xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f2981a3bc9f1c22d6ea0f6f6ad9e0b9a9b137e85)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FunctionLoweringInfo.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <tuple>
104 
105 using namespace llvm;
106 using namespace PatternMatch;
107 using namespace SwitchCG;
108 
109 #define DEBUG_TYPE "isel"
110 
111 /// LimitFloatPrecision - Generate low-precision inline sequences for
112 /// some float libcalls (6, 8 or 12 bits).
113 static unsigned LimitFloatPrecision;
114 
115 static cl::opt<bool>
116     InsertAssertAlign("insert-assert-align", cl::init(true),
117                       cl::desc("Insert the experimental `assertalign` node."),
118                       cl::ReallyHidden);
119 
120 static cl::opt<unsigned, true>
121     LimitFPPrecision("limit-float-precision",
122                      cl::desc("Generate low-precision inline sequences "
123                               "for some float libcalls"),
124                      cl::location(LimitFloatPrecision), cl::Hidden,
125                      cl::init(0));
126 
127 static cl::opt<unsigned> SwitchPeelThreshold(
128     "switch-peel-threshold", cl::Hidden, cl::init(66),
129     cl::desc("Set the case probability threshold for peeling the case from a "
130              "switch statement. A value greater than 100 will void this "
131              "optimization"));
132 
133 // Limit the width of DAG chains. This is important in general to prevent
134 // DAG-based analysis from blowing up. For example, alias analysis and
135 // load clustering may not complete in reasonable time. It is difficult to
136 // recognize and avoid this situation within each individual analysis, and
137 // future analyses are likely to have the same behavior. Limiting DAG width is
138 // the safe approach and will be especially important with global DAGs.
139 //
140 // MaxParallelChains default is arbitrarily high to avoid affecting
141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
142 // sequence over this should have been converted to llvm.memcpy by the
143 // frontend. It is easy to induce this behavior with .ll code such as:
144 // %buffer = alloca [4096 x i8]
145 // %data = load [4096 x i8]* %argPtr
146 // store [4096 x i8] %data, [4096 x i8]* %buffer
147 static const unsigned MaxParallelChains = 64;
148 
149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
150                                       const SDValue *Parts, unsigned NumParts,
151                                       MVT PartVT, EVT ValueVT, const Value *V,
152                                       Optional<CallingConv::ID> CC);
153 
154 /// getCopyFromParts - Create a value that contains the specified legal parts
155 /// combined into the value they represent.  If the parts combine to a type
156 /// larger than ValueVT then AssertOp can be used to specify whether the extra
157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
158 /// (ISD::AssertSext).
159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
160                                 const SDValue *Parts, unsigned NumParts,
161                                 MVT PartVT, EVT ValueVT, const Value *V,
162                                 Optional<CallingConv::ID> CC = None,
163                                 Optional<ISD::NodeType> AssertOp = None) {
164   // Let the target assemble the parts if it wants to
165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
166   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
167                                                    PartVT, ValueVT, CC))
168     return Val;
169 
170   if (ValueVT.isVector())
171     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
172                                   CC);
173 
174   assert(NumParts > 0 && "No parts to assemble!");
175   SDValue Val = Parts[0];
176 
177   if (NumParts > 1) {
178     // Assemble the value from multiple parts.
179     if (ValueVT.isInteger()) {
180       unsigned PartBits = PartVT.getSizeInBits();
181       unsigned ValueBits = ValueVT.getSizeInBits();
182 
183       // Assemble the power of 2 part.
184       unsigned RoundParts =
185           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       Optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the parts vector has more elements than the value vector, then we
402     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
403     // Extract the elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
418         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419     }
420 
421     // Promoted vector extract
422     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
423   }
424 
425   // Trivial bitcast if the types are the same size and the destination
426   // vector type is legal.
427   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
428       TLI.isTypeLegal(ValueVT))
429     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
430 
431   if (ValueVT.getVectorNumElements() != 1) {
432      // Certain ABIs require that vectors are passed as integers. For vectors
433      // are the same size, this is an obvious bitcast.
434      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
435        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436      } else if (ValueVT.bitsLT(PartEVT)) {
437        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
438        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
439        // Drop the extra bits.
440        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
441        return DAG.getBitcast(ValueVT, Val);
442      }
443 
444      diagnosePossiblyInvalidConstraint(
445          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
446      return DAG.getUNDEF(ValueVT);
447   }
448 
449   // Handle cases such as i8 -> <1 x i1>
450   EVT ValueSVT = ValueVT.getVectorElementType();
451   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
452     unsigned ValueSize = ValueSVT.getSizeInBits();
453     if (ValueSize == PartEVT.getSizeInBits()) {
454       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
455     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
456       // It's possible a scalar floating point type gets softened to integer and
457       // then promoted to a larger integer. If PartEVT is the larger integer
458       // we need to truncate it and then bitcast to the FP type.
459       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
460       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462       Val = DAG.getBitcast(ValueSVT, Val);
463     } else {
464       Val = ValueVT.isFloatingPoint()
465                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467     }
468   }
469 
470   return DAG.getBuildVector(ValueVT, DL, Val);
471 }
472 
473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V,
476                                  Optional<CallingConv::ID> CallConv);
477 
478 /// getCopyToParts - Create a series of nodes that contain the specified value
479 /// split into legal parts.  If the parts contain more bits than Val, then, for
480 /// integers, ExtendKind can be used to specify how to generate the extra bits.
481 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
482                            SDValue *Parts, unsigned NumParts, MVT PartVT,
483                            const Value *V,
484                            Optional<CallingConv::ID> CallConv = None,
485                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
486   // Let the target split the parts if it wants to
487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
488   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
489                                       CallConv))
490     return;
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = 1 << Log2_32(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
575 
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
619                                      const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   ElementCount PartNumElts = PartVT.getVectorElementCount();
625   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
626 
627   // We only support widening vectors with equivalent element types and
628   // fixed/scalable properties. If a target needs to widen a fixed-length type
629   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
630   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
631       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
632       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
633     return SDValue();
634 
635   // Widening a scalable vector to another scalable vector is done by inserting
636   // the vector into a larger undef one.
637   if (PartNumElts.isScalable())
638     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
639                        Val, DAG.getVectorIdxConstant(0, DL));
640 
641   EVT ElementVT = PartVT.getVectorElementType();
642   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643   // undef elements.
644   SmallVector<SDValue, 16> Ops;
645   DAG.ExtractVectorElements(Val, Ops);
646   SDValue EltUndef = DAG.getUNDEF(ElementVT);
647   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
648 
649   // FIXME: Use CONCAT for 2x -> 4x.
650   return DAG.getBuildVector(PartVT, DL, Ops);
651 }
652 
653 /// getCopyToPartsVector - Create a series of nodes that contain the specified
654 /// value split into legal parts.
655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
656                                  SDValue Val, SDValue *Parts, unsigned NumParts,
657                                  MVT PartVT, const Value *V,
658                                  Optional<CallingConv::ID> CallConv) {
659   EVT ValueVT = Val.getValueType();
660   assert(ValueVT.isVector() && "Not a vector");
661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
662   const bool IsABIRegCopy = CallConv.has_value();
663 
664   if (NumParts == 1) {
665     EVT PartEVT = PartVT;
666     if (PartEVT == ValueVT) {
667       // Nothing to do.
668     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
669       // Bitconvert vector->vector case.
670       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
671     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
672       Val = Widened;
673     } else if (PartVT.isVector() &&
674                PartEVT.getVectorElementType().bitsGE(
675                    ValueVT.getVectorElementType()) &&
676                PartEVT.getVectorElementCount() ==
677                    ValueVT.getVectorElementCount()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else if (PartEVT.isVector() &&
682                PartEVT.getVectorElementType() !=
683                    ValueVT.getVectorElementType() &&
684                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
685                    TargetLowering::TypeWidenVector) {
686       // Combination of widening and promotion.
687       EVT WidenVT =
688           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
689                            PartVT.getVectorElementCount());
690       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
691       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
692     } else {
693       // Don't extract an integer from a float vector. This can happen if the
694       // FP type gets softened to integer and then promoted. The promotion
695       // prevents it from being picked up by the earlier bitcast case.
696       if (ValueVT.getVectorElementCount().isScalar() &&
697           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
698         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
699                           DAG.getVectorIdxConstant(0, DL));
700       } else {
701         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
702         assert(PartVT.getFixedSizeInBits() > ValueSize &&
703                "lossy conversion of vector to scalar type");
704         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
705         Val = DAG.getBitcast(IntermediateType, Val);
706         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
707       }
708     }
709 
710     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
711     Parts[0] = Val;
712     return;
713   }
714 
715   // Handle a multi-element vector.
716   EVT IntermediateVT;
717   MVT RegisterVT;
718   unsigned NumIntermediates;
719   unsigned NumRegs;
720   if (IsABIRegCopy) {
721     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
722         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
723         NumIntermediates, RegisterVT);
724   } else {
725     NumRegs =
726         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
727                                    NumIntermediates, RegisterVT);
728   }
729 
730   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
731   NumParts = NumRegs; // Silence a compiler warning.
732   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
733 
734   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
735          "Mixing scalable and fixed vectors when copying in parts");
736 
737   Optional<ElementCount> DestEltCnt;
738 
739   if (IntermediateVT.isVector())
740     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
741   else
742     DestEltCnt = ElementCount::getFixed(NumIntermediates);
743 
744   EVT BuiltVectorTy = EVT::getVectorVT(
745       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
746 
747   if (ValueVT == BuiltVectorTy) {
748     // Nothing to do.
749   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
750     // Bitconvert vector->vector case.
751     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
752   } else {
753     if (BuiltVectorTy.getVectorElementType().bitsGT(
754             ValueVT.getVectorElementType())) {
755       // Integer promotion.
756       ValueVT = EVT::getVectorVT(*DAG.getContext(),
757                                  BuiltVectorTy.getVectorElementType(),
758                                  ValueVT.getVectorElementCount());
759       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
760     }
761 
762     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
763       Val = Widened;
764     }
765   }
766 
767   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
768 
769   // Split the vector into intermediate operands.
770   SmallVector<SDValue, 8> Ops(NumIntermediates);
771   for (unsigned i = 0; i != NumIntermediates; ++i) {
772     if (IntermediateVT.isVector()) {
773       // This does something sensible for scalable vectors - see the
774       // definition of EXTRACT_SUBVECTOR for further details.
775       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
776       Ops[i] =
777           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
778                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
779     } else {
780       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
781                            DAG.getVectorIdxConstant(i, DL));
782     }
783   }
784 
785   // Split the intermediate operands into legal parts.
786   if (NumParts == NumIntermediates) {
787     // If the register was not expanded, promote or copy the value,
788     // as appropriate.
789     for (unsigned i = 0; i != NumParts; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
791   } else if (NumParts > 0) {
792     // If the intermediate type was expanded, split each the value into
793     // legal parts.
794     assert(NumIntermediates != 0 && "division by zero");
795     assert(NumParts % NumIntermediates == 0 &&
796            "Must expand into a divisible number of parts!");
797     unsigned Factor = NumParts / NumIntermediates;
798     for (unsigned i = 0; i != NumIntermediates; ++i)
799       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
800                      CallConv);
801   }
802 }
803 
804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
805                            EVT valuevt, Optional<CallingConv::ID> CC)
806     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
807       RegCount(1, regs.size()), CallConv(CC) {}
808 
809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
810                            const DataLayout &DL, unsigned Reg, Type *Ty,
811                            Optional<CallingConv::ID> CC) {
812   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
813 
814   CallConv = CC;
815 
816   for (EVT ValueVT : ValueVTs) {
817     unsigned NumRegs =
818         isABIMangled()
819             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
820             : TLI.getNumRegisters(Context, ValueVT);
821     MVT RegisterVT =
822         isABIMangled()
823             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
824             : TLI.getRegisterType(Context, ValueVT);
825     for (unsigned i = 0; i != NumRegs; ++i)
826       Regs.push_back(Reg + i);
827     RegVTs.push_back(RegisterVT);
828     RegCount.push_back(NumRegs);
829     Reg += NumRegs;
830   }
831 }
832 
833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
834                                       FunctionLoweringInfo &FuncInfo,
835                                       const SDLoc &dl, SDValue &Chain,
836                                       SDValue *Flag, const Value *V) const {
837   // A Value with type {} or [0 x %t] needs no registers.
838   if (ValueVTs.empty())
839     return SDValue();
840 
841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
842 
843   // Assemble the legal parts into the final values.
844   SmallVector<SDValue, 4> Values(ValueVTs.size());
845   SmallVector<SDValue, 8> Parts;
846   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
847     // Copy the legal parts from the registers.
848     EVT ValueVT = ValueVTs[Value];
849     unsigned NumRegs = RegCount[Value];
850     MVT RegisterVT =
851         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
852                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
853                        : RegVTs[Value];
854 
855     Parts.resize(NumRegs);
856     for (unsigned i = 0; i != NumRegs; ++i) {
857       SDValue P;
858       if (!Flag) {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
860       } else {
861         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
862         *Flag = P.getValue(2);
863       }
864 
865       Chain = P.getValue(1);
866       Parts[i] = P;
867 
868       // If the source register was virtual and if we know something about it,
869       // add an assert node.
870       if (!Register::isVirtualRegister(Regs[Part + i]) ||
871           !RegisterVT.isInteger())
872         continue;
873 
874       const FunctionLoweringInfo::LiveOutInfo *LOI =
875         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
876       if (!LOI)
877         continue;
878 
879       unsigned RegSize = RegisterVT.getScalarSizeInBits();
880       unsigned NumSignBits = LOI->NumSignBits;
881       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
882 
883       if (NumZeroBits == RegSize) {
884         // The current value is a zero.
885         // Explicitly express that as it would be easier for
886         // optimizations to kick in.
887         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
888         continue;
889       }
890 
891       // FIXME: We capture more information than the dag can represent.  For
892       // now, just use the tightest assertzext/assertsext possible.
893       bool isSExt;
894       EVT FromVT(MVT::Other);
895       if (NumZeroBits) {
896         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
897         isSExt = false;
898       } else if (NumSignBits > 1) {
899         FromVT =
900             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
901         isSExt = true;
902       } else {
903         continue;
904       }
905       // Add an assertion node.
906       assert(FromVT != MVT::Other);
907       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
908                              RegisterVT, P, DAG.getValueType(FromVT));
909     }
910 
911     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
912                                      RegisterVT, ValueVT, V, CallConv);
913     Part += NumRegs;
914     Parts.clear();
915   }
916 
917   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
918 }
919 
920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
921                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
922                                  const Value *V,
923                                  ISD::NodeType PreferredExtendType) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925   ISD::NodeType ExtendKind = PreferredExtendType;
926 
927   // Get the list of the values's legal parts.
928   unsigned NumRegs = Regs.size();
929   SmallVector<SDValue, 8> Parts(NumRegs);
930   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
931     unsigned NumParts = RegCount[Value];
932 
933     MVT RegisterVT =
934         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
935                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
936                        : RegVTs[Value];
937 
938     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
939       ExtendKind = ISD::ZERO_EXTEND;
940 
941     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
942                    NumParts, RegisterVT, V, CallConv, ExtendKind);
943     Part += NumParts;
944   }
945 
946   // Copy the parts into the registers.
947   SmallVector<SDValue, 8> Chains(NumRegs);
948   for (unsigned i = 0; i != NumRegs; ++i) {
949     SDValue Part;
950     if (!Flag) {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
952     } else {
953       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
954       *Flag = Part.getValue(1);
955     }
956 
957     Chains[i] = Part.getValue(0);
958   }
959 
960   if (NumRegs == 1 || Flag)
961     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
962     // flagged to it. That is the CopyToReg nodes and the user are considered
963     // a single scheduling unit. If we create a TokenFactor and return it as
964     // chain, then the TokenFactor is both a predecessor (operand) of the
965     // user as well as a successor (the TF operands are flagged to the user).
966     // c1, f1 = CopyToReg
967     // c2, f2 = CopyToReg
968     // c3     = TokenFactor c1, c2
969     // ...
970     //        = op c3, ..., f2
971     Chain = Chains[NumRegs-1];
972   else
973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
974 }
975 
976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
977                                         unsigned MatchingIdx, const SDLoc &dl,
978                                         SelectionDAG &DAG,
979                                         std::vector<SDValue> &Ops) const {
980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 
982   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
983   if (HasMatching)
984     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
985   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
986     // Put the register class of the virtual registers in the flag word.  That
987     // way, later passes can recompute register class constraints for inline
988     // assembly as well as normal instructions.
989     // Don't do this for tied operands that can use the regclass information
990     // from the def.
991     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
992     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
993     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
994   }
995 
996   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
997   Ops.push_back(Res);
998 
999   if (Code == InlineAsm::Kind_Clobber) {
1000     // Clobbers should always have a 1:1 mapping with registers, and may
1001     // reference registers that have illegal (e.g. vector) types. Hence, we
1002     // shouldn't try to apply any sort of splitting logic to them.
1003     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1004            "No 1:1 mapping from clobbers to regs?");
1005     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1006     (void)SP;
1007     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1008       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1009       assert(
1010           (Regs[I] != SP ||
1011            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1012           "If we clobbered the stack pointer, MFI should know about it.");
1013     }
1014     return;
1015   }
1016 
1017   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1018     MVT RegisterVT = RegVTs[Value];
1019     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1020                                            RegisterVT);
1021     for (unsigned i = 0; i != NumRegs; ++i) {
1022       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1023       unsigned TheReg = Regs[Reg++];
1024       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1025     }
1026   }
1027 }
1028 
1029 SmallVector<std::pair<unsigned, TypeSize>, 4>
1030 RegsForValue::getRegsAndSizes() const {
1031   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1032   unsigned I = 0;
1033   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1034     unsigned RegCount = std::get<0>(CountAndVT);
1035     MVT RegisterVT = std::get<1>(CountAndVT);
1036     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1037     for (unsigned E = I + RegCount; I != E; ++I)
1038       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1039   }
1040   return OutVec;
1041 }
1042 
1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1044                                AssumptionCache *ac,
1045                                const TargetLibraryInfo *li) {
1046   AA = aa;
1047   AC = ac;
1048   GFI = gfi;
1049   LibInfo = li;
1050   Context = DAG.getContext();
1051   LPadToCallSiteMap.clear();
1052   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1053 }
1054 
1055 void SelectionDAGBuilder::clear() {
1056   NodeMap.clear();
1057   UnusedArgNodeMap.clear();
1058   PendingLoads.clear();
1059   PendingExports.clear();
1060   PendingConstrainedFP.clear();
1061   PendingConstrainedFPStrict.clear();
1062   CurInst = nullptr;
1063   HasTailCall = false;
1064   SDNodeOrder = LowestSDNodeOrder;
1065   StatepointLowering.clear();
1066 }
1067 
1068 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1069   DanglingDebugInfoMap.clear();
1070 }
1071 
1072 // Update DAG root to include dependencies on Pending chains.
1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1074   SDValue Root = DAG.getRoot();
1075 
1076   if (Pending.empty())
1077     return Root;
1078 
1079   // Add current root to PendingChains, unless we already indirectly
1080   // depend on it.
1081   if (Root.getOpcode() != ISD::EntryToken) {
1082     unsigned i = 0, e = Pending.size();
1083     for (; i != e; ++i) {
1084       assert(Pending[i].getNode()->getNumOperands() > 1);
1085       if (Pending[i].getNode()->getOperand(0) == Root)
1086         break;  // Don't add the root if we already indirectly depend on it.
1087     }
1088 
1089     if (i == e)
1090       Pending.push_back(Root);
1091   }
1092 
1093   if (Pending.size() == 1)
1094     Root = Pending[0];
1095   else
1096     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1097 
1098   DAG.setRoot(Root);
1099   Pending.clear();
1100   return Root;
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getMemoryRoot() {
1104   return updateRoot(PendingLoads);
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getRoot() {
1108   // Chain up all pending constrained intrinsics together with all
1109   // pending loads, by simply appending them to PendingLoads and
1110   // then calling getMemoryRoot().
1111   PendingLoads.reserve(PendingLoads.size() +
1112                        PendingConstrainedFP.size() +
1113                        PendingConstrainedFPStrict.size());
1114   PendingLoads.append(PendingConstrainedFP.begin(),
1115                       PendingConstrainedFP.end());
1116   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1117                       PendingConstrainedFPStrict.end());
1118   PendingConstrainedFP.clear();
1119   PendingConstrainedFPStrict.clear();
1120   return getMemoryRoot();
1121 }
1122 
1123 SDValue SelectionDAGBuilder::getControlRoot() {
1124   // We need to emit pending fpexcept.strict constrained intrinsics,
1125   // so append them to the PendingExports list.
1126   PendingExports.append(PendingConstrainedFPStrict.begin(),
1127                         PendingConstrainedFPStrict.end());
1128   PendingConstrainedFPStrict.clear();
1129   return updateRoot(PendingExports);
1130 }
1131 
1132 void SelectionDAGBuilder::visit(const Instruction &I) {
1133   // Set up outgoing PHI node register values before emitting the terminator.
1134   if (I.isTerminator()) {
1135     HandlePHINodesInSuccessorBlocks(I.getParent());
1136   }
1137 
1138   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1139   if (!isa<DbgInfoIntrinsic>(I))
1140     ++SDNodeOrder;
1141 
1142   CurInst = &I;
1143 
1144   // Set inserted listener only if required.
1145   bool NodeInserted = false;
1146   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1147   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1148   if (PCSectionsMD) {
1149     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1150         DAG, [&](SDNode *) { NodeInserted = true; });
1151   }
1152 
1153   visit(I.getOpcode(), I);
1154 
1155   if (!I.isTerminator() && !HasTailCall &&
1156       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1157     CopyToExportRegsIfNeeded(&I);
1158 
1159   // Handle metadata.
1160   if (PCSectionsMD) {
1161     auto It = NodeMap.find(&I);
1162     if (It != NodeMap.end()) {
1163       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1164     } else if (NodeInserted) {
1165       // This should not happen; if it does, don't let it go unnoticed so we can
1166       // fix it. Relevant visit*() function is probably missing a setValue().
1167       errs() << "warning: loosing !pcsections metadata ["
1168              << I.getModule()->getName() << "]\n";
1169       LLVM_DEBUG(I.dump());
1170       assert(false);
1171     }
1172   }
1173 
1174   CurInst = nullptr;
1175 }
1176 
1177 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1178   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1179 }
1180 
1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1182   // Note: this doesn't use InstVisitor, because it has to work with
1183   // ConstantExpr's in addition to instructions.
1184   switch (Opcode) {
1185   default: llvm_unreachable("Unknown instruction type encountered!");
1186     // Build the switch statement using the Instruction.def file.
1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1188     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1189 #include "llvm/IR/Instruction.def"
1190   }
1191 }
1192 
1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1194                                                DebugLoc DL, unsigned Order) {
1195   // We treat variadic dbg_values differently at this stage.
1196   if (DI->hasArgList()) {
1197     // For variadic dbg_values we will now insert an undef.
1198     // FIXME: We can potentially recover these!
1199     SmallVector<SDDbgOperand, 2> Locs;
1200     for (const Value *V : DI->getValues()) {
1201       auto Undef = UndefValue::get(V->getType());
1202       Locs.push_back(SDDbgOperand::fromConst(Undef));
1203     }
1204     SDDbgValue *SDV = DAG.getDbgValueList(
1205         DI->getVariable(), DI->getExpression(), Locs, {},
1206         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1207     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1208   } else {
1209     // TODO: Dangling debug info will eventually either be resolved or produce
1210     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1211     // between the original dbg.value location and its resolved DBG_VALUE,
1212     // which we should ideally fill with an extra Undef DBG_VALUE.
1213     assert(DI->getNumVariableLocationOps() == 1 &&
1214            "DbgValueInst without an ArgList should have a single location "
1215            "operand.");
1216     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1217   }
1218 }
1219 
1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1221                                                 const DIExpression *Expr) {
1222   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1223     const DbgValueInst *DI = DDI.getDI();
1224     DIVariable *DanglingVariable = DI->getVariable();
1225     DIExpression *DanglingExpr = DI->getExpression();
1226     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1227       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1228       return true;
1229     }
1230     return false;
1231   };
1232 
1233   for (auto &DDIMI : DanglingDebugInfoMap) {
1234     DanglingDebugInfoVector &DDIV = DDIMI.second;
1235 
1236     // If debug info is to be dropped, run it through final checks to see
1237     // whether it can be salvaged.
1238     for (auto &DDI : DDIV)
1239       if (isMatchingDbgValue(DDI))
1240         salvageUnresolvedDbgValue(DDI);
1241 
1242     erase_if(DDIV, isMatchingDbgValue);
1243   }
1244 }
1245 
1246 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1247 // generate the debug data structures now that we've seen its definition.
1248 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1249                                                    SDValue Val) {
1250   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1251   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1252     return;
1253 
1254   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1255   for (auto &DDI : DDIV) {
1256     const DbgValueInst *DI = DDI.getDI();
1257     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1258     assert(DI && "Ill-formed DanglingDebugInfo");
1259     DebugLoc dl = DDI.getdl();
1260     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1261     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1262     DILocalVariable *Variable = DI->getVariable();
1263     DIExpression *Expr = DI->getExpression();
1264     assert(Variable->isValidLocationForIntrinsic(dl) &&
1265            "Expected inlined-at fields to agree");
1266     SDDbgValue *SDV;
1267     if (Val.getNode()) {
1268       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1269       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1270       // we couldn't resolve it directly when examining the DbgValue intrinsic
1271       // in the first place we should not be more successful here). Unless we
1272       // have some test case that prove this to be correct we should avoid
1273       // calling EmitFuncArgumentDbgValue here.
1274       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1275                                     FuncArgumentDbgValueKind::Value, Val)) {
1276         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1277                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1278         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1279         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1280         // inserted after the definition of Val when emitting the instructions
1281         // after ISel. An alternative could be to teach
1282         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1283         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1284                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1285                    << ValSDNodeOrder << "\n");
1286         SDV = getDbgValue(Val, Variable, Expr, dl,
1287                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1288         DAG.AddDbgValue(SDV, false);
1289       } else
1290         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1291                           << "in EmitFuncArgumentDbgValue\n");
1292     } else {
1293       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1294       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1295       auto SDV =
1296           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1297       DAG.AddDbgValue(SDV, false);
1298     }
1299   }
1300   DDIV.clear();
1301 }
1302 
1303 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1304   // TODO: For the variadic implementation, instead of only checking the fail
1305   // state of `handleDebugValue`, we need know specifically which values were
1306   // invalid, so that we attempt to salvage only those values when processing
1307   // a DIArgList.
1308   assert(!DDI.getDI()->hasArgList() &&
1309          "Not implemented for variadic dbg_values");
1310   Value *V = DDI.getDI()->getValue(0);
1311   DILocalVariable *Var = DDI.getDI()->getVariable();
1312   DIExpression *Expr = DDI.getDI()->getExpression();
1313   DebugLoc DL = DDI.getdl();
1314   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1315   unsigned SDOrder = DDI.getSDNodeOrder();
1316   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1317   // that DW_OP_stack_value is desired.
1318   assert(isa<DbgValueInst>(DDI.getDI()));
1319   bool StackValue = true;
1320 
1321   // Can this Value can be encoded without any further work?
1322   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1323     return;
1324 
1325   // Attempt to salvage back through as many instructions as possible. Bail if
1326   // a non-instruction is seen, such as a constant expression or global
1327   // variable. FIXME: Further work could recover those too.
1328   while (isa<Instruction>(V)) {
1329     Instruction &VAsInst = *cast<Instruction>(V);
1330     // Temporary "0", awaiting real implementation.
1331     SmallVector<uint64_t, 16> Ops;
1332     SmallVector<Value *, 4> AdditionalValues;
1333     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1334                              AdditionalValues);
1335     // If we cannot salvage any further, and haven't yet found a suitable debug
1336     // expression, bail out.
1337     if (!V)
1338       break;
1339 
1340     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1341     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1342     // here for variadic dbg_values, remove that condition.
1343     if (!AdditionalValues.empty())
1344       break;
1345 
1346     // New value and expr now represent this debuginfo.
1347     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1348 
1349     // Some kind of simplification occurred: check whether the operand of the
1350     // salvaged debug expression can be encoded in this DAG.
1351     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1352                          /*IsVariadic=*/false)) {
1353       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1354                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1355       return;
1356     }
1357   }
1358 
1359   // This was the final opportunity to salvage this debug information, and it
1360   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1361   // any earlier variable location.
1362   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1363   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1364   DAG.AddDbgValue(SDV, false);
1365 
1366   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1367                     << "\n");
1368   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1369                     << "\n");
1370 }
1371 
1372 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1373                                            DILocalVariable *Var,
1374                                            DIExpression *Expr, DebugLoc dl,
1375                                            DebugLoc InstDL, unsigned Order,
1376                                            bool IsVariadic) {
1377   if (Values.empty())
1378     return true;
1379   SmallVector<SDDbgOperand> LocationOps;
1380   SmallVector<SDNode *> Dependencies;
1381   for (const Value *V : Values) {
1382     // Constant value.
1383     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1384         isa<ConstantPointerNull>(V)) {
1385       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1386       continue;
1387     }
1388 
1389     // Look through IntToPtr constants.
1390     if (auto *CE = dyn_cast<ConstantExpr>(V))
1391       if (CE->getOpcode() == Instruction::IntToPtr) {
1392         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1393         continue;
1394       }
1395 
1396     // If the Value is a frame index, we can create a FrameIndex debug value
1397     // without relying on the DAG at all.
1398     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1399       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1400       if (SI != FuncInfo.StaticAllocaMap.end()) {
1401         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1402         continue;
1403       }
1404     }
1405 
1406     // Do not use getValue() in here; we don't want to generate code at
1407     // this point if it hasn't been done yet.
1408     SDValue N = NodeMap[V];
1409     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1410       N = UnusedArgNodeMap[V];
1411     if (N.getNode()) {
1412       // Only emit func arg dbg value for non-variadic dbg.values for now.
1413       if (!IsVariadic &&
1414           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1415                                    FuncArgumentDbgValueKind::Value, N))
1416         return true;
1417       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1418         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1419         // describe stack slot locations.
1420         //
1421         // Consider "int x = 0; int *px = &x;". There are two kinds of
1422         // interesting debug values here after optimization:
1423         //
1424         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1425         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1426         //
1427         // Both describe the direct values of their associated variables.
1428         Dependencies.push_back(N.getNode());
1429         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1430         continue;
1431       }
1432       LocationOps.emplace_back(
1433           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1434       continue;
1435     }
1436 
1437     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1438     // Special rules apply for the first dbg.values of parameter variables in a
1439     // function. Identify them by the fact they reference Argument Values, that
1440     // they're parameters, and they are parameters of the current function. We
1441     // need to let them dangle until they get an SDNode.
1442     bool IsParamOfFunc =
1443         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1444     if (IsParamOfFunc)
1445       return false;
1446 
1447     // The value is not used in this block yet (or it would have an SDNode).
1448     // We still want the value to appear for the user if possible -- if it has
1449     // an associated VReg, we can refer to that instead.
1450     auto VMI = FuncInfo.ValueMap.find(V);
1451     if (VMI != FuncInfo.ValueMap.end()) {
1452       unsigned Reg = VMI->second;
1453       // If this is a PHI node, it may be split up into several MI PHI nodes
1454       // (in FunctionLoweringInfo::set).
1455       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1456                        V->getType(), None);
1457       if (RFV.occupiesMultipleRegs()) {
1458         // FIXME: We could potentially support variadic dbg_values here.
1459         if (IsVariadic)
1460           return false;
1461         unsigned Offset = 0;
1462         unsigned BitsToDescribe = 0;
1463         if (auto VarSize = Var->getSizeInBits())
1464           BitsToDescribe = *VarSize;
1465         if (auto Fragment = Expr->getFragmentInfo())
1466           BitsToDescribe = Fragment->SizeInBits;
1467         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1468           // Bail out if all bits are described already.
1469           if (Offset >= BitsToDescribe)
1470             break;
1471           // TODO: handle scalable vectors.
1472           unsigned RegisterSize = RegAndSize.second;
1473           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1474                                       ? BitsToDescribe - Offset
1475                                       : RegisterSize;
1476           auto FragmentExpr = DIExpression::createFragmentExpression(
1477               Expr, Offset, FragmentSize);
1478           if (!FragmentExpr)
1479             continue;
1480           SDDbgValue *SDV = DAG.getVRegDbgValue(
1481               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1482           DAG.AddDbgValue(SDV, false);
1483           Offset += RegisterSize;
1484         }
1485         return true;
1486       }
1487       // We can use simple vreg locations for variadic dbg_values as well.
1488       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1489       continue;
1490     }
1491     // We failed to create a SDDbgOperand for V.
1492     return false;
1493   }
1494 
1495   // We have created a SDDbgOperand for each Value in Values.
1496   // Should use Order instead of SDNodeOrder?
1497   assert(!LocationOps.empty());
1498   SDDbgValue *SDV =
1499       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1500                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1501   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1502   return true;
1503 }
1504 
1505 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1506   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1507   for (auto &Pair : DanglingDebugInfoMap)
1508     for (auto &DDI : Pair.second)
1509       salvageUnresolvedDbgValue(DDI);
1510   clearDanglingDebugInfo();
1511 }
1512 
1513 /// getCopyFromRegs - If there was virtual register allocated for the value V
1514 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1515 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1516   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1517   SDValue Result;
1518 
1519   if (It != FuncInfo.ValueMap.end()) {
1520     Register InReg = It->second;
1521 
1522     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1523                      DAG.getDataLayout(), InReg, Ty,
1524                      None); // This is not an ABI copy.
1525     SDValue Chain = DAG.getEntryNode();
1526     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1527                                  V);
1528     resolveDanglingDebugInfo(V, Result);
1529   }
1530 
1531   return Result;
1532 }
1533 
1534 /// getValue - Return an SDValue for the given Value.
1535 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1536   // If we already have an SDValue for this value, use it. It's important
1537   // to do this first, so that we don't create a CopyFromReg if we already
1538   // have a regular SDValue.
1539   SDValue &N = NodeMap[V];
1540   if (N.getNode()) return N;
1541 
1542   // If there's a virtual register allocated and initialized for this
1543   // value, use it.
1544   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1545     return copyFromReg;
1546 
1547   // Otherwise create a new SDValue and remember it.
1548   SDValue Val = getValueImpl(V);
1549   NodeMap[V] = Val;
1550   resolveDanglingDebugInfo(V, Val);
1551   return Val;
1552 }
1553 
1554 /// getNonRegisterValue - Return an SDValue for the given Value, but
1555 /// don't look in FuncInfo.ValueMap for a virtual register.
1556 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1557   // If we already have an SDValue for this value, use it.
1558   SDValue &N = NodeMap[V];
1559   if (N.getNode()) {
1560     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1561       // Remove the debug location from the node as the node is about to be used
1562       // in a location which may differ from the original debug location.  This
1563       // is relevant to Constant and ConstantFP nodes because they can appear
1564       // as constant expressions inside PHI nodes.
1565       N->setDebugLoc(DebugLoc());
1566     }
1567     return N;
1568   }
1569 
1570   // Otherwise create a new SDValue and remember it.
1571   SDValue Val = getValueImpl(V);
1572   NodeMap[V] = Val;
1573   resolveDanglingDebugInfo(V, Val);
1574   return Val;
1575 }
1576 
1577 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1578 /// Create an SDValue for the given value.
1579 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1581 
1582   if (const Constant *C = dyn_cast<Constant>(V)) {
1583     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1584 
1585     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1586       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1587 
1588     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1589       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1590 
1591     if (isa<ConstantPointerNull>(C)) {
1592       unsigned AS = V->getType()->getPointerAddressSpace();
1593       return DAG.getConstant(0, getCurSDLoc(),
1594                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1595     }
1596 
1597     if (match(C, m_VScale(DAG.getDataLayout())))
1598       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1599 
1600     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1601       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1602 
1603     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1604       return DAG.getUNDEF(VT);
1605 
1606     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1607       visit(CE->getOpcode(), *CE);
1608       SDValue N1 = NodeMap[V];
1609       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1610       return N1;
1611     }
1612 
1613     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1614       SmallVector<SDValue, 4> Constants;
1615       for (const Use &U : C->operands()) {
1616         SDNode *Val = getValue(U).getNode();
1617         // If the operand is an empty aggregate, there are no values.
1618         if (!Val) continue;
1619         // Add each leaf value from the operand to the Constants list
1620         // to form a flattened list of all the values.
1621         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1622           Constants.push_back(SDValue(Val, i));
1623       }
1624 
1625       return DAG.getMergeValues(Constants, getCurSDLoc());
1626     }
1627 
1628     if (const ConstantDataSequential *CDS =
1629           dyn_cast<ConstantDataSequential>(C)) {
1630       SmallVector<SDValue, 4> Ops;
1631       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1632         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1633         // Add each leaf value from the operand to the Constants list
1634         // to form a flattened list of all the values.
1635         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1636           Ops.push_back(SDValue(Val, i));
1637       }
1638 
1639       if (isa<ArrayType>(CDS->getType()))
1640         return DAG.getMergeValues(Ops, getCurSDLoc());
1641       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1642     }
1643 
1644     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1645       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1646              "Unknown struct or array constant!");
1647 
1648       SmallVector<EVT, 4> ValueVTs;
1649       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1650       unsigned NumElts = ValueVTs.size();
1651       if (NumElts == 0)
1652         return SDValue(); // empty struct
1653       SmallVector<SDValue, 4> Constants(NumElts);
1654       for (unsigned i = 0; i != NumElts; ++i) {
1655         EVT EltVT = ValueVTs[i];
1656         if (isa<UndefValue>(C))
1657           Constants[i] = DAG.getUNDEF(EltVT);
1658         else if (EltVT.isFloatingPoint())
1659           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1660         else
1661           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1662       }
1663 
1664       return DAG.getMergeValues(Constants, getCurSDLoc());
1665     }
1666 
1667     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1668       return DAG.getBlockAddress(BA, VT);
1669 
1670     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1671       return getValue(Equiv->getGlobalValue());
1672 
1673     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1674       return getValue(NC->getGlobalValue());
1675 
1676     VectorType *VecTy = cast<VectorType>(V->getType());
1677 
1678     // Now that we know the number and type of the elements, get that number of
1679     // elements into the Ops array based on what kind of constant it is.
1680     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1681       SmallVector<SDValue, 16> Ops;
1682       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1683       for (unsigned i = 0; i != NumElements; ++i)
1684         Ops.push_back(getValue(CV->getOperand(i)));
1685 
1686       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1687     }
1688 
1689     if (isa<ConstantAggregateZero>(C)) {
1690       EVT EltVT =
1691           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1692 
1693       SDValue Op;
1694       if (EltVT.isFloatingPoint())
1695         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1696       else
1697         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1698 
1699       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1700     }
1701 
1702     llvm_unreachable("Unknown vector constant");
1703   }
1704 
1705   // If this is a static alloca, generate it as the frameindex instead of
1706   // computation.
1707   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1708     DenseMap<const AllocaInst*, int>::iterator SI =
1709       FuncInfo.StaticAllocaMap.find(AI);
1710     if (SI != FuncInfo.StaticAllocaMap.end())
1711       return DAG.getFrameIndex(SI->second,
1712                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1713   }
1714 
1715   // If this is an instruction which fast-isel has deferred, select it now.
1716   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1717     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1718 
1719     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1720                      Inst->getType(), None);
1721     SDValue Chain = DAG.getEntryNode();
1722     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1723   }
1724 
1725   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1726     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1727 
1728   if (const auto *BB = dyn_cast<BasicBlock>(V))
1729     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1730 
1731   llvm_unreachable("Can't get register for value!");
1732 }
1733 
1734 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1735   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1736   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1737   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1738   bool IsSEH = isAsynchronousEHPersonality(Pers);
1739   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1740   if (!IsSEH)
1741     CatchPadMBB->setIsEHScopeEntry();
1742   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1743   if (IsMSVCCXX || IsCoreCLR)
1744     CatchPadMBB->setIsEHFuncletEntry();
1745 }
1746 
1747 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1748   // Update machine-CFG edge.
1749   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1750   FuncInfo.MBB->addSuccessor(TargetMBB);
1751   TargetMBB->setIsEHCatchretTarget(true);
1752   DAG.getMachineFunction().setHasEHCatchret(true);
1753 
1754   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1755   bool IsSEH = isAsynchronousEHPersonality(Pers);
1756   if (IsSEH) {
1757     // If this is not a fall-through branch or optimizations are switched off,
1758     // emit the branch.
1759     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1760         TM.getOptLevel() == CodeGenOpt::None)
1761       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1762                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1763     return;
1764   }
1765 
1766   // Figure out the funclet membership for the catchret's successor.
1767   // This will be used by the FuncletLayout pass to determine how to order the
1768   // BB's.
1769   // A 'catchret' returns to the outer scope's color.
1770   Value *ParentPad = I.getCatchSwitchParentPad();
1771   const BasicBlock *SuccessorColor;
1772   if (isa<ConstantTokenNone>(ParentPad))
1773     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1774   else
1775     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1776   assert(SuccessorColor && "No parent funclet for catchret!");
1777   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1778   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1779 
1780   // Create the terminator node.
1781   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1782                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1783                             DAG.getBasicBlock(SuccessorColorMBB));
1784   DAG.setRoot(Ret);
1785 }
1786 
1787 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1788   // Don't emit any special code for the cleanuppad instruction. It just marks
1789   // the start of an EH scope/funclet.
1790   FuncInfo.MBB->setIsEHScopeEntry();
1791   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1792   if (Pers != EHPersonality::Wasm_CXX) {
1793     FuncInfo.MBB->setIsEHFuncletEntry();
1794     FuncInfo.MBB->setIsCleanupFuncletEntry();
1795   }
1796 }
1797 
1798 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1799 // not match, it is OK to add only the first unwind destination catchpad to the
1800 // successors, because there will be at least one invoke instruction within the
1801 // catch scope that points to the next unwind destination, if one exists, so
1802 // CFGSort cannot mess up with BB sorting order.
1803 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1804 // call within them, and catchpads only consisting of 'catch (...)' have a
1805 // '__cxa_end_catch' call within them, both of which generate invokes in case
1806 // the next unwind destination exists, i.e., the next unwind destination is not
1807 // the caller.)
1808 //
1809 // Having at most one EH pad successor is also simpler and helps later
1810 // transformations.
1811 //
1812 // For example,
1813 // current:
1814 //   invoke void @foo to ... unwind label %catch.dispatch
1815 // catch.dispatch:
1816 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1817 // catch.start:
1818 //   ...
1819 //   ... in this BB or some other child BB dominated by this BB there will be an
1820 //   invoke that points to 'next' BB as an unwind destination
1821 //
1822 // next: ; We don't need to add this to 'current' BB's successor
1823 //   ...
1824 static void findWasmUnwindDestinations(
1825     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1826     BranchProbability Prob,
1827     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1828         &UnwindDests) {
1829   while (EHPadBB) {
1830     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1831     if (isa<CleanupPadInst>(Pad)) {
1832       // Stop on cleanup pads.
1833       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1834       UnwindDests.back().first->setIsEHScopeEntry();
1835       break;
1836     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1837       // Add the catchpad handlers to the possible destinations. We don't
1838       // continue to the unwind destination of the catchswitch for wasm.
