xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f27c67af12143fe914ef96f0fb4c6790c7c033c4)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // Return the calling convention if the Value passed requires ABI mangling as it
161 // is a parameter to a function or a return value from a function which is not
162 // an intrinsic.
163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
164   if (auto *R = dyn_cast<ReturnInst>(V))
165     return R->getParent()->getParent()->getCallingConv();
166 
167   if (auto *CI = dyn_cast<CallInst>(V)) {
168     const bool IsInlineAsm = CI->isInlineAsm();
169     const bool IsIndirectFunctionCall =
170         !IsInlineAsm && !CI->getCalledFunction();
171 
172     // It is possible that the call instruction is an inline asm statement or an
173     // indirect function call in which case the return value of
174     // getCalledFunction() would be nullptr.
175     const bool IsInstrinsicCall =
176         !IsInlineAsm && !IsIndirectFunctionCall &&
177         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
178 
179     if (!IsInlineAsm && !IsInstrinsicCall)
180       return CI->getCallingConv();
181   }
182 
183   return None;
184 }
185 
186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
187                                       const SDValue *Parts, unsigned NumParts,
188                                       MVT PartVT, EVT ValueVT, const Value *V,
189                                       Optional<CallingConv::ID> CC);
190 
191 /// getCopyFromParts - Create a value that contains the specified legal parts
192 /// combined into the value they represent.  If the parts combine to a type
193 /// larger than ValueVT then AssertOp can be used to specify whether the extra
194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
195 /// (ISD::AssertSext).
196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
197                                 const SDValue *Parts, unsigned NumParts,
198                                 MVT PartVT, EVT ValueVT, const Value *V,
199                                 Optional<CallingConv::ID> CC = None,
200                                 Optional<ISD::NodeType> AssertOp = None) {
201   if (ValueVT.isVector())
202     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203                                   CC);
204 
205   assert(NumParts > 0 && "No parts to assemble!");
206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
207   SDValue Val = Parts[0];
208 
209   if (NumParts > 1) {
210     // Assemble the value from multiple parts.
211     if (ValueVT.isInteger()) {
212       unsigned PartBits = PartVT.getSizeInBits();
213       unsigned ValueBits = ValueVT.getSizeInBits();
214 
215       // Assemble the power of 2 part.
216       unsigned RoundParts = NumParts & (NumParts - 1) ?
217         1 << Log2_32(NumParts) : NumParts;
218       unsigned RoundBits = PartBits * RoundParts;
219       EVT RoundVT = RoundBits == ValueBits ?
220         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
221       SDValue Lo, Hi;
222 
223       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
224 
225       if (RoundParts > 2) {
226         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
227                               PartVT, HalfVT, V);
228         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
229                               RoundParts / 2, PartVT, HalfVT, V);
230       } else {
231         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
232         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
233       }
234 
235       if (DAG.getDataLayout().isBigEndian())
236         std::swap(Lo, Hi);
237 
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
239 
240       if (RoundParts < NumParts) {
241         // Assemble the trailing non-power-of-2 part.
242         unsigned OddParts = NumParts - RoundParts;
243         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
244         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
245                               OddVT, V, CC);
246 
247         // Combine the round and odd parts.
248         Lo = Val;
249         if (DAG.getDataLayout().isBigEndian())
250           std::swap(Lo, Hi);
251         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
252         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
253         Hi =
254             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
255                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
256                                         TLI.getPointerTy(DAG.getDataLayout())));
257         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
258         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
259       }
260     } else if (PartVT.isFloatingPoint()) {
261       // FP split into multiple FP parts (for ppcf128)
262       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
263              "Unexpected split");
264       SDValue Lo, Hi;
265       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
266       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
267       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
268         std::swap(Lo, Hi);
269       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
270     } else {
271       // FP split into integer parts (soft fp)
272       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
273              !PartVT.isVector() && "Unexpected split");
274       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
275       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
276     }
277   }
278 
279   // There is now one part, held in Val.  Correct it to match ValueVT.
280   // PartEVT is the type of the register class that holds the value.
281   // ValueVT is the type of the inline asm operation.
282   EVT PartEVT = Val.getValueType();
283 
284   if (PartEVT == ValueVT)
285     return Val;
286 
287   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
288       ValueVT.bitsLT(PartEVT)) {
289     // For an FP value in an integer part, we need to truncate to the right
290     // width first.
291     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
292     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
293   }
294 
295   // Handle types that have the same size.
296   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
297     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
298 
299   // Handle types with different sizes.
300   if (PartEVT.isInteger() && ValueVT.isInteger()) {
301     if (ValueVT.bitsLT(PartEVT)) {
302       // For a truncate, see if we have any information to
303       // indicate whether the truncated bits will always be
304       // zero or sign-extension.
305       if (AssertOp.hasValue())
306         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
307                           DAG.getValueType(ValueVT));
308       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
309     }
310     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
311   }
312 
313   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
314     // FP_ROUND's are always exact here.
315     if (ValueVT.bitsLT(Val.getValueType()))
316       return DAG.getNode(
317           ISD::FP_ROUND, DL, ValueVT, Val,
318           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
319 
320     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
321   }
322 
323   llvm_unreachable("Unknown mismatch!");
324 }
325 
326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
327                                               const Twine &ErrMsg) {
328   const Instruction *I = dyn_cast_or_null<Instruction>(V);
329   if (!V)
330     return Ctx.emitError(ErrMsg);
331 
332   const char *AsmError = ", possible invalid constraint for vector type";
333   if (const CallInst *CI = dyn_cast<CallInst>(I))
334     if (isa<InlineAsm>(CI->getCalledValue()))
335       return Ctx.emitError(I, ErrMsg + AsmError);
336 
337   return Ctx.emitError(I, ErrMsg);
338 }
339 
340 /// getCopyFromPartsVector - Create a value that contains the specified legal
341 /// parts combined into the value they represent.  If the parts combine to a
342 /// type larger than ValueVT then AssertOp can be used to specify whether the
343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
344 /// ValueVT (ISD::AssertSext).
345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
346                                       const SDValue *Parts, unsigned NumParts,
347                                       MVT PartVT, EVT ValueVT, const Value *V,
348                                       Optional<CallingConv::ID> CallConv) {
349   assert(ValueVT.isVector() && "Not a vector value");
350   assert(NumParts > 0 && "No parts to assemble!");
351   const bool IsABIRegCopy = CallConv.hasValue();
352 
353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
354   SDValue Val = Parts[0];
355 
356   // Handle a multi-element vector.
357   if (NumParts > 1) {
358     EVT IntermediateVT;
359     MVT RegisterVT;
360     unsigned NumIntermediates;
361     unsigned NumRegs;
362 
363     if (IsABIRegCopy) {
364       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
365           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
366           NumIntermediates, RegisterVT);
367     } else {
368       NumRegs =
369           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
370                                      NumIntermediates, RegisterVT);
371     }
372 
373     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
374     NumParts = NumRegs; // Silence a compiler warning.
375     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
376     assert(RegisterVT.getSizeInBits() ==
377            Parts[0].getSimpleValueType().getSizeInBits() &&
378            "Part type sizes don't match!");
379 
380     // Assemble the parts into intermediate operands.
381     SmallVector<SDValue, 8> Ops(NumIntermediates);
382     if (NumIntermediates == NumParts) {
383       // If the register was not expanded, truncate or copy the value,
384       // as appropriate.
385       for (unsigned i = 0; i != NumParts; ++i)
386         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
387                                   PartVT, IntermediateVT, V);
388     } else if (NumParts > 0) {
389       // If the intermediate type was expanded, build the intermediate
390       // operands from the parts.
391       assert(NumParts % NumIntermediates == 0 &&
392              "Must expand into a divisible number of parts!");
393       unsigned Factor = NumParts / NumIntermediates;
394       for (unsigned i = 0; i != NumIntermediates; ++i)
395         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
396                                   PartVT, IntermediateVT, V);
397     }
398 
399     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
400     // intermediate operands.
401     EVT BuiltVectorTy =
402         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
403                          (IntermediateVT.isVector()
404                               ? IntermediateVT.getVectorNumElements() * NumParts
405                               : NumIntermediates));
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // If the element type of the source/dest vectors are the same, but the
419     // parts vector has more elements than the value vector, then we have a
420     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
421     // elements we want.
422     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
423       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
424              "Cannot narrow, it would be a lossy transformation");
425       return DAG.getNode(
426           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
427           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
428     }
429 
430     // Vector/Vector bitcast.
431     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
432       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433 
434     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
435       "Cannot handle this kind of promotion");
436     // Promoted vector extract
437     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
438 
439   }
440 
441   // Trivial bitcast if the types are the same size and the destination
442   // vector type is legal.
443   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
444       TLI.isTypeLegal(ValueVT))
445     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 
447   if (ValueVT.getVectorNumElements() != 1) {
448      // Certain ABIs require that vectors are passed as integers. For vectors
449      // are the same size, this is an obvious bitcast.
450      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
451        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
453        // Bitcast Val back the original type and extract the corresponding
454        // vector we want.
455        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
456        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
457                                            ValueVT.getVectorElementType(), Elts);
458        Val = DAG.getBitcast(WiderVecType, Val);
459        return DAG.getNode(
460            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
461            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
462      }
463 
464      diagnosePossiblyInvalidConstraint(
465          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
466      return DAG.getUNDEF(ValueVT);
467   }
468 
469   // Handle cases such as i8 -> <1 x i1>
470   EVT ValueSVT = ValueVT.getVectorElementType();
471   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
472     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
474 
475   return DAG.getBuildVector(ValueVT, DL, Val);
476 }
477 
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479                                  SDValue Val, SDValue *Parts, unsigned NumParts,
480                                  MVT PartVT, const Value *V,
481                                  Optional<CallingConv::ID> CallConv);
482 
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts.  If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
487                            SDValue *Parts, unsigned NumParts, MVT PartVT,
488                            const Value *V,
489                            Optional<CallingConv::ID> CallConv = None,
490                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = 1 << Log2_32(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574                                  DAG.getIntPtrConstant(RoundBits, DL));
575     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
576                    CallConv);
577 
578     if (DAG.getDataLayout().isBigEndian())
579       // The odd parts were reversed by getCopyToParts - unreverse them.
580       std::reverse(Parts + RoundParts, Parts + NumParts);
581 
582     NumParts = RoundParts;
583     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
584     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
585   }
586 
587   // The number of parts is a power of 2.  Repeatedly bisect the value using
588   // EXTRACT_ELEMENT.
589   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
590                          EVT::getIntegerVT(*DAG.getContext(),
591                                            ValueVT.getSizeInBits()),
592                          Val);
593 
594   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
595     for (unsigned i = 0; i < NumParts; i += StepSize) {
596       unsigned ThisBits = StepSize * PartBits / 2;
597       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
598       SDValue &Part0 = Parts[i];
599       SDValue &Part1 = Parts[i+StepSize/2];
600 
601       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
602                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
603       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
605 
606       if (ThisBits == PartBits && ThisVT != PartVT) {
607         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
608         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
609       }
610     }
611   }
612 
613   if (DAG.getDataLayout().isBigEndian())
614     std::reverse(Parts, Parts + OrigNumParts);
615 }
616 
617 static SDValue widenVectorToPartType(SelectionDAG &DAG,
618                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
619   if (!PartVT.isVector())
620     return SDValue();
621 
622   EVT ValueVT = Val.getValueType();
623   unsigned PartNumElts = PartVT.getVectorNumElements();
624   unsigned ValueNumElts = ValueVT.getVectorNumElements();
625   if (PartNumElts > ValueNumElts &&
626       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
627     EVT ElementVT = PartVT.getVectorElementType();
628     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
629     // undef elements.
630     SmallVector<SDValue, 16> Ops;
631     DAG.ExtractVectorElements(Val, Ops);
632     SDValue EltUndef = DAG.getUNDEF(ElementVT);
633     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
634       Ops.push_back(EltUndef);
635 
636     // FIXME: Use CONCAT for 2x -> 4x.
637     return DAG.getBuildVector(PartVT, DL, Ops);
638   }
639 
640   return SDValue();
641 }
642 
643 /// getCopyToPartsVector - Create a series of nodes that contain the specified
644 /// value split into legal parts.
645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
646                                  SDValue Val, SDValue *Parts, unsigned NumParts,
647                                  MVT PartVT, const Value *V,
648                                  Optional<CallingConv::ID> CallConv) {
649   EVT ValueVT = Val.getValueType();
650   assert(ValueVT.isVector() && "Not a vector");
651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
652   const bool IsABIRegCopy = CallConv.hasValue();
653 
654   if (NumParts == 1) {
655     EVT PartEVT = PartVT;
656     if (PartEVT == ValueVT) {
657       // Nothing to do.
658     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
659       // Bitconvert vector->vector case.
660       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
661     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
662       Val = Widened;
663     } else if (PartVT.isVector() &&
664                PartEVT.getVectorElementType().bitsGE(
665                  ValueVT.getVectorElementType()) &&
666                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
667 
668       // Promoted vector extract
669       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670     } else {
671       if (ValueVT.getVectorNumElements() == 1) {
672         Val = DAG.getNode(
673             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
674             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
675       } else {
676         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
677                "lossy conversion of vector to scalar type");
678         EVT IntermediateType =
679             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
680         Val = DAG.getBitcast(IntermediateType, Val);
681         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682       }
683     }
684 
685     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
686     Parts[0] = Val;
687     return;
688   }
689 
690   // Handle a multi-element vector.
691   EVT IntermediateVT;
692   MVT RegisterVT;
693   unsigned NumIntermediates;
694   unsigned NumRegs;
695   if (IsABIRegCopy) {
696     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
697         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
698         NumIntermediates, RegisterVT);
699   } else {
700     NumRegs =
701         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
702                                    NumIntermediates, RegisterVT);
703   }
704 
705   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
706   NumParts = NumRegs; // Silence a compiler warning.
707   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
708 
709   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
710     IntermediateVT.getVectorNumElements() : 1;
711 
712   // Convert the vector to the appropiate type if necessary.
713   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
717   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
718   if (ValueVT != BuiltVectorTy) {
719     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
720       Val = Widened;
721 
722     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
723   }
724 
725   // Split the vector into intermediate operands.
726   SmallVector<SDValue, 8> Ops(NumIntermediates);
727   for (unsigned i = 0; i != NumIntermediates; ++i) {
728     if (IntermediateVT.isVector()) {
729       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
730                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
731     } else {
732       Ops[i] = DAG.getNode(
733           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
734           DAG.getConstant(i, DL, IdxVT));
735     }
736   }
737 
738   // Split the intermediate operands into legal parts.
739   if (NumParts == NumIntermediates) {
740     // If the register was not expanded, promote or copy the value,
741     // as appropriate.
742     for (unsigned i = 0; i != NumParts; ++i)
743       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
744   } else if (NumParts > 0) {
745     // If the intermediate type was expanded, split each the value into
746     // legal parts.
747     assert(NumIntermediates != 0 && "division by zero");
748     assert(NumParts % NumIntermediates == 0 &&
749            "Must expand into a divisible number of parts!");
750     unsigned Factor = NumParts / NumIntermediates;
751     for (unsigned i = 0; i != NumIntermediates; ++i)
752       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
753                      CallConv);
754   }
755 }
756 
757 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
758                            EVT valuevt, Optional<CallingConv::ID> CC)
759     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
760       RegCount(1, regs.size()), CallConv(CC) {}
761 
762 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
763                            const DataLayout &DL, unsigned Reg, Type *Ty,
764                            Optional<CallingConv::ID> CC) {
765   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
766 
767   CallConv = CC;
768 
769   for (EVT ValueVT : ValueVTs) {
770     unsigned NumRegs =
771         isABIMangled()
772             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
773             : TLI.getNumRegisters(Context, ValueVT);
774     MVT RegisterVT =
775         isABIMangled()
776             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
777             : TLI.getRegisterType(Context, ValueVT);
778     for (unsigned i = 0; i != NumRegs; ++i)
779       Regs.push_back(Reg + i);
780     RegVTs.push_back(RegisterVT);
781     RegCount.push_back(NumRegs);
782     Reg += NumRegs;
783   }
784 }
785 
786 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
787                                       FunctionLoweringInfo &FuncInfo,
788                                       const SDLoc &dl, SDValue &Chain,
789                                       SDValue *Flag, const Value *V) const {
790   // A Value with type {} or [0 x %t] needs no registers.
791   if (ValueVTs.empty())
792     return SDValue();
793 
794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
795 
796   // Assemble the legal parts into the final values.
797   SmallVector<SDValue, 4> Values(ValueVTs.size());
798   SmallVector<SDValue, 8> Parts;
799   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
800     // Copy the legal parts from the registers.
801     EVT ValueVT = ValueVTs[Value];
802     unsigned NumRegs = RegCount[Value];
803     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
804                                           *DAG.getContext(),
805                                           CallConv.getValue(), RegVTs[Value])
806                                     : RegVTs[Value];
807 
808     Parts.resize(NumRegs);
809     for (unsigned i = 0; i != NumRegs; ++i) {
810       SDValue P;
811       if (!Flag) {
812         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
813       } else {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
815         *Flag = P.getValue(2);
816       }
817 
818       Chain = P.getValue(1);
819       Parts[i] = P;
820 
821       // If the source register was virtual and if we know something about it,
822       // add an assert node.
823       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
824           !RegisterVT.isInteger() || RegisterVT.isVector())
825         continue;
826 
827       const FunctionLoweringInfo::LiveOutInfo *LOI =
828         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
829       if (!LOI)
830         continue;
831 
832       unsigned RegSize = RegisterVT.getSizeInBits();
833       unsigned NumSignBits = LOI->NumSignBits;
834       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
835 
836       if (NumZeroBits == RegSize) {
837         // The current value is a zero.
838         // Explicitly express that as it would be easier for
839         // optimizations to kick in.
840         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
841         continue;
842       }
843 
844       // FIXME: We capture more information than the dag can represent.  For
845       // now, just use the tightest assertzext/assertsext possible.
846       bool isSExt;
847       EVT FromVT(MVT::Other);
848       if (NumZeroBits) {
849         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
850         isSExt = false;
851       } else if (NumSignBits > 1) {
852         FromVT =
853             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
854         isSExt = true;
855       } else {
856         continue;
857       }
858       // Add an assertion node.
859       assert(FromVT != MVT::Other);
860       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
861                              RegisterVT, P, DAG.getValueType(FromVT));
862     }
863 
864     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
865                                      RegisterVT, ValueVT, V, CallConv);
866     Part += NumRegs;
867     Parts.clear();
868   }
869 
870   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
871 }
872 
873 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
874                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
875                                  const Value *V,
876                                  ISD::NodeType PreferredExtendType) const {
877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
878   ISD::NodeType ExtendKind = PreferredExtendType;
879 
880   // Get the list of the values's legal parts.
881   unsigned NumRegs = Regs.size();
882   SmallVector<SDValue, 8> Parts(NumRegs);
883   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
884     unsigned NumParts = RegCount[Value];
885 
886     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
887                                           *DAG.getContext(),
888                                           CallConv.getValue(), RegVTs[Value])
889                                     : RegVTs[Value];
890 
891     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
892       ExtendKind = ISD::ZERO_EXTEND;
893 
894     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
895                    NumParts, RegisterVT, V, CallConv, ExtendKind);
896     Part += NumParts;
897   }
898 
899   // Copy the parts into the registers.
900   SmallVector<SDValue, 8> Chains(NumRegs);
901   for (unsigned i = 0; i != NumRegs; ++i) {
902     SDValue Part;
903     if (!Flag) {
904       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
905     } else {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
907       *Flag = Part.getValue(1);
908     }
909 
910     Chains[i] = Part.getValue(0);
911   }
912 
913   if (NumRegs == 1 || Flag)
914     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
915     // flagged to it. That is the CopyToReg nodes and the user are considered
916     // a single scheduling unit. If we create a TokenFactor and return it as
917     // chain, then the TokenFactor is both a predecessor (operand) of the
918     // user as well as a successor (the TF operands are flagged to the user).
919     // c1, f1 = CopyToReg
920     // c2, f2 = CopyToReg
921     // c3     = TokenFactor c1, c2
922     // ...
923     //        = op c3, ..., f2
924     Chain = Chains[NumRegs-1];
925   else
926     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
927 }
928 
929 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
930                                         unsigned MatchingIdx, const SDLoc &dl,
931                                         SelectionDAG &DAG,
932                                         std::vector<SDValue> &Ops) const {
933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
934 
935   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
936   if (HasMatching)
937     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
938   else if (!Regs.empty() &&
939            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
940     // Put the register class of the virtual registers in the flag word.  That
941     // way, later passes can recompute register class constraints for inline
942     // assembly as well as normal instructions.
943     // Don't do this for tied operands that can use the regclass information
944     // from the def.
945     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
946     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
947     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
948   }
949 
950   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
951   Ops.push_back(Res);
952 
953   if (Code == InlineAsm::Kind_Clobber) {
954     // Clobbers should always have a 1:1 mapping with registers, and may
955     // reference registers that have illegal (e.g. vector) types. Hence, we
956     // shouldn't try to apply any sort of splitting logic to them.
957     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
958            "No 1:1 mapping from clobbers to regs?");
959     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
960     (void)SP;
961     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
962       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
963       assert(
964           (Regs[I] != SP ||
965            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
966           "If we clobbered the stack pointer, MFI should know about it.");
967     }
968     return;
969   }
970 
971   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
972     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
973     MVT RegisterVT = RegVTs[Value];
974     for (unsigned i = 0; i != NumRegs; ++i) {
975       assert(Reg < Regs.size() && "Mismatch in # registers expected");
976       unsigned TheReg = Regs[Reg++];
977       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
978     }
979   }
980 }
981 
982 SmallVector<std::pair<unsigned, unsigned>, 4>
983 RegsForValue::getRegsAndSizes() const {
984   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
985   unsigned I = 0;
986   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
987     unsigned RegCount = std::get<0>(CountAndVT);
988     MVT RegisterVT = std::get<1>(CountAndVT);
989     unsigned RegisterSize = RegisterVT.getSizeInBits();
990     for (unsigned E = I + RegCount; I != E; ++I)
991       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
992   }
993   return OutVec;
994 }
995 
996 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
997                                const TargetLibraryInfo *li) {
998   AA = aa;
999   GFI = gfi;
1000   LibInfo = li;
1001   DL = &DAG.getDataLayout();
1002   Context = DAG.getContext();
1003   LPadToCallSiteMap.clear();
1004 }
1005 
1006 void SelectionDAGBuilder::clear() {
1007   NodeMap.clear();
1008   UnusedArgNodeMap.clear();
1009   PendingLoads.clear();
1010   PendingExports.clear();
1011   CurInst = nullptr;
1012   HasTailCall = false;
1013   SDNodeOrder = LowestSDNodeOrder;
1014   StatepointLowering.clear();
1015 }
1016 
1017 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1018   DanglingDebugInfoMap.clear();
1019 }
1020 
1021 SDValue SelectionDAGBuilder::getRoot() {
1022   if (PendingLoads.empty())
1023     return DAG.getRoot();
1024 
1025   if (PendingLoads.size() == 1) {
1026     SDValue Root = PendingLoads[0];
1027     DAG.setRoot(Root);
1028     PendingLoads.clear();
1029     return Root;
1030   }
1031 
1032   // Otherwise, we have to make a token factor node.
1033   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1034                              PendingLoads);
1035   PendingLoads.clear();
1036   DAG.setRoot(Root);
1037   return Root;
1038 }
1039 
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041   SDValue Root = DAG.getRoot();
1042 
1043   if (PendingExports.empty())
1044     return Root;
1045 
1046   // Turn all of the CopyToReg chains into one factored node.
1047   if (Root.getOpcode() != ISD::EntryToken) {
1048     unsigned i = 0, e = PendingExports.size();
1049     for (; i != e; ++i) {
1050       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051       if (PendingExports[i].getNode()->getOperand(0) == Root)
1052         break;  // Don't add the root if we already indirectly depend on it.
1053     }
1054 
1055     if (i == e)
1056       PendingExports.push_back(Root);
1057   }
1058 
1059   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060                      PendingExports);
1061   PendingExports.clear();
1062   DAG.setRoot(Root);
1063   return Root;
1064 }
1065 
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067   // Set up outgoing PHI node register values before emitting the terminator.
1068   if (I.isTerminator()) {
1069     HandlePHINodesInSuccessorBlocks(I.getParent());
1070   }
1071 
1072   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073   if (!isa<DbgInfoIntrinsic>(I))
1074     ++SDNodeOrder;
1075 
1076   CurInst = &I;
1077 
1078   visit(I.getOpcode(), I);
1079 
1080   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082     // maps to this instruction.
1083     // TODO: We could handle all flags (nsw, etc) here.
1084     // TODO: If an IR instruction maps to >1 node, only the final node will have
1085     //       flags set.
1086     if (SDNode *Node = getNodeForIRValue(&I)) {
1087       SDNodeFlags IncomingFlags;
1088       IncomingFlags.copyFMF(*FPMO);
1089       if (!Node->getFlags().isDefined())
1090         Node->setFlags(IncomingFlags);
1091       else
1092         Node->intersectFlagsWith(IncomingFlags);
1093     }
1094   }
1095 
1096   if (!I.isTerminator() && !HasTailCall &&
1097       !isStatepoint(&I)) // statepoints handle their exports internally
1098     CopyToExportRegsIfNeeded(&I);
1099 
1100   CurInst = nullptr;
1101 }
1102 
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1105 }
1106 
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108   // Note: this doesn't use InstVisitor, because it has to work with
1109   // ConstantExpr's in addition to instructions.
1110   switch (Opcode) {
1111   default: llvm_unreachable("Unknown instruction type encountered!");
1112     // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1116   }
1117 }
1118 
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120                                                 const DIExpression *Expr) {
1121   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122     const DbgValueInst *DI = DDI.getDI();
1123     DIVariable *DanglingVariable = DI->getVariable();
1124     DIExpression *DanglingExpr = DI->getExpression();
1125     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127       return true;
1128     }
1129     return false;
1130   };
1131 
1132   for (auto &DDIMI : DanglingDebugInfoMap) {
1133     DanglingDebugInfoVector &DDIV = DDIMI.second;
1134     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1135   }
1136 }
1137 
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141                                                    SDValue Val) {
1142   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144     return;
1145 
1146   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147   for (auto &DDI : DDIV) {
1148     const DbgValueInst *DI = DDI.getDI();
1149     assert(DI && "Ill-formed DanglingDebugInfo");
1150     DebugLoc dl = DDI.getdl();
1151     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153     DILocalVariable *Variable = DI->getVariable();
1154     DIExpression *Expr = DI->getExpression();
1155     assert(Variable->isValidLocationForIntrinsic(dl) &&
1156            "Expected inlined-at fields to agree");
1157     SDDbgValue *SDV;
1158     if (Val.getNode()) {
1159       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1162         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1163         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164         // inserted after the definition of Val when emitting the instructions
1165         // after ISel. An alternative could be to teach
1166         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169                    << ValSDNodeOrder << "\n");
1170         SDV = getDbgValue(Val, Variable, Expr, dl,
1171                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172         DAG.AddDbgValue(SDV, Val.getNode(), false);
1173       } else
1174         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175                           << "in EmitFuncArgumentDbgValue\n");
1176     } else
1177       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1178   }
1179   DDIV.clear();
1180 }
1181 
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186   SDValue Result;
1187 
1188   if (It != FuncInfo.ValueMap.end()) {
1189     unsigned InReg = It->second;
1190 
1191     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192                      DAG.getDataLayout(), InReg, Ty,
1193                      None); // This is not an ABI copy.
1194     SDValue Chain = DAG.getEntryNode();
1195     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1196                                  V);
1197     resolveDanglingDebugInfo(V, Result);
1198   }
1199 
1200   return Result;
1201 }
1202 
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205   // If we already have an SDValue for this value, use it. It's important
1206   // to do this first, so that we don't create a CopyFromReg if we already
1207   // have a regular SDValue.
1208   SDValue &N = NodeMap[V];
1209   if (N.getNode()) return N;
1210 
1211   // If there's a virtual register allocated and initialized for this
1212   // value, use it.
1213   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214     return copyFromReg;
1215 
1216   // Otherwise create a new SDValue and remember it.
1217   SDValue Val = getValueImpl(V);
1218   NodeMap[V] = Val;
1219   resolveDanglingDebugInfo(V, Val);
1220   return Val;
1221 }
1222 
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225   return (NodeMap.find(V) != NodeMap.end()) ||
1226     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1227 }
1228 
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232   // If we already have an SDValue for this value, use it.
1233   SDValue &N = NodeMap[V];
1234   if (N.getNode()) {
1235     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236       // Remove the debug location from the node as the node is about to be used
1237       // in a location which may differ from the original debug location.  This
1238       // is relevant to Constant and ConstantFP nodes because they can appear
1239       // as constant expressions inside PHI nodes.
1240       N->setDebugLoc(DebugLoc());
1241     }
1242     return N;
1243   }
1244 
1245   // Otherwise create a new SDValue and remember it.
1246   SDValue Val = getValueImpl(V);
1247   NodeMap[V] = Val;
1248   resolveDanglingDebugInfo(V, Val);
1249   return Val;
1250 }
1251 
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1256 
1257   if (const Constant *C = dyn_cast<Constant>(V)) {
1258     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1259 
1260     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1262 
1263     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1265 
1266     if (isa<ConstantPointerNull>(C)) {
1267       unsigned AS = V->getType()->getPointerAddressSpace();
1268       return DAG.getConstant(0, getCurSDLoc(),
1269                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1270     }
1271 
1272     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1274 
1275     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276       return DAG.getUNDEF(VT);
1277 
1278     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       visit(CE->getOpcode(), *CE);
1280       SDValue N1 = NodeMap[V];
1281       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282       return N1;
1283     }
1284 
1285     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286       SmallVector<SDValue, 4> Constants;
1287       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288            OI != OE; ++OI) {
1289         SDNode *Val = getValue(*OI).getNode();
1290         // If the operand is an empty aggregate, there are no values.
1291         if (!Val) continue;
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Constants.push_back(SDValue(Val, i));
1296       }
1297 
1298       return DAG.getMergeValues(Constants, getCurSDLoc());
1299     }
1300 
1301     if (const ConstantDataSequential *CDS =
1302           dyn_cast<ConstantDataSequential>(C)) {
1303       SmallVector<SDValue, 4> Ops;
1304       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306         // Add each leaf value from the operand to the Constants list
1307         // to form a flattened list of all the values.
1308         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309           Ops.push_back(SDValue(Val, i));
1310       }
1311 
1312       if (isa<ArrayType>(CDS->getType()))
1313         return DAG.getMergeValues(Ops, getCurSDLoc());
1314       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1315     }
1316 
1317     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319              "Unknown struct or array constant!");
1320 
1321       SmallVector<EVT, 4> ValueVTs;
1322       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323       unsigned NumElts = ValueVTs.size();
1324       if (NumElts == 0)
1325         return SDValue(); // empty struct
1326       SmallVector<SDValue, 4> Constants(NumElts);
1327       for (unsigned i = 0; i != NumElts; ++i) {
1328         EVT EltVT = ValueVTs[i];
1329         if (isa<UndefValue>(C))
1330           Constants[i] = DAG.getUNDEF(EltVT);
1331         else if (EltVT.isFloatingPoint())
1332           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333         else
1334           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1335       }
1336 
1337       return DAG.getMergeValues(Constants, getCurSDLoc());
1338     }
1339 
1340     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341       return DAG.getBlockAddress(BA, VT);
1342 
1343     VectorType *VecTy = cast<VectorType>(V->getType());
1344     unsigned NumElements = VecTy->getNumElements();
1345 
1346     // Now that we know the number and type of the elements, get that number of
1347     // elements into the Ops array based on what kind of constant it is.
1348     SmallVector<SDValue, 16> Ops;
1349     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350       for (unsigned i = 0; i != NumElements; ++i)
1351         Ops.push_back(getValue(CV->getOperand(i)));
1352     } else {
1353       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354       EVT EltVT =
1355           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1356 
1357       SDValue Op;
1358       if (EltVT.isFloatingPoint())
1359         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360       else
1361         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362       Ops.assign(NumElements, Op);
1363     }
1364 
1365     // Create a BUILD_VECTOR node.
1366     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1367   }
1368 
1369   // If this is a static alloca, generate it as the frameindex instead of
1370   // computation.
1371   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372     DenseMap<const AllocaInst*, int>::iterator SI =
1373       FuncInfo.StaticAllocaMap.find(AI);
1374     if (SI != FuncInfo.StaticAllocaMap.end())
1375       return DAG.getFrameIndex(SI->second,
1376                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1377   }
1378 
1379   // If this is an instruction which fast-isel has deferred, select it now.
1380   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1382 
1383     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384                      Inst->getType(), getABIRegCopyCC(V));
1385     SDValue Chain = DAG.getEntryNode();
1386     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1387   }
1388 
1389   llvm_unreachable("Can't get register for value!");
1390 }
1391 
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396   bool IsSEH = isAsynchronousEHPersonality(Pers);
1397   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399   if (!IsSEH)
1400     CatchPadMBB->setIsEHScopeEntry();
1401   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402   if (IsMSVCCXX || IsCoreCLR)
1403     CatchPadMBB->setIsEHFuncletEntry();
1404   // Wasm does not need catchpads anymore
1405   if (!IsWasmCXX)
1406     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407                             getControlRoot()));
1408 }
1409 
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411   // Update machine-CFG edge.
1412   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413   FuncInfo.MBB->addSuccessor(TargetMBB);
1414 
1415   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416   bool IsSEH = isAsynchronousEHPersonality(Pers);
1417   if (IsSEH) {
1418     // If this is not a fall-through branch or optimizations are switched off,
1419     // emit the branch.
1420     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421         TM.getOptLevel() == CodeGenOpt::None)
1422       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424     return;
1425   }
1426 
1427   // Figure out the funclet membership for the catchret's successor.
1428   // This will be used by the FuncletLayout pass to determine how to order the
1429   // BB's.
1430   // A 'catchret' returns to the outer scope's color.
1431   Value *ParentPad = I.getCatchSwitchParentPad();
1432   const BasicBlock *SuccessorColor;
1433   if (isa<ConstantTokenNone>(ParentPad))
1434     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435   else
1436     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437   assert(SuccessorColor && "No parent funclet for catchret!");
1438   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1440 
1441   // Create the terminator node.
1442   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444                             DAG.getBasicBlock(SuccessorColorMBB));
1445   DAG.setRoot(Ret);
1446 }
1447 
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449   // Don't emit any special code for the cleanuppad instruction. It just marks
1450   // the start of an EH scope/funclet.
1451   FuncInfo.MBB->setIsEHScopeEntry();
1452   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453   if (Pers != EHPersonality::Wasm_CXX) {
1454     FuncInfo.MBB->setIsEHFuncletEntry();
1455     FuncInfo.MBB->setIsCleanupFuncletEntry();
1456   }
1457 }
1458 
1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1460 /// many places it could ultimately go. In the IR, we have a single unwind
1461 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1462 /// This function skips over imaginary basic blocks that hold catchswitch
1463 /// instructions, and finds all the "real" machine
1464 /// basic block destinations. As those destinations may not be successors of
1465 /// EHPadBB, here we also calculate the edge probability to those destinations.
1466 /// The passed-in Prob is the edge probability to EHPadBB.
1467 static void findUnwindDestinations(
1468     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1469     BranchProbability Prob,
1470     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1471         &UnwindDests) {
1472   EHPersonality Personality =
1473     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1474   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1475   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1476   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1477   bool IsSEH = isAsynchronousEHPersonality(Personality);
1478 
1479   while (EHPadBB) {
1480     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1481     BasicBlock *NewEHPadBB = nullptr;
1482     if (isa<LandingPadInst>(Pad)) {
1483       // Stop on landingpads. They are not funclets.
1484       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1485       break;
1486     } else if (isa<CleanupPadInst>(Pad)) {
1487       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1488       // personalities.
1489       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1490       UnwindDests.back().first->setIsEHScopeEntry();
1491       if (!IsWasmCXX)
1492         UnwindDests.back().first->setIsEHFuncletEntry();
1493       break;
1494     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1495       // Add the catchpad handlers to the possible destinations.
1496       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1497         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1498         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1499         if (IsMSVCCXX || IsCoreCLR)
1500           UnwindDests.back().first->setIsEHFuncletEntry();
1501         if (!IsSEH)
1502           UnwindDests.back().first->setIsEHScopeEntry();
1503       }
1504       NewEHPadBB = CatchSwitch->getUnwindDest();
1505     } else {
1506       continue;
1507     }
1508 
1509     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1510     if (BPI && NewEHPadBB)
1511       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1512     EHPadBB = NewEHPadBB;
1513   }
1514 }
1515 
1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1517   // Update successor info.
1518   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1519   auto UnwindDest = I.getUnwindDest();
1520   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1521   BranchProbability UnwindDestProb =
1522       (BPI && UnwindDest)
1523           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1524           : BranchProbability::getZero();
1525   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1526   for (auto &UnwindDest : UnwindDests) {
1527     UnwindDest.first->setIsEHPad();
1528     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1529   }
1530   FuncInfo.MBB->normalizeSuccProbs();
1531 
1532   // Create the terminator node.
1533   SDValue Ret =
1534       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1535   DAG.setRoot(Ret);
1536 }
1537 
1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1539   report_fatal_error("visitCatchSwitch not yet implemented!");
1540 }
1541 
1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1544   auto &DL = DAG.getDataLayout();
1545   SDValue Chain = getControlRoot();
1546   SmallVector<ISD::OutputArg, 8> Outs;
1547   SmallVector<SDValue, 8> OutVals;
1548 
1549   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1550   // lower
1551   //
1552   //   %val = call <ty> @llvm.experimental.deoptimize()
1553   //   ret <ty> %val
1554   //
1555   // differently.
1556   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1557     LowerDeoptimizingReturn();
1558     return;
1559   }
1560 
1561   if (!FuncInfo.CanLowerReturn) {
1562     unsigned DemoteReg = FuncInfo.DemoteRegister;
1563     const Function *F = I.getParent()->getParent();
1564 
1565     // Emit a store of the return value through the virtual register.
1566     // Leave Outs empty so that LowerReturn won't try to load return
1567     // registers the usual way.
1568     SmallVector<EVT, 1> PtrValueVTs;
1569     ComputeValueVTs(TLI, DL,
1570                     F->getReturnType()->getPointerTo(
1571                         DAG.getDataLayout().getAllocaAddrSpace()),
1572                     PtrValueVTs);
1573 
1574     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1575                                         DemoteReg, PtrValueVTs[0]);
1576     SDValue RetOp = getValue(I.getOperand(0));
1577 
1578     SmallVector<EVT, 4> ValueVTs;
1579     SmallVector<uint64_t, 4> Offsets;
1580     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1581     unsigned NumValues = ValueVTs.size();
1582 
1583     SmallVector<SDValue, 4> Chains(NumValues);
1584     for (unsigned i = 0; i != NumValues; ++i) {
1585       // An aggregate return value cannot wrap around the address space, so
1586       // offsets to its parts don't wrap either.
1587       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1588       Chains[i] = DAG.getStore(
1589           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1590           // FIXME: better loc info would be nice.
