() != nullptr)
10379     DAG.setRoot(MaybeTC);
10380   else
10381     HasTailCall = true;
10382 }
10383 
10384 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10385                                         MachineBasicBlock *SwitchMBB,
10386                                         MachineBasicBlock *DefaultMBB) {
10387   MachineFunction *CurMF = FuncInfo.MF;
10388   MachineBasicBlock *NextMBB = nullptr;
10389   MachineFunction::iterator BBI(W.MBB);
10390   if (++BBI != FuncInfo.MF->end())
10391     NextMBB = &*BBI;
10392 
10393   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10394 
10395   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10396 
10397   if (Size == 2 && W.MBB == SwitchMBB) {
10398     // If any two of the cases has the same destination, and if one value
10399     // is the same as the other, but has one bit unset that the other has set,
10400     // use bit manipulation to do two compares at once.  For example:
10401     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10402     // TODO: This could be extended to merge any 2 cases in switches with 3
10403     // cases.
10404     // TODO: Handle cases where W.CaseBB != SwitchBB.
10405     CaseCluster &Small = *W.FirstCluster;
10406     CaseCluster &Big = *W.LastCluster;
10407 
10408     if (Small.Low == Small.High && Big.Low == Big.High &&
10409         Small.MBB == Big.MBB) {
10410       const APInt &SmallValue = Small.Low->getValue();
10411       const APInt &BigValue = Big.Low->getValue();
10412 
10413       // Check that there is only one bit different.
10414       APInt CommonBit = BigValue ^ SmallValue;
10415       if (CommonBit.isPowerOf2()) {
10416         SDValue CondLHS = getValue(Cond);
10417         EVT VT = CondLHS.getValueType();
10418         SDLoc DL = getCurSDLoc();
10419 
10420         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10421                                  DAG.getConstant(CommonBit, DL, VT));
10422         SDValue Cond = DAG.getSetCC(
10423             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10424             ISD::SETEQ);
10425 
10426         // Update successor info.
10427         // Both Small and Big will jump to Small.BB, so we sum up the
10428         // probabilities.
10429         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10430         if (BPI)
10431           addSuccessorWithProb(
10432               SwitchMBB, DefaultMBB,
10433               // The default destination is the first successor in IR.
10434               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10435         else
10436           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10437 
10438         // Insert the true branch.
10439         SDValue BrCond =
10440             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10441                         DAG.getBasicBlock(Small.MBB));
10442         // Insert the false branch.
10443         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10444                              DAG.getBasicBlock(DefaultMBB));
10445 
10446         DAG.setRoot(BrCond);
10447         return;
10448       }
10449     }
10450   }
10451 
10452   if (TM.getOptLevel() != CodeGenOpt::None) {
10453     // Here, we order cases by probability so the most likely case will be
10454     // checked first. However, two clusters can have the same probability in
10455     // which case their relative ordering is non-deterministic. So we use Low
10456     // as a tie-breaker as clusters are guaranteed to never overlap.
10457     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10458                [](const CaseCluster &a, const CaseCluster &b) {
10459       return a.Prob != b.Prob ?
10460              a.Prob > b.Prob :
10461              a.Low->getValue().slt(b.Low->getValue());
10462     });
10463 
10464     // Rearrange the case blocks so that the last one falls through if possible
10465     // without changing the order of probabilities.
10466     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10467       --I;
10468       if (I->Prob > W.LastCluster->Prob)
10469         break;
10470       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10471         std::swap(*I, *W.LastCluster);
10472         break;
10473       }
10474     }
10475   }
10476 
10477   // Compute total probability.
10478   BranchProbability DefaultProb = W.DefaultProb;
10479   BranchProbability UnhandledProbs = DefaultProb;
10480   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10481     UnhandledProbs += I->Prob;
10482 
10483   MachineBasicBlock *CurMBB = W.MBB;
10484   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10485     bool FallthroughUnreachable = false;
10486     MachineBasicBlock *Fallthrough;
10487     if (I == W.LastCluster) {
10488       // For the last cluster, fall through to the default destination.
10489       Fallthrough = DefaultMBB;
10490       FallthroughUnreachable = isa<UnreachableInst>(
10491           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10492     } else {
10493       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10494       CurMF->insert(BBI, Fallthrough);
10495       // Put Cond in a virtual register to make it available from the new blocks.