1839       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1840         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1841         UnwindDests.back().first->setIsEHScopeEntry();
1842       }
1843       break;
1844     } else {
1845       continue;
1846     }
1847   }
1848 }
1849 
1850 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1851 /// many places it could ultimately go. In the IR, we have a single unwind
1852 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1853 /// This function skips over imaginary basic blocks that hold catchswitch
1854 /// instructions, and finds all the "real" machine
1855 /// basic block destinations. As those destinations may not be successors of
1856 /// EHPadBB, here we also calculate the edge probability to those destinations.
1857 /// The passed-in Prob is the edge probability to EHPadBB.
1858 static void findUnwindDestinations(
1859     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1860     BranchProbability Prob,
1861     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1862         &UnwindDests) {
1863   EHPersonality Personality =
1864     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1865   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1866   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1867   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1868   bool IsSEH = isAsynchronousEHPersonality(Personality);
1869 
1870   if (IsWasmCXX) {
1871     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1872     assert(UnwindDests.size() <= 1 &&
1873            "There should be at most one unwind destination for wasm");
1874     return;
1875   }
1876 
1877   while (EHPadBB) {
1878     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1879     BasicBlock *NewEHPadBB = nullptr;
1880     if (isa<LandingPadInst>(Pad)) {
1881       // Stop on landingpads. They are not funclets.
1882       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1883       break;
1884     } else if (isa<CleanupPadInst>(Pad)) {
1885       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1886       // personalities.
1887       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1888       UnwindDests.back().first->setIsEHScopeEntry();
1889       UnwindDests.back().first->setIsEHFuncletEntry();
1890       break;
1891     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1892       // Add the catchpad handlers to the possible destinations.
1893       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1894         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1895         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1896         if (IsMSVCCXX || IsCoreCLR)
1897           UnwindDests.back().first->setIsEHFuncletEntry();
1898         if (!IsSEH)
1899           UnwindDests.back().first->setIsEHScopeEntry();
1900       }
1901       NewEHPadBB = CatchSwitch->getUnwindDest();
1902     } else {
1903       continue;
1904     }
1905 
1906     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1907     if (BPI && NewEHPadBB)
1908       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1909     EHPadBB = NewEHPadBB;
1910   }
1911 }
1912 
1913 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1914   // Update successor info.
1915   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1916   auto UnwindDest = I.getUnwindDest();
1917   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1918   BranchProbability UnwindDestProb =
1919       (BPI && UnwindDest)
1920           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1921           : BranchProbability::getZero();
1922   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1923   for (auto &UnwindDest : UnwindDests) {
1924     UnwindDest.first->setIsEHPad();
1925     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1926   }
1927   FuncInfo.MBB->normalizeSuccProbs();
1928 
1929   // Create the terminator node.
1930   SDValue Ret =
1931       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1932   DAG.setRoot(Ret);
1933 }
1934 
1935 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1936   report_fatal_error("visitCatchSwitch not yet implemented!");
1937 }
1938 
1939 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1941   auto &DL = DAG.getDataLayout();
1942   SDValue Chain = getControlRoot();
1943   SmallVector<ISD::OutputArg, 8> Outs;
1944   SmallVector<SDValue, 8> OutVals;
1945 
1946   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1947   // lower
1948   //
1949   //   %val = call <ty> @llvm.experimental.deoptimize()
1950   //   ret <ty> %val
1951   //
1952   // differently.
1953   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1954     LowerDeoptimizingReturn();
1955     return;
1956   }
1957 
1958   if (!FuncInfo.CanLowerReturn) {
1959     unsigned DemoteReg = FuncInfo.DemoteRegister;
1960     const Function *F = I.getParent()->getParent();
1961 
1962     // Emit a store of the return value through the virtual register.
1963     // Leave Outs empty so that LowerReturn won't try to load return
1964     // registers the usual way.
1965     SmallVector<EVT, 1> PtrValueVTs;
1966     ComputeValueVTs(TLI, DL,
1967                     F->getReturnType()->getPointerTo(
1968                         DAG.getDataLayout().getAllocaAddrSpace()),
1969                     PtrValueVTs);
1970 
1971     SDValue RetPtr =
1972         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1973     SDValue RetOp = getValue(I.getOperand(0));
1974 
1975     SmallVector<EVT, 4> ValueVTs, MemVTs;
1976     SmallVector<uint64_t, 4> Offsets;
1977     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1978                     &Offsets);
1979     unsigned NumValues = ValueVTs.size();
1980 
1981     SmallVector<SDValue, 4> Chains(NumValues);
1982     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1983     for (unsigned i = 0; i != NumValues; ++i) {
1984       // An aggregate return value cannot wrap around the address space, so
1985       // offsets to its parts don't wrap either.
1986       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1987                                            TypeSize::Fixed(Offsets[i]));
1988 
1989       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1990       if (MemVTs[i] != ValueVTs[i])
1991         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1992       Chains[i] = DAG.getStore(
1993           Chain, getCurSDLoc(), Val,
1994           // FIXME: better loc info would be nice.
1995           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1996           commonAlignment(BaseAlign, Offsets[i]));
1997     }
1998 
1999     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2000                         MVT::Other, Chains);
2001   } else if (I.getNumOperands() != 0) {
2002     SmallVector<EVT, 4> ValueVTs;
2003     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2004     unsigned NumValues = ValueVTs.size();
2005     if (NumValues) {
2006       SDValue RetOp = getValue(I.getOperand(0));
2007 
2008       const Function *F = I.getParent()->getParent();
2009 
2010       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2011           I.getOperand(0)->getType(), F->getCallingConv(),
2012           /*IsVarArg*/ false, DL);
2013 
2014       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2015       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2016         ExtendKind = ISD::SIGN_EXTEND;
2017       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2018         ExtendKind = ISD::ZERO_EXTEND;
2019 
2020       LLVMContext &Context = F->getContext();
2021       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2022 
2023       for (unsigned j = 0; j != NumValues; ++j) {
2024         EVT VT = ValueVTs[j];
2025 
2026         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2027           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2028 
2029         CallingConv::ID CC = F->getCallingConv();
2030 
2031         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2032         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2033         SmallVector<SDValue, 4> Parts(NumParts);
2034         getCopyToParts(DAG, getCurSDLoc(),
2035                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2036                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2037 
2038         // 'inreg' on function refers to return value
2039         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2040         if (RetInReg)
2041           Flags.setInReg();
2042 
2043         if (I.getOperand(0)->getType()->isPointerTy()) {
2044           Flags.setPointer();
2045           Flags.setPointerAddrSpace(
2046               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2047         }
2048 
2049         if (NeedsRegBlock) {
2050           Flags.setInConsecutiveRegs();
2051           if (j == NumValues - 1)
2052             Flags.setInConsecutiveRegsLast();
2053         }
2054 
2055         // Propagate extension type if any
2056         if (ExtendKind == ISD::SIGN_EXTEND)
2057           Flags.setSExt();
2058         else if (ExtendKind == ISD::ZERO_EXTEND)
2059           Flags.setZExt();
2060 
2061         for (unsigned i = 0; i < NumParts; ++i) {
2062           Outs.push_back(ISD::OutputArg(Flags,
2063                                         Parts[i].getValueType().getSimpleVT(),
2064                                         VT, /*isfixed=*/true, 0, 0));
2065           OutVals.push_back(Parts[i]);
2066         }
2067       }
2068     }
2069   }
2070 
2071   // Push in swifterror virtual register as the last element of Outs. This makes
2072   // sure swifterror virtual register will be returned in the swifterror
2073   // physical register.
2074   const Function *F = I.getParent()->getParent();
2075   if (TLI.supportSwiftError() &&
2076       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2077     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2078     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2079     Flags.setSwiftError();
2080     Outs.push_back(ISD::OutputArg(
2081         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2082         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2083     // Create SDNode for the swifterror virtual register.
2084     OutVals.push_back(
2085         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2086                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2087                         EVT(TLI.getPointerTy(DL))));
2088   }
2089 
2090   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2091   CallingConv::ID CallConv =
2092     DAG.getMachineFunction().getFunction().getCallingConv();
2093   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2094       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2095 
2096   // Verify that the target's LowerReturn behaved as expected.
2097   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2098          "LowerReturn didn't return a valid chain!");
2099 
2100   // Update the DAG with the new chain value resulting from return lowering.
2101   DAG.setRoot(Chain);
2102 }
2103 
2104 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2105 /// created for it, emit nodes to copy the value into the virtual
2106 /// registers.
2107 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2108   // Skip empty types
2109   if (V->getType()->isEmptyTy())
2110     return;
2111 
2112   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2113   if (VMI != FuncInfo.ValueMap.end()) {
2114     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2115     CopyValueToVirtualRegister(V, VMI->second);
2116   }
2117 }
2118 
2119 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2120 /// the current basic block, add it to ValueMap now so that we'll get a
2121 /// CopyTo/FromReg.
2122 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2123   // No need to export constants.
2124   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2125 
2126   // Already exported?
2127   if (FuncInfo.isExportedInst(V)) return;
2128 
2129   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2130   CopyValueToVirtualRegister(V, Reg);
2131 }
2132 
2133 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2134                                                      const BasicBlock *FromBB) {
2135   // The operands of the setcc have to be in this block.  We don't know
2136   // how to export them from some other block.
2137   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2138     // Can export from current BB.
2139     if (VI->getParent() == FromBB)
2140       return true;
2141 
2142     // Is already exported, noop.
2143     return FuncInfo.isExportedInst(V);
2144   }
2145 
2146   // If this is an argument, we can export it if the BB is the entry block or
2147   // if it is already exported.
2148   if (isa<Argument>(V)) {
2149     if (FromBB->isEntryBlock())
2150       return true;
2151 
2152     // Otherwise, can only export this if it is already exported.
2153     return FuncInfo.isExportedInst(V);
2154   }
2155 
2156   // Otherwise, constants can always be exported.
2157   return true;
2158 }
2159 
2160 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2161 BranchProbability
2162 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2163                                         const MachineBasicBlock *Dst) const {
2164   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2165   const BasicBlock *SrcBB = Src->getBasicBlock();
2166   const BasicBlock *DstBB = Dst->getBasicBlock();
2167   if (!BPI) {
2168     // If BPI is not available, set the default probability as 1 / N, where N is
2169     // the number of successors.
2170     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2171     return BranchProbability(1, SuccSize);
2172   }
2173   return BPI->getEdgeProbability(SrcBB, DstBB);
2174 }
2175 
2176 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2177                                                MachineBasicBlock *Dst,
2178                                                BranchProbability Prob) {
2179   if (!FuncInfo.BPI)
2180     Src->addSuccessorWithoutProb(Dst);
2181   else {
2182     if (Prob.isUnknown())
2183       Prob = getEdgeProbability(Src, Dst);
2184     Src->addSuccessor(Dst, Prob);
2185   }
2186 }
2187 
2188 static bool InBlock(const Value *V, const BasicBlock *BB) {
2189   if (const Instruction *I = dyn_cast<Instruction>(V))
2190     return I->getParent() == BB;
2191   return true;
2192 }
2193 
2194 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2195 /// This function emits a branch and is used at the leaves of an OR or an
2196 /// AND operator tree.
2197 void
2198 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2199                                                   MachineBasicBlock *TBB,
2200                                                   MachineBasicBlock *FBB,
2201                                                   MachineBasicBlock *CurBB,
2202                                                   MachineBasicBlock *SwitchBB,
2203                                                   BranchProbability TProb,
2204                                                   BranchProbability FProb,
2205                                                   bool InvertCond) {
2206   const BasicBlock *BB = CurBB->getBasicBlock();
2207 
2208   // If the leaf of the tree is a comparison, merge the condition into
2209   // the caseblock.
2210   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2211     // The operands of the cmp have to be in this block.  We don't know
2212     // how to export them from some other block.  If this is the first block
2213     // of the sequence, no exporting is needed.
2214     if (CurBB == SwitchBB ||
2215         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2216          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2217       ISD::CondCode Condition;
2218       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2219         ICmpInst::Predicate Pred =
2220             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2221         Condition = getICmpCondCode(Pred);
2222       } else {
2223         const FCmpInst *FC = cast<FCmpInst>(Cond);
2224         FCmpInst::Predicate Pred =
2225             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2226         Condition = getFCmpCondCode(Pred);
2227         if (TM.Options.NoNaNsFPMath)
2228           Condition = getFCmpCodeWithoutNaN(Condition);
2229       }
2230 
2231       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2232                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2233       SL->SwitchCases.push_back(CB);
2234       return;
2235     }
2236   }
2237 
2238   // Create a CaseBlock record representing this branch.
2239   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2240   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2241                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2242   SL->SwitchCases.push_back(CB);
2243 }
2244 
2245 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2246                                                MachineBasicBlock *TBB,
2247                                                MachineBasicBlock *FBB,
2248                                                MachineBasicBlock *CurBB,
2249                                                MachineBasicBlock *SwitchBB,
2250                                                Instruction::BinaryOps Opc,
2251                                                BranchProbability TProb,
2252                                                BranchProbability FProb,
2253                                                bool InvertCond) {
2254   // Skip over not part of the tree and remember to invert op and operands at
2255   // next level.
2256   Value *NotCond;
2257   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2258       InBlock(NotCond, CurBB->getBasicBlock())) {
2259     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2260                          !InvertCond);
2261     return;
2262   }
2263 
2264   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2265   const Value *BOpOp0, *BOpOp1;
2266   // Compute the effective opcode for Cond, taking into account whether it needs
2267   // to be inverted, e.g.
2268   //   and (not (or A, B)), C
2269   // gets lowered as
2270   //   and (and (not A, not B), C)
2271   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2272   if (BOp) {
2273     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2274                ? Instruction::And
2275                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2276                       ? Instruction::Or
2277                       : (Instruction::BinaryOps)0);
2278     if (InvertCond) {
2279       if (BOpc == Instruction::And)
2280         BOpc = Instruction::Or;
2281       else if (BOpc == Instruction::Or)
2282         BOpc = Instruction::And;
2283     }
2284   }
2285 
2286   // If this node is not part of the or/and tree, emit it as a branch.
2287   // Note that all nodes in the tree should have same opcode.
2288   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2289   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2290       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2291       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2292     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2293                                  TProb, FProb, InvertCond);
2294     return;
2295   }
2296 
2297   //  Create TmpBB after CurBB.
2298   MachineFunction::iterator BBI(CurBB);
2299   MachineFunction &MF = DAG.getMachineFunction();
2300   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2301   CurBB->getParent()->insert(++BBI, TmpBB);
2302 
2303   if (Opc == Instruction::Or) {
2304     // Codegen X | Y as:
2305     // BB1:
2306     //   jmp_if_X TBB
2307     //   jmp TmpBB
2308     // TmpBB:
2309     //   jmp_if_Y TBB
2310     //   jmp FBB
2311     //
2312 
2313     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2314     // The requirement is that
2315     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2316     //     = TrueProb for original BB.
2317     // Assuming the original probabilities are A and B, one choice is to set
2318     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2319     // A/(1+B) and 2B/(1+B). This choice assumes that
2320     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2321     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2322     // TmpBB, but the math is more complicated.
2323 
2324     auto NewTrueProb = TProb / 2;
2325     auto NewFalseProb = TProb / 2 + FProb;
2326     // Emit the LHS condition.
2327     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2328                          NewFalseProb, InvertCond);
2329 
2330     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2331     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2332     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2333     // Emit the RHS condition into TmpBB.
2334     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2335                          Probs[1], InvertCond);
2336   } else {
2337     assert(Opc == Instruction::And && "Unknown merge op!");
2338     // Codegen X & Y as:
2339     // BB1:
2340     //   jmp_if_X TmpBB
2341     //   jmp FBB
2342     // TmpBB:
2343     //   jmp_if_Y TBB
2344     //   jmp FBB
2345     //
2346     //  This requires creation of TmpBB after CurBB.
2347 
2348     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2349     // The requirement is that
2350     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2351     //     = FalseProb for original BB.
2352     // Assuming the original probabilities are A and B, one choice is to set
2353     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2354     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2355     // TrueProb for BB1 * FalseProb for TmpBB.
2356 
2357     auto NewTrueProb = TProb + FProb / 2;
2358     auto NewFalseProb = FProb / 2;
2359     // Emit the LHS condition.
2360     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2361                          NewFalseProb, InvertCond);
2362 
2363     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2364     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2365     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2366     // Emit the RHS condition into TmpBB.
2367     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2368                          Probs[1], InvertCond);
2369   }
2370 }
2371 
2372 /// If the set of cases should be emitted as a series of branches, return true.
2373 /// If we should emit this as a bunch of and/or'd together conditions, return
2374 /// false.
2375 bool
2376 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2377   if (Cases.size() != 2) return true;
2378 
2379   // If this is two comparisons of the same values or'd or and'd together, they
2380   // will get folded into a single comparison, so don't emit two blocks.
2381   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2382        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2383       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2384        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2385     return false;
2386   }
2387 
2388   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2389   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2390   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2391       Cases[0].CC == Cases[1].CC &&
2392       isa<Constant>(Cases[0].CmpRHS) &&
2393       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2394     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2395       return false;
2396     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2397       return false;
2398   }
2399 
2400   return true;
2401 }
2402 
2403 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2404   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2405 
2406   // Update machine-CFG edges.
2407   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2408 
2409   if (I.isUnconditional()) {
2410     // Update machine-CFG edges.
2411     BrMBB->addSuccessor(Succ0MBB);
2412 
2413     // If this is not a fall-through branch or optimizations are switched off,
2414     // emit the branch.
2415     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2416       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2417                               MVT::Other, getControlRoot(),
2418                               DAG.getBasicBlock(Succ0MBB)));
2419 
2420     return;
2421   }
2422 
2423   // If this condition is one of the special cases we handle, do special stuff
2424   // now.
2425   const Value *CondVal = I.getCondition();
2426   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2427 
2428   // If this is a series of conditions that are or'd or and'd together, emit
2429   // this as a sequence of branches instead of setcc's with and/or operations.
2430   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2431   // unpredictable branches, and vector extracts because those jumps are likely
2432   // expensive for any target), this should improve performance.
2433   // For example, instead of something like:
2434   //     cmp A, B
2435   //     C = seteq
2436   //     cmp D, E
2437   //     F = setle
2438   //     or C, F
2439   //     jnz foo
2440   // Emit:
2441   //     cmp A, B
2442   //     je foo
2443   //     cmp D, E
2444   //     jle foo
2445   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2446   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2447       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2448     Value *Vec;
2449     const Value *BOp0, *BOp1;
2450     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2451     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2452       Opcode = Instruction::And;
2453     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2454       Opcode = Instruction::Or;
2455 
2456     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2457                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2458       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2459                            getEdgeProbability(BrMBB, Succ0MBB),
2460                            getEdgeProbability(BrMBB, Succ1MBB),
2461                            /*InvertCond=*/false);
2462       // If the compares in later blocks need to use values not currently
2463       // exported from this block, export them now.  This block should always
2464       // be the first entry.
2465       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2466 
2467       // Allow some cases to be rejected.
2468       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2469         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2470           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2471           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2472         }
2473 
2474         // Emit the branch for this block.
2475         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2476         SL->SwitchCases.erase(SL->SwitchCases.begin());
2477         return;
2478       }
2479 
2480       // Okay, we decided not to do this, remove any inserted MBB's and clear
2481       // SwitchCases.
2482       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2483         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2484 
2485       SL->SwitchCases.clear();
2486     }
2487   }
2488 
2489   // Create a CaseBlock record representing this branch.
2490   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2491                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2492 
2493   // Use visitSwitchCase to actually insert the fast branch sequence for this
2494   // cond branch.
2495   visitSwitchCase(CB, BrMBB);
2496 }
2497 
2498 /// visitSwitchCase - Emits the necessary code to represent a single node in
2499 /// the binary search tree resulting from lowering a switch instruction.
2500 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2501                                           MachineBasicBlock *SwitchBB) {
2502   SDValue Cond;
2503   SDValue CondLHS = getValue(CB.CmpLHS);
2504   SDLoc dl = CB.DL;
2505 
2506   if (CB.CC == ISD::SETTRUE) {
2507     // Branch or fall through to TrueBB.
2508     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2509     SwitchBB->normalizeSuccProbs();
2510     if (CB.TrueBB != NextBlock(SwitchBB)) {
2511       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2512                               DAG.getBasicBlock(CB.TrueBB)));
2513     }
2514     return;
2515   }
2516 
2517   auto &TLI = DAG.getTargetLoweringInfo();
2518   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2519 
2520   // Build the setcc now.
2521   if (!CB.CmpMHS) {
2522     // Fold "(X == true)" to X and "(X == false)" to !X to
2523     // handle common cases produced by branch lowering.
2524     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2525         CB.CC == ISD::SETEQ)
2526       Cond = CondLHS;
2527     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2528              CB.CC == ISD::SETEQ) {
2529       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2530       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2531     } else {
2532       SDValue CondRHS = getValue(CB.CmpRHS);
2533 
2534       // If a pointer's DAG type is larger than its memory type then the DAG
2535       // values are zero-extended. This breaks signed comparisons so truncate
2536       // back to the underlying type before doing the compare.
2537       if (CondLHS.getValueType() != MemVT) {
2538         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2539         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2540       }
2541       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2542     }
2543   } else {
2544     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2545 
2546     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2547     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2548 
2549     SDValue CmpOp = getValue(CB.CmpMHS);
2550     EVT VT = CmpOp.getValueType();
2551 
2552     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2553       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2554                           ISD::SETLE);
2555     } else {
2556       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2557                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2558       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2559                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2560     }
2561   }
2562 
2563   // Update successor info
2564   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2565   // TrueBB and FalseBB are always different unless the incoming IR is
2566   // degenerate. This only happens when running llc on weird IR.
2567   if (CB.TrueBB != CB.FalseBB)
2568     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2569   SwitchBB->normalizeSuccProbs();
2570 
2571   // If the lhs block is the next block, invert the condition so that we can
2572   // fall through to the lhs instead of the rhs block.
2573   if (CB.TrueBB == NextBlock(SwitchBB)) {
2574     std::swap(CB.TrueBB, CB.FalseBB);
2575     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2576     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2577   }
2578 
2579   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2580                                MVT::Other, getControlRoot(), Cond,
2581                                DAG.getBasicBlock(CB.TrueBB));
2582 
2583   setValue(CurInst, BrCond);
2584 
2585   // Insert the false branch. Do this even if it's a fall through branch,
2586   // this makes it easier to do DAG optimizations which require inverting
2587   // the branch condition.
2588   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2589                        DAG.getBasicBlock(CB.FalseBB));
2590 
2591   DAG.setRoot(BrCond);
2592 }
2593 
2594 /// visitJumpTable - Emit JumpTable node in the current MBB
2595 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2596   // Emit the code for the jump table
2597   assert(JT.Reg != -1U && "Should lower JT Header first!");
2598   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2599   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2600                                      JT.Reg, PTy);
2601   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2602   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2603                                     MVT::Other, Index.getValue(1),
2604                                     Table, Index);
2605   DAG.setRoot(BrJumpTable);
2606 }
2607 
2608 /// visitJumpTableHeader - This function emits necessary code to produce index
2609 /// in the JumpTable from switch case.
2610 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2611                                                JumpTableHeader &JTH,
2612                                                MachineBasicBlock *SwitchBB) {
2613   SDLoc dl = getCurSDLoc();
2614 
2615   // Subtract the lowest switch case value from the value being switched on.
2616   SDValue SwitchOp = getValue(JTH.SValue);
2617   EVT VT = SwitchOp.getValueType();
2618   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2619                             DAG.getConstant(JTH.First, dl, VT));
2620 
2621   // The SDNode we just created, which holds the value being switched on minus
2622   // the smallest case value, needs to be copied to a virtual register so it
2623   // can be used as an index into the jump table in a subsequent basic block.
2624   // This value may be smaller or larger than the target's pointer type, and
2625   // therefore require extension or truncating.
2626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2627   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2628 
2629   unsigned JumpTableReg =
2630       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2631   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2632                                     JumpTableReg, SwitchOp);
2633   JT.Reg = JumpTableReg;
2634 
2635   if (!JTH.FallthroughUnreachable) {
2636     // Emit the range check for the jump table, and branch to the default block
2637     // for the switch statement if the value being switched on exceeds the
2638     // largest case in the switch.
2639     SDValue CMP = DAG.getSetCC(
2640         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2641                                    Sub.getValueType()),
2642         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2643 
2644     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2645                                  MVT::Other, CopyTo, CMP,
2646                                  DAG.getBasicBlock(JT.Default));
2647 
2648     // Avoid emitting unnecessary branches to the next block.
2649     if (JT.MBB != NextBlock(SwitchBB))
2650       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2651                            DAG.getBasicBlock(JT.MBB));
2652 
2653     DAG.setRoot(BrCond);
2654   } else {
2655     // Avoid emitting unnecessary branches to the next block.
2656     if (JT.MBB != NextBlock(SwitchBB))
2657       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2658                               DAG.getBasicBlock(JT.MBB)));
2659     else
2660       DAG.setRoot(CopyTo);
2661   }
2662 }
2663 
2664 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2665 /// variable if there exists one.
2666 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2667                                  SDValue &Chain) {
2668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2669   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2670   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2671   MachineFunction &MF = DAG.getMachineFunction();
2672   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2673   MachineSDNode *Node =
2674       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2675   if (Global) {
2676     MachinePointerInfo MPInfo(Global);
2677     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2678                  MachineMemOperand::MODereferenceable;
2679     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2680         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2681     DAG.setNodeMemRefs(Node, {MemRef});
2682   }
2683   if (PtrTy != PtrMemTy)
2684     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2685   return SDValue(Node, 0);
2686 }
2687 
2688 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2689 /// tail spliced into a stack protector check success bb.
2690 ///
2691 /// For a high level explanation of how this fits into the stack protector
2692 /// generation see the comment on the declaration of class
2693 /// StackProtectorDescriptor.
2694 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2695                                                   MachineBasicBlock *ParentBB) {
2696 
2697   // First create the loads to the guard/stack slot for the comparison.
2698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2699   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2700   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2701 
2702   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2703   int FI = MFI.getStackProtectorIndex();
2704 
2705   SDValue Guard;
2706   SDLoc dl = getCurSDLoc();
2707   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2708   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2709   Align Align =
2710       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2711 
2712   // Generate code to load the content of the guard slot.
2713   SDValue GuardVal = DAG.getLoad(
2714       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2715       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2716       MachineMemOperand::MOVolatile);
2717 
2718   if (TLI.useStackGuardXorFP())
2719     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2720 
2721   // Retrieve guard check function, nullptr if instrumentation is inlined.
2722   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2723     // The target provides a guard check function to validate the guard value.
2724     // Generate a call to that function with the content of the guard slot as
2725     // argument.
2726     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2727     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2728 
2729     TargetLowering::ArgListTy Args;
2730     TargetLowering::ArgListEntry Entry;
2731     Entry.Node = GuardVal;
2732     Entry.Ty = FnTy->getParamType(0);
2733     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2734       Entry.IsInReg = true;
2735     Args.push_back(Entry);
2736 
2737     TargetLowering::CallLoweringInfo CLI(DAG);
2738     CLI.setDebugLoc(getCurSDLoc())
2739         .setChain(DAG.getEntryNode())
2740         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2741                    getValue(GuardCheckFn), std::move(Args));
2742 
2743     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2744     DAG.setRoot(Result.second);
2745     return;
2746   }
2747 
2748   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2749   // Otherwise, emit a volatile load to retrieve the stack guard value.
2750   SDValue Chain = DAG.getEntryNode();
2751   if (TLI.useLoadStackGuardNode()) {
2752     Guard = getLoadStackGuard(DAG, dl, Chain);
2753   } else {
2754     const Value *IRGuard = TLI.getSDagStackGuard(M);
2755     SDValue GuardPtr = getValue(IRGuard);
2756 
2757     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2758                         MachinePointerInfo(IRGuard, 0), Align,
2759                         MachineMemOperand::MOVolatile);
2760   }
2761 
2762   // Perform the comparison via a getsetcc.
2763   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2764                                                         *DAG.getContext(),
2765                                                         Guard.getValueType()),
2766                              Guard, GuardVal, ISD::SETNE);
2767 
2768   // If the guard/stackslot do not equal, branch to failure MBB.
2769   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2770                                MVT::Other, GuardVal.getOperand(0),
2771                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2772   // Otherwise branch to success MBB.
2773   SDValue Br = DAG.getNode(ISD::BR, dl,
2774                            MVT::Other, BrCond,
2775                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2776 
2777   DAG.setRoot(Br);
2778 }
2779 
2780 /// Codegen the failure basic block for a stack protector check.
2781 ///
2782 /// A failure stack protector machine basic block consists simply of a call to
2783 /// __stack_chk_fail().
2784 ///
2785 /// For a high level explanation of how this fits into the stack protector
2786 /// generation see the comment on the declaration of class
2787 /// StackProtectorDescriptor.
2788 void
2789 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2791   TargetLowering::MakeLibCallOptions CallOptions;
2792   CallOptions.setDiscardResult(true);
2793   SDValue Chain =
2794       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2795                       None, CallOptions, getCurSDLoc()).second;
2796   // On PS4/PS5, the "return address" must still be within the calling
2797   // function, even if it's at the very end, so emit an explicit TRAP here.
2798   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2799   if (TM.getTargetTriple().isPS())
2800     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2801   // WebAssembly needs an unreachable instruction after a non-returning call,
2802   // because the function return type can be different from __stack_chk_fail's
2803   // return type (void).
2804   if (TM.getTargetTriple().isWasm())
2805     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2806 
2807   DAG.setRoot(Chain);
2808 }
2809 
2810 /// visitBitTestHeader - This function emits necessary code to produce value
2811 /// suitable for "bit tests"
2812 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2813                                              MachineBasicBlock *SwitchBB) {
2814   SDLoc dl = getCurSDLoc();
2815 
2816   // Subtract the minimum value.
2817   SDValue SwitchOp = getValue(B.SValue);
2818   EVT VT = SwitchOp.getValueType();
2819   SDValue RangeSub =
2820       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2821 
2822   // Determine the type of the test operands.
2823   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2824   bool UsePtrType = false;
2825   if (!TLI.isTypeLegal(VT)) {
2826     UsePtrType = true;
2827   } else {
2828     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2829       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2830         // Switch table case range are encoded into series of masks.
2831         // Just use pointer type, it's guaranteed to fit.
2832         UsePtrType = true;
2833         break;
2834       }
2835   }
2836   SDValue Sub = RangeSub;
2837   if (UsePtrType) {
2838     VT = TLI.getPointerTy(DAG.getDataLayout());
2839     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2840   }
2841 
2842   B.RegVT = VT.getSimpleVT();
2843   B.Reg = FuncInfo.CreateReg(B.RegVT);
2844   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2845 
2846   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2847 
2848   if (!B.FallthroughUnreachable)
2849     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2850   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2851   SwitchBB->normalizeSuccProbs();
2852 
2853   SDValue Root = CopyTo;
2854   if (!B.FallthroughUnreachable) {
2855     // Conditional branch to the default block.
2856     SDValue RangeCmp = DAG.getSetCC(dl,
2857         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2858                                RangeSub.getValueType()),
2859         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2860         ISD::SETUGT);
2861 
2862     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2863                        DAG.getBasicBlock(B.Default));
2864   }
2865 
2866   // Avoid emitting unnecessary branches to the next block.
2867   if (MBB != NextBlock(SwitchBB))
2868     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2869 
2870   DAG.setRoot(Root);
2871 }
2872 
2873 /// visitBitTestCase - this function produces one "bit test"
2874 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2875                                            MachineBasicBlock* NextMBB,
2876                                            BranchProbability BranchProbToNext,
2877                                            unsigned Reg,
2878                                            BitTestCase &B,
2879                                            MachineBasicBlock *SwitchBB) {
2880   SDLoc dl = getCurSDLoc();
2881   MVT VT = BB.RegVT;
2882   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2883   SDValue Cmp;
2884   unsigned PopCount = countPopulation(B.Mask);
2885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2886   if (PopCount == 1) {
2887     // Testing for a single bit; just compare the shift count with what it
2888     // would need to be to shift a 1 bit in that position.
2889     Cmp = DAG.getSetCC(
2890         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2891         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2892         ISD::SETEQ);
2893   } else if (PopCount == BB.Range) {
2894     // There is only one zero bit in the range, test for it directly.
2895     Cmp = DAG.getSetCC(
2896         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2897         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2898         ISD::SETNE);
2899   } else {
2900     // Make desired shift
2901     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2902                                     DAG.getConstant(1, dl, VT), ShiftOp);
2903 
2904     // Emit bit tests and jumps
2905     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2906                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2907     Cmp = DAG.getSetCC(
2908         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2909         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2910   }
2911 
2912   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2913   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2914   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2915   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2916   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2917   // one as they are relative probabilities (and thus work more like weights),
2918   // and hence we need to normalize them to let the sum of them become one.
2919   SwitchBB->normalizeSuccProbs();
2920 
2921   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2922                               MVT::Other, getControlRoot(),
2923                               Cmp, DAG.getBasicBlock(B.TargetBB));
2924 
2925   // Avoid emitting unnecessary branches to the next block.
2926   if (NextMBB != NextBlock(SwitchBB))
2927     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2928                         DAG.getBasicBlock(NextMBB));
2929 
2930   DAG.setRoot(BrAnd);
2931 }
2932 
2933 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2934   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2935 
2936   // Retrieve successors. Look through artificial IR level blocks like
2937   // catchswitch for successors.
2938   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2939   const BasicBlock *EHPadBB = I.getSuccessor(1);
2940 
2941   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2942   // have to do anything here to lower funclet bundles.
2943   assert(!I.hasOperandBundlesOtherThan(
2944              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2945               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2946               LLVMContext::OB_cfguardtarget,
2947               LLVMContext::OB_clang_arc_attachedcall}) &&
2948          "Cannot lower invokes with arbitrary operand bundles yet!");
2949 
2950   const Value *Callee(I.getCalledOperand());
2951   const Function *Fn = dyn_cast<Function>(Callee);
2952   if (isa<InlineAsm>(Callee))
2953     visitInlineAsm(I, EHPadBB);
2954   else if (Fn && Fn->isIntrinsic()) {
2955     switch (Fn->getIntrinsicID()) {
2956     default:
2957       llvm_unreachable("Cannot invoke this intrinsic");
2958     case Intrinsic::donothing:
2959       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2960     case Intrinsic::seh_try_begin:
2961     case Intrinsic::seh_scope_begin:
2962     case Intrinsic::seh_try_end:
2963     case Intrinsic::seh_scope_end:
2964       break;
2965     case Intrinsic::experimental_patchpoint_void:
2966     case Intrinsic::experimental_patchpoint_i64:
2967       visitPatchpoint(I, EHPadBB);
2968       break;
2969     case Intrinsic::experimental_gc_statepoint:
2970       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2971       break;
2972     case Intrinsic::wasm_rethrow: {
2973       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2974       // special because it can be invoked, so we manually lower it to a DAG
2975       // node here.
2976       SmallVector<SDValue, 8> Ops;
2977       Ops.push_back(getRoot()); // inchain
2978       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2979       Ops.push_back(
2980           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2981                                 TLI.getPointerTy(DAG.getDataLayout())));
2982       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2983       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2984       break;
2985     }
2986     }
2987   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2988     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2989     // Eventually we will support lowering the @llvm.experimental.deoptimize
2990     // intrinsic, and right now there are no plans to support other intrinsics
2991     // with deopt state.
2992     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2993   } else {
2994     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2995   }
2996 
2997   // If the value of the invoke is used outside of its defining block, make it
2998   // available as a virtual register.
2999   // We already took care of the exported value for the statepoint instruction
3000   // during call to the LowerStatepoint.
3001   if (!isa<GCStatepointInst>(I)) {
3002     CopyToExportRegsIfNeeded(&I);
3003   }
3004 
3005   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3006   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3007   BranchProbability EHPadBBProb =
3008       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3009           : BranchProbability::getZero();
3010   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3011 
3012   // Update successor info.
3013   addSuccessorWithProb(InvokeMBB, Return);
3014   for (auto &UnwindDest : UnwindDests) {
3015     UnwindDest.first->setIsEHPad();
3016     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3017   }
3018   InvokeMBB->normalizeSuccProbs();
3019 
3020   // Drop into normal successor.
3021   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3022                           DAG.getBasicBlock(Return)));
3023 }
3024 
3025 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3026   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3027 
3028   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3029   // have to do anything here to lower funclet bundles.
3030   assert(!I.hasOperandBundlesOtherThan(
3031              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3032          "Cannot lower callbrs with arbitrary operand bundles yet!");
3033 
3034   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3035   visitInlineAsm(I);
3036   CopyToExportRegsIfNeeded(&I);
3037 
3038   // Retrieve successors.
3039   SmallPtrSet<BasicBlock *, 8> Dests;
3040   Dests.insert(I.getDefaultDest());
3041   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3042 
3043   // Update successor info.
3044   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3045   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3046     BasicBlock *Dest = I.getIndirectDest(i);
3047     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3048     Target->setIsInlineAsmBrIndirectTarget();
3049     Target->setMachineBlockAddressTaken();
3050     Target->setLabelMustBeEmitted();
3051     // Don't add duplicate machine successors.
3052     if (Dests.insert(Dest).second)
3053       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3054   }
3055   CallBrMBB->normalizeSuccProbs();
3056 
3057   // Drop into default successor.
3058   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3059                           MVT::Other, getControlRoot(),
3060                           DAG.getBasicBlock(Return)));
3061 }
3062 
3063 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3064   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3065 }
3066 
3067 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3068   assert(FuncInfo.MBB->isEHPad() &&
3069          "Call to landingpad not in landing pad!");
3070 
3071   // If there aren't registers to copy the values into (e.g., during SjLj
3072   // exceptions), then don't bother to create these DAG nodes.
3073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3074   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3075   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3076       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3077     return;
3078 
3079   // If landingpad's return type is token type, we don't create DAG nodes
3080   // for its exception pointer and selector value. The extraction of exception
3081   // pointer or selector value from token type landingpads is not currently
3082   // supported.
3083   if (LP.getType()->isTokenTy())
3084     return;
3085 
3086   SmallVector<EVT, 2> ValueVTs;
3087   SDLoc dl = getCurSDLoc();
3088   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3089   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3090 
3091   // Get the two live-in registers as SDValues. The physregs have already been
3092   // copied into virtual registers.
3093   SDValue Ops[2];
3094   if (FuncInfo.ExceptionPointerVirtReg) {
3095     Ops[0] = DAG.getZExtOrTrunc(
3096         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3097                            FuncInfo.ExceptionPointerVirtReg,
3098                            TLI.getPointerTy(DAG.getDataLayout())),
3099         dl, ValueVTs[0]);
3100   } else {
3101     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3102   }
3103   Ops[1] = DAG.getZExtOrTrunc(
3104       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3105                          FuncInfo.ExceptionSelectorVirtReg,
3106                          TLI.getPointerTy(DAG.getDataLayout())),
3107       dl, ValueVTs[1]);
3108 
3109   // Merge into one.
3110   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3111                             DAG.getVTList(ValueVTs), Ops);
3112   setValue(&LP, Res);
3113 }
3114 
3115 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3116                                            MachineBasicBlock *Last) {
3117   // Update JTCases.
3118   for (JumpTableBlock &JTB : SL->JTCases)
3119     if (JTB.first.HeaderBB == First)
3120       JTB.first.HeaderBB = Last;
3121 
3122   // Update BitTestCases.
3123   for (BitTestBlock &BTB : SL->BitTestCases)
3124     if (BTB.Parent == First)
3125       BTB.Parent = Last;
3126 }
3127 
3128 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3129   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3130 
3131   // Update machine-CFG edges with unique successors.
3132   SmallSet<BasicBlock*, 32> Done;
3133   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3134     BasicBlock *BB = I.getSuccessor(i);
3135     bool Inserted = Done.insert(BB).second;
3136     if (!Inserted)
3137         continue;
3138 
3139     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3140     addSuccessorWithProb(IndirectBrMBB, Succ);
3141   }
3142   IndirectBrMBB->normalizeSuccProbs();
3143 
3144   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3145                           MVT::Other, getControlRoot(),
3146                           getValue(I.getAddress())));
3147 }
3148 
3149 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3150   if (!DAG.getTarget().Options.TrapUnreachable)
3151     return;
3152 
3153   // We may be able to ignore unreachable behind a noreturn call.
3154   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3155     const BasicBlock &BB = *I.getParent();
3156     if (&I != &BB.front()) {
3157       BasicBlock::const_iterator PredI =
3158         std::prev(BasicBlock::const_iterator(&I));
3159       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3160         if (Call->doesNotReturn())
3161           return;
3162       }
3163     }
3164   }
3165 
3166   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3167 }
3168 
3169 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3170   SDNodeFlags Flags;
3171   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3172     Flags.copyFMF(*FPOp);
3173 
3174   SDValue Op = getValue(I.getOperand(0));
3175   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3176                                     Op, Flags);
3177   setValue(&I, UnNodeValue);
3178 }
3179 
3180 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3181   SDNodeFlags Flags;
3182   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3183     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3184     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3185   }
3186   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3187     Flags.setExact(ExactOp->isExact());
3188   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3189     Flags.copyFMF(*FPOp);
3190 
3191   SDValue Op1 = getValue(I.getOperand(0));
3192   SDValue Op2 = getValue(I.getOperand(1));
3193   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3194                                      Op1, Op2, Flags);
3195   setValue(&I, BinNodeValue);
3196 }
3197 
3198 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3199   SDValue Op1 = getValue(I.getOperand(0));
3200   SDValue Op2 = getValue(I.getOperand(1));
3201 
3202   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3203       Op1.getValueType(), DAG.getDataLayout());
3204 
3205   // Coerce the shift amount to the right type if we can. This exposes the
3206   // truncate or zext to optimization early.
3207   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3208     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3209            "Unexpected shift type");
3210     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3211   }
3212 
3213   bool nuw = false;
3214   bool nsw = false;
3215   bool exact = false;
3216 
3217   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3218 
3219     if (const OverflowingBinaryOperator *OFBinOp =
3220             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3221       nuw = OFBinOp->hasNoUnsignedWrap();
3222       nsw = OFBinOp->hasNoSignedWrap();
3223     }
3224     if (const PossiblyExactOperator *ExactOp =
3225             dyn_cast<const PossiblyExactOperator>(&I))
3226       exact = ExactOp->isExact();
3227   }
3228   SDNodeFlags Flags;
3229   Flags.setExact(exact);
3230   Flags.setNoSignedWrap(nsw);
3231   Flags.setNoUnsignedWrap(nuw);
3232   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3233                             Flags);
3234   setValue(&I, Res);
3235 }
3236 
3237 void SelectionDAGBuilder::visitSDiv(const User &I) {
3238   SDValue Op1 = getValue(I.getOperand(0));
3239   SDValue Op2 = getValue(I.getOperand(1));
3240 
3241   SDNodeFlags Flags;
3242   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3243                  cast<PossiblyExactOperator>(&I)->isExact());
3244   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3245                            Op2, Flags));
3246 }
3247 
3248 void SelectionDAGBuilder::visitICmp(const User &I) {
3249   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3250   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3251     predicate = IC->getPredicate();
3252   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3253     predicate = ICmpInst::Predicate(IC->getPredicate());
3254   SDValue Op1 = getValue(I.getOperand(0));
3255   SDValue Op2 = getValue(I.getOperand(1));
3256   ISD::CondCode Opcode = getICmpCondCode(predicate);
3257 
3258   auto &TLI = DAG.getTargetLoweringInfo();
3259   EVT MemVT =
3260       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3261 
3262   // If a pointer's DAG type is larger than its memory type then the DAG values
3263   // are zero-extended. This breaks signed comparisons so truncate back to the
3264   // underlying type before doing the compare.