1591           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1592     }
1593 
1594     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1595                         MVT::Other, Chains);
1596   } else if (I.getNumOperands() != 0) {
1597     SmallVector<EVT, 4> ValueVTs;
1598     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1599     unsigned NumValues = ValueVTs.size();
1600     if (NumValues) {
1601       SDValue RetOp = getValue(I.getOperand(0));
1602 
1603       const Function *F = I.getParent()->getParent();
1604 
1605       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1606       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1607                                           Attribute::SExt))
1608         ExtendKind = ISD::SIGN_EXTEND;
1609       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1610                                                Attribute::ZExt))
1611         ExtendKind = ISD::ZERO_EXTEND;
1612 
1613       LLVMContext &Context = F->getContext();
1614       bool RetInReg = F->getAttributes().hasAttribute(
1615           AttributeList::ReturnIndex, Attribute::InReg);
1616 
1617       for (unsigned j = 0; j != NumValues; ++j) {
1618         EVT VT = ValueVTs[j];
1619 
1620         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1621           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1622 
1623         CallingConv::ID CC = F->getCallingConv();
1624 
1625         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1626         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1627         SmallVector<SDValue, 4> Parts(NumParts);
1628         getCopyToParts(DAG, getCurSDLoc(),
1629                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1630                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1631 
1632         // 'inreg' on function refers to return value
1633         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1634         if (RetInReg)
1635           Flags.setInReg();
1636 
1637         // Propagate extension type if any
1638         if (ExtendKind == ISD::SIGN_EXTEND)
1639           Flags.setSExt();
1640         else if (ExtendKind == ISD::ZERO_EXTEND)
1641           Flags.setZExt();
1642 
1643         for (unsigned i = 0; i < NumParts; ++i) {
1644           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1645                                         VT, /*isfixed=*/true, 0, 0));
1646           OutVals.push_back(Parts[i]);
1647         }
1648       }
1649     }
1650   }
1651 
1652   // Push in swifterror virtual register as the last element of Outs. This makes
1653   // sure swifterror virtual register will be returned in the swifterror
1654   // physical register.
1655   const Function *F = I.getParent()->getParent();
1656   if (TLI.supportSwiftError() &&
1657       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1658     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1659     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1660     Flags.setSwiftError();
1661     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1662                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1663                                   true /*isfixed*/, 1 /*origidx*/,
1664                                   0 /*partOffs*/));
1665     // Create SDNode for the swifterror virtual register.
1666     OutVals.push_back(
1667         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1668                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1669                         EVT(TLI.getPointerTy(DL))));
1670   }
1671 
1672   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1673   CallingConv::ID CallConv =
1674     DAG.getMachineFunction().getFunction().getCallingConv();
1675   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1676       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1677 
1678   // Verify that the target's LowerReturn behaved as expected.
1679   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1680          "LowerReturn didn't return a valid chain!");
1681 
1682   // Update the DAG with the new chain value resulting from return lowering.
1683   DAG.setRoot(Chain);
1684 }
1685 
1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1687 /// created for it, emit nodes to copy the value into the virtual
1688 /// registers.
1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1690   // Skip empty types
1691   if (V->getType()->isEmptyTy())
1692     return;
1693 
1694   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1695   if (VMI != FuncInfo.ValueMap.end()) {
1696     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1697     CopyValueToVirtualRegister(V, VMI->second);
1698   }
1699 }
1700 
1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1702 /// the current basic block, add it to ValueMap now so that we'll get a
1703 /// CopyTo/FromReg.
1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1705   // No need to export constants.
1706   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1707 
1708   // Already exported?
1709   if (FuncInfo.isExportedInst(V)) return;
1710 
1711   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1712   CopyValueToVirtualRegister(V, Reg);
1713 }
1714 
1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1716                                                      const BasicBlock *FromBB) {
1717   // The operands of the setcc have to be in this block.  We don't know
1718   // how to export them from some other block.
1719   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1720     // Can export from current BB.
1721     if (VI->getParent() == FromBB)
1722       return true;
1723 
1724     // Is already exported, noop.
1725     return FuncInfo.isExportedInst(V);
1726   }
1727 
1728   // If this is an argument, we can export it if the BB is the entry block or
1729   // if it is already exported.
1730   if (isa<Argument>(V)) {
1731     if (FromBB == &FromBB->getParent()->getEntryBlock())
1732       return true;
1733 
1734     // Otherwise, can only export this if it is already exported.
1735     return FuncInfo.isExportedInst(V);
1736   }
1737 
1738   // Otherwise, constants can always be exported.
1739   return true;
1740 }
1741 
1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1743 BranchProbability
1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1745                                         const MachineBasicBlock *Dst) const {
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   const BasicBlock *SrcBB = Src->getBasicBlock();
1748   const BasicBlock *DstBB = Dst->getBasicBlock();
1749   if (!BPI) {
1750     // If BPI is not available, set the default probability as 1 / N, where N is
1751     // the number of successors.
1752     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1753     return BranchProbability(1, SuccSize);
1754   }
1755   return BPI->getEdgeProbability(SrcBB, DstBB);
1756 }
1757 
1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1759                                                MachineBasicBlock *Dst,
1760                                                BranchProbability Prob) {
1761   if (!FuncInfo.BPI)
1762     Src->addSuccessorWithoutProb(Dst);
1763   else {
1764     if (Prob.isUnknown())
1765       Prob = getEdgeProbability(Src, Dst);
1766     Src->addSuccessor(Dst, Prob);
1767   }
1768 }
1769 
1770 static bool InBlock(const Value *V, const BasicBlock *BB) {
1771   if (const Instruction *I = dyn_cast<Instruction>(V))
1772     return I->getParent() == BB;
1773   return true;
1774 }
1775 
1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1777 /// This function emits a branch and is used at the leaves of an OR or an
1778 /// AND operator tree.
1779 void
1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1781                                                   MachineBasicBlock *TBB,
1782                                                   MachineBasicBlock *FBB,
1783                                                   MachineBasicBlock *CurBB,
1784                                                   MachineBasicBlock *SwitchBB,
1785                                                   BranchProbability TProb,
1786                                                   BranchProbability FProb,
1787                                                   bool InvertCond) {
1788   const BasicBlock *BB = CurBB->getBasicBlock();
1789 
1790   // If the leaf of the tree is a comparison, merge the condition into
1791   // the caseblock.
1792   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1793     // The operands of the cmp have to be in this block.  We don't know
1794     // how to export them from some other block.  If this is the first block
1795     // of the sequence, no exporting is needed.
1796     if (CurBB == SwitchBB ||
1797         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1798          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1799       ISD::CondCode Condition;
1800       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1801         ICmpInst::Predicate Pred =
1802             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1803         Condition = getICmpCondCode(Pred);
1804       } else {
1805         const FCmpInst *FC = cast<FCmpInst>(Cond);
1806         FCmpInst::Predicate Pred =
1807             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1808         Condition = getFCmpCondCode(Pred);
1809         if (TM.Options.NoNaNsFPMath)
1810           Condition = getFCmpCodeWithoutNaN(Condition);
1811       }
1812 
1813       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1814                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1815       SwitchCases.push_back(CB);
1816       return;
1817     }
1818   }
1819 
1820   // Create a CaseBlock record representing this branch.
1821   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1822   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1823                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1824   SwitchCases.push_back(CB);
1825 }
1826 
1827 /// FindMergedConditions - If Cond is an expression like
1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1829                                                MachineBasicBlock *TBB,
1830                                                MachineBasicBlock *FBB,
1831                                                MachineBasicBlock *CurBB,
1832                                                MachineBasicBlock *SwitchBB,
1833                                                Instruction::BinaryOps Opc,
1834                                                BranchProbability TProb,
1835                                                BranchProbability FProb,
1836                                                bool InvertCond) {
1837   // Skip over not part of the tree and remember to invert op and operands at
1838   // next level.
1839   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1840     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1841     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1842       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1843                            !InvertCond);
1844       return;
1845     }
1846   }
1847 
1848   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1849   // Compute the effective opcode for Cond, taking into account whether it needs
1850   // to be inverted, e.g.
1851   //   and (not (or A, B)), C
1852   // gets lowered as
1853   //   and (and (not A, not B), C)
1854   unsigned BOpc = 0;
1855   if (BOp) {
1856     BOpc = BOp->getOpcode();
1857     if (InvertCond) {
1858       if (BOpc == Instruction::And)
1859         BOpc = Instruction::Or;
1860       else if (BOpc == Instruction::Or)
1861         BOpc = Instruction::And;
1862     }
1863   }
1864 
1865   // If this node is not part of the or/and tree, emit it as a branch.
1866   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1867       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1868       BOp->getParent() != CurBB->getBasicBlock() ||
1869       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1870       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1871     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1872                                  TProb, FProb, InvertCond);
1873     return;
1874   }
1875 
1876   //  Create TmpBB after CurBB.
1877   MachineFunction::iterator BBI(CurBB);
1878   MachineFunction &MF = DAG.getMachineFunction();
1879   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1880   CurBB->getParent()->insert(++BBI, TmpBB);
1881 
1882   if (Opc == Instruction::Or) {
1883     // Codegen X | Y as:
1884     // BB1:
1885     //   jmp_if_X TBB
1886     //   jmp TmpBB
1887     // TmpBB:
1888     //   jmp_if_Y TBB
1889     //   jmp FBB
1890     //
1891 
1892     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1893     // The requirement is that
1894     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1895     //     = TrueProb for original BB.
1896     // Assuming the original probabilities are A and B, one choice is to set
1897     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1898     // A/(1+B) and 2B/(1+B). This choice assumes that
1899     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1900     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1901     // TmpBB, but the math is more complicated.
1902 
1903     auto NewTrueProb = TProb / 2;
1904     auto NewFalseProb = TProb / 2 + FProb;
1905     // Emit the LHS condition.
1906     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1907                          NewTrueProb, NewFalseProb, InvertCond);
1908 
1909     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1910     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1911     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1912     // Emit the RHS condition into TmpBB.
1913     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1914                          Probs[0], Probs[1], InvertCond);
1915   } else {
1916     assert(Opc == Instruction::And && "Unknown merge op!");
1917     // Codegen X & Y as:
1918     // BB1:
1919     //   jmp_if_X TmpBB
1920     //   jmp FBB
1921     // TmpBB:
1922     //   jmp_if_Y TBB
1923     //   jmp FBB
1924     //
1925     //  This requires creation of TmpBB after CurBB.
1926 
1927     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1928     // The requirement is that
1929     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1930     //     = FalseProb for original BB.
1931     // Assuming the original probabilities are A and B, one choice is to set
1932     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1933     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1934     // TrueProb for BB1 * FalseProb for TmpBB.
1935 
1936     auto NewTrueProb = TProb + FProb / 2;
1937     auto NewFalseProb = FProb / 2;
1938     // Emit the LHS condition.
1939     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1940                          NewTrueProb, NewFalseProb, InvertCond);
1941 
1942     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1943     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1944     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1945     // Emit the RHS condition into TmpBB.
1946     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1947                          Probs[0], Probs[1], InvertCond);
1948   }
1949 }
1950 
1951 /// If the set of cases should be emitted as a series of branches, return true.
1952 /// If we should emit this as a bunch of and/or'd together conditions, return
1953 /// false.
1954 bool
1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1956   if (Cases.size() != 2) return true;
1957 
1958   // If this is two comparisons of the same values or'd or and'd together, they
1959   // will get folded into a single comparison, so don't emit two blocks.
1960   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1961        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1962       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1963        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1964     return false;
1965   }
1966 
1967   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1968   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1969   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1970       Cases[0].CC == Cases[1].CC &&
1971       isa<Constant>(Cases[0].CmpRHS) &&
1972       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1973     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1974       return false;
1975     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1976       return false;
1977   }
1978 
1979   return true;
1980 }
1981 
1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1983   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1984 
1985   // Update machine-CFG edges.
1986   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1987 
1988   if (I.isUnconditional()) {
1989     // Update machine-CFG edges.
1990     BrMBB->addSuccessor(Succ0MBB);
1991 
1992     // If this is not a fall-through branch or optimizations are switched off,
1993     // emit the branch.
1994     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1995       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1996                               MVT::Other, getControlRoot(),
1997                               DAG.getBasicBlock(Succ0MBB)));
1998 
1999     return;
2000   }
2001 
2002   // If this condition is one of the special cases we handle, do special stuff
2003   // now.
2004   const Value *CondVal = I.getCondition();
2005   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2006 
2007   // If this is a series of conditions that are or'd or and'd together, emit
2008   // this as a sequence of branches instead of setcc's with and/or operations.
2009   // As long as jumps are not expensive, this should improve performance.
2010   // For example, instead of something like:
2011   //     cmp A, B
2012   //     C = seteq
2013   //     cmp D, E
2014   //     F = setle
2015   //     or C, F
2016   //     jnz foo
2017   // Emit:
2018   //     cmp A, B
2019   //     je foo
2020   //     cmp D, E
2021   //     jle foo
2022   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2023     Instruction::BinaryOps Opcode = BOp->getOpcode();
2024     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2025         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2026         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2027       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2028                            Opcode,
2029                            getEdgeProbability(BrMBB, Succ0MBB),
2030                            getEdgeProbability(BrMBB, Succ1MBB),
2031                            /*InvertCond=*/false);
2032       // If the compares in later blocks need to use values not currently
2033       // exported from this block, export them now.  This block should always
2034       // be the first entry.
2035       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2036 
2037       // Allow some cases to be rejected.
2038       if (ShouldEmitAsBranches(SwitchCases)) {
2039         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2040           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2041           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2042         }
2043 
2044         // Emit the branch for this block.
2045         visitSwitchCase(SwitchCases[0], BrMBB);
2046         SwitchCases.erase(SwitchCases.begin());
2047         return;
2048       }
2049 
2050       // Okay, we decided not to do this, remove any inserted MBB's and clear
2051       // SwitchCases.
2052       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2053         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2054 
2055       SwitchCases.clear();
2056     }
2057   }
2058 
2059   // Create a CaseBlock record representing this branch.
2060   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2061                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2062 
2063   // Use visitSwitchCase to actually insert the fast branch sequence for this
2064   // cond branch.
2065   visitSwitchCase(CB, BrMBB);
2066 }
2067 
2068 /// visitSwitchCase - Emits the necessary code to represent a single node in
2069 /// the binary search tree resulting from lowering a switch instruction.
2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2071                                           MachineBasicBlock *SwitchBB) {
2072   SDValue Cond;
2073   SDValue CondLHS = getValue(CB.CmpLHS);
2074   SDLoc dl = CB.DL;
2075 
2076   // Build the setcc now.
2077   if (!CB.CmpMHS) {
2078     // Fold "(X == true)" to X and "(X == false)" to !X to
2079     // handle common cases produced by branch lowering.
2080     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2081         CB.CC == ISD::SETEQ)
2082       Cond = CondLHS;
2083     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2084              CB.CC == ISD::SETEQ) {
2085       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2086       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2087     } else
2088       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2089   } else {
2090     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2091 
2092     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2093     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2094 
2095     SDValue CmpOp = getValue(CB.CmpMHS);
2096     EVT VT = CmpOp.getValueType();
2097 
2098     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2099       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2100                           ISD::SETLE);
2101     } else {
2102       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2103                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2104       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2105                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2106     }
2107   }
2108 
2109   // Update successor info
2110   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2111   // TrueBB and FalseBB are always different unless the incoming IR is
2112   // degenerate. This only happens when running llc on weird IR.
2113   if (CB.TrueBB != CB.FalseBB)
2114     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2115   SwitchBB->normalizeSuccProbs();
2116 
2117   // If the lhs block is the next block, invert the condition so that we can
2118   // fall through to the lhs instead of the rhs block.
2119   if (CB.TrueBB == NextBlock(SwitchBB)) {
2120     std::swap(CB.TrueBB, CB.FalseBB);
2121     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2122     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2123   }
2124 
2125   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2126                                MVT::Other, getControlRoot(), Cond,
2127                                DAG.getBasicBlock(CB.TrueBB));
2128 
2129   // Insert the false branch. Do this even if it's a fall through branch,
2130   // this makes it easier to do DAG optimizations which require inverting
2131   // the branch condition.
2132   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2133                        DAG.getBasicBlock(CB.FalseBB));
2134 
2135   DAG.setRoot(BrCond);
2136 }
2137 
2138 /// visitJumpTable - Emit JumpTable node in the current MBB
2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2140   // Emit the code for the jump table
2141   assert(JT.Reg != -1U && "Should lower JT Header first!");
2142   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2143   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2144                                      JT.Reg, PTy);
2145   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2146   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2147                                     MVT::Other, Index.getValue(1),
2148                                     Table, Index);
2149   DAG.setRoot(BrJumpTable);
2150 }
2151 
2152 /// visitJumpTableHeader - This function emits necessary code to produce index
2153 /// in the JumpTable from switch case.
2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2155                                                JumpTableHeader &JTH,
2156                                                MachineBasicBlock *SwitchBB) {
2157   SDLoc dl = getCurSDLoc();
2158 
2159   // Subtract the lowest switch case value from the value being switched on and
2160   // conditional branch to default mbb if the result is greater than the
2161   // difference between smallest and largest cases.
2162   SDValue SwitchOp = getValue(JTH.SValue);
2163   EVT VT = SwitchOp.getValueType();
2164   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2165                             DAG.getConstant(JTH.First, dl, VT));
2166 
2167   // The SDNode we just created, which holds the value being switched on minus
2168   // the smallest case value, needs to be copied to a virtual register so it
2169   // can be used as an index into the jump table in a subsequent basic block.
2170   // This value may be smaller or larger than the target's pointer type, and
2171   // therefore require extension or truncating.
2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2174 
2175   unsigned JumpTableReg =
2176       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2177   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2178                                     JumpTableReg, SwitchOp);
2179   JT.Reg = JumpTableReg;
2180 
2181   // Emit the range check for the jump table, and branch to the default block
2182   // for the switch statement if the value being switched on exceeds the largest
2183   // case in the switch.
2184   SDValue CMP = DAG.getSetCC(
2185       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2186                                  Sub.getValueType()),
2187       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2188 
2189   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2190                                MVT::Other, CopyTo, CMP,
2191                                DAG.getBasicBlock(JT.Default));
2192 
2193   // Avoid emitting unnecessary branches to the next block.
2194   if (JT.MBB != NextBlock(SwitchBB))
2195     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2196                          DAG.getBasicBlock(JT.MBB));
2197 
2198   DAG.setRoot(BrCond);
2199 }
2200 
2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2202 /// variable if there exists one.
2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2204                                  SDValue &Chain) {
2205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2206   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2207   MachineFunction &MF = DAG.getMachineFunction();
2208   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2209   MachineSDNode *Node =
2210       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2211   if (Global) {
2212     MachinePointerInfo MPInfo(Global);
2213     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2214                  MachineMemOperand::MODereferenceable;
2215     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2216         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2217     DAG.setNodeMemRefs(Node, {MemRef});
2218   }
2219   return SDValue(Node, 0);
2220 }
2221 
2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2223 /// tail spliced into a stack protector check success bb.
2224 ///
2225 /// For a high level explanation of how this fits into the stack protector
2226 /// generation see the comment on the declaration of class
2227 /// StackProtectorDescriptor.
2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2229                                                   MachineBasicBlock *ParentBB) {
2230 
2231   // First create the loads to the guard/stack slot for the comparison.
2232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2233   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2234 
2235   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2236   int FI = MFI.getStackProtectorIndex();
2237 
2238   SDValue Guard;
2239   SDLoc dl = getCurSDLoc();
2240   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2241   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2242   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2243 
2244   // Generate code to load the content of the guard slot.
2245   SDValue GuardVal = DAG.getLoad(
2246       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2247       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2248       MachineMemOperand::MOVolatile);
2249 
2250   if (TLI.useStackGuardXorFP())
2251     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2252 
2253   // Retrieve guard check function, nullptr if instrumentation is inlined.
2254   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2255     // The target provides a guard check function to validate the guard value.
2256     // Generate a call to that function with the content of the guard slot as
2257     // argument.
2258     auto *Fn = cast<Function>(GuardCheck);
2259     FunctionType *FnTy = Fn->getFunctionType();
2260     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2261 
2262     TargetLowering::ArgListTy Args;
2263     TargetLowering::ArgListEntry Entry;
2264     Entry.Node = GuardVal;
2265     Entry.Ty = FnTy->getParamType(0);
2266     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2267       Entry.IsInReg = true;
2268     Args.push_back(Entry);
2269 
2270     TargetLowering::CallLoweringInfo CLI(DAG);
2271     CLI.setDebugLoc(getCurSDLoc())
2272       .setChain(DAG.getEntryNode())
2273       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2274                  getValue(GuardCheck), std::move(Args));
2275 
2276     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2277     DAG.setRoot(Result.second);
2278     return;
2279   }
2280 
2281   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2282   // Otherwise, emit a volatile load to retrieve the stack guard value.
2283   SDValue Chain = DAG.getEntryNode();
2284   if (TLI.useLoadStackGuardNode()) {
2285     Guard = getLoadStackGuard(DAG, dl, Chain);
2286   } else {
2287     const Value *IRGuard = TLI.getSDagStackGuard(M);
2288     SDValue GuardPtr = getValue(IRGuard);
2289 
2290     Guard =
2291         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2292                     Align, MachineMemOperand::MOVolatile);
2293   }
2294 
2295   // Perform the comparison via a subtract/getsetcc.
2296   EVT VT = Guard.getValueType();
2297   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2298 
2299   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2300                                                         *DAG.getContext(),
2301                                                         Sub.getValueType()),
2302                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2303 
2304   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2305   // branch to failure MBB.
2306   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2307                                MVT::Other, GuardVal.getOperand(0),
2308                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2309   // Otherwise branch to success MBB.
2310   SDValue Br = DAG.getNode(ISD::BR, dl,
2311                            MVT::Other, BrCond,
2312                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2313 
2314   DAG.setRoot(Br);
2315 }
2316 
2317 /// Codegen the failure basic block for a stack protector check.
2318 ///
2319 /// A failure stack protector machine basic block consists simply of a call to
2320 /// __stack_chk_fail().
2321 ///
2322 /// For a high level explanation of how this fits into the stack protector
2323 /// generation see the comment on the declaration of class
2324 /// StackProtectorDescriptor.
2325 void
2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328   SDValue Chain =
2329       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2330                       None, false, getCurSDLoc(), false, false).second;
2331   DAG.setRoot(Chain);
2332 }
2333 
2334 /// visitBitTestHeader - This function emits necessary code to produce value
2335 /// suitable for "bit tests"
2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2337                                              MachineBasicBlock *SwitchBB) {
2338   SDLoc dl = getCurSDLoc();
2339 
2340   // Subtract the minimum value
2341   SDValue SwitchOp = getValue(B.SValue);
2342   EVT VT = SwitchOp.getValueType();
2343   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2344                             DAG.getConstant(B.First, dl, VT));
2345 
2346   // Check range
2347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2348   SDValue RangeCmp = DAG.getSetCC(
2349       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2350                                  Sub.getValueType()),
2351       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2352 
2353   // Determine the type of the test operands.
2354   bool UsePtrType = false;
2355   if (!TLI.isTypeLegal(VT))
2356     UsePtrType = true;
2357   else {
2358     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2359       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2360         // Switch table case range are encoded into series of masks.
2361         // Just use pointer type, it's guaranteed to fit.
2362         UsePtrType = true;
2363         break;
2364       }
2365   }
2366   if (UsePtrType) {
2367     VT = TLI.getPointerTy(DAG.getDataLayout());
2368     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2369   }
2370 
2371   B.RegVT = VT.getSimpleVT();
2372   B.Reg = FuncInfo.CreateReg(B.RegVT);
2373   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2374 
2375   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2376 
2377   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2378   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2382                                 MVT::Other, CopyTo, RangeCmp,
2383                                 DAG.getBasicBlock(B.Default));
2384 
2385   // Avoid emitting unnecessary branches to the next block.
2386   if (MBB != NextBlock(SwitchBB))
2387     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2388                           DAG.getBasicBlock(MBB));
2389 
2390   DAG.setRoot(BrRange);
2391 }
2392 
2393 /// visitBitTestCase - this function produces one "bit test"
2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2395                                            MachineBasicBlock* NextMBB,
2396                                            BranchProbability BranchProbToNext,
2397                                            unsigned Reg,
2398                                            BitTestCase &B,
2399                                            MachineBasicBlock *SwitchBB) {
2400   SDLoc dl = getCurSDLoc();
2401   MVT VT = BB.RegVT;
2402   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2403   SDValue Cmp;
2404   unsigned PopCount = countPopulation(B.Mask);
2405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2406   if (PopCount == 1) {
2407     // Testing for a single bit; just compare the shift count with what it
2408     // would need to be to shift a 1 bit in that position.
2409     Cmp = DAG.getSetCC(
2410         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2411         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2412         ISD::SETEQ);
2413   } else if (PopCount == BB.Range) {
2414     // There is only one zero bit in the range, test for it directly.
2415     Cmp = DAG.getSetCC(
2416         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2417         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2418         ISD::SETNE);
2419   } else {
2420     // Make desired shift
2421     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2422                                     DAG.getConstant(1, dl, VT), ShiftOp);
2423 
2424     // Emit bit tests and jumps
2425     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2426                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2427     Cmp = DAG.getSetCC(
2428         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2429         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2430   }
2431 
2432   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2433   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2434   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2435   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2436   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2437   // one as they are relative probabilities (and thus work more like weights),
2438   // and hence we need to normalize them to let the sum of them become one.
2439   SwitchBB->normalizeSuccProbs();
2440 
2441   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2442                               MVT::Other, getControlRoot(),
2443                               Cmp, DAG.getBasicBlock(B.TargetBB));
2444 
2445   // Avoid emitting unnecessary branches to the next block.
2446   if (NextMBB != NextBlock(SwitchBB))
2447     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2448                         DAG.getBasicBlock(NextMBB));
2449 
2450   DAG.setRoot(BrAnd);
2451 }
2452 
2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2454   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2455 
2456   // Retrieve successors. Look through artificial IR level blocks like
2457   // catchswitch for successors.
2458   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2459   const BasicBlock *EHPadBB = I.getSuccessor(1);
2460 
2461   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2462   // have to do anything here to lower funclet bundles.
2463   assert(!I.hasOperandBundlesOtherThan(
2464              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2465          "Cannot lower invokes with arbitrary operand bundles yet!");
2466 
2467   const Value *Callee(I.getCalledValue());
2468   const Function *Fn = dyn_cast<Function>(Callee);
2469   if (isa<InlineAsm>(Callee))
2470     visitInlineAsm(&I);
2471   else if (Fn && Fn->isIntrinsic()) {
2472     switch (Fn->getIntrinsicID()) {
2473     default:
2474       llvm_unreachable("Cannot invoke this intrinsic");
2475     case Intrinsic::donothing:
2476       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2477       break;
2478     case Intrinsic::experimental_patchpoint_void:
2479     case Intrinsic::experimental_patchpoint_i64:
2480       visitPatchpoint(&I, EHPadBB);
2481       break;
2482     case Intrinsic::experimental_gc_statepoint:
2483       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2484       break;
2485     }
2486   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2487     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2488     // Eventually we will support lowering the @llvm.experimental.deoptimize
2489     // intrinsic, and right now there are no plans to support other intrinsics
2490     // with deopt state.
2491     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2492   } else {
2493     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2494   }
2495 
2496   // If the value of the invoke is used outside of its defining block, make it
2497   // available as a virtual register.
2498   // We already took care of the exported value for the statepoint instruction
2499   // during call to the LowerStatepoint.
2500   if (!isStatepoint(I)) {
2501     CopyToExportRegsIfNeeded(&I);
2502   }
2503 
2504   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2505   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2506   BranchProbability EHPadBBProb =
2507       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2508           : BranchProbability::getZero();
2509   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2510 
2511   // Update successor info.
2512   addSuccessorWithProb(InvokeMBB, Return);
2513   for (auto &UnwindDest : UnwindDests) {
2514     UnwindDest.first->setIsEHPad();
2515     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2516   }
2517   InvokeMBB->normalizeSuccProbs();
2518 
2519   // Drop into normal successor.
2520   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2521                           MVT::Other, getControlRoot(),
2522                           DAG.getBasicBlock(Return)));
2523 }
2524 
2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2526   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2527 }
2528 
2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2530   assert(FuncInfo.MBB->isEHPad() &&
2531          "Call to landingpad not in landing pad!");
2532 
2533   // If there aren't registers to copy the values into (e.g., during SjLj
2534   // exceptions), then don't bother to create these DAG nodes.
2535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2536   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2537   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2538       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2539     return;
2540 
2541   // If landingpad's return type is token type, we don't create DAG nodes
2542   // for its exception pointer and selector value. The extraction of exception
2543   // pointer or selector value from token type landingpads is not currently
2544   // supported.
2545   if (LP.getType()->isTokenTy())
2546     return;
2547 
2548   SmallVector<EVT, 2> ValueVTs;
2549   SDLoc dl = getCurSDLoc();
2550   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2551   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2552 
2553   // Get the two live-in registers as SDValues. The physregs have already been
2554   // copied into virtual registers.
2555   SDValue Ops[2];
2556   if (FuncInfo.ExceptionPointerVirtReg) {
2557     Ops[0] = DAG.getZExtOrTrunc(
2558         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2559                            FuncInfo.ExceptionPointerVirtReg,
2560                            TLI.getPointerTy(DAG.getDataLayout())),
2561         dl, ValueVTs[0]);
2562   } else {
2563     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2564   }
2565   Ops[1] = DAG.getZExtOrTrunc(
2566       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2567                          FuncInfo.ExceptionSelectorVirtReg,
2568                          TLI.getPointerTy(DAG.getDataLayout())),
2569       dl, ValueVTs[1]);
2570 
2571   // Merge into one.
2572   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2573                             DAG.getVTList(ValueVTs), Ops);
2574   setValue(&LP, Res);
2575 }
2576 
2577 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2578 #ifndef NDEBUG
2579   for (const CaseCluster &CC : Clusters)
2580     assert(CC.Low == CC.High && "Input clusters must be single-case");
2581 #endif
2582 
2583   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2584     return a.Low->getValue().slt(b.Low->getValue());
2585   });
2586 
2587   // Merge adjacent clusters with the same destination.
2588   const unsigned N = Clusters.size();
2589   unsigned DstIndex = 0;
2590   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2591     CaseCluster &CC = Clusters[SrcIndex];
2592     const ConstantInt *CaseVal = CC.Low;
2593     MachineBasicBlock *Succ = CC.MBB;
2594 
2595     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2596         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2597       // If this case has the same successor and is a neighbour, merge it into
2598       // the previous cluster.
2599       Clusters[DstIndex - 1].High = CaseVal;
2600       Clusters[DstIndex - 1].Prob += CC.Prob;
2601     } else {
2602       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2603                    sizeof(Clusters[SrcIndex]));
2604     }
2605   }
2606   Clusters.resize(DstIndex);
2607 }
2608 
2609 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2610                                            MachineBasicBlock *Last) {
2611   // Update JTCases.
2612   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2613     if (JTCases[i].first.HeaderBB == First)
2614       JTCases[i].first.HeaderBB = Last;
2615 
2616   // Update BitTestCases.
2617   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2618     if (BitTestCases[i].Parent == First)
2619       BitTestCases[i].Parent = Last;
2620 }
2621 
2622 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2623   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2624 
2625   // Update machine-CFG edges with unique successors.
2626   SmallSet<BasicBlock*, 32> Done;
2627   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2628     BasicBlock *BB = I.getSuccessor(i);
2629     bool Inserted = Done.insert(BB).second;
2630     if (!Inserted)
2631         continue;
2632 
2633     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2634     addSuccessorWithProb(IndirectBrMBB, Succ);
2635   }
2636   IndirectBrMBB->normalizeSuccProbs();
2637 
2638   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2639                           MVT::Other, getControlRoot(),
2640                           getValue(I.getAddress())));
2641 }
2642 
2643 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2644   if (!DAG.getTarget().Options.TrapUnreachable)
2645     return;
2646 
2647   // We may be able to ignore unreachable behind a noreturn call.
2648   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2649     const BasicBlock &BB = *I.getParent();
2650     if (&I != &BB.front()) {
2651       BasicBlock::const_iterator PredI =
2652         std::prev(BasicBlock::const_iterator(&I));
2653       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2654         if (Call->doesNotReturn())
2655           return;
2656       }
2657     }
2658   }
2659 
2660   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2661 }
2662 
2663 void SelectionDAGBuilder::visitFSub(const User &I) {
2664   // -0.0 - X --> fneg
2665   Type *Ty = I.getType();
2666   if (isa<Constant>(I.getOperand(0)) &&
2667       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2668     SDValue Op2 = getValue(I.getOperand(1));
2669     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2670                              Op2.getValueType(), Op2));
2671     return;
2672   }
2673 
2674   visitBinary(I, ISD::FSUB);
2675 }
2676 
2677 /// Checks if the given instruction performs a vector reduction, in which case
2678 /// we have the freedom to alter the elements in the result as long as the
2679 /// reduction of them stays unchanged.
2680 static bool isVectorReductionOp(const User *I) {
2681   const Instruction *Inst = dyn_cast<Instruction>(I);
2682   if (!Inst || !Inst->getType()->isVectorTy())
2683     return false;
2684 
2685   auto OpCode = Inst->getOpcode();
2686   switch (OpCode) {
2687   case Instruction::Add:
2688   case Instruction::Mul:
2689   case Instruction::And:
2690   case Instruction::Or:
2691   case Instruction::Xor:
2692     break;
2693   case Instruction::FAdd:
2694   case Instruction::FMul:
2695     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2696       if (FPOp->getFastMathFlags().isFast())
2697         break;
2698     LLVM_FALLTHROUGH;
2699   default:
2700     return false;
2701   }
2702 
2703   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2704   // Ensure the reduction size is a power of 2.
2705   if (!isPowerOf2_32(ElemNum))
2706     return false;
2707 
2708   unsigned ElemNumToReduce = ElemNum;
2709 
2710   // Do DFS search on the def-use chain from the given instruction. We only
2711   // allow four kinds of operations during the search until we reach the
2712   // instruction that extracts the first element from the vector:
2713   //
2714   //   1. The reduction operation of the same opcode as the given instruction.
2715   //
2716   //   2. PHI node.
2717   //
2718   //   3. ShuffleVector instruction together with a reduction operation that
2719   //      does a partial reduction.
2720   //
2721   //   4. ExtractElement that extracts the first element from the vector, and we
2722   //      stop searching the def-use chain here.
2723   //
2724   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2725   // from 1-3 to the stack to continue the DFS. The given instruction is not
2726   // a reduction operation if we meet any other instructions other than those
2727   // listed above.
2728 
2729   SmallVector<const User *, 16> UsersToVisit{Inst};
2730   SmallPtrSet<const User *, 16> Visited;
2731   bool ReduxExtracted = false;
2732 
2733   while (!UsersToVisit.empty()) {
2734     auto User = UsersToVisit.back();
2735     UsersToVisit.pop_back();
2736     if (!Visited.insert(User).second)
2737       continue;
2738 
2739     for (const auto &U : User->users()) {
2740       auto Inst = dyn_cast<Instruction>(U);
2741       if (!Inst)
2742         return false;
2743 
2744       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2745         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2746           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2747             return false;
2748         UsersToVisit.push_back(U);
2749       } else if (const ShuffleVectorInst *ShufInst =
2750                      dyn_cast<ShuffleVectorInst>(U)) {
2751         // Detect the following pattern: A ShuffleVector instruction together
2752         // with a reduction that do partial reduction on the first and second
2753         // ElemNumToReduce / 2 elements, and store the result in
2754         // ElemNumToReduce / 2 elements in another vector.
2755 
2756         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2757         if (ResultElements < ElemNum)
2758           return false;
2759 
2760         if (ElemNumToReduce == 1)
2761           return false;
2762         if (!isa<UndefValue>(U->getOperand(1)))
2763           return false;
2764         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2765           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2766             return false;
2767         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2768           if (ShufInst->getMaskValue(i) != -1)
2769             return false;
2770 
2771         // There is only one user of this ShuffleVector instruction, which
2772         // must be a reduction operation.
2773         if (!U->hasOneUse())
2774           return false;
2775 
2776         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2777         if (!U2 || U2->getOpcode() != OpCode)
2778           return false;
2779 
2780         // Check operands of the reduction operation.
2781         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2782             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2783           UsersToVisit.push_back(U2);
2784           ElemNumToReduce /= 2;
2785         } else
2786           return false;
2787       } else if (isa<ExtractElementInst>(U)) {
2788         // At this moment we should have reduced all elements in the vector.
2789         if (ElemNumToReduce != 1)
2790           return false;
2791 
2792         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2793         if (!Val || !Val->isZero())
2794           return false;
2795 
2796         ReduxExtracted = true;
2797       } else
2798         return false;
2799     }
2800   }
2801   return ReduxExtracted;
2802 }
2803 
2804 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2805   SDNodeFlags Flags;
2806   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2807     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2808     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2809   }
2810   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2811     Flags.setExact(ExactOp->isExact());
2812   }
2813   if (isVectorReductionOp(&I)) {
2814     Flags.setVectorReduction(true);
2815     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2816   }
2817 
2818   SDValue Op1 = getValue(I.getOperand(0));
2819   SDValue Op2 = getValue(I.getOperand(1));
2820   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2821                                      Op1, Op2, Flags);
2822   setValue(&I, BinNodeValue);
2823 }
2824 
2825 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2826   SDValue Op1 = getValue(I.getOperand(0));
2827   SDValue Op2 = getValue(I.getOperand(1));
2828 
2829   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2830       Op1.getValueType(), DAG.getDataLayout());
2831 
2832   // Coerce the shift amount to the right type if we can.
2833   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2834     unsigned ShiftSize = ShiftTy.getSizeInBits();
2835     unsigned Op2Size = Op2.getValueSizeInBits();
2836     SDLoc DL = getCurSDLoc();
2837 
2838     // If the operand is smaller than the shift count type, promote it.
2839     if (ShiftSize > Op2Size)
2840       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2841 
2842     // If the operand is larger than the shift count type but the shift
2843     // count type has enough bits to represent any shift value, truncate
2844     // it now. This is a common case and it exposes the truncate to
2845     // optimization early.
2846     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2847       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2848     // Otherwise we'll need to temporarily settle for some other convenient
2849     // type.  Type legalization will make adjustments once the shiftee is split.
2850     else
2851       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2852   }
2853 
2854   bool nuw = false;
2855   bool nsw = false;
2856   bool exact = false;
2857 
2858   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2859 
2860     if (const OverflowingBinaryOperator *OFBinOp =
2861             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2862       nuw = OFBinOp->hasNoUnsignedWrap();
2863       nsw = OFBinOp->hasNoSignedWrap();
2864     }
2865     if (const PossiblyExactOperator *ExactOp =
2866             dyn_cast<const PossiblyExactOperator>(&I))
2867       exact = ExactOp->isExact();
2868   }
2869   SDNodeFlags Flags;
2870   Flags.setExact(exact);
2871   Flags.setNoSignedWrap(nsw);
2872   Flags.setNoUnsignedWrap(nuw);
2873   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2874                             Flags);
2875   setValue(&I, Res);
2876 }
2877 
2878 void SelectionDAGBuilder::visitSDiv(const User &I) {
2879   SDValue Op1 = getValue(I.getOperand(0));
2880   SDValue Op2 = getValue(I.getOperand(1));
2881 
2882   SDNodeFlags Flags;
2883   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2884                  cast<PossiblyExactOperator>(&I)->isExact());
2885   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2886                            Op2, Flags));
2887 }
2888 
2889 void SelectionDAGBuilder::visitICmp(const User &I) {
2890   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2891   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2892     predicate = IC->getPredicate();
2893   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2894     predicate = ICmpInst::Predicate(IC->getPredicate());
2895   SDValue Op1 = getValue(I.getOperand(0));
2896   SDValue Op2 = getValue(I.getOperand(1));
2897   ISD::CondCode Opcode = getICmpCondCode(predicate);
2898 
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2902 }
2903 
2904 void SelectionDAGBuilder::visitFCmp(const User &I) {
2905   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2906   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2907     predicate = FC->getPredicate();
2908   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2909     predicate = FCmpInst::Predicate(FC->getPredicate());
2910   SDValue Op1 = getValue(I.getOperand(0));
2911   SDValue Op2 = getValue(I.getOperand(1));
2912 
2913   ISD::CondCode Condition = getFCmpCondCode(predicate);
2914   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2915   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2916     Condition = getFCmpCodeWithoutNaN(Condition);
2917 
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2921 }
2922 
2923 // Check if the condition of the select has one use or two users that are both
2924 // selects with the same condition.