10496       ExportFromCurrentBlock(Cond);
10497     }
10498     UnhandledProbs -= I->Prob;
10499 
10500     switch (I->Kind) {
10501       case CC_JumpTable: {
10502         // FIXME: Optimize away range check based on pivot comparisons.
10503         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10504         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10505 
10506         // The jump block hasn't been inserted yet; insert it here.
10507         MachineBasicBlock *JumpMBB = JT->MBB;
10508         CurMF->insert(BBI, JumpMBB);
10509 
10510         auto JumpProb = I->Prob;
10511         auto FallthroughProb = UnhandledProbs;
10512 
10513         // If the default statement is a target of the jump table, we evenly
10514         // distribute the default probability to successors of CurMBB. Also
10515         // update the probability on the edge from JumpMBB to Fallthrough.
10516         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10517                                               SE = JumpMBB->succ_end();
10518              SI != SE; ++SI) {
10519           if (*SI == DefaultMBB) {
10520             JumpProb += DefaultProb / 2;
10521             FallthroughProb -= DefaultProb / 2;
10522             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10523             JumpMBB->normalizeSuccProbs();
10524             break;
10525           }
10526         }
10527 
10528         if (FallthroughUnreachable) {
10529           // Skip the range check if the fallthrough block is unreachable.
10530           JTH->OmitRangeCheck = true;
10531         }
10532 
10533         if (!JTH->OmitRangeCheck)
10534           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10535         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10536         CurMBB->normalizeSuccProbs();
10537 
10538         // The jump table header will be inserted in our current block, do the
10539         // range check, and fall through to our fallthrough block.
10540         JTH->HeaderBB = CurMBB;
10541         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10542 
10543         // If we're in the right place, emit the jump table header right now.
10544         if (CurMBB == SwitchMBB) {
10545           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10546           JTH->Emitted = true;
10547         }
10548         break;
10549       }
10550       case CC_BitTests: {
10551         // FIXME: Optimize away range check based on pivot comparisons.
10552         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10553 
10554         // The bit test blocks haven't been inserted yet; insert them here.
10555         for (BitTestCase &BTC : BTB->Cases)
10556           CurMF->insert(BBI, BTC.ThisBB);
10557 
10558         // Fill in fields of the BitTestBlock.
10559         BTB->Parent = CurMBB;
10560         BTB->Default = Fallthrough;
10561 
10562         BTB->DefaultProb = UnhandledProbs;
10563         // If the cases in bit test don't form a contiguous range, we evenly
10564         // distribute the probability on the edge to Fallthrough to two
10565         // successors of CurMBB.
10566         if (!BTB->ContiguousRange) {
10567           BTB->Prob += DefaultProb / 2;
10568           BTB->DefaultProb -= DefaultProb / 2;
10569         }
10570 
10571         if (FallthroughUnreachable) {
10572           // Skip the range check if the fallthrough block is unreachable.
10573           BTB->OmitRangeCheck = true;
10574         }
10575 
10576         // If we're in the right place, emit the bit test header right now.
10577         if (CurMBB == SwitchMBB) {
10578           visitBitTestHeader(*BTB, SwitchMBB);
10579           BTB->Emitted = true;
10580         }
10581         break;
10582       }
10583       case CC_Range: {
10584         const Value *RHS, *LHS, *MHS;
10585         ISD::CondCode CC;
10586         if (I->Low == I->High) {
10587           // Check Cond == I->Low.
10588           CC = ISD::SETEQ;
10589           LHS = Cond;
10590           RHS=I->Low;
10591           MHS = nullptr;
10592         } else {
10593           // Check I->Low <= Cond <= I->High.
10594           CC = ISD::SETLE;
10595           LHS = I->Low;
10596           MHS = Cond;
10597           RHS = I->High;
10598         }
10599 
10600         // If Fallthrough is unreachable, fold away the comparison.
10601         if (FallthroughUnreachable)
10602           CC = ISD::SETTRUE;
10603 
10604         // The false probability is the sum of all unhandled cases.