3265   if (Op1.getValueType() != MemVT) {
3266     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3267     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3268   }
3269 
3270   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3271                                                         I.getType());
3272   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3273 }
3274 
3275 void SelectionDAGBuilder::visitFCmp(const User &I) {
3276   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3277   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3278     predicate = FC->getPredicate();
3279   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3280     predicate = FCmpInst::Predicate(FC->getPredicate());
3281   SDValue Op1 = getValue(I.getOperand(0));
3282   SDValue Op2 = getValue(I.getOperand(1));
3283 
3284   ISD::CondCode Condition = getFCmpCondCode(predicate);
3285   auto *FPMO = cast<FPMathOperator>(&I);
3286   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3287     Condition = getFCmpCodeWithoutNaN(Condition);
3288 
3289   SDNodeFlags Flags;
3290   Flags.copyFMF(*FPMO);
3291   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3292 
3293   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3294                                                         I.getType());
3295   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3296 }
3297 
3298 // Check if the condition of the select has one use or two users that are both
3299 // selects with the same condition.
3300 static bool hasOnlySelectUsers(const Value *Cond) {
3301   return llvm::all_of(Cond->users(), [](const Value *V) {
3302     return isa<SelectInst>(V);
3303   });
3304 }
3305 
3306 void SelectionDAGBuilder::visitSelect(const User &I) {
3307   SmallVector<EVT, 4> ValueVTs;
3308   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3309                   ValueVTs);
3310   unsigned NumValues = ValueVTs.size();
3311   if (NumValues == 0) return;
3312 
3313   SmallVector<SDValue, 4> Values(NumValues);
3314   SDValue Cond     = getValue(I.getOperand(0));
3315   SDValue LHSVal   = getValue(I.getOperand(1));
3316   SDValue RHSVal   = getValue(I.getOperand(2));
3317   SmallVector<SDValue, 1> BaseOps(1, Cond);
3318   ISD::NodeType OpCode =
3319       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3320 
3321   bool IsUnaryAbs = false;
3322   bool Negate = false;
3323 
3324   SDNodeFlags Flags;
3325   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3326     Flags.copyFMF(*FPOp);
3327 
3328   // Min/max matching is only viable if all output VTs are the same.
3329   if (all_equal(ValueVTs)) {
3330     EVT VT = ValueVTs[0];
3331     LLVMContext &Ctx = *DAG.getContext();
3332     auto &TLI = DAG.getTargetLoweringInfo();
3333 
3334     // We care about the legality of the operation after it has been type
3335     // legalized.
3336     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3337       VT = TLI.getTypeToTransformTo(Ctx, VT);
3338 
3339     // If the vselect is legal, assume we want to leave this as a vector setcc +
3340     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3341     // min/max is legal on the scalar type.
3342     bool UseScalarMinMax = VT.isVector() &&
3343       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3344 
3345     Value *LHS, *RHS;
3346     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3347     ISD::NodeType Opc = ISD::DELETED_NODE;
3348     switch (SPR.Flavor) {
3349     case SPF_UMAX:    Opc = ISD::UMAX; break;
3350     case SPF_UMIN:    Opc = ISD::UMIN; break;
3351     case SPF_SMAX:    Opc = ISD::SMAX; break;
3352     case SPF_SMIN:    Opc = ISD::SMIN; break;
3353     case SPF_FMINNUM:
3354       switch (SPR.NaNBehavior) {
3355       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3356       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3357       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3358       case SPNB_RETURNS_ANY: {
3359         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3360           Opc = ISD::FMINNUM;
3361         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3362           Opc = ISD::FMINIMUM;
3363         else if (UseScalarMinMax)
3364           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3365             ISD::FMINNUM : ISD::FMINIMUM;
3366         break;
3367       }
3368       }
3369       break;
3370     case SPF_FMAXNUM:
3371       switch (SPR.NaNBehavior) {
3372       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3373       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3374       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3375       case SPNB_RETURNS_ANY:
3376 
3377         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3378           Opc = ISD::FMAXNUM;
3379         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3380           Opc = ISD::FMAXIMUM;
3381         else if (UseScalarMinMax)
3382           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3383             ISD::FMAXNUM : ISD::FMAXIMUM;
3384         break;
3385       }
3386       break;
3387     case SPF_NABS:
3388       Negate = true;
3389       [[fallthrough]];
3390     case SPF_ABS:
3391       IsUnaryAbs = true;
3392       Opc = ISD::ABS;
3393       break;
3394     default: break;
3395     }
3396 
3397     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3398         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3399          (UseScalarMinMax &&
3400           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3401         // If the underlying comparison instruction is used by any other
3402         // instruction, the consumed instructions won't be destroyed, so it is
3403         // not profitable to convert to a min/max.
3404         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3405       OpCode = Opc;
3406       LHSVal = getValue(LHS);
3407       RHSVal = getValue(RHS);
3408       BaseOps.clear();
3409     }
3410 
3411     if (IsUnaryAbs) {
3412       OpCode = Opc;
3413       LHSVal = getValue(LHS);
3414       BaseOps.clear();
3415     }
3416   }
3417 
3418   if (IsUnaryAbs) {
3419     for (unsigned i = 0; i != NumValues; ++i) {
3420       SDLoc dl = getCurSDLoc();
3421       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3422       Values[i] =
3423           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3424       if (Negate)
3425         Values[i] = DAG.getNegative(Values[i], dl, VT);
3426     }
3427   } else {
3428     for (unsigned i = 0; i != NumValues; ++i) {
3429       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3430       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3431       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3432       Values[i] = DAG.getNode(
3433           OpCode, getCurSDLoc(),
3434           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3435     }
3436   }
3437 
3438   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3439                            DAG.getVTList(ValueVTs), Values));
3440 }
3441 
3442 void SelectionDAGBuilder::visitTrunc(const User &I) {
3443   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitZExt(const User &I) {
3451   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3452   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitSExt(const User &I) {
3460   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3461   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3462   SDValue N = getValue(I.getOperand(0));
3463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3464                                                         I.getType());
3465   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3466 }
3467 
3468 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3469   // FPTrunc is never a no-op cast, no need to check
3470   SDValue N = getValue(I.getOperand(0));
3471   SDLoc dl = getCurSDLoc();
3472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3473   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3474   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3475                            DAG.getTargetConstant(
3476                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3477 }
3478 
3479 void SelectionDAGBuilder::visitFPExt(const User &I) {
3480   // FPExt is never a no-op cast, no need to check
3481   SDValue N = getValue(I.getOperand(0));
3482   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3483                                                         I.getType());
3484   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3485 }
3486 
3487 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3488   // FPToUI is never a no-op cast, no need to check
3489   SDValue N = getValue(I.getOperand(0));
3490   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3491                                                         I.getType());
3492   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3493 }
3494 
3495 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3496   // FPToSI is never a no-op cast, no need to check
3497   SDValue N = getValue(I.getOperand(0));
3498   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3499                                                         I.getType());
3500   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3501 }
3502 
3503 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3504   // UIToFP is never a no-op cast, no need to check
3505   SDValue N = getValue(I.getOperand(0));
3506   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3507                                                         I.getType());
3508   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3509 }
3510 
3511 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3512   // SIToFP is never a no-op cast, no need to check
3513   SDValue N = getValue(I.getOperand(0));
3514   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3515                                                         I.getType());
3516   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3517 }
3518 
3519 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3520   // What to do depends on the size of the integer and the size of the pointer.
3521   // We can either truncate, zero extend, or no-op, accordingly.
3522   SDValue N = getValue(I.getOperand(0));
3523   auto &TLI = DAG.getTargetLoweringInfo();
3524   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3525                                                         I.getType());
3526   EVT PtrMemVT =
3527       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3528   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3529   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3530   setValue(&I, N);
3531 }
3532 
3533 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3534   // What to do depends on the size of the integer and the size of the pointer.
3535   // We can either truncate, zero extend, or no-op, accordingly.
3536   SDValue N = getValue(I.getOperand(0));
3537   auto &TLI = DAG.getTargetLoweringInfo();
3538   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3539   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3540   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3541   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3542   setValue(&I, N);
3543 }
3544 
3545 void SelectionDAGBuilder::visitBitCast(const User &I) {
3546   SDValue N = getValue(I.getOperand(0));
3547   SDLoc dl = getCurSDLoc();
3548   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3549                                                         I.getType());
3550 
3551   // BitCast assures us that source and destination are the same size so this is
3552   // either a BITCAST or a no-op.
3553   if (DestVT != N.getValueType())
3554     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3555                              DestVT, N)); // convert types.
3556   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3557   // might fold any kind of constant expression to an integer constant and that
3558   // is not what we are looking for. Only recognize a bitcast of a genuine
3559   // constant integer as an opaque constant.
3560   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3561     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3562                                  /*isOpaque*/true));
3563   else
3564     setValue(&I, N);            // noop cast.
3565 }
3566 
3567 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3569   const Value *SV = I.getOperand(0);
3570   SDValue N = getValue(SV);
3571   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3572 
3573   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3574   unsigned DestAS = I.getType()->getPointerAddressSpace();
3575 
3576   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3577     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3578 
3579   setValue(&I, N);
3580 }
3581 
3582 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3584   SDValue InVec = getValue(I.getOperand(0));
3585   SDValue InVal = getValue(I.getOperand(1));
3586   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3587                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3588   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3589                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3590                            InVec, InVal, InIdx));
3591 }
3592 
3593 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3595   SDValue InVec = getValue(I.getOperand(0));
3596   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3597                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3598   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3599                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3600                            InVec, InIdx));
3601 }
3602 
3603 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3604   SDValue Src1 = getValue(I.getOperand(0));
3605   SDValue Src2 = getValue(I.getOperand(1));
3606   ArrayRef<int> Mask;
3607   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3608     Mask = SVI->getShuffleMask();
3609   else
3610     Mask = cast<ConstantExpr>(I).getShuffleMask();
3611   SDLoc DL = getCurSDLoc();
3612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3613   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3614   EVT SrcVT = Src1.getValueType();
3615 
3616   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3617       VT.isScalableVector()) {
3618     // Canonical splat form of first element of first input vector.
3619     SDValue FirstElt =
3620         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3621                     DAG.getVectorIdxConstant(0, DL));
3622     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3623     return;
3624   }
3625 
3626   // For now, we only handle splats for scalable vectors.
3627   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3628   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3629   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3630 
3631   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3632   unsigned MaskNumElts = Mask.size();
3633 
3634   if (SrcNumElts == MaskNumElts) {
3635     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3636     return;
3637   }
3638 
3639   // Normalize the shuffle vector since mask and vector length don't match.
3640   if (SrcNumElts < MaskNumElts) {
3641     // Mask is longer than the source vectors. We can use concatenate vector to
3642     // make the mask and vectors lengths match.
3643 
3644     if (MaskNumElts % SrcNumElts == 0) {
3645       // Mask length is a multiple of the source vector length.
3646       // Check if the shuffle is some kind of concatenation of the input
3647       // vectors.
3648       unsigned NumConcat = MaskNumElts / SrcNumElts;
3649       bool IsConcat = true;
3650       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3651       for (unsigned i = 0; i != MaskNumElts; ++i) {
3652         int Idx = Mask[i];
3653         if (Idx < 0)
3654           continue;
3655         // Ensure the indices in each SrcVT sized piece are sequential and that
3656         // the same source is used for the whole piece.
3657         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3658             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3659              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3660           IsConcat = false;
3661           break;
3662         }
3663         // Remember which source this index came from.
3664         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3665       }
3666 
3667       // The shuffle is concatenating multiple vectors together. Just emit
3668       // a CONCAT_VECTORS operation.
3669       if (IsConcat) {
3670         SmallVector<SDValue, 8> ConcatOps;
3671         for (auto Src : ConcatSrcs) {
3672           if (Src < 0)
3673             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3674           else if (Src == 0)
3675             ConcatOps.push_back(Src1);
3676           else
3677             ConcatOps.push_back(Src2);
3678         }
3679         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3680         return;
3681       }
3682     }
3683 
3684     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3685     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3686     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3687                                     PaddedMaskNumElts);
3688 
3689     // Pad both vectors with undefs to make them the same length as the mask.
3690     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3691 
3692     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3693     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3694     MOps1[0] = Src1;
3695     MOps2[0] = Src2;
3696 
3697     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3698     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3699 
3700     // Readjust mask for new input vector length.
3701     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3702     for (unsigned i = 0; i != MaskNumElts; ++i) {
3703       int Idx = Mask[i];
3704       if (Idx >= (int)SrcNumElts)
3705         Idx -= SrcNumElts - PaddedMaskNumElts;
3706       MappedOps[i] = Idx;
3707     }
3708 
3709     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3710 
3711     // If the concatenated vector was padded, extract a subvector with the
3712     // correct number of elements.
3713     if (MaskNumElts != PaddedMaskNumElts)
3714       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3715                            DAG.getVectorIdxConstant(0, DL));
3716 
3717     setValue(&I, Result);
3718     return;
3719   }
3720 
3721   if (SrcNumElts > MaskNumElts) {
3722     // Analyze the access pattern of the vector to see if we can extract
3723     // two subvectors and do the shuffle.
3724     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3725     bool CanExtract = true;
3726     for (int Idx : Mask) {
3727       unsigned Input = 0;
3728       if (Idx < 0)
3729         continue;
3730 
3731       if (Idx >= (int)SrcNumElts) {
3732         Input = 1;
3733         Idx -= SrcNumElts;
3734       }
3735 
3736       // If all the indices come from the same MaskNumElts sized portion of
3737       // the sources we can use extract. Also make sure the extract wouldn't
3738       // extract past the end of the source.
3739       int NewStartIdx = alignDown(Idx, MaskNumElts);
3740       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3741           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3742         CanExtract = false;
3743       // Make sure we always update StartIdx as we use it to track if all
3744       // elements are undef.
3745       StartIdx[Input] = NewStartIdx;
3746     }
3747 
3748     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3749       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3750       return;
3751     }
3752     if (CanExtract) {
3753       // Extract appropriate subvector and generate a vector shuffle
3754       for (unsigned Input = 0; Input < 2; ++Input) {
3755         SDValue &Src = Input == 0 ? Src1 : Src2;
3756         if (StartIdx[Input] < 0)
3757           Src = DAG.getUNDEF(VT);
3758         else {
3759           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3760                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3761         }
3762       }
3763 
3764       // Calculate new mask.
3765       SmallVector<int, 8> MappedOps(Mask);
3766       for (int &Idx : MappedOps) {
3767         if (Idx >= (int)SrcNumElts)
3768           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3769         else if (Idx >= 0)
3770           Idx -= StartIdx[0];
3771       }
3772 
3773       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3774       return;
3775     }
3776   }
3777 
3778   // We can't use either concat vectors or extract subvectors so fall back to
3779   // replacing the shuffle with extract and build vector.
3780   // to insert and build vector.
3781   EVT EltVT = VT.getVectorElementType();
3782   SmallVector<SDValue,8> Ops;
3783   for (int Idx : Mask) {
3784     SDValue Res;
3785 
3786     if (Idx < 0) {
3787       Res = DAG.getUNDEF(EltVT);
3788     } else {
3789       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3790       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3791 
3792       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3793                         DAG.getVectorIdxConstant(Idx, DL));
3794     }
3795 
3796     Ops.push_back(Res);
3797   }
3798 
3799   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3800 }
3801 
3802 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3803   ArrayRef<unsigned> Indices = I.getIndices();
3804   const Value *Op0 = I.getOperand(0);
3805   const Value *Op1 = I.getOperand(1);
3806   Type *AggTy = I.getType();
3807   Type *ValTy = Op1->getType();
3808   bool IntoUndef = isa<UndefValue>(Op0);
3809   bool FromUndef = isa<UndefValue>(Op1);
3810 
3811   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3812 
3813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3814   SmallVector<EVT, 4> AggValueVTs;
3815   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3816   SmallVector<EVT, 4> ValValueVTs;
3817   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3818 
3819   unsigned NumAggValues = AggValueVTs.size();
3820   unsigned NumValValues = ValValueVTs.size();
3821   SmallVector<SDValue, 4> Values(NumAggValues);
3822 
3823   // Ignore an insertvalue that produces an empty object
3824   if (!NumAggValues) {
3825     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3826     return;
3827   }
3828 
3829   SDValue Agg = getValue(Op0);
3830   unsigned i = 0;
3831   // Copy the beginning value(s) from the original aggregate.
3832   for (; i != LinearIndex; ++i)
3833     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3834                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3835   // Copy values from the inserted value(s).
3836   if (NumValValues) {
3837     SDValue Val = getValue(Op1);
3838     for (; i != LinearIndex + NumValValues; ++i)
3839       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3840                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3841   }
3842   // Copy remaining value(s) from the original aggregate.
3843   for (; i != NumAggValues; ++i)
3844     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3845                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3846 
3847   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3848                            DAG.getVTList(AggValueVTs), Values));
3849 }
3850 
3851 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3852   ArrayRef<unsigned> Indices = I.getIndices();
3853   const Value *Op0 = I.getOperand(0);
3854   Type *AggTy = Op0->getType();
3855   Type *ValTy = I.getType();
3856   bool OutOfUndef = isa<UndefValue>(Op0);
3857 
3858   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3859 
3860   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3861   SmallVector<EVT, 4> ValValueVTs;
3862   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3863 
3864   unsigned NumValValues = ValValueVTs.size();
3865 
3866   // Ignore a extractvalue that produces an empty object
3867   if (!NumValValues) {
3868     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3869     return;
3870   }
3871 
3872   SmallVector<SDValue, 4> Values(NumValValues);
3873 
3874   SDValue Agg = getValue(Op0);
3875   // Copy out the selected value(s).
3876   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3877     Values[i - LinearIndex] =
3878       OutOfUndef ?
3879         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3880         SDValue(Agg.getNode(), Agg.getResNo() + i);
3881 
3882   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3883                            DAG.getVTList(ValValueVTs), Values));
3884 }
3885 
3886 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3887   Value *Op0 = I.getOperand(0);
3888   // Note that the pointer operand may be a vector of pointers. Take the scalar
3889   // element which holds a pointer.
3890   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3891   SDValue N = getValue(Op0);
3892   SDLoc dl = getCurSDLoc();
3893   auto &TLI = DAG.getTargetLoweringInfo();
3894 
3895   // Normalize Vector GEP - all scalar operands should be converted to the
3896   // splat vector.
3897   bool IsVectorGEP = I.getType()->isVectorTy();
3898   ElementCount VectorElementCount =
3899       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3900                   : ElementCount::getFixed(0);
3901 
3902   if (IsVectorGEP && !N.getValueType().isVector()) {
3903     LLVMContext &Context = *DAG.getContext();
3904     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3905     N = DAG.getSplat(VT, dl, N);
3906   }
3907 
3908   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3909        GTI != E; ++GTI) {
3910     const Value *Idx = GTI.getOperand();
3911     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3912       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3913       if (Field) {
3914         // N = N + Offset
3915         uint64_t Offset =
3916             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3917 
3918         // In an inbounds GEP with an offset that is nonnegative even when
3919         // interpreted as signed, assume there is no unsigned overflow.
3920         SDNodeFlags Flags;
3921         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3922           Flags.setNoUnsignedWrap(true);
3923 
3924         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3925                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3926       }
3927     } else {
3928       // IdxSize is the width of the arithmetic according to IR semantics.
3929       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3930       // (and fix up the result later).
3931       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3932       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3933       TypeSize ElementSize =
3934           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3935       // We intentionally mask away the high bits here; ElementSize may not
3936       // fit in IdxTy.
3937       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3938       bool ElementScalable = ElementSize.isScalable();
3939 
3940       // If this is a scalar constant or a splat vector of constants,
3941       // handle it quickly.
3942       const auto *C = dyn_cast<Constant>(Idx);
3943       if (C && isa<VectorType>(C->getType()))
3944         C = C->getSplatValue();
3945 
3946       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3947       if (CI && CI->isZero())
3948         continue;
3949       if (CI && !ElementScalable) {
3950         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3951         LLVMContext &Context = *DAG.getContext();
3952         SDValue OffsVal;
3953         if (IsVectorGEP)
3954           OffsVal = DAG.getConstant(
3955               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3956         else
3957           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3958 
3959         // In an inbounds GEP with an offset that is nonnegative even when
3960         // interpreted as signed, assume there is no unsigned overflow.
3961         SDNodeFlags Flags;
3962         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3963           Flags.setNoUnsignedWrap(true);
3964 
3965         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3966 
3967         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3968         continue;
3969       }
3970 
3971       // N = N + Idx * ElementMul;
3972       SDValue IdxN = getValue(Idx);
3973 
3974       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3975         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3976                                   VectorElementCount);
3977         IdxN = DAG.getSplat(VT, dl, IdxN);
3978       }
3979 
3980       // If the index is smaller or larger than intptr_t, truncate or extend
3981       // it.
3982       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3983 
3984       if (ElementScalable) {
3985         EVT VScaleTy = N.getValueType().getScalarType();
3986         SDValue VScale = DAG.getNode(
3987             ISD::VSCALE, dl, VScaleTy,
3988             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3989         if (IsVectorGEP)
3990           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3991         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3992       } else {
3993         // If this is a multiply by a power of two, turn it into a shl
3994         // immediately.  This is a very common case.
3995         if (ElementMul != 1) {
3996           if (ElementMul.isPowerOf2()) {
3997             unsigned Amt = ElementMul.logBase2();
3998             IdxN = DAG.getNode(ISD::SHL, dl,
3999                                N.getValueType(), IdxN,
4000                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4001           } else {
4002             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4003                                             IdxN.getValueType());
4004             IdxN = DAG.getNode(ISD::MUL, dl,
4005                                N.getValueType(), IdxN, Scale);
4006           }
4007         }
4008       }
4009 
4010       N = DAG.getNode(ISD::ADD, dl,
4011                       N.getValueType(), N, IdxN);
4012     }
4013   }
4014 
4015   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4016   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4017   if (IsVectorGEP) {
4018     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4019     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4020   }
4021 
4022   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4023     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4024 
4025   setValue(&I, N);
4026 }
4027 
4028 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4029   // If this is a fixed sized alloca in the entry block of the function,
4030   // allocate it statically on the stack.
4031   if (FuncInfo.StaticAllocaMap.count(&I))
4032     return;   // getValue will auto-populate this.
4033 
4034   SDLoc dl = getCurSDLoc();
4035   Type *Ty = I.getAllocatedType();
4036   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4037   auto &DL = DAG.getDataLayout();
4038   TypeSize TySize = DL.getTypeAllocSize(Ty);
4039   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4040 
4041   SDValue AllocSize = getValue(I.getArraySize());
4042 
4043   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4044   if (AllocSize.getValueType() != IntPtr)
4045     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4046 
4047   if (TySize.isScalable())
4048     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4049                             DAG.getVScale(dl, IntPtr,
4050                                           APInt(IntPtr.getScalarSizeInBits(),
4051                                                 TySize.getKnownMinValue())));
4052   else
4053     AllocSize =
4054         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4055                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4056 
4057   // Handle alignment.  If the requested alignment is less than or equal to
4058   // the stack alignment, ignore it.  If the size is greater than or equal to
4059   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4060   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4061   if (*Alignment <= StackAlign)
4062     Alignment = None;
4063 
4064   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4065   // Round the size of the allocation up to the stack alignment size
4066   // by add SA-1 to the size. This doesn't overflow because we're computing
4067   // an address inside an alloca.
4068   SDNodeFlags Flags;
4069   Flags.setNoUnsignedWrap(true);
4070   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4071                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4072 
4073   // Mask out the low bits for alignment purposes.
4074   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4075                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4076 
4077   SDValue Ops[] = {
4078       getRoot(), AllocSize,
4079       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4080   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4081   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4082   setValue(&I, DSA);
4083   DAG.setRoot(DSA.getValue(1));
4084 
4085   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4086 }
4087 
4088 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4089   if (I.isAtomic())
4090     return visitAtomicLoad(I);
4091 
4092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4093   const Value *SV = I.getOperand(0);
4094   if (TLI.supportSwiftError()) {
4095     // Swifterror values can come from either a function parameter with
4096     // swifterror attribute or an alloca with swifterror attribute.
4097     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4098       if (Arg->hasSwiftErrorAttr())
4099         return visitLoadFromSwiftError(I);
4100     }
4101 
4102     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4103       if (Alloca->isSwiftError())
4104         return visitLoadFromSwiftError(I);
4105     }
4106   }
4107 
4108   SDValue Ptr = getValue(SV);
4109 
4110   Type *Ty = I.getType();
4111   SmallVector<EVT, 4> ValueVTs, MemVTs;
4112   SmallVector<uint64_t, 4> Offsets;
4113   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4114   unsigned NumValues = ValueVTs.size();
4115   if (NumValues == 0)
4116     return;
4117 
4118   Align Alignment = I.getAlign();
4119   AAMDNodes AAInfo = I.getAAMetadata();
4120   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4121   bool isVolatile = I.isVolatile();
4122   MachineMemOperand::Flags MMOFlags =
4123       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4124 
4125   SDValue Root;
4126   bool ConstantMemory = false;
4127   if (isVolatile)
4128     // Serialize volatile loads with other side effects.
4129     Root = getRoot();
4130   else if (NumValues > MaxParallelChains)
4131     Root = getMemoryRoot();
4132   else if (AA &&
4133            AA->pointsToConstantMemory(MemoryLocation(
4134                SV,
4135                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4136                AAInfo))) {
4137     // Do not serialize (non-volatile) loads of constant memory with anything.
4138     Root = DAG.getEntryNode();
4139     ConstantMemory = true;
4140     MMOFlags |= MachineMemOperand::MOInvariant;
4141   } else {
4142     // Do not serialize non-volatile loads against each other.
4143     Root = DAG.getRoot();
4144   }
4145 
4146   if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(),
4147                                          &I, AC, nullptr, LibInfo))
4148     MMOFlags |= MachineMemOperand::MODereferenceable;
4149 
4150   SDLoc dl = getCurSDLoc();
4151 
4152   if (isVolatile)
4153     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4154 
4155   // An aggregate load cannot wrap around the address space, so offsets to its
4156   // parts don't wrap either.
4157   SDNodeFlags Flags;
4158   Flags.setNoUnsignedWrap(true);
4159 
4160   SmallVector<SDValue, 4> Values(NumValues);
4161   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4162   EVT PtrVT = Ptr.getValueType();
4163 
4164   unsigned ChainI = 0;
4165   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4166     // Serializing loads here may result in excessive register pressure, and
4167     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4168     // could recover a bit by hoisting nodes upward in the chain by recognizing
4169     // they are side-effect free or do not alias. The optimizer should really
4170     // avoid this case by converting large object/array copies to llvm.memcpy
4171     // (MaxParallelChains should always remain as failsafe).
4172     if (ChainI == MaxParallelChains) {
4173       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4174       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4175                                   makeArrayRef(Chains.data(), ChainI));
4176       Root = Chain;
4177       ChainI = 0;
4178     }
4179     SDValue A = DAG.getNode(ISD::ADD, dl,
4180                             PtrVT, Ptr,
4181                             DAG.getConstant(Offsets[i], dl, PtrVT),
4182                             Flags);
4183 
4184     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4185                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4186                             MMOFlags, AAInfo, Ranges);
4187     Chains[ChainI] = L.getValue(1);
4188 
4189     if (MemVTs[i] != ValueVTs[i])
4190       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4191 
4192     Values[i] = L;
4193   }
4194 
4195   if (!ConstantMemory) {
4196     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4197                                 makeArrayRef(Chains.data(), ChainI));
4198     if (isVolatile)
4199       DAG.setRoot(Chain);
4200     else
4201       PendingLoads.push_back(Chain);
4202   }
4203 
4204   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4205                            DAG.getVTList(ValueVTs), Values));
4206 }
4207 
4208 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4209   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4210          "call visitStoreToSwiftError when backend supports swifterror");
4211 
4212   SmallVector<EVT, 4> ValueVTs;
4213   SmallVector<uint64_t, 4> Offsets;
4214   const Value *SrcV = I.getOperand(0);
4215   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4216                   SrcV->getType(), ValueVTs, &Offsets);
4217   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4218          "expect a single EVT for swifterror");
4219 
4220   SDValue Src = getValue(SrcV);
4221   // Create a virtual register, then update the virtual register.
4222   Register VReg =
4223       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4224   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4225   // Chain can be getRoot or getControlRoot.
4226   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4227                                       SDValue(Src.getNode(), Src.getResNo()));
4228   DAG.setRoot(CopyNode);
4229 }
4230 
4231 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4232   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4233          "call visitLoadFromSwiftError when backend supports swifterror");
4234 
4235   assert(!I.isVolatile() &&
4236          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4237          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4238          "Support volatile, non temporal, invariant for load_from_swift_error");
4239 
4240   const Value *SV = I.getOperand(0);
4241   Type *Ty = I.getType();
4242   assert(
4243       (!AA ||
4244        !AA->pointsToConstantMemory(MemoryLocation(
4245            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4246            I.getAAMetadata()))) &&
4247       "load_from_swift_error should not be constant memory");
4248 
4249   SmallVector<EVT, 4> ValueVTs;
4250   SmallVector<uint64_t, 4> Offsets;
4251   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4252                   ValueVTs, &Offsets);
4253   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4254          "expect a single EVT for swifterror");
4255 
4256   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4257   SDValue L = DAG.getCopyFromReg(
4258       getRoot(), getCurSDLoc(),
4259       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4260 
4261   setValue(&I, L);
4262 }
4263 
4264 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4265   if (I.isAtomic())
4266     return visitAtomicStore(I);
4267 
4268   const Value *SrcV = I.getOperand(0);
4269   const Value *PtrV = I.getOperand(1);
4270 
4271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4272   if (TLI.supportSwiftError()) {
4273     // Swifterror values can come from either a function parameter with
4274     // swifterror attribute or an alloca with swifterror attribute.
4275     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4276       if (Arg->hasSwiftErrorAttr())
4277         return visitStoreToSwiftError(I);
4278     }
4279 
4280     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4281       if (Alloca->isSwiftError())
4282         return visitStoreToSwiftError(I);
4283     }
4284   }
4285 
4286   SmallVector<EVT, 4> ValueVTs, MemVTs;
4287   SmallVector<uint64_t, 4> Offsets;
4288   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4289                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4290   unsigned NumValues = ValueVTs.size();
4291   if (NumValues == 0)
4292     return;
4293 
4294   // Get the lowered operands. Note that we do this after
4295   // checking if NumResults is zero, because with zero results
4296   // the operands won't have values in the map.
4297   SDValue Src = getValue(SrcV);
4298   SDValue Ptr = getValue(PtrV);
4299 
4300   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4301   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4302   SDLoc dl = getCurSDLoc();
4303   Align Alignment = I.getAlign();
4304   AAMDNodes AAInfo = I.getAAMetadata();
4305 
4306   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4307 
4308   // An aggregate load cannot wrap around the address space, so offsets to its
4309   // parts don't wrap either.
4310   SDNodeFlags Flags;
4311   Flags.setNoUnsignedWrap(true);
4312 
4313   unsigned ChainI = 0;
4314   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4315     // See visitLoad comments.
4316     if (ChainI == MaxParallelChains) {
4317       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4318                                   makeArrayRef(Chains.data(), ChainI));
4319       Root = Chain;
4320       ChainI = 0;
4321     }
4322     SDValue Add =
4323         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4324     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4325     if (MemVTs[i] != ValueVTs[i])
4326       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4327     SDValue St =
4328         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4329                      Alignment, MMOFlags, AAInfo);
4330     Chains[ChainI] = St;
4331   }
4332 
4333   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4334                                   makeArrayRef(Chains.data(), ChainI));
4335   setValue(&I, StoreNode);
4336   DAG.setRoot(StoreNode);
4337 }
4338 
4339 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4340                                            bool IsCompressing) {
4341   SDLoc sdl = getCurSDLoc();
4342 
4343   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4344                                MaybeAlign &Alignment) {
4345     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4346     Src0 = I.getArgOperand(0);
4347     Ptr = I.getArgOperand(1);
4348     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4349     Mask = I.getArgOperand(3);
4350   };
4351   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4352                                     MaybeAlign &Alignment) {
4353     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4354     Src0 = I.getArgOperand(0);
4355     Ptr = I.getArgOperand(1);
4356     Mask = I.getArgOperand(2);
4357     Alignment = None;
4358   };
4359 
4360   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4361   MaybeAlign Alignment;
4362   if (IsCompressing)
4363     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4364   else
4365     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4366 
4367   SDValue Ptr = getValue(PtrOperand);
4368   SDValue Src0 = getValue(Src0Operand);
4369   SDValue Mask = getValue(MaskOperand);
4370   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4371 
4372   EVT VT = Src0.getValueType();
4373   if (!Alignment)
4374     Alignment = DAG.getEVTAlign(VT);
4375 
4376   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4377       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4378       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4379   SDValue StoreNode =
4380       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4381                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4382   DAG.setRoot(StoreNode);
4383   setValue(&I, StoreNode);
4384 }
4385 
4386 // Get a uniform base for the Gather/Scatter intrinsic.
4387 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4388 // We try to represent it as a base pointer + vector of indices.
4389 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4390 // The first operand of the GEP may be a single pointer or a vector of pointers
4391 // Example:
4392 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4393 //  or
4394 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4395 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4396 //
4397 // When the first GEP operand is a single pointer - it is the uniform base we
4398 // are looking for. If first operand of the GEP is a splat vector - we
4399 // extract the splat value and use it as a uniform base.
4400 // In all other cases the function returns 'false'.
4401 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4402                            ISD::MemIndexType &IndexType, SDValue &Scale,
4403                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4404                            uint64_t ElemSize) {
4405   SelectionDAG& DAG = SDB->DAG;
4406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4407   const DataLayout &DL = DAG.getDataLayout();
4408 
4409   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4410 
4411   // Handle splat constant pointer.
4412   if (auto *C = dyn_cast<Constant>(Ptr)) {
4413     C = C->getSplatValue();
4414     if (!C)
4415       return false;
4416 
4417     Base = SDB->getValue(C);
4418 
4419     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4420     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4421     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4422     IndexType = ISD::SIGNED_SCALED;
4423     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4424     return true;
4425   }
4426 
4427   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4428   if (!GEP || GEP->getParent() != CurBB)
4429     return false;
4430 
4431   if (GEP->getNumOperands() != 2)
4432     return false;
4433 
4434   const Value *BasePtr = GEP->getPointerOperand();
4435   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4436 
4437   // Make sure the base is scalar and the index is a vector.
4438   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4439     return false;
4440 
4441   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4442 
4443   // Target may not support the required addressing mode.
4444   if (ScaleVal != 1 &&
4445       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4446     return false;
4447 
4448   Base = SDB->getValue(BasePtr);
4449   Index = SDB->getValue(IndexVal);
4450   IndexType = ISD::SIGNED_SCALED;
4451 
4452   Scale =
4453       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4454   return true;
4455 }
4456 
4457 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4458   SDLoc sdl = getCurSDLoc();
4459 
4460   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4461   const Value *Ptr = I.getArgOperand(1);
4462   SDValue Src0 = getValue(I.getArgOperand(0));
4463   SDValue Mask = getValue(I.getArgOperand(3));
4464   EVT VT = Src0.getValueType();
4465   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4466                         ->getMaybeAlignValue()
4467                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4469 
4470   SDValue Base;
4471   SDValue Index;
4472   ISD::MemIndexType IndexType;
4473   SDValue Scale;
4474   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4475                                     I.getParent(), VT.getScalarStoreSize());
4476 
4477   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4478   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4479       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4480       // TODO: Make MachineMemOperands aware of scalable
4481       // vectors.
4482       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4483   if (!UniformBase) {
4484     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485     Index = getValue(Ptr);
4486     IndexType = ISD::SIGNED_SCALED;
4487     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4488   }
4489 
4490   EVT IdxVT = Index.getValueType();
4491   EVT EltTy = IdxVT.getVectorElementType();
4492   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4493     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4494     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4495   }
4496 
4497   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4498   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4499                                          Ops, MMO, IndexType, false);
4500   DAG.setRoot(Scatter);
4501   setValue(&I, Scatter);
4502 }
4503 
4504 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4505   SDLoc sdl = getCurSDLoc();
4506 
4507   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4508                               MaybeAlign &Alignment) {
4509     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4510     Ptr = I.getArgOperand(0);
4511     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4512     Mask = I.getArgOperand(2);
4513     Src0 = I.getArgOperand(3);
4514   };
4515   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4516                                  MaybeAlign &Alignment) {
4517     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4518     Ptr = I.getArgOperand(0);
4519     Alignment = None;
4520     Mask = I.getArgOperand(1);
4521     Src0 = I.getArgOperand(2);
4522   };
4523 
4524   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4525   MaybeAlign Alignment;
4526   if (IsExpanding)
4527     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4528   else
4529     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4530 
4531   SDValue Ptr = getValue(PtrOperand);
4532   SDValue Src0 = getValue(Src0Operand);
4533   SDValue Mask = getValue(MaskOperand);
4534   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4535 
4536   EVT VT = Src0.getValueType();
4537   if (!Alignment)
4538     Alignment = DAG.getEVTAlign(VT);
4539 
4540   AAMDNodes AAInfo = I.getAAMetadata();
4541   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4542 
4543   // Do not serialize masked loads of constant memory with anything.
4544   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4545   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4546 
4547   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4548 
4549   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4550       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4551       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4552 
4553   SDValue Load =
4554       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4555                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4556   if (AddToChain)
4557     PendingLoads.push_back(Load.getValue(1));
4558   setValue(&I, Load);
4559 }
4560 
4561 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4562   SDLoc sdl = getCurSDLoc();
4563 
4564   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4565   const Value *Ptr = I.getArgOperand(0);
4566   SDValue Src0 = getValue(I.getArgOperand(3));
4567   SDValue Mask = getValue(I.getArgOperand(2));
4568 
4569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4570   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4571   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4572                         ->getMaybeAlignValue()
4573                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4574 
4575   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4576 
4577   SDValue Root = DAG.getRoot();
4578   SDValue Base;
4579   SDValue Index;
4580   ISD::MemIndexType IndexType;
4581   SDValue Scale;
4582   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4583                                     I.getParent(), VT.getScalarStoreSize());
4584   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4585   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4586       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4587       // TODO: Make MachineMemOperands aware of scalable
4588       // vectors.
4589       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4590 
4591   if (!UniformBase) {
4592     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4593     Index = getValue(Ptr);
4594     IndexType = ISD::SIGNED_SCALED;
4595     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4596   }
4597 
4598   EVT IdxVT = Index.getValueType();
4599   EVT EltTy = IdxVT.getVectorElementType();
4600   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4601     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4602     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4603   }
4604 
4605   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4606   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4607                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4608 
4609   PendingLoads.push_back(Gather.getValue(1));
4610   setValue(&I, Gather);
4611 }
4612 
4613 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4614   SDLoc dl = getCurSDLoc();
4615   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4616   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4617   SyncScope::ID SSID = I.getSyncScopeID();
4618 
4619   SDValue InChain = getRoot();
4620 
4621   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4622   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4623 
4624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4625   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4626 
4627   MachineFunction &MF = DAG.getMachineFunction();
4628   MachineMemOperand *MMO = MF.getMachineMemOperand(
4629       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4630       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4631       FailureOrdering);
4632 
4633   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4634                                    dl, MemVT, VTs, InChain,
4635                                    getValue(I.getPointerOperand()),
4636                                    getValue(I.getCompareOperand()),
4637                                    getValue(I.getNewValOperand()), MMO);
4638 
4639   SDValue OutChain = L.getValue(2);
4640 
4641   setValue(&I, L);
4642   DAG.setRoot(OutChain);
4643 }
4644 
4645 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4646   SDLoc dl = getCurSDLoc();
4647   ISD::NodeType NT;
4648   switch (I.getOperation()) {
4649   default: llvm_unreachable("Unknown atomicrmw operation");
4650   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4651   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4652   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4653   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4654   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4655   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4656   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4657   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4658   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4659   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4660   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4661   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4662   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4663   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4664   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4665   }
4666   AtomicOrdering Ordering = I.getOrdering();
4667   SyncScope::ID SSID = I.getSyncScopeID();
4668 
4669   SDValue InChain = getRoot();
4670 
4671   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4672   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4673   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4674 
4675   MachineFunction &MF = DAG.getMachineFunction();
4676   MachineMemOperand *MMO = MF.getMachineMemOperand(
4677       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4678       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4679 
4680   SDValue L =
4681     DAG.getAtomic(NT, dl, MemVT, InChain,
4682                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4683                   MMO);
4684 
4685   SDValue OutChain = L.getValue(1);
4686 
4687   setValue(&I, L);
4688   DAG.setRoot(OutChain);
4689 }
4690 
4691 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4692   SDLoc dl = getCurSDLoc();
4693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4694   SDValue Ops[3];
4695   Ops[0] = getRoot();
4696   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4697                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4698   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4699                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4700   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4701   setValue(&I, N);
4702   DAG.setRoot(N);
4703 }
4704 
4705 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4706   SDLoc dl = getCurSDLoc();
4707   AtomicOrdering Order = I.getOrdering();
4708   SyncScope::ID SSID = I.getSyncScopeID();
4709 
4710   SDValue InChain = getRoot();
4711 
4712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4713   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4714   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4715 
4716   if (!TLI.supportsUnalignedAtomics() &&
4717       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4718     report_fatal_error("Cannot generate unaligned atomic load");
4719 
4720   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4721 
4722   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4723       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4724       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4725 
4726   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4727 
4728   SDValue Ptr = getValue(I.getPointerOperand());
4729 
4730   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4731     // TODO: Once this is better exercised by tests, it should be merged with
4732     // the normal path for loads to prevent future divergence.
4733     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4734     if (MemVT != VT)
4735       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4736 
4737     setValue(&I, L);
4738     SDValue OutChain = L.getValue(1);
4739     if (!I.isUnordered())
4740       DAG.setRoot(OutChain);
4741     else
4742       PendingLoads.push_back(OutChain);
4743     return;
4744   }
4745 
4746   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4747                             Ptr, MMO);
4748 
4749   SDValue OutChain = L.getValue(1);
4750   if (MemVT != VT)
4751     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4752 
4753   setValue(&I, L);
4754   DAG.setRoot(OutChain);
4755 }
4756 
4757 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4758   SDLoc dl = getCurSDLoc();
4759 
4760   AtomicOrdering Ordering = I.getOrdering();
4761   SyncScope::ID SSID = I.getSyncScopeID();
4762 
4763   SDValue InChain = getRoot();
4764 
4765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4766   EVT MemVT =
4767       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4768 
4769   if (!TLI.supportsUnalignedAtomics() &&
4770       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4771     report_fatal_error("Cannot generate unaligned atomic store");
4772 
4773   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4774 
4775   MachineFunction &MF = DAG.getMachineFunction();
4776   MachineMemOperand *MMO = MF.getMachineMemOperand(
4777       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4778       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4779 
4780   SDValue Val = getValue(I.getValueOperand());
4781   if (Val.getValueType() != MemVT)
4782     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4783   SDValue Ptr = getValue(I.getPointerOperand());
4784 
4785   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4786     // TODO: Once this is better exercised by tests, it should be merged with
4787     // the normal path for stores to prevent future divergence.