2925 static bool hasOnlySelectUsers(const Value *Cond) {
2926   return llvm::all_of(Cond->users(), [](const Value *V) {
2927     return isa<SelectInst>(V);
2928   });
2929 }
2930 
2931 void SelectionDAGBuilder::visitSelect(const User &I) {
2932   SmallVector<EVT, 4> ValueVTs;
2933   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2934                   ValueVTs);
2935   unsigned NumValues = ValueVTs.size();
2936   if (NumValues == 0) return;
2937 
2938   SmallVector<SDValue, 4> Values(NumValues);
2939   SDValue Cond     = getValue(I.getOperand(0));
2940   SDValue LHSVal   = getValue(I.getOperand(1));
2941   SDValue RHSVal   = getValue(I.getOperand(2));
2942   auto BaseOps = {Cond};
2943   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2944     ISD::VSELECT : ISD::SELECT;
2945 
2946   // Min/max matching is only viable if all output VTs are the same.
2947   if (is_splat(ValueVTs)) {
2948     EVT VT = ValueVTs[0];
2949     LLVMContext &Ctx = *DAG.getContext();
2950     auto &TLI = DAG.getTargetLoweringInfo();
2951 
2952     // We care about the legality of the operation after it has been type
2953     // legalized.
2954     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2955            VT != TLI.getTypeToTransformTo(Ctx, VT))
2956       VT = TLI.getTypeToTransformTo(Ctx, VT);
2957 
2958     // If the vselect is legal, assume we want to leave this as a vector setcc +
2959     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2960     // min/max is legal on the scalar type.
2961     bool UseScalarMinMax = VT.isVector() &&
2962       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2963 
2964     Value *LHS, *RHS;
2965     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2966     ISD::NodeType Opc = ISD::DELETED_NODE;
2967     switch (SPR.Flavor) {
2968     case SPF_UMAX:    Opc = ISD::UMAX; break;
2969     case SPF_UMIN:    Opc = ISD::UMIN; break;
2970     case SPF_SMAX:    Opc = ISD::SMAX; break;
2971     case SPF_SMIN:    Opc = ISD::SMIN; break;
2972     case SPF_FMINNUM:
2973       switch (SPR.NaNBehavior) {
2974       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2975       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2976       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2977       case SPNB_RETURNS_ANY: {
2978         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2979           Opc = ISD::FMINNUM;
2980         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2981           Opc = ISD::FMINNAN;
2982         else if (UseScalarMinMax)
2983           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2984             ISD::FMINNUM : ISD::FMINNAN;
2985         break;
2986       }
2987       }
2988       break;
2989     case SPF_FMAXNUM:
2990       switch (SPR.NaNBehavior) {
2991       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2992       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2993       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2994       case SPNB_RETURNS_ANY:
2995 
2996         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2997           Opc = ISD::FMAXNUM;
2998         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2999           Opc = ISD::FMAXNAN;
3000         else if (UseScalarMinMax)
3001           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3002             ISD::FMAXNUM : ISD::FMAXNAN;
3003         break;
3004       }
3005       break;
3006     default: break;
3007     }
3008 
3009     if (Opc != ISD::DELETED_NODE &&
3010         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3011          (UseScalarMinMax &&
3012           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3013         // If the underlying comparison instruction is used by any other
3014         // instruction, the consumed instructions won't be destroyed, so it is
3015         // not profitable to convert to a min/max.
3016         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3017       OpCode = Opc;
3018       LHSVal = getValue(LHS);
3019       RHSVal = getValue(RHS);
3020       BaseOps = {};
3021     }
3022   }
3023 
3024   for (unsigned i = 0; i != NumValues; ++i) {
3025     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3026     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3027     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3028     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3029                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3030                             Ops);
3031   }
3032 
3033   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3034                            DAG.getVTList(ValueVTs), Values));
3035 }
3036 
3037 void SelectionDAGBuilder::visitTrunc(const User &I) {
3038   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3039   SDValue N = getValue(I.getOperand(0));
3040   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3041                                                         I.getType());
3042   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3043 }
3044 
3045 void SelectionDAGBuilder::visitZExt(const User &I) {
3046   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3047   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3048   SDValue N = getValue(I.getOperand(0));
3049   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3050                                                         I.getType());
3051   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3052 }
3053 
3054 void SelectionDAGBuilder::visitSExt(const User &I) {
3055   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3056   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3057   SDValue N = getValue(I.getOperand(0));
3058   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3059                                                         I.getType());
3060   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3061 }
3062 
3063 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3064   // FPTrunc is never a no-op cast, no need to check
3065   SDValue N = getValue(I.getOperand(0));
3066   SDLoc dl = getCurSDLoc();
3067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3068   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3069   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3070                            DAG.getTargetConstant(
3071                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3072 }
3073 
3074 void SelectionDAGBuilder::visitFPExt(const User &I) {
3075   // FPExt is never a no-op cast, no need to check
3076   SDValue N = getValue(I.getOperand(0));
3077   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3078                                                         I.getType());
3079   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3080 }
3081 
3082 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3083   // FPToUI is never a no-op cast, no need to check
3084   SDValue N = getValue(I.getOperand(0));
3085   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3086                                                         I.getType());
3087   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3088 }
3089 
3090 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3091   // FPToSI is never a no-op cast, no need to check
3092   SDValue N = getValue(I.getOperand(0));
3093   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094                                                         I.getType());
3095   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3096 }
3097 
3098 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3099   // UIToFP is never a no-op cast, no need to check
3100   SDValue N = getValue(I.getOperand(0));
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3104 }
3105 
3106 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3107   // SIToFP is never a no-op cast, no need to check
3108   SDValue N = getValue(I.getOperand(0));
3109   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3110                                                         I.getType());
3111   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3112 }
3113 
3114 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3115   // What to do depends on the size of the integer and the size of the pointer.
3116   // We can either truncate, zero extend, or no-op, accordingly.
3117   SDValue N = getValue(I.getOperand(0));
3118   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3119                                                         I.getType());
3120   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3121 }
3122 
3123 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3124   // What to do depends on the size of the integer and the size of the pointer.
3125   // We can either truncate, zero extend, or no-op, accordingly.
3126   SDValue N = getValue(I.getOperand(0));
3127   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128                                                         I.getType());
3129   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3130 }
3131 
3132 void SelectionDAGBuilder::visitBitCast(const User &I) {
3133   SDValue N = getValue(I.getOperand(0));
3134   SDLoc dl = getCurSDLoc();
3135   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3136                                                         I.getType());
3137 
3138   // BitCast assures us that source and destination are the same size so this is
3139   // either a BITCAST or a no-op.
3140   if (DestVT != N.getValueType())
3141     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3142                              DestVT, N)); // convert types.
3143   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3144   // might fold any kind of constant expression to an integer constant and that
3145   // is not what we are looking for. Only recognize a bitcast of a genuine
3146   // constant integer as an opaque constant.
3147   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3148     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3149                                  /*isOpaque*/true));
3150   else
3151     setValue(&I, N);            // noop cast.
3152 }
3153 
3154 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3156   const Value *SV = I.getOperand(0);
3157   SDValue N = getValue(SV);
3158   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3159 
3160   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3161   unsigned DestAS = I.getType()->getPointerAddressSpace();
3162 
3163   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3164     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3165 
3166   setValue(&I, N);
3167 }
3168 
3169 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3171   SDValue InVec = getValue(I.getOperand(0));
3172   SDValue InVal = getValue(I.getOperand(1));
3173   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3174                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3175   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3176                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3177                            InVec, InVal, InIdx));
3178 }
3179 
3180 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3182   SDValue InVec = getValue(I.getOperand(0));
3183   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3184                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3185   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3186                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3187                            InVec, InIdx));
3188 }
3189 
3190 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3191   SDValue Src1 = getValue(I.getOperand(0));
3192   SDValue Src2 = getValue(I.getOperand(1));
3193   SDLoc DL = getCurSDLoc();
3194 
3195   SmallVector<int, 8> Mask;
3196   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3197   unsigned MaskNumElts = Mask.size();
3198 
3199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3200   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3201   EVT SrcVT = Src1.getValueType();
3202   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3203 
3204   if (SrcNumElts == MaskNumElts) {
3205     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3206     return;
3207   }
3208 
3209   // Normalize the shuffle vector since mask and vector length don't match.
3210   if (SrcNumElts < MaskNumElts) {
3211     // Mask is longer than the source vectors. We can use concatenate vector to
3212     // make the mask and vectors lengths match.
3213 
3214     if (MaskNumElts % SrcNumElts == 0) {
3215       // Mask length is a multiple of the source vector length.
3216       // Check if the shuffle is some kind of concatenation of the input
3217       // vectors.
3218       unsigned NumConcat = MaskNumElts / SrcNumElts;
3219       bool IsConcat = true;
3220       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3221       for (unsigned i = 0; i != MaskNumElts; ++i) {
3222         int Idx = Mask[i];
3223         if (Idx < 0)
3224           continue;
3225         // Ensure the indices in each SrcVT sized piece are sequential and that
3226         // the same source is used for the whole piece.
3227         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3228             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3229              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3230           IsConcat = false;
3231           break;
3232         }
3233         // Remember which source this index came from.
3234         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3235       }
3236 
3237       // The shuffle is concatenating multiple vectors together. Just emit
3238       // a CONCAT_VECTORS operation.
3239       if (IsConcat) {
3240         SmallVector<SDValue, 8> ConcatOps;
3241         for (auto Src : ConcatSrcs) {
3242           if (Src < 0)
3243             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3244           else if (Src == 0)
3245             ConcatOps.push_back(Src1);
3246           else
3247             ConcatOps.push_back(Src2);
3248         }
3249         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3250         return;
3251       }
3252     }
3253 
3254     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3255     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3256     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3257                                     PaddedMaskNumElts);
3258 
3259     // Pad both vectors with undefs to make them the same length as the mask.
3260     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3261 
3262     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3263     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3264     MOps1[0] = Src1;
3265     MOps2[0] = Src2;
3266 
3267     Src1 = Src1.isUndef()
3268                ? DAG.getUNDEF(PaddedVT)
3269                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3270     Src2 = Src2.isUndef()
3271                ? DAG.getUNDEF(PaddedVT)
3272                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3273 
3274     // Readjust mask for new input vector length.
3275     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3276     for (unsigned i = 0; i != MaskNumElts; ++i) {
3277       int Idx = Mask[i];
3278       if (Idx >= (int)SrcNumElts)
3279         Idx -= SrcNumElts - PaddedMaskNumElts;
3280       MappedOps[i] = Idx;
3281     }
3282 
3283     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3284 
3285     // If the concatenated vector was padded, extract a subvector with the
3286     // correct number of elements.
3287     if (MaskNumElts != PaddedMaskNumElts)
3288       Result = DAG.getNode(
3289           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3290           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3291 
3292     setValue(&I, Result);
3293     return;
3294   }
3295 
3296   if (SrcNumElts > MaskNumElts) {
3297     // Analyze the access pattern of the vector to see if we can extract
3298     // two subvectors and do the shuffle.
3299     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3300     bool CanExtract = true;
3301     for (int Idx : Mask) {
3302       unsigned Input = 0;
3303       if (Idx < 0)
3304         continue;
3305 
3306       if (Idx >= (int)SrcNumElts) {
3307         Input = 1;
3308         Idx -= SrcNumElts;
3309       }
3310 
3311       // If all the indices come from the same MaskNumElts sized portion of
3312       // the sources we can use extract. Also make sure the extract wouldn't
3313       // extract past the end of the source.
3314       int NewStartIdx = alignDown(Idx, MaskNumElts);
3315       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3316           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3317         CanExtract = false;
3318       // Make sure we always update StartIdx as we use it to track if all
3319       // elements are undef.
3320       StartIdx[Input] = NewStartIdx;
3321     }
3322 
3323     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3324       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3325       return;
3326     }
3327     if (CanExtract) {
3328       // Extract appropriate subvector and generate a vector shuffle
3329       for (unsigned Input = 0; Input < 2; ++Input) {
3330         SDValue &Src = Input == 0 ? Src1 : Src2;
3331         if (StartIdx[Input] < 0)
3332           Src = DAG.getUNDEF(VT);
3333         else {
3334           Src = DAG.getNode(
3335               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3336               DAG.getConstant(StartIdx[Input], DL,
3337                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3338         }
3339       }
3340 
3341       // Calculate new mask.
3342       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3343       for (int &Idx : MappedOps) {
3344         if (Idx >= (int)SrcNumElts)
3345           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3346         else if (Idx >= 0)
3347           Idx -= StartIdx[0];
3348       }
3349 
3350       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3351       return;
3352     }
3353   }
3354 
3355   // We can't use either concat vectors or extract subvectors so fall back to
3356   // replacing the shuffle with extract and build vector.
3357   // to insert and build vector.
3358   EVT EltVT = VT.getVectorElementType();
3359   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3360   SmallVector<SDValue,8> Ops;
3361   for (int Idx : Mask) {
3362     SDValue Res;
3363 
3364     if (Idx < 0) {
3365       Res = DAG.getUNDEF(EltVT);
3366     } else {
3367       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3368       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3369 
3370       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3371                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3372     }
3373 
3374     Ops.push_back(Res);
3375   }
3376 
3377   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3378 }
3379 
3380 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3381   ArrayRef<unsigned> Indices;
3382   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3383     Indices = IV->getIndices();
3384   else
3385     Indices = cast<ConstantExpr>(&I)->getIndices();
3386 
3387   const Value *Op0 = I.getOperand(0);
3388   const Value *Op1 = I.getOperand(1);
3389   Type *AggTy = I.getType();
3390   Type *ValTy = Op1->getType();
3391   bool IntoUndef = isa<UndefValue>(Op0);
3392   bool FromUndef = isa<UndefValue>(Op1);
3393 
3394   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3395 
3396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397   SmallVector<EVT, 4> AggValueVTs;
3398   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3399   SmallVector<EVT, 4> ValValueVTs;
3400   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3401 
3402   unsigned NumAggValues = AggValueVTs.size();
3403   unsigned NumValValues = ValValueVTs.size();
3404   SmallVector<SDValue, 4> Values(NumAggValues);
3405 
3406   // Ignore an insertvalue that produces an empty object
3407   if (!NumAggValues) {
3408     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3409     return;
3410   }
3411 
3412   SDValue Agg = getValue(Op0);
3413   unsigned i = 0;
3414   // Copy the beginning value(s) from the original aggregate.
3415   for (; i != LinearIndex; ++i)
3416     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3417                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3418   // Copy values from the inserted value(s).
3419   if (NumValValues) {
3420     SDValue Val = getValue(Op1);
3421     for (; i != LinearIndex + NumValValues; ++i)
3422       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3423                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3424   }
3425   // Copy remaining value(s) from the original aggregate.
3426   for (; i != NumAggValues; ++i)
3427     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3428                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3429 
3430   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3431                            DAG.getVTList(AggValueVTs), Values));
3432 }
3433 
3434 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3435   ArrayRef<unsigned> Indices;
3436   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3437     Indices = EV->getIndices();
3438   else
3439     Indices = cast<ConstantExpr>(&I)->getIndices();
3440 
3441   const Value *Op0 = I.getOperand(0);
3442   Type *AggTy = Op0->getType();
3443   Type *ValTy = I.getType();
3444   bool OutOfUndef = isa<UndefValue>(Op0);
3445 
3446   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3447 
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   SmallVector<EVT, 4> ValValueVTs;
3450   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3451 
3452   unsigned NumValValues = ValValueVTs.size();
3453 
3454   // Ignore a extractvalue that produces an empty object
3455   if (!NumValValues) {
3456     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3457     return;
3458   }
3459 
3460   SmallVector<SDValue, 4> Values(NumValValues);
3461 
3462   SDValue Agg = getValue(Op0);
3463   // Copy out the selected value(s).
3464   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3465     Values[i - LinearIndex] =
3466       OutOfUndef ?
3467         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3468         SDValue(Agg.getNode(), Agg.getResNo() + i);
3469 
3470   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3471                            DAG.getVTList(ValValueVTs), Values));
3472 }
3473 
3474 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3475   Value *Op0 = I.getOperand(0);
3476   // Note that the pointer operand may be a vector of pointers. Take the scalar
3477   // element which holds a pointer.
3478   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3479   SDValue N = getValue(Op0);
3480   SDLoc dl = getCurSDLoc();
3481 
3482   // Normalize Vector GEP - all scalar operands should be converted to the
3483   // splat vector.
3484   unsigned VectorWidth = I.getType()->isVectorTy() ?
3485     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3486 
3487   if (VectorWidth && !N.getValueType().isVector()) {
3488     LLVMContext &Context = *DAG.getContext();
3489     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3490     N = DAG.getSplatBuildVector(VT, dl, N);
3491   }
3492 
3493   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3494        GTI != E; ++GTI) {
3495     const Value *Idx = GTI.getOperand();
3496     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3497       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3498       if (Field) {
3499         // N = N + Offset
3500         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3501 
3502         // In an inbounds GEP with an offset that is nonnegative even when
3503         // interpreted as signed, assume there is no unsigned overflow.
3504         SDNodeFlags Flags;
3505         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3506           Flags.setNoUnsignedWrap(true);
3507 
3508         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3509                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3510       }
3511     } else {
3512       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3513       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3514       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3515 
3516       // If this is a scalar constant or a splat vector of constants,
3517       // handle it quickly.
3518       const auto *CI = dyn_cast<ConstantInt>(Idx);
3519       if (!CI && isa<ConstantDataVector>(Idx) &&
3520           cast<ConstantDataVector>(Idx)->getSplatValue())
3521         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3522 
3523       if (CI) {
3524         if (CI->isZero())
3525           continue;
3526         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3527         LLVMContext &Context = *DAG.getContext();
3528         SDValue OffsVal = VectorWidth ?
3529           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3530           DAG.getConstant(Offs, dl, IdxTy);
3531 
3532         // In an inbouds GEP with an offset that is nonnegative even when
3533         // interpreted as signed, assume there is no unsigned overflow.
3534         SDNodeFlags Flags;
3535         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3536           Flags.setNoUnsignedWrap(true);
3537 
3538         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3539         continue;
3540       }
3541 
3542       // N = N + Idx * ElementSize;
3543       SDValue IdxN = getValue(Idx);
3544 
3545       if (!IdxN.getValueType().isVector() && VectorWidth) {
3546         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3547         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3548       }
3549 
3550       // If the index is smaller or larger than intptr_t, truncate or extend
3551       // it.
3552       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3553 
3554       // If this is a multiply by a power of two, turn it into a shl
3555       // immediately.  This is a very common case.
3556       if (ElementSize != 1) {
3557         if (ElementSize.isPowerOf2()) {
3558           unsigned Amt = ElementSize.logBase2();
3559           IdxN = DAG.getNode(ISD::SHL, dl,
3560                              N.getValueType(), IdxN,
3561                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3562         } else {
3563           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3564           IdxN = DAG.getNode(ISD::MUL, dl,
3565                              N.getValueType(), IdxN, Scale);
3566         }
3567       }
3568 
3569       N = DAG.getNode(ISD::ADD, dl,
3570                       N.getValueType(), N, IdxN);
3571     }
3572   }
3573 
3574   setValue(&I, N);
3575 }
3576 
3577 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3578   // If this is a fixed sized alloca in the entry block of the function,
3579   // allocate it statically on the stack.
3580   if (FuncInfo.StaticAllocaMap.count(&I))
3581     return;   // getValue will auto-populate this.
3582 
3583   SDLoc dl = getCurSDLoc();
3584   Type *Ty = I.getAllocatedType();
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   auto &DL = DAG.getDataLayout();
3587   uint64_t TySize = DL.getTypeAllocSize(Ty);
3588   unsigned Align =
3589       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3590 
3591   SDValue AllocSize = getValue(I.getArraySize());
3592 
3593   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3594   if (AllocSize.getValueType() != IntPtr)
3595     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3596 
3597   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3598                           AllocSize,
3599                           DAG.getConstant(TySize, dl, IntPtr));
3600 
3601   // Handle alignment.  If the requested alignment is less than or equal to
3602   // the stack alignment, ignore it.  If the size is greater than or equal to
3603   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3604   unsigned StackAlign =
3605       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3606   if (Align <= StackAlign)
3607     Align = 0;
3608 
3609   // Round the size of the allocation up to the stack alignment size
3610   // by add SA-1 to the size. This doesn't overflow because we're computing
3611   // an address inside an alloca.
3612   SDNodeFlags Flags;
3613   Flags.setNoUnsignedWrap(true);
3614   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3615                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3616 
3617   // Mask out the low bits for alignment purposes.
3618   AllocSize =
3619       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3620                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3621 
3622   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3623   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3624   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3625   setValue(&I, DSA);
3626   DAG.setRoot(DSA.getValue(1));
3627 
3628   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3629 }
3630 
3631 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3632   if (I.isAtomic())
3633     return visitAtomicLoad(I);
3634 
3635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3636   const Value *SV = I.getOperand(0);
3637   if (TLI.supportSwiftError()) {
3638     // Swifterror values can come from either a function parameter with
3639     // swifterror attribute or an alloca with swifterror attribute.
3640     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3641       if (Arg->hasSwiftErrorAttr())
3642         return visitLoadFromSwiftError(I);
3643     }
3644 
3645     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3646       if (Alloca->isSwiftError())
3647         return visitLoadFromSwiftError(I);
3648     }
3649   }
3650 
3651   SDValue Ptr = getValue(SV);
3652 
3653   Type *Ty = I.getType();
3654 
3655   bool isVolatile = I.isVolatile();
3656   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3657   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3658   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3659   unsigned Alignment = I.getAlignment();
3660 
3661   AAMDNodes AAInfo;
3662   I.getAAMetadata(AAInfo);
3663   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3664 
3665   SmallVector<EVT, 4> ValueVTs;
3666   SmallVector<uint64_t, 4> Offsets;
3667   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3668   unsigned NumValues = ValueVTs.size();
3669   if (NumValues == 0)
3670     return;
3671 
3672   SDValue Root;
3673   bool ConstantMemory = false;
3674   if (isVolatile || NumValues > MaxParallelChains)
3675     // Serialize volatile loads with other side effects.
3676     Root = getRoot();
3677   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3678                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3679     // Do not serialize (non-volatile) loads of constant memory with anything.
3680     Root = DAG.getEntryNode();
3681     ConstantMemory = true;
3682   } else {
3683     // Do not serialize non-volatile loads against each other.
3684     Root = DAG.getRoot();
3685   }
3686 
3687   SDLoc dl = getCurSDLoc();
3688 
3689   if (isVolatile)
3690     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3691 
3692   // An aggregate load cannot wrap around the address space, so offsets to its
3693   // parts don't wrap either.
3694   SDNodeFlags Flags;
3695   Flags.setNoUnsignedWrap(true);
3696 
3697   SmallVector<SDValue, 4> Values(NumValues);
3698   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3699   EVT PtrVT = Ptr.getValueType();
3700   unsigned ChainI = 0;
3701   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3702     // Serializing loads here may result in excessive register pressure, and
3703     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3704     // could recover a bit by hoisting nodes upward in the chain by recognizing
3705     // they are side-effect free or do not alias. The optimizer should really
3706     // avoid this case by converting large object/array copies to llvm.memcpy
3707     // (MaxParallelChains should always remain as failsafe).
3708     if (ChainI == MaxParallelChains) {
3709       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3710       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3711                                   makeArrayRef(Chains.data(), ChainI));
3712       Root = Chain;
3713       ChainI = 0;
3714     }
3715     SDValue A = DAG.getNode(ISD::ADD, dl,
3716                             PtrVT, Ptr,
3717                             DAG.getConstant(Offsets[i], dl, PtrVT),
3718                             Flags);
3719     auto MMOFlags = MachineMemOperand::MONone;
3720     if (isVolatile)
3721       MMOFlags |= MachineMemOperand::MOVolatile;
3722     if (isNonTemporal)
3723       MMOFlags |= MachineMemOperand::MONonTemporal;
3724     if (isInvariant)
3725       MMOFlags |= MachineMemOperand::MOInvariant;
3726     if (isDereferenceable)
3727       MMOFlags |= MachineMemOperand::MODereferenceable;
3728     MMOFlags |= TLI.getMMOFlags(I);
3729 
3730     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3731                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3732                             MMOFlags, AAInfo, Ranges);
3733 
3734     Values[i] = L;
3735     Chains[ChainI] = L.getValue(1);
3736   }
3737 
3738   if (!ConstantMemory) {
3739     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3740                                 makeArrayRef(Chains.data(), ChainI));
3741     if (isVolatile)
3742       DAG.setRoot(Chain);
3743     else
3744       PendingLoads.push_back(Chain);
3745   }
3746 
3747   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3748                            DAG.getVTList(ValueVTs), Values));
3749 }
3750 
3751 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3752   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3753          "call visitStoreToSwiftError when backend supports swifterror");
3754 
3755   SmallVector<EVT, 4> ValueVTs;
3756   SmallVector<uint64_t, 4> Offsets;
3757   const Value *SrcV = I.getOperand(0);
3758   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3759                   SrcV->getType(), ValueVTs, &Offsets);
3760   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3761          "expect a single EVT for swifterror");
3762 
3763   SDValue Src = getValue(SrcV);
3764   // Create a virtual register, then update the virtual register.
3765   unsigned VReg; bool CreatedVReg;
3766   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3767   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3768   // Chain can be getRoot or getControlRoot.
3769   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3770                                       SDValue(Src.getNode(), Src.getResNo()));
3771   DAG.setRoot(CopyNode);
3772   if (CreatedVReg)
3773     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3774 }
3775 
3776 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3777   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3778          "call visitLoadFromSwiftError when backend supports swifterror");
3779 
3780   assert(!I.isVolatile() &&
3781          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3782          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3783          "Support volatile, non temporal, invariant for load_from_swift_error");
3784 
3785   const Value *SV = I.getOperand(0);
3786   Type *Ty = I.getType();
3787   AAMDNodes AAInfo;
3788   I.getAAMetadata(AAInfo);
3789   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3790              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3791          "load_from_swift_error should not be constant memory");
3792 
3793   SmallVector<EVT, 4> ValueVTs;
3794   SmallVector<uint64_t, 4> Offsets;
3795   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3796                   ValueVTs, &Offsets);
3797   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3798          "expect a single EVT for swifterror");
3799 
3800   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3801   SDValue L = DAG.getCopyFromReg(
3802       getRoot(), getCurSDLoc(),
3803       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3804       ValueVTs[0]);
3805 
3806   setValue(&I, L);
3807 }
3808 
3809 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3810   if (I.isAtomic())
3811     return visitAtomicStore(I);
3812 
3813   const Value *SrcV = I.getOperand(0);
3814   const Value *PtrV = I.getOperand(1);
3815 
3816   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3817   if (TLI.supportSwiftError()) {
3818     // Swifterror values can come from either a function parameter with
3819     // swifterror attribute or an alloca with swifterror attribute.
3820     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3821       if (Arg->hasSwiftErrorAttr())
3822         return visitStoreToSwiftError(I);
3823     }
3824 
3825     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3826       if (Alloca->isSwiftError())
3827         return visitStoreToSwiftError(I);
3828     }
3829   }
3830 
3831   SmallVector<EVT, 4> ValueVTs;
3832   SmallVector<uint64_t, 4> Offsets;
3833   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3834                   SrcV->getType(), ValueVTs, &Offsets);
3835   unsigned NumValues = ValueVTs.size();
3836   if (NumValues == 0)
3837     return;
3838 
3839   // Get the lowered operands. Note that we do this after
3840   // checking if NumResults is zero, because with zero results
3841   // the operands won't have values in the map.
3842   SDValue Src = getValue(SrcV);
3843   SDValue Ptr = getValue(PtrV);
3844 
3845   SDValue Root = getRoot();
3846   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3847   SDLoc dl = getCurSDLoc();
3848   EVT PtrVT = Ptr.getValueType();
3849   unsigned Alignment = I.getAlignment();
3850   AAMDNodes AAInfo;
3851   I.getAAMetadata(AAInfo);
3852 
3853   auto MMOFlags = MachineMemOperand::MONone;
3854   if (I.isVolatile())
3855     MMOFlags |= MachineMemOperand::MOVolatile;
3856   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3857     MMOFlags |= MachineMemOperand::MONonTemporal;
3858   MMOFlags |= TLI.getMMOFlags(I);
3859 
3860   // An aggregate load cannot wrap around the address space, so offsets to its
3861   // parts don't wrap either.
3862   SDNodeFlags Flags;
3863   Flags.setNoUnsignedWrap(true);
3864 
3865   unsigned ChainI = 0;
3866   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3867     // See visitLoad comments.
3868     if (ChainI == MaxParallelChains) {
3869       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3870                                   makeArrayRef(Chains.data(), ChainI));
3871       Root = Chain;
3872       ChainI = 0;
3873     }
3874     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3875                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3876     SDValue St = DAG.getStore(
3877         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3878         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3879     Chains[ChainI] = St;
3880   }
3881 
3882   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3883                                   makeArrayRef(Chains.data(), ChainI));
3884   DAG.setRoot(StoreNode);
3885 }
3886 
3887 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3888                                            bool IsCompressing) {
3889   SDLoc sdl = getCurSDLoc();
3890 
3891   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3892                            unsigned& Alignment) {
3893     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3894     Src0 = I.getArgOperand(0);
3895     Ptr = I.getArgOperand(1);
3896     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3897     Mask = I.getArgOperand(3);
3898   };
3899   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3900                            unsigned& Alignment) {
3901     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3902     Src0 = I.getArgOperand(0);
3903     Ptr = I.getArgOperand(1);
3904     Mask = I.getArgOperand(2);
3905     Alignment = 0;
3906   };
3907 
3908   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3909   unsigned Alignment;
3910   if (IsCompressing)
3911     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3912   else
3913     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3914 
3915   SDValue Ptr = getValue(PtrOperand);
3916   SDValue Src0 = getValue(Src0Operand);
3917   SDValue Mask = getValue(MaskOperand);
3918 
3919   EVT VT = Src0.getValueType();
3920   if (!Alignment)
3921     Alignment = DAG.getEVTAlignment(VT);
3922 
3923   AAMDNodes AAInfo;
3924   I.getAAMetadata(AAInfo);
3925 
3926   MachineMemOperand *MMO =
3927     DAG.getMachineFunction().
3928     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3929                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3930                           Alignment, AAInfo);
3931   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3932                                          MMO, false /* Truncating */,
3933                                          IsCompressing);
3934   DAG.setRoot(StoreNode);
3935   setValue(&I, StoreNode);
3936 }
3937 
3938 // Get a uniform base for the Gather/Scatter intrinsic.
3939 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3940 // We try to represent it as a base pointer + vector of indices.
3941 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3942 // The first operand of the GEP may be a single pointer or a vector of pointers
3943 // Example:
3944 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3945 //  or
3946 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3947 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3948 //
3949 // When the first GEP operand is a single pointer - it is the uniform base we
3950 // are looking for. If first operand of the GEP is a splat vector - we
3951 // extract the splat value and use it as a uniform base.
3952 // In all other cases the function returns 'false'.
3953 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3954                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3955   SelectionDAG& DAG = SDB->DAG;
3956   LLVMContext &Context = *DAG.getContext();
3957 
3958   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3959   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3960   if (!GEP)
3961     return false;
3962 
3963   const Value *GEPPtr = GEP->getPointerOperand();
3964   if (!GEPPtr->getType()->isVectorTy())
3965     Ptr = GEPPtr;
3966   else if (!(Ptr = getSplatValue(GEPPtr)))
3967     return false;
3968 
3969   unsigned FinalIndex = GEP->getNumOperands() - 1;
3970   Value *IndexVal = GEP->getOperand(FinalIndex);
3971 
3972   // Ensure all the other indices are 0.
3973   for (unsigned i = 1; i < FinalIndex; ++i) {
3974     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3975     if (!C || !C->isZero())
3976       return false;
3977   }
3978 
3979   // The operands of the GEP may be defined in another basic block.
3980   // In this case we'll not find nodes for the operands.
3981   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3982     return false;
3983 
3984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3985   const DataLayout &DL = DAG.getDataLayout();
3986   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3987                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3988   Base = SDB->getValue(Ptr);
3989   Index = SDB->getValue(IndexVal);
3990 
3991   if (!Index.getValueType().isVector()) {
3992     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3993     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3994     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3995   }
3996   return true;
3997 }
3998 
3999 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4000   SDLoc sdl = getCurSDLoc();
4001 
4002   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4003   const Value *Ptr = I.getArgOperand(1);
4004   SDValue Src0 = getValue(I.getArgOperand(0));
4005   SDValue Mask = getValue(I.getArgOperand(3));
4006   EVT VT = Src0.getValueType();
4007   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4008   if (!Alignment)
4009     Alignment = DAG.getEVTAlignment(VT);
4010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011 
4012   AAMDNodes AAInfo;
4013   I.getAAMetadata(AAInfo);
4014 
4015   SDValue Base;
4016   SDValue Index;
4017   SDValue Scale;
4018   const Value *BasePtr = Ptr;
4019   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4020 
4021   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4022   MachineMemOperand *MMO = DAG.getMachineFunction().
4023     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4024                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4025                          Alignment, AAInfo);
4026   if (!UniformBase) {
4027     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4028     Index = getValue(Ptr);
4029     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4030   }
4031   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4032   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4033                                          Ops, MMO);
4034   DAG.setRoot(Scatter);
4035   setValue(&I, Scatter);
4036 }
4037 
4038 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4039   SDLoc sdl = getCurSDLoc();
4040 
4041   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4042                            unsigned& Alignment) {
4043     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4044     Ptr = I.getArgOperand(0);
4045     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4046     Mask = I.getArgOperand(2);
4047     Src0 = I.getArgOperand(3);
4048   };
4049   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4050                            unsigned& Alignment) {
4051     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4052     Ptr = I.getArgOperand(0);
4053     Alignment = 0;
4054     Mask = I.getArgOperand(1);
4055     Src0 = I.getArgOperand(2);
4056   };
4057 
4058   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4059   unsigned Alignment;
4060   if (IsExpanding)
4061     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4062   else
4063     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4064 
4065   SDValue Ptr = getValue(PtrOperand);
4066   SDValue Src0 = getValue(Src0Operand);
4067   SDValue Mask = getValue(MaskOperand);
4068 
4069   EVT VT = Src0.getValueType();
4070   if (!Alignment)
4071     Alignment = DAG.getEVTAlignment(VT);
4072 
4073   AAMDNodes AAInfo;
4074   I.getAAMetadata(AAInfo);
4075   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4076 
4077   // Do not serialize masked loads of constant memory with anything.
4078   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4079       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4080   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4081 
4082   MachineMemOperand *MMO =
4083     DAG.getMachineFunction().
4084     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4085                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4086                           Alignment, AAInfo, Ranges);
4087 
4088   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4089                                    ISD::NON_EXTLOAD, IsExpanding);
4090   if (AddToChain)
4091     PendingLoads.push_back(Load.getValue(1));
4092   setValue(&I, Load);
4093 }
4094 
4095 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4096   SDLoc sdl = getCurSDLoc();
4097 
4098   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4099   const Value *Ptr = I.getArgOperand(0);
4100   SDValue Src0 = getValue(I.getArgOperand(3));
4101   SDValue Mask = getValue(I.getArgOperand(2));
4102 
4103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4104   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4105   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4106   if (!Alignment)
4107     Alignment = DAG.getEVTAlignment(VT);
4108 
4109   AAMDNodes AAInfo;
4110   I.getAAMetadata(AAInfo);
4111   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4112 
4113   SDValue Root = DAG.getRoot();
4114   SDValue Base;
4115   SDValue Index;
4116   SDValue Scale;
4117   const Value *BasePtr = Ptr;
4118   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4119   bool ConstantMemory = false;
4120   if (UniformBase &&
4121       AA && AA->pointsToConstantMemory(MemoryLocation(
4122           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4123           AAInfo))) {
4124     // Do not serialize (non-volatile) loads of constant memory with anything.
4125     Root = DAG.getEntryNode();
4126     ConstantMemory = true;
4127   }
4128 
4129   MachineMemOperand *MMO =
4130     DAG.getMachineFunction().
4131     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4132                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4133                          Alignment, AAInfo, Ranges);
4134 
4135   if (!UniformBase) {
4136     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4137     Index = getValue(Ptr);
4138     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4139   }
4140   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4141   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4142                                        Ops, MMO);
4143 
4144   SDValue OutChain = Gather.getValue(1);
4145   if (!ConstantMemory)
4146     PendingLoads.push_back(OutChain);
4147   setValue(&I, Gather);
4148 }
4149 
4150 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4151   SDLoc dl = getCurSDLoc();
4152   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4153   AtomicOrdering FailureOrder = I.getFailureOrdering();
4154   SyncScope::ID SSID = I.getSyncScopeID();
4155 
4156   SDValue InChain = getRoot();
4157 
4158   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4159   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4160   SDValue L = DAG.getAtomicCmpSwap(
4161       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4162       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4163       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4164       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4165 
4166   SDValue OutChain = L.getValue(2);
4167 
4168   setValue(&I, L);
4169   DAG.setRoot(OutChain);
4170 }
4171 
4172 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4173   SDLoc dl = getCurSDLoc();
4174   ISD::NodeType NT;
4175   switch (I.getOperation()) {
4176   default: llvm_unreachable("Unknown atomicrmw operation");
4177   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4178   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4179   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4180   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4181   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4182   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4183   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4184   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4185   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4186   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4187   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4188   }
4189   AtomicOrdering Order = I.getOrdering();
4190   SyncScope::ID SSID = I.getSyncScopeID();
4191 
4192   SDValue InChain = getRoot();
4193 
4194   SDValue L =
4195     DAG.getAtomic(NT, dl,
4196                   getValue(I.getValOperand()).getSimpleValueType(),
4197                   InChain,
4198                   getValue(I.getPointerOperand()),
4199                   getValue(I.getValOperand()),
4200                   I.getPointerOperand(),
4201                   /* Alignment=*/ 0, Order, SSID);
4202 
4203   SDValue OutChain = L.getValue(1);
4204 
4205   setValue(&I, L);
4206   DAG.setRoot(OutChain);
4207 }
4208 
4209 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4210   SDLoc dl = getCurSDLoc();
4211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4212   SDValue Ops[3];
4213   Ops[0] = getRoot();
4214   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4215                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4216   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4217                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4218   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4219 }
4220 
4221 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4222   SDLoc dl = getCurSDLoc();
4223   AtomicOrdering Order = I.getOrdering();
4224   SyncScope::ID SSID = I.getSyncScopeID();
4225 
4226   SDValue InChain = getRoot();
4227 
4228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4229   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4230 
4231   if (!TLI.supportsUnalignedAtomics() &&
4232       I.getAlignment() < VT.getStoreSize())
4233     report_fatal_error("Cannot generate unaligned atomic load");
4234 
4235   MachineMemOperand *MMO =
4236       DAG.getMachineFunction().
4237       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4238                            MachineMemOperand::MOVolatile |
4239                            MachineMemOperand::MOLoad,
4240                            VT.getStoreSize(),
4241                            I.getAlignment() ? I.getAlignment() :
4242                                               DAG.getEVTAlignment(VT),
4243                            AAMDNodes(), nullptr, SSID, Order);
4244 
4245   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4246   SDValue L =
4247       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4248                     getValue(I.getPointerOperand()), MMO);
4249 
4250   SDValue OutChain = L.getValue(1);
4251 
4252   setValue(&I, L);
4253   DAG.setRoot(OutChain);
4254 }
4255 
4256 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4257   SDLoc dl = getCurSDLoc();
4258 
4259   AtomicOrdering Order = I.getOrdering();
4260   SyncScope::ID SSID = I.getSyncScopeID();
4261 
4262   SDValue InChain = getRoot();
4263 
4264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4265   EVT VT =
4266       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4267 
4268   if (I.getAlignment() < VT.getStoreSize())
4269     report_fatal_error("Cannot generate unaligned atomic store");
4270 
4271   SDValue OutChain =
4272     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4273                   InChain,
4274                   getValue(I.getPointerOperand()),
4275                   getValue(I.getValueOperand()),
4276                   I.getPointerOperand(), I.getAlignment(),
4277                   Order, SSID);
4278 
4279   DAG.setRoot(OutChain);
4280 }
4281 
4282 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4283 /// node.