10605         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10606                      getCurSDLoc(), I->Prob, UnhandledProbs);
10607 
10608         if (CurMBB == SwitchMBB)
10609           visitSwitchCase(CB, SwitchMBB);
10610         else
10611           SL->SwitchCases.push_back(CB);
10612 
10613         break;
10614       }
10615     }
10616     CurMBB = Fallthrough;
10617   }
10618 }
10619 
10620 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10621                                               CaseClusterIt First,
10622                                               CaseClusterIt Last) {
10623   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10624     if (X.Prob != CC.Prob)
10625       return X.Prob > CC.Prob;
10626 
10627     // Ties are broken by comparing the case value.
10628     return X.Low->getValue().slt(CC.Low->getValue());
10629   });
10630 }
10631 
10632 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10633                                         const SwitchWorkListItem &W,
10634                                         Value *Cond,
10635                                         MachineBasicBlock *SwitchMBB) {
10636   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10637          "Clusters not sorted?");
10638 
10639   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10640 
10641   // Balance the tree based on branch probabilities to create a near-optimal (in
10642   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10643   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10644   CaseClusterIt LastLeft = W.FirstCluster;
10645   CaseClusterIt FirstRight = W.LastCluster;
10646   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10647   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10648 
10649   // Move LastLeft and FirstRight towards each other from opposite directions to
10650   // find a partitioning of the clusters which balances the probability on both
10651   // sides. If LeftProb and RightProb are equal, alternate which side is
10652   // taken to ensure 0-probability nodes are distributed evenly.
10653   unsigned I = 0;
10654   while (LastLeft + 1 < FirstRight) {
10655     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10656       LeftProb += (++LastLeft)->Prob;
10657     else
10658       RightProb += (--FirstRight)->Prob;
10659     I++;
10660   }
10661 
10662   while (true) {
10663     // Our binary search tree differs from a typical BST in that ours can have up
10664     // to three values in each leaf. The pivot selection above doesn't take that
10665     // into account, which means the tree might require more nodes and be less
10666     // efficient. We compensate for this here.
10667 
10668     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10669     unsigned NumRight = W.LastCluster - FirstRight + 1;
10670 
10671     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10672       // If one side has less than 3 clusters, and the other has more than 3,
10673       // consider taking a cluster from the other side.
10674 
10675       if (NumLeft < NumRight) {
10676         // Consider moving the first cluster on the right to the left side.
10677         CaseCluster &CC = *FirstRight;
10678         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10679         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10680         if (LeftSideRank <= RightSideRank) {
10681           // Moving the cluster to the left does not demote it.
10682           ++LastLeft;
10683           ++FirstRight;
10684           continue;
10685         }
10686       } else {
10687         assert(NumRight < NumLeft);
10688         // Consider moving the last element on the left to the right side.
10689         CaseCluster &CC = *LastLeft;
10690         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10691         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10692         if (RightSideRank <= LeftSideRank) {
10693           // Moving the cluster to the right does not demot it.
10694           --LastLeft;
10695           --FirstRight;
10696           continue;
10697         }
10698       }
10699     }
10700     break;
10701   }
10702 
10703   assert(LastLeft + 1 == FirstRight);
10704   assert(LastLeft >= W.FirstCluster);
10705   assert(FirstRight <= W.LastCluster);
10706 
10707   // Use the first element on the right as pivot since we will make less-than
10708   // comparisons against it.
10709   CaseClusterIt PivotCluster = FirstRight;
10710   assert(PivotCluster > W.FirstCluster);
10711   assert(PivotCluster <= W.LastCluster);
10712 
10713   CaseClusterIt FirstLeft = W.FirstCluster;
10714   CaseClusterIt LastRight = W.LastCluster;
10715 
10716   const ConstantInt *Pivot = PivotCluster->Low;
10717 
10718   // New blocks will be inserted immediately after the current one.
10719   MachineFunction::iterator BBI(W.MBB);
10720   ++BBI;
10721 
10722   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10723   // we can branch to its destination directly if it's squeezed exactly in
10724   // between the known lower bound and Pivot - 1.
10725   MachineBasicBlock *LeftMBB;
10726   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10727       FirstLeft->Low == W.GE &&
10728       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10729     LeftMBB = FirstLeft->MBB;
10730   } else {
10731     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10732     FuncInfo.MF->insert(BBI, LeftMBB);
10733     WorkList.push_back(
10734         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10735     // Put Cond in a virtual register to make it available from the new blocks.