4788     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4789     setValue(&I, S);
4790     DAG.setRoot(S);
4791     return;
4792   }
4793   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4794                                    Ptr, Val, MMO);
4795 
4796   setValue(&I, OutChain);
4797   DAG.setRoot(OutChain);
4798 }
4799 
4800 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4801 /// node.
4802 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4803                                                unsigned Intrinsic) {
4804   // Ignore the callsite's attributes. A specific call site may be marked with
4805   // readnone, but the lowering code will expect the chain based on the
4806   // definition.
4807   const Function *F = I.getCalledFunction();
4808   bool HasChain = !F->doesNotAccessMemory();
4809   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4810 
4811   // Build the operand list.
4812   SmallVector<SDValue, 8> Ops;
4813   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4814     if (OnlyLoad) {
4815       // We don't need to serialize loads against other loads.
4816       Ops.push_back(DAG.getRoot());
4817     } else {
4818       Ops.push_back(getRoot());
4819     }
4820   }
4821 
4822   // Info is set by getTgtMemIntrinsic
4823   TargetLowering::IntrinsicInfo Info;
4824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4825   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4826                                                DAG.getMachineFunction(),
4827                                                Intrinsic);
4828 
4829   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4830   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4831       Info.opc == ISD::INTRINSIC_W_CHAIN)
4832     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4833                                         TLI.getPointerTy(DAG.getDataLayout())));
4834 
4835   // Add all operands of the call to the operand list.
4836   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4837     const Value *Arg = I.getArgOperand(i);
4838     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4839       Ops.push_back(getValue(Arg));
4840       continue;
4841     }
4842 
4843     // Use TargetConstant instead of a regular constant for immarg.
4844     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4845     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4846       assert(CI->getBitWidth() <= 64 &&
4847              "large intrinsic immediates not handled");
4848       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4849     } else {
4850       Ops.push_back(
4851           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4852     }
4853   }
4854 
4855   SmallVector<EVT, 4> ValueVTs;
4856   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4857 
4858   if (HasChain)
4859     ValueVTs.push_back(MVT::Other);
4860 
4861   SDVTList VTs = DAG.getVTList(ValueVTs);
4862 
4863   // Propagate fast-math-flags from IR to node(s).
4864   SDNodeFlags Flags;
4865   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4866     Flags.copyFMF(*FPMO);
4867   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4868 
4869   // Create the node.
4870   SDValue Result;
4871   // In some cases, custom collection of operands from CallInst I may be needed.
4872   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4873   if (IsTgtIntrinsic) {
4874     // This is target intrinsic that touches memory
4875     Result =
4876         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4877                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4878                                 Info.align, Info.flags, Info.size,
4879                                 I.getAAMetadata());
4880   } else if (!HasChain) {
4881     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4882   } else if (!I.getType()->isVoidTy()) {
4883     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4884   } else {
4885     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4886   }
4887 
4888   if (HasChain) {
4889     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4890     if (OnlyLoad)
4891       PendingLoads.push_back(Chain);
4892     else
4893       DAG.setRoot(Chain);
4894   }
4895 
4896   if (!I.getType()->isVoidTy()) {
4897     if (!isa<VectorType>(I.getType()))
4898       Result = lowerRangeToAssertZExt(DAG, I, Result);
4899 
4900     MaybeAlign Alignment = I.getRetAlign();
4901     if (!Alignment)
4902       Alignment = F->getAttributes().getRetAlignment();
4903     // Insert `assertalign` node if there's an alignment.
4904     if (InsertAssertAlign && Alignment) {
4905       Result =
4906           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4907     }
4908 
4909     setValue(&I, Result);
4910   }
4911 }
4912 
4913 /// GetSignificand - Get the significand and build it into a floating-point
4914 /// number with exponent of 1:
4915 ///
4916 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4917 ///
4918 /// where Op is the hexadecimal representation of floating point value.
4919 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4920   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4921                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4922   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4923                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4924   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4925 }
4926 
4927 /// GetExponent - Get the exponent:
4928 ///
4929 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4930 ///
4931 /// where Op is the hexadecimal representation of floating point value.
4932 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4933                            const TargetLowering &TLI, const SDLoc &dl) {
4934   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4935                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4936   SDValue t1 = DAG.getNode(
4937       ISD::SRL, dl, MVT::i32, t0,
4938       DAG.getConstant(23, dl,
4939                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4940   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4941                            DAG.getConstant(127, dl, MVT::i32));
4942   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4943 }
4944 
4945 /// getF32Constant - Get 32-bit floating point constant.
4946 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4947                               const SDLoc &dl) {
4948   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4949                            MVT::f32);
4950 }
4951 
4952 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4953                                        SelectionDAG &DAG) {
4954   // TODO: What fast-math-flags should be set on the floating-point nodes?
4955 
4956   //   IntegerPartOfX = ((int32_t)(t0);
4957   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4958 
4959   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4960   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4961   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4962 
4963   //   IntegerPartOfX <<= 23;
4964   IntegerPartOfX =
4965       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4966                   DAG.getConstant(23, dl,
4967                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4968                                       MVT::i32, DAG.getDataLayout())));
4969 
4970   SDValue TwoToFractionalPartOfX;
4971   if (LimitFloatPrecision <= 6) {
4972     // For floating-point precision of 6:
4973     //
4974     //   TwoToFractionalPartOfX =
4975     //     0.997535578f +
4976     //       (0.735607626f + 0.252464424f * x) * x;
4977     //
4978     // error 0.0144103317, which is 6 bits
4979     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4980                              getF32Constant(DAG, 0x3e814304, dl));
4981     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4982                              getF32Constant(DAG, 0x3f3c50c8, dl));
4983     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4984     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4985                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4986   } else if (LimitFloatPrecision <= 12) {
4987     // For floating-point precision of 12:
4988     //
4989     //   TwoToFractionalPartOfX =
4990     //     0.999892986f +
4991     //       (0.696457318f +
4992     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4993     //
4994     // error 0.000107046256, which is 13 to 14 bits
4995     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4996                              getF32Constant(DAG, 0x3da235e3, dl));
4997     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4998                              getF32Constant(DAG, 0x3e65b8f3, dl));
4999     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5000     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5001                              getF32Constant(DAG, 0x3f324b07, dl));
5002     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5003     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5004                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5005   } else { // LimitFloatPrecision <= 18
5006     // For floating-point precision of 18:
5007     //
5008     //   TwoToFractionalPartOfX =
5009     //     0.999999982f +
5010     //       (0.693148872f +
5011     //         (0.240227044f +
5012     //           (0.554906021e-1f +
5013     //             (0.961591928e-2f +
5014     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5015     // error 2.47208000*10^(-7), which is better than 18 bits
5016     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5017                              getF32Constant(DAG, 0x3924b03e, dl));
5018     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5019                              getF32Constant(DAG, 0x3ab24b87, dl));
5020     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5021     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5022                              getF32Constant(DAG, 0x3c1d8c17, dl));
5023     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5024     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5025                              getF32Constant(DAG, 0x3d634a1d, dl));
5026     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5027     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5028                              getF32Constant(DAG, 0x3e75fe14, dl));
5029     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5030     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5031                               getF32Constant(DAG, 0x3f317234, dl));
5032     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5033     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5034                                          getF32Constant(DAG, 0x3f800000, dl));
5035   }
5036 
5037   // Add the exponent into the result in integer domain.
5038   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5039   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5040                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5041 }
5042 
5043 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5044 /// limited-precision mode.
5045 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5046                          const TargetLowering &TLI, SDNodeFlags Flags) {
5047   if (Op.getValueType() == MVT::f32 &&
5048       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5049 
5050     // Put the exponent in the right bit position for later addition to the
5051     // final result:
5052     //
5053     // t0 = Op * log2(e)
5054 
5055     // TODO: What fast-math-flags should be set here?
5056     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5057                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5058     return getLimitedPrecisionExp2(t0, dl, DAG);
5059   }
5060 
5061   // No special expansion.
5062   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5063 }
5064 
5065 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5066 /// limited-precision mode.
5067 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5068                          const TargetLowering &TLI, SDNodeFlags Flags) {
5069   // TODO: What fast-math-flags should be set on the floating-point nodes?
5070 
5071   if (Op.getValueType() == MVT::f32 &&
5072       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5073     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5074 
5075     // Scale the exponent by log(2).
5076     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5077     SDValue LogOfExponent =
5078         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5079                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5080 
5081     // Get the significand and build it into a floating-point number with
5082     // exponent of 1.
5083     SDValue X = GetSignificand(DAG, Op1, dl);
5084 
5085     SDValue LogOfMantissa;
5086     if (LimitFloatPrecision <= 6) {
5087       // For floating-point precision of 6:
5088       //
5089       //   LogofMantissa =
5090       //     -1.1609546f +
5091       //       (1.4034025f - 0.23903021f * x) * x;
5092       //
5093       // error 0.0034276066, which is better than 8 bits
5094       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5095                                getF32Constant(DAG, 0xbe74c456, dl));
5096       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5097                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5098       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5099       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5100                                   getF32Constant(DAG, 0x3f949a29, dl));
5101     } else if (LimitFloatPrecision <= 12) {
5102       // For floating-point precision of 12:
5103       //
5104       //   LogOfMantissa =
5105       //     -1.7417939f +
5106       //       (2.8212026f +
5107       //         (-1.4699568f +
5108       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5109       //
5110       // error 0.000061011436, which is 14 bits
5111       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5112                                getF32Constant(DAG, 0xbd67b6d6, dl));
5113       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5114                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5115       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5116       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5117                                getF32Constant(DAG, 0x3fbc278b, dl));
5118       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5119       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5120                                getF32Constant(DAG, 0x40348e95, dl));
5121       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5122       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5123                                   getF32Constant(DAG, 0x3fdef31a, dl));
5124     } else { // LimitFloatPrecision <= 18
5125       // For floating-point precision of 18:
5126       //
5127       //   LogOfMantissa =
5128       //     -2.1072184f +
5129       //       (4.2372794f +
5130       //         (-3.7029485f +
5131       //           (2.2781945f +
5132       //             (-0.87823314f +
5133       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5134       //
5135       // error 0.0000023660568, which is better than 18 bits
5136       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5137                                getF32Constant(DAG, 0xbc91e5ac, dl));
5138       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5139                                getF32Constant(DAG, 0x3e4350aa, dl));
5140       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5141       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5142                                getF32Constant(DAG, 0x3f60d3e3, dl));
5143       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5144       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5145                                getF32Constant(DAG, 0x4011cdf0, dl));
5146       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5147       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5148                                getF32Constant(DAG, 0x406cfd1c, dl));
5149       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5150       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5151                                getF32Constant(DAG, 0x408797cb, dl));
5152       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5153       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5154                                   getF32Constant(DAG, 0x4006dcab, dl));
5155     }
5156 
5157     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5158   }
5159 
5160   // No special expansion.
5161   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5162 }
5163 
5164 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5165 /// limited-precision mode.
5166 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5167                           const TargetLowering &TLI, SDNodeFlags Flags) {
5168   // TODO: What fast-math-flags should be set on the floating-point nodes?
5169 
5170   if (Op.getValueType() == MVT::f32 &&
5171       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5172     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5173 
5174     // Get the exponent.
5175     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5176 
5177     // Get the significand and build it into a floating-point number with
5178     // exponent of 1.
5179     SDValue X = GetSignificand(DAG, Op1, dl);
5180 
5181     // Different possible minimax approximations of significand in
5182     // floating-point for various degrees of accuracy over [1,2].
5183     SDValue Log2ofMantissa;
5184     if (LimitFloatPrecision <= 6) {
5185       // For floating-point precision of 6:
5186       //
5187       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5188       //
5189       // error 0.0049451742, which is more than 7 bits
5190       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5191                                getF32Constant(DAG, 0xbeb08fe0, dl));
5192       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5193                                getF32Constant(DAG, 0x40019463, dl));
5194       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5195       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5196                                    getF32Constant(DAG, 0x3fd6633d, dl));
5197     } else if (LimitFloatPrecision <= 12) {
5198       // For floating-point precision of 12:
5199       //
5200       //   Log2ofMantissa =
5201       //     -2.51285454f +
5202       //       (4.07009056f +
5203       //         (-2.12067489f +
5204       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5205       //
5206       // error 0.0000876136000, which is better than 13 bits
5207       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5208                                getF32Constant(DAG, 0xbda7262e, dl));
5209       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5210                                getF32Constant(DAG, 0x3f25280b, dl));
5211       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5212       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5213                                getF32Constant(DAG, 0x4007b923, dl));
5214       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5215       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5216                                getF32Constant(DAG, 0x40823e2f, dl));
5217       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5218       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5219                                    getF32Constant(DAG, 0x4020d29c, dl));
5220     } else { // LimitFloatPrecision <= 18
5221       // For floating-point precision of 18:
5222       //
5223       //   Log2ofMantissa =
5224       //     -3.0400495f +
5225       //       (6.1129976f +
5226       //         (-5.3420409f +
5227       //           (3.2865683f +
5228       //             (-1.2669343f +
5229       //               (0.27515199f -
5230       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5231       //
5232       // error 0.0000018516, which is better than 18 bits
5233       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5234                                getF32Constant(DAG, 0xbcd2769e, dl));
5235       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5236                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5237       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5238       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5239                                getF32Constant(DAG, 0x3fa22ae7, dl));
5240       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5241       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5242                                getF32Constant(DAG, 0x40525723, dl));
5243       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5244       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5245                                getF32Constant(DAG, 0x40aaf200, dl));
5246       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5247       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5248                                getF32Constant(DAG, 0x40c39dad, dl));
5249       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5250       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5251                                    getF32Constant(DAG, 0x4042902c, dl));
5252     }
5253 
5254     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5255   }
5256 
5257   // No special expansion.
5258   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5259 }
5260 
5261 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5262 /// limited-precision mode.
5263 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5264                            const TargetLowering &TLI, SDNodeFlags Flags) {
5265   // TODO: What fast-math-flags should be set on the floating-point nodes?
5266 
5267   if (Op.getValueType() == MVT::f32 &&
5268       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5269     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5270 
5271     // Scale the exponent by log10(2) [0.30102999f].
5272     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5273     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5274                                         getF32Constant(DAG, 0x3e9a209a, dl));
5275 
5276     // Get the significand and build it into a floating-point number with
5277     // exponent of 1.
5278     SDValue X = GetSignificand(DAG, Op1, dl);
5279 
5280     SDValue Log10ofMantissa;
5281     if (LimitFloatPrecision <= 6) {
5282       // For floating-point precision of 6:
5283       //
5284       //   Log10ofMantissa =
5285       //     -0.50419619f +
5286       //       (0.60948995f - 0.10380950f * x) * x;
5287       //
5288       // error 0.0014886165, which is 6 bits
5289       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5290                                getF32Constant(DAG, 0xbdd49a13, dl));
5291       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5292                                getF32Constant(DAG, 0x3f1c0789, dl));
5293       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5294       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5295                                     getF32Constant(DAG, 0x3f011300, dl));
5296     } else if (LimitFloatPrecision <= 12) {
5297       // For floating-point precision of 12:
5298       //
5299       //   Log10ofMantissa =
5300       //     -0.64831180f +
5301       //       (0.91751397f +
5302       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5303       //
5304       // error 0.00019228036, which is better than 12 bits
5305       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5306                                getF32Constant(DAG, 0x3d431f31, dl));
5307       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5308                                getF32Constant(DAG, 0x3ea21fb2, dl));
5309       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5310       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5311                                getF32Constant(DAG, 0x3f6ae232, dl));
5312       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5313       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5314                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5315     } else { // LimitFloatPrecision <= 18
5316       // For floating-point precision of 18:
5317       //
5318       //   Log10ofMantissa =
5319       //     -0.84299375f +
5320       //       (1.5327582f +
5321       //         (-1.0688956f +
5322       //           (0.49102474f +
5323       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5324       //
5325       // error 0.0000037995730, which is better than 18 bits
5326       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5327                                getF32Constant(DAG, 0x3c5d51ce, dl));
5328       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5329                                getF32Constant(DAG, 0x3e00685a, dl));
5330       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5331       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5332                                getF32Constant(DAG, 0x3efb6798, dl));
5333       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5334       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5335                                getF32Constant(DAG, 0x3f88d192, dl));
5336       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5337       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5338                                getF32Constant(DAG, 0x3fc4316c, dl));
5339       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5340       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5341                                     getF32Constant(DAG, 0x3f57ce70, dl));
5342     }
5343 
5344     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5345   }
5346 
5347   // No special expansion.
5348   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5349 }
5350 
5351 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5352 /// limited-precision mode.
5353 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5354                           const TargetLowering &TLI, SDNodeFlags Flags) {
5355   if (Op.getValueType() == MVT::f32 &&
5356       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5357     return getLimitedPrecisionExp2(Op, dl, DAG);
5358 
5359   // No special expansion.
5360   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5361 }
5362 
5363 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5364 /// limited-precision mode with x == 10.0f.
5365 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5366                          SelectionDAG &DAG, const TargetLowering &TLI,
5367                          SDNodeFlags Flags) {
5368   bool IsExp10 = false;
5369   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5370       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5371     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5372       APFloat Ten(10.0f);
5373       IsExp10 = LHSC->isExactlyValue(Ten);
5374     }
5375   }
5376 
5377   // TODO: What fast-math-flags should be set on the FMUL node?
5378   if (IsExp10) {
5379     // Put the exponent in the right bit position for later addition to the
5380     // final result:
5381     //
5382     //   #define LOG2OF10 3.3219281f
5383     //   t0 = Op * LOG2OF10;
5384     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5385                              getF32Constant(DAG, 0x40549a78, dl));
5386     return getLimitedPrecisionExp2(t0, dl, DAG);
5387   }
5388 
5389   // No special expansion.
5390   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5391 }
5392 
5393 /// ExpandPowI - Expand a llvm.powi intrinsic.
5394 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5395                           SelectionDAG &DAG) {
5396   // If RHS is a constant, we can expand this out to a multiplication tree if
5397   // it's beneficial on the target, otherwise we end up lowering to a call to
5398   // __powidf2 (for example).
5399   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5400     unsigned Val = RHSC->getSExtValue();
5401 
5402     // powi(x, 0) -> 1.0
5403     if (Val == 0)
5404       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5405 
5406     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5407             Val, DAG.shouldOptForSize())) {
5408       // Get the exponent as a positive value.
5409       if ((int)Val < 0)
5410         Val = -Val;
5411       // We use the simple binary decomposition method to generate the multiply
5412       // sequence.  There are more optimal ways to do this (for example,
5413       // powi(x,15) generates one more multiply than it should), but this has
5414       // the benefit of being both really simple and much better than a libcall.
5415       SDValue Res; // Logically starts equal to 1.0
5416       SDValue CurSquare = LHS;
5417       // TODO: Intrinsics should have fast-math-flags that propagate to these
5418       // nodes.
5419       while (Val) {
5420         if (Val & 1) {
5421           if (Res.getNode())
5422             Res =
5423                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5424           else
5425             Res = CurSquare; // 1.0*CurSquare.
5426         }
5427 
5428         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5429                                 CurSquare, CurSquare);
5430         Val >>= 1;
5431       }
5432 
5433       // If the original was negative, invert the result, producing 1/(x*x*x).
5434       if (RHSC->getSExtValue() < 0)
5435         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5436                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5437       return Res;
5438     }
5439   }
5440 
5441   // Otherwise, expand to a libcall.
5442   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5443 }
5444 
5445 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5446                             SDValue LHS, SDValue RHS, SDValue Scale,
5447                             SelectionDAG &DAG, const TargetLowering &TLI) {
5448   EVT VT = LHS.getValueType();
5449   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5450   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5451   LLVMContext &Ctx = *DAG.getContext();
5452 
5453   // If the type is legal but the operation isn't, this node might survive all
5454   // the way to operation legalization. If we end up there and we do not have
5455   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5456   // node.
5457 
5458   // Coax the legalizer into expanding the node during type legalization instead
5459   // by bumping the size by one bit. This will force it to Promote, enabling the
5460   // early expansion and avoiding the need to expand later.
5461 
5462   // We don't have to do this if Scale is 0; that can always be expanded, unless
5463   // it's a saturating signed operation. Those can experience true integer
5464   // division overflow, a case which we must avoid.
5465 
5466   // FIXME: We wouldn't have to do this (or any of the early
5467   // expansion/promotion) if it was possible to expand a libcall of an
5468   // illegal type during operation legalization. But it's not, so things
5469   // get a bit hacky.
5470   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5471   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5472       (TLI.isTypeLegal(VT) ||
5473        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5474     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5475         Opcode, VT, ScaleInt);
5476     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5477       EVT PromVT;
5478       if (VT.isScalarInteger())
5479         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5480       else if (VT.isVector()) {
5481         PromVT = VT.getVectorElementType();
5482         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5483         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5484       } else
5485         llvm_unreachable("Wrong VT for DIVFIX?");
5486       if (Signed) {
5487         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5488         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5489       } else {
5490         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5491         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5492       }
5493       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5494       // For saturating operations, we need to shift up the LHS to get the
5495       // proper saturation width, and then shift down again afterwards.
5496       if (Saturating)
5497         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5498                           DAG.getConstant(1, DL, ShiftTy));
5499       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5500       if (Saturating)
5501         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5502                           DAG.getConstant(1, DL, ShiftTy));
5503       return DAG.getZExtOrTrunc(Res, DL, VT);
5504     }
5505   }
5506 
5507   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5508 }
5509 
5510 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5511 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5512 static void
5513 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5514                      const SDValue &N) {
5515   switch (N.getOpcode()) {
5516   case ISD::CopyFromReg: {
5517     SDValue Op = N.getOperand(1);
5518     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5519                       Op.getValueType().getSizeInBits());
5520     return;
5521   }
5522   case ISD::BITCAST:
5523   case ISD::AssertZext:
5524   case ISD::AssertSext:
5525   case ISD::TRUNCATE:
5526     getUnderlyingArgRegs(Regs, N.getOperand(0));
5527     return;
5528   case ISD::BUILD_PAIR:
5529   case ISD::BUILD_VECTOR:
5530   case ISD::CONCAT_VECTORS:
5531     for (SDValue Op : N->op_values())
5532       getUnderlyingArgRegs(Regs, Op);
5533     return;
5534   default:
5535     return;
5536   }
5537 }
5538 
5539 /// If the DbgValueInst is a dbg_value of a function argument, create the
5540 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5541 /// instruction selection, they will be inserted to the entry BB.
5542 /// We don't currently support this for variadic dbg_values, as they shouldn't
5543 /// appear for function arguments or in the prologue.
5544 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5545     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5546     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5547   const Argument *Arg = dyn_cast<Argument>(V);
5548   if (!Arg)
5549     return false;
5550 
5551   MachineFunction &MF = DAG.getMachineFunction();
5552   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5553 
5554   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5555   // we've been asked to pursue.
5556   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5557                               bool Indirect) {
5558     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5559       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5560       // pointing at the VReg, which will be patched up later.
5561       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5562       auto MIB = BuildMI(MF, DL, Inst);
5563       MIB.addReg(Reg);
5564       MIB.addImm(0);
5565       MIB.addMetadata(Variable);
5566       auto *NewDIExpr = FragExpr;
5567       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5568       // the DIExpression.
5569       if (Indirect)
5570         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5571       MIB.addMetadata(NewDIExpr);
5572       return MIB;
5573     } else {
5574       // Create a completely standard DBG_VALUE.
5575       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5576       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5577     }
5578   };
5579 
5580   if (Kind == FuncArgumentDbgValueKind::Value) {
5581     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5582     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5583     // the entry block.
5584     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5585     if (!IsInEntryBlock)
5586       return false;
5587 
5588     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5589     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5590     // variable that also is a param.
5591     //
5592     // Although, if we are at the top of the entry block already, we can still
5593     // emit using ArgDbgValue. This might catch some situations when the
5594     // dbg.value refers to an argument that isn't used in the entry block, so
5595     // any CopyToReg node would be optimized out and the only way to express
5596     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5597     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5598     // we should only emit as ArgDbgValue if the Variable is an argument to the
5599     // current function, and the dbg.value intrinsic is found in the entry
5600     // block.
5601     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5602         !DL->getInlinedAt();
5603     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5604     if (!IsInPrologue && !VariableIsFunctionInputArg)
5605       return false;
5606 
5607     // Here we assume that a function argument on IR level only can be used to
5608     // describe one input parameter on source level. If we for example have
5609     // source code like this
5610     //
5611     //    struct A { long x, y; };
5612     //    void foo(struct A a, long b) {
5613     //      ...
5614     //      b = a.x;
5615     //      ...
5616     //    }
5617     //
5618     // and IR like this
5619     //
5620     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5621     //  entry:
5622     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5623     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5624     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5625     //    ...
5626     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5627     //    ...
5628     //
5629     // then the last dbg.value is describing a parameter "b" using a value that
5630     // is an argument. But since we already has used %a1 to describe a parameter
5631     // we should not handle that last dbg.value here (that would result in an
5632     // incorrect hoisting of the DBG_VALUE to the function entry).
5633     // Notice that we allow one dbg.value per IR level argument, to accommodate
5634     // for the situation with fragments above.
5635     if (VariableIsFunctionInputArg) {
5636       unsigned ArgNo = Arg->getArgNo();
5637       if (ArgNo >= FuncInfo.DescribedArgs.size())
5638         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5639       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5640         return false;
5641       FuncInfo.DescribedArgs.set(ArgNo);
5642     }
5643   }
5644 
5645   bool IsIndirect = false;
5646   Optional<MachineOperand> Op;
5647   // Some arguments' frame index is recorded during argument lowering.
5648   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5649   if (FI != std::numeric_limits<int>::max())
5650     Op = MachineOperand::CreateFI(FI);
5651 
5652   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5653   if (!Op && N.getNode()) {
5654     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5655     Register Reg;
5656     if (ArgRegsAndSizes.size() == 1)
5657       Reg = ArgRegsAndSizes.front().first;
5658 
5659     if (Reg && Reg.isVirtual()) {
5660       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5661       Register PR = RegInfo.getLiveInPhysReg(Reg);
5662       if (PR)
5663         Reg = PR;
5664     }
5665     if (Reg) {
5666       Op = MachineOperand::CreateReg(Reg, false);
5667       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5668     }
5669   }
5670 
5671   if (!Op && N.getNode()) {
5672     // Check if frame index is available.
5673     SDValue LCandidate = peekThroughBitcasts(N);
5674     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5675       if (FrameIndexSDNode *FINode =
5676           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5677         Op = MachineOperand::CreateFI(FINode->getIndex());
5678   }
5679 
5680   if (!Op) {
5681     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5682     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5683                                          SplitRegs) {
5684       unsigned Offset = 0;
5685       for (const auto &RegAndSize : SplitRegs) {
5686         // If the expression is already a fragment, the current register
5687         // offset+size might extend beyond the fragment. In this case, only
5688         // the register bits that are inside the fragment are relevant.
5689         int RegFragmentSizeInBits = RegAndSize.second;
5690         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5691           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5692           // The register is entirely outside the expression fragment,
5693           // so is irrelevant for debug info.
5694           if (Offset >= ExprFragmentSizeInBits)
5695             break;
5696           // The register is partially outside the expression fragment, only
5697           // the low bits within the fragment are relevant for debug info.
5698           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5699             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5700           }
5701         }
5702 
5703         auto FragmentExpr = DIExpression::createFragmentExpression(
5704             Expr, Offset, RegFragmentSizeInBits);
5705         Offset += RegAndSize.second;
5706         // If a valid fragment expression cannot be created, the variable's
5707         // correct value cannot be determined and so it is set as Undef.
5708         if (!FragmentExpr) {
5709           SDDbgValue *SDV = DAG.getConstantDbgValue(
5710               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5711           DAG.AddDbgValue(SDV, false);
5712           continue;
5713         }
5714         MachineInstr *NewMI =
5715             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5716                              Kind != FuncArgumentDbgValueKind::Value);
5717         FuncInfo.ArgDbgValues.push_back(NewMI);
5718       }
5719     };
5720 
5721     // Check if ValueMap has reg number.
5722     DenseMap<const Value *, Register>::const_iterator
5723       VMI = FuncInfo.ValueMap.find(V);
5724     if (VMI != FuncInfo.ValueMap.end()) {
5725       const auto &TLI = DAG.getTargetLoweringInfo();
5726       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5727                        V->getType(), None);
5728       if (RFV.occupiesMultipleRegs()) {
5729         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5730         return true;
5731       }
5732 
5733       Op = MachineOperand::CreateReg(VMI->second, false);
5734       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5735     } else if (ArgRegsAndSizes.size() > 1) {
5736       // This was split due to the calling convention, and no virtual register
5737       // mapping exists for the value.
5738       splitMultiRegDbgValue(ArgRegsAndSizes);
5739       return true;
5740     }
5741   }
5742 
5743   if (!Op)
5744     return false;
5745 
5746   assert(Variable->isValidLocationForIntrinsic(DL) &&
5747          "Expected inlined-at fields to agree");
5748   MachineInstr *NewMI = nullptr;
5749 
5750   if (Op->isReg())
5751     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5752   else
5753     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5754                     Variable, Expr);
5755 
5756   // Otherwise, use ArgDbgValues.
5757   FuncInfo.ArgDbgValues.push_back(NewMI);
5758   return true;
5759 }
5760 
5761 /// Return the appropriate SDDbgValue based on N.
5762 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5763                                              DILocalVariable *Variable,
5764                                              DIExpression *Expr,
5765                                              const DebugLoc &dl,
5766                                              unsigned DbgSDNodeOrder) {
5767   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5768     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5769     // stack slot locations.
5770     //
5771     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5772     // debug values here after optimization:
5773     //
5774     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5775     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5776     //
5777     // Both describe the direct values of their associated variables.
5778     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5779                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5780   }
5781   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5782                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5783 }
5784 
5785 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5786   switch (Intrinsic) {
5787   case Intrinsic::smul_fix:
5788     return ISD::SMULFIX;
5789   case Intrinsic::umul_fix:
5790     return ISD::UMULFIX;
5791   case Intrinsic::smul_fix_sat:
5792     return ISD::SMULFIXSAT;
5793   case Intrinsic::umul_fix_sat:
5794     return ISD::UMULFIXSAT;
5795   case Intrinsic::sdiv_fix:
5796     return ISD::SDIVFIX;
5797   case Intrinsic::udiv_fix:
5798     return ISD::UDIVFIX;
5799   case Intrinsic::sdiv_fix_sat:
5800     return ISD::SDIVFIXSAT;
5801   case Intrinsic::udiv_fix_sat:
5802     return ISD::UDIVFIXSAT;
5803   default:
5804     llvm_unreachable("Unhandled fixed point intrinsic");
5805   }
5806 }
5807 
5808 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5809                                            const char *FunctionName) {
5810   assert(FunctionName && "FunctionName must not be nullptr");
5811   SDValue Callee = DAG.getExternalSymbol(
5812       FunctionName,
5813       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5814   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5815 }
5816 
5817 /// Given a @llvm.call.preallocated.setup, return the corresponding
5818 /// preallocated call.
5819 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5820   assert(cast<CallBase>(PreallocatedSetup)
5821                  ->getCalledFunction()
5822                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5823          "expected call_preallocated_setup Value");
5824   for (const auto *U : PreallocatedSetup->users()) {
5825     auto *UseCall = cast<CallBase>(U);
5826     const Function *Fn = UseCall->getCalledFunction();
5827     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5828       return UseCall;
5829     }
5830   }
5831   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5832 }
5833 
5834 /// Lower the call to the specified intrinsic function.
5835 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5836                                              unsigned Intrinsic) {
5837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5838   SDLoc sdl = getCurSDLoc();
5839   DebugLoc dl = getCurDebugLoc();
5840   SDValue Res;
5841 
5842   SDNodeFlags Flags;
5843   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5844     Flags.copyFMF(*FPOp);
5845 
5846   switch (Intrinsic) {
5847   default:
5848     // By default, turn this into a target intrinsic node.
5849     visitTargetIntrinsic(I, Intrinsic);
5850     return;
5851   case Intrinsic::vscale: {
5852     match(&I, m_VScale(DAG.getDataLayout()));
5853     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5854     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5855     return;
5856   }
5857   case Intrinsic::vastart:  visitVAStart(I); return;
5858   case Intrinsic::vaend:    visitVAEnd(I); return;
5859   case Intrinsic::vacopy:   visitVACopy(I); return;
5860   case Intrinsic::returnaddress:
5861     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5862                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5863                              getValue(I.getArgOperand(0))));
5864     return;
5865   case Intrinsic::addressofreturnaddress:
5866     setValue(&I,
5867              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5868                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5869     return;
5870   case Intrinsic::sponentry:
5871     setValue(&I,
5872              DAG.getNode(ISD::SPONENTRY, sdl,
5873                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5874     return;
5875   case Intrinsic::frameaddress:
5876     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5877                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5878                              getValue(I.getArgOperand(0))));
5879     return;
5880   case Intrinsic::read_volatile_register:
5881   case Intrinsic::read_register: {
5882     Value *Reg = I.getArgOperand(0);
5883     SDValue Chain = getRoot();
5884     SDValue RegName =
5885         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5886     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5887     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5888       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5889     setValue(&I, Res);
5890     DAG.setRoot(Res.getValue(1));
5891     return;
5892   }
5893   case Intrinsic::write_register: {
5894     Value *Reg = I.getArgOperand(0);
5895     Value *RegValue = I.getArgOperand(1);
5896     SDValue Chain = getRoot();
5897     SDValue RegName =
5898         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5899     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5900                             RegName, getValue(RegValue)));
5901     return;
5902   }
5903   case Intrinsic::memcpy: {
5904     const auto &MCI = cast<MemCpyInst>(I);
5905     SDValue Op1 = getValue(I.getArgOperand(0));
5906     SDValue Op2 = getValue(I.getArgOperand(1));
5907     SDValue Op3 = getValue(I.getArgOperand(2));
5908     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5909     Align DstAlign = MCI.getDestAlign().valueOrOne();
5910     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5911     Align Alignment = std::min(DstAlign, SrcAlign);
5912     bool isVol = MCI.isVolatile();
5913     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5914     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5915     // node.
5916     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5917     SDValue MC = DAG.getMemcpy(
5918         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5919         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5920         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5921     updateDAGForMaybeTailCall(MC);
5922     return;
5923   }
5924   case Intrinsic::memcpy_inline: {
5925     const auto &MCI = cast<MemCpyInlineInst>(I);
5926     SDValue Dst = getValue(I.getArgOperand(0));
5927     SDValue Src = getValue(I.getArgOperand(1));
5928     SDValue Size = getValue(I.getArgOperand(2));
5929     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5930     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5931     Align DstAlign = MCI.getDestAlign().valueOrOne();
5932     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5933     Align Alignment = std::min(DstAlign, SrcAlign);
5934     bool isVol = MCI.isVolatile();
5935     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5936     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5937     // node.
5938     SDValue MC = DAG.getMemcpy(
5939         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5940         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5941         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5942     updateDAGForMaybeTailCall(MC);
5943     return;
5944   }
5945   case Intrinsic::memset: {
5946     const auto &MSI = cast<MemSetInst>(I);
5947     SDValue Op1 = getValue(I.getArgOperand(0));
5948     SDValue Op2 = getValue(I.getArgOperand(1));
5949     SDValue Op3 = getValue(I.getArgOperand(2));
5950     // @llvm.memset defines 0 and 1 to both mean no alignment.
5951     Align Alignment = MSI.getDestAlign().valueOrOne();
5952     bool isVol = MSI.isVolatile();
5953     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5954     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5955     SDValue MS = DAG.getMemset(
5956         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5957         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5958     updateDAGForMaybeTailCall(MS);
5959     return;
5960   }
5961   case Intrinsic::memset_inline: {
5962     const auto &MSII = cast<MemSetInlineInst>(I);
5963     SDValue Dst = getValue(I.getArgOperand(0));
5964     SDValue Value = getValue(I.getArgOperand(1));
5965     SDValue Size = getValue(I.getArgOperand(2));
5966     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5967     // @llvm.memset defines 0 and 1 to both mean no alignment.
5968     Align DstAlign = MSII.getDestAlign().valueOrOne();
5969     bool isVol = MSII.isVolatile();
5970     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5971     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5972     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5973                                /* AlwaysInline */ true, isTC,
5974                                MachinePointerInfo(I.getArgOperand(0)),
5975                                I.getAAMetadata());
5976     updateDAGForMaybeTailCall(MC);
5977     return;
5978   }
5979   case Intrinsic::memmove: {
5980     const auto &MMI = cast<MemMoveInst>(I);
5981     SDValue Op1 = getValue(I.getArgOperand(0));
5982     SDValue Op2 = getValue(I.getArgOperand(1));
5983     SDValue Op3 = getValue(I.getArgOperand(2));
5984     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5985     Align DstAlign = MMI.getDestAlign().valueOrOne();
5986     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5987     Align Alignment = std::min(DstAlign, SrcAlign);
5988     bool isVol = MMI.isVolatile();
5989     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5990     // FIXME: Support passing different dest/src alignments to the memmove DAG
5991     // node.
5992     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5993     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5994                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5995                                 MachinePointerInfo(I.getArgOperand(1)),
5996                                 I.getAAMetadata(), AA);
5997     updateDAGForMaybeTailCall(MM);
5998     return;
5999   }
6000   case Intrinsic::memcpy_element_unordered_atomic: {
6001     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6002     SDValue Dst = getValue(MI.getRawDest());
6003     SDValue Src = getValue(MI.getRawSource());
6004     SDValue Length = getValue(MI.getLength());
6005 
6006     Type *LengthTy = MI.getLength()->getType();
6007     unsigned ElemSz = MI.getElementSizeInBytes();
6008     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6009     SDValue MC =
6010         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6011                             isTC, MachinePointerInfo(MI.getRawDest()),
6012                             MachinePointerInfo(MI.getRawSource()));
6013     updateDAGForMaybeTailCall(MC);
6014     return;
6015   }
6016   case Intrinsic::memmove_element_unordered_atomic: {
6017     auto &MI = cast<AtomicMemMoveInst>(I);
6018     SDValue Dst = getValue(MI.getRawDest());
6019     SDValue Src = getValue(MI.getRawSource());
6020     SDValue Length = getValue(MI.getLength());
6021 
6022     Type *LengthTy = MI.getLength()->getType();
6023     unsigned ElemSz = MI.getElementSizeInBytes();
6024     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6025     SDValue MC =
6026         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6027                              isTC, MachinePointerInfo(MI.getRawDest()),
6028                              MachinePointerInfo(MI.getRawSource()));
6029     updateDAGForMaybeTailCall(MC);
6030     return;
6031   }
6032   case Intrinsic::memset_element_unordered_atomic: {
6033     auto &MI = cast<AtomicMemSetInst>(I);
6034     SDValue Dst = getValue(MI.getRawDest());
6035     SDValue Val = getValue(MI.getValue());
6036     SDValue Length = getValue(MI.getLength());
6037 
6038     Type *LengthTy = MI.getLength()->getType();
6039     unsigned ElemSz = MI.getElementSizeInBytes();
6040     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6041     SDValue MC =
6042         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6043                             isTC, MachinePointerInfo(MI.getRawDest()));
6044     updateDAGForMaybeTailCall(MC);
6045     return;
6046   }
6047   case Intrinsic::call_preallocated_setup: {
6048     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6049     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6050     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6051                               getRoot(), SrcValue);
6052     setValue(&I, Res);
6053     DAG.setRoot(Res);
6054     return;
6055   }
6056   case Intrinsic::call_preallocated_arg: {
6057     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6058     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6059     SDValue Ops[3];
6060     Ops[0] = getRoot();
6061     Ops[1] = SrcValue;
6062     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6063                                    MVT::i32); // arg index
6064     SDValue Res = DAG.getNode(
6065         ISD::PREALLOCATED_ARG, sdl,
6066         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6067     setValue(&I, Res);
6068     DAG.setRoot(Res.getValue(1));
6069     return;
6070   }
6071   case Intrinsic::dbg_addr:
6072   case Intrinsic::dbg_declare: {
6073     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6074     // they are non-variadic.
6075     const auto &DI = cast<DbgVariableIntrinsic>(I);
6076     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6077     DILocalVariable *Variable = DI.getVariable();
6078     DIExpression *Expression = DI.getExpression();
6079     dropDanglingDebugInfo(Variable, Expression);
6080     assert(Variable && "Missing variable");
6081     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6082                       << "\n");
6083     // Check if address has undef value.
6084     const Value *Address = DI.getVariableLocationOp(0);
6085     if (!Address || isa<UndefValue>(Address) ||
6086         (Address->use_empty() && !isa<Argument>(Address))) {
6087       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6088                         << " (bad/undef/unused-arg address)\n");
6089       return;
6090     }
6091 
6092     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6093 
6094     // Check if this variable can be described by a frame index, typically
6095     // either as a static alloca or a byval parameter.
6096     int FI = std::numeric_limits<int>::max();
6097     if (const auto *AI =
6098             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6099       if (AI->isStaticAlloca()) {
6100         auto I = FuncInfo.StaticAllocaMap.find(AI);
6101         if (I != FuncInfo.StaticAllocaMap.end())
6102           FI = I->second;
6103       }
6104     } else if (const auto *Arg = dyn_cast<Argument>(
6105                    Address->stripInBoundsConstantOffsets())) {
6106       FI = FuncInfo.getArgumentFrameIndex(Arg);
6107     }
6108 
6109     // llvm.dbg.addr is control dependent and always generates indirect
6110     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6111     // the MachineFunction variable table.
6112     if (FI != std::numeric_limits<int>::max()) {
6113       if (Intrinsic == Intrinsic::dbg_addr) {
6114         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6115             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6116             dl, SDNodeOrder);
6117         DAG.AddDbgValue(SDV, isParameter);
6118       } else {
6119         LLVM_DEBUG(dbgs() << "Skipping " << DI
6120                           << " (variable info stashed in MF side table)\n");
6121       }
6122       return;
6123     }
6124 
6125     SDValue &N = NodeMap[Address];
6126     if (!N.getNode() && isa<Argument>(Address))
6127       // Check unused arguments map.
6128       N = UnusedArgNodeMap[Address];
6129     SDDbgValue *SDV;
6130     if (N.getNode()) {
6131       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6132         Address = BCI->getOperand(0);
6133       // Parameters are handled specially.
6134       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6135       if (isParameter && FINode) {
6136         // Byval parameter. We have a frame index at this point.
6137         SDV =
6138             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6139                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6140       } else if (isa<Argument>(Address)) {
6141         // Address is an argument, so try to emit its dbg value using
6142         // virtual register info from the FuncInfo.ValueMap.
6143         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6144                                  FuncArgumentDbgValueKind::Declare, N);
6145         return;
6146       } else {
6147         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6148                               true, dl, SDNodeOrder);
6149       }
6150       DAG.AddDbgValue(SDV, isParameter);
6151     } else {
6152       // If Address is an argument then try to emit its dbg value using
6153       // virtual register info from the FuncInfo.ValueMap.