4284 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4285                                                unsigned Intrinsic) {
4286   // Ignore the callsite's attributes. A specific call site may be marked with
4287   // readnone, but the lowering code will expect the chain based on the
4288   // definition.
4289   const Function *F = I.getCalledFunction();
4290   bool HasChain = !F->doesNotAccessMemory();
4291   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4292 
4293   // Build the operand list.
4294   SmallVector<SDValue, 8> Ops;
4295   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4296     if (OnlyLoad) {
4297       // We don't need to serialize loads against other loads.
4298       Ops.push_back(DAG.getRoot());
4299     } else {
4300       Ops.push_back(getRoot());
4301     }
4302   }
4303 
4304   // Info is set by getTgtMemInstrinsic
4305   TargetLowering::IntrinsicInfo Info;
4306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4307   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4308                                                DAG.getMachineFunction(),
4309                                                Intrinsic);
4310 
4311   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4312   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4313       Info.opc == ISD::INTRINSIC_W_CHAIN)
4314     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4315                                         TLI.getPointerTy(DAG.getDataLayout())));
4316 
4317   // Add all operands of the call to the operand list.
4318   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4319     SDValue Op = getValue(I.getArgOperand(i));
4320     Ops.push_back(Op);
4321   }
4322 
4323   SmallVector<EVT, 4> ValueVTs;
4324   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4325 
4326   if (HasChain)
4327     ValueVTs.push_back(MVT::Other);
4328 
4329   SDVTList VTs = DAG.getVTList(ValueVTs);
4330 
4331   // Create the node.
4332   SDValue Result;
4333   if (IsTgtIntrinsic) {
4334     // This is target intrinsic that touches memory
4335     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4336       Ops, Info.memVT,
4337       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4338       Info.flags, Info.size);
4339   } else if (!HasChain) {
4340     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4341   } else if (!I.getType()->isVoidTy()) {
4342     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4343   } else {
4344     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4345   }
4346 
4347   if (HasChain) {
4348     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4349     if (OnlyLoad)
4350       PendingLoads.push_back(Chain);
4351     else
4352       DAG.setRoot(Chain);
4353   }
4354 
4355   if (!I.getType()->isVoidTy()) {
4356     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4357       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4358       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4359     } else
4360       Result = lowerRangeToAssertZExt(DAG, I, Result);
4361 
4362     setValue(&I, Result);
4363   }
4364 }
4365 
4366 /// GetSignificand - Get the significand and build it into a floating-point
4367 /// number with exponent of 1:
4368 ///
4369 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4370 ///
4371 /// where Op is the hexadecimal representation of floating point value.
4372 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4373   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4374                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4375   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4376                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4377   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4378 }
4379 
4380 /// GetExponent - Get the exponent:
4381 ///
4382 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4383 ///
4384 /// where Op is the hexadecimal representation of floating point value.
4385 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4386                            const TargetLowering &TLI, const SDLoc &dl) {
4387   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4388                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4389   SDValue t1 = DAG.getNode(
4390       ISD::SRL, dl, MVT::i32, t0,
4391       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4392   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4393                            DAG.getConstant(127, dl, MVT::i32));
4394   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4395 }
4396 
4397 /// getF32Constant - Get 32-bit floating point constant.
4398 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4399                               const SDLoc &dl) {
4400   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4401                            MVT::f32);
4402 }
4403 
4404 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4405                                        SelectionDAG &DAG) {
4406   // TODO: What fast-math-flags should be set on the floating-point nodes?
4407 
4408   //   IntegerPartOfX = ((int32_t)(t0);
4409   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4410 
4411   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4412   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4413   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4414 
4415   //   IntegerPartOfX <<= 23;
4416   IntegerPartOfX = DAG.getNode(
4417       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4418       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4419                                   DAG.getDataLayout())));
4420 
4421   SDValue TwoToFractionalPartOfX;
4422   if (LimitFloatPrecision <= 6) {
4423     // For floating-point precision of 6:
4424     //
4425     //   TwoToFractionalPartOfX =
4426     //     0.997535578f +
4427     //       (0.735607626f + 0.252464424f * x) * x;
4428     //
4429     // error 0.0144103317, which is 6 bits
4430     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4431                              getF32Constant(DAG, 0x3e814304, dl));
4432     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4433                              getF32Constant(DAG, 0x3f3c50c8, dl));
4434     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4435     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4436                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4437   } else if (LimitFloatPrecision <= 12) {
4438     // For floating-point precision of 12:
4439     //
4440     //   TwoToFractionalPartOfX =
4441     //     0.999892986f +
4442     //       (0.696457318f +
4443     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4444     //
4445     // error 0.000107046256, which is 13 to 14 bits
4446     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4447                              getF32Constant(DAG, 0x3da235e3, dl));
4448     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4449                              getF32Constant(DAG, 0x3e65b8f3, dl));
4450     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4451     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4452                              getF32Constant(DAG, 0x3f324b07, dl));
4453     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4454     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4455                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4456   } else { // LimitFloatPrecision <= 18
4457     // For floating-point precision of 18:
4458     //
4459     //   TwoToFractionalPartOfX =
4460     //     0.999999982f +
4461     //       (0.693148872f +
4462     //         (0.240227044f +
4463     //           (0.554906021e-1f +
4464     //             (0.961591928e-2f +
4465     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4466     // error 2.47208000*10^(-7), which is better than 18 bits
4467     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468                              getF32Constant(DAG, 0x3924b03e, dl));
4469     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4470                              getF32Constant(DAG, 0x3ab24b87, dl));
4471     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4472     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4473                              getF32Constant(DAG, 0x3c1d8c17, dl));
4474     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4475     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4476                              getF32Constant(DAG, 0x3d634a1d, dl));
4477     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4478     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4479                              getF32Constant(DAG, 0x3e75fe14, dl));
4480     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4481     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4482                               getF32Constant(DAG, 0x3f317234, dl));
4483     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4484     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4485                                          getF32Constant(DAG, 0x3f800000, dl));
4486   }
4487 
4488   // Add the exponent into the result in integer domain.
4489   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4490   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4491                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4492 }
4493 
4494 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4495 /// limited-precision mode.
4496 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4497                          const TargetLowering &TLI) {
4498   if (Op.getValueType() == MVT::f32 &&
4499       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4500 
4501     // Put the exponent in the right bit position for later addition to the
4502     // final result:
4503     //
4504     //   #define LOG2OFe 1.4426950f
4505     //   t0 = Op * LOG2OFe
4506 
4507     // TODO: What fast-math-flags should be set here?
4508     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4509                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4510     return getLimitedPrecisionExp2(t0, dl, DAG);
4511   }
4512 
4513   // No special expansion.
4514   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4515 }
4516 
4517 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4518 /// limited-precision mode.
4519 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4520                          const TargetLowering &TLI) {
4521   // TODO: What fast-math-flags should be set on the floating-point nodes?
4522 
4523   if (Op.getValueType() == MVT::f32 &&
4524       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4525     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4526 
4527     // Scale the exponent by log(2) [0.69314718f].
4528     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4529     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4530                                         getF32Constant(DAG, 0x3f317218, dl));
4531 
4532     // Get the significand and build it into a floating-point number with
4533     // exponent of 1.
4534     SDValue X = GetSignificand(DAG, Op1, dl);
4535 
4536     SDValue LogOfMantissa;
4537     if (LimitFloatPrecision <= 6) {
4538       // For floating-point precision of 6:
4539       //
4540       //   LogofMantissa =
4541       //     -1.1609546f +
4542       //       (1.4034025f - 0.23903021f * x) * x;
4543       //
4544       // error 0.0034276066, which is better than 8 bits
4545       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4546                                getF32Constant(DAG, 0xbe74c456, dl));
4547       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4548                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4549       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4550       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4551                                   getF32Constant(DAG, 0x3f949a29, dl));
4552     } else if (LimitFloatPrecision <= 12) {
4553       // For floating-point precision of 12:
4554       //
4555       //   LogOfMantissa =
4556       //     -1.7417939f +
4557       //       (2.8212026f +
4558       //         (-1.4699568f +
4559       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4560       //
4561       // error 0.000061011436, which is 14 bits
4562       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4563                                getF32Constant(DAG, 0xbd67b6d6, dl));
4564       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4565                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4566       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4567       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4568                                getF32Constant(DAG, 0x3fbc278b, dl));
4569       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4570       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4571                                getF32Constant(DAG, 0x40348e95, dl));
4572       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4573       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4574                                   getF32Constant(DAG, 0x3fdef31a, dl));
4575     } else { // LimitFloatPrecision <= 18
4576       // For floating-point precision of 18:
4577       //
4578       //   LogOfMantissa =
4579       //     -2.1072184f +
4580       //       (4.2372794f +
4581       //         (-3.7029485f +
4582       //           (2.2781945f +
4583       //             (-0.87823314f +
4584       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4585       //
4586       // error 0.0000023660568, which is better than 18 bits
4587       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4588                                getF32Constant(DAG, 0xbc91e5ac, dl));
4589       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4590                                getF32Constant(DAG, 0x3e4350aa, dl));
4591       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4592       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4593                                getF32Constant(DAG, 0x3f60d3e3, dl));
4594       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4595       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4596                                getF32Constant(DAG, 0x4011cdf0, dl));
4597       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4598       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4599                                getF32Constant(DAG, 0x406cfd1c, dl));
4600       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4601       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4602                                getF32Constant(DAG, 0x408797cb, dl));
4603       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4604       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4605                                   getF32Constant(DAG, 0x4006dcab, dl));
4606     }
4607 
4608     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4609   }
4610 
4611   // No special expansion.
4612   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4613 }
4614 
4615 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4616 /// limited-precision mode.
4617 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4618                           const TargetLowering &TLI) {
4619   // TODO: What fast-math-flags should be set on the floating-point nodes?
4620 
4621   if (Op.getValueType() == MVT::f32 &&
4622       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4623     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4624 
4625     // Get the exponent.
4626     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4627 
4628     // Get the significand and build it into a floating-point number with
4629     // exponent of 1.
4630     SDValue X = GetSignificand(DAG, Op1, dl);
4631 
4632     // Different possible minimax approximations of significand in
4633     // floating-point for various degrees of accuracy over [1,2].
4634     SDValue Log2ofMantissa;
4635     if (LimitFloatPrecision <= 6) {
4636       // For floating-point precision of 6:
4637       //
4638       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4639       //
4640       // error 0.0049451742, which is more than 7 bits
4641       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4642                                getF32Constant(DAG, 0xbeb08fe0, dl));
4643       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4644                                getF32Constant(DAG, 0x40019463, dl));
4645       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4647                                    getF32Constant(DAG, 0x3fd6633d, dl));
4648     } else if (LimitFloatPrecision <= 12) {
4649       // For floating-point precision of 12:
4650       //
4651       //   Log2ofMantissa =
4652       //     -2.51285454f +
4653       //       (4.07009056f +
4654       //         (-2.12067489f +
4655       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4656       //
4657       // error 0.0000876136000, which is better than 13 bits
4658       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4659                                getF32Constant(DAG, 0xbda7262e, dl));
4660       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4661                                getF32Constant(DAG, 0x3f25280b, dl));
4662       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4663       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4664                                getF32Constant(DAG, 0x4007b923, dl));
4665       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4666       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4667                                getF32Constant(DAG, 0x40823e2f, dl));
4668       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4669       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4670                                    getF32Constant(DAG, 0x4020d29c, dl));
4671     } else { // LimitFloatPrecision <= 18
4672       // For floating-point precision of 18:
4673       //
4674       //   Log2ofMantissa =
4675       //     -3.0400495f +
4676       //       (6.1129976f +
4677       //         (-5.3420409f +
4678       //           (3.2865683f +
4679       //             (-1.2669343f +
4680       //               (0.27515199f -
4681       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4682       //
4683       // error 0.0000018516, which is better than 18 bits
4684       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4685                                getF32Constant(DAG, 0xbcd2769e, dl));
4686       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4687                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4688       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4689       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4690                                getF32Constant(DAG, 0x3fa22ae7, dl));
4691       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4692       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4693                                getF32Constant(DAG, 0x40525723, dl));
4694       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4695       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4696                                getF32Constant(DAG, 0x40aaf200, dl));
4697       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4698       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4699                                getF32Constant(DAG, 0x40c39dad, dl));
4700       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4701       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4702                                    getF32Constant(DAG, 0x4042902c, dl));
4703     }
4704 
4705     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4706   }
4707 
4708   // No special expansion.
4709   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4710 }
4711 
4712 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4713 /// limited-precision mode.
4714 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4715                            const TargetLowering &TLI) {
4716   // TODO: What fast-math-flags should be set on the floating-point nodes?
4717 
4718   if (Op.getValueType() == MVT::f32 &&
4719       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4720     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4721 
4722     // Scale the exponent by log10(2) [0.30102999f].
4723     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4724     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4725                                         getF32Constant(DAG, 0x3e9a209a, dl));
4726 
4727     // Get the significand and build it into a floating-point number with
4728     // exponent of 1.
4729     SDValue X = GetSignificand(DAG, Op1, dl);
4730 
4731     SDValue Log10ofMantissa;
4732     if (LimitFloatPrecision <= 6) {
4733       // For floating-point precision of 6:
4734       //
4735       //   Log10ofMantissa =
4736       //     -0.50419619f +
4737       //       (0.60948995f - 0.10380950f * x) * x;
4738       //
4739       // error 0.0014886165, which is 6 bits
4740       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4741                                getF32Constant(DAG, 0xbdd49a13, dl));
4742       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4743                                getF32Constant(DAG, 0x3f1c0789, dl));
4744       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4745       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4746                                     getF32Constant(DAG, 0x3f011300, dl));
4747     } else if (LimitFloatPrecision <= 12) {
4748       // For floating-point precision of 12:
4749       //
4750       //   Log10ofMantissa =
4751       //     -0.64831180f +
4752       //       (0.91751397f +
4753       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4754       //
4755       // error 0.00019228036, which is better than 12 bits
4756       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4757                                getF32Constant(DAG, 0x3d431f31, dl));
4758       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4759                                getF32Constant(DAG, 0x3ea21fb2, dl));
4760       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4761       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4762                                getF32Constant(DAG, 0x3f6ae232, dl));
4763       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4764       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4765                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4766     } else { // LimitFloatPrecision <= 18
4767       // For floating-point precision of 18:
4768       //
4769       //   Log10ofMantissa =
4770       //     -0.84299375f +
4771       //       (1.5327582f +
4772       //         (-1.0688956f +
4773       //           (0.49102474f +
4774       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4775       //
4776       // error 0.0000037995730, which is better than 18 bits
4777       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4778                                getF32Constant(DAG, 0x3c5d51ce, dl));
4779       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4780                                getF32Constant(DAG, 0x3e00685a, dl));
4781       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4782       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4783                                getF32Constant(DAG, 0x3efb6798, dl));
4784       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4785       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4786                                getF32Constant(DAG, 0x3f88d192, dl));
4787       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4788       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4789                                getF32Constant(DAG, 0x3fc4316c, dl));
4790       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4791       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4792                                     getF32Constant(DAG, 0x3f57ce70, dl));
4793     }
4794 
4795     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4796   }
4797 
4798   // No special expansion.
4799   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4800 }
4801 
4802 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4803 /// limited-precision mode.
4804 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4805                           const TargetLowering &TLI) {
4806   if (Op.getValueType() == MVT::f32 &&
4807       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4808     return getLimitedPrecisionExp2(Op, dl, DAG);
4809 
4810   // No special expansion.
4811   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4812 }
4813 
4814 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4815 /// limited-precision mode with x == 10.0f.
4816 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4817                          SelectionDAG &DAG, const TargetLowering &TLI) {
4818   bool IsExp10 = false;
4819   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4820       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4821     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4822       APFloat Ten(10.0f);
4823       IsExp10 = LHSC->isExactlyValue(Ten);
4824     }
4825   }
4826 
4827   // TODO: What fast-math-flags should be set on the FMUL node?
4828   if (IsExp10) {
4829     // Put the exponent in the right bit position for later addition to the
4830     // final result:
4831     //
4832     //   #define LOG2OF10 3.3219281f
4833     //   t0 = Op * LOG2OF10;
4834     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4835                              getF32Constant(DAG, 0x40549a78, dl));
4836     return getLimitedPrecisionExp2(t0, dl, DAG);
4837   }
4838 
4839   // No special expansion.
4840   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4841 }
4842 
4843 /// ExpandPowI - Expand a llvm.powi intrinsic.
4844 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4845                           SelectionDAG &DAG) {
4846   // If RHS is a constant, we can expand this out to a multiplication tree,
4847   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4848   // optimizing for size, we only want to do this if the expansion would produce
4849   // a small number of multiplies, otherwise we do the full expansion.
4850   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4851     // Get the exponent as a positive value.
4852     unsigned Val = RHSC->getSExtValue();
4853     if ((int)Val < 0) Val = -Val;
4854 
4855     // powi(x, 0) -> 1.0
4856     if (Val == 0)
4857       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4858 
4859     const Function &F = DAG.getMachineFunction().getFunction();
4860     if (!F.optForSize() ||
4861         // If optimizing for size, don't insert too many multiplies.
4862         // This inserts up to 5 multiplies.
4863         countPopulation(Val) + Log2_32(Val) < 7) {
4864       // We use the simple binary decomposition method to generate the multiply
4865       // sequence.  There are more optimal ways to do this (for example,
4866       // powi(x,15) generates one more multiply than it should), but this has
4867       // the benefit of being both really simple and much better than a libcall.
4868       SDValue Res;  // Logically starts equal to 1.0
4869       SDValue CurSquare = LHS;
4870       // TODO: Intrinsics should have fast-math-flags that propagate to these
4871       // nodes.
4872       while (Val) {
4873         if (Val & 1) {
4874           if (Res.getNode())
4875             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4876           else
4877             Res = CurSquare;  // 1.0*CurSquare.
4878         }
4879 
4880         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4881                                 CurSquare, CurSquare);
4882         Val >>= 1;
4883       }
4884 
4885       // If the original was negative, invert the result, producing 1/(x*x*x).
4886       if (RHSC->getSExtValue() < 0)
4887         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4888                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4889       return Res;
4890     }
4891   }
4892 
4893   // Otherwise, expand to a libcall.
4894   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4895 }
4896 
4897 // getUnderlyingArgReg - Find underlying register used for a truncated or
4898 // bitcasted argument.
4899 static unsigned getUnderlyingArgReg(const SDValue &N) {
4900   switch (N.getOpcode()) {
4901   case ISD::CopyFromReg:
4902     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4903   case ISD::BITCAST:
4904   case ISD::AssertZext:
4905   case ISD::AssertSext:
4906   case ISD::TRUNCATE:
4907     return getUnderlyingArgReg(N.getOperand(0));
4908   default:
4909     return 0;
4910   }
4911 }
4912 
4913 /// If the DbgValueInst is a dbg_value of a function argument, create the
4914 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4915 /// instruction selection, they will be inserted to the entry BB.
4916 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4917     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4918     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4919   const Argument *Arg = dyn_cast<Argument>(V);
4920   if (!Arg)
4921     return false;
4922 
4923   MachineFunction &MF = DAG.getMachineFunction();
4924   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4925 
4926   bool IsIndirect = false;
4927   Optional<MachineOperand> Op;
4928   // Some arguments' frame index is recorded during argument lowering.
4929   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4930   if (FI != std::numeric_limits<int>::max())
4931     Op = MachineOperand::CreateFI(FI);
4932 
4933   if (!Op && N.getNode()) {
4934     unsigned Reg = getUnderlyingArgReg(N);
4935     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4936       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4937       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4938       if (PR)
4939         Reg = PR;
4940     }
4941     if (Reg) {
4942       Op = MachineOperand::CreateReg(Reg, false);
4943       IsIndirect = IsDbgDeclare;
4944     }
4945   }
4946 
4947   if (!Op && N.getNode())
4948     // Check if frame index is available.
4949     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4950       if (FrameIndexSDNode *FINode =
4951           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4952         Op = MachineOperand::CreateFI(FINode->getIndex());
4953 
4954   if (!Op) {
4955     // Check if ValueMap has reg number.
4956     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4957     if (VMI != FuncInfo.ValueMap.end()) {
4958       const auto &TLI = DAG.getTargetLoweringInfo();
4959       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4960                        V->getType(), getABIRegCopyCC(V));
4961       if (RFV.occupiesMultipleRegs()) {
4962         unsigned Offset = 0;
4963         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4964           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4965           auto FragmentExpr = DIExpression::createFragmentExpression(
4966               Expr, Offset, RegAndSize.second);
4967           if (!FragmentExpr)
4968             continue;
4969           FuncInfo.ArgDbgValues.push_back(
4970               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4971                       Op->getReg(), Variable, *FragmentExpr));
4972           Offset += RegAndSize.second;
4973         }
4974         return true;
4975       }
4976       Op = MachineOperand::CreateReg(VMI->second, false);
4977       IsIndirect = IsDbgDeclare;
4978     }
4979   }
4980 
4981   if (!Op)
4982     return false;
4983 
4984   assert(Variable->isValidLocationForIntrinsic(DL) &&
4985          "Expected inlined-at fields to agree");
4986   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4987   FuncInfo.ArgDbgValues.push_back(
4988       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4989               *Op, Variable, Expr));
4990 
4991   return true;
4992 }
4993 
4994 /// Return the appropriate SDDbgValue based on N.
4995 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4996                                              DILocalVariable *Variable,
4997                                              DIExpression *Expr,
4998                                              const DebugLoc &dl,
4999                                              unsigned DbgSDNodeOrder) {
5000   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5001     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5002     // stack slot locations.
5003     //
5004     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5005     // debug values here after optimization:
5006     //
5007     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5008     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5009     //
5010     // Both describe the direct values of their associated variables.
5011     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5012                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5013   }
5014   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5015                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5016 }
5017 
5018 // VisualStudio defines setjmp as _setjmp
5019 #if defined(_MSC_VER) && defined(setjmp) && \
5020                          !defined(setjmp_undefined_for_msvc)
5021 #  pragma push_macro("setjmp")
5022 #  undef setjmp
5023 #  define setjmp_undefined_for_msvc
5024 #endif
5025 
5026 /// Lower the call to the specified intrinsic function. If we want to emit this
5027 /// as a call to a named external function, return the name. Otherwise, lower it
5028 /// and return null.
5029 const char *
5030 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5032   SDLoc sdl = getCurSDLoc();
5033   DebugLoc dl = getCurDebugLoc();
5034   SDValue Res;
5035 
5036   switch (Intrinsic) {
5037   default:
5038     // By default, turn this into a target intrinsic node.
5039     visitTargetIntrinsic(I, Intrinsic);
5040     return nullptr;
5041   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5042   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5043   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5044   case Intrinsic::returnaddress:
5045     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5046                              TLI.getPointerTy(DAG.getDataLayout()),
5047                              getValue(I.getArgOperand(0))));
5048     return nullptr;
5049   case Intrinsic::addressofreturnaddress:
5050     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5051                              TLI.getPointerTy(DAG.getDataLayout())));
5052     return nullptr;
5053   case Intrinsic::frameaddress:
5054     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5055                              TLI.getPointerTy(DAG.getDataLayout()),
5056                              getValue(I.getArgOperand(0))));
5057     return nullptr;
5058   case Intrinsic::read_register: {
5059     Value *Reg = I.getArgOperand(0);
5060     SDValue Chain = getRoot();
5061     SDValue RegName =
5062         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5063     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5064     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5065       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5066     setValue(&I, Res);
5067     DAG.setRoot(Res.getValue(1));
5068     return nullptr;
5069   }
5070   case Intrinsic::write_register: {
5071     Value *Reg = I.getArgOperand(0);
5072     Value *RegValue = I.getArgOperand(1);
5073     SDValue Chain = getRoot();
5074     SDValue RegName =
5075         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5076     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5077                             RegName, getValue(RegValue)));
5078     return nullptr;
5079   }
5080   case Intrinsic::setjmp:
5081     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5082   case Intrinsic::longjmp:
5083     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5084   case Intrinsic::memcpy: {
5085     const auto &MCI = cast<MemCpyInst>(I);
5086     SDValue Op1 = getValue(I.getArgOperand(0));
5087     SDValue Op2 = getValue(I.getArgOperand(1));
5088     SDValue Op3 = getValue(I.getArgOperand(2));
5089     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5090     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5091     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5092     unsigned Align = MinAlign(DstAlign, SrcAlign);
5093     bool isVol = MCI.isVolatile();
5094     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5095     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5096     // node.
5097     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5098                                false, isTC,
5099                                MachinePointerInfo(I.getArgOperand(0)),
5100                                MachinePointerInfo(I.getArgOperand(1)));
5101     updateDAGForMaybeTailCall(MC);
5102     return nullptr;
5103   }
5104   case Intrinsic::memset: {
5105     const auto &MSI = cast<MemSetInst>(I);
5106     SDValue Op1 = getValue(I.getArgOperand(0));
5107     SDValue Op2 = getValue(I.getArgOperand(1));
5108     SDValue Op3 = getValue(I.getArgOperand(2));
5109     // @llvm.memset defines 0 and 1 to both mean no alignment.
5110     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5111     bool isVol = MSI.isVolatile();
5112     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5113     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5114                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5115     updateDAGForMaybeTailCall(MS);
5116     return nullptr;
5117   }
5118   case Intrinsic::memmove: {
5119     const auto &MMI = cast<MemMoveInst>(I);
5120     SDValue Op1 = getValue(I.getArgOperand(0));
5121     SDValue Op2 = getValue(I.getArgOperand(1));
5122     SDValue Op3 = getValue(I.getArgOperand(2));
5123     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5124     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5125     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5126     unsigned Align = MinAlign(DstAlign, SrcAlign);
5127     bool isVol = MMI.isVolatile();
5128     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5129     // FIXME: Support passing different dest/src alignments to the memmove DAG
5130     // node.
5131     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5132                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5133                                 MachinePointerInfo(I.getArgOperand(1)));
5134     updateDAGForMaybeTailCall(MM);
5135     return nullptr;
5136   }
5137   case Intrinsic::memcpy_element_unordered_atomic: {
5138     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5139     SDValue Dst = getValue(MI.getRawDest());
5140     SDValue Src = getValue(MI.getRawSource());
5141     SDValue Length = getValue(MI.getLength());
5142 
5143     unsigned DstAlign = MI.getDestAlignment();
5144     unsigned SrcAlign = MI.getSourceAlignment();
5145     Type *LengthTy = MI.getLength()->getType();
5146     unsigned ElemSz = MI.getElementSizeInBytes();
5147     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5148     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5149                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5150                                      MachinePointerInfo(MI.getRawDest()),
5151                                      MachinePointerInfo(MI.getRawSource()));
5152     updateDAGForMaybeTailCall(MC);
5153     return nullptr;
5154   }
5155   case Intrinsic::memmove_element_unordered_atomic: {
5156     auto &MI = cast<AtomicMemMoveInst>(I);
5157     SDValue Dst = getValue(MI.getRawDest());
5158     SDValue Src = getValue(MI.getRawSource());
5159     SDValue Length = getValue(MI.getLength());
5160 
5161     unsigned DstAlign = MI.getDestAlignment();
5162     unsigned SrcAlign = MI.getSourceAlignment();
5163     Type *LengthTy = MI.getLength()->getType();
5164     unsigned ElemSz = MI.getElementSizeInBytes();
5165     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5166     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5167                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5168                                       MachinePointerInfo(MI.getRawDest()),
5169                                       MachinePointerInfo(MI.getRawSource()));
5170     updateDAGForMaybeTailCall(MC);
5171     return nullptr;
5172   }
5173   case Intrinsic::memset_element_unordered_atomic: {
5174     auto &MI = cast<AtomicMemSetInst>(I);
5175     SDValue Dst = getValue(MI.getRawDest());
5176     SDValue Val = getValue(MI.getValue());
5177     SDValue Length = getValue(MI.getLength());
5178 
5179     unsigned DstAlign = MI.getDestAlignment();
5180     Type *LengthTy = MI.getLength()->getType();
5181     unsigned ElemSz = MI.getElementSizeInBytes();
5182     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5183     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5184                                      LengthTy, ElemSz, isTC,
5185                                      MachinePointerInfo(MI.getRawDest()));
5186     updateDAGForMaybeTailCall(MC);
5187     return nullptr;
5188   }
5189   case Intrinsic::dbg_addr:
5190   case Intrinsic::dbg_declare: {
5191     const auto &DI = cast<DbgVariableIntrinsic>(I);
5192     DILocalVariable *Variable = DI.getVariable();
5193     DIExpression *Expression = DI.getExpression();
5194     dropDanglingDebugInfo(Variable, Expression);
5195     assert(Variable && "Missing variable");
5196 
5197     // Check if address has undef value.
5198     const Value *Address = DI.getVariableLocation();
5199     if (!Address || isa<UndefValue>(Address) ||
5200         (Address->use_empty() && !isa<Argument>(Address))) {
5201       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5202       return nullptr;
5203     }
5204 
5205     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5206 
5207     // Check if this variable can be described by a frame index, typically
5208     // either as a static alloca or a byval parameter.
5209     int FI = std::numeric_limits<int>::max();
5210     if (const auto *AI =
5211             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5212       if (AI->isStaticAlloca()) {
5213         auto I = FuncInfo.StaticAllocaMap.find(AI);
5214         if (I != FuncInfo.StaticAllocaMap.end())
5215           FI = I->second;
5216       }
5217     } else if (const auto *Arg = dyn_cast<Argument>(
5218                    Address->stripInBoundsConstantOffsets())) {
5219       FI = FuncInfo.getArgumentFrameIndex(Arg);
5220     }
5221 
5222     // llvm.dbg.addr is control dependent and always generates indirect
5223     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5224     // the MachineFunction variable table.
5225     if (FI != std::numeric_limits<int>::max()) {
5226       if (Intrinsic == Intrinsic::dbg_addr) {
5227         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5228             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5229         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5230       }
5231       return nullptr;
5232     }
5233 
5234     SDValue &N = NodeMap[Address];
5235     if (!N.getNode() && isa<Argument>(Address))
5236       // Check unused arguments map.
5237       N = UnusedArgNodeMap[Address];
5238     SDDbgValue *SDV;
5239     if (N.getNode()) {
5240       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5241         Address = BCI->getOperand(0);
5242       // Parameters are handled specially.
5243       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5244       if (isParameter && FINode) {
5245         // Byval parameter. We have a frame index at this point.
5246         SDV =
5247             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5248                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5249       } else if (isa<Argument>(Address)) {
5250         // Address is an argument, so try to emit its dbg value using
5251         // virtual register info from the FuncInfo.ValueMap.
5252         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5253         return nullptr;
5254       } else {
5255         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5256                               true, dl, SDNodeOrder);
5257       }
5258       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5259     } else {
5260       // If Address is an argument then try to emit its dbg value using
5261       // virtual register info from the FuncInfo.ValueMap.
5262       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5263                                     N)) {
5264         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5265       }
5266     }
5267     return nullptr;
5268   }
5269   case Intrinsic::dbg_label: {
5270     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5271     DILabel *Label = DI.getLabel();
5272     assert(Label && "Missing label");
5273 
5274     SDDbgLabel *SDV;
5275     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5276     DAG.AddDbgLabel(SDV);
5277     return nullptr;
5278   }
5279   case Intrinsic::dbg_value: {
5280     const DbgValueInst &DI = cast<DbgValueInst>(I);
5281     assert(DI.getVariable() && "Missing variable");
5282 
5283     DILocalVariable *Variable = DI.getVariable();
5284     DIExpression *Expression = DI.getExpression();
5285     dropDanglingDebugInfo(Variable, Expression);
5286     const Value *V = DI.getValue();
5287     if (!V)
5288       return nullptr;
5289 
5290     SDDbgValue *SDV;
5291     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5292       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5293       DAG.AddDbgValue(SDV, nullptr, false);
5294       return nullptr;
5295     }
5296 
5297     // Do not use getValue() in here; we don't want to generate code at
5298     // this point if it hasn't been done yet.
5299     SDValue N = NodeMap[V];
5300     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5301       N = UnusedArgNodeMap[V];
5302     if (N.getNode()) {
5303       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5304         return nullptr;
5305       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5306       DAG.AddDbgValue(SDV, N.getNode(), false);
5307       return nullptr;
5308     }
5309 
5310     // PHI nodes have already been selected, so we should know which VReg that
5311     // is assigns to already.
5312     if (isa<PHINode>(V)) {
5313       auto VMI = FuncInfo.ValueMap.find(V);
5314       if (VMI != FuncInfo.ValueMap.end()) {
5315         unsigned Reg = VMI->second;
5316         // The PHI node may be split up into several MI PHI nodes (in
5317         // FunctionLoweringInfo::set).
5318         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5319                          V->getType(), None);
5320         if (RFV.occupiesMultipleRegs()) {
5321           unsigned Offset = 0;
5322           unsigned BitsToDescribe = 0;
5323           if (auto VarSize = Variable->getSizeInBits())
5324             BitsToDescribe = *VarSize;
5325           if (auto Fragment = Expression->getFragmentInfo())
5326             BitsToDescribe = Fragment->SizeInBits;
5327           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5328             unsigned RegisterSize = RegAndSize.second;
5329             // Bail out if all bits are described already.
5330             if (Offset >= BitsToDescribe)
5331               break;
5332             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5333                 ? BitsToDescribe - Offset
5334                 : RegisterSize;
5335             auto FragmentExpr = DIExpression::createFragmentExpression(
5336                 Expression, Offset, FragmentSize);
5337             if (!FragmentExpr)
5338                 continue;
5339             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5340                                       false, dl, SDNodeOrder);
5341             DAG.AddDbgValue(SDV, nullptr, false);
5342             Offset += RegisterSize;
5343           }
5344         } else {
5345           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5346                                     SDNodeOrder);
5347           DAG.AddDbgValue(SDV, nullptr, false);
5348         }
5349         return nullptr;
5350       }
5351     }
5352 
5353     // TODO: When we get here we will either drop the dbg.value completely, or
5354     // we try to move it forward by letting it dangle for awhile. So we should
5355     // probably add an extra DbgValue to the DAG here, with a reference to
5356     // "noreg", to indicate that we have lost the debug location for the
5357     // variable.
5358 
5359     if (!V->use_empty() ) {
5360       // Do not call getValue(V) yet, as we don't want to generate code.
5361       // Remember it for later.
5362       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5363       return nullptr;
5364     }
5365 
5366     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5367     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5368     return nullptr;
5369   }
5370 
5371   case Intrinsic::eh_typeid_for: {
5372     // Find the type id for the given typeinfo.
5373     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5374     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5375     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5376     setValue(&I, Res);
5377     return nullptr;
5378   }
5379 
5380   case Intrinsic::eh_return_i32:
5381   case Intrinsic::eh_return_i64:
5382     DAG.getMachineFunction().setCallsEHReturn(true);
5383     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5384                             MVT::Other,
5385                             getControlRoot(),
5386                             getValue(I.getArgOperand(0)),
5387                             getValue(I.getArgOperand(1))));
5388     return nullptr;
5389   case Intrinsic::eh_unwind_init:
5390     DAG.getMachineFunction().setCallsUnwindInit(true);
5391     return nullptr;
5392   case Intrinsic::eh_dwarf_cfa:
5393     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5394                              TLI.getPointerTy(DAG.getDataLayout()),
5395                              getValue(I.getArgOperand(0))));
5396     return nullptr;
5397   case Intrinsic::eh_sjlj_callsite: {
5398     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5399     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5400     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5401     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5402 
5403     MMI.setCurrentCallSite(CI->getZExtValue());
5404     return nullptr;
5405   }
5406   case Intrinsic::eh_sjlj_functioncontext: {
5407     // Get and store the index of the function context.
5408     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5409     AllocaInst *FnCtx =
5410       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5411     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5412     MFI.setFunctionContextIndex(FI);
5413     return nullptr;
5414   }
5415   case Intrinsic::eh_sjlj_setjmp: {
5416     SDValue Ops[2];
5417     Ops[0] = getRoot();
5418     Ops[1] = getValue(I.getArgOperand(0));
5419     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5420                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5421     setValue(&I, Op.getValue(0));
5422     DAG.setRoot(Op.getValue(1));
5423     return nullptr;
5424   }
5425   case Intrinsic::eh_sjlj_longjmp:
5426     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5427                             getRoot(), getValue(I.getArgOperand(0))));
5428     return nullptr;
5429   case Intrinsic::eh_sjlj_setup_dispatch:
5430     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5431                             getRoot()));
5432     return nullptr;
5433   case Intrinsic::masked_gather:
5434     visitMaskedGather(I);
5435     return nullptr;
5436   case Intrinsic::masked_load:
5437     visitMaskedLoad(I);
5438     return nullptr;
5439   case Intrinsic::masked_scatter:
5440     visitMaskedScatter(I);
5441     return nullptr;
5442   case Intrinsic::masked_store:
5443     visitMaskedStore(I);
5444     return nullptr;
5445   case Intrinsic::masked_expandload:
5446     visitMaskedLoad(I, true /* IsExpanding */);
5447     return nullptr;
5448   case Intrinsic::masked_compressstore:
5449     visitMaskedStore(I, true /* IsCompressing */);
5450     return nullptr;
5451   case Intrinsic::x86_mmx_pslli_w:
5452   case Intrinsic::x86_mmx_pslli_d:
5453   case Intrinsic::x86_mmx_pslli_q:
5454   case Intrinsic::x86_mmx_psrli_w:
5455   case Intrinsic::x86_mmx_psrli_d:
5456   case Intrinsic::x86_mmx_psrli_q:
5457   case Intrinsic::x86_mmx_psrai_w:
5458   case Intrinsic::x86_mmx_psrai_d: {
5459     SDValue ShAmt = getValue(I.getArgOperand(1));
5460     if (isa<ConstantSDNode>(ShAmt)) {
5461       visitTargetIntrinsic(I, Intrinsic);
5462       return nullptr;
5463     }
5464     unsigned NewIntrinsic = 0;
5465     EVT ShAmtVT = MVT::v2i32;
5466     switch (Intrinsic) {
5467     case Intrinsic::x86_mmx_pslli_w:
5468       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5469       break;
5470     case Intrinsic::x86_mmx_pslli_d:
5471       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5472       break;
5473     case Intrinsic::x86_mmx_pslli_q:
5474       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5475       break;
5476     case Intrinsic::x86_mmx_psrli_w:
5477       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5478       break;
5479     case Intrinsic::x86_mmx_psrli_d:
5480       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5481       break;
5482     case Intrinsic::x86_mmx_psrli_q:
5483       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5484       break;
5485     case Intrinsic::x86_mmx_psrai_w:
5486       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5487       break;
5488     case Intrinsic::x86_mmx_psrai_d:
5489       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5490       break;
5491     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5492     }
5493 
5494     // The vector shift intrinsics with scalars uses 32b shift amounts but
5495     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5496     // to be zero.
5497     // We must do this early because v2i32 is not a legal type.
