1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 792 Ops.push_back(Res); 793 794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 796 EVT RegisterVT = RegVTs[Value]; 797 for (unsigned i = 0; i != NumRegs; ++i) { 798 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 805 AA = &aa; 806 GFI = gfi; 807 TD = DAG.getTarget().getTargetData(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurDebugLoc = DebugLoc(); 822 HasTailCall = false; 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is seperated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 853 &PendingLoads[0], PendingLoads.size()); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 883 &PendingExports[0], 884 PendingExports.size()); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 892 DAG.AssignOrdering(Node, SDNodeOrder); 893 894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 895 AssignOrderingToNode(Node->getOperand(I).getNode()); 896 } 897 898 void SelectionDAGBuilder::visit(const Instruction &I) { 899 // Set up outgoing PHI node register values before emitting the terminator. 900 if (isa<TerminatorInst>(&I)) 901 HandlePHINodesInSuccessorBlocks(I.getParent()); 902 903 CurDebugLoc = I.getDebugLoc(); 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurDebugLoc = DebugLoc(); 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 918 // Note: this doesn't use InstVisitor, because it has to work with 919 // ConstantExpr's in addition to instructions. 920 switch (Opcode) { 921 default: llvm_unreachable("Unknown instruction type encountered!"); 922 // Build the switch statement using the Instruction.def file. 923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 925 #include "llvm/Instruction.def" 926 } 927 928 // Assign the ordering to the freshly created DAG nodes. 929 if (NodeMap.count(&I)) { 930 ++SDNodeOrder; 931 AssignOrderingToNode(getValue(&I).getNode()); 932 } 933 } 934 935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 936 // generate the debug data structures now that we've seen its definition. 937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 938 SDValue Val) { 939 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 940 if (DDI.getDI()) { 941 const DbgValueInst *DI = DDI.getDI(); 942 DebugLoc dl = DDI.getdl(); 943 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 944 MDNode *Variable = DI->getVariable(); 945 uint64_t Offset = DI->getOffset(); 946 SDDbgValue *SDV; 947 if (Val.getNode()) { 948 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 949 SDV = DAG.getDbgValue(Variable, Val.getNode(), 950 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 951 DAG.AddDbgValue(SDV, Val.getNode(), false); 952 } 953 } else 954 DEBUG(dbgs() << "Dropping debug info for " << DI); 955 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 956 } 957 } 958 959 // getValue - Return an SDValue for the given Value. 960 SDValue SelectionDAGBuilder::getValue(const Value *V) { 961 // If we already have an SDValue for this value, use it. It's important 962 // to do this first, so that we don't create a CopyFromReg if we already 963 // have a regular SDValue. 964 SDValue &N = NodeMap[V]; 965 if (N.getNode()) return N; 966 967 // If there's a virtual register allocated and initialized for this 968 // value, use it. 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 if (It != FuncInfo.ValueMap.end()) { 971 unsigned InReg = It->second; 972 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 973 SDValue Chain = DAG.getEntryNode(); 974 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 975 resolveDanglingDebugInfo(V, N); 976 return N; 977 } 978 979 // Otherwise create a new SDValue and remember it. 980 SDValue Val = getValueImpl(V); 981 NodeMap[V] = Val; 982 resolveDanglingDebugInfo(V, Val); 983 return Val; 984 } 985 986 /// getNonRegisterValue - Return an SDValue for the given Value, but 987 /// don't look in FuncInfo.ValueMap for a virtual register. 988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // Otherwise create a new SDValue and remember it. 994 SDValue Val = getValueImpl(V); 995 NodeMap[V] = Val; 996 resolveDanglingDebugInfo(V, Val); 997 return Val; 998 } 999 1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1001 /// Create an SDValue for the given value. 1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1003 if (const Constant *C = dyn_cast<Constant>(V)) { 1004 EVT VT = TLI.getValueType(V->getType(), true); 1005 1006 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1007 return DAG.getConstant(*CI, VT); 1008 1009 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1010 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1011 1012 if (isa<ConstantPointerNull>(C)) 1013 return DAG.getConstant(0, TLI.getPointerTy()); 1014 1015 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1016 return DAG.getConstantFP(*CFP, VT); 1017 1018 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1019 return DAG.getUNDEF(VT); 1020 1021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1022 visit(CE->getOpcode(), *CE); 1023 SDValue N1 = NodeMap[V]; 1024 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1025 return N1; 1026 } 1027 1028 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1029 SmallVector<SDValue, 4> Constants; 1030 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1031 OI != OE; ++OI) { 1032 SDNode *Val = getValue(*OI).getNode(); 1033 // If the operand is an empty aggregate, there are no values. 1034 if (!Val) continue; 1035 // Add each leaf value from the operand to the Constants list 1036 // to form a flattened list of all the values. 1037 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1038 Constants.push_back(SDValue(Val, i)); 1039 } 1040 1041 return DAG.getMergeValues(&Constants[0], Constants.size(), 1042 getCurDebugLoc()); 1043 } 1044 1045 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1046 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1047 "Unknown struct or array constant!"); 1048 1049 SmallVector<EVT, 4> ValueVTs; 1050 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1051 unsigned NumElts = ValueVTs.size(); 1052 if (NumElts == 0) 1053 return SDValue(); // empty struct 1054 SmallVector<SDValue, 4> Constants(NumElts); 1055 for (unsigned i = 0; i != NumElts; ++i) { 1056 EVT EltVT = ValueVTs[i]; 1057 if (isa<UndefValue>(C)) 1058 Constants[i] = DAG.getUNDEF(EltVT); 1059 else if (EltVT.isFloatingPoint()) 1060 Constants[i] = DAG.getConstantFP(0, EltVT); 1061 else 1062 Constants[i] = DAG.getConstant(0, EltVT); 1063 } 1064 1065 return DAG.getMergeValues(&Constants[0], NumElts, 1066 getCurDebugLoc()); 1067 } 1068 1069 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1070 return DAG.getBlockAddress(BA, VT); 1071 1072 VectorType *VecTy = cast<VectorType>(V->getType()); 1073 unsigned NumElements = VecTy->getNumElements(); 1074 1075 // Now that we know the number and type of the elements, get that number of 1076 // elements into the Ops array based on what kind of constant it is. 1077 SmallVector<SDValue, 16> Ops; 1078 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1079 for (unsigned i = 0; i != NumElements; ++i) 1080 Ops.push_back(getValue(CP->getOperand(i))); 1081 } else { 1082 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1083 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1084 1085 SDValue Op; 1086 if (EltVT.isFloatingPoint()) 1087 Op = DAG.getConstantFP(0, EltVT); 1088 else 1089 Op = DAG.getConstant(0, EltVT); 1090 Ops.assign(NumElements, Op); 1091 } 1092 1093 // Create a BUILD_VECTOR node. 1094 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1095 VT, &Ops[0], Ops.size()); 1096 } 1097 1098 // If this is a static alloca, generate it as the frameindex instead of 1099 // computation. 1100 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1101 DenseMap<const AllocaInst*, int>::iterator SI = 1102 FuncInfo.StaticAllocaMap.find(AI); 1103 if (SI != FuncInfo.StaticAllocaMap.end()) 1104 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1105 } 1106 1107 // If this is an instruction which fast-isel has deferred, select it now. 1108 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1109 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1110 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1111 SDValue Chain = DAG.getEntryNode(); 1112 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1113 } 1114 1115 llvm_unreachable("Can't get register for value!"); 1116 return SDValue(); 1117 } 1118 1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1120 SDValue Chain = getControlRoot(); 1121 SmallVector<ISD::OutputArg, 8> Outs; 1122 SmallVector<SDValue, 8> OutVals; 1123 1124 if (!FuncInfo.CanLowerReturn) { 1125 unsigned DemoteReg = FuncInfo.DemoteRegister; 1126 const Function *F = I.getParent()->getParent(); 1127 1128 // Emit a store of the return value through the virtual register. 1129 // Leave Outs empty so that LowerReturn won't try to load return 1130 // registers the usual way. 1131 SmallVector<EVT, 1> PtrValueVTs; 1132 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1133 PtrValueVTs); 1134 1135 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1136 SDValue RetOp = getValue(I.getOperand(0)); 1137 1138 SmallVector<EVT, 4> ValueVTs; 1139 SmallVector<uint64_t, 4> Offsets; 1140 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1141 unsigned NumValues = ValueVTs.size(); 1142 1143 SmallVector<SDValue, 4> Chains(NumValues); 1144 for (unsigned i = 0; i != NumValues; ++i) { 1145 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1146 RetPtr.getValueType(), RetPtr, 1147 DAG.getIntPtrConstant(Offsets[i])); 1148 Chains[i] = 1149 DAG.getStore(Chain, getCurDebugLoc(), 1150 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1151 // FIXME: better loc info would be nice. 1152 Add, MachinePointerInfo(), false, false, 0); 1153 } 1154 1155 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1156 MVT::Other, &Chains[0], NumValues); 1157 } else if (I.getNumOperands() != 0) { 1158 SmallVector<EVT, 4> ValueVTs; 1159 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1160 unsigned NumValues = ValueVTs.size(); 1161 if (NumValues) { 1162 SDValue RetOp = getValue(I.getOperand(0)); 1163 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1164 EVT VT = ValueVTs[j]; 1165 1166 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1167 1168 const Function *F = I.getParent()->getParent(); 1169 if (F->paramHasAttr(0, Attribute::SExt)) 1170 ExtendKind = ISD::SIGN_EXTEND; 1171 else if (F->paramHasAttr(0, Attribute::ZExt)) 1172 ExtendKind = ISD::ZERO_EXTEND; 1173 1174 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1175 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1176 1177 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1178 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1179 SmallVector<SDValue, 4> Parts(NumParts); 1180 getCopyToParts(DAG, getCurDebugLoc(), 1181 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1182 &Parts[0], NumParts, PartVT, ExtendKind); 1183 1184 // 'inreg' on function refers to return value 1185 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1186 if (F->paramHasAttr(0, Attribute::InReg)) 1187 Flags.setInReg(); 1188 1189 // Propagate extension type if any 1190 if (ExtendKind == ISD::SIGN_EXTEND) 1191 Flags.setSExt(); 1192 else if (ExtendKind == ISD::ZERO_EXTEND) 1193 Flags.setZExt(); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1197 /*isfixed=*/true)); 1198 OutVals.push_back(Parts[i]); 1199 } 1200 } 1201 } 1202 } 1203 1204 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1205 CallingConv::ID CallConv = 1206 DAG.getMachineFunction().getFunction()->getCallingConv(); 1207 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1208 Outs, OutVals, getCurDebugLoc(), DAG); 1209 1210 // Verify that the target's LowerReturn behaved as expected. 1211 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1212 "LowerReturn didn't return a valid chain!"); 1213 1214 // Update the DAG with the new chain value resulting from return lowering. 1215 DAG.setRoot(Chain); 1216 } 1217 1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1219 /// created for it, emit nodes to copy the value into the virtual 1220 /// registers. 1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1222 // Skip empty types 1223 if (V->getType()->isEmptyTy()) 1224 return; 1225 1226 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1227 if (VMI != FuncInfo.ValueMap.end()) { 1228 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1229 CopyValueToVirtualRegister(V, VMI->second); 1230 } 1231 } 1232 1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1234 /// the current basic block, add it to ValueMap now so that we'll get a 1235 /// CopyTo/FromReg. 1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1237 // No need to export constants. 1238 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1239 1240 // Already exported? 1241 if (FuncInfo.isExportedInst(V)) return; 1242 1243 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1244 CopyValueToVirtualRegister(V, Reg); 1245 } 1246 1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1248 const BasicBlock *FromBB) { 1249 // The operands of the setcc have to be in this block. We don't know 1250 // how to export them from some other block. 1251 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1252 // Can export from current BB. 1253 if (VI->getParent() == FromBB) 1254 return true; 1255 1256 // Is already exported, noop. 1257 return FuncInfo.isExportedInst(V); 1258 } 1259 1260 // If this is an argument, we can export it if the BB is the entry block or 1261 // if it is already exported. 1262 if (isa<Argument>(V)) { 1263 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1264 return true; 1265 1266 // Otherwise, can only export this if it is already exported. 1267 return FuncInfo.isExportedInst(V); 1268 } 1269 1270 // Otherwise, constants can always be exported. 1271 return true; 1272 } 1273 1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1276 MachineBasicBlock *Dst) { 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (!BPI) 1279 return 0; 1280 const BasicBlock *SrcBB = Src->getBasicBlock(); 1281 const BasicBlock *DstBB = Dst->getBasicBlock(); 1282 return BPI->getEdgeWeight(SrcBB, DstBB); 1283 } 1284 1285 void SelectionDAGBuilder:: 1286 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1287 uint32_t Weight /* = 0 */) { 1288 if (!Weight) 1289 Weight = getEdgeWeight(Src, Dst); 1290 Src->addSuccessor(Dst, Weight); 1291 } 1292 1293 1294 static bool InBlock(const Value *V, const BasicBlock *BB) { 1295 if (const Instruction *I = dyn_cast<Instruction>(V)) 1296 return I->getParent() == BB; 1297 return true; 1298 } 1299 1300 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1301 /// This function emits a branch and is used at the leaves of an OR or an 1302 /// AND operator tree. 1303 /// 1304 void 1305 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1306 MachineBasicBlock *TBB, 1307 MachineBasicBlock *FBB, 1308 MachineBasicBlock *CurBB, 1309 MachineBasicBlock *SwitchBB) { 1310 const BasicBlock *BB = CurBB->getBasicBlock(); 1311 1312 // If the leaf of the tree is a comparison, merge the condition into 1313 // the caseblock. 1314 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1315 // The operands of the cmp have to be in this block. We don't know 1316 // how to export them from some other block. If this is the first block 1317 // of the sequence, no exporting is needed. 1318 if (CurBB == SwitchBB || 1319 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1320 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1321 ISD::CondCode Condition; 1322 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1323 Condition = getICmpCondCode(IC->getPredicate()); 1324 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1325 Condition = getFCmpCondCode(FC->getPredicate()); 1326 } else { 1327 Condition = ISD::SETEQ; // silence warning. 1328 llvm_unreachable("Unknown compare instruction"); 1329 } 1330 1331 CaseBlock CB(Condition, BOp->getOperand(0), 1332 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1333 SwitchCases.push_back(CB); 1334 return; 1335 } 1336 } 1337 1338 // Create a CaseBlock record representing this branch. 1339 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1340 NULL, TBB, FBB, CurBB); 1341 SwitchCases.push_back(CB); 1342 } 1343 1344 /// FindMergedConditions - If Cond is an expression like 1345 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 unsigned Opc) { 1351 // If this node is not part of the or/and tree, emit it as a branch. 1352 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1353 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1354 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1355 BOp->getParent() != CurBB->getBasicBlock() || 1356 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1357 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1358 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1359 return; 1360 } 1361 1362 // Create TmpBB after CurBB. 1363 MachineFunction::iterator BBI = CurBB; 1364 MachineFunction &MF = DAG.getMachineFunction(); 1365 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1366 CurBB->getParent()->insert(++BBI, TmpBB); 1367 1368 if (Opc == Instruction::Or) { 1369 // Codegen X | Y as: 1370 // jmp_if_X TBB 1371 // jmp TmpBB 1372 // TmpBB: 1373 // jmp_if_Y TBB 1374 // jmp FBB 1375 // 1376 1377 // Emit the LHS condition. 1378 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1379 1380 // Emit the RHS condition into TmpBB. 1381 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1382 } else { 1383 assert(Opc == Instruction::And && "Unknown merge op!"); 1384 // Codegen X & Y as: 1385 // jmp_if_X TmpBB 1386 // jmp FBB 1387 // TmpBB: 1388 // jmp_if_Y TBB 1389 // jmp FBB 1390 // 1391 // This requires creation of TmpBB after CurBB. 1392 1393 // Emit the LHS condition. 1394 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1395 1396 // Emit the RHS condition into TmpBB. 1397 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1398 } 1399 } 1400 1401 /// If the set of cases should be emitted as a series of branches, return true. 1402 /// If we should emit this as a bunch of and/or'd together conditions, return 1403 /// false. 1404 bool 1405 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1406 if (Cases.size() != 2) return true; 1407 1408 // If this is two comparisons of the same values or'd or and'd together, they 1409 // will get folded into a single comparison, so don't emit two blocks. 