6154       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6155                                     FuncArgumentDbgValueKind::Declare, N)) {
6156         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6157                           << " (could not emit func-arg dbg_value)\n");
6158       }
6159     }
6160     return;
6161   }
6162   case Intrinsic::dbg_label: {
6163     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6164     DILabel *Label = DI.getLabel();
6165     assert(Label && "Missing label");
6166 
6167     SDDbgLabel *SDV;
6168     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6169     DAG.AddDbgLabel(SDV);
6170     return;
6171   }
6172   case Intrinsic::dbg_value: {
6173     const DbgValueInst &DI = cast<DbgValueInst>(I);
6174     assert(DI.getVariable() && "Missing variable");
6175 
6176     DILocalVariable *Variable = DI.getVariable();
6177     DIExpression *Expression = DI.getExpression();
6178     dropDanglingDebugInfo(Variable, Expression);
6179     SmallVector<Value *, 4> Values(DI.getValues());
6180     if (Values.empty())
6181       return;
6182 
6183     if (llvm::is_contained(Values, nullptr))
6184       return;
6185 
6186     bool IsVariadic = DI.hasArgList();
6187     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6188                           SDNodeOrder, IsVariadic))
6189       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6190     return;
6191   }
6192 
6193   case Intrinsic::eh_typeid_for: {
6194     // Find the type id for the given typeinfo.
6195     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6196     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6197     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6198     setValue(&I, Res);
6199     return;
6200   }
6201 
6202   case Intrinsic::eh_return_i32:
6203   case Intrinsic::eh_return_i64:
6204     DAG.getMachineFunction().setCallsEHReturn(true);
6205     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6206                             MVT::Other,
6207                             getControlRoot(),
6208                             getValue(I.getArgOperand(0)),
6209                             getValue(I.getArgOperand(1))));
6210     return;
6211   case Intrinsic::eh_unwind_init:
6212     DAG.getMachineFunction().setCallsUnwindInit(true);
6213     return;
6214   case Intrinsic::eh_dwarf_cfa:
6215     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6216                              TLI.getPointerTy(DAG.getDataLayout()),
6217                              getValue(I.getArgOperand(0))));
6218     return;
6219   case Intrinsic::eh_sjlj_callsite: {
6220     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6221     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6222     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6223 
6224     MMI.setCurrentCallSite(CI->getZExtValue());
6225     return;
6226   }
6227   case Intrinsic::eh_sjlj_functioncontext: {
6228     // Get and store the index of the function context.
6229     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6230     AllocaInst *FnCtx =
6231       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6232     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6233     MFI.setFunctionContextIndex(FI);
6234     return;
6235   }
6236   case Intrinsic::eh_sjlj_setjmp: {
6237     SDValue Ops[2];
6238     Ops[0] = getRoot();
6239     Ops[1] = getValue(I.getArgOperand(0));
6240     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6241                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6242     setValue(&I, Op.getValue(0));
6243     DAG.setRoot(Op.getValue(1));
6244     return;
6245   }
6246   case Intrinsic::eh_sjlj_longjmp:
6247     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6248                             getRoot(), getValue(I.getArgOperand(0))));
6249     return;
6250   case Intrinsic::eh_sjlj_setup_dispatch:
6251     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6252                             getRoot()));
6253     return;
6254   case Intrinsic::masked_gather:
6255     visitMaskedGather(I);
6256     return;
6257   case Intrinsic::masked_load:
6258     visitMaskedLoad(I);
6259     return;
6260   case Intrinsic::masked_scatter:
6261     visitMaskedScatter(I);
6262     return;
6263   case Intrinsic::masked_store:
6264     visitMaskedStore(I);
6265     return;
6266   case Intrinsic::masked_expandload:
6267     visitMaskedLoad(I, true /* IsExpanding */);
6268     return;
6269   case Intrinsic::masked_compressstore:
6270     visitMaskedStore(I, true /* IsCompressing */);
6271     return;
6272   case Intrinsic::powi:
6273     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6274                             getValue(I.getArgOperand(1)), DAG));
6275     return;
6276   case Intrinsic::log:
6277     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6278     return;
6279   case Intrinsic::log2:
6280     setValue(&I,
6281              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6282     return;
6283   case Intrinsic::log10:
6284     setValue(&I,
6285              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6286     return;
6287   case Intrinsic::exp:
6288     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6289     return;
6290   case Intrinsic::exp2:
6291     setValue(&I,
6292              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6293     return;
6294   case Intrinsic::pow:
6295     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6296                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6297     return;
6298   case Intrinsic::sqrt:
6299   case Intrinsic::fabs:
6300   case Intrinsic::sin:
6301   case Intrinsic::cos:
6302   case Intrinsic::floor:
6303   case Intrinsic::ceil:
6304   case Intrinsic::trunc:
6305   case Intrinsic::rint:
6306   case Intrinsic::nearbyint:
6307   case Intrinsic::round:
6308   case Intrinsic::roundeven:
6309   case Intrinsic::canonicalize: {
6310     unsigned Opcode;
6311     switch (Intrinsic) {
6312     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6313     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6314     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6315     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6316     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6317     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6318     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6319     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6320     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6321     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6322     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6323     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6324     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6325     }
6326 
6327     setValue(&I, DAG.getNode(Opcode, sdl,
6328                              getValue(I.getArgOperand(0)).getValueType(),
6329                              getValue(I.getArgOperand(0)), Flags));
6330     return;
6331   }
6332   case Intrinsic::lround:
6333   case Intrinsic::llround:
6334   case Intrinsic::lrint:
6335   case Intrinsic::llrint: {
6336     unsigned Opcode;
6337     switch (Intrinsic) {
6338     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6339     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6340     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6341     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6342     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6343     }
6344 
6345     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6346     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6347                              getValue(I.getArgOperand(0))));
6348     return;
6349   }
6350   case Intrinsic::minnum:
6351     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6352                              getValue(I.getArgOperand(0)).getValueType(),
6353                              getValue(I.getArgOperand(0)),
6354                              getValue(I.getArgOperand(1)), Flags));
6355     return;
6356   case Intrinsic::maxnum:
6357     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6358                              getValue(I.getArgOperand(0)).getValueType(),
6359                              getValue(I.getArgOperand(0)),
6360                              getValue(I.getArgOperand(1)), Flags));
6361     return;
6362   case Intrinsic::minimum:
6363     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6364                              getValue(I.getArgOperand(0)).getValueType(),
6365                              getValue(I.getArgOperand(0)),
6366                              getValue(I.getArgOperand(1)), Flags));
6367     return;
6368   case Intrinsic::maximum:
6369     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6370                              getValue(I.getArgOperand(0)).getValueType(),
6371                              getValue(I.getArgOperand(0)),
6372                              getValue(I.getArgOperand(1)), Flags));
6373     return;
6374   case Intrinsic::copysign:
6375     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6376                              getValue(I.getArgOperand(0)).getValueType(),
6377                              getValue(I.getArgOperand(0)),
6378                              getValue(I.getArgOperand(1)), Flags));
6379     return;
6380   case Intrinsic::arithmetic_fence: {
6381     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6382                              getValue(I.getArgOperand(0)).getValueType(),
6383                              getValue(I.getArgOperand(0)), Flags));
6384     return;
6385   }
6386   case Intrinsic::fma:
6387     setValue(&I, DAG.getNode(
6388                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6389                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6390                      getValue(I.getArgOperand(2)), Flags));
6391     return;
6392 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6393   case Intrinsic::INTRINSIC:
6394 #include "llvm/IR/ConstrainedOps.def"
6395     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6396     return;
6397 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6398 #include "llvm/IR/VPIntrinsics.def"
6399     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6400     return;
6401   case Intrinsic::fptrunc_round: {
6402     // Get the last argument, the metadata and convert it to an integer in the
6403     // call
6404     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6405     Optional<RoundingMode> RoundMode =
6406         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6407 
6408     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6409 
6410     // Propagate fast-math-flags from IR to node(s).
6411     SDNodeFlags Flags;
6412     Flags.copyFMF(*cast<FPMathOperator>(&I));
6413     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6414 
6415     SDValue Result;
6416     Result = DAG.getNode(
6417         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6418         DAG.getTargetConstant((int)*RoundMode, sdl,
6419                               TLI.getPointerTy(DAG.getDataLayout())));
6420     setValue(&I, Result);
6421 
6422     return;
6423   }
6424   case Intrinsic::fmuladd: {
6425     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6426     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6427         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6428       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6429                                getValue(I.getArgOperand(0)).getValueType(),
6430                                getValue(I.getArgOperand(0)),
6431                                getValue(I.getArgOperand(1)),
6432                                getValue(I.getArgOperand(2)), Flags));
6433     } else {
6434       // TODO: Intrinsic calls should have fast-math-flags.
6435       SDValue Mul = DAG.getNode(
6436           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6437           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6438       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6439                                 getValue(I.getArgOperand(0)).getValueType(),
6440                                 Mul, getValue(I.getArgOperand(2)), Flags);
6441       setValue(&I, Add);
6442     }
6443     return;
6444   }
6445   case Intrinsic::convert_to_fp16:
6446     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6447                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6448                                          getValue(I.getArgOperand(0)),
6449                                          DAG.getTargetConstant(0, sdl,
6450                                                                MVT::i32))));
6451     return;
6452   case Intrinsic::convert_from_fp16:
6453     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6454                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6455                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6456                                          getValue(I.getArgOperand(0)))));
6457     return;
6458   case Intrinsic::fptosi_sat: {
6459     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6460     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6461                              getValue(I.getArgOperand(0)),
6462                              DAG.getValueType(VT.getScalarType())));
6463     return;
6464   }
6465   case Intrinsic::fptoui_sat: {
6466     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6467     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6468                              getValue(I.getArgOperand(0)),
6469                              DAG.getValueType(VT.getScalarType())));
6470     return;
6471   }
6472   case Intrinsic::set_rounding:
6473     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6474                       {getRoot(), getValue(I.getArgOperand(0))});
6475     setValue(&I, Res);
6476     DAG.setRoot(Res.getValue(0));
6477     return;
6478   case Intrinsic::is_fpclass: {
6479     const DataLayout DLayout = DAG.getDataLayout();
6480     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6481     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6482     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6483     MachineFunction &MF = DAG.getMachineFunction();
6484     const Function &F = MF.getFunction();
6485     SDValue Op = getValue(I.getArgOperand(0));
6486     SDNodeFlags Flags;
6487     Flags.setNoFPExcept(
6488         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6489     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6490     // expansion can use illegal types. Making expansion early allows
6491     // legalizing these types prior to selection.
6492     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6493       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6494       setValue(&I, Result);
6495       return;
6496     }
6497 
6498     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6499     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6500     setValue(&I, V);
6501     return;
6502   }
6503   case Intrinsic::pcmarker: {
6504     SDValue Tmp = getValue(I.getArgOperand(0));
6505     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6506     return;
6507   }
6508   case Intrinsic::readcyclecounter: {
6509     SDValue Op = getRoot();
6510     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6511                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6512     setValue(&I, Res);
6513     DAG.setRoot(Res.getValue(1));
6514     return;
6515   }
6516   case Intrinsic::bitreverse:
6517     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6518                              getValue(I.getArgOperand(0)).getValueType(),
6519                              getValue(I.getArgOperand(0))));
6520     return;
6521   case Intrinsic::bswap:
6522     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6523                              getValue(I.getArgOperand(0)).getValueType(),
6524                              getValue(I.getArgOperand(0))));
6525     return;
6526   case Intrinsic::cttz: {
6527     SDValue Arg = getValue(I.getArgOperand(0));
6528     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6529     EVT Ty = Arg.getValueType();
6530     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6531                              sdl, Ty, Arg));
6532     return;
6533   }
6534   case Intrinsic::ctlz: {
6535     SDValue Arg = getValue(I.getArgOperand(0));
6536     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6537     EVT Ty = Arg.getValueType();
6538     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6539                              sdl, Ty, Arg));
6540     return;
6541   }
6542   case Intrinsic::ctpop: {
6543     SDValue Arg = getValue(I.getArgOperand(0));
6544     EVT Ty = Arg.getValueType();
6545     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6546     return;
6547   }
6548   case Intrinsic::fshl:
6549   case Intrinsic::fshr: {
6550     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6551     SDValue X = getValue(I.getArgOperand(0));
6552     SDValue Y = getValue(I.getArgOperand(1));
6553     SDValue Z = getValue(I.getArgOperand(2));
6554     EVT VT = X.getValueType();
6555 
6556     if (X == Y) {
6557       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6558       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6559     } else {
6560       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6561       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6562     }
6563     return;
6564   }
6565   case Intrinsic::sadd_sat: {
6566     SDValue Op1 = getValue(I.getArgOperand(0));
6567     SDValue Op2 = getValue(I.getArgOperand(1));
6568     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6569     return;
6570   }
6571   case Intrinsic::uadd_sat: {
6572     SDValue Op1 = getValue(I.getArgOperand(0));
6573     SDValue Op2 = getValue(I.getArgOperand(1));
6574     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6575     return;
6576   }
6577   case Intrinsic::ssub_sat: {
6578     SDValue Op1 = getValue(I.getArgOperand(0));
6579     SDValue Op2 = getValue(I.getArgOperand(1));
6580     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6581     return;
6582   }
6583   case Intrinsic::usub_sat: {
6584     SDValue Op1 = getValue(I.getArgOperand(0));
6585     SDValue Op2 = getValue(I.getArgOperand(1));
6586     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6587     return;
6588   }
6589   case Intrinsic::sshl_sat: {
6590     SDValue Op1 = getValue(I.getArgOperand(0));
6591     SDValue Op2 = getValue(I.getArgOperand(1));
6592     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6593     return;
6594   }
6595   case Intrinsic::ushl_sat: {
6596     SDValue Op1 = getValue(I.getArgOperand(0));
6597     SDValue Op2 = getValue(I.getArgOperand(1));
6598     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6599     return;
6600   }
6601   case Intrinsic::smul_fix:
6602   case Intrinsic::umul_fix:
6603   case Intrinsic::smul_fix_sat:
6604   case Intrinsic::umul_fix_sat: {
6605     SDValue Op1 = getValue(I.getArgOperand(0));
6606     SDValue Op2 = getValue(I.getArgOperand(1));
6607     SDValue Op3 = getValue(I.getArgOperand(2));
6608     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6609                              Op1.getValueType(), Op1, Op2, Op3));
6610     return;
6611   }
6612   case Intrinsic::sdiv_fix:
6613   case Intrinsic::udiv_fix:
6614   case Intrinsic::sdiv_fix_sat:
6615   case Intrinsic::udiv_fix_sat: {
6616     SDValue Op1 = getValue(I.getArgOperand(0));
6617     SDValue Op2 = getValue(I.getArgOperand(1));
6618     SDValue Op3 = getValue(I.getArgOperand(2));
6619     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6620                               Op1, Op2, Op3, DAG, TLI));
6621     return;
6622   }
6623   case Intrinsic::smax: {
6624     SDValue Op1 = getValue(I.getArgOperand(0));
6625     SDValue Op2 = getValue(I.getArgOperand(1));
6626     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6627     return;
6628   }
6629   case Intrinsic::smin: {
6630     SDValue Op1 = getValue(I.getArgOperand(0));
6631     SDValue Op2 = getValue(I.getArgOperand(1));
6632     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6633     return;
6634   }
6635   case Intrinsic::umax: {
6636     SDValue Op1 = getValue(I.getArgOperand(0));
6637     SDValue Op2 = getValue(I.getArgOperand(1));
6638     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6639     return;
6640   }
6641   case Intrinsic::umin: {
6642     SDValue Op1 = getValue(I.getArgOperand(0));
6643     SDValue Op2 = getValue(I.getArgOperand(1));
6644     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6645     return;
6646   }
6647   case Intrinsic::abs: {
6648     // TODO: Preserve "int min is poison" arg in SDAG?
6649     SDValue Op1 = getValue(I.getArgOperand(0));
6650     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6651     return;
6652   }
6653   case Intrinsic::stacksave: {
6654     SDValue Op = getRoot();
6655     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6656     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6657     setValue(&I, Res);
6658     DAG.setRoot(Res.getValue(1));
6659     return;
6660   }
6661   case Intrinsic::stackrestore:
6662     Res = getValue(I.getArgOperand(0));
6663     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6664     return;
6665   case Intrinsic::get_dynamic_area_offset: {
6666     SDValue Op = getRoot();
6667     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6668     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6669     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6670     // target.
6671     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6672       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6673                          " intrinsic!");
6674     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6675                       Op);
6676     DAG.setRoot(Op);
6677     setValue(&I, Res);
6678     return;
6679   }
6680   case Intrinsic::stackguard: {
6681     MachineFunction &MF = DAG.getMachineFunction();
6682     const Module &M = *MF.getFunction().getParent();
6683     SDValue Chain = getRoot();
6684     if (TLI.useLoadStackGuardNode()) {
6685       Res = getLoadStackGuard(DAG, sdl, Chain);
6686     } else {
6687       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6688       const Value *Global = TLI.getSDagStackGuard(M);
6689       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6690       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6691                         MachinePointerInfo(Global, 0), Align,
6692                         MachineMemOperand::MOVolatile);
6693     }
6694     if (TLI.useStackGuardXorFP())
6695       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6696     DAG.setRoot(Chain);
6697     setValue(&I, Res);
6698     return;
6699   }
6700   case Intrinsic::stackprotector: {
6701     // Emit code into the DAG to store the stack guard onto the stack.
6702     MachineFunction &MF = DAG.getMachineFunction();
6703     MachineFrameInfo &MFI = MF.getFrameInfo();
6704     SDValue Src, Chain = getRoot();
6705 
6706     if (TLI.useLoadStackGuardNode())
6707       Src = getLoadStackGuard(DAG, sdl, Chain);
6708     else
6709       Src = getValue(I.getArgOperand(0));   // The guard's value.
6710 
6711     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6712 
6713     int FI = FuncInfo.StaticAllocaMap[Slot];
6714     MFI.setStackProtectorIndex(FI);
6715     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6716 
6717     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6718 
6719     // Store the stack protector onto the stack.
6720     Res = DAG.getStore(
6721         Chain, sdl, Src, FIN,
6722         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6723         MaybeAlign(), MachineMemOperand::MOVolatile);
6724     setValue(&I, Res);
6725     DAG.setRoot(Res);
6726     return;
6727   }
6728   case Intrinsic::objectsize:
6729     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6730 
6731   case Intrinsic::is_constant:
6732     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6733 
6734   case Intrinsic::annotation:
6735   case Intrinsic::ptr_annotation:
6736   case Intrinsic::launder_invariant_group:
6737   case Intrinsic::strip_invariant_group:
6738     // Drop the intrinsic, but forward the value
6739     setValue(&I, getValue(I.getOperand(0)));
6740     return;
6741 
6742   case Intrinsic::assume:
6743   case Intrinsic::experimental_noalias_scope_decl:
6744   case Intrinsic::var_annotation:
6745   case Intrinsic::sideeffect:
6746     // Discard annotate attributes, noalias scope declarations, assumptions, and
6747     // artificial side-effects.
6748     return;
6749 
6750   case Intrinsic::codeview_annotation: {
6751     // Emit a label associated with this metadata.
6752     MachineFunction &MF = DAG.getMachineFunction();
6753     MCSymbol *Label =
6754         MF.getMMI().getContext().createTempSymbol("annotation", true);
6755     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6756     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6757     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6758     DAG.setRoot(Res);
6759     return;
6760   }
6761 
6762   case Intrinsic::init_trampoline: {
6763     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6764 
6765     SDValue Ops[6];
6766     Ops[0] = getRoot();
6767     Ops[1] = getValue(I.getArgOperand(0));
6768     Ops[2] = getValue(I.getArgOperand(1));
6769     Ops[3] = getValue(I.getArgOperand(2));
6770     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6771     Ops[5] = DAG.getSrcValue(F);
6772 
6773     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6774 
6775     DAG.setRoot(Res);
6776     return;
6777   }
6778   case Intrinsic::adjust_trampoline:
6779     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6780                              TLI.getPointerTy(DAG.getDataLayout()),
6781                              getValue(I.getArgOperand(0))));
6782     return;
6783   case Intrinsic::gcroot: {
6784     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6785            "only valid in functions with gc specified, enforced by Verifier");
6786     assert(GFI && "implied by previous");
6787     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6788     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6789 
6790     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6791     GFI->addStackRoot(FI->getIndex(), TypeMap);
6792     return;
6793   }
6794   case Intrinsic::gcread:
6795   case Intrinsic::gcwrite:
6796     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6797   case Intrinsic::flt_rounds:
6798     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6799     setValue(&I, Res);
6800     DAG.setRoot(Res.getValue(1));
6801     return;
6802 
6803   case Intrinsic::expect:
6804     // Just replace __builtin_expect(exp, c) with EXP.
6805     setValue(&I, getValue(I.getArgOperand(0)));
6806     return;
6807 
6808   case Intrinsic::ubsantrap:
6809   case Intrinsic::debugtrap:
6810   case Intrinsic::trap: {
6811     StringRef TrapFuncName =
6812         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6813     if (TrapFuncName.empty()) {
6814       switch (Intrinsic) {
6815       case Intrinsic::trap:
6816         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6817         break;
6818       case Intrinsic::debugtrap:
6819         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6820         break;
6821       case Intrinsic::ubsantrap:
6822         DAG.setRoot(DAG.getNode(
6823             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6824             DAG.getTargetConstant(
6825                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6826                 MVT::i32)));
6827         break;
6828       default: llvm_unreachable("unknown trap intrinsic");
6829       }
6830       return;
6831     }
6832     TargetLowering::ArgListTy Args;
6833     if (Intrinsic == Intrinsic::ubsantrap) {
6834       Args.push_back(TargetLoweringBase::ArgListEntry());
6835       Args[0].Val = I.getArgOperand(0);
6836       Args[0].Node = getValue(Args[0].Val);
6837       Args[0].Ty = Args[0].Val->getType();
6838     }
6839 
6840     TargetLowering::CallLoweringInfo CLI(DAG);
6841     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6842         CallingConv::C, I.getType(),
6843         DAG.getExternalSymbol(TrapFuncName.data(),
6844                               TLI.getPointerTy(DAG.getDataLayout())),
6845         std::move(Args));
6846 
6847     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6848     DAG.setRoot(Result.second);
6849     return;
6850   }
6851 
6852   case Intrinsic::uadd_with_overflow:
6853   case Intrinsic::sadd_with_overflow:
6854   case Intrinsic::usub_with_overflow:
6855   case Intrinsic::ssub_with_overflow:
6856   case Intrinsic::umul_with_overflow:
6857   case Intrinsic::smul_with_overflow: {
6858     ISD::NodeType Op;
6859     switch (Intrinsic) {
6860     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6861     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6862     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6863     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6864     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6865     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6866     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6867     }
6868     SDValue Op1 = getValue(I.getArgOperand(0));
6869     SDValue Op2 = getValue(I.getArgOperand(1));
6870 
6871     EVT ResultVT = Op1.getValueType();
6872     EVT OverflowVT = MVT::i1;
6873     if (ResultVT.isVector())
6874       OverflowVT = EVT::getVectorVT(
6875           *Context, OverflowVT, ResultVT.getVectorElementCount());
6876 
6877     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6878     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6879     return;
6880   }
6881   case Intrinsic::prefetch: {
6882     SDValue Ops[5];
6883     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6884     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6885     Ops[0] = DAG.getRoot();
6886     Ops[1] = getValue(I.getArgOperand(0));
6887     Ops[2] = getValue(I.getArgOperand(1));
6888     Ops[3] = getValue(I.getArgOperand(2));
6889     Ops[4] = getValue(I.getArgOperand(3));
6890     SDValue Result = DAG.getMemIntrinsicNode(
6891         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6892         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6893         /* align */ None, Flags);
6894 
6895     // Chain the prefetch in parallell with any pending loads, to stay out of
6896     // the way of later optimizations.
6897     PendingLoads.push_back(Result);
6898     Result = getRoot();
6899     DAG.setRoot(Result);
6900     return;
6901   }
6902   case Intrinsic::lifetime_start:
6903   case Intrinsic::lifetime_end: {
6904     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6905     // Stack coloring is not enabled in O0, discard region information.
6906     if (TM.getOptLevel() == CodeGenOpt::None)
6907       return;
6908 
6909     const int64_t ObjectSize =
6910         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6911     Value *const ObjectPtr = I.getArgOperand(1);
6912     SmallVector<const Value *, 4> Allocas;
6913     getUnderlyingObjects(ObjectPtr, Allocas);
6914 
6915     for (const Value *Alloca : Allocas) {
6916       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6917 
6918       // Could not find an Alloca.
6919       if (!LifetimeObject)
6920         continue;
6921 
6922       // First check that the Alloca is static, otherwise it won't have a
6923       // valid frame index.
6924       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6925       if (SI == FuncInfo.StaticAllocaMap.end())
6926         return;
6927 
6928       const int FrameIndex = SI->second;
6929       int64_t Offset;
6930       if (GetPointerBaseWithConstantOffset(
6931               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6932         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6933       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6934                                 Offset);
6935       DAG.setRoot(Res);
6936     }
6937     return;
6938   }
6939   case Intrinsic::pseudoprobe: {
6940     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6941     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6942     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6943     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6944     DAG.setRoot(Res);
6945     return;
6946   }
6947   case Intrinsic::invariant_start:
6948     // Discard region information.
6949     setValue(&I,
6950              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6951     return;
6952   case Intrinsic::invariant_end:
6953     // Discard region information.
6954     return;
6955   case Intrinsic::clear_cache:
6956     /// FunctionName may be null.
6957     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6958       lowerCallToExternalSymbol(I, FunctionName);
6959     return;
6960   case Intrinsic::donothing:
6961   case Intrinsic::seh_try_begin:
6962   case Intrinsic::seh_scope_begin:
6963   case Intrinsic::seh_try_end:
6964   case Intrinsic::seh_scope_end:
6965     // ignore
6966     return;
6967   case Intrinsic::experimental_stackmap:
6968     visitStackmap(I);
6969     return;
6970   case Intrinsic::experimental_patchpoint_void:
6971   case Intrinsic::experimental_patchpoint_i64:
6972     visitPatchpoint(I);
6973     return;
6974   case Intrinsic::experimental_gc_statepoint:
6975     LowerStatepoint(cast<GCStatepointInst>(I));
6976     return;
6977   case Intrinsic::experimental_gc_result:
6978     visitGCResult(cast<GCResultInst>(I));
6979     return;
6980   case Intrinsic::experimental_gc_relocate:
6981     visitGCRelocate(cast<GCRelocateInst>(I));
6982     return;
6983   case Intrinsic::instrprof_cover:
6984     llvm_unreachable("instrprof failed to lower a cover");
6985   case Intrinsic::instrprof_increment:
6986     llvm_unreachable("instrprof failed to lower an increment");
6987   case Intrinsic::instrprof_value_profile:
6988     llvm_unreachable("instrprof failed to lower a value profiling call");
6989   case Intrinsic::localescape: {
6990     MachineFunction &MF = DAG.getMachineFunction();
6991     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6992 
6993     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6994     // is the same on all targets.
6995     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6996       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6997       if (isa<ConstantPointerNull>(Arg))
6998         continue; // Skip null pointers. They represent a hole in index space.
6999       AllocaInst *Slot = cast<AllocaInst>(Arg);
7000       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7001              "can only escape static allocas");
7002       int FI = FuncInfo.StaticAllocaMap[Slot];
7003       MCSymbol *FrameAllocSym =
7004           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7005               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7006       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7007               TII->get(TargetOpcode::LOCAL_ESCAPE))
7008           .addSym(FrameAllocSym)
7009           .addFrameIndex(FI);
7010     }
7011 
7012     return;
7013   }
7014 
7015   case Intrinsic::localrecover: {
7016     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7017     MachineFunction &MF = DAG.getMachineFunction();
7018 
7019     // Get the symbol that defines the frame offset.
7020     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7021     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7022     unsigned IdxVal =
7023         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7024     MCSymbol *FrameAllocSym =
7025         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7026             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7027 
7028     Value *FP = I.getArgOperand(1);
7029     SDValue FPVal = getValue(FP);
7030     EVT PtrVT = FPVal.getValueType();
7031 
7032     // Create a MCSymbol for the label to avoid any target lowering
7033     // that would make this PC relative.
7034     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7035     SDValue OffsetVal =
7036         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7037 
7038     // Add the offset to the FP.
7039     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7040     setValue(&I, Add);
7041 
7042     return;
7043   }
7044 
7045   case Intrinsic::eh_exceptionpointer:
7046   case Intrinsic::eh_exceptioncode: {
7047     // Get the exception pointer vreg, copy from it, and resize it to fit.
7048     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7049     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7050     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7051     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7052     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7053     if (Intrinsic == Intrinsic::eh_exceptioncode)
7054       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7055     setValue(&I, N);
7056     return;
7057   }
7058   case Intrinsic::xray_customevent: {
7059     // Here we want to make sure that the intrinsic behaves as if it has a
7060     // specific calling convention, and only for x86_64.
7061     // FIXME: Support other platforms later.
7062     const auto &Triple = DAG.getTarget().getTargetTriple();
7063     if (Triple.getArch() != Triple::x86_64)
7064       return;
7065 
7066     SmallVector<SDValue, 8> Ops;
7067 
7068     // We want to say that we always want the arguments in registers.
7069     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7070     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7071     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7072     SDValue Chain = getRoot();
7073     Ops.push_back(LogEntryVal);
7074     Ops.push_back(StrSizeVal);
7075     Ops.push_back(Chain);
7076 
7077     // We need to enforce the calling convention for the callsite, so that
7078     // argument ordering is enforced correctly, and that register allocation can
7079     // see that some registers may be assumed clobbered and have to preserve
7080     // them across calls to the intrinsic.
7081     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7082                                            sdl, NodeTys, Ops);
7083     SDValue patchableNode = SDValue(MN, 0);
7084     DAG.setRoot(patchableNode);
7085     setValue(&I, patchableNode);
7086     return;
7087   }
7088   case Intrinsic::xray_typedevent: {
7089     // Here we want to make sure that the intrinsic behaves as if it has a
7090     // specific calling convention, and only for x86_64.
7091     // FIXME: Support other platforms later.
7092     const auto &Triple = DAG.getTarget().getTargetTriple();
7093     if (Triple.getArch() != Triple::x86_64)
7094       return;
7095 
7096     SmallVector<SDValue, 8> Ops;
7097 
7098     // We want to say that we always want the arguments in registers.
7099     // It's unclear to me how manipulating the selection DAG here forces callers
7100     // to provide arguments in registers instead of on the stack.
7101     SDValue LogTypeId = getValue(I.getArgOperand(0));
7102     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7103     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7104     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7105     SDValue Chain = getRoot();
7106     Ops.push_back(LogTypeId);
7107     Ops.push_back(LogEntryVal);
7108     Ops.push_back(StrSizeVal);
7109     Ops.push_back(Chain);
7110 
7111     // We need to enforce the calling convention for the callsite, so that
7112     // argument ordering is enforced correctly, and that register allocation can
7113     // see that some registers may be assumed clobbered and have to preserve
7114     // them across calls to the intrinsic.
7115     MachineSDNode *MN = DAG.getMachineNode(
7116         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7117     SDValue patchableNode = SDValue(MN, 0);
7118     DAG.setRoot(patchableNode);
7119     setValue(&I, patchableNode);
7120     return;
7121   }
7122   case Intrinsic::experimental_deoptimize:
7123     LowerDeoptimizeCall(&I);
7124     return;
7125   case Intrinsic::experimental_stepvector:
7126     visitStepVector(I);
7127     return;
7128   case Intrinsic::vector_reduce_fadd:
7129   case Intrinsic::vector_reduce_fmul:
7130   case Intrinsic::vector_reduce_add:
7131   case Intrinsic::vector_reduce_mul:
7132   case Intrinsic::vector_reduce_and:
7133   case Intrinsic::vector_reduce_or:
7134   case Intrinsic::vector_reduce_xor:
7135   case Intrinsic::vector_reduce_smax:
7136   case Intrinsic::vector_reduce_smin:
7137   case Intrinsic::vector_reduce_umax:
7138   case Intrinsic::vector_reduce_umin:
7139   case Intrinsic::vector_reduce_fmax:
7140   case Intrinsic::vector_reduce_fmin:
7141     visitVectorReduce(I, Intrinsic);
7142     return;
7143 
7144   case Intrinsic::icall_branch_funnel: {
7145     SmallVector<SDValue, 16> Ops;
7146     Ops.push_back(getValue(I.getArgOperand(0)));
7147 
7148     int64_t Offset;
7149     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7150         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7151     if (!Base)
7152       report_fatal_error(
7153           "llvm.icall.branch.funnel operand must be a GlobalValue");
7154     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7155 
7156     struct BranchFunnelTarget {
7157       int64_t Offset;
7158       SDValue Target;
7159     };
7160     SmallVector<BranchFunnelTarget, 8> Targets;
7161 
7162     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7163       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7164           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7165       if (ElemBase != Base)
7166         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7167                            "to the same GlobalValue");
7168 
7169       SDValue Val = getValue(I.getArgOperand(Op + 1));
7170       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7171       if (!GA)
7172         report_fatal_error(
7173             "llvm.icall.branch.funnel operand must be a GlobalValue");
7174       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7175                                      GA->getGlobal(), sdl, Val.getValueType(),
7176                                      GA->getOffset())});
7177     }
7178     llvm::sort(Targets,
7179                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7180                  return T1.Offset < T2.Offset;
7181                });
7182 
7183     for (auto &T : Targets) {
7184       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7185       Ops.push_back(T.Target);
7186     }
7187 
7188     Ops.push_back(DAG.getRoot()); // Chain
7189     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7190                                  MVT::Other, Ops),
7191               0);
7192     DAG.setRoot(N);
7193     setValue(&I, N);
7194     HasTailCall = true;
7195     return;
7196   }
7197 
7198   case Intrinsic::wasm_landingpad_index:
7199     // Information this intrinsic contained has been transferred to
7200     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7201     // delete it now.
7202     return;
7203 
7204   case Intrinsic::aarch64_settag:
7205   case Intrinsic::aarch64_settag_zero: {
7206     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7207     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7208     SDValue Val = TSI.EmitTargetCodeForSetTag(
7209         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7210         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7211         ZeroMemory);
7212     DAG.setRoot(Val);
7213     setValue(&I, Val);
7214     return;
7215   }
7216   case Intrinsic::ptrmask: {
7217     SDValue Ptr = getValue(I.getOperand(0));
7218     SDValue Const = getValue(I.getOperand(1));
7219 
7220     EVT PtrVT = Ptr.getValueType();
7221     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7222                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7223     return;
7224   }
7225   case Intrinsic::threadlocal_address: {
7226     setValue(&I, getValue(I.getOperand(0)));
7227     return;
7228   }
7229   case Intrinsic::get_active_lane_mask: {
7230     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7231     SDValue Index = getValue(I.getOperand(0));
7232     EVT ElementVT = Index.getValueType();
7233 
7234     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7235       visitTargetIntrinsic(I, Intrinsic);
7236       return;
7237     }
7238 
7239     SDValue TripCount = getValue(I.getOperand(1));
7240     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7241 
7242     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7243     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7244     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7245     SDValue VectorInduction = DAG.getNode(
7246         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7247     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7248                                  VectorTripCount, ISD::CondCode::SETULT);
7249     setValue(&I, SetCC);
7250     return;
7251   }
7252   case Intrinsic::vector_insert: {
7253     SDValue Vec = getValue(I.getOperand(0));
7254     SDValue SubVec = getValue(I.getOperand(1));
7255     SDValue Index = getValue(I.getOperand(2));
7256 
7257     // The intrinsic's index type is i64, but the SDNode requires an index type
7258     // suitable for the target. Convert the index as required.
7259     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7260     if (Index.getValueType() != VectorIdxTy)
7261       Index = DAG.getVectorIdxConstant(
7262           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7263 
7264     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7265     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7266                              Index));
7267     return;
7268   }
7269   case Intrinsic::vector_extract: {
7270     SDValue Vec = getValue(I.getOperand(0));
7271     SDValue Index = getValue(I.getOperand(1));
7272     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7273 
7274     // The intrinsic's index type is i64, but the SDNode requires an index type
7275     // suitable for the target. Convert the index as required.
7276     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7277     if (Index.getValueType() != VectorIdxTy)
7278       Index = DAG.getVectorIdxConstant(
7279           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7280 
7281     setValue(&I,
7282              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7283     return;
7284   }
7285   case Intrinsic::experimental_vector_reverse:
7286     visitVectorReverse(I);
7287     return;
7288   case Intrinsic::experimental_vector_splice:
7289     visitVectorSplice(I);
7290     return;
7291   }
7292 }
7293 
7294 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7295     const ConstrainedFPIntrinsic &FPI) {
7296   SDLoc sdl = getCurSDLoc();
7297 
7298   // We do not need to serialize constrained FP intrinsics against
7299   // each other or against (nonvolatile) loads, so they can be
7300   // chained like loads.
7301   SDValue Chain = DAG.getRoot();
7302   SmallVector<SDValue, 4> Opers;
7303   Opers.push_back(Chain);
7304   if (FPI.isUnaryOp()) {
7305     Opers.push_back(getValue(FPI.getArgOperand(0)));
7306   } else if (FPI.isTernaryOp()) {
7307     Opers.push_back(getValue(FPI.getArgOperand(0)));
7308     Opers.push_back(getValue(FPI.getArgOperand(1)));
7309     Opers.push_back(getValue(FPI.getArgOperand(2)));
7310   } else {
7311     Opers.push_back(getValue(FPI.getArgOperand(0)));
7312     Opers.push_back(getValue(FPI.getArgOperand(1)));
7313   }
7314 
7315   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7316     assert(Result.getNode()->getNumValues() == 2);
7317 
7318     // Push node to the appropriate list so that future instructions can be
7319     // chained up correctly.
7320     SDValue OutChain = Result.getValue(1);
7321     switch (EB) {
7322     case fp::ExceptionBehavior::ebIgnore:
7323       // The only reason why ebIgnore nodes still need to be chained is that
7324       // they might depend on the current rounding mode, and therefore must
7325       // not be moved across instruction that may change that mode.
7326       [[fallthrough]];
7327     case fp::ExceptionBehavior::ebMayTrap:
7328       // These must not be moved across calls or instructions that may change
7329       // floating-point exception masks.
7330       PendingConstrainedFP.push_back(OutChain);
7331       break;
7332     case fp::ExceptionBehavior::ebStrict:
7333       // These must not be moved across calls or instructions that may change
7334       // floating-point exception masks or read floating-point exception flags.
7335       // In addition, they cannot be optimized out even if unused.
7336       PendingConstrainedFPStrict.push_back(OutChain);
7337       break;
7338     }
7339   };
7340 
7341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7342   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7343   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7344   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7345 
7346   SDNodeFlags Flags;
7347   if (EB == fp::ExceptionBehavior::ebIgnore)
7348     Flags.setNoFPExcept(true);
7349 
7350   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7351     Flags.copyFMF(*FPOp);
7352 
7353   unsigned Opcode;
7354   switch (FPI.getIntrinsicID()) {
7355   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7356 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7357   case Intrinsic::INTRINSIC:                                                   \
7358     Opcode = ISD::STRICT_##DAGN;                                               \
7359     break;
7360 #include "llvm/IR/ConstrainedOps.def"
7361   case Intrinsic::experimental_constrained_fmuladd: {
7362     Opcode = ISD::STRICT_FMA;
7363     // Break fmuladd into fmul and fadd.
7364     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7365         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7366       Opers.pop_back();
7367       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7368       pushOutChain(Mul, EB);
7369       Opcode = ISD::STRICT_FADD;
7370       Opers.clear();
7371       Opers.push_back(Mul.getValue(1));
7372       Opers.push_back(Mul.getValue(0));
7373       Opers.push_back(getValue(FPI.getArgOperand(2)));
7374     }
7375     break;
7376   }
7377   }
7378 
7379   // A few strict DAG nodes carry additional operands that are not
7380   // set up by the default code above.
7381   switch (Opcode) {
7382   default: break;
7383   case ISD::STRICT_FP_ROUND:
7384     Opers.push_back(
7385         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7386     break;
7387   case ISD::STRICT_FSETCC:
7388   case ISD::STRICT_FSETCCS: {
7389     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7390     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7391     if (TM.Options.NoNaNsFPMath)
7392       Condition = getFCmpCodeWithoutNaN(Condition);
7393     Opers.push_back(DAG.getCondCode(Condition));
7394     break;
7395   }
7396   }
7397 
7398   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7399   pushOutChain(Result, EB);
7400 
7401   SDValue FPResult = Result.getValue(0);
7402   setValue(&FPI, FPResult);
7403 }
7404 
7405 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7406   Optional<unsigned> ResOPC;
7407   switch (VPIntrin.getIntrinsicID()) {
7408 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7409   case Intrinsic::VPID:                                                        \
7410     ResOPC = ISD::VPSD;                                                        \
7411     break;
7412 #include "llvm/IR/VPIntrinsics.def"
7413   }
7414 
7415   if (!ResOPC)
7416     llvm_unreachable(
7417         "Inconsistency: no SDNode available for this VPIntrinsic!");
7418 
7419   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7420       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7421     if (VPIntrin.getFastMathFlags().allowReassoc())
7422       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7423                                                 : ISD::VP_REDUCE_FMUL;
7424   }
7425 
7426   return *ResOPC;
7427 }
7428 
7429 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7430                                       SmallVector<SDValue, 7> &OpValues) {
7431   SDLoc DL = getCurSDLoc();
7432   Value *PtrOperand = VPIntrin.getArgOperand(0);
7433   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7434   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7435   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7436   SDValue LD;
7437   bool AddToChain = true;
7438   // Do not serialize variable-length loads of constant memory with
7439   // anything.