5498     SDValue ShOps[2];
5499     ShOps[0] = ShAmt;
5500     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5501     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5502     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5503     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5504     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5505                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5506                        getValue(I.getArgOperand(0)), ShAmt);
5507     setValue(&I, Res);
5508     return nullptr;
5509   }
5510   case Intrinsic::powi:
5511     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5512                             getValue(I.getArgOperand(1)), DAG));
5513     return nullptr;
5514   case Intrinsic::log:
5515     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5516     return nullptr;
5517   case Intrinsic::log2:
5518     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5519     return nullptr;
5520   case Intrinsic::log10:
5521     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5522     return nullptr;
5523   case Intrinsic::exp:
5524     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5525     return nullptr;
5526   case Intrinsic::exp2:
5527     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5528     return nullptr;
5529   case Intrinsic::pow:
5530     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5531                            getValue(I.getArgOperand(1)), DAG, TLI));
5532     return nullptr;
5533   case Intrinsic::sqrt:
5534   case Intrinsic::fabs:
5535   case Intrinsic::sin:
5536   case Intrinsic::cos:
5537   case Intrinsic::floor:
5538   case Intrinsic::ceil:
5539   case Intrinsic::trunc:
5540   case Intrinsic::rint:
5541   case Intrinsic::nearbyint:
5542   case Intrinsic::round:
5543   case Intrinsic::canonicalize: {
5544     unsigned Opcode;
5545     switch (Intrinsic) {
5546     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5547     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5548     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5549     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5550     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5551     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5552     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5553     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5554     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5555     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5556     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5557     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5558     }
5559 
5560     setValue(&I, DAG.getNode(Opcode, sdl,
5561                              getValue(I.getArgOperand(0)).getValueType(),
5562                              getValue(I.getArgOperand(0))));
5563     return nullptr;
5564   }
5565   case Intrinsic::minnum: {
5566     auto VT = getValue(I.getArgOperand(0)).getValueType();
5567     unsigned Opc =
5568         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5569             ? ISD::FMINNAN
5570             : ISD::FMINNUM;
5571     setValue(&I, DAG.getNode(Opc, sdl, VT,
5572                              getValue(I.getArgOperand(0)),
5573                              getValue(I.getArgOperand(1))));
5574     return nullptr;
5575   }
5576   case Intrinsic::maxnum: {
5577     auto VT = getValue(I.getArgOperand(0)).getValueType();
5578     unsigned Opc =
5579         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5580             ? ISD::FMAXNAN
5581             : ISD::FMAXNUM;
5582     setValue(&I, DAG.getNode(Opc, sdl, VT,
5583                              getValue(I.getArgOperand(0)),
5584                              getValue(I.getArgOperand(1))));
5585     return nullptr;
5586   }
5587   case Intrinsic::copysign:
5588     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5589                              getValue(I.getArgOperand(0)).getValueType(),
5590                              getValue(I.getArgOperand(0)),
5591                              getValue(I.getArgOperand(1))));
5592     return nullptr;
5593   case Intrinsic::fma:
5594     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5595                              getValue(I.getArgOperand(0)).getValueType(),
5596                              getValue(I.getArgOperand(0)),
5597                              getValue(I.getArgOperand(1)),
5598                              getValue(I.getArgOperand(2))));
5599     return nullptr;
5600   case Intrinsic::experimental_constrained_fadd:
5601   case Intrinsic::experimental_constrained_fsub:
5602   case Intrinsic::experimental_constrained_fmul:
5603   case Intrinsic::experimental_constrained_fdiv:
5604   case Intrinsic::experimental_constrained_frem:
5605   case Intrinsic::experimental_constrained_fma:
5606   case Intrinsic::experimental_constrained_sqrt:
5607   case Intrinsic::experimental_constrained_pow:
5608   case Intrinsic::experimental_constrained_powi:
5609   case Intrinsic::experimental_constrained_sin:
5610   case Intrinsic::experimental_constrained_cos:
5611   case Intrinsic::experimental_constrained_exp:
5612   case Intrinsic::experimental_constrained_exp2:
5613   case Intrinsic::experimental_constrained_log:
5614   case Intrinsic::experimental_constrained_log10:
5615   case Intrinsic::experimental_constrained_log2:
5616   case Intrinsic::experimental_constrained_rint:
5617   case Intrinsic::experimental_constrained_nearbyint:
5618     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5619     return nullptr;
5620   case Intrinsic::fmuladd: {
5621     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5622     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5623         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5624       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5625                                getValue(I.getArgOperand(0)).getValueType(),
5626                                getValue(I.getArgOperand(0)),
5627                                getValue(I.getArgOperand(1)),
5628                                getValue(I.getArgOperand(2))));
5629     } else {
5630       // TODO: Intrinsic calls should have fast-math-flags.
5631       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5632                                 getValue(I.getArgOperand(0)).getValueType(),
5633                                 getValue(I.getArgOperand(0)),
5634                                 getValue(I.getArgOperand(1)));
5635       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5636                                 getValue(I.getArgOperand(0)).getValueType(),
5637                                 Mul,
5638                                 getValue(I.getArgOperand(2)));
5639       setValue(&I, Add);
5640     }
5641     return nullptr;
5642   }
5643   case Intrinsic::convert_to_fp16:
5644     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5645                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5646                                          getValue(I.getArgOperand(0)),
5647                                          DAG.getTargetConstant(0, sdl,
5648                                                                MVT::i32))));
5649     return nullptr;
5650   case Intrinsic::convert_from_fp16:
5651     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5652                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5653                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5654                                          getValue(I.getArgOperand(0)))));
5655     return nullptr;
5656   case Intrinsic::pcmarker: {
5657     SDValue Tmp = getValue(I.getArgOperand(0));
5658     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5659     return nullptr;
5660   }
5661   case Intrinsic::readcyclecounter: {
5662     SDValue Op = getRoot();
5663     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5664                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5665     setValue(&I, Res);
5666     DAG.setRoot(Res.getValue(1));
5667     return nullptr;
5668   }
5669   case Intrinsic::bitreverse:
5670     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5671                              getValue(I.getArgOperand(0)).getValueType(),
5672                              getValue(I.getArgOperand(0))));
5673     return nullptr;
5674   case Intrinsic::bswap:
5675     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5676                              getValue(I.getArgOperand(0)).getValueType(),
5677                              getValue(I.getArgOperand(0))));
5678     return nullptr;
5679   case Intrinsic::cttz: {
5680     SDValue Arg = getValue(I.getArgOperand(0));
5681     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5682     EVT Ty = Arg.getValueType();
5683     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5684                              sdl, Ty, Arg));
5685     return nullptr;
5686   }
5687   case Intrinsic::ctlz: {
5688     SDValue Arg = getValue(I.getArgOperand(0));
5689     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5690     EVT Ty = Arg.getValueType();
5691     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5692                              sdl, Ty, Arg));
5693     return nullptr;
5694   }
5695   case Intrinsic::ctpop: {
5696     SDValue Arg = getValue(I.getArgOperand(0));
5697     EVT Ty = Arg.getValueType();
5698     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5699     return nullptr;
5700   }
5701   case Intrinsic::fshl:
5702   case Intrinsic::fshr: {
5703     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5704     SDValue X = getValue(I.getArgOperand(0));
5705     SDValue Y = getValue(I.getArgOperand(1));
5706     SDValue Z = getValue(I.getArgOperand(2));
5707     EVT VT = X.getValueType();
5708     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5709     SDValue Zero = DAG.getConstant(0, sdl, VT);
5710     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5711 
5712     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5713     // avoid the select that is necessary in the general case to filter out
5714     // the 0-shift possibility that leads to UB.
5715     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5716       // TODO: This should also be done if the operation is custom, but we have
5717       // to make sure targets are handling the modulo shift amount as expected.
5718       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5719       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5720         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5721         return nullptr;
5722       }
5723 
5724       // Some targets only rotate one way. Try the opposite direction.
5725       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5726       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5727         // Negate the shift amount because it is safe to ignore the high bits.
5728         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5729         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5730         return nullptr;
5731       }
5732 
5733       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5734       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5735       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5736       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5737       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5738       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5739       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5740       return nullptr;
5741     }
5742 
5743     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5744     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5745     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5746     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5747     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5748     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5749 
5750     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5751     // and that is undefined. We must compare and select to avoid UB.
5752     EVT CCVT = MVT::i1;
5753     if (VT.isVector())
5754       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5755 
5756     // For fshl, 0-shift returns the 1st arg (X).
5757     // For fshr, 0-shift returns the 2nd arg (Y).
5758     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5759     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5760     return nullptr;
5761   }
5762   case Intrinsic::stacksave: {
5763     SDValue Op = getRoot();
5764     Res = DAG.getNode(
5765         ISD::STACKSAVE, sdl,
5766         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5767     setValue(&I, Res);
5768     DAG.setRoot(Res.getValue(1));
5769     return nullptr;
5770   }
5771   case Intrinsic::stackrestore:
5772     Res = getValue(I.getArgOperand(0));
5773     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5774     return nullptr;
5775   case Intrinsic::get_dynamic_area_offset: {
5776     SDValue Op = getRoot();
5777     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5778     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5779     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5780     // target.
5781     if (PtrTy != ResTy)
5782       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5783                          " intrinsic!");
5784     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5785                       Op);
5786     DAG.setRoot(Op);
5787     setValue(&I, Res);
5788     return nullptr;
5789   }
5790   case Intrinsic::stackguard: {
5791     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5792     MachineFunction &MF = DAG.getMachineFunction();
5793     const Module &M = *MF.getFunction().getParent();
5794     SDValue Chain = getRoot();
5795     if (TLI.useLoadStackGuardNode()) {
5796       Res = getLoadStackGuard(DAG, sdl, Chain);
5797     } else {
5798       const Value *Global = TLI.getSDagStackGuard(M);
5799       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5800       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5801                         MachinePointerInfo(Global, 0), Align,
5802                         MachineMemOperand::MOVolatile);
5803     }
5804     if (TLI.useStackGuardXorFP())
5805       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5806     DAG.setRoot(Chain);
5807     setValue(&I, Res);
5808     return nullptr;
5809   }
5810   case Intrinsic::stackprotector: {
5811     // Emit code into the DAG to store the stack guard onto the stack.
5812     MachineFunction &MF = DAG.getMachineFunction();
5813     MachineFrameInfo &MFI = MF.getFrameInfo();
5814     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5815     SDValue Src, Chain = getRoot();
5816 
5817     if (TLI.useLoadStackGuardNode())
5818       Src = getLoadStackGuard(DAG, sdl, Chain);
5819     else
5820       Src = getValue(I.getArgOperand(0));   // The guard's value.
5821 
5822     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5823 
5824     int FI = FuncInfo.StaticAllocaMap[Slot];
5825     MFI.setStackProtectorIndex(FI);
5826 
5827     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5828 
5829     // Store the stack protector onto the stack.
5830     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5831                                                  DAG.getMachineFunction(), FI),
5832                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5833     setValue(&I, Res);
5834     DAG.setRoot(Res);
5835     return nullptr;
5836   }
5837   case Intrinsic::objectsize: {
5838     // If we don't know by now, we're never going to know.
5839     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5840 
5841     assert(CI && "Non-constant type in __builtin_object_size?");
5842 
5843     SDValue Arg = getValue(I.getCalledValue());
5844     EVT Ty = Arg.getValueType();
5845 
5846     if (CI->isZero())
5847       Res = DAG.getConstant(-1ULL, sdl, Ty);
5848     else
5849       Res = DAG.getConstant(0, sdl, Ty);
5850 
5851     setValue(&I, Res);
5852     return nullptr;
5853   }
5854   case Intrinsic::annotation:
5855   case Intrinsic::ptr_annotation:
5856   case Intrinsic::launder_invariant_group:
5857   case Intrinsic::strip_invariant_group:
5858     // Drop the intrinsic, but forward the value
5859     setValue(&I, getValue(I.getOperand(0)));
5860     return nullptr;
5861   case Intrinsic::assume:
5862   case Intrinsic::var_annotation:
5863   case Intrinsic::sideeffect:
5864     // Discard annotate attributes, assumptions, and artificial side-effects.
5865     return nullptr;
5866 
5867   case Intrinsic::codeview_annotation: {
5868     // Emit a label associated with this metadata.
5869     MachineFunction &MF = DAG.getMachineFunction();
5870     MCSymbol *Label =
5871         MF.getMMI().getContext().createTempSymbol("annotation", true);
5872     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5873     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5874     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5875     DAG.setRoot(Res);
5876     return nullptr;
5877   }
5878 
5879   case Intrinsic::init_trampoline: {
5880     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5881 
5882     SDValue Ops[6];
5883     Ops[0] = getRoot();
5884     Ops[1] = getValue(I.getArgOperand(0));
5885     Ops[2] = getValue(I.getArgOperand(1));
5886     Ops[3] = getValue(I.getArgOperand(2));
5887     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5888     Ops[5] = DAG.getSrcValue(F);
5889 
5890     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5891 
5892     DAG.setRoot(Res);
5893     return nullptr;
5894   }
5895   case Intrinsic::adjust_trampoline:
5896     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5897                              TLI.getPointerTy(DAG.getDataLayout()),
5898                              getValue(I.getArgOperand(0))));
5899     return nullptr;
5900   case Intrinsic::gcroot: {
5901     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5902            "only valid in functions with gc specified, enforced by Verifier");
5903     assert(GFI && "implied by previous");
5904     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5905     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5906 
5907     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5908     GFI->addStackRoot(FI->getIndex(), TypeMap);
5909     return nullptr;
5910   }
5911   case Intrinsic::gcread:
5912   case Intrinsic::gcwrite:
5913     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5914   case Intrinsic::flt_rounds:
5915     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5916     return nullptr;
5917 
5918   case Intrinsic::expect:
5919     // Just replace __builtin_expect(exp, c) with EXP.
5920     setValue(&I, getValue(I.getArgOperand(0)));
5921     return nullptr;
5922 
5923   case Intrinsic::debugtrap:
5924   case Intrinsic::trap: {
5925     StringRef TrapFuncName =
5926         I.getAttributes()
5927             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5928             .getValueAsString();
5929     if (TrapFuncName.empty()) {
5930       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5931         ISD::TRAP : ISD::DEBUGTRAP;
5932       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5933       return nullptr;
5934     }
5935     TargetLowering::ArgListTy Args;
5936 
5937     TargetLowering::CallLoweringInfo CLI(DAG);
5938     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5939         CallingConv::C, I.getType(),
5940         DAG.getExternalSymbol(TrapFuncName.data(),
5941                               TLI.getPointerTy(DAG.getDataLayout())),
5942         std::move(Args));
5943 
5944     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5945     DAG.setRoot(Result.second);
5946     return nullptr;
5947   }
5948 
5949   case Intrinsic::uadd_with_overflow:
5950   case Intrinsic::sadd_with_overflow:
5951   case Intrinsic::usub_with_overflow:
5952   case Intrinsic::ssub_with_overflow:
5953   case Intrinsic::umul_with_overflow:
5954   case Intrinsic::smul_with_overflow: {
5955     ISD::NodeType Op;
5956     switch (Intrinsic) {
5957     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5958     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5959     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5960     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5961     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5962     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5963     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5964     }
5965     SDValue Op1 = getValue(I.getArgOperand(0));
5966     SDValue Op2 = getValue(I.getArgOperand(1));
5967 
5968     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5969     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5970     return nullptr;
5971   }
5972   case Intrinsic::prefetch: {
5973     SDValue Ops[5];
5974     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5975     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5976     Ops[0] = DAG.getRoot();
5977     Ops[1] = getValue(I.getArgOperand(0));
5978     Ops[2] = getValue(I.getArgOperand(1));
5979     Ops[3] = getValue(I.getArgOperand(2));
5980     Ops[4] = getValue(I.getArgOperand(3));
5981     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5982                                              DAG.getVTList(MVT::Other), Ops,
5983                                              EVT::getIntegerVT(*Context, 8),
5984                                              MachinePointerInfo(I.getArgOperand(0)),
5985                                              0, /* align */
5986                                              Flags);
5987 
5988     // Chain the prefetch in parallell with any pending loads, to stay out of
5989     // the way of later optimizations.
5990     PendingLoads.push_back(Result);
5991     Result = getRoot();
5992     DAG.setRoot(Result);
5993     return nullptr;
5994   }
5995   case Intrinsic::lifetime_start:
5996   case Intrinsic::lifetime_end: {
5997     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5998     // Stack coloring is not enabled in O0, discard region information.
5999     if (TM.getOptLevel() == CodeGenOpt::None)
6000       return nullptr;
6001 
6002     SmallVector<Value *, 4> Allocas;
6003     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6004 
6005     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6006            E = Allocas.end(); Object != E; ++Object) {
6007       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6008 
6009       // Could not find an Alloca.
6010       if (!LifetimeObject)
6011         continue;
6012 
6013       // First check that the Alloca is static, otherwise it won't have a
6014       // valid frame index.
6015       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6016       if (SI == FuncInfo.StaticAllocaMap.end())
6017         return nullptr;
6018 
6019       int FI = SI->second;
6020 
6021       SDValue Ops[2];
6022       Ops[0] = getRoot();
6023       Ops[1] =
6024           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6025       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6026 
6027       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6028       DAG.setRoot(Res);
6029     }
6030     return nullptr;
6031   }
6032   case Intrinsic::invariant_start:
6033     // Discard region information.
6034     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6035     return nullptr;
6036   case Intrinsic::invariant_end:
6037     // Discard region information.
6038     return nullptr;
6039   case Intrinsic::clear_cache:
6040     return TLI.getClearCacheBuiltinName();
6041   case Intrinsic::donothing:
6042     // ignore
6043     return nullptr;
6044   case Intrinsic::experimental_stackmap:
6045     visitStackmap(I);
6046     return nullptr;
6047   case Intrinsic::experimental_patchpoint_void:
6048   case Intrinsic::experimental_patchpoint_i64:
6049     visitPatchpoint(&I);
6050     return nullptr;
6051   case Intrinsic::experimental_gc_statepoint:
6052     LowerStatepoint(ImmutableStatepoint(&I));
6053     return nullptr;
6054   case Intrinsic::experimental_gc_result:
6055     visitGCResult(cast<GCResultInst>(I));
6056     return nullptr;
6057   case Intrinsic::experimental_gc_relocate:
6058     visitGCRelocate(cast<GCRelocateInst>(I));
6059     return nullptr;
6060   case Intrinsic::instrprof_increment:
6061     llvm_unreachable("instrprof failed to lower an increment");
6062   case Intrinsic::instrprof_value_profile:
6063     llvm_unreachable("instrprof failed to lower a value profiling call");
6064   case Intrinsic::localescape: {
6065     MachineFunction &MF = DAG.getMachineFunction();
6066     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6067 
6068     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6069     // is the same on all targets.
6070     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6071       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6072       if (isa<ConstantPointerNull>(Arg))
6073         continue; // Skip null pointers. They represent a hole in index space.
6074       AllocaInst *Slot = cast<AllocaInst>(Arg);
6075       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6076              "can only escape static allocas");
6077       int FI = FuncInfo.StaticAllocaMap[Slot];
6078       MCSymbol *FrameAllocSym =
6079           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6080               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6081       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6082               TII->get(TargetOpcode::LOCAL_ESCAPE))
6083           .addSym(FrameAllocSym)
6084           .addFrameIndex(FI);
6085     }
6086 
6087     return nullptr;
6088   }
6089 
6090   case Intrinsic::localrecover: {
6091     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6092     MachineFunction &MF = DAG.getMachineFunction();
6093     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6094 
6095     // Get the symbol that defines the frame offset.
6096     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6097     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6098     unsigned IdxVal =
6099         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6100     MCSymbol *FrameAllocSym =
6101         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6102             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6103 
6104     // Create a MCSymbol for the label to avoid any target lowering
6105     // that would make this PC relative.
6106     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6107     SDValue OffsetVal =
6108         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6109 
6110     // Add the offset to the FP.
6111     Value *FP = I.getArgOperand(1);
6112     SDValue FPVal = getValue(FP);
6113     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6114     setValue(&I, Add);
6115 
6116     return nullptr;
6117   }
6118 
6119   case Intrinsic::eh_exceptionpointer:
6120   case Intrinsic::eh_exceptioncode: {
6121     // Get the exception pointer vreg, copy from it, and resize it to fit.
6122     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6123     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6124     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6125     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6126     SDValue N =
6127         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6128     if (Intrinsic == Intrinsic::eh_exceptioncode)
6129       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6130     setValue(&I, N);
6131     return nullptr;
6132   }
6133   case Intrinsic::xray_customevent: {
6134     // Here we want to make sure that the intrinsic behaves as if it has a
6135     // specific calling convention, and only for x86_64.
6136     // FIXME: Support other platforms later.
6137     const auto &Triple = DAG.getTarget().getTargetTriple();
6138     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6139       return nullptr;
6140 
6141     SDLoc DL = getCurSDLoc();
6142     SmallVector<SDValue, 8> Ops;
6143 
6144     // We want to say that we always want the arguments in registers.
6145     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6146     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6147     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6148     SDValue Chain = getRoot();
6149     Ops.push_back(LogEntryVal);
6150     Ops.push_back(StrSizeVal);
6151     Ops.push_back(Chain);
6152 
6153     // We need to enforce the calling convention for the callsite, so that
6154     // argument ordering is enforced correctly, and that register allocation can
6155     // see that some registers may be assumed clobbered and have to preserve
6156     // them across calls to the intrinsic.
6157     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6158                                            DL, NodeTys, Ops);
6159     SDValue patchableNode = SDValue(MN, 0);
6160     DAG.setRoot(patchableNode);
6161     setValue(&I, patchableNode);
6162     return nullptr;
6163   }
6164   case Intrinsic::xray_typedevent: {
6165     // Here we want to make sure that the intrinsic behaves as if it has a
6166     // specific calling convention, and only for x86_64.
6167     // FIXME: Support other platforms later.
6168     const auto &Triple = DAG.getTarget().getTargetTriple();
6169     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6170       return nullptr;
6171 
6172     SDLoc DL = getCurSDLoc();
6173     SmallVector<SDValue, 8> Ops;
6174 
6175     // We want to say that we always want the arguments in registers.
6176     // It's unclear to me how manipulating the selection DAG here forces callers
6177     // to provide arguments in registers instead of on the stack.
6178     SDValue LogTypeId = getValue(I.getArgOperand(0));
6179     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6180     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6181     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6182     SDValue Chain = getRoot();
6183     Ops.push_back(LogTypeId);
6184     Ops.push_back(LogEntryVal);
6185     Ops.push_back(StrSizeVal);
6186     Ops.push_back(Chain);
6187 
6188     // We need to enforce the calling convention for the callsite, so that
6189     // argument ordering is enforced correctly, and that register allocation can
6190     // see that some registers may be assumed clobbered and have to preserve
6191     // them across calls to the intrinsic.
6192     MachineSDNode *MN = DAG.getMachineNode(
6193         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6194     SDValue patchableNode = SDValue(MN, 0);
6195     DAG.setRoot(patchableNode);
6196     setValue(&I, patchableNode);
6197     return nullptr;
6198   }
6199   case Intrinsic::experimental_deoptimize:
6200     LowerDeoptimizeCall(&I);
6201     return nullptr;
6202 
6203   case Intrinsic::experimental_vector_reduce_fadd:
6204   case Intrinsic::experimental_vector_reduce_fmul:
6205   case Intrinsic::experimental_vector_reduce_add:
6206   case Intrinsic::experimental_vector_reduce_mul:
6207   case Intrinsic::experimental_vector_reduce_and:
6208   case Intrinsic::experimental_vector_reduce_or:
6209   case Intrinsic::experimental_vector_reduce_xor:
6210   case Intrinsic::experimental_vector_reduce_smax:
6211   case Intrinsic::experimental_vector_reduce_smin:
6212   case Intrinsic::experimental_vector_reduce_umax:
6213   case Intrinsic::experimental_vector_reduce_umin:
6214   case Intrinsic::experimental_vector_reduce_fmax:
6215   case Intrinsic::experimental_vector_reduce_fmin:
6216     visitVectorReduce(I, Intrinsic);
6217     return nullptr;
6218 
6219   case Intrinsic::icall_branch_funnel: {
6220     SmallVector<SDValue, 16> Ops;
6221     Ops.push_back(DAG.getRoot());
6222     Ops.push_back(getValue(I.getArgOperand(0)));
6223 
6224     int64_t Offset;
6225     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6226         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6227     if (!Base)
6228       report_fatal_error(
6229           "llvm.icall.branch.funnel operand must be a GlobalValue");
6230     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6231 
6232     struct BranchFunnelTarget {
6233       int64_t Offset;
6234       SDValue Target;
6235     };
6236     SmallVector<BranchFunnelTarget, 8> Targets;
6237 
6238     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6239       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6240           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6241       if (ElemBase != Base)
6242         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6243                            "to the same GlobalValue");
6244 
6245       SDValue Val = getValue(I.getArgOperand(Op + 1));
6246       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6247       if (!GA)
6248         report_fatal_error(
6249             "llvm.icall.branch.funnel operand must be a GlobalValue");
6250       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6251                                      GA->getGlobal(), getCurSDLoc(),
6252                                      Val.getValueType(), GA->getOffset())});
6253     }
6254     llvm::sort(Targets,
6255                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6256                  return T1.Offset < T2.Offset;
6257                });
6258 
6259     for (auto &T : Targets) {
6260       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6261       Ops.push_back(T.Target);
6262     }
6263 
6264     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6265                                  getCurSDLoc(), MVT::Other, Ops),
6266               0);
6267     DAG.setRoot(N);
6268     setValue(&I, N);
6269     HasTailCall = true;
6270     return nullptr;
6271   }
6272 
6273   case Intrinsic::wasm_landingpad_index: {
6274     // TODO store landing pad index in a map, which will be used when generating
6275     // LSDA information
6276     return nullptr;
6277   }
6278   }
6279 }
6280 
6281 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6282     const ConstrainedFPIntrinsic &FPI) {
6283   SDLoc sdl = getCurSDLoc();
6284   unsigned Opcode;
6285   switch (FPI.getIntrinsicID()) {
6286   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6287   case Intrinsic::experimental_constrained_fadd:
6288     Opcode = ISD::STRICT_FADD;
6289     break;
6290   case Intrinsic::experimental_constrained_fsub:
6291     Opcode = ISD::STRICT_FSUB;
6292     break;
6293   case Intrinsic::experimental_constrained_fmul:
6294     Opcode = ISD::STRICT_FMUL;
6295     break;
6296   case Intrinsic::experimental_constrained_fdiv:
6297     Opcode = ISD::STRICT_FDIV;
6298     break;
6299   case Intrinsic::experimental_constrained_frem:
6300     Opcode = ISD::STRICT_FREM;
6301     break;
6302   case Intrinsic::experimental_constrained_fma:
6303     Opcode = ISD::STRICT_FMA;
6304     break;
6305   case Intrinsic::experimental_constrained_sqrt:
6306     Opcode = ISD::STRICT_FSQRT;
6307     break;
6308   case Intrinsic::experimental_constrained_pow:
6309     Opcode = ISD::STRICT_FPOW;
6310     break;
6311   case Intrinsic::experimental_constrained_powi:
6312     Opcode = ISD::STRICT_FPOWI;
6313     break;
6314   case Intrinsic::experimental_constrained_sin:
6315     Opcode = ISD::STRICT_FSIN;
6316     break;
6317   case Intrinsic::experimental_constrained_cos:
6318     Opcode = ISD::STRICT_FCOS;
6319     break;
6320   case Intrinsic::experimental_constrained_exp:
6321     Opcode = ISD::STRICT_FEXP;
6322     break;
6323   case Intrinsic::experimental_constrained_exp2:
6324     Opcode = ISD::STRICT_FEXP2;
6325     break;
6326   case Intrinsic::experimental_constrained_log:
6327     Opcode = ISD::STRICT_FLOG;
6328     break;
6329   case Intrinsic::experimental_constrained_log10:
6330     Opcode = ISD::STRICT_FLOG10;
6331     break;
6332   case Intrinsic::experimental_constrained_log2:
6333     Opcode = ISD::STRICT_FLOG2;
6334     break;
6335   case Intrinsic::experimental_constrained_rint:
6336     Opcode = ISD::STRICT_FRINT;
6337     break;
6338   case Intrinsic::experimental_constrained_nearbyint:
6339     Opcode = ISD::STRICT_FNEARBYINT;
6340     break;
6341   }
6342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6343   SDValue Chain = getRoot();
6344   SmallVector<EVT, 4> ValueVTs;
6345   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6346   ValueVTs.push_back(MVT::Other); // Out chain
6347 
6348   SDVTList VTs = DAG.getVTList(ValueVTs);
6349   SDValue Result;
6350   if (FPI.isUnaryOp())
6351     Result = DAG.getNode(Opcode, sdl, VTs,
6352                          { Chain, getValue(FPI.getArgOperand(0)) });
6353   else if (FPI.isTernaryOp())
6354     Result = DAG.getNode(Opcode, sdl, VTs,
6355                          { Chain, getValue(FPI.getArgOperand(0)),
6356                                   getValue(FPI.getArgOperand(1)),
6357                                   getValue(FPI.getArgOperand(2)) });
6358   else
6359     Result = DAG.getNode(Opcode, sdl, VTs,
6360                          { Chain, getValue(FPI.getArgOperand(0)),
6361                            getValue(FPI.getArgOperand(1))  });
6362 
6363   assert(Result.getNode()->getNumValues() == 2);
6364   SDValue OutChain = Result.getValue(1);
6365   DAG.setRoot(OutChain);
6366   SDValue FPResult = Result.getValue(0);
6367   setValue(&FPI, FPResult);
6368 }
6369 
6370 std::pair<SDValue, SDValue>
6371 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6372                                     const BasicBlock *EHPadBB) {
6373   MachineFunction &MF = DAG.getMachineFunction();
6374   MachineModuleInfo &MMI = MF.getMMI();
6375   MCSymbol *BeginLabel = nullptr;
6376 
6377   if (EHPadBB) {
6378     // Insert a label before the invoke call to mark the try range.  This can be
6379     // used to detect deletion of the invoke via the MachineModuleInfo.
6380     BeginLabel = MMI.getContext().createTempSymbol();
6381 
6382     // For SjLj, keep track of which landing pads go with which invokes
6383     // so as to maintain the ordering of pads in the LSDA.
6384     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6385     if (CallSiteIndex) {
6386       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6387       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6388 
6389       // Now that the call site is handled, stop tracking it.
6390       MMI.setCurrentCallSite(0);
6391     }
6392 
6393     // Both PendingLoads and PendingExports must be flushed here;
6394     // this call might not return.
6395     (void)getRoot();
6396     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6397 
6398     CLI.setChain(getRoot());
6399   }
6400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6401   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6402 
6403   assert((CLI.IsTailCall || Result.second.getNode()) &&
6404          "Non-null chain expected with non-tail call!");
6405   assert((Result.second.getNode() || !Result.first.getNode()) &&
6406          "Null value expected with tail call!");
6407 
6408   if (!Result.second.getNode()) {
6409     // As a special case, a null chain means that a tail call has been emitted
6410     // and the DAG root is already updated.
6411     HasTailCall = true;
6412 
6413     // Since there's no actual continuation from this block, nothing can be
6414     // relying on us setting vregs for them.
6415     PendingExports.clear();
6416   } else {
6417     DAG.setRoot(Result.second);
6418   }
6419 
6420   if (EHPadBB) {
6421     // Insert a label at the end of the invoke call to mark the try range.  This
6422     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6423     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6424     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6425 
6426     // Inform MachineModuleInfo of range.
6427     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6428     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6429     // actually use outlined funclets and their LSDA info style.
6430     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6431       assert(CLI.CS);
6432       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6433       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6434                                 BeginLabel, EndLabel);
6435     } else {
6436       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6437     }
6438   }
6439 
6440   return Result;
6441 }
6442 
6443 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6444                                       bool isTailCall,
6445                                       const BasicBlock *EHPadBB) {
6446   auto &DL = DAG.getDataLayout();
6447   FunctionType *FTy = CS.getFunctionType();
6448   Type *RetTy = CS.getType();
6449 
6450   TargetLowering::ArgListTy Args;
6451   Args.reserve(CS.arg_size());
6452 
6453   const Value *SwiftErrorVal = nullptr;
6454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6455 
6456   // We can't tail call inside a function with a swifterror argument. Lowering
6457   // does not support this yet. It would have to move into the swifterror
6458   // register before the call.
6459   auto *Caller = CS.getInstruction()->getParent()->getParent();
6460   if (TLI.supportSwiftError() &&
6461       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6462     isTailCall = false;
6463 
6464   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6465        i != e; ++i) {
6466     TargetLowering::ArgListEntry Entry;
6467     const Value *V = *i;
6468 
6469     // Skip empty types
6470     if (V->getType()->isEmptyTy())
6471       continue;
6472 
6473     SDValue ArgNode = getValue(V);
6474     Entry.Node = ArgNode; Entry.Ty = V->getType();
6475 
6476     Entry.setAttributes(&CS, i - CS.arg_begin());
6477 
6478     // Use swifterror virtual register as input to the call.
6479     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6480       SwiftErrorVal = V;
6481       // We find the virtual register for the actual swifterror argument.
6482       // Instead of using the Value, we use the virtual register instead.
6483       Entry.Node = DAG.getRegister(FuncInfo
6484                                        .getOrCreateSwiftErrorVRegUseAt(
6485                                            CS.getInstruction(), FuncInfo.MBB, V)
6486                                        .first,
6487                                    EVT(TLI.getPointerTy(DL)));
6488     }
6489 
6490     Args.push_back(Entry);
6491 
6492     // If we have an explicit sret argument that is an Instruction, (i.e., it
6493     // might point to function-local memory), we can't meaningfully tail-call.
6494     if (Entry.IsSRet && isa<Instruction>(V))
6495       isTailCall = false;
6496   }
6497 
6498   // Check if target-independent constraints permit a tail call here.
6499   // Target-dependent constraints are checked within TLI->LowerCallTo.
6500   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6501     isTailCall = false;
6502 
6503   // Disable tail calls if there is an swifterror argument. Targets have not
6504   // been updated to support tail calls.
6505   if (TLI.supportSwiftError() && SwiftErrorVal)
6506     isTailCall = false;
6507 
6508   TargetLowering::CallLoweringInfo CLI(DAG);
6509   CLI.setDebugLoc(getCurSDLoc())
6510       .setChain(getRoot())
6511       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6512       .setTailCall(isTailCall)
6513       .setConvergent(CS.isConvergent());
6514   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6515 
6516   if (Result.first.getNode()) {
6517     const Instruction *Inst = CS.getInstruction();
6518     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6519     setValue(Inst, Result.first);
6520   }
6521 
6522   // The last element of CLI.InVals has the SDValue for swifterror return.
6523   // Here we copy it to a virtual register and update SwiftErrorMap for
6524   // book-keeping.
6525   if (SwiftErrorVal && TLI.supportSwiftError()) {
6526     // Get the last element of InVals.
6527     SDValue Src = CLI.InVals.back();
6528     unsigned VReg; bool CreatedVReg;
6529     std::tie(VReg, CreatedVReg) =
6530         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6531     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6532     // We update the virtual register for the actual swifterror argument.
6533     if (CreatedVReg)
6534       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6535     DAG.setRoot(CopyNode);
6536   }
6537 }
6538 
6539 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6540                              SelectionDAGBuilder &Builder) {
6541   // Check to see if this load can be trivially constant folded, e.g. if the
6542   // input is from a string literal.
6543   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6544     // Cast pointer to the type we really want to load.
6545     Type *LoadTy =
6546         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6547     if (LoadVT.isVector())
6548       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6549 
6550     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6551                                          PointerType::getUnqual(LoadTy));
6552 
6553     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6554             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6555       return Builder.getValue(LoadCst);
6556   }
6557 
6558   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6559   // still constant memory, the input chain can be the entry node.
6560   SDValue Root;
6561   bool ConstantMemory = false;
6562 
6563   // Do not serialize (non-volatile) loads of constant memory with anything.
6564   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6565     Root = Builder.DAG.getEntryNode();
6566     ConstantMemory = true;
6567   } else {
6568     // Do not serialize non-volatile loads against each other.
6569     Root = Builder.DAG.getRoot();
6570   }
6571 
6572   SDValue Ptr = Builder.getValue(PtrVal);
6573   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6574                                         Ptr, MachinePointerInfo(PtrVal),
6575                                         /* Alignment = */ 1);
6576 
6577   if (!ConstantMemory)
6578     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6579   return LoadVal;
6580 }
6581 
6582 /// Record the value for an instruction that produces an integer result,
6583 /// converting the type where necessary.
6584 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6585                                                   SDValue Value,
6586                                                   bool IsSigned) {
6587   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6588                                                     I.getType(), true);
6589   if (IsSigned)
6590     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6591   else
6592     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6593   setValue(&I, Value);
6594 }
6595 
6596 /// See if we can lower a memcmp call into an optimized form. If so, return
6597 /// true and lower it. Otherwise return false, and it will be lowered like a
6598 /// normal call.
6599 /// The caller already checked that \p I calls the appropriate LibFunc with a
6600 /// correct prototype.
6601 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6602   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6603   const Value *Size = I.getArgOperand(2);
6604   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6605   if (CSize && CSize->getZExtValue() == 0) {
6606     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6607                                                           I.getType(), true);
6608     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6609     return true;
6610   }
6611 
6612   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6613   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6614       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6615       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6616   if (Res.first.getNode()) {
6617     processIntegerCallValue(I, Res.first, true);
6618     PendingLoads.push_back(Res.second);
6619     return true;
6620   }
6621 
6622   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6623   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6624   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6625     return false;
6626 
6627   // If the target has a fast compare for the given size, it will return a
6628   // preferred load type for that size. Require that the load VT is legal and
6629   // that the target supports unaligned loads of that type. Otherwise, return
6630   // INVALID.
6631   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6632     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6633     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6634     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6635       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6636       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6637       // TODO: Check alignment of src and dest ptrs.
6638       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6639       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6640       if (!TLI.isTypeLegal(LVT) ||
6641           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6642           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6643         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6644     }
6645 
6646     return LVT;
6647   };
6648 
6649   // This turns into unaligned loads. We only do this if the target natively
6650   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6651   // we'll only produce a small number of byte loads.
6652   MVT LoadVT;
6653   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6654   switch (NumBitsToCompare) {
6655   default:
6656     return false;
6657   case 16:
6658     LoadVT = MVT::i16;
6659     break;
6660   case 32:
6661     LoadVT = MVT::i32;
6662     break;
6663   case 64:
6664   case 128:
6665   case 256:
6666     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6667     break;
6668   }
6669 
6670   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6671     return false;
6672 
6673   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6674   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6675 
6676   // Bitcast to a wide integer type if the loads are vectors.
6677   if (LoadVT.isVector()) {
6678     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6679     LoadL = DAG.getBitcast(CmpVT, LoadL);
6680     LoadR = DAG.getBitcast(CmpVT, LoadR);
6681   }
6682 
6683   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6684   processIntegerCallValue(I, Cmp, false);
6685   return true;
6686 }
6687 
6688 /// See if we can lower a memchr call into an optimized form. If so, return
6689 /// true and lower it. Otherwise return false, and it will be lowered like a
6690 /// normal call.
6691 /// The caller already checked that \p I calls the appropriate LibFunc with a
6692 /// correct prototype.
6693 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6694   const Value *Src = I.getArgOperand(0);
6695   const Value *Char = I.getArgOperand(1);
6696   const Value *Length = I.getArgOperand(2);
6697 
6698   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6699   std::pair<SDValue, SDValue> Res =
6700     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6701                                 getValue(Src), getValue(Char), getValue(Length),
6702                                 MachinePointerInfo(Src));
6703   if (Res.first.getNode()) {
6704     setValue(&I, Res.first);
6705     PendingLoads.push_back(Res.second);
6706     return true;
6707   }
6708 
6709   return false;
6710 }
6711 
6712 /// See if we can lower a mempcpy call into an optimized form. If so, return
6713 /// true and lower it. Otherwise return false, and it will be lowered like a
6714 /// normal call.