10736     ExportFromCurrentBlock(Cond);
10737   }
10738 
10739   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10740   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10741   // directly if RHS.High equals the current upper bound.
10742   MachineBasicBlock *RightMBB;
10743   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10744       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10745     RightMBB = FirstRight->MBB;
10746   } else {
10747     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10748     FuncInfo.MF->insert(BBI, RightMBB);
10749     WorkList.push_back(
10750         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10751     // Put Cond in a virtual register to make it available from the new blocks.
10752     ExportFromCurrentBlock(Cond);
10753   }
10754 
10755   // Create the CaseBlock record that will be used to lower the branch.
10756   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10757                getCurSDLoc(), LeftProb, RightProb);
10758 
10759   if (W.MBB == SwitchMBB)
10760     visitSwitchCase(CB, SwitchMBB);
10761   else
10762     SL->SwitchCases.push_back(CB);
10763 }
10764 
10765 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10766 // from the swith statement.
10767 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10768                                             BranchProbability PeeledCaseProb) {
10769   if (PeeledCaseProb == BranchProbability::getOne())
10770     return BranchProbability::getZero();
10771   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10772 
10773   uint32_t Numerator = CaseProb.getNumerator();
10774   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10775   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10776 }
10777 
10778 // Try to peel the top probability case if it exceeds the threshold.
10779 // Return current MachineBasicBlock for the switch statement if the peeling
10780 // does not occur.
10781 // If the peeling is performed, return the newly created MachineBasicBlock
10782 // for the peeled switch statement. Also update Clusters to remove the peeled
10783 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10784 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10785     const SwitchInst &SI, CaseClusterVector &Clusters,
10786     BranchProbability &PeeledCaseProb) {
10787   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10788   // Don't perform if there is only one cluster or optimizing for size.
10789   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10790       TM.getOptLevel() == CodeGenOpt::None ||
10791       SwitchMBB->getParent()->getFunction().hasMinSize())
10792     return SwitchMBB;
10793 
10794   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10795   unsigned PeeledCaseIndex = 0;
10796   bool SwitchPeeled = false;
10797   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10798     CaseCluster &CC = Clusters[Index];
10799     if (CC.Prob < TopCaseProb)
10800       continue;
10801     TopCaseProb = CC.Prob;
10802     PeeledCaseIndex = Index;
10803     SwitchPeeled = true;
10804   }
10805   if (!SwitchPeeled)
10806     return SwitchMBB;
10807 
10808   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10809                     << TopCaseProb << "\n");
10810 
10811   // Record the MBB for the peeled switch statement.
10812   MachineFunction::iterator BBI(SwitchMBB);
10813   ++BBI;
10814   MachineBasicBlock *PeeledSwitchMBB =
10815       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10816   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10817 
10818   ExportFromCurrentBlock(SI.getCondition());
10819   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10820   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10821                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10822   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10823 
10824   Clusters.erase(PeeledCaseIt);
10825   for (CaseCluster &CC : Clusters) {
10826     LLVM_DEBUG(
10827         dbgs() << "Scale the probablity for one cluster, before scaling: "
10828                << CC.Prob << "\n");
10829     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10830     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10831   }
10832   PeeledCaseProb = TopCaseProb;
10833   return PeeledSwitchMBB;
10834 }
10835 
10836 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10837   // Extract cases from the switch.
10838   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10839   CaseClusterVector Clusters;
10840   Clusters.reserve(SI.getNumCases());
10841   for (auto I : SI.cases()) {
10842     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10843     const ConstantInt *CaseVal = I.getCaseValue();
10844     BranchProbability Prob =
10845         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10846             : BranchProbability(1, SI.getNumCases() + 1);
10847     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10848   }
10849 
10850   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10851 
10852   // Cluster adjacent cases with the same destination. We do this at all
10853   // optimization levels because it's cheap to do and will make codegen faster
10854   // if there are many clusters.
10855   sortAndRangeify(Clusters);
10856 
10857   // The branch probablity of the peeled case.
10858   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10859   MachineBasicBlock *PeeledSwitchMBB =
10860       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10861 
10862   // If there is only the default destination, jump there directly.