7440   if (!Alignment)
7441     Alignment = DAG.getEVTAlign(VT);
7442   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7443   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7444   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7445   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7446       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7447       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7448   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7449                      MMO, false /*IsExpanding */);
7450   if (AddToChain)
7451     PendingLoads.push_back(LD.getValue(1));
7452   setValue(&VPIntrin, LD);
7453 }
7454 
7455 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7456                                         SmallVector<SDValue, 7> &OpValues) {
7457   SDLoc DL = getCurSDLoc();
7458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7459   Value *PtrOperand = VPIntrin.getArgOperand(0);
7460   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7461   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7462   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7463   SDValue LD;
7464   if (!Alignment)
7465     Alignment = DAG.getEVTAlign(VT.getScalarType());
7466   unsigned AS =
7467     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7468   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7469      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7470      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7471   SDValue Base, Index, Scale;
7472   ISD::MemIndexType IndexType;
7473   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7474                                     this, VPIntrin.getParent(),
7475                                     VT.getScalarStoreSize());
7476   if (!UniformBase) {
7477     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7478     Index = getValue(PtrOperand);
7479     IndexType = ISD::SIGNED_SCALED;
7480     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7481   }
7482   EVT IdxVT = Index.getValueType();
7483   EVT EltTy = IdxVT.getVectorElementType();
7484   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7485     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7486     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7487   }
7488   LD = DAG.getGatherVP(
7489       DAG.getVTList(VT, MVT::Other), VT, DL,
7490       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7491       IndexType);
7492   PendingLoads.push_back(LD.getValue(1));
7493   setValue(&VPIntrin, LD);
7494 }
7495 
7496 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7497                                        SmallVector<SDValue, 7> &OpValues) {
7498   SDLoc DL = getCurSDLoc();
7499   Value *PtrOperand = VPIntrin.getArgOperand(1);
7500   EVT VT = OpValues[0].getValueType();
7501   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7502   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7503   SDValue ST;
7504   if (!Alignment)
7505     Alignment = DAG.getEVTAlign(VT);
7506   SDValue Ptr = OpValues[1];
7507   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7508   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7509       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7510       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7511   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7512                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7513                       /* IsTruncating */ false, /*IsCompressing*/ false);
7514   DAG.setRoot(ST);
7515   setValue(&VPIntrin, ST);
7516 }
7517 
7518 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7519                                               SmallVector<SDValue, 7> &OpValues) {
7520   SDLoc DL = getCurSDLoc();
7521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7522   Value *PtrOperand = VPIntrin.getArgOperand(1);
7523   EVT VT = OpValues[0].getValueType();
7524   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7525   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7526   SDValue ST;
7527   if (!Alignment)
7528     Alignment = DAG.getEVTAlign(VT.getScalarType());
7529   unsigned AS =
7530       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7531   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7532       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7533       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7534   SDValue Base, Index, Scale;
7535   ISD::MemIndexType IndexType;
7536   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7537                                     this, VPIntrin.getParent(),
7538                                     VT.getScalarStoreSize());
7539   if (!UniformBase) {
7540     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7541     Index = getValue(PtrOperand);
7542     IndexType = ISD::SIGNED_SCALED;
7543     Scale =
7544       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7545   }
7546   EVT IdxVT = Index.getValueType();
7547   EVT EltTy = IdxVT.getVectorElementType();
7548   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7549     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7550     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7551   }
7552   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7553                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7554                          OpValues[2], OpValues[3]},
7555                         MMO, IndexType);
7556   DAG.setRoot(ST);
7557   setValue(&VPIntrin, ST);
7558 }
7559 
7560 void SelectionDAGBuilder::visitVPStridedLoad(
7561     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7562   SDLoc DL = getCurSDLoc();
7563   Value *PtrOperand = VPIntrin.getArgOperand(0);
7564   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7565   if (!Alignment)
7566     Alignment = DAG.getEVTAlign(VT.getScalarType());
7567   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7568   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7569   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7570   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7571   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7572   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7573       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7574       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7575 
7576   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7577                                     OpValues[2], OpValues[3], MMO,
7578                                     false /*IsExpanding*/);
7579 
7580   if (AddToChain)
7581     PendingLoads.push_back(LD.getValue(1));
7582   setValue(&VPIntrin, LD);
7583 }
7584 
7585 void SelectionDAGBuilder::visitVPStridedStore(
7586     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7587   SDLoc DL = getCurSDLoc();
7588   Value *PtrOperand = VPIntrin.getArgOperand(1);
7589   EVT VT = OpValues[0].getValueType();
7590   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7591   if (!Alignment)
7592     Alignment = DAG.getEVTAlign(VT.getScalarType());
7593   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7594   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7595       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7596       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7597 
7598   SDValue ST = DAG.getStridedStoreVP(
7599       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7600       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7601       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7602       /*IsCompressing*/ false);
7603 
7604   DAG.setRoot(ST);
7605   setValue(&VPIntrin, ST);
7606 }
7607 
7608 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7609   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7610   SDLoc DL = getCurSDLoc();
7611 
7612   ISD::CondCode Condition;
7613   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7614   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7615   if (IsFP) {
7616     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7617     // flags, but calls that don't return floating-point types can't be
7618     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7619     Condition = getFCmpCondCode(CondCode);
7620     if (TM.Options.NoNaNsFPMath)
7621       Condition = getFCmpCodeWithoutNaN(Condition);
7622   } else {
7623     Condition = getICmpCondCode(CondCode);
7624   }
7625 
7626   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7627   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7628   // #2 is the condition code
7629   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7630   SDValue EVL = getValue(VPIntrin.getOperand(4));
7631   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7632   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7633          "Unexpected target EVL type");
7634   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7635 
7636   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7637                                                         VPIntrin.getType());
7638   setValue(&VPIntrin,
7639            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7640 }
7641 
7642 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7643     const VPIntrinsic &VPIntrin) {
7644   SDLoc DL = getCurSDLoc();
7645   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7646 
7647   auto IID = VPIntrin.getIntrinsicID();
7648 
7649   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7650     return visitVPCmp(*CmpI);
7651 
7652   SmallVector<EVT, 4> ValueVTs;
7653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7654   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7655   SDVTList VTs = DAG.getVTList(ValueVTs);
7656 
7657   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7658 
7659   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7660   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7661          "Unexpected target EVL type");
7662 
7663   // Request operands.
7664   SmallVector<SDValue, 7> OpValues;
7665   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7666     auto Op = getValue(VPIntrin.getArgOperand(I));
7667     if (I == EVLParamPos)
7668       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7669     OpValues.push_back(Op);
7670   }
7671 
7672   switch (Opcode) {
7673   default: {
7674     SDNodeFlags SDFlags;
7675     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7676       SDFlags.copyFMF(*FPMO);
7677     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7678     setValue(&VPIntrin, Result);
7679     break;
7680   }
7681   case ISD::VP_LOAD:
7682     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7683     break;
7684   case ISD::VP_GATHER:
7685     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7686     break;
7687   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7688     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7689     break;
7690   case ISD::VP_STORE:
7691     visitVPStore(VPIntrin, OpValues);
7692     break;
7693   case ISD::VP_SCATTER:
7694     visitVPScatter(VPIntrin, OpValues);
7695     break;
7696   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7697     visitVPStridedStore(VPIntrin, OpValues);
7698     break;
7699   case ISD::VP_FMULADD: {
7700     assert(OpValues.size() == 5 && "Unexpected number of operands");
7701     SDNodeFlags SDFlags;
7702     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7703       SDFlags.copyFMF(*FPMO);
7704     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7705         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7706       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7707     } else {
7708       SDValue Mul = DAG.getNode(
7709           ISD::VP_FMUL, DL, VTs,
7710           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7711       SDValue Add =
7712           DAG.getNode(ISD::VP_FADD, DL, VTs,
7713                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7714       setValue(&VPIntrin, Add);
7715     }
7716     break;
7717   }
7718   }
7719 }
7720 
7721 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7722                                           const BasicBlock *EHPadBB,
7723                                           MCSymbol *&BeginLabel) {
7724   MachineFunction &MF = DAG.getMachineFunction();
7725   MachineModuleInfo &MMI = MF.getMMI();
7726 
7727   // Insert a label before the invoke call to mark the try range.  This can be
7728   // used to detect deletion of the invoke via the MachineModuleInfo.
7729   BeginLabel = MMI.getContext().createTempSymbol();
7730 
7731   // For SjLj, keep track of which landing pads go with which invokes
7732   // so as to maintain the ordering of pads in the LSDA.
7733   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7734   if (CallSiteIndex) {
7735     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7736     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7737 
7738     // Now that the call site is handled, stop tracking it.
7739     MMI.setCurrentCallSite(0);
7740   }
7741 
7742   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7743 }
7744 
7745 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7746                                         const BasicBlock *EHPadBB,
7747                                         MCSymbol *BeginLabel) {
7748   assert(BeginLabel && "BeginLabel should've been set");
7749 
7750   MachineFunction &MF = DAG.getMachineFunction();
7751   MachineModuleInfo &MMI = MF.getMMI();
7752 
7753   // Insert a label at the end of the invoke call to mark the try range.  This
7754   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7755   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7756   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7757 
7758   // Inform MachineModuleInfo of range.
7759   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7760   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7761   // actually use outlined funclets and their LSDA info style.
7762   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7763     assert(II && "II should've been set");
7764     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7765     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7766   } else if (!isScopedEHPersonality(Pers)) {
7767     assert(EHPadBB);
7768     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7769   }
7770 
7771   return Chain;
7772 }
7773 
7774 std::pair<SDValue, SDValue>
7775 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7776                                     const BasicBlock *EHPadBB) {
7777   MCSymbol *BeginLabel = nullptr;
7778 
7779   if (EHPadBB) {
7780     // Both PendingLoads and PendingExports must be flushed here;
7781     // this call might not return.
7782     (void)getRoot();
7783     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7784     CLI.setChain(getRoot());
7785   }
7786 
7787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7788   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7789 
7790   assert((CLI.IsTailCall || Result.second.getNode()) &&
7791          "Non-null chain expected with non-tail call!");
7792   assert((Result.second.getNode() || !Result.first.getNode()) &&
7793          "Null value expected with tail call!");
7794 
7795   if (!Result.second.getNode()) {
7796     // As a special case, a null chain means that a tail call has been emitted
7797     // and the DAG root is already updated.
7798     HasTailCall = true;
7799 
7800     // Since there's no actual continuation from this block, nothing can be
7801     // relying on us setting vregs for them.
7802     PendingExports.clear();
7803   } else {
7804     DAG.setRoot(Result.second);
7805   }
7806 
7807   if (EHPadBB) {
7808     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7809                            BeginLabel));
7810   }
7811 
7812   return Result;
7813 }
7814 
7815 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7816                                       bool isTailCall,
7817                                       bool isMustTailCall,
7818                                       const BasicBlock *EHPadBB) {
7819   auto &DL = DAG.getDataLayout();
7820   FunctionType *FTy = CB.getFunctionType();
7821   Type *RetTy = CB.getType();
7822 
7823   TargetLowering::ArgListTy Args;
7824   Args.reserve(CB.arg_size());
7825 
7826   const Value *SwiftErrorVal = nullptr;
7827   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7828 
7829   if (isTailCall) {
7830     // Avoid emitting tail calls in functions with the disable-tail-calls
7831     // attribute.
7832     auto *Caller = CB.getParent()->getParent();
7833     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7834         "true" && !isMustTailCall)
7835       isTailCall = false;
7836 
7837     // We can't tail call inside a function with a swifterror argument. Lowering
7838     // does not support this yet. It would have to move into the swifterror
7839     // register before the call.
7840     if (TLI.supportSwiftError() &&
7841         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7842       isTailCall = false;
7843   }
7844 
7845   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7846     TargetLowering::ArgListEntry Entry;
7847     const Value *V = *I;
7848 
7849     // Skip empty types
7850     if (V->getType()->isEmptyTy())
7851       continue;
7852 
7853     SDValue ArgNode = getValue(V);
7854     Entry.Node = ArgNode; Entry.Ty = V->getType();
7855 
7856     Entry.setAttributes(&CB, I - CB.arg_begin());
7857 
7858     // Use swifterror virtual register as input to the call.
7859     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7860       SwiftErrorVal = V;
7861       // We find the virtual register for the actual swifterror argument.
7862       // Instead of using the Value, we use the virtual register instead.
7863       Entry.Node =
7864           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7865                           EVT(TLI.getPointerTy(DL)));
7866     }
7867 
7868     Args.push_back(Entry);
7869 
7870     // If we have an explicit sret argument that is an Instruction, (i.e., it
7871     // might point to function-local memory), we can't meaningfully tail-call.
7872     if (Entry.IsSRet && isa<Instruction>(V))
7873       isTailCall = false;
7874   }
7875 
7876   // If call site has a cfguardtarget operand bundle, create and add an
7877   // additional ArgListEntry.
7878   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7879     TargetLowering::ArgListEntry Entry;
7880     Value *V = Bundle->Inputs[0];
7881     SDValue ArgNode = getValue(V);
7882     Entry.Node = ArgNode;
7883     Entry.Ty = V->getType();
7884     Entry.IsCFGuardTarget = true;
7885     Args.push_back(Entry);
7886   }
7887 
7888   // Check if target-independent constraints permit a tail call here.
7889   // Target-dependent constraints are checked within TLI->LowerCallTo.
7890   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7891     isTailCall = false;
7892 
7893   // Disable tail calls if there is an swifterror argument. Targets have not
7894   // been updated to support tail calls.
7895   if (TLI.supportSwiftError() && SwiftErrorVal)
7896     isTailCall = false;
7897 
7898   ConstantInt *CFIType = nullptr;
7899   if (CB.isIndirectCall()) {
7900     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7901       if (!TLI.supportKCFIBundles())
7902         report_fatal_error(
7903             "Target doesn't support calls with kcfi operand bundles.");
7904       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7905       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7906     }
7907   }
7908 
7909   TargetLowering::CallLoweringInfo CLI(DAG);
7910   CLI.setDebugLoc(getCurSDLoc())
7911       .setChain(getRoot())
7912       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7913       .setTailCall(isTailCall)
7914       .setConvergent(CB.isConvergent())
7915       .setIsPreallocated(
7916           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7917       .setCFIType(CFIType);
7918   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7919 
7920   if (Result.first.getNode()) {
7921     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7922     setValue(&CB, Result.first);
7923   }
7924 
7925   // The last element of CLI.InVals has the SDValue for swifterror return.
7926   // Here we copy it to a virtual register and update SwiftErrorMap for
7927   // book-keeping.
7928   if (SwiftErrorVal && TLI.supportSwiftError()) {
7929     // Get the last element of InVals.
7930     SDValue Src = CLI.InVals.back();
7931     Register VReg =
7932         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7933     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7934     DAG.setRoot(CopyNode);
7935   }
7936 }
7937 
7938 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7939                              SelectionDAGBuilder &Builder) {
7940   // Check to see if this load can be trivially constant folded, e.g. if the
7941   // input is from a string literal.
7942   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7943     // Cast pointer to the type we really want to load.
7944     Type *LoadTy =
7945         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7946     if (LoadVT.isVector())
7947       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7948 
7949     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7950                                          PointerType::getUnqual(LoadTy));
7951 
7952     if (const Constant *LoadCst =
7953             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7954                                          LoadTy, Builder.DAG.getDataLayout()))
7955       return Builder.getValue(LoadCst);
7956   }
7957 
7958   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7959   // still constant memory, the input chain can be the entry node.
7960   SDValue Root;
7961   bool ConstantMemory = false;
7962 
7963   // Do not serialize (non-volatile) loads of constant memory with anything.
7964   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7965     Root = Builder.DAG.getEntryNode();
7966     ConstantMemory = true;
7967   } else {
7968     // Do not serialize non-volatile loads against each other.
7969     Root = Builder.DAG.getRoot();
7970   }
7971 
7972   SDValue Ptr = Builder.getValue(PtrVal);
7973   SDValue LoadVal =
7974       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7975                           MachinePointerInfo(PtrVal), Align(1));
7976 
7977   if (!ConstantMemory)
7978     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7979   return LoadVal;
7980 }
7981 
7982 /// Record the value for an instruction that produces an integer result,
7983 /// converting the type where necessary.
7984 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7985                                                   SDValue Value,
7986                                                   bool IsSigned) {
7987   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7988                                                     I.getType(), true);
7989   if (IsSigned)
7990     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7991   else
7992     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7993   setValue(&I, Value);
7994 }
7995 
7996 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7997 /// true and lower it. Otherwise return false, and it will be lowered like a
7998 /// normal call.
7999 /// The caller already checked that \p I calls the appropriate LibFunc with a
8000 /// correct prototype.
8001 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8002   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8003   const Value *Size = I.getArgOperand(2);
8004   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8005   if (CSize && CSize->getZExtValue() == 0) {
8006     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8007                                                           I.getType(), true);
8008     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8009     return true;
8010   }
8011 
8012   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8013   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8014       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8015       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8016   if (Res.first.getNode()) {
8017     processIntegerCallValue(I, Res.first, true);
8018     PendingLoads.push_back(Res.second);
8019     return true;
8020   }
8021 
8022   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8023   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8024   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8025     return false;
8026 
8027   // If the target has a fast compare for the given size, it will return a
8028   // preferred load type for that size. Require that the load VT is legal and
8029   // that the target supports unaligned loads of that type. Otherwise, return
8030   // INVALID.
8031   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8032     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8033     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8034     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8035       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8036       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8037       // TODO: Check alignment of src and dest ptrs.
8038       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8039       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8040       if (!TLI.isTypeLegal(LVT) ||
8041           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8042           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8043         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8044     }
8045 
8046     return LVT;
8047   };
8048 
8049   // This turns into unaligned loads. We only do this if the target natively
8050   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8051   // we'll only produce a small number of byte loads.
8052   MVT LoadVT;
8053   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8054   switch (NumBitsToCompare) {
8055   default:
8056     return false;
8057   case 16:
8058     LoadVT = MVT::i16;
8059     break;
8060   case 32:
8061     LoadVT = MVT::i32;
8062     break;
8063   case 64:
8064   case 128:
8065   case 256:
8066     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8067     break;
8068   }
8069 
8070   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8071     return false;
8072 
8073   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8074   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8075 
8076   // Bitcast to a wide integer type if the loads are vectors.
8077   if (LoadVT.isVector()) {
8078     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8079     LoadL = DAG.getBitcast(CmpVT, LoadL);
8080     LoadR = DAG.getBitcast(CmpVT, LoadR);
8081   }
8082 
8083   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8084   processIntegerCallValue(I, Cmp, false);
8085   return true;
8086 }
8087 
8088 /// See if we can lower a memchr call into an optimized form. If so, return
8089 /// true and lower it. Otherwise return false, and it will be lowered like a
8090 /// normal call.
8091 /// The caller already checked that \p I calls the appropriate LibFunc with a
8092 /// correct prototype.
8093 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8094   const Value *Src = I.getArgOperand(0);
8095   const Value *Char = I.getArgOperand(1);
8096   const Value *Length = I.getArgOperand(2);
8097 
8098   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8099   std::pair<SDValue, SDValue> Res =
8100     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8101                                 getValue(Src), getValue(Char), getValue(Length),
8102                                 MachinePointerInfo(Src));
8103   if (Res.first.getNode()) {
8104     setValue(&I, Res.first);
8105     PendingLoads.push_back(Res.second);
8106     return true;
8107   }
8108 
8109   return false;
8110 }
8111 
8112 /// See if we can lower a mempcpy call into an optimized form. If so, return
8113 /// true and lower it. Otherwise return false, and it will be lowered like a
8114 /// normal call.
8115 /// The caller already checked that \p I calls the appropriate LibFunc with a
8116 /// correct prototype.
8117 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8118   SDValue Dst = getValue(I.getArgOperand(0));
8119   SDValue Src = getValue(I.getArgOperand(1));
8120   SDValue Size = getValue(I.getArgOperand(2));
8121 
8122   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8123   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8124   // DAG::getMemcpy needs Alignment to be defined.
8125   Align Alignment = std::min(DstAlign, SrcAlign);
8126 
8127   bool isVol = false;
8128   SDLoc sdl = getCurSDLoc();
8129 
8130   // In the mempcpy context we need to pass in a false value for isTailCall
8131   // because the return pointer needs to be adjusted by the size of
8132   // the copied memory.
8133   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8134   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8135                              /*isTailCall=*/false,
8136                              MachinePointerInfo(I.getArgOperand(0)),
8137                              MachinePointerInfo(I.getArgOperand(1)),
8138                              I.getAAMetadata());
8139   assert(MC.getNode() != nullptr &&
8140          "** memcpy should not be lowered as TailCall in mempcpy context **");
8141   DAG.setRoot(MC);
8142 
8143   // Check if Size needs to be truncated or extended.
8144   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8145 
8146   // Adjust return pointer to point just past the last dst byte.
8147   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8148                                     Dst, Size);
8149   setValue(&I, DstPlusSize);
8150   return true;
8151 }
8152 
8153 /// See if we can lower a strcpy call into an optimized form.  If so, return
8154 /// true and lower it, otherwise return false and it will be lowered like a
8155 /// normal call.
8156 /// The caller already checked that \p I calls the appropriate LibFunc with a
8157 /// correct prototype.
8158 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8159   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8160 
8161   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8162   std::pair<SDValue, SDValue> Res =
8163     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8164                                 getValue(Arg0), getValue(Arg1),
8165                                 MachinePointerInfo(Arg0),
8166                                 MachinePointerInfo(Arg1), isStpcpy);
8167   if (Res.first.getNode()) {
8168     setValue(&I, Res.first);
8169     DAG.setRoot(Res.second);
8170     return true;
8171   }
8172 
8173   return false;
8174 }
8175 
8176 /// See if we can lower a strcmp call into an optimized form.  If so, return
8177 /// true and lower it, otherwise return false and it will be lowered like a
8178 /// normal call.
8179 /// The caller already checked that \p I calls the appropriate LibFunc with a
8180 /// correct prototype.
8181 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8182   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8183 
8184   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8185   std::pair<SDValue, SDValue> Res =
8186     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8187                                 getValue(Arg0), getValue(Arg1),
8188                                 MachinePointerInfo(Arg0),
8189                                 MachinePointerInfo(Arg1));
8190   if (Res.first.getNode()) {
8191     processIntegerCallValue(I, Res.first, true);
8192     PendingLoads.push_back(Res.second);
8193     return true;
8194   }
8195 
8196   return false;
8197 }
8198 
8199 /// See if we can lower a strlen call into an optimized form.  If so, return
8200 /// true and lower it, otherwise return false and it will be lowered like a
8201 /// normal call.
8202 /// The caller already checked that \p I calls the appropriate LibFunc with a
8203 /// correct prototype.
8204 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8205   const Value *Arg0 = I.getArgOperand(0);
8206 
8207   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8208   std::pair<SDValue, SDValue> Res =
8209     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8210                                 getValue(Arg0), MachinePointerInfo(Arg0));
8211   if (Res.first.getNode()) {
8212     processIntegerCallValue(I, Res.first, false);
8213     PendingLoads.push_back(Res.second);
8214     return true;
8215   }
8216 
8217   return false;
8218 }
8219 
8220 /// See if we can lower a strnlen call into an optimized form.  If so, return
8221 /// true and lower it, otherwise return false and it will be lowered like a
8222 /// normal call.
8223 /// The caller already checked that \p I calls the appropriate LibFunc with a
8224 /// correct prototype.
8225 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8226   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8227 
8228   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8229   std::pair<SDValue, SDValue> Res =
8230     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8231                                  getValue(Arg0), getValue(Arg1),
8232                                  MachinePointerInfo(Arg0));
8233   if (Res.first.getNode()) {
8234     processIntegerCallValue(I, Res.first, false);
8235     PendingLoads.push_back(Res.second);
8236     return true;
8237   }
8238 
8239   return false;
8240 }
8241 
8242 /// See if we can lower a unary floating-point operation into an SDNode with
8243 /// the specified Opcode.  If so, return true and lower it, otherwise return
8244 /// false and it will be lowered like a normal call.
8245 /// The caller already checked that \p I calls the appropriate LibFunc with a
8246 /// correct prototype.
8247 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8248                                               unsigned Opcode) {
8249   // We already checked this call's prototype; verify it doesn't modify errno.
8250   if (!I.onlyReadsMemory())
8251     return false;
8252 
8253   SDNodeFlags Flags;
8254   Flags.copyFMF(cast<FPMathOperator>(I));
8255 
8256   SDValue Tmp = getValue(I.getArgOperand(0));
8257   setValue(&I,
8258            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8259   return true;
8260 }
8261 
8262 /// See if we can lower a binary floating-point operation into an SDNode with
8263 /// the specified Opcode. If so, return true and lower it. Otherwise return
8264 /// false, and it will be lowered like a normal call.
8265 /// The caller already checked that \p I calls the appropriate LibFunc with a
8266 /// correct prototype.
8267 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8268                                                unsigned Opcode) {
8269   // We already checked this call's prototype; verify it doesn't modify errno.
8270   if (!I.onlyReadsMemory())
8271     return false;
8272 
8273   SDNodeFlags Flags;
8274   Flags.copyFMF(cast<FPMathOperator>(I));
8275 
8276   SDValue Tmp0 = getValue(I.getArgOperand(0));
8277   SDValue Tmp1 = getValue(I.getArgOperand(1));
8278   EVT VT = Tmp0.getValueType();
8279   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8280   return true;
8281 }
8282 
8283 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8284   // Handle inline assembly differently.
8285   if (I.isInlineAsm()) {
8286     visitInlineAsm(I);
8287     return;
8288   }
8289 
8290   if (Function *F = I.getCalledFunction()) {
8291     diagnoseDontCall(I);
8292 
8293     if (F->isDeclaration()) {
8294       // Is this an LLVM intrinsic or a target-specific intrinsic?
8295       unsigned IID = F->getIntrinsicID();
8296       if (!IID)
8297         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8298           IID = II->getIntrinsicID(F);
8299 
8300       if (IID) {
8301         visitIntrinsicCall(I, IID);
8302         return;
8303       }
8304     }
8305 
8306     // Check for well-known libc/libm calls.  If the function is internal, it
8307     // can't be a library call.  Don't do the check if marked as nobuiltin for
8308     // some reason or the call site requires strict floating point semantics.
8309     LibFunc Func;
8310     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8311         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8312         LibInfo->hasOptimizedCodeGen(Func)) {
8313       switch (Func) {
8314       default: break;
8315       case LibFunc_bcmp:
8316         if (visitMemCmpBCmpCall(I))
8317           return;
8318         break;
8319       case LibFunc_copysign:
8320       case LibFunc_copysignf:
8321       case LibFunc_copysignl:
8322         // We already checked this call's prototype; verify it doesn't modify
8323         // errno.
8324         if (I.onlyReadsMemory()) {
8325           SDValue LHS = getValue(I.getArgOperand(0));
8326           SDValue RHS = getValue(I.getArgOperand(1));
8327           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8328                                    LHS.getValueType(), LHS, RHS));
8329           return;
8330         }
8331         break;
8332       case LibFunc_fabs:
8333       case LibFunc_fabsf:
8334       case LibFunc_fabsl:
8335         if (visitUnaryFloatCall(I, ISD::FABS))
8336           return;
8337         break;
8338       case LibFunc_fmin:
8339       case LibFunc_fminf:
8340       case LibFunc_fminl:
8341         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8342           return;
8343         break;
8344       case LibFunc_fmax:
8345       case LibFunc_fmaxf:
8346       case LibFunc_fmaxl:
8347         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8348           return;
8349         break;
8350       case LibFunc_sin:
8351       case LibFunc_sinf:
8352       case LibFunc_sinl:
8353         if (visitUnaryFloatCall(I, ISD::FSIN))
8354           return;
8355         break;
8356       case LibFunc_cos:
8357       case LibFunc_cosf:
8358       case LibFunc_cosl:
8359         if (visitUnaryFloatCall(I, ISD::FCOS))
8360           return;
8361         break;
8362       case LibFunc_sqrt:
8363       case LibFunc_sqrtf:
8364       case LibFunc_sqrtl:
8365       case LibFunc_sqrt_finite:
8366       case LibFunc_sqrtf_finite:
8367       case LibFunc_sqrtl_finite:
8368         if (visitUnaryFloatCall(I, ISD::FSQRT))
8369           return;
8370         break;
8371       case LibFunc_floor:
8372       case LibFunc_floorf:
8373       case LibFunc_floorl:
8374         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8375           return;
8376         break;
8377       case LibFunc_nearbyint:
8378       case LibFunc_nearbyintf:
8379       case LibFunc_nearbyintl:
8380         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8381           return;
8382         break;
8383       case LibFunc_ceil:
8384       case LibFunc_ceilf:
8385       case LibFunc_ceill:
8386         if (visitUnaryFloatCall(I, ISD::FCEIL))
8387           return;
8388         break;
8389       case LibFunc_rint:
8390       case LibFunc_rintf:
8391       case LibFunc_rintl:
8392         if (visitUnaryFloatCall(I, ISD::FRINT))
8393           return;
8394         break;
8395       case LibFunc_round:
8396       case LibFunc_roundf:
8397       case LibFunc_roundl:
8398         if (visitUnaryFloatCall(I, ISD::FROUND))
8399           return;
8400         break;
8401       case LibFunc_trunc:
8402       case LibFunc_truncf:
8403       case LibFunc_truncl:
8404         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8405           return;
8406         break;
8407       case LibFunc_log2:
8408       case LibFunc_log2f:
8409       case LibFunc_log2l:
8410         if (visitUnaryFloatCall(I, ISD::FLOG2))
8411           return;
8412         break;
8413       case LibFunc_exp2:
8414       case LibFunc_exp2f:
8415       case LibFunc_exp2l:
8416         if (visitUnaryFloatCall(I, ISD::FEXP2))
8417           return;
8418         break;
8419       case LibFunc_memcmp:
8420         if (visitMemCmpBCmpCall(I))
8421           return;
8422         break;
8423       case LibFunc_mempcpy:
8424         if (visitMemPCpyCall(I))
8425           return;
8426         break;
8427       case LibFunc_memchr:
8428         if (visitMemChrCall(I))
8429           return;
8430         break;
8431       case LibFunc_strcpy:
8432         if (visitStrCpyCall(I, false))
8433           return;
8434         break;
8435       case LibFunc_stpcpy:
8436         if (visitStrCpyCall(I, true))
8437           return;
8438         break;
8439       case LibFunc_strcmp:
8440         if (visitStrCmpCall(I))
8441           return;
8442         break;
8443       case LibFunc_strlen:
8444         if (visitStrLenCall(I))
8445           return;
8446         break;
8447       case LibFunc_strnlen:
8448         if (visitStrNLenCall(I))
8449           return;
8450         break;
8451       }
8452     }
8453   }
8454 
8455   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8456   // have to do anything here to lower funclet bundles.
8457   // CFGuardTarget bundles are lowered in LowerCallTo.
8458   assert(!I.hasOperandBundlesOtherThan(
8459              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8460               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8461               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8462          "Cannot lower calls with arbitrary operand bundles!");
8463 
8464   SDValue Callee = getValue(I.getCalledOperand());
8465 
8466   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8467     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8468   else
8469     // Check if we can potentially perform a tail call. More detailed checking
8470     // is be done within LowerCallTo, after more information about the call is
8471     // known.
8472     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8473 }
8474 
8475 namespace {
8476 
8477 /// AsmOperandInfo - This contains information for each constraint that we are
8478 /// lowering.
8479 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8480 public:
8481   /// CallOperand - If this is the result output operand or a clobber
8482   /// this is null, otherwise it is the incoming operand to the CallInst.
8483   /// This gets modified as the asm is processed.
8484   SDValue CallOperand;
8485 
8486   /// AssignedRegs - If this is a register or register class operand, this
8487   /// contains the set of register corresponding to the operand.
8488   RegsForValue AssignedRegs;
8489 
8490   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8491     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8492   }
8493 
8494   /// Whether or not this operand accesses memory
8495   bool hasMemory(const TargetLowering &TLI) const {
8496     // Indirect operand accesses access memory.
8497     if (isIndirect)
8498       return true;
8499 
8500     for (const auto &Code : Codes)
8501       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8502         return true;
8503 
8504     return false;
8505   }
8506 };
8507 
8508 
8509 } // end anonymous namespace
8510 
8511 /// Make sure that the output operand \p OpInfo and its corresponding input
8512 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8513 /// out).
8514 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8515                                SDISelAsmOperandInfo &MatchingOpInfo,
8516                                SelectionDAG &DAG) {
8517   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8518     return;
8519 
8520   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8521   const auto &TLI = DAG.getTargetLoweringInfo();
8522 
8523   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8524       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8525                                        OpInfo.ConstraintVT);
8526   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8527       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8528                                        MatchingOpInfo.ConstraintVT);
8529   if ((OpInfo.ConstraintVT.isInteger() !=
8530        MatchingOpInfo.ConstraintVT.isInteger()) ||
8531       (MatchRC.second != InputRC.second)) {
8532     // FIXME: error out in a more elegant fashion
8533     report_fatal_error("Unsupported asm: input constraint"
8534                        " with a matching output constraint of"
8535                        " incompatible type!");
8536   }
8537   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8538 }
8539 
8540 /// Get a direct memory input to behave well as an indirect operand.
8541 /// This may introduce stores, hence the need for a \p Chain.
8542 /// \return The (possibly updated) chain.
8543 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8544                                         SDISelAsmOperandInfo &OpInfo,
8545                                         SelectionDAG &DAG) {
8546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8547 
8548   // If we don't have an indirect input, put it in the constpool if we can,
8549   // otherwise spill it to a stack slot.
8550   // TODO: This isn't quite right. We need to handle these according to
8551   // the addressing mode that the constraint wants. Also, this may take
8552   // an additional register for the computation and we don't want that
8553   // either.
8554 
8555   // If the operand is a float, integer, or vector constant, spill to a
8556   // constant pool entry to get its address.
8557   const Value *OpVal = OpInfo.CallOperandVal;
8558   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8559       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8560     OpInfo.CallOperand = DAG.getConstantPool(
8561         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8562     return Chain;
8563   }
8564 
8565   // Otherwise, create a stack slot and emit a store to it before the asm.
8566   Type *Ty = OpVal->getType();
8567   auto &DL = DAG.getDataLayout();
8568   uint64_t TySize = DL.getTypeAllocSize(Ty);
8569   MachineFunction &MF = DAG.getMachineFunction();
8570   int SSFI = MF.getFrameInfo().CreateStackObject(
8571       TySize, DL.getPrefTypeAlign(Ty), false);
8572   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8573   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8574                             MachinePointerInfo::getFixedStack(MF, SSFI),
8575                             TLI.getMemValueType(DL, Ty));
8576   OpInfo.CallOperand = StackSlot;
8577 
8578   return Chain;
8579 }
8580 
8581 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8582 /// specified operand.  We prefer to assign virtual registers, to allow the
8583 /// register allocator to handle the assignment process.  However, if the asm
8584 /// uses features that we can't model on machineinstrs, we have SDISel do the
8585 /// allocation.  This produces generally horrible, but correct, code.
8586 ///
8587 ///   OpInfo describes the operand
8588 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8589 static llvm::Optional<unsigned>
8590 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8591                      SDISelAsmOperandInfo &OpInfo,
8592                      SDISelAsmOperandInfo &RefOpInfo) {
8593   LLVMContext &Context = *DAG.getContext();
8594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8595 
8596   MachineFunction &MF = DAG.getMachineFunction();
8597   SmallVector<unsigned, 4> Regs;
8598   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8599 
8600   // No work to do for memory/address operands.
8601   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8602       OpInfo.ConstraintType == TargetLowering::C_Address)
8603     return None;
8604 
8605   // If this is a constraint for a single physreg, or a constraint for a
8606   // register class, find it.
8607   unsigned AssignedReg;
8608   const TargetRegisterClass *RC;
8609   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8610       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8611   // RC is unset only on failure. Return immediately.
8612   if (!RC)
8613     return None;
8614 
8615   // Get the actual register value type.  This is important, because the user
8616   // may have asked for (e.g.) the AX register in i32 type.  We need to
8617   // remember that AX is actually i16 to get the right extension.
8618   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8619 
8620   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8621     // If this is an FP operand in an integer register (or visa versa), or more
8622     // generally if the operand value disagrees with the register class we plan
8623     // to stick it in, fix the operand type.
8624     //
8625     // If this is an input value, the bitcast to the new type is done now.
8626     // Bitcast for output value is done at the end of visitInlineAsm().
8627     if ((OpInfo.Type == InlineAsm::isOutput ||
8628          OpInfo.Type == InlineAsm::isInput) &&
8629         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8630       // Try to convert to the first EVT that the reg class contains.  If the
8631       // types are identical size, use a bitcast to convert (e.g. two differing
8632       // vector types).  Note: output bitcast is done at the end of
8633       // visitInlineAsm().
8634       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8635         // Exclude indirect inputs while they are unsupported because the code
8636         // to perform the load is missing and thus OpInfo.CallOperand still
8637         // refers to the input address rather than the pointed-to value.
8638         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8639           OpInfo.CallOperand =
8640               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8641         OpInfo.ConstraintVT = RegVT;
8642         // If the operand is an FP value and we want it in integer registers,
8643         // use the corresponding integer type. This turns an f64 value into
8644         // i64, which can be passed with two i32 values on a 32-bit machine.
8645       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8646         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8647         if (OpInfo.Type == InlineAsm::isInput)
8648           OpInfo.CallOperand =
8649               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8650         OpInfo.ConstraintVT = VT;
8651       }
8652     }
8653   }
8654 
8655   // No need to allocate a matching input constraint since the constraint it's
8656   // matching to has already been allocated.
8657   if (OpInfo.isMatchingInputConstraint())
8658     return None;
8659 
8660   EVT ValueVT = OpInfo.ConstraintVT;
8661   if (OpInfo.ConstraintVT == MVT::Other)
8662     ValueVT = RegVT;
8663 
8664   // Initialize NumRegs.
8665   unsigned NumRegs = 1;
8666   if (OpInfo.ConstraintVT != MVT::Other)
8667     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8668 
8669   // If this is a constraint for a specific physical register, like {r17},
8670   // assign it now.
8671 
8672   // If this associated to a specific register, initialize iterator to correct
8673   // place. If virtual, make sure we have enough registers
8674 
8675   // Initialize iterator if necessary
8676   TargetRegisterClass::iterator I = RC->begin();
8677   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8678 
8679   // Do not check for single registers.
8680   if (AssignedReg) {
8681     I = std::find(I, RC->end(), AssignedReg);
8682     if (I == RC->end()) {
8683       // RC does not contain the selected register, which indicates a
8684       // mismatch between the register and the required type/bitwidth.
8685       return {AssignedReg};
8686     }
8687   }
8688 
8689   for (; NumRegs; --NumRegs, ++I) {
8690     assert(I != RC->end() && "Ran out of registers to allocate!");
8691     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8692     Regs.push_back(R);
8693   }
8694 
8695   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8696   return None;
8697 }
8698 
8699 static unsigned
8700 findMatchingInlineAsmOperand(unsigned OperandNo,
8701                              const std::vector<SDValue> &AsmNodeOperands) {
8702   // Scan until we find the definition we already emitted of this operand.
8703   unsigned CurOp = InlineAsm::Op_FirstOperand;
8704   for (; OperandNo; --OperandNo) {
8705     // Advance to the next operand.
8706     unsigned OpFlag =
8707         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8708     assert((InlineAsm::isRegDefKind(OpFlag) ||
8709             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8710             InlineAsm::isMemKind(OpFlag)) &&
8711            "Skipped past definitions?");
8712     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8713   }
8714   return CurOp;
8715 }
8716 
8717 namespace {
8718 
8719 class ExtraFlags {
8720   unsigned Flags = 0;
8721 
8722 public:
8723   explicit ExtraFlags(const CallBase &Call) {
8724     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8725     if (IA->hasSideEffects())
8726       Flags |= InlineAsm::Extra_HasSideEffects;
8727     if (IA->isAlignStack())
8728       Flags |= InlineAsm::Extra_IsAlignStack;
8729     if (Call.isConvergent())
8730       Flags |= InlineAsm::Extra_IsConvergent;
8731     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8732   }
8733 
8734   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8735     // Ideally, we would only check against memory constraints.  However, the
8736     // meaning of an Other constraint can be target-specific and we can't easily
8737     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8738     // for Other constraints as well.
8739     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8740         OpInfo.ConstraintType == TargetLowering::C_Other) {
8741       if (OpInfo.Type == InlineAsm::isInput)
8742         Flags |= InlineAsm::Extra_MayLoad;
8743       else if (OpInfo.Type == InlineAsm::isOutput)
8744         Flags |= InlineAsm::Extra_MayStore;
8745       else if (OpInfo.Type == InlineAsm::isClobber)
8746         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8747     }
8748   }
8749 
8750   unsigned get() const { return Flags; }
8751 };
8752 
8753 } // end anonymous namespace
8754 
8755 static bool isFunction(SDValue Op) {
8756   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8757     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8758       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8759 
8760       // In normal "call dllimport func" instruction (non-inlineasm) it force
8761       // indirect access by specifing call opcode. And usually specially print
8762       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8763       // not do in this way now. (In fact, this is similar with "Data Access"
8764       // action). So here we ignore dllimport function.
8765       if (Fn && !Fn->hasDLLImportStorageClass())
8766         return true;
8767     }
8768   }
8769   return false;
8770 }
8771 
8772 /// visitInlineAsm - Handle a call to an InlineAsm object.
8773 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8774                                          const BasicBlock *EHPadBB) {
8775   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8776 
8777   /// ConstraintOperands - Information about all of the constraints.
8778   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8779 
8780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8781   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8782       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8783 
8784   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8785   // AsmDialect, MayLoad, MayStore).
8786   bool HasSideEffect = IA->hasSideEffects();
8787   ExtraFlags ExtraInfo(Call);
8788 
8789   for (auto &T : TargetConstraints) {
8790     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8791     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8792 
8793     if (OpInfo.CallOperandVal)
8794       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8795 
8796     if (!HasSideEffect)
8797       HasSideEffect = OpInfo.hasMemory(TLI);
8798 
8799     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8800     // FIXME: Could we compute this on OpInfo rather than T?
8801 
8802     // Compute the constraint code and ConstraintType to use.
8803     TLI.ComputeConstraintToUse(T, SDValue());
8804 
8805     if (T.ConstraintType == TargetLowering::C_Immediate &&
8806         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8807       // We've delayed emitting a diagnostic like the "n" constraint because
8808       // inlining could cause an integer showing up.
8809       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8810                                           "' expects an integer constant "
8811                                           "expression");
8812 
8813     ExtraInfo.update(T);
8814   }
8815 
8816   // We won't need to flush pending loads if this asm doesn't touch
8817   // memory and is nonvolatile.
8818   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8819 
8820   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8821   if (EmitEHLabels) {
8822     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8823   }
8824   bool IsCallBr = isa<CallBrInst>(Call);
8825 
8826   if (IsCallBr || EmitEHLabels) {
8827     // If this is a callbr or invoke we need to flush pending exports since
8828     // inlineasm_br and invoke are terminators.
8829     // We need to do this before nodes are glued to the inlineasm_br node.
8830     Chain = getControlRoot();
8831   }
8832 
8833   MCSymbol *BeginLabel = nullptr;
8834   if (EmitEHLabels) {
8835     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8836   }
8837 
8838   int OpNo = -1;
8839   SmallVector<StringRef> AsmStrs;
8840   IA->collectAsmStrs(AsmStrs);
8841 
8842   // Second pass over the constraints: compute which constraint option to use.
8843   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8844     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8845       OpNo++;
8846 
8847     // If this is an output operand with a matching input operand, look up the
8848     // matching input. If their types mismatch, e.g. one is an integer, the
8849     // other is floating point, or their sizes are different, flag it as an
8850     // error.
8851     if (OpInfo.hasMatchingInput()) {
8852       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8853       patchMatchingInput(OpInfo, Input, DAG);
8854     }
8855 
8856     // Compute the constraint code and ConstraintType to use.
8857     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8858 
8859     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8860          OpInfo.Type == InlineAsm::isClobber) ||
8861         OpInfo.ConstraintType == TargetLowering::C_Address)
8862       continue;
8863 
8864     // In Linux PIC model, there are 4 cases about value/label addressing:
8865     //
8866     // 1: Function call or Label jmp inside the module.
8867     // 2: Data access (such as global variable, static variable) inside module.
8868     // 3: Function call or Label jmp outside the module.
8869     // 4: Data access (such as global variable) outside the module.
8870     //
8871     // Due to current llvm inline asm architecture designed to not "recognize"
8872     // the asm code, there are quite troubles for us to treat mem addressing
8873     // differently for same value/adress used in different instuctions.
8874     // For example, in pic model, call a func may in plt way or direclty
8875     // pc-related, but lea/mov a function adress may use got.
8876     //
8877     // Here we try to "recognize" function call for the case 1 and case 3 in
8878     // inline asm. And try to adjust the constraint for them.