6715 /// The caller already checked that \p I calls the appropriate LibFunc with a
6716 /// correct prototype.
6717 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6718   SDValue Dst = getValue(I.getArgOperand(0));
6719   SDValue Src = getValue(I.getArgOperand(1));
6720   SDValue Size = getValue(I.getArgOperand(2));
6721 
6722   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6723   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6724   unsigned Align = std::min(DstAlign, SrcAlign);
6725   if (Align == 0) // Alignment of one or both could not be inferred.
6726     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6727 
6728   bool isVol = false;
6729   SDLoc sdl = getCurSDLoc();
6730 
6731   // In the mempcpy context we need to pass in a false value for isTailCall
6732   // because the return pointer needs to be adjusted by the size of
6733   // the copied memory.
6734   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6735                              false, /*isTailCall=*/false,
6736                              MachinePointerInfo(I.getArgOperand(0)),
6737                              MachinePointerInfo(I.getArgOperand(1)));
6738   assert(MC.getNode() != nullptr &&
6739          "** memcpy should not be lowered as TailCall in mempcpy context **");
6740   DAG.setRoot(MC);
6741 
6742   // Check if Size needs to be truncated or extended.
6743   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6744 
6745   // Adjust return pointer to point just past the last dst byte.
6746   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6747                                     Dst, Size);
6748   setValue(&I, DstPlusSize);
6749   return true;
6750 }
6751 
6752 /// See if we can lower a strcpy call into an optimized form.  If so, return
6753 /// true and lower it, otherwise return false and it will be lowered like a
6754 /// normal call.
6755 /// The caller already checked that \p I calls the appropriate LibFunc with a
6756 /// correct prototype.
6757 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6758   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6759 
6760   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6761   std::pair<SDValue, SDValue> Res =
6762     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6763                                 getValue(Arg0), getValue(Arg1),
6764                                 MachinePointerInfo(Arg0),
6765                                 MachinePointerInfo(Arg1), isStpcpy);
6766   if (Res.first.getNode()) {
6767     setValue(&I, Res.first);
6768     DAG.setRoot(Res.second);
6769     return true;
6770   }
6771 
6772   return false;
6773 }
6774 
6775 /// See if we can lower a strcmp call into an optimized form.  If so, return
6776 /// true and lower it, otherwise return false and it will be lowered like a
6777 /// normal call.
6778 /// The caller already checked that \p I calls the appropriate LibFunc with a
6779 /// correct prototype.
6780 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6781   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6782 
6783   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6784   std::pair<SDValue, SDValue> Res =
6785     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6786                                 getValue(Arg0), getValue(Arg1),
6787                                 MachinePointerInfo(Arg0),
6788                                 MachinePointerInfo(Arg1));
6789   if (Res.first.getNode()) {
6790     processIntegerCallValue(I, Res.first, true);
6791     PendingLoads.push_back(Res.second);
6792     return true;
6793   }
6794 
6795   return false;
6796 }
6797 
6798 /// See if we can lower a strlen call into an optimized form.  If so, return
6799 /// true and lower it, otherwise return false and it will be lowered like a
6800 /// normal call.
6801 /// The caller already checked that \p I calls the appropriate LibFunc with a
6802 /// correct prototype.
6803 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6804   const Value *Arg0 = I.getArgOperand(0);
6805 
6806   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6807   std::pair<SDValue, SDValue> Res =
6808     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6809                                 getValue(Arg0), MachinePointerInfo(Arg0));
6810   if (Res.first.getNode()) {
6811     processIntegerCallValue(I, Res.first, false);
6812     PendingLoads.push_back(Res.second);
6813     return true;
6814   }
6815 
6816   return false;
6817 }
6818 
6819 /// See if we can lower a strnlen call into an optimized form.  If so, return
6820 /// true and lower it, otherwise return false and it will be lowered like a
6821 /// normal call.
6822 /// The caller already checked that \p I calls the appropriate LibFunc with a
6823 /// correct prototype.
6824 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6825   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6826 
6827   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6828   std::pair<SDValue, SDValue> Res =
6829     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6830                                  getValue(Arg0), getValue(Arg1),
6831                                  MachinePointerInfo(Arg0));
6832   if (Res.first.getNode()) {
6833     processIntegerCallValue(I, Res.first, false);
6834     PendingLoads.push_back(Res.second);
6835     return true;
6836   }
6837 
6838   return false;
6839 }
6840 
6841 /// See if we can lower a unary floating-point operation into an SDNode with
6842 /// the specified Opcode.  If so, return true and lower it, otherwise return
6843 /// false and it will be lowered like a normal call.
6844 /// The caller already checked that \p I calls the appropriate LibFunc with a
6845 /// correct prototype.
6846 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6847                                               unsigned Opcode) {
6848   // We already checked this call's prototype; verify it doesn't modify errno.
6849   if (!I.onlyReadsMemory())
6850     return false;
6851 
6852   SDValue Tmp = getValue(I.getArgOperand(0));
6853   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6854   return true;
6855 }
6856 
6857 /// See if we can lower a binary floating-point operation into an SDNode with
6858 /// the specified Opcode. If so, return true and lower it. Otherwise return
6859 /// false, and it will be lowered like a normal call.
6860 /// The caller already checked that \p I calls the appropriate LibFunc with a
6861 /// correct prototype.
6862 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6863                                                unsigned Opcode) {
6864   // We already checked this call's prototype; verify it doesn't modify errno.
6865   if (!I.onlyReadsMemory())
6866     return false;
6867 
6868   SDValue Tmp0 = getValue(I.getArgOperand(0));
6869   SDValue Tmp1 = getValue(I.getArgOperand(1));
6870   EVT VT = Tmp0.getValueType();
6871   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6872   return true;
6873 }
6874 
6875 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6876   // Handle inline assembly differently.
6877   if (isa<InlineAsm>(I.getCalledValue())) {
6878     visitInlineAsm(&I);
6879     return;
6880   }
6881 
6882   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6883   computeUsesVAFloatArgument(I, MMI);
6884 
6885   const char *RenameFn = nullptr;
6886   if (Function *F = I.getCalledFunction()) {
6887     if (F->isDeclaration()) {
6888       // Is this an LLVM intrinsic or a target-specific intrinsic?
6889       unsigned IID = F->getIntrinsicID();
6890       if (!IID)
6891         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6892           IID = II->getIntrinsicID(F);
6893 
6894       if (IID) {
6895         RenameFn = visitIntrinsicCall(I, IID);
6896         if (!RenameFn)
6897           return;
6898       }
6899     }
6900 
6901     // Check for well-known libc/libm calls.  If the function is internal, it
6902     // can't be a library call.  Don't do the check if marked as nobuiltin for
6903     // some reason or the call site requires strict floating point semantics.
6904     LibFunc Func;
6905     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6906         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6907         LibInfo->hasOptimizedCodeGen(Func)) {
6908       switch (Func) {
6909       default: break;
6910       case LibFunc_copysign:
6911       case LibFunc_copysignf:
6912       case LibFunc_copysignl:
6913         // We already checked this call's prototype; verify it doesn't modify
6914         // errno.
6915         if (I.onlyReadsMemory()) {
6916           SDValue LHS = getValue(I.getArgOperand(0));
6917           SDValue RHS = getValue(I.getArgOperand(1));
6918           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6919                                    LHS.getValueType(), LHS, RHS));
6920           return;
6921         }
6922         break;
6923       case LibFunc_fabs:
6924       case LibFunc_fabsf:
6925       case LibFunc_fabsl:
6926         if (visitUnaryFloatCall(I, ISD::FABS))
6927           return;
6928         break;
6929       case LibFunc_fmin:
6930       case LibFunc_fminf:
6931       case LibFunc_fminl:
6932         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6933           return;
6934         break;
6935       case LibFunc_fmax:
6936       case LibFunc_fmaxf:
6937       case LibFunc_fmaxl:
6938         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6939           return;
6940         break;
6941       case LibFunc_sin:
6942       case LibFunc_sinf:
6943       case LibFunc_sinl:
6944         if (visitUnaryFloatCall(I, ISD::FSIN))
6945           return;
6946         break;
6947       case LibFunc_cos:
6948       case LibFunc_cosf:
6949       case LibFunc_cosl:
6950         if (visitUnaryFloatCall(I, ISD::FCOS))
6951           return;
6952         break;
6953       case LibFunc_sqrt:
6954       case LibFunc_sqrtf:
6955       case LibFunc_sqrtl:
6956       case LibFunc_sqrt_finite:
6957       case LibFunc_sqrtf_finite:
6958       case LibFunc_sqrtl_finite:
6959         if (visitUnaryFloatCall(I, ISD::FSQRT))
6960           return;
6961         break;
6962       case LibFunc_floor:
6963       case LibFunc_floorf:
6964       case LibFunc_floorl:
6965         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6966           return;
6967         break;
6968       case LibFunc_nearbyint:
6969       case LibFunc_nearbyintf:
6970       case LibFunc_nearbyintl:
6971         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6972           return;
6973         break;
6974       case LibFunc_ceil:
6975       case LibFunc_ceilf:
6976       case LibFunc_ceill:
6977         if (visitUnaryFloatCall(I, ISD::FCEIL))
6978           return;
6979         break;
6980       case LibFunc_rint:
6981       case LibFunc_rintf:
6982       case LibFunc_rintl:
6983         if (visitUnaryFloatCall(I, ISD::FRINT))
6984           return;
6985         break;
6986       case LibFunc_round:
6987       case LibFunc_roundf:
6988       case LibFunc_roundl:
6989         if (visitUnaryFloatCall(I, ISD::FROUND))
6990           return;
6991         break;
6992       case LibFunc_trunc:
6993       case LibFunc_truncf:
6994       case LibFunc_truncl:
6995         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6996           return;
6997         break;
6998       case LibFunc_log2:
6999       case LibFunc_log2f:
7000       case LibFunc_log2l:
7001         if (visitUnaryFloatCall(I, ISD::FLOG2))
7002           return;
7003         break;
7004       case LibFunc_exp2:
7005       case LibFunc_exp2f:
7006       case LibFunc_exp2l:
7007         if (visitUnaryFloatCall(I, ISD::FEXP2))
7008           return;
7009         break;
7010       case LibFunc_memcmp:
7011         if (visitMemCmpCall(I))
7012           return;
7013         break;
7014       case LibFunc_mempcpy:
7015         if (visitMemPCpyCall(I))
7016           return;
7017         break;
7018       case LibFunc_memchr:
7019         if (visitMemChrCall(I))
7020           return;
7021         break;
7022       case LibFunc_strcpy:
7023         if (visitStrCpyCall(I, false))
7024           return;
7025         break;
7026       case LibFunc_stpcpy:
7027         if (visitStrCpyCall(I, true))
7028           return;
7029         break;
7030       case LibFunc_strcmp:
7031         if (visitStrCmpCall(I))
7032           return;
7033         break;
7034       case LibFunc_strlen:
7035         if (visitStrLenCall(I))
7036           return;
7037         break;
7038       case LibFunc_strnlen:
7039         if (visitStrNLenCall(I))
7040           return;
7041         break;
7042       }
7043     }
7044   }
7045 
7046   SDValue Callee;
7047   if (!RenameFn)
7048     Callee = getValue(I.getCalledValue());
7049   else
7050     Callee = DAG.getExternalSymbol(
7051         RenameFn,
7052         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7053 
7054   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7055   // have to do anything here to lower funclet bundles.
7056   assert(!I.hasOperandBundlesOtherThan(
7057              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7058          "Cannot lower calls with arbitrary operand bundles!");
7059 
7060   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7061     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7062   else
7063     // Check if we can potentially perform a tail call. More detailed checking
7064     // is be done within LowerCallTo, after more information about the call is
7065     // known.
7066     LowerCallTo(&I, Callee, I.isTailCall());
7067 }
7068 
7069 namespace {
7070 
7071 /// AsmOperandInfo - This contains information for each constraint that we are
7072 /// lowering.
7073 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7074 public:
7075   /// CallOperand - If this is the result output operand or a clobber
7076   /// this is null, otherwise it is the incoming operand to the CallInst.
7077   /// This gets modified as the asm is processed.
7078   SDValue CallOperand;
7079 
7080   /// AssignedRegs - If this is a register or register class operand, this
7081   /// contains the set of register corresponding to the operand.
7082   RegsForValue AssignedRegs;
7083 
7084   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7085     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7086   }
7087 
7088   /// Whether or not this operand accesses memory
7089   bool hasMemory(const TargetLowering &TLI) const {
7090     // Indirect operand accesses access memory.
7091     if (isIndirect)
7092       return true;
7093 
7094     for (const auto &Code : Codes)
7095       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7096         return true;
7097 
7098     return false;
7099   }
7100 
7101   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7102   /// corresponds to.  If there is no Value* for this operand, it returns
7103   /// MVT::Other.
7104   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7105                            const DataLayout &DL) const {
7106     if (!CallOperandVal) return MVT::Other;
7107 
7108     if (isa<BasicBlock>(CallOperandVal))
7109       return TLI.getPointerTy(DL);
7110 
7111     llvm::Type *OpTy = CallOperandVal->getType();
7112 
7113     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7114     // If this is an indirect operand, the operand is a pointer to the
7115     // accessed type.
7116     if (isIndirect) {
7117       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7118       if (!PtrTy)
7119         report_fatal_error("Indirect operand for inline asm not a pointer!");
7120       OpTy = PtrTy->getElementType();
7121     }
7122 
7123     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7124     if (StructType *STy = dyn_cast<StructType>(OpTy))
7125       if (STy->getNumElements() == 1)
7126         OpTy = STy->getElementType(0);
7127 
7128     // If OpTy is not a single value, it may be a struct/union that we
7129     // can tile with integers.
7130     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7131       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7132       switch (BitSize) {
7133       default: break;
7134       case 1:
7135       case 8:
7136       case 16:
7137       case 32:
7138       case 64:
7139       case 128:
7140         OpTy = IntegerType::get(Context, BitSize);
7141         break;
7142       }
7143     }
7144 
7145     return TLI.getValueType(DL, OpTy, true);
7146   }
7147 };
7148 
7149 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7150 
7151 } // end anonymous namespace
7152 
7153 /// Make sure that the output operand \p OpInfo and its corresponding input
7154 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7155 /// out).
7156 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7157                                SDISelAsmOperandInfo &MatchingOpInfo,
7158                                SelectionDAG &DAG) {
7159   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7160     return;
7161 
7162   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7163   const auto &TLI = DAG.getTargetLoweringInfo();
7164 
7165   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7166       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7167                                        OpInfo.ConstraintVT);
7168   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7169       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7170                                        MatchingOpInfo.ConstraintVT);
7171   if ((OpInfo.ConstraintVT.isInteger() !=
7172        MatchingOpInfo.ConstraintVT.isInteger()) ||
7173       (MatchRC.second != InputRC.second)) {
7174     // FIXME: error out in a more elegant fashion
7175     report_fatal_error("Unsupported asm: input constraint"
7176                        " with a matching output constraint of"
7177                        " incompatible type!");
7178   }
7179   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7180 }
7181 
7182 /// Get a direct memory input to behave well as an indirect operand.
7183 /// This may introduce stores, hence the need for a \p Chain.
7184 /// \return The (possibly updated) chain.
7185 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7186                                         SDISelAsmOperandInfo &OpInfo,
7187                                         SelectionDAG &DAG) {
7188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7189 
7190   // If we don't have an indirect input, put it in the constpool if we can,
7191   // otherwise spill it to a stack slot.
7192   // TODO: This isn't quite right. We need to handle these according to
7193   // the addressing mode that the constraint wants. Also, this may take
7194   // an additional register for the computation and we don't want that
7195   // either.
7196 
7197   // If the operand is a float, integer, or vector constant, spill to a
7198   // constant pool entry to get its address.
7199   const Value *OpVal = OpInfo.CallOperandVal;
7200   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7201       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7202     OpInfo.CallOperand = DAG.getConstantPool(
7203         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7204     return Chain;
7205   }
7206 
7207   // Otherwise, create a stack slot and emit a store to it before the asm.
7208   Type *Ty = OpVal->getType();
7209   auto &DL = DAG.getDataLayout();
7210   uint64_t TySize = DL.getTypeAllocSize(Ty);
7211   unsigned Align = DL.getPrefTypeAlignment(Ty);
7212   MachineFunction &MF = DAG.getMachineFunction();
7213   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7214   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7215   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7216                        MachinePointerInfo::getFixedStack(MF, SSFI));
7217   OpInfo.CallOperand = StackSlot;
7218 
7219   return Chain;
7220 }
7221 
7222 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7223 /// specified operand.  We prefer to assign virtual registers, to allow the
7224 /// register allocator to handle the assignment process.  However, if the asm
7225 /// uses features that we can't model on machineinstrs, we have SDISel do the
7226 /// allocation.  This produces generally horrible, but correct, code.
7227 ///
7228 ///   OpInfo describes the operand
7229 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7230 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7231                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7232                                  SDISelAsmOperandInfo &RefOpInfo) {
7233   LLVMContext &Context = *DAG.getContext();
7234 
7235   MachineFunction &MF = DAG.getMachineFunction();
7236   SmallVector<unsigned, 4> Regs;
7237   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7238 
7239   // If this is a constraint for a single physreg, or a constraint for a
7240   // register class, find it.
7241   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7242       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7243                                        RefOpInfo.ConstraintVT);
7244 
7245   unsigned NumRegs = 1;
7246   if (OpInfo.ConstraintVT != MVT::Other) {
7247     // If this is an FP operand in an integer register (or visa versa), or more
7248     // generally if the operand value disagrees with the register class we plan
7249     // to stick it in, fix the operand type.
7250     //
7251     // If this is an input value, the bitcast to the new type is done now.
7252     // Bitcast for output value is done at the end of visitInlineAsm().
7253     if ((OpInfo.Type == InlineAsm::isOutput ||
7254          OpInfo.Type == InlineAsm::isInput) &&
7255         PhysReg.second &&
7256         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7257       // Try to convert to the first EVT that the reg class contains.  If the
7258       // types are identical size, use a bitcast to convert (e.g. two differing
7259       // vector types).  Note: output bitcast is done at the end of
7260       // visitInlineAsm().
7261       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7262       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7263         // Exclude indirect inputs while they are unsupported because the code
7264         // to perform the load is missing and thus OpInfo.CallOperand still
7265         // refers to the input address rather than the pointed-to value.
7266         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7267           OpInfo.CallOperand =
7268               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7269         OpInfo.ConstraintVT = RegVT;
7270         // If the operand is an FP value and we want it in integer registers,
7271         // use the corresponding integer type. This turns an f64 value into
7272         // i64, which can be passed with two i32 values on a 32-bit machine.
7273       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7274         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7275         if (OpInfo.Type == InlineAsm::isInput)
7276           OpInfo.CallOperand =
7277               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7278         OpInfo.ConstraintVT = RegVT;
7279       }
7280     }
7281 
7282     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7283   }
7284 
7285   // No need to allocate a matching input constraint since the constraint it's
7286   // matching to has already been allocated.
7287   if (OpInfo.isMatchingInputConstraint())
7288     return;
7289 
7290   MVT RegVT;
7291   EVT ValueVT = OpInfo.ConstraintVT;
7292 
7293   // If this is a constraint for a specific physical register, like {r17},
7294   // assign it now.
7295   if (unsigned AssignedReg = PhysReg.first) {
7296     const TargetRegisterClass *RC = PhysReg.second;
7297     if (OpInfo.ConstraintVT == MVT::Other)
7298       ValueVT = *TRI.legalclasstypes_begin(*RC);
7299 
7300     // Get the actual register value type.  This is important, because the user
7301     // may have asked for (e.g.) the AX register in i32 type.  We need to
7302     // remember that AX is actually i16 to get the right extension.
7303     RegVT = *TRI.legalclasstypes_begin(*RC);
7304 
7305     // This is an explicit reference to a physical register.
7306     Regs.push_back(AssignedReg);
7307 
7308     // If this is an expanded reference, add the rest of the regs to Regs.
7309     if (NumRegs != 1) {
7310       TargetRegisterClass::iterator I = RC->begin();
7311       for (; *I != AssignedReg; ++I)
7312         assert(I != RC->end() && "Didn't find reg!");
7313 
7314       // Already added the first reg.
7315       --NumRegs; ++I;
7316       for (; NumRegs; --NumRegs, ++I) {
7317         assert(I != RC->end() && "Ran out of registers to allocate!");
7318         Regs.push_back(*I);
7319       }
7320     }
7321 
7322     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7323     return;
7324   }
7325 
7326   // Otherwise, if this was a reference to an LLVM register class, create vregs
7327   // for this reference.
7328   if (const TargetRegisterClass *RC = PhysReg.second) {
7329     RegVT = *TRI.legalclasstypes_begin(*RC);
7330     if (OpInfo.ConstraintVT == MVT::Other)
7331       ValueVT = RegVT;
7332 
7333     // Create the appropriate number of virtual registers.
7334     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7335     for (; NumRegs; --NumRegs)
7336       Regs.push_back(RegInfo.createVirtualRegister(RC));
7337 
7338     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7339     return;
7340   }
7341 
7342   // Otherwise, we couldn't allocate enough registers for this.
7343 }
7344 
7345 static unsigned
7346 findMatchingInlineAsmOperand(unsigned OperandNo,
7347                              const std::vector<SDValue> &AsmNodeOperands) {
7348   // Scan until we find the definition we already emitted of this operand.
7349   unsigned CurOp = InlineAsm::Op_FirstOperand;
7350   for (; OperandNo; --OperandNo) {
7351     // Advance to the next operand.
7352     unsigned OpFlag =
7353         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7354     assert((InlineAsm::isRegDefKind(OpFlag) ||
7355             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7356             InlineAsm::isMemKind(OpFlag)) &&
7357            "Skipped past definitions?");
7358     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7359   }
7360   return CurOp;
7361 }
7362 
7363 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7364 /// \return true if it has succeeded, false otherwise
7365 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7366                               MVT RegVT, SelectionDAG &DAG) {
7367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7368   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7369   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7370     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7371       Regs.push_back(RegInfo.createVirtualRegister(RC));
7372     else
7373       return false;
7374   }
7375   return true;
7376 }
7377 
7378 namespace {
7379 
7380 class ExtraFlags {
7381   unsigned Flags = 0;
7382 
7383 public:
7384   explicit ExtraFlags(ImmutableCallSite CS) {
7385     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7386     if (IA->hasSideEffects())
7387       Flags |= InlineAsm::Extra_HasSideEffects;
7388     if (IA->isAlignStack())
7389       Flags |= InlineAsm::Extra_IsAlignStack;
7390     if (CS.isConvergent())
7391       Flags |= InlineAsm::Extra_IsConvergent;
7392     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7393   }
7394 
7395   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7396     // Ideally, we would only check against memory constraints.  However, the
7397     // meaning of an Other constraint can be target-specific and we can't easily
7398     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7399     // for Other constraints as well.
7400     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7401         OpInfo.ConstraintType == TargetLowering::C_Other) {
7402       if (OpInfo.Type == InlineAsm::isInput)
7403         Flags |= InlineAsm::Extra_MayLoad;
7404       else if (OpInfo.Type == InlineAsm::isOutput)
7405         Flags |= InlineAsm::Extra_MayStore;
7406       else if (OpInfo.Type == InlineAsm::isClobber)
7407         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7408     }
7409   }
7410 
7411   unsigned get() const { return Flags; }
7412 };
7413 
7414 } // end anonymous namespace
7415 
7416 /// visitInlineAsm - Handle a call to an InlineAsm object.
7417 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7418   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7419 
7420   /// ConstraintOperands - Information about all of the constraints.
7421   SDISelAsmOperandInfoVector ConstraintOperands;
7422 
7423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7424   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7425       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7426 
7427   bool hasMemory = false;
7428 
7429   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7430   ExtraFlags ExtraInfo(CS);
7431 
7432   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7433   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7434   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7435     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7436     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7437 
7438     MVT OpVT = MVT::Other;
7439 
7440     // Compute the value type for each operand.
7441     if (OpInfo.Type == InlineAsm::isInput ||
7442         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7443       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7444 
7445       // Process the call argument. BasicBlocks are labels, currently appearing
7446       // only in asm's.
7447       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7448         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7449       } else {
7450         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7451       }
7452 
7453       OpVT =
7454           OpInfo
7455               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7456               .getSimpleVT();
7457     }
7458 
7459     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7460       // The return value of the call is this value.  As such, there is no
7461       // corresponding argument.
7462       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7463       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7464         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7465                                       STy->getElementType(ResNo));
7466       } else {
7467         assert(ResNo == 0 && "Asm only has one result!");
7468         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7469       }
7470       ++ResNo;
7471     }
7472 
7473     OpInfo.ConstraintVT = OpVT;
7474 
7475     if (!hasMemory)
7476       hasMemory = OpInfo.hasMemory(TLI);
7477 
7478     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7479     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7480     auto TargetConstraint = TargetConstraints[i];
7481 
7482     // Compute the constraint code and ConstraintType to use.
7483     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7484 
7485     ExtraInfo.update(TargetConstraint);
7486   }
7487 
7488   SDValue Chain, Flag;
7489 
7490   // We won't need to flush pending loads if this asm doesn't touch
7491   // memory and is nonvolatile.
7492   if (hasMemory || IA->hasSideEffects())
7493     Chain = getRoot();
7494   else
7495     Chain = DAG.getRoot();
7496 
7497   // Second pass over the constraints: compute which constraint option to use
7498   // and assign registers to constraints that want a specific physreg.
7499   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7500     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7501 
7502     // If this is an output operand with a matching input operand, look up the
7503     // matching input. If their types mismatch, e.g. one is an integer, the
7504     // other is floating point, or their sizes are different, flag it as an
7505     // error.
7506     if (OpInfo.hasMatchingInput()) {
7507       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7508       patchMatchingInput(OpInfo, Input, DAG);
7509     }
7510 
7511     // Compute the constraint code and ConstraintType to use.
7512     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7513 
7514     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7515         OpInfo.Type == InlineAsm::isClobber)
7516       continue;
7517 
7518     // If this is a memory input, and if the operand is not indirect, do what we
7519     // need to provide an address for the memory input.
7520     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7521         !OpInfo.isIndirect) {
7522       assert((OpInfo.isMultipleAlternative ||
7523               (OpInfo.Type == InlineAsm::isInput)) &&
7524              "Can only indirectify direct input operands!");
7525 
7526       // Memory operands really want the address of the value.
7527       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7528 
7529       // There is no longer a Value* corresponding to this operand.
7530       OpInfo.CallOperandVal = nullptr;
7531 
7532       // It is now an indirect operand.
7533       OpInfo.isIndirect = true;
7534     }
7535 
7536     // If this constraint is for a specific register, allocate it before
7537     // anything else.
7538     SDISelAsmOperandInfo &RefOpInfo =
7539         OpInfo.isMatchingInputConstraint()
7540             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7541             : ConstraintOperands[i];
7542     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7543       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7544   }
7545 
7546   // Third pass - Loop over all of the operands, assigning virtual or physregs
7547   // to register class operands.
7548   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7549     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7550     SDISelAsmOperandInfo &RefOpInfo =
7551         OpInfo.isMatchingInputConstraint()
7552             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7553             : ConstraintOperands[i];
7554 
7555     // C_Register operands have already been allocated, Other/Memory don't need
7556     // to be.
7557     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7558       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7559   }
7560 
7561   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7562   std::vector<SDValue> AsmNodeOperands;
7563   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7564   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7565       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7566 
7567   // If we have a !srcloc metadata node associated with it, we want to attach
7568   // this to the ultimately generated inline asm machineinstr.  To do this, we
7569   // pass in the third operand as this (potentially null) inline asm MDNode.
7570   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7571   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7572 
7573   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7574   // bits as operand 3.
7575   AsmNodeOperands.push_back(DAG.getTargetConstant(
7576       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7577 
7578   // Loop over all of the inputs, copying the operand values into the
7579   // appropriate registers and processing the output regs.
7580   RegsForValue RetValRegs;
7581 
7582   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7583   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7584 
7585   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7586     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7587 
7588     switch (OpInfo.Type) {
7589     case InlineAsm::isOutput:
7590       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7591           OpInfo.ConstraintType != TargetLowering::C_Register) {
7592         // Memory output, or 'other' output (e.g. 'X' constraint).
7593         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7594 
7595         unsigned ConstraintID =
7596             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7597         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7598                "Failed to convert memory constraint code to constraint id.");
7599 
7600         // Add information to the INLINEASM node to know about this output.
7601         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7602         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7603         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7604                                                         MVT::i32));
7605         AsmNodeOperands.push_back(OpInfo.CallOperand);
7606         break;
7607       }
7608 
7609       // Otherwise, this is a register or register class output.
7610 
7611       // Copy the output from the appropriate register.  Find a register that
7612       // we can use.
7613       if (OpInfo.AssignedRegs.Regs.empty()) {
7614         emitInlineAsmError(
7615             CS, "couldn't allocate output register for constraint '" +
7616                     Twine(OpInfo.ConstraintCode) + "'");
7617         return;
7618       }
7619 
7620       // If this is an indirect operand, store through the pointer after the
7621       // asm.
7622       if (OpInfo.isIndirect) {
7623         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7624                                                       OpInfo.CallOperandVal));
7625       } else {
7626         // This is the result value of the call.
7627         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7628         // Concatenate this output onto the outputs list.
7629         RetValRegs.append(OpInfo.AssignedRegs);
7630       }
7631 
7632       // Add information to the INLINEASM node to know that this register is
7633       // set.
7634       OpInfo.AssignedRegs
7635           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7636                                     ? InlineAsm::Kind_RegDefEarlyClobber
7637                                     : InlineAsm::Kind_RegDef,
7638                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7639       break;
7640 
7641     case InlineAsm::isInput: {
7642       SDValue InOperandVal = OpInfo.CallOperand;
7643 
7644       if (OpInfo.isMatchingInputConstraint()) {
7645         // If this is required to match an output register we have already set,
7646         // just use its register.
7647         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7648                                                   AsmNodeOperands);
7649         unsigned OpFlag =
7650           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7651         if (InlineAsm::isRegDefKind(OpFlag) ||
7652             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7653           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7654           if (OpInfo.isIndirect) {
7655             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7656             emitInlineAsmError(CS, "inline asm not supported yet:"
7657                                    " don't know how to handle tied "
7658                                    "indirect register inputs");
7659             return;
7660           }
7661 
7662           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7663           SmallVector<unsigned, 4> Regs;
7664 
7665           if (!createVirtualRegs(Regs,
7666                                  InlineAsm::getNumOperandRegisters(OpFlag),
7667                                  RegVT, DAG)) {
7668             emitInlineAsmError(CS, "inline asm error: This value type register "
7669                                    "class is not natively supported!");
7670             return;
7671           }
7672 
7673           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7674 
7675           SDLoc dl = getCurSDLoc();
7676           // Use the produced MatchedRegs object to
7677           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7678                                     CS.getInstruction());
7679           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7680                                            true, OpInfo.getMatchedOperand(), dl,
7681                                            DAG, AsmNodeOperands);
7682           break;
7683         }
7684 
7685         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7686         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7687                "Unexpected number of operands");
7688         // Add information to the INLINEASM node to know about this input.
7689         // See InlineAsm.h isUseOperandTiedToDef.
7690         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7691         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7692                                                     OpInfo.getMatchedOperand());
7693         AsmNodeOperands.push_back(DAG.getTargetConstant(
7694             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7695         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7696         break;
7697       }
7698 
7699       // Treat indirect 'X' constraint as memory.
7700       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7701           OpInfo.isIndirect)
7702         OpInfo.ConstraintType = TargetLowering::C_Memory;
7703 
7704       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7705         std::vector<SDValue> Ops;
7706         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7707                                           Ops, DAG);
7708         if (Ops.empty()) {
7709           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7710                                      Twine(OpInfo.ConstraintCode) + "'");
7711           return;
7712         }
7713 
7714         // Add information to the INLINEASM node to know about this input.
7715         unsigned ResOpType =
7716           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7717         AsmNodeOperands.push_back(DAG.getTargetConstant(
7718             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7719         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7720         break;
7721       }
7722 
7723       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7724         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7725         assert(InOperandVal.getValueType() ==
7726                    TLI.getPointerTy(DAG.getDataLayout()) &&
7727                "Memory operands expect pointer values");
7728 
7729         unsigned ConstraintID =
7730             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7731         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7732                "Failed to convert memory constraint code to constraint id.");
7733 
7734         // Add information to the INLINEASM node to know about this input.
7735         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7736         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7737         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7738                                                         getCurSDLoc(),
7739                                                         MVT::i32));
7740         AsmNodeOperands.push_back(InOperandVal);
7741         break;
7742       }
7743 
7744       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7745               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7746              "Unknown constraint type!");
7747 
7748       // TODO: Support this.
7749       if (OpInfo.isIndirect) {
7750         emitInlineAsmError(
7751             CS, "Don't know how to handle indirect register inputs yet "
7752                 "for constraint '" +
7753                     Twine(OpInfo.ConstraintCode) + "'");
7754         return;
7755       }
7756 
7757       // Copy the input into the appropriate registers.
7758       if (OpInfo.AssignedRegs.Regs.empty()) {
7759         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7760                                    Twine(OpInfo.ConstraintCode) + "'");
7761         return;
7762       }
7763 
7764       SDLoc dl = getCurSDLoc();
7765 
7766       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7767                                         Chain, &Flag, CS.getInstruction());
7768 
7769       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7770                                                dl, DAG, AsmNodeOperands);
7771       break;
7772     }
7773     case InlineAsm::isClobber:
7774       // Add the clobbered value to the operand list, so that the register
7775       // allocator is aware that the physreg got clobbered.
7776       if (!OpInfo.AssignedRegs.Regs.empty())
7777         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7778                                                  false, 0, getCurSDLoc(), DAG,
7779                                                  AsmNodeOperands);
7780       break;
7781     }
7782   }
7783 
7784   // Finish up input operands.  Set the input chain and add the flag last.
7785   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7786   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7787 
7788   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7789                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7790   Flag = Chain.getValue(1);
7791 
7792   // If this asm returns a register value, copy the result from that register
7793   // and set it as the value of the call.
7794   if (!RetValRegs.Regs.empty()) {
7795     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7796                                              Chain, &Flag, CS.getInstruction());
7797 
7798     llvm::Type *CSResultType = CS.getType();
7799     unsigned numRet;
7800     ArrayRef<Type *> ResultTypes;
7801     SmallVector<SDValue, 1> ResultValues(1);
7802     if (CSResultType->isSingleValueType()) {
7803       numRet = 1;
7804       ResultValues[0] = Val;
7805       ResultTypes = makeArrayRef(CSResultType);
7806     } else {
7807       numRet = CSResultType->getNumContainedTypes();
7808       assert(Val->getNumOperands() == numRet &&
7809              "Mismatch in number of output operands in asm result");
7810       ResultTypes = CSResultType->subtypes();
7811       ArrayRef<SDUse> ValueUses = Val->ops();
7812       ResultValues.resize(numRet);
7813       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7814                      [](const SDUse &u) -> SDValue { return u.get(); });
7815     }
7816     SmallVector<EVT, 1> ResultVTs(numRet);
7817     for (unsigned i = 0; i < numRet; i++) {
7818       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7819       SDValue Val = ResultValues[i];
7820       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7821       // If the type of the inline asm call site return value is different but
7822       // has same size as the type of the asm output bitcast it.  One example
7823       // of this is for vectors with different width / number of elements.
7824       // This can happen for register classes that can contain multiple
7825       // different value types.  The preg or vreg allocated may not have the
7826       // same VT as was expected.
7827       //
7828       // This can also happen for a return value that disagrees with the
7829       // register class it is put in, eg. a double in a general-purpose
7830       // register on a 32-bit machine.
7831       if (ResultVT != Val.getValueType() &&
7832           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7833         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7834       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7835                Val.getValueType().isInteger()) {
7836         // If a result value was tied to an input value, the computed result
7837         // may have a wider width than the expected result.  Extract the
7838         // relevant portion.
7839         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7840       }
7841 
7842       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7843       ResultVTs[i] = ResultVT;
7844       ResultValues[i] = Val;
7845     }
7846 
7847     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7848                       DAG.getVTList(ResultVTs), ResultValues);
7849     setValue(CS.getInstruction(), Val);
7850     // Don't need to use this as a chain in this case.
7851     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7852       return;
7853   }
7854 
7855   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7856 
7857   // Process indirect outputs, first output all of the flagged copies out of
7858   // physregs.
7859   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7860     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7861     const Value *Ptr = IndirectStoresToEmit[i].second;
7862     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7863                                              Chain, &Flag, IA);
7864     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7865   }
7866 
7867   // Emit the non-flagged stores from the physregs.
7868   SmallVector<SDValue, 8> OutChains;
7869   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7870     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7871                                getValue(StoresToEmit[i].second),
7872                                MachinePointerInfo(StoresToEmit[i].second));
7873     OutChains.push_back(Val);
7874   }
7875 
7876   if (!OutChains.empty())
7877     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7878 
7879   DAG.setRoot(Chain);
7880 }
7881 
7882 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7883                                              const Twine &Message) {
7884   LLVMContext &Ctx = *DAG.getContext();
7885   Ctx.emitError(CS.getInstruction(), Message);
7886 
7887   // Make sure we leave the DAG in a valid state
7888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7889   SmallVector<EVT, 1> ValueVTs;
7890   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7891 
7892   if (ValueVTs.empty())
7893     return;
7894 
7895   SmallVector<SDValue, 1> Ops;
7896   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7897     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7898 
7899   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7900 }
7901 
7902 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7903   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7904                           MVT::Other, getRoot(),
7905                           getValue(I.getArgOperand(0)),
7906                           DAG.getSrcValue(I.getArgOperand(0))));
7907 }
7908 
7909 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911   const DataLayout &DL = DAG.getDataLayout();
7912   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7913                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7914                            DAG.getSrcValue(I.getOperand(0)),
7915                            DL.getABITypeAlignment(I.getType()));
7916   setValue(&I, V);
7917   DAG.setRoot(V.getValue(1));
7918 }
7919 
7920 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7921   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7922                           MVT::Other, getRoot(),
7923                           getValue(I.getArgOperand(0)),
7924                           DAG.getSrcValue(I.getArgOperand(0))));
7925 }
7926 
7927 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7928   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7929                           MVT::Other, getRoot(),
7930                           getValue(I.getArgOperand(0)),
7931                           getValue(I.getArgOperand(1)),
7932                           DAG.getSrcValue(I.getArgOperand(0)),
7933                           DAG.getSrcValue(I.getArgOperand(1))));
7934 }
7935 
7936 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7937                                                     const Instruction &I,
7938                                                     SDValue Op) {
7939   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7940   if (!Range)
7941     return Op;
7942 
7943   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7944   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7945     return Op;
7946 
7947   APInt Lo = CR.getUnsignedMin();
7948   if (!Lo.isMinValue())
7949     return Op;
7950 
7951   APInt Hi = CR.getUnsignedMax();
7952   unsigned Bits = Hi.getActiveBits();
7953 
7954   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7955 
7956   SDLoc SL = getCurSDLoc();
7957 
7958   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7959                              DAG.getValueType(SmallVT));
7960   unsigned NumVals = Op.getNode()->getNumValues();
7961   if (NumVals == 1)
7962     return ZExt;
7963 
7964   SmallVector<SDValue, 4> Ops;
7965 
7966   Ops.push_back(ZExt);
7967   for (unsigned I = 1; I != NumVals; ++I)
7968     Ops.push_back(Op.getValue(I));
7969 
7970   return DAG.getMergeValues(Ops, SL);
7971 }
7972 
7973 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7974 /// the call being lowered.