1410 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1411 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1412 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1413 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1414 return false; 1415 } 1416 1417 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1418 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1419 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1420 Cases[0].CC == Cases[1].CC && 1421 isa<Constant>(Cases[0].CmpRHS) && 1422 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1423 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1424 return false; 1425 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1426 return false; 1427 } 1428 1429 return true; 1430 } 1431 1432 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1433 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1434 1435 // Update machine-CFG edges. 1436 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1437 1438 // Figure out which block is immediately after the current one. 1439 MachineBasicBlock *NextBlock = 0; 1440 MachineFunction::iterator BBI = BrMBB; 1441 if (++BBI != FuncInfo.MF->end()) 1442 NextBlock = BBI; 1443 1444 if (I.isUnconditional()) { 1445 // Update machine-CFG edges. 1446 BrMBB->addSuccessor(Succ0MBB); 1447 1448 // If this is not a fall-through branch, emit the branch. 1449 if (Succ0MBB != NextBlock) 1450 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1451 MVT::Other, getControlRoot(), 1452 DAG.getBasicBlock(Succ0MBB))); 1453 1454 return; 1455 } 1456 1457 // If this condition is one of the special cases we handle, do special stuff 1458 // now. 1459 const Value *CondVal = I.getCondition(); 1460 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1461 1462 // If this is a series of conditions that are or'd or and'd together, emit 1463 // this as a sequence of branches instead of setcc's with and/or operations. 1464 // As long as jumps are not expensive, this should improve performance. 1465 // For example, instead of something like: 1466 // cmp A, B 1467 // C = seteq 1468 // cmp D, E 1469 // F = setle 1470 // or C, F 1471 // jnz foo 1472 // Emit: 1473 // cmp A, B 1474 // je foo 1475 // cmp D, E 1476 // jle foo 1477 // 1478 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1479 if (!TLI.isJumpExpensive() && 1480 BOp->hasOneUse() && 1481 (BOp->getOpcode() == Instruction::And || 1482 BOp->getOpcode() == Instruction::Or)) { 1483 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1484 BOp->getOpcode()); 1485 // If the compares in later blocks need to use values not currently 1486 // exported from this block, export them now. This block should always 1487 // be the first entry. 1488 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1489 1490 // Allow some cases to be rejected. 1491 if (ShouldEmitAsBranches(SwitchCases)) { 1492 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1493 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1494 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1495 } 1496 1497 // Emit the branch for this block. 1498 visitSwitchCase(SwitchCases[0], BrMBB); 1499 SwitchCases.erase(SwitchCases.begin()); 1500 return; 1501 } 1502 1503 // Okay, we decided not to do this, remove any inserted MBB's and clear 1504 // SwitchCases. 1505 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1506 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1507 1508 SwitchCases.clear(); 1509 } 1510 } 1511 1512 // Create a CaseBlock record representing this branch. 1513 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1514 NULL, Succ0MBB, Succ1MBB, BrMBB); 1515 1516 // Use visitSwitchCase to actually insert the fast branch sequence for this 1517 // cond branch. 1518 visitSwitchCase(CB, BrMBB); 1519 } 1520 1521 /// visitSwitchCase - Emits the necessary code to represent a single node in 1522 /// the binary search tree resulting from lowering a switch instruction. 1523 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1524 MachineBasicBlock *SwitchBB) { 1525 SDValue Cond; 1526 SDValue CondLHS = getValue(CB.CmpLHS); 1527 DebugLoc dl = getCurDebugLoc(); 1528 1529 // Build the setcc now. 1530 if (CB.CmpMHS == NULL) { 1531 // Fold "(X == true)" to X and "(X == false)" to !X to 1532 // handle common cases produced by branch lowering. 1533 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1534 CB.CC == ISD::SETEQ) 1535 Cond = CondLHS; 1536 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1537 CB.CC == ISD::SETEQ) { 1538 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1539 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1540 } else 1541 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1542 } else { 1543 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1544 1545 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1546 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1547 1548 SDValue CmpOp = getValue(CB.CmpMHS); 1549 EVT VT = CmpOp.getValueType(); 1550 1551 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1552 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1553 ISD::SETLE); 1554 } else { 1555 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1556 VT, CmpOp, DAG.getConstant(Low, VT)); 1557 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1558 DAG.getConstant(High-Low, VT), ISD::SETULE); 1559 } 1560 } 1561 1562 // Update successor info 1563 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1564 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1565 1566 // Set NextBlock to be the MBB immediately after the current one, if any. 1567 // This is used to avoid emitting unnecessary branches to the next block. 1568 MachineBasicBlock *NextBlock = 0; 1569 MachineFunction::iterator BBI = SwitchBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 // If the lhs block is the next block, invert the condition so that we can 1574 // fall through to the lhs instead of the rhs block. 1575 if (CB.TrueBB == NextBlock) { 1576 std::swap(CB.TrueBB, CB.FalseBB); 1577 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1578 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1579 } 1580 1581 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1582 MVT::Other, getControlRoot(), Cond, 1583 DAG.getBasicBlock(CB.TrueBB)); 1584 1585 // Insert the false branch. Do this even if it's a fall through branch, 1586 // this makes it easier to do DAG optimizations which require inverting 1587 // the branch condition. 1588 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1589 DAG.getBasicBlock(CB.FalseBB)); 1590 1591 DAG.setRoot(BrCond); 1592 } 1593 1594 /// visitJumpTable - Emit JumpTable node in the current MBB 1595 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1596 // Emit the code for the jump table 1597 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1598 EVT PTy = TLI.getPointerTy(); 1599 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1600 JT.Reg, PTy); 1601 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1602 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1603 MVT::Other, Index.getValue(1), 1604 Table, Index); 1605 DAG.setRoot(BrJumpTable); 1606 } 1607 1608 /// visitJumpTableHeader - This function emits necessary code to produce index 1609 /// in the JumpTable from switch case. 1610 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1611 JumpTableHeader &JTH, 1612 MachineBasicBlock *SwitchBB) { 1613 // Subtract the lowest switch case value from the value being switched on and 1614 // conditional branch to default mbb if the result is greater than the 1615 // difference between smallest and largest cases. 1616 SDValue SwitchOp = getValue(JTH.SValue); 1617 EVT VT = SwitchOp.getValueType(); 1618 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1619 DAG.getConstant(JTH.First, VT)); 1620 1621 // The SDNode we just created, which holds the value being switched on minus 1622 // the smallest case value, needs to be copied to a virtual register so it 1623 // can be used as an index into the jump table in a subsequent basic block. 1624 // This value may be smaller or larger than the target's pointer type, and 1625 // therefore require extension or truncating. 1626 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1627 1628 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1629 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1630 JumpTableReg, SwitchOp); 1631 JT.Reg = JumpTableReg; 1632 1633 // Emit the range check for the jump table, and branch to the default block 1634 // for the switch statement if the value being switched on exceeds the largest 1635 // case in the switch. 1636 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1637 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1638 DAG.getConstant(JTH.Last-JTH.First,VT), 1639 ISD::SETUGT); 1640 1641 // Set NextBlock to be the MBB immediately after the current one, if any. 1642 // This is used to avoid emitting unnecessary branches to the next block. 1643 MachineBasicBlock *NextBlock = 0; 1644 MachineFunction::iterator BBI = SwitchBB; 1645 1646 if (++BBI != FuncInfo.MF->end()) 1647 NextBlock = BBI; 1648 1649 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1650 MVT::Other, CopyTo, CMP, 1651 DAG.getBasicBlock(JT.Default)); 1652 1653 if (JT.MBB != NextBlock) 1654 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1655 DAG.getBasicBlock(JT.MBB)); 1656 1657 DAG.setRoot(BrCond); 1658 } 1659 1660 /// visitBitTestHeader - This function emits necessary code to produce value 1661 /// suitable for "bit tests" 1662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1663 MachineBasicBlock *SwitchBB) { 1664 // Subtract the minimum value 1665 SDValue SwitchOp = getValue(B.SValue); 1666 EVT VT = SwitchOp.getValueType(); 1667 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1668 DAG.getConstant(B.First, VT)); 1669 1670 // Check range 1671 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1672 TLI.getSetCCResultType(Sub.getValueType()), 1673 Sub, DAG.getConstant(B.Range, VT), 1674 ISD::SETUGT); 1675 1676 // Determine the type of the test operands. 1677 bool UsePtrType = false; 1678 if (!TLI.isTypeLegal(VT)) 1679 UsePtrType = true; 1680 else { 1681 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1682 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1683 // Switch table case range are encoded into series of masks. 1684 // Just use pointer type, it's guaranteed to fit. 1685 UsePtrType = true; 1686 break; 1687 } 1688 } 1689 if (UsePtrType) { 1690 VT = TLI.getPointerTy(); 1691 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1692 } 1693 1694 B.RegVT = VT; 1695 B.Reg = FuncInfo.CreateReg(VT); 1696 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1697 B.Reg, Sub); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = 0; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1707 1708 addSuccessorWithWeight(SwitchBB, B.Default); 1709 addSuccessorWithWeight(SwitchBB, MBB); 1710 1711 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1712 MVT::Other, CopyTo, RangeCmp, 1713 DAG.getBasicBlock(B.Default)); 1714 1715 if (MBB != NextBlock) 1716 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1717 DAG.getBasicBlock(MBB)); 1718 1719 DAG.setRoot(BrRange); 1720 } 1721 1722 /// visitBitTestCase - this function produces one "bit test" 1723 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1724 MachineBasicBlock* NextMBB, 1725 unsigned Reg, 1726 BitTestCase &B, 1727 MachineBasicBlock *SwitchBB) { 1728 EVT VT = BB.RegVT; 1729 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1730 Reg, VT); 1731 SDValue Cmp; 1732 unsigned PopCount = CountPopulation_64(B.Mask); 1733 if (PopCount == 1) { 1734 // Testing for a single bit; just compare the shift count with what it 1735 // would need to be to shift a 1 bit in that position. 1736 Cmp = DAG.getSetCC(getCurDebugLoc(), 1737 TLI.getSetCCResultType(VT), 1738 ShiftOp, 1739 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1740 ISD::SETEQ); 1741 } else if (PopCount == BB.Range) { 1742 // There is only one zero bit in the range, test for it directly. 1743 Cmp = DAG.getSetCC(getCurDebugLoc(), 1744 TLI.getSetCCResultType(VT), 1745 ShiftOp, 1746 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1747 ISD::SETNE); 1748 } else { 1749 // Make desired shift 1750 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1751 DAG.getConstant(1, VT), ShiftOp); 1752 1753 // Emit bit tests and jumps 1754 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1755 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1756 Cmp = DAG.getSetCC(getCurDebugLoc(), 1757 TLI.getSetCCResultType(VT), 1758 AndOp, DAG.getConstant(0, VT), 1759 ISD::SETNE); 1760 } 1761 1762 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1763 addSuccessorWithWeight(SwitchBB, NextMBB); 1764 1765 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1766 MVT::Other, getControlRoot(), 1767 Cmp, DAG.getBasicBlock(B.TargetBB)); 1768 1769 // Set NextBlock to be the MBB immediately after the current one, if any. 1770 // This is used to avoid emitting unnecessary branches to the next block. 1771 MachineBasicBlock *NextBlock = 0; 1772 MachineFunction::iterator BBI = SwitchBB; 1773 if (++BBI != FuncInfo.MF->end()) 1774 NextBlock = BBI; 1775 1776 if (NextMBB != NextBlock) 1777 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1778 DAG.getBasicBlock(NextMBB)); 1779 1780 DAG.setRoot(BrAnd); 1781 } 1782 1783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1784 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1785 1786 // Retrieve successors. 1787 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1788 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1789 1790 const Value *Callee(I.getCalledValue()); 1791 if (isa<InlineAsm>(Callee)) 1792 visitInlineAsm(&I); 1793 else 1794 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1795 1796 // If the value of the invoke is used outside of its defining block, make it 1797 // available as a virtual register. 1798 CopyToExportRegsIfNeeded(&I); 1799 1800 // Update successor info 1801 InvokeMBB->addSuccessor(Return); 1802 InvokeMBB->addSuccessor(LandingPad); 1803 1804 // Drop into normal successor. 1805 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1806 MVT::Other, getControlRoot(), 1807 DAG.getBasicBlock(Return))); 1808 } 1809 1810 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1811 } 1812 1813 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1814 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1815 } 1816 1817 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1818 assert(FuncInfo.MBB->isLandingPad() && 1819 "Call to landingpad not in landing pad!"); 1820 1821 MachineBasicBlock *MBB = FuncInfo.MBB; 1822 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1823 AddLandingPadInfo(LP, MMI, MBB); 1824 1825 SmallVector<EVT, 2> ValueVTs; 1826 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1827 1828 // Insert the EXCEPTIONADDR instruction. 1829 assert(FuncInfo.MBB->isLandingPad() && 1830 "Call to eh.exception not in landing pad!"); 1831 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1832 SDValue Ops[2]; 1833 Ops[0] = DAG.getRoot(); 1834 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1835 SDValue Chain = Op1.getValue(1); 1836 1837 // Insert the EHSELECTION instruction. 1838 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1839 Ops[0] = Op1; 1840 Ops[1] = Chain; 1841 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1842 Chain = Op2.getValue(1); 1843 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1844 1845 Ops[0] = Op1; 1846 Ops[1] = Op2; 1847 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1848 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1849 &Ops[0], 2); 1850 1851 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1852 setValue(&LP, RetPair.first); 1853 DAG.setRoot(RetPair.second); 1854 } 1855 1856 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1857 /// small case ranges). 1858 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1859 CaseRecVector& WorkList, 1860 const Value* SV, 1861 MachineBasicBlock *Default, 1862 MachineBasicBlock *SwitchBB) { 1863 Case& BackCase = *(CR.Range.second-1); 1864 1865 // Size is the number of Cases represented by this range. 1866 size_t Size = CR.Range.second - CR.Range.first; 1867 if (Size > 3) 1868 return false; 1869 1870 // Get the MachineFunction which holds the current MBB. This is used when 1871 // inserting any additional MBBs necessary to represent the switch. 1872 MachineFunction *CurMF = FuncInfo.MF; 1873 1874 // Figure out which block is immediately after the current one. 1875 MachineBasicBlock *NextBlock = 0; 1876 MachineFunction::iterator BBI = CR.CaseBB; 1877 1878 if (++BBI != FuncInfo.MF->end()) 1879 NextBlock = BBI; 1880 1881 // If any two of the cases has the same destination, and if one value 1882 // is the same as the other, but has one bit unset that the other has set, 1883 // use bit manipulation to do two compares at once. For example: 1884 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1885 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1886 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1887 if (Size == 2 && CR.CaseBB == SwitchBB) { 1888 Case &Small = *CR.Range.first; 1889 Case &Big = *(CR.Range.second-1); 1890 1891 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1892 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1893 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1894 1895 // Check that there is only one bit different. 1896 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1897 (SmallValue | BigValue) == BigValue) { 1898 // Isolate the common bit. 1899 APInt CommonBit = BigValue & ~SmallValue; 1900 assert((SmallValue | CommonBit) == BigValue && 1901 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1902 1903 SDValue CondLHS = getValue(SV); 1904 EVT VT = CondLHS.getValueType(); 1905 DebugLoc DL = getCurDebugLoc(); 1906 1907 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1908 DAG.getConstant(CommonBit, VT)); 1909 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1910 Or, DAG.getConstant(BigValue, VT), 1911 ISD::SETEQ); 1912 1913 // Update successor info. 1914 addSuccessorWithWeight(SwitchBB, Small.BB); 1915 addSuccessorWithWeight(SwitchBB, Default); 1916 1917 // Insert the true branch. 1918 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1919 getControlRoot(), Cond, 1920 DAG.getBasicBlock(Small.BB)); 1921 1922 // Insert the false branch. 1923 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1924 DAG.getBasicBlock(Default)); 1925 1926 DAG.setRoot(BrCond); 1927 return true; 1928 } 1929 } 1930 } 1931 1932 // Rearrange the case blocks so that the last one falls through if possible. 1933 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1934 // The last case block won't fall through into 'NextBlock' if we emit the 1935 // branches in this order. See if rearranging a case value would help. 1936 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1937 if (I->BB == NextBlock) { 1938 std::swap(*I, BackCase); 1939 break; 1940 } 1941 } 1942 } 1943 1944 // Create a CaseBlock record representing a conditional branch to 1945 // the Case's target mbb if the value being switched on SV is equal 1946 // to C. 1947 MachineBasicBlock *CurBlock = CR.CaseBB; 1948 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1949 MachineBasicBlock *FallThrough; 1950 if (I != E-1) { 1951 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1952 CurMF->insert(BBI, FallThrough); 1953 1954 // Put SV in a virtual register to make it available from the new blocks. 