8879     //
8880     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8881     // label, so here we don't handle jmp function label now, but we need to
8882     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8883     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8884         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8885         TM.getCodeModel() != CodeModel::Large) {
8886       OpInfo.isIndirect = false;
8887       OpInfo.ConstraintType = TargetLowering::C_Address;
8888     }
8889 
8890     // If this is a memory input, and if the operand is not indirect, do what we
8891     // need to provide an address for the memory input.
8892     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8893         !OpInfo.isIndirect) {
8894       assert((OpInfo.isMultipleAlternative ||
8895               (OpInfo.Type == InlineAsm::isInput)) &&
8896              "Can only indirectify direct input operands!");
8897 
8898       // Memory operands really want the address of the value.
8899       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8900 
8901       // There is no longer a Value* corresponding to this operand.
8902       OpInfo.CallOperandVal = nullptr;
8903 
8904       // It is now an indirect operand.
8905       OpInfo.isIndirect = true;
8906     }
8907 
8908   }
8909 
8910   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8911   std::vector<SDValue> AsmNodeOperands;
8912   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8913   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8914       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8915 
8916   // If we have a !srcloc metadata node associated with it, we want to attach
8917   // this to the ultimately generated inline asm machineinstr.  To do this, we
8918   // pass in the third operand as this (potentially null) inline asm MDNode.
8919   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8920   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8921 
8922   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8923   // bits as operand 3.
8924   AsmNodeOperands.push_back(DAG.getTargetConstant(
8925       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8926 
8927   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8928   // this, assign virtual and physical registers for inputs and otput.
8929   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8930     // Assign Registers.
8931     SDISelAsmOperandInfo &RefOpInfo =
8932         OpInfo.isMatchingInputConstraint()
8933             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8934             : OpInfo;
8935     const auto RegError =
8936         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8937     if (RegError) {
8938       const MachineFunction &MF = DAG.getMachineFunction();
8939       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8940       const char *RegName = TRI.getName(RegError.value());
8941       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8942                                    "' allocated for constraint '" +
8943                                    Twine(OpInfo.ConstraintCode) +
8944                                    "' does not match required type");
8945       return;
8946     }
8947 
8948     auto DetectWriteToReservedRegister = [&]() {
8949       const MachineFunction &MF = DAG.getMachineFunction();
8950       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8951       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8952         if (Register::isPhysicalRegister(Reg) &&
8953             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8954           const char *RegName = TRI.getName(Reg);
8955           emitInlineAsmError(Call, "write to reserved register '" +
8956                                        Twine(RegName) + "'");
8957           return true;
8958         }
8959       }
8960       return false;
8961     };
8962     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8963             (OpInfo.Type == InlineAsm::isInput &&
8964              !OpInfo.isMatchingInputConstraint())) &&
8965            "Only address as input operand is allowed.");
8966 
8967     switch (OpInfo.Type) {
8968     case InlineAsm::isOutput:
8969       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8970         unsigned ConstraintID =
8971             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8972         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8973                "Failed to convert memory constraint code to constraint id.");
8974 
8975         // Add information to the INLINEASM node to know about this output.
8976         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8977         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8978         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8979                                                         MVT::i32));
8980         AsmNodeOperands.push_back(OpInfo.CallOperand);
8981       } else {
8982         // Otherwise, this outputs to a register (directly for C_Register /
8983         // C_RegisterClass, and a target-defined fashion for
8984         // C_Immediate/C_Other). Find a register that we can use.
8985         if (OpInfo.AssignedRegs.Regs.empty()) {
8986           emitInlineAsmError(
8987               Call, "couldn't allocate output register for constraint '" +
8988                         Twine(OpInfo.ConstraintCode) + "'");
8989           return;
8990         }
8991 
8992         if (DetectWriteToReservedRegister())
8993           return;
8994 
8995         // Add information to the INLINEASM node to know that this register is
8996         // set.
8997         OpInfo.AssignedRegs.AddInlineAsmOperands(
8998             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8999                                   : InlineAsm::Kind_RegDef,
9000             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9001       }
9002       break;
9003 
9004     case InlineAsm::isInput:
9005     case InlineAsm::isLabel: {
9006       SDValue InOperandVal = OpInfo.CallOperand;
9007 
9008       if (OpInfo.isMatchingInputConstraint()) {
9009         // If this is required to match an output register we have already set,
9010         // just use its register.
9011         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9012                                                   AsmNodeOperands);
9013         unsigned OpFlag =
9014           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9015         if (InlineAsm::isRegDefKind(OpFlag) ||
9016             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9017           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9018           if (OpInfo.isIndirect) {
9019             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9020             emitInlineAsmError(Call, "inline asm not supported yet: "
9021                                      "don't know how to handle tied "
9022                                      "indirect register inputs");
9023             return;
9024           }
9025 
9026           SmallVector<unsigned, 4> Regs;
9027           MachineFunction &MF = DAG.getMachineFunction();
9028           MachineRegisterInfo &MRI = MF.getRegInfo();
9029           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9030           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9031           Register TiedReg = R->getReg();
9032           MVT RegVT = R->getSimpleValueType(0);
9033           const TargetRegisterClass *RC =
9034               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9035               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9036                                       : TRI.getMinimalPhysRegClass(TiedReg);
9037           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9038           for (unsigned i = 0; i != NumRegs; ++i)
9039             Regs.push_back(MRI.createVirtualRegister(RC));
9040 
9041           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9042 
9043           SDLoc dl = getCurSDLoc();
9044           // Use the produced MatchedRegs object to
9045           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9046           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9047                                            true, OpInfo.getMatchedOperand(), dl,
9048                                            DAG, AsmNodeOperands);
9049           break;
9050         }
9051 
9052         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9053         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9054                "Unexpected number of operands");
9055         // Add information to the INLINEASM node to know about this input.
9056         // See InlineAsm.h isUseOperandTiedToDef.
9057         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9058         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9059                                                     OpInfo.getMatchedOperand());
9060         AsmNodeOperands.push_back(DAG.getTargetConstant(
9061             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9062         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9063         break;
9064       }
9065 
9066       // Treat indirect 'X' constraint as memory.
9067       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9068           OpInfo.isIndirect)
9069         OpInfo.ConstraintType = TargetLowering::C_Memory;
9070 
9071       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9072           OpInfo.ConstraintType == TargetLowering::C_Other) {
9073         std::vector<SDValue> Ops;
9074         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9075                                           Ops, DAG);
9076         if (Ops.empty()) {
9077           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9078             if (isa<ConstantSDNode>(InOperandVal)) {
9079               emitInlineAsmError(Call, "value out of range for constraint '" +
9080                                            Twine(OpInfo.ConstraintCode) + "'");
9081               return;
9082             }
9083 
9084           emitInlineAsmError(Call,
9085                              "invalid operand for inline asm constraint '" +
9086                                  Twine(OpInfo.ConstraintCode) + "'");
9087           return;
9088         }
9089 
9090         // Add information to the INLINEASM node to know about this input.
9091         unsigned ResOpType =
9092           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9093         AsmNodeOperands.push_back(DAG.getTargetConstant(
9094             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9095         llvm::append_range(AsmNodeOperands, Ops);
9096         break;
9097       }
9098 
9099       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9100         assert((OpInfo.isIndirect ||
9101                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9102                "Operand must be indirect to be a mem!");
9103         assert(InOperandVal.getValueType() ==
9104                    TLI.getPointerTy(DAG.getDataLayout()) &&
9105                "Memory operands expect pointer values");
9106 
9107         unsigned ConstraintID =
9108             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9109         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9110                "Failed to convert memory constraint code to constraint id.");
9111 
9112         // Add information to the INLINEASM node to know about this input.
9113         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9114         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9115         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9116                                                         getCurSDLoc(),
9117                                                         MVT::i32));
9118         AsmNodeOperands.push_back(InOperandVal);
9119         break;
9120       }
9121 
9122       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9123         assert(InOperandVal.getValueType() ==
9124                    TLI.getPointerTy(DAG.getDataLayout()) &&
9125                "Address operands expect pointer values");
9126 
9127         unsigned ConstraintID =
9128             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9129         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9130                "Failed to convert memory constraint code to constraint id.");
9131 
9132         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9133 
9134         SDValue AsmOp = InOperandVal;
9135         if (isFunction(InOperandVal)) {
9136           auto *GA = dyn_cast<GlobalAddressSDNode>(InOperandVal);
9137           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9138           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9139                                              InOperandVal.getValueType(),
9140                                              GA->getOffset());
9141         }
9142 
9143         // Add information to the INLINEASM node to know about this input.
9144         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9145 
9146         AsmNodeOperands.push_back(
9147             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9148 
9149         AsmNodeOperands.push_back(AsmOp);
9150         break;
9151       }
9152 
9153       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9154               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9155              "Unknown constraint type!");
9156 
9157       // TODO: Support this.
9158       if (OpInfo.isIndirect) {
9159         emitInlineAsmError(
9160             Call, "Don't know how to handle indirect register inputs yet "
9161                   "for constraint '" +
9162                       Twine(OpInfo.ConstraintCode) + "'");
9163         return;
9164       }
9165 
9166       // Copy the input into the appropriate registers.
9167       if (OpInfo.AssignedRegs.Regs.empty()) {
9168         emitInlineAsmError(Call,
9169                            "couldn't allocate input reg for constraint '" +
9170                                Twine(OpInfo.ConstraintCode) + "'");
9171         return;
9172       }
9173 
9174       if (DetectWriteToReservedRegister())
9175         return;
9176 
9177       SDLoc dl = getCurSDLoc();
9178 
9179       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9180                                         &Call);
9181 
9182       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9183                                                dl, DAG, AsmNodeOperands);
9184       break;
9185     }
9186     case InlineAsm::isClobber:
9187       // Add the clobbered value to the operand list, so that the register
9188       // allocator is aware that the physreg got clobbered.
9189       if (!OpInfo.AssignedRegs.Regs.empty())
9190         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9191                                                  false, 0, getCurSDLoc(), DAG,
9192                                                  AsmNodeOperands);
9193       break;
9194     }
9195   }
9196 
9197   // Finish up input operands.  Set the input chain and add the flag last.
9198   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9199   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9200 
9201   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9202   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9203                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9204   Flag = Chain.getValue(1);
9205 
9206   // Do additional work to generate outputs.
9207 
9208   SmallVector<EVT, 1> ResultVTs;
9209   SmallVector<SDValue, 1> ResultValues;
9210   SmallVector<SDValue, 8> OutChains;
9211 
9212   llvm::Type *CallResultType = Call.getType();
9213   ArrayRef<Type *> ResultTypes;
9214   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9215     ResultTypes = StructResult->elements();
9216   else if (!CallResultType->isVoidTy())
9217     ResultTypes = makeArrayRef(CallResultType);
9218 
9219   auto CurResultType = ResultTypes.begin();
9220   auto handleRegAssign = [&](SDValue V) {
9221     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9222     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9223     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9224     ++CurResultType;
9225     // If the type of the inline asm call site return value is different but has
9226     // same size as the type of the asm output bitcast it.  One example of this
9227     // is for vectors with different width / number of elements.  This can
9228     // happen for register classes that can contain multiple different value
9229     // types.  The preg or vreg allocated may not have the same VT as was
9230     // expected.
9231     //
9232     // This can also happen for a return value that disagrees with the register
9233     // class it is put in, eg. a double in a general-purpose register on a
9234     // 32-bit machine.
9235     if (ResultVT != V.getValueType() &&
9236         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9237       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9238     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9239              V.getValueType().isInteger()) {
9240       // If a result value was tied to an input value, the computed result
9241       // may have a wider width than the expected result.  Extract the
9242       // relevant portion.
9243       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9244     }
9245     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9246     ResultVTs.push_back(ResultVT);
9247     ResultValues.push_back(V);
9248   };
9249 
9250   // Deal with output operands.
9251   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9252     if (OpInfo.Type == InlineAsm::isOutput) {
9253       SDValue Val;
9254       // Skip trivial output operands.
9255       if (OpInfo.AssignedRegs.Regs.empty())
9256         continue;
9257 
9258       switch (OpInfo.ConstraintType) {
9259       case TargetLowering::C_Register:
9260       case TargetLowering::C_RegisterClass:
9261         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9262                                                   Chain, &Flag, &Call);
9263         break;
9264       case TargetLowering::C_Immediate:
9265       case TargetLowering::C_Other:
9266         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9267                                               OpInfo, DAG);
9268         break;
9269       case TargetLowering::C_Memory:
9270         break; // Already handled.
9271       case TargetLowering::C_Address:
9272         break; // Silence warning.
9273       case TargetLowering::C_Unknown:
9274         assert(false && "Unexpected unknown constraint");
9275       }
9276 
9277       // Indirect output manifest as stores. Record output chains.
9278       if (OpInfo.isIndirect) {
9279         const Value *Ptr = OpInfo.CallOperandVal;
9280         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9281         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9282                                      MachinePointerInfo(Ptr));
9283         OutChains.push_back(Store);
9284       } else {
9285         // generate CopyFromRegs to associated registers.
9286         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9287         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9288           for (const SDValue &V : Val->op_values())
9289             handleRegAssign(V);
9290         } else
9291           handleRegAssign(Val);
9292       }
9293     }
9294   }
9295 
9296   // Set results.
9297   if (!ResultValues.empty()) {
9298     assert(CurResultType == ResultTypes.end() &&
9299            "Mismatch in number of ResultTypes");
9300     assert(ResultValues.size() == ResultTypes.size() &&
9301            "Mismatch in number of output operands in asm result");
9302 
9303     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9304                             DAG.getVTList(ResultVTs), ResultValues);
9305     setValue(&Call, V);
9306   }
9307 
9308   // Collect store chains.
9309   if (!OutChains.empty())
9310     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9311 
9312   if (EmitEHLabels) {
9313     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9314   }
9315 
9316   // Only Update Root if inline assembly has a memory effect.
9317   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9318       EmitEHLabels)
9319     DAG.setRoot(Chain);
9320 }
9321 
9322 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9323                                              const Twine &Message) {
9324   LLVMContext &Ctx = *DAG.getContext();
9325   Ctx.emitError(&Call, Message);
9326 
9327   // Make sure we leave the DAG in a valid state
9328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9329   SmallVector<EVT, 1> ValueVTs;
9330   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9331 
9332   if (ValueVTs.empty())
9333     return;
9334 
9335   SmallVector<SDValue, 1> Ops;
9336   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9337     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9338 
9339   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9340 }
9341 
9342 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9343   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9344                           MVT::Other, getRoot(),
9345                           getValue(I.getArgOperand(0)),
9346                           DAG.getSrcValue(I.getArgOperand(0))));
9347 }
9348 
9349 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9351   const DataLayout &DL = DAG.getDataLayout();
9352   SDValue V = DAG.getVAArg(
9353       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9354       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9355       DL.getABITypeAlign(I.getType()).value());
9356   DAG.setRoot(V.getValue(1));
9357 
9358   if (I.getType()->isPointerTy())
9359     V = DAG.getPtrExtOrTrunc(
9360         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9361   setValue(&I, V);
9362 }
9363 
9364 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9365   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9366                           MVT::Other, getRoot(),
9367                           getValue(I.getArgOperand(0)),
9368                           DAG.getSrcValue(I.getArgOperand(0))));
9369 }
9370 
9371 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9372   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9373                           MVT::Other, getRoot(),
9374                           getValue(I.getArgOperand(0)),
9375                           getValue(I.getArgOperand(1)),
9376                           DAG.getSrcValue(I.getArgOperand(0)),
9377                           DAG.getSrcValue(I.getArgOperand(1))));
9378 }
9379 
9380 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9381                                                     const Instruction &I,
9382                                                     SDValue Op) {
9383   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9384   if (!Range)
9385     return Op;
9386 
9387   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9388   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9389     return Op;
9390 
9391   APInt Lo = CR.getUnsignedMin();
9392   if (!Lo.isMinValue())
9393     return Op;
9394 
9395   APInt Hi = CR.getUnsignedMax();
9396   unsigned Bits = std::max(Hi.getActiveBits(),
9397                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9398 
9399   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9400 
9401   SDLoc SL = getCurSDLoc();
9402 
9403   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9404                              DAG.getValueType(SmallVT));
9405   unsigned NumVals = Op.getNode()->getNumValues();
9406   if (NumVals == 1)
9407     return ZExt;
9408 
9409   SmallVector<SDValue, 4> Ops;
9410 
9411   Ops.push_back(ZExt);
9412   for (unsigned I = 1; I != NumVals; ++I)
9413     Ops.push_back(Op.getValue(I));
9414 
9415   return DAG.getMergeValues(Ops, SL);
9416 }
9417 
9418 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9419 /// the call being lowered.
9420 ///
9421 /// This is a helper for lowering intrinsics that follow a target calling
9422 /// convention or require stack pointer adjustment. Only a subset of the
9423 /// intrinsic's operands need to participate in the calling convention.
9424 void SelectionDAGBuilder::populateCallLoweringInfo(
9425     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9426     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9427     bool IsPatchPoint) {
9428   TargetLowering::ArgListTy Args;
9429   Args.reserve(NumArgs);
9430 
9431   // Populate the argument list.
9432   // Attributes for args start at offset 1, after the return attribute.
9433   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9434        ArgI != ArgE; ++ArgI) {
9435     const Value *V = Call->getOperand(ArgI);
9436 
9437     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9438 
9439     TargetLowering::ArgListEntry Entry;
9440     Entry.Node = getValue(V);
9441     Entry.Ty = V->getType();
9442     Entry.setAttributes(Call, ArgI);
9443     Args.push_back(Entry);
9444   }
9445 
9446   CLI.setDebugLoc(getCurSDLoc())
9447       .setChain(getRoot())
9448       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9449       .setDiscardResult(Call->use_empty())
9450       .setIsPatchPoint(IsPatchPoint)
9451       .setIsPreallocated(
9452           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9453 }
9454 
9455 /// Add a stack map intrinsic call's live variable operands to a stackmap
9456 /// or patchpoint target node's operand list.
9457 ///
9458 /// Constants are converted to TargetConstants purely as an optimization to
9459 /// avoid constant materialization and register allocation.
9460 ///
9461 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9462 /// generate addess computation nodes, and so FinalizeISel can convert the
9463 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9464 /// address materialization and register allocation, but may also be required
9465 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9466 /// alloca in the entry block, then the runtime may assume that the alloca's
9467 /// StackMap location can be read immediately after compilation and that the
9468 /// location is valid at any point during execution (this is similar to the
9469 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9470 /// only available in a register, then the runtime would need to trap when
9471 /// execution reaches the StackMap in order to read the alloca's location.
9472 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9473                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9474                                 SelectionDAGBuilder &Builder) {
9475   SelectionDAG &DAG = Builder.DAG;
9476   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9477     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9478 
9479     // Things on the stack are pointer-typed, meaning that they are already
9480     // legal and can be emitted directly to target nodes.
9481     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9482       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9483     } else {
9484       // Otherwise emit a target independent node to be legalised.
9485       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9486     }
9487   }
9488 }
9489 
9490 /// Lower llvm.experimental.stackmap.
9491 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9492   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9493   //                                  [live variables...])
9494 
9495   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9496 
9497   SDValue Chain, InFlag, Callee;
9498   SmallVector<SDValue, 32> Ops;
9499 
9500   SDLoc DL = getCurSDLoc();
9501   Callee = getValue(CI.getCalledOperand());
9502 
9503   // The stackmap intrinsic only records the live variables (the arguments
9504   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9505   // intrinsic, this won't be lowered to a function call. This means we don't
9506   // have to worry about calling conventions and target specific lowering code.
9507   // Instead we perform the call lowering right here.
9508   //
9509   // chain, flag = CALLSEQ_START(chain, 0, 0)
9510   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9511   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9512   //
9513   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9514   InFlag = Chain.getValue(1);
9515 
9516   // Add the STACKMAP operands, starting with DAG house-keeping.
9517   Ops.push_back(Chain);
9518   Ops.push_back(InFlag);
9519 
9520   // Add the <id>, <numShadowBytes> operands.
9521   //
9522   // These do not require legalisation, and can be emitted directly to target
9523   // constant nodes.
9524   SDValue ID = getValue(CI.getArgOperand(0));
9525   assert(ID.getValueType() == MVT::i64);
9526   SDValue IDConst = DAG.getTargetConstant(
9527       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9528   Ops.push_back(IDConst);
9529 
9530   SDValue Shad = getValue(CI.getArgOperand(1));
9531   assert(Shad.getValueType() == MVT::i32);
9532   SDValue ShadConst = DAG.getTargetConstant(
9533       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9534   Ops.push_back(ShadConst);
9535 
9536   // Add the live variables.
9537   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9538 
9539   // Create the STACKMAP node.
9540   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9541   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9542   InFlag = Chain.getValue(1);
9543 
9544   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9545 
9546   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9547 
9548   // Set the root to the target-lowered call chain.
9549   DAG.setRoot(Chain);
9550 
9551   // Inform the Frame Information that we have a stackmap in this function.
9552   FuncInfo.MF->getFrameInfo().setHasStackMap();
9553 }
9554 
9555 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9556 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9557                                           const BasicBlock *EHPadBB) {
9558   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9559   //                                                 i32 <numBytes>,
9560   //                                                 i8* <target>,
9561   //                                                 i32 <numArgs>,
9562   //                                                 [Args...],
9563   //                                                 [live variables...])
9564 
9565   CallingConv::ID CC = CB.getCallingConv();
9566   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9567   bool HasDef = !CB.getType()->isVoidTy();
9568   SDLoc dl = getCurSDLoc();
9569   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9570 
9571   // Handle immediate and symbolic callees.
9572   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9573     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9574                                    /*isTarget=*/true);
9575   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9576     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9577                                          SDLoc(SymbolicCallee),
9578                                          SymbolicCallee->getValueType(0));
9579 
9580   // Get the real number of arguments participating in the call <numArgs>
9581   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9582   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9583 
9584   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9585   // Intrinsics include all meta-operands up to but not including CC.
9586   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9587   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9588          "Not enough arguments provided to the patchpoint intrinsic");
9589 
9590   // For AnyRegCC the arguments are lowered later on manually.
9591   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9592   Type *ReturnTy =
9593       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9594 
9595   TargetLowering::CallLoweringInfo CLI(DAG);
9596   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9597                            ReturnTy, true);
9598   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9599 
9600   SDNode *CallEnd = Result.second.getNode();
9601   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9602     CallEnd = CallEnd->getOperand(0).getNode();
9603 
9604   /// Get a call instruction from the call sequence chain.
9605   /// Tail calls are not allowed.
9606   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9607          "Expected a callseq node.");
9608   SDNode *Call = CallEnd->getOperand(0).getNode();
9609   bool HasGlue = Call->getGluedNode();
9610 
9611   // Replace the target specific call node with the patchable intrinsic.
9612   SmallVector<SDValue, 8> Ops;
9613 
9614   // Push the chain.
9615   Ops.push_back(*(Call->op_begin()));
9616 
9617   // Optionally, push the glue (if any).
9618   if (HasGlue)
9619     Ops.push_back(*(Call->op_end() - 1));
9620 
9621   // Push the register mask info.
9622   if (HasGlue)
9623     Ops.push_back(*(Call->op_end() - 2));
9624   else
9625     Ops.push_back(*(Call->op_end() - 1));
9626 
9627   // Add the <id> and <numBytes> constants.
9628   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9629   Ops.push_back(DAG.getTargetConstant(
9630                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9631   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9632   Ops.push_back(DAG.getTargetConstant(
9633                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9634                   MVT::i32));
9635 
9636   // Add the callee.
9637   Ops.push_back(Callee);
9638 
9639   // Adjust <numArgs> to account for any arguments that have been passed on the
9640   // stack instead.
9641   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9642   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9643   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9644   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9645 
9646   // Add the calling convention
9647   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9648 
9649   // Add the arguments we omitted previously. The register allocator should
9650   // place these in any free register.
9651   if (IsAnyRegCC)
9652     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9653       Ops.push_back(getValue(CB.getArgOperand(i)));
9654 
9655   // Push the arguments from the call instruction.
9656   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9657   Ops.append(Call->op_begin() + 2, e);
9658 
9659   // Push live variables for the stack map.
9660   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9661 
9662   SDVTList NodeTys;
9663   if (IsAnyRegCC && HasDef) {
9664     // Create the return types based on the intrinsic definition
9665     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9666     SmallVector<EVT, 3> ValueVTs;
9667     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9668     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9669 
9670     // There is always a chain and a glue type at the end
9671     ValueVTs.push_back(MVT::Other);
9672     ValueVTs.push_back(MVT::Glue);
9673     NodeTys = DAG.getVTList(ValueVTs);
9674   } else
9675     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9676 
9677   // Replace the target specific call node with a PATCHPOINT node.
9678   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9679 
9680   // Update the NodeMap.
9681   if (HasDef) {
9682     if (IsAnyRegCC)
9683       setValue(&CB, SDValue(PPV.getNode(), 0));
9684     else
9685       setValue(&CB, Result.first);
9686   }
9687 
9688   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9689   // call sequence. Furthermore the location of the chain and glue can change
9690   // when the AnyReg calling convention is used and the intrinsic returns a
9691   // value.
9692   if (IsAnyRegCC && HasDef) {
9693     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9694     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9695     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9696   } else
9697     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9698   DAG.DeleteNode(Call);
9699 
9700   // Inform the Frame Information that we have a patchpoint in this function.
9701   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9702 }
9703 
9704 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9705                                             unsigned Intrinsic) {
9706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9707   SDValue Op1 = getValue(I.getArgOperand(0));
9708   SDValue Op2;
9709   if (I.arg_size() > 1)
9710     Op2 = getValue(I.getArgOperand(1));
9711   SDLoc dl = getCurSDLoc();
9712   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9713   SDValue Res;
9714   SDNodeFlags SDFlags;
9715   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9716     SDFlags.copyFMF(*FPMO);
9717 
9718   switch (Intrinsic) {
9719   case Intrinsic::vector_reduce_fadd:
9720     if (SDFlags.hasAllowReassociation())
9721       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9722                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9723                         SDFlags);
9724     else
9725       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9726     break;
9727   case Intrinsic::vector_reduce_fmul:
9728     if (SDFlags.hasAllowReassociation())
9729       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9730                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9731                         SDFlags);
9732     else
9733       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9734     break;
9735   case Intrinsic::vector_reduce_add:
9736     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9737     break;
9738   case Intrinsic::vector_reduce_mul:
9739     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9740     break;
9741   case Intrinsic::vector_reduce_and:
9742     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9743     break;
9744   case Intrinsic::vector_reduce_or:
9745     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9746     break;
9747   case Intrinsic::vector_reduce_xor:
9748     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9749     break;
9750   case Intrinsic::vector_reduce_smax:
9751     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9752     break;
9753   case Intrinsic::vector_reduce_smin:
9754     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9755     break;
9756   case Intrinsic::vector_reduce_umax:
9757     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9758     break;
9759   case Intrinsic::vector_reduce_umin:
9760     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9761     break;
9762   case Intrinsic::vector_reduce_fmax:
9763     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9764     break;
9765   case Intrinsic::vector_reduce_fmin:
9766     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9767     break;
9768   default:
9769     llvm_unreachable("Unhandled vector reduce intrinsic");
9770   }
9771   setValue(&I, Res);
9772 }
9773 
9774 /// Returns an AttributeList representing the attributes applied to the return
9775 /// value of the given call.
9776 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9777   SmallVector<Attribute::AttrKind, 2> Attrs;
9778   if (CLI.RetSExt)
9779     Attrs.push_back(Attribute::SExt);
9780   if (CLI.RetZExt)
9781     Attrs.push_back(Attribute::ZExt);
9782   if (CLI.IsInReg)
9783     Attrs.push_back(Attribute::InReg);
9784 
9785   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9786                             Attrs);
9787 }
9788 
9789 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9790 /// implementation, which just calls LowerCall.
9791 /// FIXME: When all targets are
9792 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9793 std::pair<SDValue, SDValue>
9794 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9795   // Handle the incoming return values from the call.
9796   CLI.Ins.clear();
9797   Type *OrigRetTy = CLI.RetTy;
9798   SmallVector<EVT, 4> RetTys;
9799   SmallVector<uint64_t, 4> Offsets;
9800   auto &DL = CLI.DAG.getDataLayout();
9801   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9802 
9803   if (CLI.IsPostTypeLegalization) {
9804     // If we are lowering a libcall after legalization, split the return type.
9805     SmallVector<EVT, 4> OldRetTys;
9806     SmallVector<uint64_t, 4> OldOffsets;
9807     RetTys.swap(OldRetTys);
9808     Offsets.swap(OldOffsets);
9809 
9810     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9811       EVT RetVT = OldRetTys[i];
9812       uint64_t Offset = OldOffsets[i];
9813       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9814       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9815       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9816       RetTys.append(NumRegs, RegisterVT);
9817       for (unsigned j = 0; j != NumRegs; ++j)
9818         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9819     }
9820   }
9821 
9822   SmallVector<ISD::OutputArg, 4> Outs;
9823   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9824 
9825   bool CanLowerReturn =
9826       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9827                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9828 
9829   SDValue DemoteStackSlot;
9830   int DemoteStackIdx = -100;
9831   if (!CanLowerReturn) {
9832     // FIXME: equivalent assert?
9833     // assert(!CS.hasInAllocaArgument() &&
9834     //        "sret demotion is incompatible with inalloca");
9835     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9836     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9837     MachineFunction &MF = CLI.DAG.getMachineFunction();
9838     DemoteStackIdx =
9839         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9840     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9841                                               DL.getAllocaAddrSpace());
9842 
9843     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9844     ArgListEntry Entry;
9845     Entry.Node = DemoteStackSlot;
9846     Entry.Ty = StackSlotPtrType;
9847     Entry.IsSExt = false;
9848     Entry.IsZExt = false;
9849     Entry.IsInReg = false;
9850     Entry.IsSRet = true;
9851     Entry.IsNest = false;
9852     Entry.IsByVal = false;
9853     Entry.IsByRef = false;
9854     Entry.IsReturned = false;
9855     Entry.IsSwiftSelf = false;
9856     Entry.IsSwiftAsync = false;
9857     Entry.IsSwiftError = false;
9858     Entry.IsCFGuardTarget = false;
9859     Entry.Alignment = Alignment;
9860     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9861     CLI.NumFixedArgs += 1;
9862     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9863     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9864 
9865     // sret demotion isn't compatible with tail-calls, since the sret argument
9866     // points into the callers stack frame.
9867     CLI.IsTailCall = false;
9868   } else {
9869     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9870         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9871     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9872       ISD::ArgFlagsTy Flags;
9873       if (NeedsRegBlock) {
9874         Flags.setInConsecutiveRegs();
9875         if (I == RetTys.size() - 1)
9876           Flags.setInConsecutiveRegsLast();
9877       }
9878       EVT VT = RetTys[I];
9879       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9880                                                      CLI.CallConv, VT);
9881       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9882                                                        CLI.CallConv, VT);
9883       for (unsigned i = 0; i != NumRegs; ++i) {
9884         ISD::InputArg MyFlags;
9885         MyFlags.Flags = Flags;
9886         MyFlags.VT = RegisterVT;
9887         MyFlags.ArgVT = VT;
9888         MyFlags.Used = CLI.IsReturnValueUsed;
9889         if (CLI.RetTy->isPointerTy()) {
9890           MyFlags.Flags.setPointer();
9891           MyFlags.Flags.setPointerAddrSpace(
9892               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9893         }
9894         if (CLI.RetSExt)
9895           MyFlags.Flags.setSExt();
9896         if (CLI.RetZExt)
9897           MyFlags.Flags.setZExt();
9898         if (CLI.IsInReg)
9899           MyFlags.Flags.setInReg();
9900         CLI.Ins.push_back(MyFlags);
9901       }
9902     }
9903   }
9904 
9905   // We push in swifterror return as the last element of CLI.Ins.
9906   ArgListTy &Args = CLI.getArgs();
9907   if (supportSwiftError()) {
9908     for (const ArgListEntry &Arg : Args) {
9909       if (Arg.IsSwiftError) {
9910         ISD::InputArg MyFlags;
9911         MyFlags.VT = getPointerTy(DL);
9912         MyFlags.ArgVT = EVT(getPointerTy(DL));
9913         MyFlags.Flags.setSwiftError();
9914         CLI.Ins.push_back(MyFlags);
9915       }
9916     }
9917   }
9918 
9919   // Handle all of the outgoing arguments.
9920   CLI.Outs.clear();
9921   CLI.OutVals.clear();
9922   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9923     SmallVector<EVT, 4> ValueVTs;
9924     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9925     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9926     Type *FinalType = Args[i].Ty;
9927     if (Args[i].IsByVal)
9928       FinalType = Args[i].IndirectType;
9929     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9930         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9931     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9932          ++Value) {
9933       EVT VT = ValueVTs[Value];
9934       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9935       SDValue Op = SDValue(Args[i].Node.getNode(),
9936                            Args[i].Node.getResNo() + Value);
9937       ISD::ArgFlagsTy Flags;
9938 
9939       // Certain targets (such as MIPS), may have a different ABI alignment
9940       // for a type depending on the context. Give the target a chance to
9941       // specify the alignment it wants.
9942       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9943       Flags.setOrigAlign(OriginalAlignment);
9944 
9945       if (Args[i].Ty->isPointerTy()) {
9946         Flags.setPointer();
9947         Flags.setPointerAddrSpace(
9948             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9949       }
9950       if (Args[i].IsZExt)
9951         Flags.setZExt();
9952       if (Args[i].IsSExt)
9953         Flags.setSExt();
9954       if (Args[i].IsInReg) {
9955         // If we are using vectorcall calling convention, a structure that is
9956         // passed InReg - is surely an HVA
9957         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9958             isa<StructType>(FinalType)) {
9959           // The first value of a structure is marked
9960           if (0 == Value)
9961             Flags.setHvaStart();
9962           Flags.setHva();
9963         }
9964         // Set InReg Flag
9965         Flags.setInReg();
9966       }
9967       if (Args[i].IsSRet)
9968         Flags.setSRet();
9969       if (Args[i].IsSwiftSelf)
9970         Flags.setSwiftSelf();
9971       if (Args[i].IsSwiftAsync)
9972         Flags.setSwiftAsync();
9973       if (Args[i].IsSwiftError)
9974         Flags.setSwiftError();
9975       if (Args[i].IsCFGuardTarget)
9976         Flags.setCFGuardTarget();
9977       if (Args[i].IsByVal)
9978         Flags.setByVal();
9979       if (Args[i].IsByRef)
9980         Flags.setByRef();
9981       if (Args[i].IsPreallocated) {
9982         Flags.setPreallocated();
9983         // Set the byval flag for CCAssignFn callbacks that don't know about
9984         // preallocated.  This way we can know how many bytes we should've
9985         // allocated and how many bytes a callee cleanup function will pop.  If
9986         // we port preallocated to more targets, we'll have to add custom
9987         // preallocated handling in the various CC lowering callbacks.
9988         Flags.setByVal();
9989       }
9990       if (Args[i].IsInAlloca) {
9991         Flags.setInAlloca();
9992         // Set the byval flag for CCAssignFn callbacks that don't know about
9993         // inalloca.  This way we can know how many bytes we should've allocated
9994         // and how many bytes a callee cleanup function will pop.  If we port
9995         // inalloca to more targets, we'll have to add custom inalloca handling
9996         // in the various CC lowering callbacks.
9997         Flags.setByVal();
9998       }
9999       Align MemAlign;
10000       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10001         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10002         Flags.setByValSize(FrameSize);
10003 
10004         // info is not there but there are cases it cannot get right.
10005         if (auto MA = Args[i].Alignment)
10006           MemAlign = *MA;
10007         else
10008           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10009       } else if (auto MA = Args[i].Alignment) {
10010         MemAlign = *MA;
10011       } else {
10012         MemAlign = OriginalAlignment;
10013       }
10014       Flags.setMemAlign(MemAlign);
10015       if (Args[i].IsNest)
10016         Flags.setNest();
10017       if (NeedsRegBlock)
10018         Flags.setInConsecutiveRegs();
10019 
10020       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10021                                                  CLI.CallConv, VT);
10022       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10023                                                         CLI.CallConv, VT);
10024       SmallVector<SDValue, 4> Parts(NumParts);
10025       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10026 
10027       if (Args[i].IsSExt)
10028         ExtendKind = ISD::SIGN_EXTEND;
10029       else if (Args[i].IsZExt)
10030         ExtendKind = ISD::ZERO_EXTEND;
10031 
10032       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10033       // for now.
10034       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10035           CanLowerReturn) {
10036         assert((CLI.RetTy == Args[i].Ty ||
10037                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10038                  CLI.RetTy->getPointerAddressSpace() ==
10039                      Args[i].Ty->getPointerAddressSpace())) &&
10040                RetTys.size() == NumValues && "unexpected use of 'returned'");
10041         // Before passing 'returned' to the target lowering code, ensure that
10042         // either the register MVT and the actual EVT are the same size or that
10043         // the return value and argument are extended in the same way; in these
10044         // cases it's safe to pass the argument register value unchanged as the
10045         // return register value (although it's at the target's option whether
10046         // to do so)
10047         // TODO: allow code generation to take advantage of partially preserved
10048         // registers rather than clobbering the entire register when the
10049         // parameter extension method is not compatible with the return
10050         // extension method
10051         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10052             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10053              CLI.RetZExt == Args[i].IsZExt))
10054           Flags.setReturned();
10055       }
10056 
10057       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10058                      CLI.CallConv, ExtendKind);
10059 
10060       for (unsigned j = 0; j != NumParts; ++j) {
10061         // if it isn't first piece, alignment must be 1
10062         // For scalable vectors the scalable part is currently handled
10063         // by individual targets, so we just use the known minimum size here.
10064         ISD::OutputArg MyFlags(
10065             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10066             i < CLI.NumFixedArgs, i,
10067             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
10068         if (NumParts > 1 && j == 0)
10069           MyFlags.Flags.setSplit();
10070         else if (j != 0) {
10071           MyFlags.Flags.setOrigAlign(Align(1));
10072           if (j == NumParts - 1)
10073             MyFlags.Flags.setSplitEnd();
10074         }
10075 
10076         CLI.Outs.push_back(MyFlags);
10077         CLI.OutVals.push_back(Parts[j]);
10078       }
10079 
10080       if (NeedsRegBlock && Value == NumValues - 1)
10081         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10082     }
10083   }
10084 
10085   SmallVector<SDValue, 4> InVals;
10086   CLI.Chain = LowerCall(CLI, InVals);
10087 
10088   // Update CLI.InVals to use outside of this function.
10089   CLI.InVals = InVals;
10090 
10091   // Verify that the target's LowerCall behaved as expected.
10092   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10093          "LowerCall didn't return a valid chain!");
10094   assert((!CLI.IsTailCall || InVals.empty()) &&
10095          "LowerCall emitted a return value for a tail call!");
10096   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10097          "LowerCall didn't emit the correct number of values!");
10098 
10099   // For a tail call, the return value is merely live-out and there aren't
10100   // any nodes in the DAG representing it. Return a special value to
10101   // indicate that a tail call has been emitted and no more Instructions
10102   // should be processed in the current block.
10103   if (CLI.IsTailCall) {
10104     CLI.DAG.setRoot(CLI.Chain);
10105     return std::make_pair(SDValue(), SDValue());
10106   }
10107 
10108 #ifndef NDEBUG
10109   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10110     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10111     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10112            "LowerCall emitted a value with the wrong type!");
10113   }
10114 #endif
10115 
10116   SmallVector<SDValue, 4> ReturnValues;
10117   if (!CanLowerReturn) {
10118     // The instruction result is the result of loading from the
10119     // hidden sret parameter.
10120     SmallVector<EVT, 1> PVTs;
10121     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10122 
10123     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10124     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10125     EVT PtrVT = PVTs[0];
10126 
10127     unsigned NumValues = RetTys.size();
10128     ReturnValues.resize(NumValues);
10129     SmallVector<SDValue, 4> Chains(NumValues);
10130 
10131     // An aggregate return value cannot wrap around the address space, so
10132     // offsets to its parts don't wrap either.
10133     SDNodeFlags Flags;
10134     Flags.setNoUnsignedWrap(true);
10135 
10136     MachineFunction &MF = CLI.DAG.getMachineFunction();
10137     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10138     for (unsigned i = 0; i < NumValues; ++i) {
10139       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10140                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10141                                                         PtrVT), Flags);
10142       SDValue L = CLI.DAG.getLoad(
10143           RetTys[i], CLI.DL, CLI.Chain, Add,
10144           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10145                                             DemoteStackIdx, Offsets[i]),
10146           HiddenSRetAlign);
10147       ReturnValues[i] = L;
10148       Chains[i] = L.getValue(1);
10149     }
10150 
10151     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10152   } else {
10153     // Collect the legal value parts into potentially illegal values
10154     // that correspond to the original function's return values.
10155     Optional<ISD::NodeType> AssertOp;
10156     if (CLI.RetSExt)
10157       AssertOp = ISD::AssertSext;
10158     else if (CLI.RetZExt)
10159       AssertOp = ISD::AssertZext;
10160     unsigned CurReg = 0;
10161     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10162       EVT VT = RetTys[I];
10163       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10164                                                      CLI.CallConv, VT);
10165       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10166                                                        CLI.CallConv, VT);
10167 
10168       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10169                                               NumRegs, RegisterVT, VT, nullptr,
10170                                               CLI.CallConv, AssertOp));
10171       CurReg += NumRegs;
10172     }
10173 
10174     // For a function returning void, there is no return value. We can't create
10175     // such a node, so we just return a null return value in that case. In
10176     // that case, nothing will actually look at the value.
10177     if (ReturnValues.empty())
10178       return std::make_pair(SDValue(), CLI.Chain);
10179   }
10180 
10181   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10182                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10183   return std::make_pair(Res, CLI.Chain);
10184 }
10185 
10186 /// Places new result values for the node in Results (their number
10187 /// and types must exactly match those of the original return values of
10188 /// the node), or leaves Results empty, which indicates that the node is not
10189 /// to be custom lowered after all.
10190 void TargetLowering::LowerOperationWrapper(SDNode *N,
10191                                            SmallVectorImpl<SDValue> &Results,
10192                                            SelectionDAG &DAG) const {
10193   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10194 
10195   if (!Res.getNode())
10196     return;
10197 
10198   // If the original node has one result, take the return value from
10199   // LowerOperation as is. It might not be result number 0.
10200   if (N->getNumValues() == 1) {
10201     Results.push_back(Res);
10202     return;
10203   }
10204 
10205   // If the original node has multiple results, then the return node should
10206   // have the same number of results.
10207   assert((N->getNumValues() == Res->getNumValues()) &&
10208       "Lowering returned the wrong number of results!");
10209 
10210   // Places new result values base on N result number.
10211   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10212     Results.push_back(Res.getValue(I));
10213 }
10214 
10215 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10216   llvm_unreachable("LowerOperation not implemented for this target!");
10217 }
10218 
10219 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10220                                                      unsigned Reg,
10221                                                      ISD::NodeType ExtendType) {
10222   SDValue Op = getNonRegisterValue(V);
10223   assert((Op.getOpcode() != ISD::CopyFromReg ||
10224           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10225          "Copy from a reg to the same reg!");
10226   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10227 
10228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10229   // If this is an InlineAsm we have to match the registers required, not the
10230   // notional registers required by the type.
10231 
10232   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10233                    None); // This is not an ABI copy.