10863   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10864   if (Clusters.empty()) {
10865     assert(PeeledSwitchMBB == SwitchMBB);
10866     SwitchMBB->addSuccessor(DefaultMBB);
10867     if (DefaultMBB != NextBlock(SwitchMBB)) {
10868       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10869                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10870     }
10871     return;
10872   }
10873 
10874   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10875   SL->findBitTestClusters(Clusters, &SI);
10876 
10877   LLVM_DEBUG({
10878     dbgs() << "Case clusters: ";
10879     for (const CaseCluster &C : Clusters) {
10880       if (C.Kind == CC_JumpTable)
10881         dbgs() << "JT:";
10882       if (C.Kind == CC_BitTests)
10883         dbgs() << "BT:";
10884 
10885       C.Low->getValue().print(dbgs(), true);
10886       if (C.Low != C.High) {
10887         dbgs() << '-';
10888         C.High->getValue().print(dbgs(), true);
10889       }
10890       dbgs() << ' ';
10891     }
10892     dbgs() << '\n';
10893   });
10894 
10895   assert(!Clusters.empty());
10896   SwitchWorkList WorkList;
10897   CaseClusterIt First = Clusters.begin();
10898   CaseClusterIt Last = Clusters.end() - 1;
10899   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10900   // Scale the branchprobability for DefaultMBB if the peel occurs and
10901   // DefaultMBB is not replaced.
10902   if (PeeledCaseProb != BranchProbability::getZero() &&
10903       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10904     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10905   WorkList.push_back(
10906       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10907 
10908   while (!WorkList.empty()) {
10909     SwitchWorkListItem W = WorkList.pop_back_val();
10910     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10911 
10912     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10913         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10914       // For optimized builds, lower large range as a balanced binary tree.
10915       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10916       continue;
10917     }
10918 
10919     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10920   }
10921 }
10922 
10923 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
10924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10925   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10926 
10927   SDLoc DL = getCurSDLoc();
10928   SDValue V = getValue(I.getOperand(0));
10929   assert(VT == V.getValueType() && "Malformed vector.reverse!");
10930 
10931   if (VT.isScalableVector()) {
10932     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
10933     return;
10934   }
10935 
10936   // Use VECTOR_SHUFFLE for the fixed-length vector
10937   // to maintain existing behavior.
10938   SmallVector<int, 8> Mask;
10939   unsigned NumElts = VT.getVectorMinNumElements();
10940   for (unsigned i = 0; i != NumElts; ++i)
10941     Mask.push_back(NumElts - 1 - i);
10942 
10943   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
10944 }
10945 
10946 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10947   SmallVector<EVT, 4> ValueVTs;
10948   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10949                   ValueVTs);
10950   unsigned NumValues = ValueVTs.size();
10951   if (NumValues == 0) return;
10952 
10953   SmallVector<SDValue, 4> Values(NumValues);
10954   SDValue Op = getValue(I.getOperand(0));
10955 
10956   for (unsigned i = 0; i != NumValues; ++i)
10957     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10958                             SDValue(Op.getNode(), Op.getResNo() + i));
10959 
10960   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10961                            DAG.getVTList(ValueVTs), Values));
10962 }
10963 
10964 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
10965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10966   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10967 
10968   SDLoc DL = getCurSDLoc();
10969   SDValue V1 = getValue(I.getOperand(0));
10970   SDValue V2 = getValue(I.getOperand(1));
10971   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
10972 
10973   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
10974   if (VT.isScalableVector()) {
10975     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10976     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
10977                              DAG.getConstant(Imm, DL, IdxVT)));
10978     return;
10979   }
10980 
10981   unsigned NumElts = VT.getVectorNumElements();
10982 
10983   if ((-Imm > NumElts) || (Imm >= NumElts)) {
10984     // Result is undefined if immediate is out-of-bounds.
10985     setValue(&I, DAG.getUNDEF(VT));
10986     return;
10987   }
10988 
10989   uint64_t Idx = (NumElts + Imm) % NumElts;
10990 
10991   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
10992   SmallVector<int, 8> Mask;
10993   for (unsigned i = 0; i < NumElts; ++i)
10994     Mask.push_back(Idx + i);
10995   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
10996 }
10997