1955 ExportFromCurrentBlock(SV); 1956 } else { 1957 // If the last case doesn't match, go to the default block. 1958 FallThrough = Default; 1959 } 1960 1961 const Value *RHS, *LHS, *MHS; 1962 ISD::CondCode CC; 1963 if (I->High == I->Low) { 1964 // This is just small small case range :) containing exactly 1 case 1965 CC = ISD::SETEQ; 1966 LHS = SV; RHS = I->High; MHS = NULL; 1967 } else { 1968 CC = ISD::SETLE; 1969 LHS = I->Low; MHS = SV; RHS = I->High; 1970 } 1971 1972 uint32_t ExtraWeight = I->ExtraWeight; 1973 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1974 /* me */ CurBlock, 1975 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1976 1977 // If emitting the first comparison, just call visitSwitchCase to emit the 1978 // code into the current block. Otherwise, push the CaseBlock onto the 1979 // vector to be later processed by SDISel, and insert the node's MBB 1980 // before the next MBB. 1981 if (CurBlock == SwitchBB) 1982 visitSwitchCase(CB, SwitchBB); 1983 else 1984 SwitchCases.push_back(CB); 1985 1986 CurBlock = FallThrough; 1987 } 1988 1989 return true; 1990 } 1991 1992 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1993 return !DisableJumpTables && 1994 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1995 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1996 } 1997 1998 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1999 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2000 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2001 return (LastExt - FirstExt + 1ULL); 2002 } 2003 2004 /// handleJTSwitchCase - Emit jumptable for current switch case range 2005 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 2006 CaseRecVector& WorkList, 2007 const Value* SV, 2008 MachineBasicBlock* Default, 2009 MachineBasicBlock *SwitchBB) { 2010 Case& FrontCase = *CR.Range.first; 2011 Case& BackCase = *(CR.Range.second-1); 2012 2013 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2014 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2015 2016 APInt TSize(First.getBitWidth(), 0); 2017 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2018 I!=E; ++I) 2019 TSize += I->size(); 2020 2021 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2022 return false; 2023 2024 APInt Range = ComputeRange(First, Last); 2025 double Density = TSize.roundToDouble() / Range.roundToDouble(); 2026 if (Density < 0.4) 2027 return false; 2028 2029 DEBUG(dbgs() << "Lowering jump table\n" 2030 << "First entry: " << First << ". Last entry: " << Last << '\n' 2031 << "Range: " << Range 2032 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 2033 2034 // Get the MachineFunction which holds the current MBB. This is used when 2035 // inserting any additional MBBs necessary to represent the switch. 2036 MachineFunction *CurMF = FuncInfo.MF; 2037 2038 // Figure out which block is immediately after the current one. 2039 MachineFunction::iterator BBI = CR.CaseBB; 2040 ++BBI; 2041 2042 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2043 2044 // Create a new basic block to hold the code for loading the address 2045 // of the jump table, and jumping to it. Update successor information; 2046 // we will either branch to the default case for the switch, or the jump 2047 // table. 2048 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2049 CurMF->insert(BBI, JumpTableBB); 2050 2051 addSuccessorWithWeight(CR.CaseBB, Default); 2052 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2053 2054 // Build a vector of destination BBs, corresponding to each target 2055 // of the jump table. If the value of the jump table slot corresponds to 2056 // a case statement, push the case's BB onto the vector, otherwise, push 2057 // the default BB. 2058 std::vector<MachineBasicBlock*> DestBBs; 2059 APInt TEI = First; 2060 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2061 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2062 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2063 2064 if (Low.sle(TEI) && TEI.sle(High)) { 2065 DestBBs.push_back(I->BB); 2066 if (TEI==High) 2067 ++I; 2068 } else { 2069 DestBBs.push_back(Default); 2070 } 2071 } 2072 2073 // Update successor info. Add one edge to each unique successor. 2074 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2075 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2076 E = DestBBs.end(); I != E; ++I) { 2077 if (!SuccsHandled[(*I)->getNumber()]) { 2078 SuccsHandled[(*I)->getNumber()] = true; 2079 addSuccessorWithWeight(JumpTableBB, *I); 2080 } 2081 } 2082 2083 // Create a jump table index for this jump table. 2084 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2085 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2086 ->createJumpTableIndex(DestBBs); 2087 2088 // Set the jump table information so that we can codegen it as a second 2089 // MachineBasicBlock 2090 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2091 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2092 if (CR.CaseBB == SwitchBB) 2093 visitJumpTableHeader(JT, JTH, SwitchBB); 2094 2095 JTCases.push_back(JumpTableBlock(JTH, JT)); 2096 2097 return true; 2098 } 2099 2100 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2101 /// 2 subtrees. 2102 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2103 CaseRecVector& WorkList, 2104 const Value* SV, 2105 MachineBasicBlock *Default, 2106 MachineBasicBlock *SwitchBB) { 2107 // Get the MachineFunction which holds the current MBB. This is used when 2108 // inserting any additional MBBs necessary to represent the switch. 2109 MachineFunction *CurMF = FuncInfo.MF; 2110 2111 // Figure out which block is immediately after the current one. 2112 MachineFunction::iterator BBI = CR.CaseBB; 2113 ++BBI; 2114 2115 Case& FrontCase = *CR.Range.first; 2116 Case& BackCase = *(CR.Range.second-1); 2117 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2118 2119 // Size is the number of Cases represented by this range. 2120 unsigned Size = CR.Range.second - CR.Range.first; 2121 2122 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2123 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2124 double FMetric = 0; 2125 CaseItr Pivot = CR.Range.first + Size/2; 2126 2127 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2128 // (heuristically) allow us to emit JumpTable's later. 2129 APInt TSize(First.getBitWidth(), 0); 2130 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2131 I!=E; ++I) 2132 TSize += I->size(); 2133 2134 APInt LSize = FrontCase.size(); 2135 APInt RSize = TSize-LSize; 2136 DEBUG(dbgs() << "Selecting best pivot: \n" 2137 << "First: " << First << ", Last: " << Last <<'\n' 2138 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2139 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2140 J!=E; ++I, ++J) { 2141 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2142 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2143 APInt Range = ComputeRange(LEnd, RBegin); 2144 assert((Range - 2ULL).isNonNegative() && 2145 "Invalid case distance"); 2146 // Use volatile double here to avoid excess precision issues on some hosts, 2147 // e.g. that use 80-bit X87 registers. 2148 volatile double LDensity = 2149 (double)LSize.roundToDouble() / 2150 (LEnd - First + 1ULL).roundToDouble(); 2151 volatile double RDensity = 2152 (double)RSize.roundToDouble() / 2153 (Last - RBegin + 1ULL).roundToDouble(); 2154 double Metric = Range.logBase2()*(LDensity+RDensity); 2155 // Should always split in some non-trivial place 2156 DEBUG(dbgs() <<"=>Step\n" 2157 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2158 << "LDensity: " << LDensity 2159 << ", RDensity: " << RDensity << '\n' 2160 << "Metric: " << Metric << '\n'); 2161 if (FMetric < Metric) { 2162 Pivot = J; 2163 FMetric = Metric; 2164 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2165 } 2166 2167 LSize += J->size(); 2168 RSize -= J->size(); 2169 } 2170 if (areJTsAllowed(TLI)) { 2171 // If our case is dense we *really* should handle it earlier! 2172 assert((FMetric > 0) && "Should handle dense range earlier!"); 2173 } else { 2174 Pivot = CR.Range.first + Size/2; 2175 } 2176 2177 CaseRange LHSR(CR.Range.first, Pivot); 2178 CaseRange RHSR(Pivot, CR.Range.second); 2179 Constant *C = Pivot->Low; 2180 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2181 2182 // We know that we branch to the LHS if the Value being switched on is 2183 // less than the Pivot value, C. We use this to optimize our binary 2184 // tree a bit, by recognizing that if SV is greater than or equal to the 2185 // LHS's Case Value, and that Case Value is exactly one less than the 2186 // Pivot's Value, then we can branch directly to the LHS's Target, 2187 // rather than creating a leaf node for it. 2188 if ((LHSR.second - LHSR.first) == 1 && 2189 LHSR.first->High == CR.GE && 2190 cast<ConstantInt>(C)->getValue() == 2191 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2192 TrueBB = LHSR.first->BB; 2193 } else { 2194 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2195 CurMF->insert(BBI, TrueBB); 2196 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2197 2198 // Put SV in a virtual register to make it available from the new blocks. 2199 ExportFromCurrentBlock(SV); 2200 } 2201 2202 // Similar to the optimization above, if the Value being switched on is 2203 // known to be less than the Constant CR.LT, and the current Case Value 2204 // is CR.LT - 1, then we can branch directly to the target block for 2205 // the current Case Value, rather than emitting a RHS leaf node for it. 2206 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2207 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2208 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2209 FalseBB = RHSR.first->BB; 2210 } else { 2211 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2212 CurMF->insert(BBI, FalseBB); 2213 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2214 2215 // Put SV in a virtual register to make it available from the new blocks. 2216 ExportFromCurrentBlock(SV); 2217 } 2218 2219 // Create a CaseBlock record representing a conditional branch to 2220 // the LHS node if the value being switched on SV is less than C. 2221 // Otherwise, branch to LHS. 2222 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2223 2224 if (CR.CaseBB == SwitchBB) 2225 visitSwitchCase(CB, SwitchBB); 2226 else 2227 SwitchCases.push_back(CB); 2228 2229 return true; 2230 } 2231 2232 /// handleBitTestsSwitchCase - if current case range has few destination and 2233 /// range span less, than machine word bitwidth, encode case range into series 2234 /// of masks and emit bit tests with these masks. 2235 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2236 CaseRecVector& WorkList, 2237 const Value* SV, 2238 MachineBasicBlock* Default, 2239 MachineBasicBlock *SwitchBB){ 2240 EVT PTy = TLI.getPointerTy(); 2241 unsigned IntPtrBits = PTy.getSizeInBits(); 2242 2243 Case& FrontCase = *CR.Range.first; 2244 Case& BackCase = *(CR.Range.second-1); 2245 2246 // Get the MachineFunction which holds the current MBB. This is used when 2247 // inserting any additional MBBs necessary to represent the switch. 2248 MachineFunction *CurMF = FuncInfo.MF; 2249 2250 // If target does not have legal shift left, do not emit bit tests at all. 2251 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2252 return false; 2253 2254 size_t numCmps = 0; 2255 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2256 I!=E; ++I) { 2257 // Single case counts one, case range - two. 2258 numCmps += (I->Low == I->High ? 1 : 2); 2259 } 2260 2261 // Count unique destinations 2262 SmallSet<MachineBasicBlock*, 4> Dests; 2263 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2264 Dests.insert(I->BB); 2265 if (Dests.size() > 3) 2266 // Don't bother the code below, if there are too much unique destinations 2267 return false; 2268 } 2269 DEBUG(dbgs() << "Total number of unique destinations: " 2270 << Dests.size() << '\n' 2271 << "Total number of comparisons: " << numCmps << '\n'); 2272 2273 // Compute span of values. 2274 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2275 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2276 APInt cmpRange = maxValue - minValue; 2277 2278 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2279 << "Low bound: " << minValue << '\n' 2280 << "High bound: " << maxValue << '\n'); 2281 2282 if (cmpRange.uge(IntPtrBits) || 2283 (!(Dests.size() == 1 && numCmps >= 3) && 2284 !(Dests.size() == 2 && numCmps >= 5) && 2285 !(Dests.size() >= 3 && numCmps >= 6))) 2286 return false; 2287 2288 DEBUG(dbgs() << "Emitting bit tests\n"); 2289 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2290 2291 // Optimize the case where all the case values fit in a 2292 // word without having to subtract minValue. In this case, 2293 // we can optimize away the subtraction. 2294 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2295 cmpRange = maxValue; 2296 } else { 2297 lowBound = minValue; 2298 } 2299 2300 CaseBitsVector CasesBits; 2301 unsigned i, count = 0; 2302 2303 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2304 MachineBasicBlock* Dest = I->BB; 2305 for (i = 0; i < count; ++i) 2306 if (Dest == CasesBits[i].BB) 2307 break; 2308 2309 if (i == count) { 2310 assert((count < 3) && "Too much destinations to test!"); 2311 CasesBits.push_back(CaseBits(0, Dest, 0)); 2312 count++; 2313 } 2314 2315 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2316 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2317 2318 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2319 uint64_t hi = (highValue - lowBound).getZExtValue(); 2320 2321 for (uint64_t j = lo; j <= hi; j++) { 2322 CasesBits[i].Mask |= 1ULL << j; 2323 CasesBits[i].Bits++; 2324 } 2325 2326 } 2327 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2328 2329 BitTestInfo BTC; 2330 2331 // Figure out which block is immediately after the current one. 2332 MachineFunction::iterator BBI = CR.CaseBB; 2333 ++BBI; 2334 2335 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2336 2337 DEBUG(dbgs() << "Cases:\n"); 2338 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2339 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2340 << ", Bits: " << CasesBits[i].Bits 2341 << ", BB: " << CasesBits[i].BB << '\n'); 2342 2343 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2344 CurMF->insert(BBI, CaseBB); 2345 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2346 CaseBB, 2347 CasesBits[i].BB)); 2348 2349 // Put SV in a virtual register to make it available from the new blocks. 2350 ExportFromCurrentBlock(SV); 2351 } 2352 2353 BitTestBlock BTB(lowBound, cmpRange, SV, 2354 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2355 CR.CaseBB, Default, BTC); 2356 2357 if (CR.CaseBB == SwitchBB) 2358 visitBitTestHeader(BTB, SwitchBB); 2359 2360 BitTestCases.push_back(BTB); 2361 2362 return true; 2363 } 2364 2365 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2366 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2367 const SwitchInst& SI) { 2368 size_t numCmps = 0; 2369 2370 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2371 // Start with "simple" cases 2372 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2373 BasicBlock *SuccBB = SI.getSuccessor(i); 2374 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2375 2376 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2377 2378 Cases.push_back(Case(SI.getSuccessorValue(i), 2379 SI.getSuccessorValue(i), 2380 SMBB, ExtraWeight)); 2381 } 2382 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2383 2384 // Merge case into clusters 2385 if (Cases.size() >= 2) 2386 // Must recompute end() each iteration because it may be 2387 // invalidated by erase if we hold on to it 2388 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2389 J != Cases.end(); ) { 2390 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2391 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2392 MachineBasicBlock* nextBB = J->BB; 2393 MachineBasicBlock* currentBB = I->BB; 2394 2395 // If the two neighboring cases go to the same destination, merge them 2396 // into a single case. 2397 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2398 I->High = J->High; 2399 J = Cases.erase(J); 2400 2401 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2402 uint32_t CurWeight = currentBB->getBasicBlock() ? 2403 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2404 uint32_t NextWeight = nextBB->getBasicBlock() ? 2405 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2406 2407 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2408 CurWeight + NextWeight); 2409 } 2410 } else { 2411 I = J++; 2412 } 2413 } 2414 2415 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2416 if (I->Low != I->High) 2417 // A range counts double, since it requires two compares. 2418 ++numCmps; 2419 } 2420 2421 return numCmps; 2422 } 2423 2424 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2425 MachineBasicBlock *Last) { 2426 // Update JTCases. 2427 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2428 if (JTCases[i].first.HeaderBB == First) 2429 JTCases[i].first.HeaderBB = Last; 2430 2431 // Update BitTestCases. 2432 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2433 if (BitTestCases[i].Parent == First) 2434 BitTestCases[i].Parent = Last; 2435 } 2436 2437 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2438 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2439 2440 // Figure out which block is immediately after the current one. 2441 MachineBasicBlock *NextBlock = 0; 2442 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2443 2444 // If there is only the default destination, branch to it if it is not the 2445 // next basic block. Otherwise, just fall through. 2446 if (SI.getNumOperands() == 2) { 2447 // Update machine-CFG edges. 2448 2449 // If this is not a fall-through branch, emit the branch. 2450 SwitchMBB->addSuccessor(Default); 2451 if (Default != NextBlock) 2452 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2453 MVT::Other, getControlRoot(), 2454 DAG.getBasicBlock(Default))); 2455 2456 return; 2457 } 2458 2459 // If there are any non-default case statements, create a vector of Cases 2460 // representing each one, and sort the vector so that we can efficiently 2461 // create a binary search tree from them. 2462 CaseVector Cases; 2463 size_t numCmps = Clusterify(Cases, SI); 2464 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2465 << ". Total compares: " << numCmps << '\n'); 2466 numCmps = 0; 2467 2468 // Get the Value to be switched on and default basic blocks, which will be 2469 // inserted into CaseBlock records, representing basic blocks in the binary 2470 // search tree. 2471 const Value *SV = SI.getOperand(0); 2472 2473 // Push the initial CaseRec onto the worklist 2474 CaseRecVector WorkList; 2475 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2476 CaseRange(Cases.begin(),Cases.end()))); 2477 2478 while (!WorkList.empty()) { 2479 // Grab a record representing a case range to process off the worklist 2480 CaseRec CR = WorkList.back(); 2481 WorkList.pop_back(); 2482 2483 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2484 continue; 2485 2486 // If the range has few cases (two or less) emit a series of specific 2487 // tests. 