10234   SDValue Chain = DAG.getEntryNode();
10235 
10236   if (ExtendType == ISD::ANY_EXTEND) {
10237     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10238     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10239       ExtendType = PreferredExtendIt->second;
10240   }
10241   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10242   PendingExports.push_back(Chain);
10243 }
10244 
10245 #include "llvm/CodeGen/SelectionDAGISel.h"
10246 
10247 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10248 /// entry block, return true.  This includes arguments used by switches, since
10249 /// the switch may expand into multiple basic blocks.
10250 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10251   // With FastISel active, we may be splitting blocks, so force creation
10252   // of virtual registers for all non-dead arguments.
10253   if (FastISel)
10254     return A->use_empty();
10255 
10256   const BasicBlock &Entry = A->getParent()->front();
10257   for (const User *U : A->users())
10258     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10259       return false;  // Use not in entry block.
10260 
10261   return true;
10262 }
10263 
10264 using ArgCopyElisionMapTy =
10265     DenseMap<const Argument *,
10266              std::pair<const AllocaInst *, const StoreInst *>>;
10267 
10268 /// Scan the entry block of the function in FuncInfo for arguments that look
10269 /// like copies into a local alloca. Record any copied arguments in
10270 /// ArgCopyElisionCandidates.
10271 static void
10272 findArgumentCopyElisionCandidates(const DataLayout &DL,
10273                                   FunctionLoweringInfo *FuncInfo,
10274                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10275   // Record the state of every static alloca used in the entry block. Argument
10276   // allocas are all used in the entry block, so we need approximately as many
10277   // entries as we have arguments.
10278   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10279   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10280   unsigned NumArgs = FuncInfo->Fn->arg_size();
10281   StaticAllocas.reserve(NumArgs * 2);
10282 
10283   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10284     if (!V)
10285       return nullptr;
10286     V = V->stripPointerCasts();
10287     const auto *AI = dyn_cast<AllocaInst>(V);
10288     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10289       return nullptr;
10290     auto Iter = StaticAllocas.insert({AI, Unknown});
10291     return &Iter.first->second;
10292   };
10293 
10294   // Look for stores of arguments to static allocas. Look through bitcasts and
10295   // GEPs to handle type coercions, as long as the alloca is fully initialized
10296   // by the store. Any non-store use of an alloca escapes it and any subsequent
10297   // unanalyzed store might write it.
10298   // FIXME: Handle structs initialized with multiple stores.
10299   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10300     // Look for stores, and handle non-store uses conservatively.
10301     const auto *SI = dyn_cast<StoreInst>(&I);
10302     if (!SI) {
10303       // We will look through cast uses, so ignore them completely.
10304       if (I.isCast())
10305         continue;
10306       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10307       // to allocas.
10308       if (I.isDebugOrPseudoInst())
10309         continue;
10310       // This is an unknown instruction. Assume it escapes or writes to all
10311       // static alloca operands.
10312       for (const Use &U : I.operands()) {
10313         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10314           *Info = StaticAllocaInfo::Clobbered;
10315       }
10316       continue;
10317     }
10318 
10319     // If the stored value is a static alloca, mark it as escaped.
10320     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10321       *Info = StaticAllocaInfo::Clobbered;
10322 
10323     // Check if the destination is a static alloca.
10324     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10325     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10326     if (!Info)
10327       continue;
10328     const AllocaInst *AI = cast<AllocaInst>(Dst);
10329 
10330     // Skip allocas that have been initialized or clobbered.
10331     if (*Info != StaticAllocaInfo::Unknown)
10332       continue;
10333 
10334     // Check if the stored value is an argument, and that this store fully
10335     // initializes the alloca.
10336     // If the argument type has padding bits we can't directly forward a pointer
10337     // as the upper bits may contain garbage.
10338     // Don't elide copies from the same argument twice.
10339     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10340     const auto *Arg = dyn_cast<Argument>(Val);
10341     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10342         Arg->getType()->isEmptyTy() ||
10343         DL.getTypeStoreSize(Arg->getType()) !=
10344             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10345         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10346         ArgCopyElisionCandidates.count(Arg)) {
10347       *Info = StaticAllocaInfo::Clobbered;
10348       continue;
10349     }
10350 
10351     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10352                       << '\n');
10353 
10354     // Mark this alloca and store for argument copy elision.
10355     *Info = StaticAllocaInfo::Elidable;
10356     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10357 
10358     // Stop scanning if we've seen all arguments. This will happen early in -O0
10359     // builds, which is useful, because -O0 builds have large entry blocks and
10360     // many allocas.
10361     if (ArgCopyElisionCandidates.size() == NumArgs)
10362       break;
10363   }
10364 }
10365 
10366 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10367 /// ArgVal is a load from a suitable fixed stack object.
10368 static void tryToElideArgumentCopy(
10369     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10370     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10371     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10372     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10373     SDValue ArgVal, bool &ArgHasUses) {
10374   // Check if this is a load from a fixed stack object.
10375   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10376   if (!LNode)
10377     return;
10378   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10379   if (!FINode)
10380     return;
10381 
10382   // Check that the fixed stack object is the right size and alignment.
10383   // Look at the alignment that the user wrote on the alloca instead of looking
10384   // at the stack object.
10385   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10386   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10387   const AllocaInst *AI = ArgCopyIter->second.first;
10388   int FixedIndex = FINode->getIndex();
10389   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10390   int OldIndex = AllocaIndex;
10391   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10392   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10393     LLVM_DEBUG(
10394         dbgs() << "  argument copy elision failed due to bad fixed stack "
10395                   "object size\n");
10396     return;
10397   }
10398   Align RequiredAlignment = AI->getAlign();
10399   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10400     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10401                          "greater than stack argument alignment ("
10402                       << DebugStr(RequiredAlignment) << " vs "
10403                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10404     return;
10405   }
10406 
10407   // Perform the elision. Delete the old stack object and replace its only use
10408   // in the variable info map. Mark the stack object as mutable.
10409   LLVM_DEBUG({
10410     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10411            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10412            << '\n';
10413   });
10414   MFI.RemoveStackObject(OldIndex);
10415   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10416   AllocaIndex = FixedIndex;
10417   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10418   Chains.push_back(ArgVal.getValue(1));
10419 
10420   // Avoid emitting code for the store implementing the copy.
10421   const StoreInst *SI = ArgCopyIter->second.second;
10422   ElidedArgCopyInstrs.insert(SI);
10423 
10424   // Check for uses of the argument again so that we can avoid exporting ArgVal
10425   // if it is't used by anything other than the store.
10426   for (const Value *U : Arg.users()) {
10427     if (U != SI) {
10428       ArgHasUses = true;
10429       break;
10430     }
10431   }
10432 }
10433 
10434 void SelectionDAGISel::LowerArguments(const Function &F) {
10435   SelectionDAG &DAG = SDB->DAG;
10436   SDLoc dl = SDB->getCurSDLoc();
10437   const DataLayout &DL = DAG.getDataLayout();
10438   SmallVector<ISD::InputArg, 16> Ins;
10439 
10440   // In Naked functions we aren't going to save any registers.
10441   if (F.hasFnAttribute(Attribute::Naked))
10442     return;
10443 
10444   if (!FuncInfo->CanLowerReturn) {
10445     // Put in an sret pointer parameter before all the other parameters.
10446     SmallVector<EVT, 1> ValueVTs;
10447     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10448                     F.getReturnType()->getPointerTo(
10449                         DAG.getDataLayout().getAllocaAddrSpace()),
10450                     ValueVTs);
10451 
10452     // NOTE: Assuming that a pointer will never break down to more than one VT
10453     // or one register.
10454     ISD::ArgFlagsTy Flags;
10455     Flags.setSRet();
10456     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10457     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10458                          ISD::InputArg::NoArgIndex, 0);
10459     Ins.push_back(RetArg);
10460   }
10461 
10462   // Look for stores of arguments to static allocas. Mark such arguments with a
10463   // flag to ask the target to give us the memory location of that argument if
10464   // available.
10465   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10466   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10467                                     ArgCopyElisionCandidates);
10468 
10469   // Set up the incoming argument description vector.
10470   for (const Argument &Arg : F.args()) {
10471     unsigned ArgNo = Arg.getArgNo();
10472     SmallVector<EVT, 4> ValueVTs;
10473     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10474     bool isArgValueUsed = !Arg.use_empty();
10475     unsigned PartBase = 0;
10476     Type *FinalType = Arg.getType();
10477     if (Arg.hasAttribute(Attribute::ByVal))
10478       FinalType = Arg.getParamByValType();
10479     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10480         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10481     for (unsigned Value = 0, NumValues = ValueVTs.size();
10482          Value != NumValues; ++Value) {
10483       EVT VT = ValueVTs[Value];
10484       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10485       ISD::ArgFlagsTy Flags;
10486 
10487 
10488       if (Arg.getType()->isPointerTy()) {
10489         Flags.setPointer();
10490         Flags.setPointerAddrSpace(
10491             cast<PointerType>(Arg.getType())->getAddressSpace());
10492       }
10493       if (Arg.hasAttribute(Attribute::ZExt))
10494         Flags.setZExt();
10495       if (Arg.hasAttribute(Attribute::SExt))
10496         Flags.setSExt();
10497       if (Arg.hasAttribute(Attribute::InReg)) {
10498         // If we are using vectorcall calling convention, a structure that is
10499         // passed InReg - is surely an HVA
10500         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10501             isa<StructType>(Arg.getType())) {
10502           // The first value of a structure is marked
10503           if (0 == Value)
10504             Flags.setHvaStart();
10505           Flags.setHva();
10506         }
10507         // Set InReg Flag
10508         Flags.setInReg();
10509       }
10510       if (Arg.hasAttribute(Attribute::StructRet))
10511         Flags.setSRet();
10512       if (Arg.hasAttribute(Attribute::SwiftSelf))
10513         Flags.setSwiftSelf();
10514       if (Arg.hasAttribute(Attribute::SwiftAsync))
10515         Flags.setSwiftAsync();
10516       if (Arg.hasAttribute(Attribute::SwiftError))
10517         Flags.setSwiftError();
10518       if (Arg.hasAttribute(Attribute::ByVal))
10519         Flags.setByVal();
10520       if (Arg.hasAttribute(Attribute::ByRef))
10521         Flags.setByRef();
10522       if (Arg.hasAttribute(Attribute::InAlloca)) {
10523         Flags.setInAlloca();
10524         // Set the byval flag for CCAssignFn callbacks that don't know about
10525         // inalloca.  This way we can know how many bytes we should've allocated
10526         // and how many bytes a callee cleanup function will pop.  If we port
10527         // inalloca to more targets, we'll have to add custom inalloca handling
10528         // in the various CC lowering callbacks.
10529         Flags.setByVal();
10530       }
10531       if (Arg.hasAttribute(Attribute::Preallocated)) {
10532         Flags.setPreallocated();
10533         // Set the byval flag for CCAssignFn callbacks that don't know about
10534         // preallocated.  This way we can know how many bytes we should've
10535         // allocated and how many bytes a callee cleanup function will pop.  If
10536         // we port preallocated to more targets, we'll have to add custom
10537         // preallocated handling in the various CC lowering callbacks.
10538         Flags.setByVal();
10539       }
10540 
10541       // Certain targets (such as MIPS), may have a different ABI alignment
10542       // for a type depending on the context. Give the target a chance to
10543       // specify the alignment it wants.
10544       const Align OriginalAlignment(
10545           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10546       Flags.setOrigAlign(OriginalAlignment);
10547 
10548       Align MemAlign;
10549       Type *ArgMemTy = nullptr;
10550       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10551           Flags.isByRef()) {
10552         if (!ArgMemTy)
10553           ArgMemTy = Arg.getPointeeInMemoryValueType();
10554 
10555         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10556 
10557         // For in-memory arguments, size and alignment should be passed from FE.
10558         // BE will guess if this info is not there but there are cases it cannot
10559         // get right.
10560         if (auto ParamAlign = Arg.getParamStackAlign())
10561           MemAlign = *ParamAlign;
10562         else if ((ParamAlign = Arg.getParamAlign()))
10563           MemAlign = *ParamAlign;
10564         else
10565           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10566         if (Flags.isByRef())
10567           Flags.setByRefSize(MemSize);
10568         else
10569           Flags.setByValSize(MemSize);
10570       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10571         MemAlign = *ParamAlign;
10572       } else {
10573         MemAlign = OriginalAlignment;
10574       }
10575       Flags.setMemAlign(MemAlign);
10576 
10577       if (Arg.hasAttribute(Attribute::Nest))
10578         Flags.setNest();
10579       if (NeedsRegBlock)
10580         Flags.setInConsecutiveRegs();
10581       if (ArgCopyElisionCandidates.count(&Arg))
10582         Flags.setCopyElisionCandidate();
10583       if (Arg.hasAttribute(Attribute::Returned))
10584         Flags.setReturned();
10585 
10586       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10587           *CurDAG->getContext(), F.getCallingConv(), VT);
10588       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10589           *CurDAG->getContext(), F.getCallingConv(), VT);
10590       for (unsigned i = 0; i != NumRegs; ++i) {
10591         // For scalable vectors, use the minimum size; individual targets
10592         // are responsible for handling scalable vector arguments and
10593         // return values.
10594         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10595                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10596         if (NumRegs > 1 && i == 0)
10597           MyFlags.Flags.setSplit();
10598         // if it isn't first piece, alignment must be 1
10599         else if (i > 0) {
10600           MyFlags.Flags.setOrigAlign(Align(1));
10601           if (i == NumRegs - 1)
10602             MyFlags.Flags.setSplitEnd();
10603         }
10604         Ins.push_back(MyFlags);
10605       }
10606       if (NeedsRegBlock && Value == NumValues - 1)
10607         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10608       PartBase += VT.getStoreSize().getKnownMinSize();
10609     }
10610   }
10611 
10612   // Call the target to set up the argument values.
10613   SmallVector<SDValue, 8> InVals;
10614   SDValue NewRoot = TLI->LowerFormalArguments(
10615       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10616 
10617   // Verify that the target's LowerFormalArguments behaved as expected.
10618   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10619          "LowerFormalArguments didn't return a valid chain!");
10620   assert(InVals.size() == Ins.size() &&
10621          "LowerFormalArguments didn't emit the correct number of values!");
10622   LLVM_DEBUG({
10623     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10624       assert(InVals[i].getNode() &&
10625              "LowerFormalArguments emitted a null value!");
10626       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10627              "LowerFormalArguments emitted a value with the wrong type!");
10628     }
10629   });
10630 
10631   // Update the DAG with the new chain value resulting from argument lowering.
10632   DAG.setRoot(NewRoot);
10633 
10634   // Set up the argument values.
10635   unsigned i = 0;
10636   if (!FuncInfo->CanLowerReturn) {
10637     // Create a virtual register for the sret pointer, and put in a copy
10638     // from the sret argument into it.
10639     SmallVector<EVT, 1> ValueVTs;
10640     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10641                     F.getReturnType()->getPointerTo(
10642                         DAG.getDataLayout().getAllocaAddrSpace()),
10643                     ValueVTs);
10644     MVT VT = ValueVTs[0].getSimpleVT();
10645     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10646     Optional<ISD::NodeType> AssertOp;
10647     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10648                                         nullptr, F.getCallingConv(), AssertOp);
10649 
10650     MachineFunction& MF = SDB->DAG.getMachineFunction();
10651     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10652     Register SRetReg =
10653         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10654     FuncInfo->DemoteRegister = SRetReg;
10655     NewRoot =
10656         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10657     DAG.setRoot(NewRoot);
10658 
10659     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10660     ++i;
10661   }
10662 
10663   SmallVector<SDValue, 4> Chains;
10664   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10665   for (const Argument &Arg : F.args()) {
10666     SmallVector<SDValue, 4> ArgValues;
10667     SmallVector<EVT, 4> ValueVTs;
10668     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10669     unsigned NumValues = ValueVTs.size();
10670     if (NumValues == 0)
10671       continue;
10672 
10673     bool ArgHasUses = !Arg.use_empty();
10674 
10675     // Elide the copying store if the target loaded this argument from a
10676     // suitable fixed stack object.
10677     if (Ins[i].Flags.isCopyElisionCandidate()) {
10678       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10679                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10680                              InVals[i], ArgHasUses);
10681     }
10682 
10683     // If this argument is unused then remember its value. It is used to generate
10684     // debugging information.
10685     bool isSwiftErrorArg =
10686         TLI->supportSwiftError() &&
10687         Arg.hasAttribute(Attribute::SwiftError);
10688     if (!ArgHasUses && !isSwiftErrorArg) {
10689       SDB->setUnusedArgValue(&Arg, InVals[i]);
10690 
10691       // Also remember any frame index for use in FastISel.
10692       if (FrameIndexSDNode *FI =
10693           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10694         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10695     }
10696 
10697     for (unsigned Val = 0; Val != NumValues; ++Val) {
10698       EVT VT = ValueVTs[Val];
10699       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10700                                                       F.getCallingConv(), VT);
10701       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10702           *CurDAG->getContext(), F.getCallingConv(), VT);
10703 
10704       // Even an apparent 'unused' swifterror argument needs to be returned. So
10705       // we do generate a copy for it that can be used on return from the
10706       // function.
10707       if (ArgHasUses || isSwiftErrorArg) {
10708         Optional<ISD::NodeType> AssertOp;
10709         if (Arg.hasAttribute(Attribute::SExt))
10710           AssertOp = ISD::AssertSext;
10711         else if (Arg.hasAttribute(Attribute::ZExt))
10712           AssertOp = ISD::AssertZext;
10713 
10714         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10715                                              PartVT, VT, nullptr,
10716                                              F.getCallingConv(), AssertOp));
10717       }
10718 
10719       i += NumParts;
10720     }
10721 
10722     // We don't need to do anything else for unused arguments.
10723     if (ArgValues.empty())
10724       continue;
10725 
10726     // Note down frame index.
10727     if (FrameIndexSDNode *FI =
10728         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10729       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10730 
10731     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10732                                      SDB->getCurSDLoc());
10733 
10734     SDB->setValue(&Arg, Res);
10735     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10736       // We want to associate the argument with the frame index, among
10737       // involved operands, that correspond to the lowest address. The
10738       // getCopyFromParts function, called earlier, is swapping the order of
10739       // the operands to BUILD_PAIR depending on endianness. The result of
10740       // that swapping is that the least significant bits of the argument will
10741       // be in the first operand of the BUILD_PAIR node, and the most
10742       // significant bits will be in the second operand.
10743       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10744       if (LoadSDNode *LNode =
10745           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10746         if (FrameIndexSDNode *FI =
10747             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10748           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10749     }
10750 
10751     // Analyses past this point are naive and don't expect an assertion.
10752     if (Res.getOpcode() == ISD::AssertZext)
10753       Res = Res.getOperand(0);
10754 
10755     // Update the SwiftErrorVRegDefMap.
10756     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10757       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10758       if (Register::isVirtualRegister(Reg))
10759         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10760                                    Reg);
10761     }
10762 
10763     // If this argument is live outside of the entry block, insert a copy from
10764     // wherever we got it to the vreg that other BB's will reference it as.
10765     if (Res.getOpcode() == ISD::CopyFromReg) {
10766       // If we can, though, try to skip creating an unnecessary vreg.
10767       // FIXME: This isn't very clean... it would be nice to make this more
10768       // general.
10769       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10770       if (Register::isVirtualRegister(Reg)) {
10771         FuncInfo->ValueMap[&Arg] = Reg;
10772         continue;
10773       }
10774     }
10775     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10776       FuncInfo->InitializeRegForValue(&Arg);
10777       SDB->CopyToExportRegsIfNeeded(&Arg);
10778     }
10779   }
10780 
10781   if (!Chains.empty()) {
10782     Chains.push_back(NewRoot);
10783     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10784   }
10785 
10786   DAG.setRoot(NewRoot);
10787 
10788   assert(i == InVals.size() && "Argument register count mismatch!");
10789 
10790   // If any argument copy elisions occurred and we have debug info, update the
10791   // stale frame indices used in the dbg.declare variable info table.
10792   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10793   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10794     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10795       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10796       if (I != ArgCopyElisionFrameIndexMap.end())
10797         VI.Slot = I->second;
10798     }
10799   }
10800 
10801   // Finally, if the target has anything special to do, allow it to do so.
10802   emitFunctionEntryCode();
10803 }
10804 
10805 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10806 /// ensure constants are generated when needed.  Remember the virtual registers
10807 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10808 /// directly add them, because expansion might result in multiple MBB's for one
10809 /// BB.  As such, the start of the BB might correspond to a different MBB than
10810 /// the end.
10811 void
10812 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10814 
10815   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10816 
10817   // Check PHI nodes in successors that expect a value to be available from this
10818   // block.
10819   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10820     if (!isa<PHINode>(SuccBB->begin())) continue;
10821     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10822 
10823     // If this terminator has multiple identical successors (common for
10824     // switches), only handle each succ once.
10825     if (!SuccsHandled.insert(SuccMBB).second)
10826       continue;
10827 
10828     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10829 
10830     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10831     // nodes and Machine PHI nodes, but the incoming operands have not been
10832     // emitted yet.
10833     for (const PHINode &PN : SuccBB->phis()) {
10834       // Ignore dead phi's.
10835       if (PN.use_empty())
10836         continue;
10837 
10838       // Skip empty types
10839       if (PN.getType()->isEmptyTy())
10840         continue;
10841 
10842       unsigned Reg;
10843       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10844 
10845       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10846         unsigned &RegOut = ConstantsOut[C];
10847         if (RegOut == 0) {
10848           RegOut = FuncInfo.CreateRegs(C);
10849           // We need to zero/sign extend ConstantInt phi operands to match
10850           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10851           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10852           if (auto *CI = dyn_cast<ConstantInt>(C))
10853             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10854                                                     : ISD::ZERO_EXTEND;
10855           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10856         }
10857         Reg = RegOut;
10858       } else {
10859         DenseMap<const Value *, Register>::iterator I =
10860           FuncInfo.ValueMap.find(PHIOp);
10861         if (I != FuncInfo.ValueMap.end())
10862           Reg = I->second;
10863         else {
10864           assert(isa<AllocaInst>(PHIOp) &&
10865                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10866                  "Didn't codegen value into a register!??");
10867           Reg = FuncInfo.CreateRegs(PHIOp);
10868           CopyValueToVirtualRegister(PHIOp, Reg);
10869         }
10870       }
10871 
10872       // Remember that this register needs to added to the machine PHI node as
10873       // the input for this MBB.
10874       SmallVector<EVT, 4> ValueVTs;
10875       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10876       for (EVT VT : ValueVTs) {
10877         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10878         for (unsigned i = 0; i != NumRegisters; ++i)
10879           FuncInfo.PHINodesToUpdate.push_back(
10880               std::make_pair(&*MBBI++, Reg + i));
10881         Reg += NumRegisters;
10882       }
10883     }
10884   }
10885 
10886   ConstantsOut.clear();
10887 }
10888 
10889 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10890   MachineFunction::iterator I(MBB);
10891   if (++I == FuncInfo.MF->end())
10892     return nullptr;
10893   return &*I;
10894 }
10895 
10896 /// During lowering new call nodes can be created (such as memset, etc.).
10897 /// Those will become new roots of the current DAG, but complications arise
10898 /// when they are tail calls. In such cases, the call lowering will update
10899 /// the root, but the builder still needs to know that a tail call has been
10900 /// lowered in order to avoid generating an additional return.
10901 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10902   // If the node is null, we do have a tail call.
10903   if (MaybeTC.getNode() != nullptr)
10904     DAG.setRoot(MaybeTC);
10905   else
10906     HasTailCall = true;
10907 }
10908 
10909 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10910                                         MachineBasicBlock *SwitchMBB,
10911                                         MachineBasicBlock *DefaultMBB) {
10912   MachineFunction *CurMF = FuncInfo.MF;
10913   MachineBasicBlock *NextMBB = nullptr;
10914   MachineFunction::iterator BBI(W.MBB);
10915   if (++BBI != FuncInfo.MF->end())
10916     NextMBB = &*BBI;
10917 
10918   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10919 
10920   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10921 
10922   if (Size == 2 && W.MBB == SwitchMBB) {
10923     // If any two of the cases has the same destination, and if one value
10924     // is the same as the other, but has one bit unset that the other has set,
10925     // use bit manipulation to do two compares at once.  For example:
10926     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10927     // TODO: This could be extended to merge any 2 cases in switches with 3
10928     // cases.
10929     // TODO: Handle cases where W.CaseBB != SwitchBB.
10930     CaseCluster &Small = *W.FirstCluster;
10931     CaseCluster &Big = *W.LastCluster;
10932 
10933     if (Small.Low == Small.High && Big.Low == Big.High &&
10934         Small.MBB == Big.MBB) {
10935       const APInt &SmallValue = Small.Low->getValue();
10936       const APInt &BigValue = Big.Low->getValue();
10937 
10938       // Check that there is only one bit different.
10939       APInt CommonBit = BigValue ^ SmallValue;
10940       if (CommonBit.isPowerOf2()) {
10941         SDValue CondLHS = getValue(Cond);
10942         EVT VT = CondLHS.getValueType();
10943         SDLoc DL = getCurSDLoc();
10944 
10945         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10946                                  DAG.getConstant(CommonBit, DL, VT));
10947         SDValue Cond = DAG.getSetCC(
10948             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10949             ISD::SETEQ);
10950 
10951         // Update successor info.
10952         // Both Small and Big will jump to Small.BB, so we sum up the
10953         // probabilities.
10954         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10955         if (BPI)
10956           addSuccessorWithProb(
10957               SwitchMBB, DefaultMBB,
10958               // The default destination is the first successor in IR.
10959               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10960         else
10961           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10962 
10963         // Insert the true branch.
10964         SDValue BrCond =
10965             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10966                         DAG.getBasicBlock(Small.MBB));
10967         // Insert the false branch.
10968         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10969                              DAG.getBasicBlock(DefaultMBB));
10970 
10971         DAG.setRoot(BrCond);
10972         return;
10973       }
10974     }
10975   }
10976 
10977   if (TM.getOptLevel() != CodeGenOpt::None) {
10978     // Here, we order cases by probability so the most likely case will be
10979     // checked first. However, two clusters can have the same probability in
10980     // which case their relative ordering is non-deterministic. So we use Low
10981     // as a tie-breaker as clusters are guaranteed to never overlap.
10982     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10983                [](const CaseCluster &a, const CaseCluster &b) {
10984       return a.Prob != b.Prob ?
10985              a.Prob > b.Prob :
10986              a.Low->getValue().slt(b.Low->getValue());
10987     });
10988 
10989     // Rearrange the case blocks so that the last one falls through if possible
10990     // without changing the order of probabilities.
10991     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10992       --I;
10993       if (I->Prob > W.LastCluster->Prob)
10994         break;
10995       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10996         std::swap(*I, *W.LastCluster);
10997         break;
10998       }
10999     }
11000   }
11001 
11002   // Compute total probability.
11003   BranchProbability DefaultProb = W.DefaultProb;
11004   BranchProbability UnhandledProbs = DefaultProb;
11005   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11006     UnhandledProbs += I->Prob;
11007 
11008   MachineBasicBlock *CurMBB = W.MBB;
11009   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11010     bool FallthroughUnreachable = false;
11011     MachineBasicBlock *Fallthrough;
11012     if (I == W.LastCluster) {
11013       // For the last cluster, fall through to the default destination.
11014       Fallthrough = DefaultMBB;
11015       FallthroughUnreachable = isa<UnreachableInst>(
11016           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11017     } else {
11018       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11019       CurMF->insert(BBI, Fallthrough);
11020       // Put Cond in a virtual register to make it available from the new blocks.
11021       ExportFromCurrentBlock(Cond);
11022     }
11023     UnhandledProbs -= I->Prob;
11024 
11025     switch (I->Kind) {
11026       case CC_JumpTable: {
11027         // FIXME: Optimize away range check based on pivot comparisons.
11028         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11029         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11030 
11031         // The jump block hasn't been inserted yet; insert it here.
11032         MachineBasicBlock *JumpMBB = JT->MBB;
11033         CurMF->insert(BBI, JumpMBB);
11034 
11035         auto JumpProb = I->Prob;
11036         auto FallthroughProb = UnhandledProbs;
11037 
11038         // If the default statement is a target of the jump table, we evenly
11039         // distribute the default probability to successors of CurMBB. Also
11040         // update the probability on the edge from JumpMBB to Fallthrough.
11041         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11042                                               SE = JumpMBB->succ_end();
11043              SI != SE; ++SI) {
11044           if (*SI == DefaultMBB) {
11045             JumpProb += DefaultProb / 2;
11046             FallthroughProb -= DefaultProb / 2;
11047             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11048             JumpMBB->normalizeSuccProbs();
11049             break;
11050           }
11051         }
11052 
11053         if (FallthroughUnreachable)
11054           JTH->FallthroughUnreachable = true;
11055 
11056         if (!JTH->FallthroughUnreachable)
11057           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11058         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11059         CurMBB->normalizeSuccProbs();
11060 
11061         // The jump table header will be inserted in our current block, do the
11062         // range check, and fall through to our fallthrough block.
11063         JTH->HeaderBB = CurMBB;
11064         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11065 
11066         // If we're in the right place, emit the jump table header right now.
11067         if (CurMBB == SwitchMBB) {
11068           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11069           JTH->Emitted = true;
11070         }
11071         break;
11072       }
11073       case CC_BitTests: {
11074         // FIXME: Optimize away range check based on pivot comparisons.
11075         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11076 
11077         // The bit test blocks haven't been inserted yet; insert them here.
11078         for (BitTestCase &BTC : BTB->Cases)
11079           CurMF->insert(BBI, BTC.ThisBB);
11080 
11081         // Fill in fields of the BitTestBlock.
11082         BTB->Parent = CurMBB;
11083         BTB->Default = Fallthrough;
11084 
11085         BTB->DefaultProb = UnhandledProbs;
11086         // If the cases in bit test don't form a contiguous range, we evenly
11087         // distribute the probability on the edge to Fallthrough to two
11088         // successors of CurMBB.
11089         if (!BTB->ContiguousRange) {
11090           BTB->Prob += DefaultProb / 2;
11091           BTB->DefaultProb -= DefaultProb / 2;
11092         }
11093 
11094         if (FallthroughUnreachable)
11095           BTB->FallthroughUnreachable = true;
11096 
11097         // If we're in the right place, emit the bit test header right now.
11098         if (CurMBB == SwitchMBB) {
11099           visitBitTestHeader(*BTB, SwitchMBB);
11100           BTB->Emitted = true;
11101         }
11102         break;
11103       }
11104       case CC_Range: {
11105         const Value *RHS, *LHS, *MHS;
11106         ISD::CondCode CC;
11107         if (I->Low == I->High) {
11108           // Check Cond == I->Low.
11109           CC = ISD::SETEQ;
11110           LHS = Cond;
11111           RHS=I->Low;
11112           MHS = nullptr;
11113         } else {
11114           // Check I->Low <= Cond <= I->High.
11115           CC = ISD::SETLE;
11116           LHS = I->Low;
11117           MHS = Cond;
11118           RHS = I->High;
11119         }
11120 
11121         // If Fallthrough is unreachable, fold away the comparison.
11122         if (FallthroughUnreachable)
11123           CC = ISD::SETTRUE;
11124 
11125         // The false probability is the sum of all unhandled cases.
11126         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11127                      getCurSDLoc(), I->Prob, UnhandledProbs);
11128 
11129         if (CurMBB == SwitchMBB)
11130           visitSwitchCase(CB, SwitchMBB);
11131         else
11132           SL->SwitchCases.push_back(CB);
11133 
11134         break;
11135       }
11136     }
11137     CurMBB = Fallthrough;
11138   }
11139 }
11140 
11141 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11142                                               CaseClusterIt First,
11143                                               CaseClusterIt Last) {
11144   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11145     if (X.Prob != CC.Prob)
11146       return X.Prob > CC.Prob;
11147 
11148     // Ties are broken by comparing the case value.
11149     return X.Low->getValue().slt(CC.Low->getValue());
11150   });
11151 }
11152 
11153 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11154                                         const SwitchWorkListItem &W,
11155                                         Value *Cond,
11156                                         MachineBasicBlock *SwitchMBB) {
11157   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11158          "Clusters not sorted?");
11159 
11160   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11161 
11162   // Balance the tree based on branch probabilities to create a near-optimal (in
11163   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11164   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11165   CaseClusterIt LastLeft = W.FirstCluster;
11166   CaseClusterIt FirstRight = W.LastCluster;
11167   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11168   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11169 
11170   // Move LastLeft and FirstRight towards each other from opposite directions to
11171   // find a partitioning of the clusters which balances the probability on both
11172   // sides. If LeftProb and RightProb are equal, alternate which side is
11173   // taken to ensure 0-probability nodes are distributed evenly.
11174   unsigned I = 0;
11175   while (LastLeft + 1 < FirstRight) {
11176     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11177       LeftProb += (++LastLeft)->Prob;
11178     else
11179       RightProb += (--FirstRight)->Prob;
11180     I++;
11181   }
11182 
11183   while (true) {
11184     // Our binary search tree differs from a typical BST in that ours can have up
11185     // to three values in each leaf. The pivot selection above doesn't take that
11186     // into account, which means the tree might require more nodes and be less
11187     // efficient. We compensate for this here.
11188 
11189     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11190     unsigned NumRight = W.LastCluster - FirstRight + 1;
11191 
11192     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11193       // If one side has less than 3 clusters, and the other has more than 3,
11194       // consider taking a cluster from the other side.
11195 
11196       if (NumLeft < NumRight) {
11197         // Consider moving the first cluster on the right to the left side.
11198         CaseCluster &CC = *FirstRight;
11199         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11200         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11201         if (LeftSideRank <= RightSideRank) {
11202           // Moving the cluster to the left does not demote it.
11203           ++LastLeft;
11204           ++FirstRight;
11205           continue;
11206         }
11207       } else {
11208         assert(NumRight < NumLeft);
11209         // Consider moving the last element on the left to the right side.
11210         CaseCluster &CC = *LastLeft;
11211         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11212         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11213         if (RightSideRank <= LeftSideRank) {
11214           // Moving the cluster to the right does not demot it.
11215           --LastLeft;
11216           --FirstRight;
11217           continue;
11218         }
11219       }
11220     }
11221     break;
11222   }
11223 
11224   assert(LastLeft + 1 == FirstRight);
11225   assert(LastLeft >= W.FirstCluster);
11226   assert(FirstRight <= W.LastCluster);
11227 
11228   // Use the first element on the right as pivot since we will make less-than
11229   // comparisons against it.
11230   CaseClusterIt PivotCluster = FirstRight;
11231   assert(PivotCluster > W.FirstCluster);
11232   assert(PivotCluster <= W.LastCluster);
11233 
11234   CaseClusterIt FirstLeft = W.FirstCluster;
11235   CaseClusterIt LastRight = W.LastCluster;
11236 
11237   const ConstantInt *Pivot = PivotCluster->Low;
11238 
11239   // New blocks will be inserted immediately after the current one.
11240   MachineFunction::iterator BBI(W.MBB);
11241   ++BBI;
11242 
11243   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11244   // we can branch to its destination directly if it's squeezed exactly in
11245   // between the known lower bound and Pivot - 1.
11246   MachineBasicBlock *LeftMBB;
11247   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11248       FirstLeft->Low == W.GE &&
11249       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11250     LeftMBB = FirstLeft->MBB;
11251   } else {
11252     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11253     FuncInfo.MF->insert(BBI, LeftMBB);
11254     WorkList.push_back(
11255         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11256     // Put Cond in a virtual register to make it available from the new blocks.
11257     ExportFromCurrentBlock(Cond);
11258   }
11259 
11260   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11261   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11262   // directly if RHS.High equals the current upper bound.
11263   MachineBasicBlock *RightMBB;
11264   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11265       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11266     RightMBB = FirstRight->MBB;
11267   } else {
11268     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11269     FuncInfo.MF->insert(BBI, RightMBB);
11270     WorkList.push_back(
11271         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11272     // Put Cond in a virtual register to make it available from the new blocks.
11273     ExportFromCurrentBlock(Cond);
11274   }
11275 
11276   // Create the CaseBlock record that will be used to lower the branch.
11277   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11278                getCurSDLoc(), LeftProb, RightProb);
11279 
11280   if (W.MBB == SwitchMBB)
11281     visitSwitchCase(CB, SwitchMBB);
11282   else
11283     SL->SwitchCases.push_back(CB);
11284 }
11285 
11286 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11287 // from the swith statement.
11288 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11289                                             BranchProbability PeeledCaseProb) {
11290   if (PeeledCaseProb == BranchProbability::getOne())
11291     return BranchProbability::getZero();
11292   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11293 
11294   uint32_t Numerator = CaseProb.getNumerator();
11295   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11296   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11297 }
11298 
11299 // Try to peel the top probability case if it exceeds the threshold.
11300 // Return current MachineBasicBlock for the switch statement if the peeling
11301 // does not occur.
11302 // If the peeling is performed, return the newly created MachineBasicBlock
11303 // for the peeled switch statement. Also update Clusters to remove the peeled
11304 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11305 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11306     const SwitchInst &SI, CaseClusterVector &Clusters,
11307     BranchProbability &PeeledCaseProb) {
11308   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11309   // Don't perform if there is only one cluster or optimizing for size.
11310   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11311       TM.getOptLevel() == CodeGenOpt::None ||
11312       SwitchMBB->getParent()->getFunction().hasMinSize())
11313     return SwitchMBB;
11314 
11315   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11316   unsigned PeeledCaseIndex = 0;
11317   bool SwitchPeeled = false;
11318   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11319     CaseCluster &CC = Clusters[Index];
11320     if (CC.Prob < TopCaseProb)
11321       continue;
11322     TopCaseProb = CC.Prob;
11323     PeeledCaseIndex = Index;
11324     SwitchPeeled = true;
11325   }
11326   if (!SwitchPeeled)
11327     return SwitchMBB;
11328 
11329   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11330                     << TopCaseProb << "\n");
11331 
11332   // Record the MBB for the peeled switch statement.
11333   MachineFunction::iterator BBI(SwitchMBB);
11334   ++BBI;
11335   MachineBasicBlock *PeeledSwitchMBB =
11336       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11337   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11338 
11339   ExportFromCurrentBlock(SI.getCondition());
11340   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11341   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11342                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11343   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11344 
11345   Clusters.erase(PeeledCaseIt);
11346   for (CaseCluster &CC : Clusters) {
11347     LLVM_DEBUG(
11348         dbgs() << "Scale the probablity for one cluster, before scaling: "
11349                << CC.Prob << "\n");
11350     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11351     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11352   }
11353   PeeledCaseProb = TopCaseProb;
11354   return PeeledSwitchMBB;
11355 }
11356 
11357 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11358   // Extract cases from the switch.
11359   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11360   CaseClusterVector Clusters;
11361   Clusters.reserve(SI.getNumCases());
11362   for (auto I : SI.cases()) {
11363     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11364     const ConstantInt *CaseVal = I.getCaseValue();
11365     BranchProbability Prob =
11366         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11367             : BranchProbability(1, SI.getNumCases() + 1);
11368     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11369   }
11370 
11371   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11372 
11373   // Cluster adjacent cases with the same destination. We do this at all
11374   // optimization levels because it's cheap to do and will make codegen faster
11375   // if there are many clusters.
11376   sortAndRangeify(Clusters);
11377 
11378   // The branch probablity of the peeled case.
11379   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11380   MachineBasicBlock *PeeledSwitchMBB =
11381       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11382 
11383   // If there is only the default destination, jump there directly.
11384   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11385   if (Clusters.empty()) {
11386     assert(PeeledSwitchMBB == SwitchMBB);
11387     SwitchMBB->addSuccessor(DefaultMBB);
11388     if (DefaultMBB != NextBlock(SwitchMBB)) {
11389       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11390                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11391     }
11392     return;
11393   }
11394 
11395   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11396   SL->findBitTestClusters(Clusters, &SI);
11397 
11398   LLVM_DEBUG({
11399     dbgs() << "Case clusters: ";
11400     for (const CaseCluster &C : Clusters) {
11401       if (C.Kind == CC_JumpTable)
11402         dbgs() << "JT:";
11403       if (C.Kind == CC_BitTests)
11404         dbgs() << "BT:";
11405 
11406       C.Low->getValue().print(dbgs(), true);
11407       if (C.Low != C.High) {
11408         dbgs() << '-';
11409         C.High->getValue().print(dbgs(), true);
11410       }
11411       dbgs() << ' ';
11412     }
11413     dbgs() << '\n';
11414   });
11415 
11416   assert(!Clusters.empty());
11417   SwitchWorkList WorkList;
11418   CaseClusterIt First = Clusters.begin();
11419   CaseClusterIt Last = Clusters.end() - 1;
11420   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11421   // Scale the branchprobability for DefaultMBB if the peel occurs and
11422   // DefaultMBB is not replaced.
11423   if (PeeledCaseProb != BranchProbability::getZero() &&
11424       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11425     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11426   WorkList.push_back(
11427       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11428 
11429   while (!WorkList.empty()) {
11430     SwitchWorkListItem W = WorkList.pop_back_val();
11431     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11432 
11433     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11434         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11435       // For optimized builds, lower large range as a balanced binary tree.
11436       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11437       continue;
11438     }
11439 
11440     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11441   }
11442 }
11443 
11444 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11446   auto DL = getCurSDLoc();
11447   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11448   setValue(&I, DAG.getStepVector(DL, ResultVT));
11449 }
11450 
11451 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11452   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11453   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11454 
11455   SDLoc DL = getCurSDLoc();
11456   SDValue V = getValue(I.getOperand(0));
11457   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11458 
11459   if (VT.isScalableVector()) {
11460     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11461     return;
11462   }
11463 
11464   // Use VECTOR_SHUFFLE for the fixed-length vector
11465   // to maintain existing behavior.
11466   SmallVector<int, 8> Mask;
11467   unsigned NumElts = VT.getVectorMinNumElements();
11468   for (unsigned i = 0; i != NumElts; ++i)
11469     Mask.push_back(NumElts - 1 - i);
11470 
11471   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11472 }
11473 
11474 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11475   SmallVector<EVT, 4> ValueVTs;
11476   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11477                   ValueVTs);
11478   unsigned NumValues = ValueVTs.size();
11479   if (NumValues == 0) return;
11480 
11481   SmallVector<SDValue, 4> Values(NumValues);
11482   SDValue Op = getValue(I.getOperand(0));
11483 
11484   for (unsigned i = 0; i != NumValues; ++i)
11485     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11486                             SDValue(Op.getNode(), Op.getResNo() + i));
11487 
11488   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11489                            DAG.getVTList(ValueVTs), Values));
11490 }
11491 
11492 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11494   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11495 
11496   SDLoc DL = getCurSDLoc();
11497   SDValue V1 = getValue(I.getOperand(0));
11498   SDValue V2 = getValue(I.getOperand(1));
11499   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11500 
11501   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11502   if (VT.isScalableVector()) {
11503     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11504     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11505                              DAG.getConstant(Imm, DL, IdxVT)));
11506     return;
11507   }
11508 
11509   unsigned NumElts = VT.getVectorNumElements();
11510 
11511   uint64_t Idx = (NumElts + Imm) % NumElts;
11512 
11513   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11514   SmallVector<int, 8> Mask;
11515   for (unsigned i = 0; i < NumElts; ++i)
11516     Mask.push_back(Idx + i);
11517   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11518 }
11519