7975 ///
7976 /// This is a helper for lowering intrinsics that follow a target calling
7977 /// convention or require stack pointer adjustment. Only a subset of the
7978 /// intrinsic's operands need to participate in the calling convention.
7979 void SelectionDAGBuilder::populateCallLoweringInfo(
7980     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7981     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7982     bool IsPatchPoint) {
7983   TargetLowering::ArgListTy Args;
7984   Args.reserve(NumArgs);
7985 
7986   // Populate the argument list.
7987   // Attributes for args start at offset 1, after the return attribute.
7988   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7989        ArgI != ArgE; ++ArgI) {
7990     const Value *V = CS->getOperand(ArgI);
7991 
7992     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7993 
7994     TargetLowering::ArgListEntry Entry;
7995     Entry.Node = getValue(V);
7996     Entry.Ty = V->getType();
7997     Entry.setAttributes(&CS, ArgI);
7998     Args.push_back(Entry);
7999   }
8000 
8001   CLI.setDebugLoc(getCurSDLoc())
8002       .setChain(getRoot())
8003       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8004       .setDiscardResult(CS->use_empty())
8005       .setIsPatchPoint(IsPatchPoint);
8006 }
8007 
8008 /// Add a stack map intrinsic call's live variable operands to a stackmap
8009 /// or patchpoint target node's operand list.
8010 ///
8011 /// Constants are converted to TargetConstants purely as an optimization to
8012 /// avoid constant materialization and register allocation.
8013 ///
8014 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8015 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8016 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8017 /// address materialization and register allocation, but may also be required
8018 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8019 /// alloca in the entry block, then the runtime may assume that the alloca's
8020 /// StackMap location can be read immediately after compilation and that the
8021 /// location is valid at any point during execution (this is similar to the
8022 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8023 /// only available in a register, then the runtime would need to trap when
8024 /// execution reaches the StackMap in order to read the alloca's location.
8025 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8026                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8027                                 SelectionDAGBuilder &Builder) {
8028   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8029     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8030     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8031       Ops.push_back(
8032         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8033       Ops.push_back(
8034         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8035     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8036       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8037       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8038           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8039     } else
8040       Ops.push_back(OpVal);
8041   }
8042 }
8043 
8044 /// Lower llvm.experimental.stackmap directly to its target opcode.
8045 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8046   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8047   //                                  [live variables...])
8048 
8049   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8050 
8051   SDValue Chain, InFlag, Callee, NullPtr;
8052   SmallVector<SDValue, 32> Ops;
8053 
8054   SDLoc DL = getCurSDLoc();
8055   Callee = getValue(CI.getCalledValue());
8056   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8057 
8058   // The stackmap intrinsic only records the live variables (the arguemnts
8059   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8060   // intrinsic, this won't be lowered to a function call. This means we don't
8061   // have to worry about calling conventions and target specific lowering code.
8062   // Instead we perform the call lowering right here.
8063   //
8064   // chain, flag = CALLSEQ_START(chain, 0, 0)
8065   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8066   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8067   //
8068   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8069   InFlag = Chain.getValue(1);
8070 
8071   // Add the <id> and <numBytes> constants.
8072   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8073   Ops.push_back(DAG.getTargetConstant(
8074                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8075   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8076   Ops.push_back(DAG.getTargetConstant(
8077                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8078                   MVT::i32));
8079 
8080   // Push live variables for the stack map.
8081   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8082 
8083   // We are not pushing any register mask info here on the operands list,
8084   // because the stackmap doesn't clobber anything.
8085 
8086   // Push the chain and the glue flag.
8087   Ops.push_back(Chain);
8088   Ops.push_back(InFlag);
8089 
8090   // Create the STACKMAP node.
8091   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8092   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8093   Chain = SDValue(SM, 0);
8094   InFlag = Chain.getValue(1);
8095 
8096   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8097 
8098   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8099 
8100   // Set the root to the target-lowered call chain.
8101   DAG.setRoot(Chain);
8102 
8103   // Inform the Frame Information that we have a stackmap in this function.
8104   FuncInfo.MF->getFrameInfo().setHasStackMap();
8105 }
8106 
8107 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8108 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8109                                           const BasicBlock *EHPadBB) {
8110   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8111   //                                                 i32 <numBytes>,
8112   //                                                 i8* <target>,
8113   //                                                 i32 <numArgs>,
8114   //                                                 [Args...],
8115   //                                                 [live variables...])
8116 
8117   CallingConv::ID CC = CS.getCallingConv();
8118   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8119   bool HasDef = !CS->getType()->isVoidTy();
8120   SDLoc dl = getCurSDLoc();
8121   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8122 
8123   // Handle immediate and symbolic callees.
8124   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8125     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8126                                    /*isTarget=*/true);
8127   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8128     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8129                                          SDLoc(SymbolicCallee),
8130                                          SymbolicCallee->getValueType(0));
8131 
8132   // Get the real number of arguments participating in the call <numArgs>
8133   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8134   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8135 
8136   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8137   // Intrinsics include all meta-operands up to but not including CC.
8138   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8139   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8140          "Not enough arguments provided to the patchpoint intrinsic");
8141 
8142   // For AnyRegCC the arguments are lowered later on manually.
8143   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8144   Type *ReturnTy =
8145     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8146 
8147   TargetLowering::CallLoweringInfo CLI(DAG);
8148   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8149                            true);
8150   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8151 
8152   SDNode *CallEnd = Result.second.getNode();
8153   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8154     CallEnd = CallEnd->getOperand(0).getNode();
8155 
8156   /// Get a call instruction from the call sequence chain.
8157   /// Tail calls are not allowed.
8158   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8159          "Expected a callseq node.");
8160   SDNode *Call = CallEnd->getOperand(0).getNode();
8161   bool HasGlue = Call->getGluedNode();
8162 
8163   // Replace the target specific call node with the patchable intrinsic.
8164   SmallVector<SDValue, 8> Ops;
8165 
8166   // Add the <id> and <numBytes> constants.
8167   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8168   Ops.push_back(DAG.getTargetConstant(
8169                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8170   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8171   Ops.push_back(DAG.getTargetConstant(
8172                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8173                   MVT::i32));
8174 
8175   // Add the callee.
8176   Ops.push_back(Callee);
8177 
8178   // Adjust <numArgs> to account for any arguments that have been passed on the
8179   // stack instead.
8180   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8181   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8182   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8183   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8184 
8185   // Add the calling convention
8186   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8187 
8188   // Add the arguments we omitted previously. The register allocator should
8189   // place these in any free register.
8190   if (IsAnyRegCC)
8191     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8192       Ops.push_back(getValue(CS.getArgument(i)));
8193 
8194   // Push the arguments from the call instruction up to the register mask.
8195   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8196   Ops.append(Call->op_begin() + 2, e);
8197 
8198   // Push live variables for the stack map.
8199   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8200 
8201   // Push the register mask info.
8202   if (HasGlue)
8203     Ops.push_back(*(Call->op_end()-2));
8204   else
8205     Ops.push_back(*(Call->op_end()-1));
8206 
8207   // Push the chain (this is originally the first operand of the call, but
8208   // becomes now the last or second to last operand).
8209   Ops.push_back(*(Call->op_begin()));
8210 
8211   // Push the glue flag (last operand).
8212   if (HasGlue)
8213     Ops.push_back(*(Call->op_end()-1));
8214 
8215   SDVTList NodeTys;
8216   if (IsAnyRegCC && HasDef) {
8217     // Create the return types based on the intrinsic definition
8218     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8219     SmallVector<EVT, 3> ValueVTs;
8220     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8221     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8222 
8223     // There is always a chain and a glue type at the end
8224     ValueVTs.push_back(MVT::Other);
8225     ValueVTs.push_back(MVT::Glue);
8226     NodeTys = DAG.getVTList(ValueVTs);
8227   } else
8228     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8229 
8230   // Replace the target specific call node with a PATCHPOINT node.
8231   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8232                                          dl, NodeTys, Ops);
8233 
8234   // Update the NodeMap.
8235   if (HasDef) {
8236     if (IsAnyRegCC)
8237       setValue(CS.getInstruction(), SDValue(MN, 0));
8238     else
8239       setValue(CS.getInstruction(), Result.first);
8240   }
8241 
8242   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8243   // call sequence. Furthermore the location of the chain and glue can change
8244   // when the AnyReg calling convention is used and the intrinsic returns a
8245   // value.
8246   if (IsAnyRegCC && HasDef) {
8247     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8248     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8249     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8250   } else
8251     DAG.ReplaceAllUsesWith(Call, MN);
8252   DAG.DeleteNode(Call);
8253 
8254   // Inform the Frame Information that we have a patchpoint in this function.
8255   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8256 }
8257 
8258 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8259                                             unsigned Intrinsic) {
8260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8261   SDValue Op1 = getValue(I.getArgOperand(0));
8262   SDValue Op2;
8263   if (I.getNumArgOperands() > 1)
8264     Op2 = getValue(I.getArgOperand(1));
8265   SDLoc dl = getCurSDLoc();
8266   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8267   SDValue Res;
8268   FastMathFlags FMF;
8269   if (isa<FPMathOperator>(I))
8270     FMF = I.getFastMathFlags();
8271 
8272   switch (Intrinsic) {
8273   case Intrinsic::experimental_vector_reduce_fadd:
8274     if (FMF.isFast())
8275       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8276     else
8277       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8278     break;
8279   case Intrinsic::experimental_vector_reduce_fmul:
8280     if (FMF.isFast())
8281       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8282     else
8283       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8284     break;
8285   case Intrinsic::experimental_vector_reduce_add:
8286     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8287     break;
8288   case Intrinsic::experimental_vector_reduce_mul:
8289     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8290     break;
8291   case Intrinsic::experimental_vector_reduce_and:
8292     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8293     break;
8294   case Intrinsic::experimental_vector_reduce_or:
8295     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8296     break;
8297   case Intrinsic::experimental_vector_reduce_xor:
8298     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8299     break;
8300   case Intrinsic::experimental_vector_reduce_smax:
8301     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8302     break;
8303   case Intrinsic::experimental_vector_reduce_smin:
8304     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8305     break;
8306   case Intrinsic::experimental_vector_reduce_umax:
8307     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8308     break;
8309   case Intrinsic::experimental_vector_reduce_umin:
8310     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8311     break;
8312   case Intrinsic::experimental_vector_reduce_fmax:
8313     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8314     break;
8315   case Intrinsic::experimental_vector_reduce_fmin:
8316     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8317     break;
8318   default:
8319     llvm_unreachable("Unhandled vector reduce intrinsic");
8320   }
8321   setValue(&I, Res);
8322 }
8323 
8324 /// Returns an AttributeList representing the attributes applied to the return
8325 /// value of the given call.
8326 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8327   SmallVector<Attribute::AttrKind, 2> Attrs;
8328   if (CLI.RetSExt)
8329     Attrs.push_back(Attribute::SExt);
8330   if (CLI.RetZExt)
8331     Attrs.push_back(Attribute::ZExt);
8332   if (CLI.IsInReg)
8333     Attrs.push_back(Attribute::InReg);
8334 
8335   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8336                             Attrs);
8337 }
8338 
8339 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8340 /// implementation, which just calls LowerCall.
8341 /// FIXME: When all targets are
8342 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8343 std::pair<SDValue, SDValue>
8344 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8345   // Handle the incoming return values from the call.
8346   CLI.Ins.clear();
8347   Type *OrigRetTy = CLI.RetTy;
8348   SmallVector<EVT, 4> RetTys;
8349   SmallVector<uint64_t, 4> Offsets;
8350   auto &DL = CLI.DAG.getDataLayout();
8351   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8352 
8353   if (CLI.IsPostTypeLegalization) {
8354     // If we are lowering a libcall after legalization, split the return type.
8355     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8356     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8357     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8358       EVT RetVT = OldRetTys[i];
8359       uint64_t Offset = OldOffsets[i];
8360       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8361       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8362       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8363       RetTys.append(NumRegs, RegisterVT);
8364       for (unsigned j = 0; j != NumRegs; ++j)
8365         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8366     }
8367   }
8368 
8369   SmallVector<ISD::OutputArg, 4> Outs;
8370   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8371 
8372   bool CanLowerReturn =
8373       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8374                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8375 
8376   SDValue DemoteStackSlot;
8377   int DemoteStackIdx = -100;
8378   if (!CanLowerReturn) {
8379     // FIXME: equivalent assert?
8380     // assert(!CS.hasInAllocaArgument() &&
8381     //        "sret demotion is incompatible with inalloca");
8382     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8383     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8384     MachineFunction &MF = CLI.DAG.getMachineFunction();
8385     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8386     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8387                                               DL.getAllocaAddrSpace());
8388 
8389     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8390     ArgListEntry Entry;
8391     Entry.Node = DemoteStackSlot;
8392     Entry.Ty = StackSlotPtrType;
8393     Entry.IsSExt = false;
8394     Entry.IsZExt = false;
8395     Entry.IsInReg = false;
8396     Entry.IsSRet = true;
8397     Entry.IsNest = false;
8398     Entry.IsByVal = false;
8399     Entry.IsReturned = false;
8400     Entry.IsSwiftSelf = false;
8401     Entry.IsSwiftError = false;
8402     Entry.Alignment = Align;
8403     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8404     CLI.NumFixedArgs += 1;
8405     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8406 
8407     // sret demotion isn't compatible with tail-calls, since the sret argument
8408     // points into the callers stack frame.
8409     CLI.IsTailCall = false;
8410   } else {
8411     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8412       EVT VT = RetTys[I];
8413       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8414                                                      CLI.CallConv, VT);
8415       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8416                                                        CLI.CallConv, VT);
8417       for (unsigned i = 0; i != NumRegs; ++i) {
8418         ISD::InputArg MyFlags;
8419         MyFlags.VT = RegisterVT;
8420         MyFlags.ArgVT = VT;
8421         MyFlags.Used = CLI.IsReturnValueUsed;
8422         if (CLI.RetSExt)
8423           MyFlags.Flags.setSExt();
8424         if (CLI.RetZExt)
8425           MyFlags.Flags.setZExt();
8426         if (CLI.IsInReg)
8427           MyFlags.Flags.setInReg();
8428         CLI.Ins.push_back(MyFlags);
8429       }
8430     }
8431   }
8432 
8433   // We push in swifterror return as the last element of CLI.Ins.
8434   ArgListTy &Args = CLI.getArgs();
8435   if (supportSwiftError()) {
8436     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8437       if (Args[i].IsSwiftError) {
8438         ISD::InputArg MyFlags;
8439         MyFlags.VT = getPointerTy(DL);
8440         MyFlags.ArgVT = EVT(getPointerTy(DL));
8441         MyFlags.Flags.setSwiftError();
8442         CLI.Ins.push_back(MyFlags);
8443       }
8444     }
8445   }
8446 
8447   // Handle all of the outgoing arguments.
8448   CLI.Outs.clear();
8449   CLI.OutVals.clear();
8450   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8451     SmallVector<EVT, 4> ValueVTs;
8452     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8453     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8454     Type *FinalType = Args[i].Ty;
8455     if (Args[i].IsByVal)
8456       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8457     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8458         FinalType, CLI.CallConv, CLI.IsVarArg);
8459     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8460          ++Value) {
8461       EVT VT = ValueVTs[Value];
8462       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8463       SDValue Op = SDValue(Args[i].Node.getNode(),
8464                            Args[i].Node.getResNo() + Value);
8465       ISD::ArgFlagsTy Flags;
8466 
8467       // Certain targets (such as MIPS), may have a different ABI alignment
8468       // for a type depending on the context. Give the target a chance to
8469       // specify the alignment it wants.
8470       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8471 
8472       if (Args[i].IsZExt)
8473         Flags.setZExt();
8474       if (Args[i].IsSExt)
8475         Flags.setSExt();
8476       if (Args[i].IsInReg) {
8477         // If we are using vectorcall calling convention, a structure that is
8478         // passed InReg - is surely an HVA
8479         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8480             isa<StructType>(FinalType)) {
8481           // The first value of a structure is marked
8482           if (0 == Value)
8483             Flags.setHvaStart();
8484           Flags.setHva();
8485         }
8486         // Set InReg Flag
8487         Flags.setInReg();
8488       }
8489       if (Args[i].IsSRet)
8490         Flags.setSRet();
8491       if (Args[i].IsSwiftSelf)
8492         Flags.setSwiftSelf();
8493       if (Args[i].IsSwiftError)
8494         Flags.setSwiftError();
8495       if (Args[i].IsByVal)
8496         Flags.setByVal();
8497       if (Args[i].IsInAlloca) {
8498         Flags.setInAlloca();
8499         // Set the byval flag for CCAssignFn callbacks that don't know about
8500         // inalloca.  This way we can know how many bytes we should've allocated
8501         // and how many bytes a callee cleanup function will pop.  If we port
8502         // inalloca to more targets, we'll have to add custom inalloca handling
8503         // in the various CC lowering callbacks.
8504         Flags.setByVal();
8505       }
8506       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8507         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8508         Type *ElementTy = Ty->getElementType();
8509         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8510         // For ByVal, alignment should come from FE.  BE will guess if this
8511         // info is not there but there are cases it cannot get right.
8512         unsigned FrameAlign;
8513         if (Args[i].Alignment)
8514           FrameAlign = Args[i].Alignment;
8515         else
8516           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8517         Flags.setByValAlign(FrameAlign);
8518       }
8519       if (Args[i].IsNest)
8520         Flags.setNest();
8521       if (NeedsRegBlock)
8522         Flags.setInConsecutiveRegs();
8523       Flags.setOrigAlign(OriginalAlignment);
8524 
8525       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8526                                                  CLI.CallConv, VT);
8527       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8528                                                         CLI.CallConv, VT);
8529       SmallVector<SDValue, 4> Parts(NumParts);
8530       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8531 
8532       if (Args[i].IsSExt)
8533         ExtendKind = ISD::SIGN_EXTEND;
8534       else if (Args[i].IsZExt)
8535         ExtendKind = ISD::ZERO_EXTEND;
8536 
8537       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8538       // for now.
8539       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8540           CanLowerReturn) {
8541         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8542                "unexpected use of 'returned'");
8543         // Before passing 'returned' to the target lowering code, ensure that
8544         // either the register MVT and the actual EVT are the same size or that
8545         // the return value and argument are extended in the same way; in these
8546         // cases it's safe to pass the argument register value unchanged as the
8547         // return register value (although it's at the target's option whether
8548         // to do so)
8549         // TODO: allow code generation to take advantage of partially preserved
8550         // registers rather than clobbering the entire register when the
8551         // parameter extension method is not compatible with the return
8552         // extension method
8553         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8554             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8555              CLI.RetZExt == Args[i].IsZExt))
8556           Flags.setReturned();
8557       }
8558 
8559       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8560                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8561 
8562       for (unsigned j = 0; j != NumParts; ++j) {
8563         // if it isn't first piece, alignment must be 1
8564         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8565                                i < CLI.NumFixedArgs,
8566                                i, j*Parts[j].getValueType().getStoreSize());
8567         if (NumParts > 1 && j == 0)
8568           MyFlags.Flags.setSplit();
8569         else if (j != 0) {
8570           MyFlags.Flags.setOrigAlign(1);
8571           if (j == NumParts - 1)
8572             MyFlags.Flags.setSplitEnd();
8573         }
8574 
8575         CLI.Outs.push_back(MyFlags);
8576         CLI.OutVals.push_back(Parts[j]);
8577       }
8578 
8579       if (NeedsRegBlock && Value == NumValues - 1)
8580         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8581     }
8582   }
8583 
8584   SmallVector<SDValue, 4> InVals;
8585   CLI.Chain = LowerCall(CLI, InVals);
8586 
8587   // Update CLI.InVals to use outside of this function.
8588   CLI.InVals = InVals;
8589 
8590   // Verify that the target's LowerCall behaved as expected.
8591   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8592          "LowerCall didn't return a valid chain!");
8593   assert((!CLI.IsTailCall || InVals.empty()) &&
8594          "LowerCall emitted a return value for a tail call!");
8595   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8596          "LowerCall didn't emit the correct number of values!");
8597 
8598   // For a tail call, the return value is merely live-out and there aren't
8599   // any nodes in the DAG representing it. Return a special value to
8600   // indicate that a tail call has been emitted and no more Instructions
8601   // should be processed in the current block.
8602   if (CLI.IsTailCall) {
8603     CLI.DAG.setRoot(CLI.Chain);
8604     return std::make_pair(SDValue(), SDValue());
8605   }
8606 
8607 #ifndef NDEBUG
8608   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8609     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8610     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8611            "LowerCall emitted a value with the wrong type!");
8612   }
8613 #endif
8614 
8615   SmallVector<SDValue, 4> ReturnValues;
8616   if (!CanLowerReturn) {
8617     // The instruction result is the result of loading from the
8618     // hidden sret parameter.
8619     SmallVector<EVT, 1> PVTs;
8620     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8621 
8622     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8623     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8624     EVT PtrVT = PVTs[0];
8625 
8626     unsigned NumValues = RetTys.size();
8627     ReturnValues.resize(NumValues);
8628     SmallVector<SDValue, 4> Chains(NumValues);
8629 
8630     // An aggregate return value cannot wrap around the address space, so
8631     // offsets to its parts don't wrap either.
8632     SDNodeFlags Flags;
8633     Flags.setNoUnsignedWrap(true);
8634 
8635     for (unsigned i = 0; i < NumValues; ++i) {
8636       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8637                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8638                                                         PtrVT), Flags);
8639       SDValue L = CLI.DAG.getLoad(
8640           RetTys[i], CLI.DL, CLI.Chain, Add,
8641           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8642                                             DemoteStackIdx, Offsets[i]),
8643           /* Alignment = */ 1);
8644       ReturnValues[i] = L;
8645       Chains[i] = L.getValue(1);
8646     }
8647 
8648     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8649   } else {
8650     // Collect the legal value parts into potentially illegal values
8651     // that correspond to the original function's return values.
8652     Optional<ISD::NodeType> AssertOp;
8653     if (CLI.RetSExt)
8654       AssertOp = ISD::AssertSext;
8655     else if (CLI.RetZExt)
8656       AssertOp = ISD::AssertZext;
8657     unsigned CurReg = 0;
8658     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8659       EVT VT = RetTys[I];
8660       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8661                                                      CLI.CallConv, VT);
8662       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8663                                                        CLI.CallConv, VT);
8664 
8665       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8666                                               NumRegs, RegisterVT, VT, nullptr,
8667                                               CLI.CallConv, AssertOp));
8668       CurReg += NumRegs;
8669     }
8670 
8671     // For a function returning void, there is no return value. We can't create
8672     // such a node, so we just return a null return value in that case. In
8673     // that case, nothing will actually look at the value.
8674     if (ReturnValues.empty())
8675       return std::make_pair(SDValue(), CLI.Chain);
8676   }
8677 
8678   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8679                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8680   return std::make_pair(Res, CLI.Chain);
8681 }
8682 
8683 void TargetLowering::LowerOperationWrapper(SDNode *N,
8684                                            SmallVectorImpl<SDValue> &Results,
8685                                            SelectionDAG &DAG) const {
8686   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8687     Results.push_back(Res);
8688 }
8689 
8690 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8691   llvm_unreachable("LowerOperation not implemented for this target!");
8692 }
8693 
8694 void
8695 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8696   SDValue Op = getNonRegisterValue(V);
8697   assert((Op.getOpcode() != ISD::CopyFromReg ||
8698           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8699          "Copy from a reg to the same reg!");
8700   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8701 
8702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8703   // If this is an InlineAsm we have to match the registers required, not the
8704   // notional registers required by the type.
8705 
8706   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8707                    None); // This is not an ABI copy.
8708   SDValue Chain = DAG.getEntryNode();
8709 
8710   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8711                               FuncInfo.PreferredExtendType.end())
8712                                  ? ISD::ANY_EXTEND
8713                                  : FuncInfo.PreferredExtendType[V];
8714   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8715   PendingExports.push_back(Chain);
8716 }
8717 
8718 #include "llvm/CodeGen/SelectionDAGISel.h"
8719 
8720 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8721 /// entry block, return true.  This includes arguments used by switches, since
8722 /// the switch may expand into multiple basic blocks.
8723 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8724   // With FastISel active, we may be splitting blocks, so force creation
8725   // of virtual registers for all non-dead arguments.
8726   if (FastISel)
8727     return A->use_empty();
8728 
8729   const BasicBlock &Entry = A->getParent()->front();
8730   for (const User *U : A->users())
8731     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8732       return false;  // Use not in entry block.
8733 
8734   return true;
8735 }
8736 
8737 using ArgCopyElisionMapTy =
8738     DenseMap<const Argument *,
8739              std::pair<const AllocaInst *, const StoreInst *>>;
8740 
8741 /// Scan the entry block of the function in FuncInfo for arguments that look
8742 /// like copies into a local alloca. Record any copied arguments in
8743 /// ArgCopyElisionCandidates.
8744 static void
8745 findArgumentCopyElisionCandidates(const DataLayout &DL,
8746                                   FunctionLoweringInfo *FuncInfo,
8747                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8748   // Record the state of every static alloca used in the entry block. Argument
8749   // allocas are all used in the entry block, so we need approximately as many
8750   // entries as we have arguments.
8751   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8752   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8753   unsigned NumArgs = FuncInfo->Fn->arg_size();
8754   StaticAllocas.reserve(NumArgs * 2);
8755 
8756   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8757     if (!V)
8758       return nullptr;
8759     V = V->stripPointerCasts();
8760     const auto *AI = dyn_cast<AllocaInst>(V);
8761     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8762       return nullptr;
8763     auto Iter = StaticAllocas.insert({AI, Unknown});
8764     return &Iter.first->second;
8765   };
8766 
8767   // Look for stores of arguments to static allocas. Look through bitcasts and
8768   // GEPs to handle type coercions, as long as the alloca is fully initialized
8769   // by the store. Any non-store use of an alloca escapes it and any subsequent
8770   // unanalyzed store might write it.
8771   // FIXME: Handle structs initialized with multiple stores.
8772   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8773     // Look for stores, and handle non-store uses conservatively.
8774     const auto *SI = dyn_cast<StoreInst>(&I);
8775     if (!SI) {
8776       // We will look through cast uses, so ignore them completely.
8777       if (I.isCast())
8778         continue;
8779       // Ignore debug info intrinsics, they don't escape or store to allocas.
8780       if (isa<DbgInfoIntrinsic>(I))
8781         continue;
8782       // This is an unknown instruction. Assume it escapes or writes to all
8783       // static alloca operands.
8784       for (const Use &U : I.operands()) {
8785         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8786           *Info = StaticAllocaInfo::Clobbered;
8787       }
8788       continue;
8789     }
8790 
8791     // If the stored value is a static alloca, mark it as escaped.
8792     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8793       *Info = StaticAllocaInfo::Clobbered;
8794 
8795     // Check if the destination is a static alloca.
8796     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8797     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8798     if (!Info)
8799       continue;
8800     const AllocaInst *AI = cast<AllocaInst>(Dst);
8801 
8802     // Skip allocas that have been initialized or clobbered.
8803     if (*Info != StaticAllocaInfo::Unknown)
8804       continue;
8805 
8806     // Check if the stored value is an argument, and that this store fully
8807     // initializes the alloca. Don't elide copies from the same argument twice.
8808     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8809     const auto *Arg = dyn_cast<Argument>(Val);
8810     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8811         Arg->getType()->isEmptyTy() ||
8812         DL.getTypeStoreSize(Arg->getType()) !=
8813             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8814         ArgCopyElisionCandidates.count(Arg)) {
8815       *Info = StaticAllocaInfo::Clobbered;
8816       continue;
8817     }
8818 
8819     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8820                       << '\n');
8821 
8822     // Mark this alloca and store for argument copy elision.
8823     *Info = StaticAllocaInfo::Elidable;
8824     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8825 
8826     // Stop scanning if we've seen all arguments. This will happen early in -O0
8827     // builds, which is useful, because -O0 builds have large entry blocks and
8828     // many allocas.
8829     if (ArgCopyElisionCandidates.size() == NumArgs)
8830       break;
8831   }
8832 }
8833 
8834 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8835 /// ArgVal is a load from a suitable fixed stack object.
8836 static void tryToElideArgumentCopy(
8837     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8838     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8839     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8840     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8841     SDValue ArgVal, bool &ArgHasUses) {
8842   // Check if this is a load from a fixed stack object.
8843   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8844   if (!LNode)
8845     return;
8846   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8847   if (!FINode)
8848     return;
8849 
8850   // Check that the fixed stack object is the right size and alignment.
8851   // Look at the alignment that the user wrote on the alloca instead of looking
8852   // at the stack object.
8853   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8854   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8855   const AllocaInst *AI = ArgCopyIter->second.first;
8856   int FixedIndex = FINode->getIndex();
8857   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8858   int OldIndex = AllocaIndex;
8859   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8860   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8861     LLVM_DEBUG(
8862         dbgs() << "  argument copy elision failed due to bad fixed stack "
8863                   "object size\n");
8864     return;
8865   }
8866   unsigned RequiredAlignment = AI->getAlignment();
8867   if (!RequiredAlignment) {
8868     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8869         AI->getAllocatedType());
8870   }
8871   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8872     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8873                          "greater than stack argument alignment ("
8874                       << RequiredAlignment << " vs "
8875                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8876     return;
8877   }
8878 
8879   // Perform the elision. Delete the old stack object and replace its only use
8880   // in the variable info map. Mark the stack object as mutable.
8881   LLVM_DEBUG({
8882     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8883            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8884            << '\n';
8885   });
8886   MFI.RemoveStackObject(OldIndex);
8887   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8888   AllocaIndex = FixedIndex;
8889   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8890   Chains.push_back(ArgVal.getValue(1));
8891 
8892   // Avoid emitting code for the store implementing the copy.
8893   const StoreInst *SI = ArgCopyIter->second.second;
8894   ElidedArgCopyInstrs.insert(SI);
8895 
8896   // Check for uses of the argument again so that we can avoid exporting ArgVal
8897   // if it is't used by anything other than the store.
8898   for (const Value *U : Arg.users()) {
8899     if (U != SI) {
8900       ArgHasUses = true;
8901       break;
8902     }
8903   }
8904 }
8905 
8906 void SelectionDAGISel::LowerArguments(const Function &F) {
8907   SelectionDAG &DAG = SDB->DAG;
8908   SDLoc dl = SDB->getCurSDLoc();
8909   const DataLayout &DL = DAG.getDataLayout();
8910   SmallVector<ISD::InputArg, 16> Ins;
8911 
8912   if (!FuncInfo->CanLowerReturn) {
8913     // Put in an sret pointer parameter before all the other parameters.
8914     SmallVector<EVT, 1> ValueVTs;
8915     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8916                     F.getReturnType()->getPointerTo(
8917                         DAG.getDataLayout().getAllocaAddrSpace()),
8918                     ValueVTs);
8919 
8920     // NOTE: Assuming that a pointer will never break down to more than one VT
8921     // or one register.
8922     ISD::ArgFlagsTy Flags;
8923     Flags.setSRet();
8924     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8925     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8926                          ISD::InputArg::NoArgIndex, 0);
8927     Ins.push_back(RetArg);
8928   }
8929 
8930   // Look for stores of arguments to static allocas. Mark such arguments with a
8931   // flag to ask the target to give us the memory location of that argument if
8932   // available.
8933   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8934   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8935 
8936   // Set up the incoming argument description vector.
8937   for (const Argument &Arg : F.args()) {
8938     unsigned ArgNo = Arg.getArgNo();
8939     SmallVector<EVT, 4> ValueVTs;
8940     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8941     bool isArgValueUsed = !Arg.use_empty();
8942     unsigned PartBase = 0;
8943     Type *FinalType = Arg.getType();
8944     if (Arg.hasAttribute(Attribute::ByVal))
8945       FinalType = cast<PointerType>(FinalType)->getElementType();
8946     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8947         FinalType, F.getCallingConv(), F.isVarArg());
8948     for (unsigned Value = 0, NumValues = ValueVTs.size();
8949          Value != NumValues; ++Value) {
8950       EVT VT = ValueVTs[Value];
8951       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8952       ISD::ArgFlagsTy Flags;
8953 
8954       // Certain targets (such as MIPS), may have a different ABI alignment
8955       // for a type depending on the context. Give the target a chance to
8956       // specify the alignment it wants.
8957       unsigned OriginalAlignment =
8958           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8959 
8960       if (Arg.hasAttribute(Attribute::ZExt))
8961         Flags.setZExt();
8962       if (Arg.hasAttribute(Attribute::SExt))
8963         Flags.setSExt();
8964       if (Arg.hasAttribute(Attribute::InReg)) {
8965         // If we are using vectorcall calling convention, a structure that is
8966         // passed InReg - is surely an HVA
8967         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8968             isa<StructType>(Arg.getType())) {
8969           // The first value of a structure is marked
8970           if (0 == Value)
8971             Flags.setHvaStart();
8972           Flags.setHva();
8973         }
8974         // Set InReg Flag
8975         Flags.setInReg();
8976       }
8977       if (Arg.hasAttribute(Attribute::StructRet))
8978         Flags.setSRet();
8979       if (Arg.hasAttribute(Attribute::SwiftSelf))
8980         Flags.setSwiftSelf();
8981       if (Arg.hasAttribute(Attribute::SwiftError))
8982         Flags.setSwiftError();
8983       if (Arg.hasAttribute(Attribute::ByVal))
8984         Flags.setByVal();
8985       if (Arg.hasAttribute(Attribute::InAlloca)) {
8986         Flags.setInAlloca();
8987         // Set the byval flag for CCAssignFn callbacks that don't know about
8988         // inalloca.  This way we can know how many bytes we should've allocated
8989         // and how many bytes a callee cleanup function will pop.  If we port
8990         // inalloca to more targets, we'll have to add custom inalloca handling
8991         // in the various CC lowering callbacks.
8992         Flags.setByVal();
8993       }
8994       if (F.getCallingConv() == CallingConv::X86_INTR) {
8995         // IA Interrupt passes frame (1st parameter) by value in the stack.
8996         if (ArgNo == 0)
8997           Flags.setByVal();
8998       }
8999       if (Flags.isByVal() || Flags.isInAlloca()) {
9000         PointerType *Ty = cast<PointerType>(Arg.getType());
9001         Type *ElementTy = Ty->getElementType();
9002         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9003         // For ByVal, alignment should be passed from FE.  BE will guess if
9004         // this info is not there but there are cases it cannot get right.
9005         unsigned FrameAlign;
9006         if (Arg.getParamAlignment())
9007           FrameAlign = Arg.getParamAlignment();
9008         else
9009           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9010         Flags.setByValAlign(FrameAlign);
9011       }
9012       if (Arg.hasAttribute(Attribute::Nest))
9013         Flags.setNest();
9014       if (NeedsRegBlock)
9015         Flags.setInConsecutiveRegs();
9016       Flags.setOrigAlign(OriginalAlignment);
9017       if (ArgCopyElisionCandidates.count(&Arg))
9018         Flags.setCopyElisionCandidate();
9019 
9020       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9021           *CurDAG->getContext(), F.getCallingConv(), VT);
9022       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9023           *CurDAG->getContext(), F.getCallingConv(), VT);
9024       for (unsigned i = 0; i != NumRegs; ++i) {
9025         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9026                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9027         if (NumRegs > 1 && i == 0)
9028           MyFlags.Flags.setSplit();
9029         // if it isn't first piece, alignment must be 1
9030         else if (i > 0) {
9031           MyFlags.Flags.setOrigAlign(1);
9032           if (i == NumRegs - 1)
9033             MyFlags.Flags.setSplitEnd();
9034         }
9035         Ins.push_back(MyFlags);
9036       }
9037       if (NeedsRegBlock && Value == NumValues - 1)
9038         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9039       PartBase += VT.getStoreSize();
9040     }
9041   }
9042 
9043   // Call the target to set up the argument values.
9044   SmallVector<SDValue, 8> InVals;
9045   SDValue NewRoot = TLI->LowerFormalArguments(
9046       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9047 
9048   // Verify that the target's LowerFormalArguments behaved as expected.
9049   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9050          "LowerFormalArguments didn't return a valid chain!");
9051   assert(InVals.size() == Ins.size() &&
9052          "LowerFormalArguments didn't emit the correct number of values!");
9053   LLVM_DEBUG({
9054     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9055       assert(InVals[i].getNode() &&
9056              "LowerFormalArguments emitted a null value!");
9057       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9058              "LowerFormalArguments emitted a value with the wrong type!");
9059     }
9060   });
9061 
9062   // Update the DAG with the new chain value resulting from argument lowering.
9063   DAG.setRoot(NewRoot);
9064 
9065   // Set up the argument values.
9066   unsigned i = 0;
9067   if (!FuncInfo->CanLowerReturn) {
9068     // Create a virtual register for the sret pointer, and put in a copy
9069     // from the sret argument into it.
9070     SmallVector<EVT, 1> ValueVTs;
9071     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9072                     F.getReturnType()->getPointerTo(
9073                         DAG.getDataLayout().getAllocaAddrSpace()),
9074                     ValueVTs);
9075     MVT VT = ValueVTs[0].getSimpleVT();
9076     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9077     Optional<ISD::NodeType> AssertOp = None;
9078     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9079                                         nullptr, F.getCallingConv(), AssertOp);
9080 
9081     MachineFunction& MF = SDB->DAG.getMachineFunction();
9082     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9083     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9084     FuncInfo->DemoteRegister = SRetReg;
9085     NewRoot =
9086         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9087     DAG.setRoot(NewRoot);
9088 
9089     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9090     ++i;
9091   }
9092 
9093   SmallVector<SDValue, 4> Chains;
9094   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9095   for (const Argument &Arg : F.args()) {
9096     SmallVector<SDValue, 4> ArgValues;
9097     SmallVector<EVT, 4> ValueVTs;
9098     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9099     unsigned NumValues = ValueVTs.size();
9100     if (NumValues == 0)
9101       continue;
9102 
9103     bool ArgHasUses = !Arg.use_empty();
9104 
9105     // Elide the copying store if the target loaded this argument from a
9106     // suitable fixed stack object.
9107     if (Ins[i].Flags.isCopyElisionCandidate()) {
9108       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9109                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9110                              InVals[i], ArgHasUses);
9111     }
9112 
9113     // If this argument is unused then remember its value. It is used to generate
9114     // debugging information.
9115     bool isSwiftErrorArg =
9116         TLI->supportSwiftError() &&
9117         Arg.hasAttribute(Attribute::SwiftError);
9118     if (!ArgHasUses && !isSwiftErrorArg) {
9119       SDB->setUnusedArgValue(&Arg, InVals[i]);
9120 
9121       // Also remember any frame index for use in FastISel.
9122       if (FrameIndexSDNode *FI =
9123           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9124         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9125     }
9126 
9127     for (unsigned Val = 0; Val != NumValues; ++Val) {
9128       EVT VT = ValueVTs[Val];
9129       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9130                                                       F.getCallingConv(), VT);
9131       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9132           *CurDAG->getContext(), F.getCallingConv(), VT);
9133 
9134       // Even an apparant 'unused' swifterror argument needs to be returned. So
9135       // we do generate a copy for it that can be used on return from the
9136       // function.
9137       if (ArgHasUses || isSwiftErrorArg) {
9138         Optional<ISD::NodeType> AssertOp;
9139         if (Arg.hasAttribute(Attribute::SExt))
9140           AssertOp = ISD::AssertSext;
9141         else if (Arg.hasAttribute(Attribute::ZExt))
9142           AssertOp = ISD::AssertZext;
9143 
9144         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9145                                              PartVT, VT, nullptr,
9146                                              F.getCallingConv(), AssertOp));
9147       }
9148 
9149       i += NumParts;
9150     }
9151 
9152     // We don't need to do anything else for unused arguments.