2488 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2489 continue; 2490 2491 // If the switch has more than 5 blocks, and at least 40% dense, and the 2492 // target supports indirect branches, then emit a jump table rather than 2493 // lowering the switch to a binary tree of conditional branches. 2494 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2495 continue; 2496 2497 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2498 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2499 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2500 } 2501 } 2502 2503 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2504 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2505 2506 // Update machine-CFG edges with unique successors. 2507 SmallVector<BasicBlock*, 32> succs; 2508 succs.reserve(I.getNumSuccessors()); 2509 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2510 succs.push_back(I.getSuccessor(i)); 2511 array_pod_sort(succs.begin(), succs.end()); 2512 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2513 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2514 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2515 addSuccessorWithWeight(IndirectBrMBB, Succ); 2516 } 2517 2518 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2519 MVT::Other, getControlRoot(), 2520 getValue(I.getAddress()))); 2521 } 2522 2523 void SelectionDAGBuilder::visitFSub(const User &I) { 2524 // -0.0 - X --> fneg 2525 Type *Ty = I.getType(); 2526 if (isa<Constant>(I.getOperand(0)) && 2527 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2528 SDValue Op2 = getValue(I.getOperand(1)); 2529 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2530 Op2.getValueType(), Op2)); 2531 return; 2532 } 2533 2534 visitBinary(I, ISD::FSUB); 2535 } 2536 2537 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2538 SDValue Op1 = getValue(I.getOperand(0)); 2539 SDValue Op2 = getValue(I.getOperand(1)); 2540 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2541 Op1.getValueType(), Op1, Op2)); 2542 } 2543 2544 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2545 SDValue Op1 = getValue(I.getOperand(0)); 2546 SDValue Op2 = getValue(I.getOperand(1)); 2547 2548 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2549 2550 // Coerce the shift amount to the right type if we can. 2551 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2552 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2553 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2554 DebugLoc DL = getCurDebugLoc(); 2555 2556 // If the operand is smaller than the shift count type, promote it. 2557 if (ShiftSize > Op2Size) 2558 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2559 2560 // If the operand is larger than the shift count type but the shift 2561 // count type has enough bits to represent any shift value, truncate 2562 // it now. This is a common case and it exposes the truncate to 2563 // optimization early. 2564 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2565 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2566 // Otherwise we'll need to temporarily settle for some other convenient 2567 // type. Type legalization will make adjustments once the shiftee is split. 2568 else 2569 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2570 } 2571 2572 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2573 Op1.getValueType(), Op1, Op2)); 2574 } 2575 2576 void SelectionDAGBuilder::visitSDiv(const User &I) { 2577 SDValue Op1 = getValue(I.getOperand(0)); 2578 SDValue Op2 = getValue(I.getOperand(1)); 2579 2580 // Turn exact SDivs into multiplications. 2581 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2582 // exact bit. 2583 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2584 !isa<ConstantSDNode>(Op1) && 2585 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2586 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2587 else 2588 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2589 Op1, Op2)); 2590 } 2591 2592 void SelectionDAGBuilder::visitICmp(const User &I) { 2593 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2594 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2595 predicate = IC->getPredicate(); 2596 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2597 predicate = ICmpInst::Predicate(IC->getPredicate()); 2598 SDValue Op1 = getValue(I.getOperand(0)); 2599 SDValue Op2 = getValue(I.getOperand(1)); 2600 ISD::CondCode Opcode = getICmpCondCode(predicate); 2601 2602 EVT DestVT = TLI.getValueType(I.getType()); 2603 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2604 } 2605 2606 void SelectionDAGBuilder::visitFCmp(const User &I) { 2607 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2608 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2609 predicate = FC->getPredicate(); 2610 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2611 predicate = FCmpInst::Predicate(FC->getPredicate()); 2612 SDValue Op1 = getValue(I.getOperand(0)); 2613 SDValue Op2 = getValue(I.getOperand(1)); 2614 ISD::CondCode Condition = getFCmpCondCode(predicate); 2615 EVT DestVT = TLI.getValueType(I.getType()); 2616 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2617 } 2618 2619 void SelectionDAGBuilder::visitSelect(const User &I) { 2620 SmallVector<EVT, 4> ValueVTs; 2621 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2622 unsigned NumValues = ValueVTs.size(); 2623 if (NumValues == 0) return; 2624 2625 SmallVector<SDValue, 4> Values(NumValues); 2626 SDValue Cond = getValue(I.getOperand(0)); 2627 SDValue TrueVal = getValue(I.getOperand(1)); 2628 SDValue FalseVal = getValue(I.getOperand(2)); 2629 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2630 ISD::VSELECT : ISD::SELECT; 2631 2632 for (unsigned i = 0; i != NumValues; ++i) 2633 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2634 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2635 Cond, 2636 SDValue(TrueVal.getNode(), 2637 TrueVal.getResNo() + i), 2638 SDValue(FalseVal.getNode(), 2639 FalseVal.getResNo() + i)); 2640 2641 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2642 DAG.getVTList(&ValueVTs[0], NumValues), 2643 &Values[0], NumValues)); 2644 } 2645 2646 void SelectionDAGBuilder::visitTrunc(const User &I) { 2647 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2648 SDValue N = getValue(I.getOperand(0)); 2649 EVT DestVT = TLI.getValueType(I.getType()); 2650 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2651 } 2652 2653 void SelectionDAGBuilder::visitZExt(const User &I) { 2654 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2655 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2656 SDValue N = getValue(I.getOperand(0)); 2657 EVT DestVT = TLI.getValueType(I.getType()); 2658 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2659 } 2660 2661 void SelectionDAGBuilder::visitSExt(const User &I) { 2662 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2663 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2664 SDValue N = getValue(I.getOperand(0)); 2665 EVT DestVT = TLI.getValueType(I.getType()); 2666 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2667 } 2668 2669 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2670 // FPTrunc is never a no-op cast, no need to check 2671 SDValue N = getValue(I.getOperand(0)); 2672 EVT DestVT = TLI.getValueType(I.getType()); 2673 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2674 DestVT, N, DAG.getIntPtrConstant(0))); 2675 } 2676 2677 void SelectionDAGBuilder::visitFPExt(const User &I){ 2678 // FPTrunc is never a no-op cast, no need to check 2679 SDValue N = getValue(I.getOperand(0)); 2680 EVT DestVT = TLI.getValueType(I.getType()); 2681 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2682 } 2683 2684 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2685 // FPToUI is never a no-op cast, no need to check 2686 SDValue N = getValue(I.getOperand(0)); 2687 EVT DestVT = TLI.getValueType(I.getType()); 2688 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2689 } 2690 2691 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2692 // FPToSI is never a no-op cast, no need to check 2693 SDValue N = getValue(I.getOperand(0)); 2694 EVT DestVT = TLI.getValueType(I.getType()); 2695 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2696 } 2697 2698 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2699 // UIToFP is never a no-op cast, no need to check 2700 SDValue N = getValue(I.getOperand(0)); 2701 EVT DestVT = TLI.getValueType(I.getType()); 2702 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2703 } 2704 2705 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2706 // SIToFP is never a no-op cast, no need to check 2707 SDValue N = getValue(I.getOperand(0)); 2708 EVT DestVT = TLI.getValueType(I.getType()); 2709 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2710 } 2711 2712 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2713 // What to do depends on the size of the integer and the size of the pointer. 2714 // We can either truncate, zero extend, or no-op, accordingly. 2715 SDValue N = getValue(I.getOperand(0)); 2716 EVT DestVT = TLI.getValueType(I.getType()); 2717 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2718 } 2719 2720 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2721 // What to do depends on the size of the integer and the size of the pointer. 2722 // We can either truncate, zero extend, or no-op, accordingly. 2723 SDValue N = getValue(I.getOperand(0)); 2724 EVT DestVT = TLI.getValueType(I.getType()); 2725 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2726 } 2727 2728 void SelectionDAGBuilder::visitBitCast(const User &I) { 2729 SDValue N = getValue(I.getOperand(0)); 2730 EVT DestVT = TLI.getValueType(I.getType()); 2731 2732 // BitCast assures us that source and destination are the same size so this is 2733 // either a BITCAST or a no-op. 2734 if (DestVT != N.getValueType()) 2735 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2736 DestVT, N)); // convert types. 2737 else 2738 setValue(&I, N); // noop cast. 2739 } 2740 2741 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2742 SDValue InVec = getValue(I.getOperand(0)); 2743 SDValue InVal = getValue(I.getOperand(1)); 2744 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2745 TLI.getPointerTy(), 2746 getValue(I.getOperand(2))); 2747 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2748 TLI.getValueType(I.getType()), 2749 InVec, InVal, InIdx)); 2750 } 2751 2752 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2753 SDValue InVec = getValue(I.getOperand(0)); 2754 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2755 TLI.getPointerTy(), 2756 getValue(I.getOperand(1))); 2757 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2758 TLI.getValueType(I.getType()), InVec, InIdx)); 2759 } 2760 2761 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2762 // from SIndx and increasing to the element length (undefs are allowed). 2763 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2764 unsigned MaskNumElts = Mask.size(); 2765 for (unsigned i = 0; i != MaskNumElts; ++i) 2766 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2767 return false; 2768 return true; 2769 } 2770 2771 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2772 SmallVector<int, 8> Mask; 2773 SDValue Src1 = getValue(I.getOperand(0)); 2774 SDValue Src2 = getValue(I.getOperand(1)); 2775 2776 // Convert the ConstantVector mask operand into an array of ints, with -1 2777 // representing undef values. 2778 SmallVector<Constant*, 8> MaskElts; 2779 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2780 unsigned MaskNumElts = MaskElts.size(); 2781 for (unsigned i = 0; i != MaskNumElts; ++i) { 2782 if (isa<UndefValue>(MaskElts[i])) 2783 Mask.push_back(-1); 2784 else 2785 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2786 } 2787 2788 EVT VT = TLI.getValueType(I.getType()); 2789 EVT SrcVT = Src1.getValueType(); 2790 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2791 2792 if (SrcNumElts == MaskNumElts) { 2793 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2794 &Mask[0])); 2795 return; 2796 } 2797 2798 // Normalize the shuffle vector since mask and vector length don't match. 2799 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2800 // Mask is longer than the source vectors and is a multiple of the source 2801 // vectors. We can use concatenate vector to make the mask and vectors 2802 // lengths match. 2803 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2804 // The shuffle is concatenating two vectors together. 2805 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2806 VT, Src1, Src2)); 2807 return; 2808 } 2809 2810 // Pad both vectors with undefs to make them the same length as the mask. 2811 unsigned NumConcat = MaskNumElts / SrcNumElts; 2812 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2813 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2814 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2815 2816 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2817 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2818 MOps1[0] = Src1; 2819 MOps2[0] = Src2; 2820 2821 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2822 getCurDebugLoc(), VT, 2823 &MOps1[0], NumConcat); 2824 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2825 getCurDebugLoc(), VT, 2826 &MOps2[0], NumConcat); 2827 2828 // Readjust mask for new input vector length. 2829 SmallVector<int, 8> MappedOps; 2830 for (unsigned i = 0; i != MaskNumElts; ++i) { 2831 int Idx = Mask[i]; 2832 if (Idx < (int)SrcNumElts) 2833 MappedOps.push_back(Idx); 2834 else 2835 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2836 } 2837 2838 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2839 &MappedOps[0])); 2840 return; 2841 } 2842 2843 if (SrcNumElts > MaskNumElts) { 2844 // Analyze the access pattern of the vector to see if we can extract 2845 // two subvectors and do the shuffle. The analysis is done by calculating 2846 // the range of elements the mask access on both vectors. 2847 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2848 static_cast<int>(SrcNumElts+1)}; 2849 int MaxRange[2] = {-1, -1}; 2850 2851 for (unsigned i = 0; i != MaskNumElts; ++i) { 2852 int Idx = Mask[i]; 2853 int Input = 0; 2854 if (Idx < 0) 2855 continue; 2856 2857 if (Idx >= (int)SrcNumElts) { 2858 Input = 1; 2859 Idx -= SrcNumElts; 2860 } 2861 if (Idx > MaxRange[Input]) 2862 MaxRange[Input] = Idx; 2863 if (Idx < MinRange[Input]) 2864 MinRange[Input] = Idx; 2865 } 2866 2867 // Check if the access is smaller than the vector size and can we find 2868 // a reasonable extract index. 2869 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2870 // Extract. 2871 int StartIdx[2]; // StartIdx to extract from 2872 for (int Input=0; Input < 2; ++Input) { 2873 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2874 RangeUse[Input] = 0; // Unused 2875 StartIdx[Input] = 0; 2876 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2877 // Fits within range but we should see if we can find a good 2878 // start index that is a multiple of the mask length. 2879 if (MaxRange[Input] < (int)MaskNumElts) { 2880 RangeUse[Input] = 1; // Extract from beginning of the vector 2881 StartIdx[Input] = 0; 2882 } else { 2883 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2884 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2885 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2886 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2887 } 2888 } 2889 } 2890 2891 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2892 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2893 return; 2894 } 2895 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2896 // Extract appropriate subvector and generate a vector shuffle 2897 for (int Input=0; Input < 2; ++Input) { 2898 SDValue &Src = Input == 0 ? Src1 : Src2; 2899 if (RangeUse[Input] == 0) 2900 Src = DAG.getUNDEF(VT); 2901 else 2902 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2903 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2904 } 2905 2906 // Calculate new mask. 2907 SmallVector<int, 8> MappedOps; 2908 for (unsigned i = 0; i != MaskNumElts; ++i) { 2909 int Idx = Mask[i]; 2910 if (Idx < 0) 2911 MappedOps.push_back(Idx); 2912 else if (Idx < (int)SrcNumElts) 2913 MappedOps.push_back(Idx - StartIdx[0]); 2914 else 2915 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2916 } 2917 2918 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2919 &MappedOps[0])); 2920 return; 2921 } 2922 } 2923 2924 // We can't use either concat vectors or extract subvectors so fall back to 2925 // replacing the shuffle with extract and build vector. 2926 // to insert and build vector. 2927 EVT EltVT = VT.getVectorElementType(); 2928 EVT PtrVT = TLI.getPointerTy(); 2929 SmallVector<SDValue,8> Ops; 2930 for (unsigned i = 0; i != MaskNumElts; ++i) { 2931 if (Mask[i] < 0) { 2932 Ops.push_back(DAG.getUNDEF(EltVT)); 2933 } else { 2934 int Idx = Mask[i]; 2935 SDValue Res; 2936 2937 if (Idx < (int)SrcNumElts) 2938 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2939 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2940 else 2941 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2942 EltVT, Src2, 2943 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2944 2945 Ops.push_back(Res); 2946 } 2947 } 2948 2949 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2950 VT, &Ops[0], Ops.size())); 2951 } 2952 2953 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2954 const Value *Op0 = I.getOperand(0); 2955 const Value *Op1 = I.getOperand(1); 2956 Type *AggTy = I.getType(); 2957 Type *ValTy = Op1->getType(); 2958 bool IntoUndef = isa<UndefValue>(Op0); 2959 bool FromUndef = isa<UndefValue>(Op1); 2960 2961 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2962 2963 SmallVector<EVT, 4> AggValueVTs; 2964 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2965 SmallVector<EVT, 4> ValValueVTs; 2966 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2967 2968 unsigned NumAggValues = AggValueVTs.size(); 2969 unsigned NumValValues = ValValueVTs.size(); 2970 SmallVector<SDValue, 4> Values(NumAggValues); 2971 2972 SDValue Agg = getValue(Op0); 2973 unsigned i = 0; 2974 // Copy the beginning value(s) from the original aggregate. 2975 for (; i != LinearIndex; ++i) 2976 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2977 SDValue(Agg.getNode(), Agg.getResNo() + i); 2978 // Copy values from the inserted value(s). 2979 if (NumValValues) { 2980 SDValue Val = getValue(Op1); 2981 for (; i != LinearIndex + NumValValues; ++i) 2982 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2983 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2984 } 2985 // Copy remaining value(s) from the original aggregate. 2986 for (; i != NumAggValues; ++i) 2987 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2988 SDValue(Agg.getNode(), Agg.getResNo() + i); 2989 2990 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2991 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2992 &Values[0], NumAggValues)); 2993 } 2994 2995 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2996 const Value *Op0 = I.getOperand(0); 2997 Type *AggTy = Op0->getType(); 2998 Type *ValTy = I.getType(); 2999 bool OutOfUndef = isa<UndefValue>(Op0); 3000 3001 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3002 3003 SmallVector<EVT, 4> ValValueVTs; 3004 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3005 3006 unsigned NumValValues = ValValueVTs.size(); 3007 3008 // Ignore a extractvalue that produces an empty object 3009 if (!NumValValues) { 3010 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3011 return; 3012 } 3013 3014 SmallVector<SDValue, 4> Values(NumValValues); 3015 3016 SDValue Agg = getValue(Op0); 3017 // Copy out the selected value(s). 3018 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3019 Values[i - LinearIndex] = 3020 OutOfUndef ? 3021 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3022 SDValue(Agg.getNode(), Agg.getResNo() + i); 3023 3024 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3025 DAG.getVTList(&ValValueVTs[0], NumValValues), 3026 &Values[0], NumValValues)); 3027 } 3028 3029 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3030 SDValue N = getValue(I.getOperand(0)); 3031 Type *Ty = I.getOperand(0)->getType(); 3032 3033 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3034 OI != E; ++OI) { 3035 const Value *Idx = *OI; 3036 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3037 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3038 if (Field) { 3039 // N = N + Offset 3040 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3041 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3042 DAG.getIntPtrConstant(Offset)); 3043 } 3044 3045 Ty = StTy->getElementType(Field); 3046 } else { 3047 Ty = cast<SequentialType>(Ty)->getElementType(); 3048 3049 // If this is a constant subscript, handle it quickly. 3050 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3051 if (CI->isZero()) continue; 3052 uint64_t Offs = 3053 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3054 SDValue OffsVal; 3055 EVT PTy = TLI.getPointerTy(); 3056 unsigned PtrBits = PTy.getSizeInBits(); 3057 if (PtrBits < 64) 3058 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3059 TLI.getPointerTy(), 3060 DAG.getConstant(Offs, MVT::i64)); 3061 else 3062 OffsVal = DAG.getIntPtrConstant(Offs); 3063 3064 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3065 OffsVal); 3066 continue; 3067 } 3068 3069 // N = N + Idx * ElementSize; 3070 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3071 TD->getTypeAllocSize(Ty)); 3072 SDValue IdxN = getValue(Idx); 3073 3074 // If the index is smaller or larger than intptr_t, truncate or extend 3075 // it. 3076 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3077 3078 // If this is a multiply by a power of two, turn it into a shl 3079 // immediately. This is a very common case. 3080 if (ElementSize != 1) { 3081 if (ElementSize.isPowerOf2()) { 3082 unsigned Amt = ElementSize.logBase2(); 3083 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3084 N.getValueType(), IdxN, 3085 DAG.getConstant(Amt, TLI.getPointerTy())); 3086 } else { 3087 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3088 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3089 N.getValueType(), IdxN, Scale); 3090 } 3091 } 3092 3093 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3094 N.getValueType(), N, IdxN); 3095 } 3096 } 3097 3098 setValue(&I, N); 3099 } 3100 3101 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3102 // If this is a fixed sized alloca in the entry block of the function, 3103 // allocate it statically on the stack. 3104 if (FuncInfo.StaticAllocaMap.count(&I)) 3105 return; // getValue will auto-populate this. 3106 3107 Type *Ty = I.getAllocatedType(); 3108 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3109 unsigned Align = 3110 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3111 I.getAlignment()); 3112 3113 SDValue AllocSize = getValue(I.getArraySize()); 3114 3115 EVT IntPtr = TLI.getPointerTy(); 3116 if (AllocSize.getValueType() != IntPtr) 3117 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3118 3119 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3120 AllocSize, 3121 DAG.getConstant(TySize, IntPtr)); 3122 3123 // Handle alignment. If the requested alignment is less than or equal to 3124 // the stack alignment, ignore it. If the size is greater than or equal to 3125 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3126 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3127 if (Align <= StackAlign) 3128 Align = 0; 3129 3130 // Round the size of the allocation up to the stack alignment size 3131 // by add SA-1 to the size. 3132 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3133 AllocSize.getValueType(), AllocSize, 3134 DAG.getIntPtrConstant(StackAlign-1)); 3135 3136 // Mask out the low bits for alignment purposes. 3137 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3138 AllocSize.getValueType(), AllocSize, 3139 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3140 3141 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3142 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3143 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3144 VTs, Ops, 3); 3145 setValue(&I, DSA); 3146 DAG.setRoot(DSA.getValue(1)); 3147 3148 // Inform the Frame Information that we have just allocated a variable-sized 3149 // object. 3150 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3151 } 3152 3153 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3154 if (I.isAtomic()) 3155 return visitAtomicLoad(I); 3156 3157 const Value *SV = I.getOperand(0); 3158 SDValue Ptr = getValue(SV); 3159 3160 Type *Ty = I.getType(); 3161 3162 bool isVolatile = I.isVolatile(); 3163 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3164 unsigned Alignment = I.getAlignment(); 3165 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3166 3167 SmallVector<EVT, 4> ValueVTs; 3168 SmallVector<uint64_t, 4> Offsets; 3169 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3170 unsigned NumValues = ValueVTs.size(); 3171 if (NumValues == 0) 3172 return; 3173 3174 SDValue Root; 3175 bool ConstantMemory = false; 3176 if (I.isVolatile() || NumValues > MaxParallelChains) 3177 // Serialize volatile loads with other side effects. 3178 Root = getRoot(); 3179 else if (AA->pointsToConstantMemory( 3180 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3181 // Do not serialize (non-volatile) loads of constant memory with anything. 3182 Root = DAG.getEntryNode(); 3183 ConstantMemory = true; 3184 } else { 3185 // Do not serialize non-volatile loads against each other. 3186 Root = DAG.getRoot(); 3187 } 3188 3189 SmallVector<SDValue, 4> Values(NumValues); 3190 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3191 NumValues)); 3192 EVT PtrVT = Ptr.getValueType(); 3193 unsigned ChainI = 0; 3194 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3195 // Serializing loads here may result in excessive register pressure, and 3196 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3197 // could recover a bit by hoisting nodes upward in the chain by recognizing 3198 // they are side-effect free or do not alias. The optimizer should really 3199 // avoid this case by converting large object/array copies to llvm.memcpy 3200 // (MaxParallelChains should always remain as failsafe). 3201 if (ChainI == MaxParallelChains) { 3202 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3203 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3204 MVT::Other, &Chains[0], ChainI); 3205 Root = Chain; 3206 ChainI = 0; 3207 } 3208 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3209 PtrVT, Ptr, 3210 DAG.getConstant(Offsets[i], PtrVT)); 3211 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3212 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3213 isNonTemporal, Alignment, TBAAInfo); 3214 3215 Values[i] = L; 3216 Chains[ChainI] = L.getValue(1); 3217 } 3218 3219 if (!ConstantMemory) { 3220 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3221 MVT::Other, &Chains[0], ChainI); 3222 if (isVolatile) 3223 DAG.setRoot(Chain); 3224 else 3225 PendingLoads.push_back(Chain); 3226 } 3227 3228 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3229 DAG.getVTList(&ValueVTs[0], NumValues), 3230 &Values[0], NumValues)); 3231 } 3232 3233 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3234 if (I.isAtomic()) 3235 return visitAtomicStore(I); 3236 3237 const Value *SrcV = I.getOperand(0); 3238 const Value *PtrV = I.getOperand(1); 3239 3240 SmallVector<EVT, 4> ValueVTs; 3241 SmallVector<uint64_t, 4> Offsets; 3242 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3243 unsigned NumValues = ValueVTs.size(); 3244 if (NumValues == 0) 3245 return; 3246 3247 // Get the lowered operands. Note that we do this after 3248 // checking if NumResults is zero, because with zero results 3249 // the operands won't have values in the map. 3250 SDValue Src = getValue(SrcV); 3251 SDValue Ptr = getValue(PtrV); 3252 3253 SDValue Root = getRoot(); 3254 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3255 NumValues)); 3256 EVT PtrVT = Ptr.getValueType(); 3257 bool isVolatile = I.isVolatile(); 3258 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3259 unsigned Alignment = I.getAlignment(); 3260 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3261 3262 unsigned ChainI = 0; 3263 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3264 // See visitLoad comments. 3265 if (ChainI == MaxParallelChains) { 3266 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3267 MVT::Other, &Chains[0], ChainI); 3268 Root = Chain; 3269 ChainI = 0; 3270 } 3271 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3272 DAG.getConstant(Offsets[i], PtrVT)); 3273 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3274 SDValue(Src.getNode(), Src.getResNo() + i), 3275 Add, MachinePointerInfo(PtrV, Offsets[i]), 3276 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3277 Chains[ChainI] = St; 3278 } 3279 3280 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3281 MVT::Other, &Chains[0], ChainI); 3282 ++SDNodeOrder; 3283 AssignOrderingToNode(StoreNode.getNode()); 3284 DAG.setRoot(StoreNode); 3285 } 3286 3287 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3288 SynchronizationScope Scope, 3289 bool Before, DebugLoc dl, 3290 SelectionDAG &DAG, 3291 const TargetLowering &TLI) { 3292 // Fence, if necessary 3293 if (Before) { 3294 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3295 Order = Release; 3296 else if (Order == Acquire || Order == Monotonic) 3297 return Chain; 3298 } else { 3299 if (Order == AcquireRelease) 3300 Order = Acquire; 3301 else if (Order == Release || Order == Monotonic) 3302 return Chain; 3303 } 3304 SDValue Ops[3]; 3305 Ops[0] = Chain; 3306 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3307 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3308 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3309 } 3310 3311 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3312 DebugLoc dl = getCurDebugLoc(); 3313 AtomicOrdering Order = I.getOrdering(); 3314 SynchronizationScope Scope = I.getSynchScope(); 3315 3316 SDValue InChain = getRoot(); 3317 3318 if (TLI.getInsertFencesForAtomic()) 3319 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3320 DAG, TLI); 3321 3322 SDValue L = 3323 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3324 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3325 InChain, 3326 getValue(I.getPointerOperand()), 3327 getValue(I.getCompareOperand()), 3328 getValue(I.getNewValOperand()), 3329 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3330 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3331 Scope); 3332 3333 SDValue OutChain = L.getValue(1); 3334 3335 if (TLI.getInsertFencesForAtomic()) 3336 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3337 DAG, TLI); 3338 3339 setValue(&I, L); 3340 DAG.setRoot(OutChain); 3341 } 3342 3343 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3344 DebugLoc dl = getCurDebugLoc(); 3345 ISD::NodeType NT; 3346 switch (I.getOperation()) { 3347 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3348 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3349 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3350 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3351 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3352 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3353 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3354 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3355 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3356 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3357 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3358 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3359 } 3360 AtomicOrdering Order = I.getOrdering(); 3361 SynchronizationScope Scope = I.getSynchScope(); 3362 3363 SDValue InChain = getRoot(); 3364 3365 if (TLI.getInsertFencesForAtomic()) 3366 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3367 DAG, TLI); 3368 3369 SDValue L = 3370 DAG.getAtomic(NT, dl, 3371 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3372 InChain, 3373 getValue(I.getPointerOperand()), 3374 getValue(I.getValOperand()), 3375 I.getPointerOperand(), 0 /* Alignment */, 3376 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3377 Scope); 3378 3379 SDValue OutChain = L.getValue(1); 3380 3381 if (TLI.getInsertFencesForAtomic()) 3382 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3383 DAG, TLI); 3384 3385 setValue(&I, L); 3386 DAG.setRoot(OutChain); 3387 } 3388 3389 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3390 DebugLoc dl = getCurDebugLoc(); 3391 SDValue Ops[3]; 3392 Ops[0] = getRoot(); 3393 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3394 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3395 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3396 } 3397 3398 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3399 DebugLoc dl = getCurDebugLoc(); 3400 AtomicOrdering Order = I.getOrdering(); 3401 SynchronizationScope Scope = I.getSynchScope(); 3402 3403 SDValue InChain = getRoot(); 3404 3405 EVT VT = EVT::getEVT(I.getType()); 3406 3407 SDValue L = 3408 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3409 getValue(I.getPointerOperand()), 3410 I.getPointerOperand(), I.getAlignment(), 3411 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3412 Scope); 3413 3414 SDValue OutChain = L.getValue(1); 3415 3416 if (TLI.getInsertFencesForAtomic()) 3417 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3418 DAG, TLI); 3419 3420 setValue(&I, L); 3421 DAG.setRoot(OutChain); 3422 } 3423 3424 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3425 DebugLoc dl = getCurDebugLoc(); 3426 3427 AtomicOrdering Order = I.getOrdering(); 3428 SynchronizationScope Scope = I.getSynchScope(); 3429 3430 SDValue InChain = getRoot(); 3431 3432 if (TLI.getInsertFencesForAtomic()) 3433 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3434 DAG, TLI); 3435 3436 SDValue OutChain = 3437 DAG.getAtomic(ISD::ATOMIC_STORE, dl, 3438 getValue(I.getValueOperand()).getValueType().getSimpleVT(), 3439 InChain, 3440 getValue(I.getPointerOperand()), 3441 getValue(I.getValueOperand()), 3442 I.getPointerOperand(), I.getAlignment(), 3443 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3444 Scope); 3445 3446 if (TLI.getInsertFencesForAtomic()) 3447 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3448 DAG, TLI); 3449 3450 DAG.setRoot(OutChain); 3451 } 3452 3453 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3454 /// node. 3455 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3456 unsigned Intrinsic) { 3457 bool HasChain = !I.doesNotAccessMemory(); 3458 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3459 3460 // Build the operand list. 3461 SmallVector<SDValue, 8> Ops; 3462 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3463 if (OnlyLoad) { 3464 // We don't need to serialize loads against other loads. 3465 Ops.push_back(DAG.getRoot()); 3466 } else { 3467 Ops.push_back(getRoot()); 3468 } 3469 } 3470 3471 // Info is set by getTgtMemInstrinsic 3472 TargetLowering::IntrinsicInfo Info; 3473 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3474 3475 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3476 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3477 Info.opc == ISD::INTRINSIC_W_CHAIN) 3478 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3479 3480 // Add all operands of the call to the operand list. 3481 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3482 SDValue Op = getValue(I.getArgOperand(i)); 3483 assert(TLI.isTypeLegal(Op.getValueType()) && 3484 "Intrinsic uses a non-legal type?"); 3485 Ops.push_back(Op); 3486 } 3487 3488 SmallVector<EVT, 4> ValueVTs; 3489 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3490 #ifndef NDEBUG 3491 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3492 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3493 "Intrinsic uses a non-legal type?"); 3494 } 3495 #endif // NDEBUG 3496 3497 if (HasChain) 3498 ValueVTs.push_back(MVT::Other); 3499 3500 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3501 3502 // Create the node. 3503 SDValue Result; 3504 if (IsTgtIntrinsic) { 3505 // This is target intrinsic that touches memory 3506 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3507 VTs, &Ops[0], Ops.size(), 3508 Info.memVT, 3509 MachinePointerInfo(Info.ptrVal, Info.offset), 3510 Info.align, Info.vol, 3511 Info.readMem, Info.writeMem); 3512 } else if (!HasChain) { 3513 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3514 VTs, &Ops[0], Ops.size()); 3515 } else if (!I.getType()->isVoidTy()) { 3516 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3517 VTs, &Ops[0], Ops.size()); 3518 } else { 3519 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3520 VTs, &Ops[0], Ops.size()); 3521 } 3522 3523 if (HasChain) { 3524 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3525 if (OnlyLoad) 3526 PendingLoads.push_back(Chain); 3527 else 3528 DAG.setRoot(Chain); 3529 } 3530 3531 if (!I.getType()->isVoidTy()) { 3532 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3533 EVT VT = TLI.getValueType(PTy); 3534 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3535 } 3536 3537 setValue(&I, Result); 3538 } 3539 } 3540 3541 /// GetSignificand - Get the significand and build it into a floating-point 3542 /// number with exponent of 1: 3543 /// 3544 /// Op = (Op & 0x007fffff) | 0x3f800000; 3545 /// 3546 /// where Op is the hexidecimal representation of floating point value. 