9153     if (ArgValues.empty())
9154       continue;
9155 
9156     // Note down frame index.
9157     if (FrameIndexSDNode *FI =
9158         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9159       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9160 
9161     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9162                                      SDB->getCurSDLoc());
9163 
9164     SDB->setValue(&Arg, Res);
9165     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9166       // We want to associate the argument with the frame index, among
9167       // involved operands, that correspond to the lowest address. The
9168       // getCopyFromParts function, called earlier, is swapping the order of
9169       // the operands to BUILD_PAIR depending on endianness. The result of
9170       // that swapping is that the least significant bits of the argument will
9171       // be in the first operand of the BUILD_PAIR node, and the most
9172       // significant bits will be in the second operand.
9173       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9174       if (LoadSDNode *LNode =
9175           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9176         if (FrameIndexSDNode *FI =
9177             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9178           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9179     }
9180 
9181     // Update the SwiftErrorVRegDefMap.
9182     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9183       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9184       if (TargetRegisterInfo::isVirtualRegister(Reg))
9185         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9186                                            FuncInfo->SwiftErrorArg, Reg);
9187     }
9188 
9189     // If this argument is live outside of the entry block, insert a copy from
9190     // wherever we got it to the vreg that other BB's will reference it as.
9191     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9192       // If we can, though, try to skip creating an unnecessary vreg.
9193       // FIXME: This isn't very clean... it would be nice to make this more
9194       // general.  It's also subtly incompatible with the hacks FastISel
9195       // uses with vregs.
9196       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9197       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9198         FuncInfo->ValueMap[&Arg] = Reg;
9199         continue;
9200       }
9201     }
9202     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9203       FuncInfo->InitializeRegForValue(&Arg);
9204       SDB->CopyToExportRegsIfNeeded(&Arg);
9205     }
9206   }
9207 
9208   if (!Chains.empty()) {
9209     Chains.push_back(NewRoot);
9210     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9211   }
9212 
9213   DAG.setRoot(NewRoot);
9214 
9215   assert(i == InVals.size() && "Argument register count mismatch!");
9216 
9217   // If any argument copy elisions occurred and we have debug info, update the
9218   // stale frame indices used in the dbg.declare variable info table.
9219   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9220   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9221     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9222       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9223       if (I != ArgCopyElisionFrameIndexMap.end())
9224         VI.Slot = I->second;
9225     }
9226   }
9227 
9228   // Finally, if the target has anything special to do, allow it to do so.
9229   EmitFunctionEntryCode();
9230 }
9231 
9232 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9233 /// ensure constants are generated when needed.  Remember the virtual registers
9234 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9235 /// directly add them, because expansion might result in multiple MBB's for one
9236 /// BB.  As such, the start of the BB might correspond to a different MBB than
9237 /// the end.
9238 void
9239 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9240   const TerminatorInst *TI = LLVMBB->getTerminator();
9241 
9242   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9243 
9244   // Check PHI nodes in successors that expect a value to be available from this
9245   // block.
9246   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9247     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9248     if (!isa<PHINode>(SuccBB->begin())) continue;
9249     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9250 
9251     // If this terminator has multiple identical successors (common for
9252     // switches), only handle each succ once.
9253     if (!SuccsHandled.insert(SuccMBB).second)
9254       continue;
9255 
9256     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9257 
9258     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9259     // nodes and Machine PHI nodes, but the incoming operands have not been
9260     // emitted yet.
9261     for (const PHINode &PN : SuccBB->phis()) {
9262       // Ignore dead phi's.
9263       if (PN.use_empty())
9264         continue;
9265 
9266       // Skip empty types
9267       if (PN.getType()->isEmptyTy())
9268         continue;
9269 
9270       unsigned Reg;
9271       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9272 
9273       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9274         unsigned &RegOut = ConstantsOut[C];
9275         if (RegOut == 0) {
9276           RegOut = FuncInfo.CreateRegs(C->getType());
9277           CopyValueToVirtualRegister(C, RegOut);
9278         }
9279         Reg = RegOut;
9280       } else {
9281         DenseMap<const Value *, unsigned>::iterator I =
9282           FuncInfo.ValueMap.find(PHIOp);
9283         if (I != FuncInfo.ValueMap.end())
9284           Reg = I->second;
9285         else {
9286           assert(isa<AllocaInst>(PHIOp) &&
9287                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9288                  "Didn't codegen value into a register!??");
9289           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9290           CopyValueToVirtualRegister(PHIOp, Reg);
9291         }
9292       }
9293 
9294       // Remember that this register needs to added to the machine PHI node as
9295       // the input for this MBB.
9296       SmallVector<EVT, 4> ValueVTs;
9297       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9298       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9299       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9300         EVT VT = ValueVTs[vti];
9301         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9302         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9303           FuncInfo.PHINodesToUpdate.push_back(
9304               std::make_pair(&*MBBI++, Reg + i));
9305         Reg += NumRegisters;
9306       }
9307     }
9308   }
9309 
9310   ConstantsOut.clear();
9311 }
9312 
9313 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9314 /// is 0.
9315 MachineBasicBlock *
9316 SelectionDAGBuilder::StackProtectorDescriptor::
9317 AddSuccessorMBB(const BasicBlock *BB,
9318                 MachineBasicBlock *ParentMBB,
9319                 bool IsLikely,
9320                 MachineBasicBlock *SuccMBB) {
9321   // If SuccBB has not been created yet, create it.
9322   if (!SuccMBB) {
9323     MachineFunction *MF = ParentMBB->getParent();
9324     MachineFunction::iterator BBI(ParentMBB);
9325     SuccMBB = MF->CreateMachineBasicBlock(BB);
9326     MF->insert(++BBI, SuccMBB);
9327   }
9328   // Add it as a successor of ParentMBB.
9329   ParentMBB->addSuccessor(
9330       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9331   return SuccMBB;
9332 }
9333 
9334 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9335   MachineFunction::iterator I(MBB);
9336   if (++I == FuncInfo.MF->end())
9337     return nullptr;
9338   return &*I;
9339 }
9340 
9341 /// During lowering new call nodes can be created (such as memset, etc.).
9342 /// Those will become new roots of the current DAG, but complications arise
9343 /// when they are tail calls. In such cases, the call lowering will update
9344 /// the root, but the builder still needs to know that a tail call has been
9345 /// lowered in order to avoid generating an additional return.
9346 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9347   // If the node is null, we do have a tail call.
9348   if (MaybeTC.getNode() != nullptr)
9349     DAG.setRoot(MaybeTC);
9350   else
9351     HasTailCall = true;
9352 }
9353 
9354 uint64_t
9355 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9356                                        unsigned First, unsigned Last) const {
9357   assert(Last >= First);
9358   const APInt &LowCase = Clusters[First].Low->getValue();
9359   const APInt &HighCase = Clusters[Last].High->getValue();
9360   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9361 
9362   // FIXME: A range of consecutive cases has 100% density, but only requires one
9363   // comparison to lower. We should discriminate against such consecutive ranges
9364   // in jump tables.
9365 
9366   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9367 }
9368 
9369 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9370     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9371     unsigned Last) const {
9372   assert(Last >= First);
9373   assert(TotalCases[Last] >= TotalCases[First]);
9374   uint64_t NumCases =
9375       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9376   return NumCases;
9377 }
9378 
9379 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9380                                          unsigned First, unsigned Last,
9381                                          const SwitchInst *SI,
9382                                          MachineBasicBlock *DefaultMBB,
9383                                          CaseCluster &JTCluster) {
9384   assert(First <= Last);
9385 
9386   auto Prob = BranchProbability::getZero();
9387   unsigned NumCmps = 0;
9388   std::vector<MachineBasicBlock*> Table;
9389   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9390 
9391   // Initialize probabilities in JTProbs.
9392   for (unsigned I = First; I <= Last; ++I)
9393     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9394 
9395   for (unsigned I = First; I <= Last; ++I) {
9396     assert(Clusters[I].Kind == CC_Range);
9397     Prob += Clusters[I].Prob;
9398     const APInt &Low = Clusters[I].Low->getValue();
9399     const APInt &High = Clusters[I].High->getValue();
9400     NumCmps += (Low == High) ? 1 : 2;
9401     if (I != First) {
9402       // Fill the gap between this and the previous cluster.
9403       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9404       assert(PreviousHigh.slt(Low));
9405       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9406       for (uint64_t J = 0; J < Gap; J++)
9407         Table.push_back(DefaultMBB);
9408     }
9409     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9410     for (uint64_t J = 0; J < ClusterSize; ++J)
9411       Table.push_back(Clusters[I].MBB);
9412     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9413   }
9414 
9415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9416   unsigned NumDests = JTProbs.size();
9417   if (TLI.isSuitableForBitTests(
9418           NumDests, NumCmps, Clusters[First].Low->getValue(),
9419           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9420     // Clusters[First..Last] should be lowered as bit tests instead.
9421     return false;
9422   }
9423 
9424   // Create the MBB that will load from and jump through the table.
9425   // Note: We create it here, but it's not inserted into the function yet.
9426   MachineFunction *CurMF = FuncInfo.MF;
9427   MachineBasicBlock *JumpTableMBB =
9428       CurMF->CreateMachineBasicBlock(SI->getParent());
9429 
9430   // Add successors. Note: use table order for determinism.
9431   SmallPtrSet<MachineBasicBlock *, 8> Done;
9432   for (MachineBasicBlock *Succ : Table) {
9433     if (Done.count(Succ))
9434       continue;
9435     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9436     Done.insert(Succ);
9437   }
9438   JumpTableMBB->normalizeSuccProbs();
9439 
9440   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9441                      ->createJumpTableIndex(Table);
9442 
9443   // Set up the jump table info.
9444   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9445   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9446                       Clusters[Last].High->getValue(), SI->getCondition(),
9447                       nullptr, false);
9448   JTCases.emplace_back(std::move(JTH), std::move(JT));
9449 
9450   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9451                                      JTCases.size() - 1, Prob);
9452   return true;
9453 }
9454 
9455 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9456                                          const SwitchInst *SI,
9457                                          MachineBasicBlock *DefaultMBB) {
9458 #ifndef NDEBUG
9459   // Clusters must be non-empty, sorted, and only contain Range clusters.
9460   assert(!Clusters.empty());
9461   for (CaseCluster &C : Clusters)
9462     assert(C.Kind == CC_Range);
9463   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9464     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9465 #endif
9466 
9467   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9468   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9469     return;
9470 
9471   const int64_t N = Clusters.size();
9472   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9473   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9474 
9475   if (N < 2 || N < MinJumpTableEntries)
9476     return;
9477 
9478   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9479   SmallVector<unsigned, 8> TotalCases(N);
9480   for (unsigned i = 0; i < N; ++i) {
9481     const APInt &Hi = Clusters[i].High->getValue();
9482     const APInt &Lo = Clusters[i].Low->getValue();
9483     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9484     if (i != 0)
9485       TotalCases[i] += TotalCases[i - 1];
9486   }
9487 
9488   // Cheap case: the whole range may be suitable for jump table.
9489   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9490   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9491   assert(NumCases < UINT64_MAX / 100);
9492   assert(Range >= NumCases);
9493   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9494     CaseCluster JTCluster;
9495     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9496       Clusters[0] = JTCluster;
9497       Clusters.resize(1);
9498       return;
9499     }
9500   }
9501 
9502   // The algorithm below is not suitable for -O0.
9503   if (TM.getOptLevel() == CodeGenOpt::None)
9504     return;
9505 
9506   // Split Clusters into minimum number of dense partitions. The algorithm uses
9507   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9508   // for the Case Statement'" (1994), but builds the MinPartitions array in
9509   // reverse order to make it easier to reconstruct the partitions in ascending
9510   // order. In the choice between two optimal partitionings, it picks the one
9511   // which yields more jump tables.
9512 
9513   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9514   SmallVector<unsigned, 8> MinPartitions(N);
9515   // LastElement[i] is the last element of the partition starting at i.
9516   SmallVector<unsigned, 8> LastElement(N);
9517   // PartitionsScore[i] is used to break ties when choosing between two
9518   // partitionings resulting in the same number of partitions.
9519   SmallVector<unsigned, 8> PartitionsScore(N);
9520   // For PartitionsScore, a small number of comparisons is considered as good as
9521   // a jump table and a single comparison is considered better than a jump
9522   // table.
9523   enum PartitionScores : unsigned {
9524     NoTable = 0,
9525     Table = 1,
9526     FewCases = 1,
9527     SingleCase = 2
9528   };
9529 
9530   // Base case: There is only one way to partition Clusters[N-1].
9531   MinPartitions[N - 1] = 1;
9532   LastElement[N - 1] = N - 1;
9533   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9534 
9535   // Note: loop indexes are signed to avoid underflow.
9536   for (int64_t i = N - 2; i >= 0; i--) {
9537     // Find optimal partitioning of Clusters[i..N-1].
9538     // Baseline: Put Clusters[i] into a partition on its own.
9539     MinPartitions[i] = MinPartitions[i + 1] + 1;
9540     LastElement[i] = i;
9541     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9542 
9543     // Search for a solution that results in fewer partitions.
9544     for (int64_t j = N - 1; j > i; j--) {
9545       // Try building a partition from Clusters[i..j].
9546       uint64_t Range = getJumpTableRange(Clusters, i, j);
9547       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9548       assert(NumCases < UINT64_MAX / 100);
9549       assert(Range >= NumCases);
9550       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9551         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9552         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9553         int64_t NumEntries = j - i + 1;
9554 
9555         if (NumEntries == 1)
9556           Score += PartitionScores::SingleCase;
9557         else if (NumEntries <= SmallNumberOfEntries)
9558           Score += PartitionScores::FewCases;
9559         else if (NumEntries >= MinJumpTableEntries)
9560           Score += PartitionScores::Table;
9561 
9562         // If this leads to fewer partitions, or to the same number of
9563         // partitions with better score, it is a better partitioning.
9564         if (NumPartitions < MinPartitions[i] ||
9565             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9566           MinPartitions[i] = NumPartitions;
9567           LastElement[i] = j;
9568           PartitionsScore[i] = Score;
9569         }
9570       }
9571     }
9572   }
9573 
9574   // Iterate over the partitions, replacing some with jump tables in-place.
9575   unsigned DstIndex = 0;
9576   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9577     Last = LastElement[First];
9578     assert(Last >= First);
9579     assert(DstIndex <= First);
9580     unsigned NumClusters = Last - First + 1;
9581 
9582     CaseCluster JTCluster;
9583     if (NumClusters >= MinJumpTableEntries &&
9584         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9585       Clusters[DstIndex++] = JTCluster;
9586     } else {
9587       for (unsigned I = First; I <= Last; ++I)
9588         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9589     }
9590   }
9591   Clusters.resize(DstIndex);
9592 }
9593 
9594 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9595                                         unsigned First, unsigned Last,
9596                                         const SwitchInst *SI,
9597                                         CaseCluster &BTCluster) {
9598   assert(First <= Last);
9599   if (First == Last)
9600     return false;
9601 
9602   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9603   unsigned NumCmps = 0;
9604   for (int64_t I = First; I <= Last; ++I) {
9605     assert(Clusters[I].Kind == CC_Range);
9606     Dests.set(Clusters[I].MBB->getNumber());
9607     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9608   }
9609   unsigned NumDests = Dests.count();
9610 
9611   APInt Low = Clusters[First].Low->getValue();
9612   APInt High = Clusters[Last].High->getValue();
9613   assert(Low.slt(High));
9614 
9615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9616   const DataLayout &DL = DAG.getDataLayout();
9617   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9618     return false;
9619 
9620   APInt LowBound;
9621   APInt CmpRange;
9622 
9623   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9624   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9625          "Case range must fit in bit mask!");
9626 
9627   // Check if the clusters cover a contiguous range such that no value in the
9628   // range will jump to the default statement.
9629   bool ContiguousRange = true;
9630   for (int64_t I = First + 1; I <= Last; ++I) {
9631     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9632       ContiguousRange = false;
9633       break;
9634     }
9635   }
9636 
9637   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9638     // Optimize the case where all the case values fit in a word without having
9639     // to subtract minValue. In this case, we can optimize away the subtraction.
9640     LowBound = APInt::getNullValue(Low.getBitWidth());
9641     CmpRange = High;
9642     ContiguousRange = false;
9643   } else {
9644     LowBound = Low;
9645     CmpRange = High - Low;
9646   }
9647 
9648   CaseBitsVector CBV;
9649   auto TotalProb = BranchProbability::getZero();
9650   for (unsigned i = First; i <= Last; ++i) {
9651     // Find the CaseBits for this destination.
9652     unsigned j;
9653     for (j = 0; j < CBV.size(); ++j)
9654       if (CBV[j].BB == Clusters[i].MBB)
9655         break;
9656     if (j == CBV.size())
9657       CBV.push_back(
9658           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9659     CaseBits *CB = &CBV[j];
9660 
9661     // Update Mask, Bits and ExtraProb.
9662     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9663     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9664     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9665     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9666     CB->Bits += Hi - Lo + 1;
9667     CB->ExtraProb += Clusters[i].Prob;
9668     TotalProb += Clusters[i].Prob;
9669   }
9670 
9671   BitTestInfo BTI;
9672   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9673     // Sort by probability first, number of bits second, bit mask third.
9674     if (a.ExtraProb != b.ExtraProb)
9675       return a.ExtraProb > b.ExtraProb;
9676     if (a.Bits != b.Bits)
9677       return a.Bits > b.Bits;
9678     return a.Mask < b.Mask;
9679   });
9680 
9681   for (auto &CB : CBV) {
9682     MachineBasicBlock *BitTestBB =
9683         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9684     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9685   }
9686   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9687                             SI->getCondition(), -1U, MVT::Other, false,
9688                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9689                             TotalProb);
9690 
9691   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9692                                     BitTestCases.size() - 1, TotalProb);
9693   return true;
9694 }
9695 
9696 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9697                                               const SwitchInst *SI) {
9698 // Partition Clusters into as few subsets as possible, where each subset has a
9699 // range that fits in a machine word and has <= 3 unique destinations.
9700 
9701 #ifndef NDEBUG
9702   // Clusters must be sorted and contain Range or JumpTable clusters.
9703   assert(!Clusters.empty());
9704   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9705   for (const CaseCluster &C : Clusters)
9706     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9707   for (unsigned i = 1; i < Clusters.size(); ++i)
9708     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9709 #endif
9710 
9711   // The algorithm below is not suitable for -O0.
9712   if (TM.getOptLevel() == CodeGenOpt::None)
9713     return;
9714 
9715   // If target does not have legal shift left, do not emit bit tests at all.
9716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9717   const DataLayout &DL = DAG.getDataLayout();
9718 
9719   EVT PTy = TLI.getPointerTy(DL);
9720   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9721     return;
9722 
9723   int BitWidth = PTy.getSizeInBits();
9724   const int64_t N = Clusters.size();
9725 
9726   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9727   SmallVector<unsigned, 8> MinPartitions(N);
9728   // LastElement[i] is the last element of the partition starting at i.
9729   SmallVector<unsigned, 8> LastElement(N);
9730 
9731   // FIXME: This might not be the best algorithm for finding bit test clusters.
9732 
9733   // Base case: There is only one way to partition Clusters[N-1].
9734   MinPartitions[N - 1] = 1;
9735   LastElement[N - 1] = N - 1;
9736 
9737   // Note: loop indexes are signed to avoid underflow.
9738   for (int64_t i = N - 2; i >= 0; --i) {
9739     // Find optimal partitioning of Clusters[i..N-1].
9740     // Baseline: Put Clusters[i] into a partition on its own.
9741     MinPartitions[i] = MinPartitions[i + 1] + 1;
9742     LastElement[i] = i;
9743 
9744     // Search for a solution that results in fewer partitions.
9745     // Note: the search is limited by BitWidth, reducing time complexity.
9746     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9747       // Try building a partition from Clusters[i..j].
9748 
9749       // Check the range.
9750       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9751                                Clusters[j].High->getValue(), DL))
9752         continue;
9753 
9754       // Check nbr of destinations and cluster types.
9755       // FIXME: This works, but doesn't seem very efficient.
9756       bool RangesOnly = true;
9757       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9758       for (int64_t k = i; k <= j; k++) {
9759         if (Clusters[k].Kind != CC_Range) {
9760           RangesOnly = false;
9761           break;
9762         }
9763         Dests.set(Clusters[k].MBB->getNumber());
9764       }
9765       if (!RangesOnly || Dests.count() > 3)
9766         break;
9767 
9768       // Check if it's a better partition.
9769       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9770       if (NumPartitions < MinPartitions[i]) {
9771         // Found a better partition.
9772         MinPartitions[i] = NumPartitions;
9773         LastElement[i] = j;
9774       }
9775     }
9776   }
9777 
9778   // Iterate over the partitions, replacing with bit-test clusters in-place.
9779   unsigned DstIndex = 0;
9780   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9781     Last = LastElement[First];
9782     assert(First <= Last);
9783     assert(DstIndex <= First);
9784 
9785     CaseCluster BitTestCluster;
9786     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9787       Clusters[DstIndex++] = BitTestCluster;
9788     } else {
9789       size_t NumClusters = Last - First + 1;
9790       std::memmove(&Clusters[DstIndex], &Clusters[First],
9791                    sizeof(Clusters[0]) * NumClusters);
9792       DstIndex += NumClusters;
9793     }
9794   }
9795   Clusters.resize(DstIndex);
9796 }
9797 
9798 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9799                                         MachineBasicBlock *SwitchMBB,
9800                                         MachineBasicBlock *DefaultMBB) {
9801   MachineFunction *CurMF = FuncInfo.MF;
9802   MachineBasicBlock *NextMBB = nullptr;
9803   MachineFunction::iterator BBI(W.MBB);
9804   if (++BBI != FuncInfo.MF->end())
9805     NextMBB = &*BBI;
9806 
9807   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9808 
9809   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9810 
9811   if (Size == 2 && W.MBB == SwitchMBB) {
9812     // If any two of the cases has the same destination, and if one value
9813     // is the same as the other, but has one bit unset that the other has set,
9814     // use bit manipulation to do two compares at once.  For example:
9815     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9816     // TODO: This could be extended to merge any 2 cases in switches with 3
9817     // cases.
9818     // TODO: Handle cases where W.CaseBB != SwitchBB.
9819     CaseCluster &Small = *W.FirstCluster;
9820     CaseCluster &Big = *W.LastCluster;
9821 
9822     if (Small.Low == Small.High && Big.Low == Big.High &&
9823         Small.MBB == Big.MBB) {
9824       const APInt &SmallValue = Small.Low->getValue();
9825       const APInt &BigValue = Big.Low->getValue();
9826 
9827       // Check that there is only one bit different.
9828       APInt CommonBit = BigValue ^ SmallValue;
9829       if (CommonBit.isPowerOf2()) {
9830         SDValue CondLHS = getValue(Cond);
9831         EVT VT = CondLHS.getValueType();
9832         SDLoc DL = getCurSDLoc();
9833 
9834         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9835                                  DAG.getConstant(CommonBit, DL, VT));
9836         SDValue Cond = DAG.getSetCC(
9837             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9838             ISD::SETEQ);
9839 
9840         // Update successor info.
9841         // Both Small and Big will jump to Small.BB, so we sum up the
9842         // probabilities.
9843         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9844         if (BPI)
9845           addSuccessorWithProb(
9846               SwitchMBB, DefaultMBB,
9847               // The default destination is the first successor in IR.
9848               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9849         else
9850           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9851 
9852         // Insert the true branch.
9853         SDValue BrCond =
9854             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9855                         DAG.getBasicBlock(Small.MBB));
9856         // Insert the false branch.
9857         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9858                              DAG.getBasicBlock(DefaultMBB));
9859 
9860         DAG.setRoot(BrCond);
9861         return;
9862       }
9863     }
9864   }
9865 
9866   if (TM.getOptLevel() != CodeGenOpt::None) {
9867     // Here, we order cases by probability so the most likely case will be
9868     // checked first. However, two clusters can have the same probability in
9869     // which case their relative ordering is non-deterministic. So we use Low
9870     // as a tie-breaker as clusters are guaranteed to never overlap.
9871     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9872                [](const CaseCluster &a, const CaseCluster &b) {
9873       return a.Prob != b.Prob ?
9874              a.Prob > b.Prob :
9875              a.Low->getValue().slt(b.Low->getValue());
9876     });
9877 
9878     // Rearrange the case blocks so that the last one falls through if possible
9879     // without changing the order of probabilities.
9880     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9881       --I;
9882       if (I->Prob > W.LastCluster->Prob)
9883         break;
9884       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9885         std::swap(*I, *W.LastCluster);
9886         break;
9887       }
9888     }
9889   }
9890 
9891   // Compute total probability.
9892   BranchProbability DefaultProb = W.DefaultProb;
9893   BranchProbability UnhandledProbs = DefaultProb;
9894   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9895     UnhandledProbs += I->Prob;
9896 
9897   MachineBasicBlock *CurMBB = W.MBB;
9898   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9899     MachineBasicBlock *Fallthrough;
9900     if (I == W.LastCluster) {
9901       // For the last cluster, fall through to the default destination.
9902       Fallthrough = DefaultMBB;
9903     } else {
9904       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9905       CurMF->insert(BBI, Fallthrough);
9906       // Put Cond in a virtual register to make it available from the new blocks.
9907       ExportFromCurrentBlock(Cond);
9908     }
9909     UnhandledProbs -= I->Prob;
9910 
9911     switch (I->Kind) {
9912       case CC_JumpTable: {
9913         // FIXME: Optimize away range check based on pivot comparisons.
9914         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9915         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9916 
9917         // The jump block hasn't been inserted yet; insert it here.
9918         MachineBasicBlock *JumpMBB = JT->MBB;
9919         CurMF->insert(BBI, JumpMBB);
9920 
9921         auto JumpProb = I->Prob;
9922         auto FallthroughProb = UnhandledProbs;
9923 
9924         // If the default statement is a target of the jump table, we evenly
9925         // distribute the default probability to successors of CurMBB. Also
9926         // update the probability on the edge from JumpMBB to Fallthrough.
9927         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9928                                               SE = JumpMBB->succ_end();
9929              SI != SE; ++SI) {
9930           if (*SI == DefaultMBB) {
9931             JumpProb += DefaultProb / 2;
9932             FallthroughProb -= DefaultProb / 2;
9933             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9934             JumpMBB->normalizeSuccProbs();
9935             break;
9936           }
9937         }
9938 
9939         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9940         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9941         CurMBB->normalizeSuccProbs();
9942 
9943         // The jump table header will be inserted in our current block, do the
9944         // range check, and fall through to our fallthrough block.
9945         JTH->HeaderBB = CurMBB;
9946         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9947 
9948         // If we're in the right place, emit the jump table header right now.
9949         if (CurMBB == SwitchMBB) {
9950           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9951           JTH->Emitted = true;
9952         }
9953         break;
9954       }
9955       case CC_BitTests: {
9956         // FIXME: Optimize away range check based on pivot comparisons.
9957         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9958 
9959         // The bit test blocks haven't been inserted yet; insert them here.
9960         for (BitTestCase &BTC : BTB->Cases)
9961           CurMF->insert(BBI, BTC.ThisBB);
9962 
9963         // Fill in fields of the BitTestBlock.
9964         BTB->Parent = CurMBB;
9965         BTB->Default = Fallthrough;
9966 
9967         BTB->DefaultProb = UnhandledProbs;
9968         // If the cases in bit test don't form a contiguous range, we evenly
9969         // distribute the probability on the edge to Fallthrough to two
9970         // successors of CurMBB.
9971         if (!BTB->ContiguousRange) {
9972           BTB->Prob += DefaultProb / 2;
9973           BTB->DefaultProb -= DefaultProb / 2;
9974         }
9975 
9976         // If we're in the right place, emit the bit test header right now.
9977         if (CurMBB == SwitchMBB) {
9978           visitBitTestHeader(*BTB, SwitchMBB);
9979           BTB->Emitted = true;
9980         }
9981         break;
9982       }
9983       case CC_Range: {
9984         const Value *RHS, *LHS, *MHS;
9985         ISD::CondCode CC;
9986         if (I->Low == I->High) {
9987           // Check Cond == I->Low.
9988           CC = ISD::SETEQ;
9989           LHS = Cond;
9990           RHS=I->Low;
9991           MHS = nullptr;
9992         } else {
9993           // Check I->Low <= Cond <= I->High.
9994           CC = ISD::SETLE;
9995           LHS = I->Low;
9996           MHS = Cond;
9997           RHS = I->High;
9998         }
9999 
10000         // The false probability is the sum of all unhandled cases.
10001         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10002                      getCurSDLoc(), I->Prob, UnhandledProbs);
10003 
10004         if (CurMBB == SwitchMBB)
10005           visitSwitchCase(CB, SwitchMBB);
10006         else
10007           SwitchCases.push_back(CB);
10008 
10009         break;
10010       }
10011     }
10012     CurMBB = Fallthrough;
10013   }
10014 }
10015 
10016 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10017                                               CaseClusterIt First,
10018                                               CaseClusterIt Last) {
10019   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10020     if (X.Prob != CC.Prob)
10021       return X.Prob > CC.Prob;
10022 
10023     // Ties are broken by comparing the case value.
10024     return X.Low->getValue().slt(CC.Low->getValue());
10025   });
10026 }
10027 
10028 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10029                                         const SwitchWorkListItem &W,
10030                                         Value *Cond,
10031                                         MachineBasicBlock *SwitchMBB) {
10032   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10033          "Clusters not sorted?");
10034 
10035   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10036 
10037   // Balance the tree based on branch probabilities to create a near-optimal (in
10038   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10039   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10040   CaseClusterIt LastLeft = W.FirstCluster;
10041   CaseClusterIt FirstRight = W.LastCluster;
10042   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10043   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10044 
10045   // Move LastLeft and FirstRight towards each other from opposite directions to
10046   // find a partitioning of the clusters which balances the probability on both
10047   // sides. If LeftProb and RightProb are equal, alternate which side is
10048   // taken to ensure 0-probability nodes are distributed evenly.
10049   unsigned I = 0;
10050   while (LastLeft + 1 < FirstRight) {
10051     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10052       LeftProb += (++LastLeft)->Prob;
10053     else
10054       RightProb += (--FirstRight)->Prob;
10055     I++;
10056   }
10057 
10058   while (true) {
10059     // Our binary search tree differs from a typical BST in that ours can have up
10060     // to three values in each leaf. The pivot selection above doesn't take that
10061     // into account, which means the tree might require more nodes and be less
10062     // efficient. We compensate for this here.
10063 
10064     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10065     unsigned NumRight = W.LastCluster - FirstRight + 1;
10066 
10067     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10068       // If one side has less than 3 clusters, and the other has more than 3,
10069       // consider taking a cluster from the other side.
10070 
10071       if (NumLeft < NumRight) {
10072         // Consider moving the first cluster on the right to the left side.
10073         CaseCluster &CC = *FirstRight;
10074         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10075         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10076         if (LeftSideRank <= RightSideRank) {
10077           // Moving the cluster to the left does not demote it.
10078           ++LastLeft;
10079           ++FirstRight;
10080           continue;
10081         }
10082       } else {
10083         assert(NumRight < NumLeft);
10084         // Consider moving the last element on the left to the right side.
10085         CaseCluster &CC = *LastLeft;
10086         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10087         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10088         if (RightSideRank <= LeftSideRank) {
10089           // Moving the cluster to the right does not demot it.
10090           --LastLeft;
10091           --FirstRight;
10092           continue;
10093         }
10094       }
10095     }
10096     break;
10097   }
10098 
10099   assert(LastLeft + 1 == FirstRight);
10100   assert(LastLeft >= W.FirstCluster);
10101   assert(FirstRight <= W.LastCluster);
10102 
10103   // Use the first element on the right as pivot since we will make less-than
10104   // comparisons against it.
10105   CaseClusterIt PivotCluster = FirstRight;
10106   assert(PivotCluster > W.FirstCluster);
10107   assert(PivotCluster <= W.LastCluster);
10108 
10109   CaseClusterIt FirstLeft = W.FirstCluster;
10110   CaseClusterIt LastRight = W.LastCluster;
10111 
10112   const ConstantInt *Pivot = PivotCluster->Low;
10113 
10114   // New blocks will be inserted immediately after the current one.
10115   MachineFunction::iterator BBI(W.MBB);
10116   ++BBI;
10117 
10118   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10119   // we can branch to its destination directly if it's squeezed exactly in
10120   // between the known lower bound and Pivot - 1.
10121   MachineBasicBlock *LeftMBB;
10122   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10123       FirstLeft->Low == W.GE &&
10124       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10125     LeftMBB = FirstLeft->MBB;
10126   } else {
10127     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10128     FuncInfo.MF->insert(BBI, LeftMBB);
10129     WorkList.push_back(
10130         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10131     // Put Cond in a virtual register to make it available from the new blocks.
10132     ExportFromCurrentBlock(Cond);
10133   }
10134 
10135   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10136   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10137   // directly if RHS.High equals the current upper bound.
10138   MachineBasicBlock *RightMBB;
10139   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10140       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10141     RightMBB = FirstRight->MBB;
10142   } else {
10143     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10144     FuncInfo.MF->insert(BBI, RightMBB);
10145     WorkList.push_back(
10146         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10147     // Put Cond in a virtual register to make it available from the new blocks.
10148     ExportFromCurrentBlock(Cond);
10149   }
10150 
10151   // Create the CaseBlock record that will be used to lower the branch.
10152   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10153                getCurSDLoc(), LeftProb, RightProb);
10154 
10155   if (W.MBB == SwitchMBB)
10156     visitSwitchCase(CB, SwitchMBB);
10157   else
10158     SwitchCases.push_back(CB);
10159 }
10160 
10161 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10162 // from the swith statement.
10163 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10164                                             BranchProbability PeeledCaseProb) {
10165   if (PeeledCaseProb == BranchProbability::getOne())
10166     return BranchProbability::getZero();
10167   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10168 
10169   uint32_t Numerator = CaseProb.getNumerator();
10170   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10171   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10172 }
10173 
10174 // Try to peel the top probability case if it exceeds the threshold.
10175 // Return current MachineBasicBlock for the switch statement if the peeling
10176 // does not occur.
10177 // If the peeling is performed, return the newly created MachineBasicBlock
10178 // for the peeled switch statement. Also update Clusters to remove the peeled
10179 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10180 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10181     const SwitchInst &SI, CaseClusterVector &Clusters,
10182     BranchProbability &PeeledCaseProb) {
10183   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10184   // Don't perform if there is only one cluster or optimizing for size.
10185   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10186       TM.getOptLevel() == CodeGenOpt::None ||
10187       SwitchMBB->getParent()->getFunction().optForMinSize())
10188     return SwitchMBB;
10189 
10190   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10191   unsigned PeeledCaseIndex = 0;
10192   bool SwitchPeeled = false;
10193   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10194     CaseCluster &CC = Clusters[Index];
10195     if (CC.Prob < TopCaseProb)
10196       continue;
10197     TopCaseProb = CC.Prob;
10198     PeeledCaseIndex = Index;
10199     SwitchPeeled = true;
10200   }
10201   if (!SwitchPeeled)
10202     return SwitchMBB;
10203 
10204   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10205                     << TopCaseProb << "\n");
10206 
10207   // Record the MBB for the peeled switch statement.
10208   MachineFunction::iterator BBI(SwitchMBB);
10209   ++BBI;
10210   MachineBasicBlock *PeeledSwitchMBB =
10211       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10212   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10213 
10214   ExportFromCurrentBlock(SI.getCondition());
10215   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10216   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10217                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10218   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10219 
10220   Clusters.erase(PeeledCaseIt);
10221   for (CaseCluster &CC : Clusters) {
10222     LLVM_DEBUG(
10223         dbgs() << "Scale the probablity for one cluster, before scaling: "
10224                << CC.Prob << "\n");
10225     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10226     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10227   }
10228   PeeledCaseProb = TopCaseProb;
10229   return PeeledSwitchMBB;
10230 }
10231 
10232 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10233   // Extract cases from the switch.
10234   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10235   CaseClusterVector Clusters;
10236   Clusters.reserve(SI.getNumCases());
10237   for (auto I : SI.cases()) {
10238     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10239     const ConstantInt *CaseVal = I.getCaseValue();
10240     BranchProbability Prob =
10241         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10242             : BranchProbability(1, SI.getNumCases() + 1);
10243     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10244   }
10245 
10246   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10247 
10248   // Cluster adjacent cases with the same destination. We do this at all
10249   // optimization levels because it's cheap to do and will make codegen faster
10250   // if there are many clusters.
10251   sortAndRangeify(Clusters);
10252 
10253   if (TM.getOptLevel() != CodeGenOpt::None) {
10254     // Replace an unreachable default with the most popular destination.
10255     // FIXME: Exploit unreachable default more aggressively.
10256     bool UnreachableDefault =
10257         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10258     if (UnreachableDefault && !Clusters.empty()) {
10259       DenseMap<const BasicBlock *, unsigned> Popularity;
10260       unsigned MaxPop = 0;
10261       const BasicBlock *MaxBB = nullptr;
10262       for (auto I : SI.cases()) {
10263         const BasicBlock *BB = I.getCaseSuccessor();
10264         if (++Popularity[BB] > MaxPop) {
10265           MaxPop = Popularity[BB];
10266           MaxBB = BB;
10267         }
10268       }
10269       // Set new default.
10270       assert(MaxPop > 0 && MaxBB);
10271       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10272 
10273       // Remove cases that were pointing to the destination that is now the
10274       // default.
10275       CaseClusterVector New;
10276       New.reserve(Clusters.size());
10277       for (CaseCluster &CC : Clusters) {
10278         if (CC.MBB != DefaultMBB)
10279           New.push_back(CC);
10280       }
10281       Clusters = std::move(New);
10282     }
10283   }
10284 
10285   // The branch probablity of the peeled case.
10286   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10287   MachineBasicBlock *PeeledSwitchMBB =
10288       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10289 
10290   // If there is only the default destination, jump there directly.
10291   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10292   if (Clusters.empty()) {
10293     assert(PeeledSwitchMBB == SwitchMBB);
10294     SwitchMBB->addSuccessor(DefaultMBB);
10295     if (DefaultMBB != NextBlock(SwitchMBB)) {
10296       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10297                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10298     }
10299     return;
10300   }
10301 
10302   findJumpTables(Clusters, &SI, DefaultMBB);
10303   findBitTestClusters(Clusters, &SI);
10304 
10305   LLVM_DEBUG({
10306     dbgs() << "Case clusters: ";
10307     for (const CaseCluster &C : Clusters) {
10308       if (C.Kind == CC_JumpTable)
10309         dbgs() << "JT:";
10310       if (C.Kind == CC_BitTests)
10311         dbgs() << "BT:";
10312 
10313       C.Low->getValue().print(dbgs(), true);
10314       if (C.Low != C.High) {
10315         dbgs() << '-';
10316         C.High->getValue().print(dbgs(), true);
10317       }
10318       dbgs() << ' ';
10319     }
10320     dbgs() << '\n';
10321   });
10322 
10323   assert(!Clusters.empty());
10324   SwitchWorkList WorkList;
10325   CaseClusterIt First = Clusters.begin();
10326   CaseClusterIt Last = Clusters.end() - 1;
10327   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10328   // Scale the branchprobability for DefaultMBB if the peel occurs and
10329   // DefaultMBB is not replaced.
10330   if (PeeledCaseProb != BranchProbability::getZero() &&
10331       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10332     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10333   WorkList.push_back(
10334       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10335 
10336   while (!WorkList.empty()) {
10337     SwitchWorkListItem W = WorkList.back();
10338     WorkList.pop_back();
10339     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10340 
10341     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10342         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10343       // For optimized builds, lower large range as a balanced binary tree.
10344       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10345       continue;
10346     }
10347 
10348     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10349   }
10350 }
10351