3547 static SDValue 3548 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3549 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3550 DAG.getConstant(0x007fffff, MVT::i32)); 3551 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3552 DAG.getConstant(0x3f800000, MVT::i32)); 3553 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3554 } 3555 3556 /// GetExponent - Get the exponent: 3557 /// 3558 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3559 /// 3560 /// where Op is the hexidecimal representation of floating point value. 3561 static SDValue 3562 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3563 DebugLoc dl) { 3564 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3565 DAG.getConstant(0x7f800000, MVT::i32)); 3566 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3567 DAG.getConstant(23, TLI.getPointerTy())); 3568 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3569 DAG.getConstant(127, MVT::i32)); 3570 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3571 } 3572 3573 /// getF32Constant - Get 32-bit floating point constant. 3574 static SDValue 3575 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3576 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3577 } 3578 3579 /// Inlined utility function to implement binary input atomic intrinsics for 3580 /// visitIntrinsicCall: I is a call instruction 3581 /// Op is the associated NodeType for I 3582 const char * 3583 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3584 ISD::NodeType Op) { 3585 SDValue Root = getRoot(); 3586 SDValue L = 3587 DAG.getAtomic(Op, getCurDebugLoc(), 3588 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3589 Root, 3590 getValue(I.getArgOperand(0)), 3591 getValue(I.getArgOperand(1)), 3592 I.getArgOperand(0), 0 /* Alignment */, 3593 Monotonic, CrossThread); 3594 setValue(&I, L); 3595 DAG.setRoot(L.getValue(1)); 3596 return 0; 3597 } 3598 3599 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3600 const char * 3601 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3602 SDValue Op1 = getValue(I.getArgOperand(0)); 3603 SDValue Op2 = getValue(I.getArgOperand(1)); 3604 3605 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3606 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3607 return 0; 3608 } 3609 3610 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3611 /// limited-precision mode. 3612 void 3613 SelectionDAGBuilder::visitExp(const CallInst &I) { 3614 SDValue result; 3615 DebugLoc dl = getCurDebugLoc(); 3616 3617 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3618 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3619 SDValue Op = getValue(I.getArgOperand(0)); 3620 3621 // Put the exponent in the right bit position for later addition to the 3622 // final result: 3623 // 3624 // #define LOG2OFe 1.4426950f 3625 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3626 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3627 getF32Constant(DAG, 0x3fb8aa3b)); 3628 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3629 3630 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3631 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3632 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3633 3634 // IntegerPartOfX <<= 23; 3635 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3636 DAG.getConstant(23, TLI.getPointerTy())); 3637 3638 if (LimitFloatPrecision <= 6) { 3639 // For floating-point precision of 6: 3640 // 3641 // TwoToFractionalPartOfX = 3642 // 0.997535578f + 3643 // (0.735607626f + 0.252464424f * x) * x; 3644 // 3645 // error 0.0144103317, which is 6 bits 3646 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3647 getF32Constant(DAG, 0x3e814304)); 3648 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3649 getF32Constant(DAG, 0x3f3c50c8)); 3650 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3651 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3652 getF32Constant(DAG, 0x3f7f5e7e)); 3653 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3654 3655 // Add the exponent into the result in integer domain. 3656 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3657 TwoToFracPartOfX, IntegerPartOfX); 3658 3659 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3660 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3661 // For floating-point precision of 12: 3662 // 3663 // TwoToFractionalPartOfX = 3664 // 0.999892986f + 3665 // (0.696457318f + 3666 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3667 // 3668 // 0.000107046256 error, which is 13 to 14 bits 3669 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3670 getF32Constant(DAG, 0x3da235e3)); 3671 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3672 getF32Constant(DAG, 0x3e65b8f3)); 3673 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3674 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3675 getF32Constant(DAG, 0x3f324b07)); 3676 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3677 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3678 getF32Constant(DAG, 0x3f7ff8fd)); 3679 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3680 3681 // Add the exponent into the result in integer domain. 3682 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3683 TwoToFracPartOfX, IntegerPartOfX); 3684 3685 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3686 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3687 // For floating-point precision of 18: 3688 // 3689 // TwoToFractionalPartOfX = 3690 // 0.999999982f + 3691 // (0.693148872f + 3692 // (0.240227044f + 3693 // (0.554906021e-1f + 3694 // (0.961591928e-2f + 3695 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3696 // 3697 // error 2.47208000*10^(-7), which is better than 18 bits 3698 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3699 getF32Constant(DAG, 0x3924b03e)); 3700 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3701 getF32Constant(DAG, 0x3ab24b87)); 3702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3703 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3704 getF32Constant(DAG, 0x3c1d8c17)); 3705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3706 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3707 getF32Constant(DAG, 0x3d634a1d)); 3708 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3709 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3710 getF32Constant(DAG, 0x3e75fe14)); 3711 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3712 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3713 getF32Constant(DAG, 0x3f317234)); 3714 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3715 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3716 getF32Constant(DAG, 0x3f800000)); 3717 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3718 MVT::i32, t13); 3719 3720 // Add the exponent into the result in integer domain. 3721 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3722 TwoToFracPartOfX, IntegerPartOfX); 3723 3724 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3725 } 3726 } else { 3727 // No special expansion. 3728 result = DAG.getNode(ISD::FEXP, dl, 3729 getValue(I.getArgOperand(0)).getValueType(), 3730 getValue(I.getArgOperand(0))); 3731 } 3732 3733 setValue(&I, result); 3734 } 3735 3736 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3737 /// limited-precision mode. 3738 void 3739 SelectionDAGBuilder::visitLog(const CallInst &I) { 3740 SDValue result; 3741 DebugLoc dl = getCurDebugLoc(); 3742 3743 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3744 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3745 SDValue Op = getValue(I.getArgOperand(0)); 3746 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3747 3748 // Scale the exponent by log(2) [0.69314718f]. 3749 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3750 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3751 getF32Constant(DAG, 0x3f317218)); 3752 3753 // Get the significand and build it into a floating-point number with 3754 // exponent of 1. 3755 SDValue X = GetSignificand(DAG, Op1, dl); 3756 3757 if (LimitFloatPrecision <= 6) { 3758 // For floating-point precision of 6: 3759 // 3760 // LogofMantissa = 3761 // -1.1609546f + 3762 // (1.4034025f - 0.23903021f * x) * x; 3763 // 3764 // error 0.0034276066, which is better than 8 bits 3765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0xbe74c456)); 3767 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3768 getF32Constant(DAG, 0x3fb3a2b1)); 3769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3770 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3f949a29)); 3772 3773 result = DAG.getNode(ISD::FADD, dl, 3774 MVT::f32, LogOfExponent, LogOfMantissa); 3775 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3776 // For floating-point precision of 12: 3777 // 3778 // LogOfMantissa = 3779 // -1.7417939f + 3780 // (2.8212026f + 3781 // (-1.4699568f + 3782 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3783 // 3784 // error 0.000061011436, which is 14 bits 3785 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3786 getF32Constant(DAG, 0xbd67b6d6)); 3787 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3788 getF32Constant(DAG, 0x3ee4f4b8)); 3789 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3790 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3791 getF32Constant(DAG, 0x3fbc278b)); 3792 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3793 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3794 getF32Constant(DAG, 0x40348e95)); 3795 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3796 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3797 getF32Constant(DAG, 0x3fdef31a)); 3798 3799 result = DAG.getNode(ISD::FADD, dl, 3800 MVT::f32, LogOfExponent, LogOfMantissa); 3801 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3802 // For floating-point precision of 18: 3803 // 3804 // LogOfMantissa = 3805 // -2.1072184f + 3806 // (4.2372794f + 3807 // (-3.7029485f + 3808 // (2.2781945f + 3809 // (-0.87823314f + 3810 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3811 // 3812 // error 0.0000023660568, which is better than 18 bits 3813 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0xbc91e5ac)); 3815 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3816 getF32Constant(DAG, 0x3e4350aa)); 3817 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3818 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3819 getF32Constant(DAG, 0x3f60d3e3)); 3820 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3821 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3822 getF32Constant(DAG, 0x4011cdf0)); 3823 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3824 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3825 getF32Constant(DAG, 0x406cfd1c)); 3826 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3827 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3828 getF32Constant(DAG, 0x408797cb)); 3829 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3830 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3831 getF32Constant(DAG, 0x4006dcab)); 3832 3833 result = DAG.getNode(ISD::FADD, dl, 3834 MVT::f32, LogOfExponent, LogOfMantissa); 3835 } 3836 } else { 3837 // No special expansion. 3838 result = DAG.getNode(ISD::FLOG, dl, 3839 getValue(I.getArgOperand(0)).getValueType(), 3840 getValue(I.getArgOperand(0))); 3841 } 3842 3843 setValue(&I, result); 3844 } 3845 3846 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3847 /// limited-precision mode. 3848 void 3849 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3850 SDValue result; 3851 DebugLoc dl = getCurDebugLoc(); 3852 3853 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3854 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3855 SDValue Op = getValue(I.getArgOperand(0)); 3856 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3857 3858 // Get the exponent. 3859 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3860 3861 // Get the significand and build it into a floating-point number with 3862 // exponent of 1. 3863 SDValue X = GetSignificand(DAG, Op1, dl); 3864 3865 // Different possible minimax approximations of significand in 3866 // floating-point for various degrees of accuracy over [1,2]. 3867 if (LimitFloatPrecision <= 6) { 3868 // For floating-point precision of 6: 3869 // 3870 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3871 // 3872 // error 0.0049451742, which is more than 7 bits 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3874 getF32Constant(DAG, 0xbeb08fe0)); 3875 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3876 getF32Constant(DAG, 0x40019463)); 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3878 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3879 getF32Constant(DAG, 0x3fd6633d)); 3880 3881 result = DAG.getNode(ISD::FADD, dl, 3882 MVT::f32, LogOfExponent, Log2ofMantissa); 3883 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3884 // For floating-point precision of 12: 3885 // 3886 // Log2ofMantissa = 3887 // -2.51285454f + 3888 // (4.07009056f + 3889 // (-2.12067489f + 3890 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3891 // 3892 // error 0.0000876136000, which is better than 13 bits 3893 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3894 getF32Constant(DAG, 0xbda7262e)); 3895 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3896 getF32Constant(DAG, 0x3f25280b)); 3897 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3898 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3899 getF32Constant(DAG, 0x4007b923)); 3900 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3901 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3902 getF32Constant(DAG, 0x40823e2f)); 3903 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3904 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3905 getF32Constant(DAG, 0x4020d29c)); 3906 3907 result = DAG.getNode(ISD::FADD, dl, 3908 MVT::f32, LogOfExponent, Log2ofMantissa); 3909 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3910 // For floating-point precision of 18: 3911 // 3912 // Log2ofMantissa = 3913 // -3.0400495f + 3914 // (6.1129976f + 3915 // (-5.3420409f + 3916 // (3.2865683f + 3917 // (-1.2669343f + 3918 // (0.27515199f - 3919 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3920 // 3921 // error 0.0000018516, which is better than 18 bits 3922 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3923 getF32Constant(DAG, 0xbcd2769e)); 3924 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3925 getF32Constant(DAG, 0x3e8ce0b9)); 3926 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3927 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3928 getF32Constant(DAG, 0x3fa22ae7)); 3929 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3930 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3931 getF32Constant(DAG, 0x40525723)); 3932 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3933 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3934 getF32Constant(DAG, 0x40aaf200)); 3935 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3936 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3937 getF32Constant(DAG, 0x40c39dad)); 3938 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3939 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3940 getF32Constant(DAG, 0x4042902c)); 3941 3942 result = DAG.getNode(ISD::FADD, dl, 3943 MVT::f32, LogOfExponent, Log2ofMantissa); 3944 } 3945 } else { 3946 // No special expansion. 3947 result = DAG.getNode(ISD::FLOG2, dl, 3948 getValue(I.getArgOperand(0)).getValueType(), 3949 getValue(I.getArgOperand(0))); 3950 } 3951 3952 setValue(&I, result); 3953 } 3954 3955 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3956 /// limited-precision mode. 3957 void 3958 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3959 SDValue result; 3960 DebugLoc dl = getCurDebugLoc(); 3961 3962 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3963 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3964 SDValue Op = getValue(I.getArgOperand(0)); 3965 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3966 3967 // Scale the exponent by log10(2) [0.30102999f]. 3968 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3969 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3970 getF32Constant(DAG, 0x3e9a209a)); 3971 3972 // Get the significand and build it into a floating-point number with 3973 // exponent of 1. 3974 SDValue X = GetSignificand(DAG, Op1, dl); 3975 3976 if (LimitFloatPrecision <= 6) { 3977 // For floating-point precision of 6: 3978 // 3979 // Log10ofMantissa = 3980 // -0.50419619f + 3981 // (0.60948995f - 0.10380950f * x) * x; 3982 // 3983 // error 0.0014886165, which is 6 bits 3984 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3985 getF32Constant(DAG, 0xbdd49a13)); 3986 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3987 getF32Constant(DAG, 0x3f1c0789)); 3988 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3989 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3990 getF32Constant(DAG, 0x3f011300)); 3991 3992 result = DAG.getNode(ISD::FADD, dl, 3993 MVT::f32, LogOfExponent, Log10ofMantissa); 3994 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3995 // For floating-point precision of 12: 3996 // 3997 // Log10ofMantissa = 3998 // -0.64831180f + 3999 // (0.91751397f + 4000 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4001 // 4002 // error 0.00019228036, which is better than 12 bits 4003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4004 getF32Constant(DAG, 0x3d431f31)); 4005 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4006 getF32Constant(DAG, 0x3ea21fb2)); 4007 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4008 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4009 getF32Constant(DAG, 0x3f6ae232)); 4010 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4011 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4012 getF32Constant(DAG, 0x3f25f7c3)); 4013 4014 result = DAG.getNode(ISD::FADD, dl, 4015 MVT::f32, LogOfExponent, Log10ofMantissa); 4016 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4017 // For floating-point precision of 18: 4018 // 4019 // Log10ofMantissa = 4020 // -0.84299375f + 4021 // (1.5327582f + 4022 // (-1.0688956f + 4023 // (0.49102474f + 4024 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4025 // 4026 // error 0.0000037995730, which is better than 18 bits 4027 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4028 getF32Constant(DAG, 0x3c5d51ce)); 4029 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4030 getF32Constant(DAG, 0x3e00685a)); 4031 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4032 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4033 getF32Constant(DAG, 0x3efb6798)); 4034 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4035 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4036 getF32Constant(DAG, 0x3f88d192)); 4037 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4038 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4039 getF32Constant(DAG, 0x3fc4316c)); 4040 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4041 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4042 getF32Constant(DAG, 0x3f57ce70)); 4043 4044 result = DAG.getNode(ISD::FADD, dl, 4045 MVT::f32, LogOfExponent, Log10ofMantissa); 4046 } 4047 } else { 4048 // No special expansion. 4049 result = DAG.getNode(ISD::FLOG10, dl, 4050 getValue(I.getArgOperand(0)).getValueType(), 4051 getValue(I.getArgOperand(0))); 4052 } 4053 4054 setValue(&I, result); 4055 } 4056 4057 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4058 /// limited-precision mode. 4059 void 4060 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4061 SDValue result; 4062 DebugLoc dl = getCurDebugLoc(); 4063 4064 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4066 SDValue Op = getValue(I.getArgOperand(0)); 4067 4068 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4069 4070 // FractionalPartOfX = x - (float)IntegerPartOfX; 4071 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4072 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4073 4074 // IntegerPartOfX <<= 23; 4075 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4076 DAG.getConstant(23, TLI.getPointerTy())); 4077 4078 if (LimitFloatPrecision <= 6) { 4079 // For floating-point precision of 6: 4080 // 4081 // TwoToFractionalPartOfX = 4082 // 0.997535578f + 4083 // (0.735607626f + 0.252464424f * x) * x; 4084 // 4085 // error 0.0144103317, which is 6 bits 4086 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0x3e814304)); 4088 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3f3c50c8)); 4090 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4091 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4092 getF32Constant(DAG, 0x3f7f5e7e)); 4093 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4094 SDValue TwoToFractionalPartOfX = 4095 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4096 4097 result = DAG.getNode(ISD::BITCAST, dl, 4098 MVT::f32, TwoToFractionalPartOfX); 4099 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4100 // For floating-point precision of 12: 4101 // 4102 // TwoToFractionalPartOfX = 4103 // 0.999892986f + 4104 // (0.696457318f + 4105 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4106 // 4107 // error 0.000107046256, which is 13 to 14 bits 4108 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4109 getF32Constant(DAG, 0x3da235e3)); 4110 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4111 getF32Constant(DAG, 0x3e65b8f3)); 4112 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4113 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4114 getF32Constant(DAG, 0x3f324b07)); 4115 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4116 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4117 getF32Constant(DAG, 0x3f7ff8fd)); 4118 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4119 SDValue TwoToFractionalPartOfX = 4120 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4121 4122 result = DAG.getNode(ISD::BITCAST, dl, 4123 MVT::f32, TwoToFractionalPartOfX); 4124 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4125 // For floating-point precision of 18: 4126 // 4127 // TwoToFractionalPartOfX = 4128 // 0.999999982f + 4129 // (0.693148872f + 4130 // (0.240227044f + 4131 // (0.554906021e-1f + 4132 // (0.961591928e-2f + 4133 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4134 // error 2.47208000*10^(-7), which is better than 18 bits 4135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0x3924b03e)); 4137 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4138 getF32Constant(DAG, 0x3ab24b87)); 4139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4141 getF32Constant(DAG, 0x3c1d8c17)); 4142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4143 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4144 getF32Constant(DAG, 0x3d634a1d)); 4145 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4146 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4147 getF32Constant(DAG, 0x3e75fe14)); 4148 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4149 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4150 getF32Constant(DAG, 0x3f317234)); 4151 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4152 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4153 getF32Constant(DAG, 0x3f800000)); 4154 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4155 SDValue TwoToFractionalPartOfX = 4156 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4157 4158 result = DAG.getNode(ISD::BITCAST, dl, 4159 MVT::f32, TwoToFractionalPartOfX); 4160 } 4161 } else { 4162 // No special expansion. 4163 result = DAG.getNode(ISD::FEXP2, dl, 4164 getValue(I.getArgOperand(0)).getValueType(), 4165 getValue(I.getArgOperand(0))); 4166 } 4167 4168 setValue(&I, result); 4169 } 4170 4171 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4172 /// limited-precision mode with x == 10.0f. 4173 void 4174 SelectionDAGBuilder::visitPow(const CallInst &I) { 4175 SDValue result; 4176 const Value *Val = I.getArgOperand(0); 4177 DebugLoc dl = getCurDebugLoc(); 4178 bool IsExp10 = false; 4179 4180 if (getValue(Val).getValueType() == MVT::f32 && 4181 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4182 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4183 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4184 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4185 APFloat Ten(10.0f); 4186 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4187 } 4188 } 4189 } 4190 4191 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4192 SDValue Op = getValue(I.getArgOperand(1)); 4193 4194 // Put the exponent in the right bit position for later addition to the 4195 // final result: 4196 // 4197 // #define LOG2OF10 3.3219281f 4198 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4200 getF32Constant(DAG, 0x40549a78)); 4201 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4202 4203 // FractionalPartOfX = x - (float)IntegerPartOfX; 4204 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4205 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4206 4207 // IntegerPartOfX <<= 23; 4208 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4209 DAG.getConstant(23, TLI.getPointerTy())); 4210 4211 if (LimitFloatPrecision <= 6) { 4212 // For floating-point precision of 6: 4213 // 4214 // twoToFractionalPartOfX = 4215 // 0.997535578f + 4216 // (0.735607626f + 0.252464424f * x) * x; 4217 // 4218 // error 0.0144103317, which is 6 bits 4219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4220 getF32Constant(DAG, 0x3e814304)); 4221 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4222 getF32Constant(DAG, 0x3f3c50c8)); 4223 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4224 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4225 getF32Constant(DAG, 0x3f7f5e7e)); 4226 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4227 SDValue TwoToFractionalPartOfX = 4228 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4229 4230 result = DAG.getNode(ISD::BITCAST, dl, 4231 MVT::f32, TwoToFractionalPartOfX); 4232 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4233 // For floating-point precision of 12: 4234 // 4235 // TwoToFractionalPartOfX = 4236 // 0.999892986f + 4237 // (0.696457318f + 4238 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4239 // 4240 // error 0.000107046256, which is 13 to 14 bits 4241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4242 getF32Constant(DAG, 0x3da235e3)); 4243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4244 getF32Constant(DAG, 0x3e65b8f3)); 4245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4246 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4247 getF32Constant(DAG, 0x3f324b07)); 4248 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4249 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4250 getF32Constant(DAG, 0x3f7ff8fd)); 4251 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4252 SDValue TwoToFractionalPartOfX = 4253 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4254 4255 result = DAG.getNode(ISD::BITCAST, dl, 4256 MVT::f32, TwoToFractionalPartOfX); 4257 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4258 // For floating-point precision of 18: 4259 // 4260 // TwoToFractionalPartOfX = 4261 // 0.999999982f + 4262 // (0.693148872f + 4263 // (0.240227044f + 4264 // (0.554906021e-1f + 4265 // (0.961591928e-2f + 4266 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4267 // error 2.47208000*10^(-7), which is better than 18 bits 4268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4269 getF32Constant(DAG, 0x3924b03e)); 4270 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4271 getF32Constant(DAG, 0x3ab24b87)); 4272 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4273 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4274 getF32Constant(DAG, 0x3c1d8c17)); 4275 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4276 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4277 getF32Constant(DAG, 0x3d634a1d)); 4278 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4279 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4280 getF32Constant(DAG, 0x3e75fe14)); 4281 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4282 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4283 getF32Constant(DAG, 0x3f317234)); 4284 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4285 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4286 getF32Constant(DAG, 0x3f800000)); 4287 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4288 SDValue TwoToFractionalPartOfX = 4289 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4290 4291 result = DAG.getNode(ISD::BITCAST, dl, 4292 MVT::f32, TwoToFractionalPartOfX); 4293 } 4294 } else { 4295 // No special expansion. 4296 result = DAG.getNode(ISD::FPOW, dl, 4297 getValue(I.getArgOperand(0)).getValueType(), 4298 getValue(I.getArgOperand(0)), 4299 getValue(I.getArgOperand(1))); 4300 } 4301 4302 setValue(&I, result); 4303 } 4304 4305 4306 /// ExpandPowI - Expand a llvm.powi intrinsic. 4307 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4308 SelectionDAG &DAG) { 4309 // If RHS is a constant, we can expand this out to a multiplication tree, 4310 // otherwise we end up lowering to a call to __powidf2 (for example). When 4311 // optimizing for size, we only want to do this if the expansion would produce 4312 // a small number of multiplies, otherwise we do the full expansion. 4313 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4314 // Get the exponent as a positive value. 4315 unsigned Val = RHSC->getSExtValue(); 4316 if ((int)Val < 0) Val = -Val; 4317 4318 // powi(x, 0) -> 1.0 4319 if (Val == 0) 4320 return DAG.getConstantFP(1.0, LHS.getValueType()); 4321 4322 const Function *F = DAG.getMachineFunction().getFunction(); 4323 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4324 // If optimizing for size, don't insert too many multiplies. This 4325 // inserts up to 5 multiplies. 4326 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4327 // We use the simple binary decomposition method to generate the multiply 4328 // sequence. There are more optimal ways to do this (for example, 4329 // powi(x,15) generates one more multiply than it should), but this has 4330 // the benefit of being both really simple and much better than a libcall. 4331 SDValue Res; // Logically starts equal to 1.0 4332 SDValue CurSquare = LHS; 4333 while (Val) { 4334 if (Val & 1) { 4335 if (Res.getNode()) 4336 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4337 else 4338 Res = CurSquare; // 1.0*CurSquare. 4339 } 4340 4341 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4342 CurSquare, CurSquare); 4343 Val >>= 1; 4344 } 4345 4346 // If the original was negative, invert the result, producing 1/(x*x*x). 4347 if (RHSC->getSExtValue() < 0) 4348 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4349 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4350 return Res; 4351 } 4352 } 4353 4354 // Otherwise, expand to a libcall. 4355 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4356 } 4357 4358 // getTruncatedArgReg - Find underlying register used for an truncated 4359 // argument. 4360 static unsigned getTruncatedArgReg(const SDValue &N) { 4361 if (N.getOpcode() != ISD::TRUNCATE) 4362 return 0; 4363 4364 const SDValue &Ext = N.getOperand(0); 4365 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4366 const SDValue &CFR = Ext.getOperand(0); 4367 if (CFR.getOpcode() == ISD::CopyFromReg) 4368 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4369 else 4370 if (CFR.getOpcode() == ISD::TRUNCATE) 4371 return getTruncatedArgReg(CFR); 4372 } 4373 return 0; 4374 } 4375 4376 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4377 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4378 /// At the end of instruction selection, they will be inserted to the entry BB. 4379 bool 4380 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4381 int64_t Offset, 4382 const SDValue &N) { 4383 const Argument *Arg = dyn_cast<Argument>(V); 4384 if (!Arg) 4385 return false; 4386 4387 MachineFunction &MF = DAG.getMachineFunction(); 4388 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4389 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4390 4391 // Ignore inlined function arguments here. 4392 DIVariable DV(Variable); 4393 if (DV.isInlinedFnArgument(MF.getFunction())) 4394 return false; 4395 4396 unsigned Reg = 0; 4397 if (Arg->hasByValAttr()) { 4398 // Byval arguments' frame index is recorded during argument lowering. 4399 // Use this info directly. 4400 Reg = TRI->getFrameRegister(MF); 4401 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4402 // If byval argument ofset is not recorded then ignore this. 4403 if (!Offset) 4404 Reg = 0; 4405 } 4406 4407 if (N.getNode()) { 4408 if (N.getOpcode() == ISD::CopyFromReg) 4409 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4410 else 4411 Reg = getTruncatedArgReg(N); 4412 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4413 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4414 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4415 if (PR) 4416 Reg = PR; 4417 } 4418 } 4419 4420 if (!Reg) { 4421 // Check if ValueMap has reg number. 4422 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4423 if (VMI != FuncInfo.ValueMap.end()) 4424 Reg = VMI->second; 4425 } 4426 4427 if (!Reg && N.getNode()) { 4428 // Check if frame index is available. 4429 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4430 if (FrameIndexSDNode *FINode = 4431 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4432 Reg = TRI->getFrameRegister(MF); 4433 Offset = FINode->getIndex(); 4434 } 4435 } 4436 4437 if (!Reg) 4438 return false; 4439 4440 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4441 TII->get(TargetOpcode::DBG_VALUE)) 4442 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4443 FuncInfo.ArgDbgValues.push_back(&*MIB); 4444 return true; 4445 } 4446 4447 // VisualStudio defines setjmp as _setjmp 4448 #if defined(_MSC_VER) && defined(setjmp) && \ 4449 !defined(setjmp_undefined_for_msvc) 4450 # pragma push_macro("setjmp") 4451 # undef setjmp 4452 # define setjmp_undefined_for_msvc 4453 #endif 4454 4455 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4456 /// we want to emit this as a call to a named external function, return the name 4457 /// otherwise lower it and return null. 4458 const char * 4459 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4460 DebugLoc dl = getCurDebugLoc(); 4461 SDValue Res; 4462 4463 switch (Intrinsic) { 4464 default: 4465 // By default, turn this into a target intrinsic node. 4466 visitTargetIntrinsic(I, Intrinsic); 4467 return 0; 4468 case Intrinsic::vastart: visitVAStart(I); return 0; 4469 case Intrinsic::vaend: visitVAEnd(I); return 0; 4470 case Intrinsic::vacopy: visitVACopy(I); return 0; 4471 case Intrinsic::returnaddress: 4472 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4473 getValue(I.getArgOperand(0)))); 4474 return 0; 4475 case Intrinsic::frameaddress: 4476 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4477 getValue(I.getArgOperand(0)))); 4478 return 0; 4479 case Intrinsic::setjmp: 4480 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4481 case Intrinsic::longjmp: 4482 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4483 case Intrinsic::memcpy: { 4484 // Assert for address < 256 since we support only user defined address 4485 // spaces. 4486 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4487 < 256 && 4488 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4489 < 256 && 4490 "Unknown address space"); 4491 SDValue Op1 = getValue(I.getArgOperand(0)); 4492 SDValue Op2 = getValue(I.getArgOperand(1)); 4493 SDValue Op3 = getValue(I.getArgOperand(2)); 4494 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4495 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4496 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4497 MachinePointerInfo(I.getArgOperand(0)), 4498 MachinePointerInfo(I.getArgOperand(1)))); 4499 return 0; 4500 } 4501 case Intrinsic::memset: { 4502 // Assert for address < 256 since we support only user defined address 4503 // spaces. 4504 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4505 < 256 && 4506 "Unknown address space"); 4507 SDValue Op1 = getValue(I.getArgOperand(0)); 4508 SDValue Op2 = getValue(I.getArgOperand(1)); 4509 SDValue Op3 = getValue(I.getArgOperand(2)); 4510 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4511 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4512 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4513 MachinePointerInfo(I.getArgOperand(0)))); 4514 return 0; 4515 } 4516 case Intrinsic::memmove: { 4517 // Assert for address < 256 since we support only user defined address 4518 // spaces. 4519 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4520 < 256 && 4521 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4522 < 256 && 4523 "Unknown address space"); 4524 SDValue Op1 = getValue(I.getArgOperand(0)); 4525 SDValue Op2 = getValue(I.getArgOperand(1)); 4526 SDValue Op3 = getValue(I.getArgOperand(2)); 4527 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4528 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4529 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4530 MachinePointerInfo(I.getArgOperand(0)), 4531 MachinePointerInfo(I.getArgOperand(1)))); 4532 return 0; 4533 } 4534 case Intrinsic::dbg_declare: { 4535 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4536 MDNode *Variable = DI.getVariable(); 4537 const Value *Address = DI.getAddress(); 4538 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4539 return 0; 4540 4541 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4542 // but do not always have a corresponding SDNode built. The SDNodeOrder 4543 // absolute, but not relative, values are different depending on whether 4544 // debug info exists. 4545 ++SDNodeOrder; 4546 4547 // Check if address has undef value. 4548 if (isa<UndefValue>(Address) || 4549 (Address->use_empty() && !isa<Argument>(Address))) { 4550 DEBUG(dbgs() << "Dropping debug info for " << DI); 4551 return 0; 4552 } 4553 4554 SDValue &N = NodeMap[Address]; 4555 if (!N.getNode() && isa<Argument>(Address)) 4556 // Check unused arguments map. 4557 N = UnusedArgNodeMap[Address]; 4558 SDDbgValue *SDV; 4559 if (N.getNode()) { 4560 // Parameters are handled specially. 4561 bool isParameter = 4562 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4563 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4564 Address = BCI->getOperand(0); 4565 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4566 4567 if (isParameter && !AI) { 4568 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4569 if (FINode) 4570 // Byval parameter. We have a frame index at this point. 4571 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4572 0, dl, SDNodeOrder); 4573 else { 4574 // Address is an argument, so try to emit its dbg value using 4575 // virtual register info from the FuncInfo.ValueMap. 4576 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4577 return 0; 4578 } 4579 } else if (AI) 4580 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4581 0, dl, SDNodeOrder); 4582 else { 4583 // Can't do anything with other non-AI cases yet. 4584 DEBUG(dbgs() << "Dropping debug info for " << DI); 4585 return 0; 4586 } 4587 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4588 } else { 4589 // If Address is an argument then try to emit its dbg value using 4590 // virtual register info from the FuncInfo.ValueMap. 4591 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4592 // If variable is pinned by a alloca in dominating bb then 4593 // use StaticAllocaMap. 4594 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4595 if (AI->getParent() != DI.getParent()) { 4596 DenseMap<const AllocaInst*, int>::iterator SI = 4597 FuncInfo.StaticAllocaMap.find(AI); 4598 if (SI != FuncInfo.StaticAllocaMap.end()) { 4599 SDV = DAG.getDbgValue(Variable, SI->second, 4600 0, dl, SDNodeOrder); 4601 DAG.AddDbgValue(SDV, 0, false); 4602 return 0; 4603 } 4604 } 4605 } 4606 DEBUG(dbgs() << "Dropping debug info for " << DI); 4607 } 4608 } 4609 return 0; 4610 } 4611 case Intrinsic::dbg_value: { 4612 const DbgValueInst &DI = cast<DbgValueInst>(I); 4613 if (!DIVariable(DI.getVariable()).Verify()) 4614 return 0; 4615 4616 MDNode *Variable = DI.getVariable(); 4617 uint64_t Offset = DI.getOffset(); 4618 const Value *V = DI.getValue(); 4619 if (!V) 4620 return 0; 4621 4622 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4623 // but do not always have a corresponding SDNode built. The SDNodeOrder 4624 // absolute, but not relative, values are different depending on whether 4625 // debug info exists. 4626 ++SDNodeOrder; 4627 SDDbgValue *SDV; 4628 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4629 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4630 DAG.AddDbgValue(SDV, 0, false); 4631 } else { 4632 // Do not use getValue() in here; we don't want to generate code at 4633 // this point if it hasn't been done yet. 4634 SDValue N = NodeMap[V]; 4635 if (!N.getNode() && isa<Argument>(V)) 4636 // Check unused arguments map. 4637 N = UnusedArgNodeMap[V]; 4638 if (N.getNode()) { 4639 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4640 SDV = DAG.getDbgValue(Variable, N.getNode(), 4641 N.getResNo(), Offset, dl, SDNodeOrder); 4642 DAG.AddDbgValue(SDV, N.getNode(), false); 4643 } 4644 } else if (!V->use_empty() ) { 4645 // Do not call getValue(V) yet, as we don't want to generate code. 4646 // Remember it for later. 4647 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4648 DanglingDebugInfoMap[V] = DDI; 4649 } else { 4650 // We may expand this to cover more cases. One case where we have no 4651 // data available is an unreferenced parameter. 4652 DEBUG(dbgs() << "Dropping debug info for " << DI); 4653 } 4654 } 4655 4656 // Build a debug info table entry. 4657 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4658 V = BCI->getOperand(0); 4659 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4660 // Don't handle byval struct arguments or VLAs, for example. 4661 if (!AI) 4662 return 0; 4663 DenseMap<const AllocaInst*, int>::iterator SI = 4664 FuncInfo.StaticAllocaMap.find(AI); 4665 if (SI == FuncInfo.StaticAllocaMap.end()) 4666 return 0; // VLAs. 4667 int FI = SI->second; 4668 4669 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4670 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4671 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4672 return 0; 4673 } 4674 case Intrinsic::eh_exception: { 4675 // Insert the EXCEPTIONADDR instruction. 4676 assert(FuncInfo.MBB->isLandingPad() && 4677 "Call to eh.exception not in landing pad!"); 4678 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4679 SDValue Ops[1]; 4680 Ops[0] = DAG.getRoot(); 4681 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4682 setValue(&I, Op); 4683 DAG.setRoot(Op.getValue(1)); 4684 return 0; 4685 } 4686 4687 case Intrinsic::eh_selector: { 4688 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4689 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4690 if (CallMBB->isLandingPad()) 4691 AddCatchInfo(I, &MMI, CallMBB); 4692 else { 4693 #ifndef NDEBUG 4694 FuncInfo.CatchInfoLost.insert(&I); 4695 #endif 4696 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4697 unsigned Reg = TLI.getExceptionSelectorRegister(); 4698 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4699 } 4700 4701 // Insert the EHSELECTION instruction. 4702 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4703 SDValue Ops[2]; 4704 Ops[0] = getValue(I.getArgOperand(0)); 4705 Ops[1] = getRoot(); 4706 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4707 DAG.setRoot(Op.getValue(1)); 4708 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4709 return 0; 4710 } 4711 4712 case Intrinsic::eh_typeid_for: { 4713 // Find the type id for the given typeinfo. 4714 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4715 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4716 Res = DAG.getConstant(TypeID, MVT::i32); 4717 setValue(&I, Res); 4718 return 0; 4719 } 4720 4721 case Intrinsic::eh_return_i32: 4722 case Intrinsic::eh_return_i64: 4723 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4724 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4725 MVT::Other, 4726 getControlRoot(), 4727 getValue(I.getArgOperand(0)), 4728 getValue(I.getArgOperand(1)))); 4729 return 0; 4730 case Intrinsic::eh_unwind_init: 4731 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4732 return 0; 4733 case Intrinsic::eh_dwarf_cfa: { 4734 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4735 TLI.getPointerTy()); 4736 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4737 TLI.getPointerTy(), 4738 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4739 TLI.getPointerTy()), 4740 CfaArg); 4741 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4742 TLI.getPointerTy(), 4743 DAG.getConstant(0, TLI.getPointerTy())); 4744 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4745 FA, Offset)); 4746 return 0; 4747 } 4748 case Intrinsic::eh_sjlj_callsite: { 4749 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4750 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4751 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4752 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4753 4754 MMI.setCurrentCallSite(CI->getZExtValue()); 4755 return 0; 4756 } 4757 case Intrinsic::eh_sjlj_setjmp: { 4758 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4759 getValue(I.getArgOperand(0)))); 4760 return 0; 4761 } 4762 case Intrinsic::eh_sjlj_longjmp: { 4763 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4764 getRoot(), getValue(I.getArgOperand(0)))); 4765 return 0; 4766 } 4767 case Intrinsic::eh_sjlj_dispatch_setup: { 4768 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4769 getRoot(), getValue(I.getArgOperand(0)))); 4770 return 0; 4771 } 4772 4773 case Intrinsic::x86_mmx_pslli_w: 4774 case Intrinsic::x86_mmx_pslli_d: 4775 case Intrinsic::x86_mmx_pslli_q: 4776 case Intrinsic::x86_mmx_psrli_w: 4777 case Intrinsic::x86_mmx_psrli_d: 4778 case Intrinsic::x86_mmx_psrli_q: 4779 case Intrinsic::x86_mmx_psrai_w: 4780 case Intrinsic::x86_mmx_psrai_d: { 4781 SDValue ShAmt = getValue(I.getArgOperand(1)); 4782 if (isa<ConstantSDNode>(ShAmt)) { 4783 visitTargetIntrinsic(I, Intrinsic); 4784 return 0; 4785 } 4786 unsigned NewIntrinsic = 0; 4787 EVT ShAmtVT = MVT::v2i32; 4788 switch (Intrinsic) { 4789 case Intrinsic::x86_mmx_pslli_w: 4790 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4791 break; 4792 case Intrinsic::x86_mmx_pslli_d: 4793 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4794 break; 4795 case Intrinsic::x86_mmx_pslli_q: 4796 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4797 break; 4798 case Intrinsic::x86_mmx_psrli_w: 4799 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4800 break; 4801 case Intrinsic::x86_mmx_psrli_d: 4802 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4803 break; 4804 case Intrinsic::x86_mmx_psrli_q: 4805 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4806 break; 4807 case Intrinsic::x86_mmx_psrai_w: 4808 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4809 break; 4810 case Intrinsic::x86_mmx_psrai_d: 4811 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4812 break; 4813 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4814 } 4815 4816 // The vector shift intrinsics with scalars uses 32b shift amounts but 4817 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4818 // to be zero. 4819 // We must do this early because v2i32 is not a legal type. 4820 DebugLoc dl = getCurDebugLoc(); 4821 SDValue ShOps[2]; 4822 ShOps[0] = ShAmt; 4823 ShOps[1] = DAG.getConstant(0, MVT::i32); 4824 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4825 EVT DestVT = TLI.getValueType(I.getType()); 4826 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4827 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4828 DAG.getConstant(NewIntrinsic, MVT::i32), 4829 getValue(I.getArgOperand(0)), ShAmt); 4830 setValue(&I, Res); 4831 return 0; 4832 } 4833 case Intrinsic::convertff: 4834 case Intrinsic::convertfsi: 4835 case Intrinsic::convertfui: 4836 case Intrinsic::convertsif: 4837 case Intrinsic::convertuif: 4838 case Intrinsic::convertss: 4839 case Intrinsic::convertsu: 4840 case Intrinsic::convertus: 4841 case Intrinsic::convertuu: { 4842 ISD::CvtCode Code = ISD::CVT_INVALID; 4843 switch (Intrinsic) { 4844 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4845 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4846 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4847 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4848 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4849 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4850 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4851 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4852 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4853 } 4854 EVT DestVT = TLI.getValueType(I.getType()); 4855 const Value *Op1 = I.getArgOperand(0); 4856 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4857 DAG.getValueType(DestVT), 4858 DAG.getValueType(getValue(Op1).getValueType()), 4859 getValue(I.getArgOperand(1)), 4860 getValue(I.getArgOperand(2)), 4861 Code); 4862 setValue(&I, Res); 4863 return 0; 4864 } 4865 case Intrinsic::sqrt: 4866 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4867 getValue(I.getArgOperand(0)).getValueType(), 4868 getValue(I.getArgOperand(0)))); 4869 return 0; 4870 case Intrinsic::powi: 4871 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4872 getValue(I.getArgOperand(1)), DAG)); 4873 return 0; 4874 case Intrinsic::sin: 4875 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4876 getValue(I.getArgOperand(0)).getValueType(), 4877 getValue(I.getArgOperand(0)))); 4878 return 0; 4879 case Intrinsic::cos: 4880 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4881 getValue(I.getArgOperand(0)).getValueType(), 4882 getValue(I.getArgOperand(0)))); 4883 return 0; 4884 case Intrinsic::log: 4885 visitLog(I); 4886 return 0; 4887 case Intrinsic::log2: 4888 visitLog2(I); 4889 return 0; 4890 case Intrinsic::log10: 4891 visitLog10(I); 4892 return 0; 4893 case Intrinsic::exp: 4894 visitExp(I); 4895 return 0; 4896 case Intrinsic::exp2: 4897 visitExp2(I); 4898 return 0; 4899 case Intrinsic::pow: 4900 visitPow(I); 4901 return 0; 4902 case Intrinsic::fma: 4903 setValue(&I, DAG.getNode(ISD::FMA, dl, 4904 getValue(I.getArgOperand(0)).getValueType(), 4905 getValue(I.getArgOperand(0)), 4906 getValue(I.getArgOperand(1)), 4907 getValue(I.getArgOperand(2)))); 4908 return 0; 4909 case Intrinsic::convert_to_fp16: 4910 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4911 MVT::i16, getValue(I.getArgOperand(0)))); 4912 return 0; 4913 case Intrinsic::convert_from_fp16: 4914 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4915 MVT::f32, getValue(I.getArgOperand(0)))); 4916 return 0; 4917 case Intrinsic::pcmarker: { 4918 SDValue Tmp = getValue(I.getArgOperand(0)); 4919 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4920 return 0; 4921 } 4922 case Intrinsic::readcyclecounter: { 4923 SDValue Op = getRoot(); 4924 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4925 DAG.getVTList(MVT::i64, MVT::Other), 4926 &Op, 1); 4927 setValue(&I, Res); 4928 DAG.setRoot(Res.getValue(1)); 4929 return 0; 4930 } 4931 case Intrinsic::bswap: 4932 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4933 getValue(I.getArgOperand(0)).getValueType(), 4934 getValue(I.getArgOperand(0)))); 4935 return 0; 4936 case Intrinsic::cttz: { 4937 SDValue Arg = getValue(I.getArgOperand(0)); 4938 EVT Ty = Arg.getValueType(); 4939 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4940 return 0; 4941 } 4942 case Intrinsic::ctlz: { 4943 SDValue Arg = getValue(I.getArgOperand(0)); 4944 EVT Ty = Arg.getValueType(); 4945 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4946 return 0; 4947 } 4948 case Intrinsic::ctpop: { 4949 SDValue Arg = getValue(I.getArgOperand(0)); 4950 EVT Ty = Arg.getValueType(); 4951 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4952 return 0; 4953 } 4954 case Intrinsic::stacksave: { 4955 SDValue Op = getRoot(); 4956 Res = DAG.getNode(ISD::STACKSAVE, dl, 4957 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4958 setValue(&I, Res); 4959 DAG.setRoot(Res.getValue(1)); 4960 return 0; 4961 } 4962 case Intrinsic::stackrestore: { 4963 Res = getValue(I.getArgOperand(0)); 4964 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4965 return 0; 4966 } 4967 case Intrinsic::stackprotector: { 4968 // Emit code into the DAG to store the stack guard onto the stack. 4969 MachineFunction &MF = DAG.getMachineFunction(); 4970 MachineFrameInfo *MFI = MF.getFrameInfo(); 4971 EVT PtrTy = TLI.getPointerTy(); 4972 4973 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4974 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4975 4976 int FI = FuncInfo.StaticAllocaMap[Slot]; 4977 MFI->setStackProtectorIndex(FI); 4978 4979 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4980 4981 // Store the stack protector onto the stack. 4982 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4983 MachinePointerInfo::getFixedStack(FI), 4984 true, false, 0); 4985 setValue(&I, Res); 4986 DAG.setRoot(Res); 4987 return 0; 4988 } 4989 case Intrinsic::objectsize: { 4990 // If we don't know by now, we're never going to know. 4991 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4992 4993 assert(CI && "Non-constant type in __builtin_object_size?"); 4994 4995 SDValue Arg = getValue(I.getCalledValue()); 4996 EVT Ty = Arg.getValueType(); 4997 4998 if (CI->isZero()) 4999 Res = DAG.getConstant(-1ULL, Ty); 5000 else 5001 Res = DAG.getConstant(0, Ty); 5002 5003 setValue(&I, Res); 5004 return 0; 5005 } 5006 case Intrinsic::var_annotation: 5007 // Discard annotate attributes 5008 return 0; 5009 5010 case Intrinsic::init_trampoline: { 5011 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5012 5013 SDValue Ops[6]; 5014 Ops[0] = getRoot(); 5015 Ops[1] = getValue(I.getArgOperand(0)); 5016 Ops[2] = getValue(I.getArgOperand(1)); 5017 Ops[3] = getValue(I.getArgOperand(2)); 5018 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5019 Ops[5] = DAG.getSrcValue(F); 5020 5021 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5022 5023 DAG.setRoot(Res); 5024 return 0; 5025 } 5026 case Intrinsic::adjust_trampoline: { 5027 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5028 TLI.getPointerTy(), 5029 getValue(I.getArgOperand(0)))); 5030 return 0; 5031 } 5032 case Intrinsic::gcroot: 5033 if (GFI) { 5034 const Value *Alloca = I.getArgOperand(0); 5035 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5036 5037 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5038 GFI->addStackRoot(FI->getIndex(), TypeMap); 5039 } 5040 return 0; 5041 case Intrinsic::gcread: 5042 case Intrinsic::gcwrite: 5043 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5044 return 0; 5045 case Intrinsic::flt_rounds: 5046 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5047 return 0; 5048 5049 case Intrinsic::expect: { 5050 // Just replace __builtin_expect(exp, c) with EXP. 5051 setValue(&I, getValue(I.getArgOperand(0))); 5052 return 0; 5053 } 5054 5055 case Intrinsic::trap: { 5056 StringRef TrapFuncName = getTrapFunctionName(); 5057 if (TrapFuncName.empty()) { 5058 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5059 return 0; 5060 } 5061 TargetLowering::ArgListTy Args; 5062 std::pair<SDValue, SDValue> Result = 5063 TLI.LowerCallTo(getRoot(), I.getType(), 5064 false, false, false, false, 0, CallingConv::C, 5065 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5066 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5067 Args, DAG, getCurDebugLoc()); 5068 DAG.setRoot(Result.second); 5069 return 0; 5070 } 5071 case Intrinsic::uadd_with_overflow: 5072 return implVisitAluOverflow(I, ISD::UADDO); 5073 case Intrinsic::sadd_with_overflow: 5074 return implVisitAluOverflow(I, ISD::SADDO); 5075 case Intrinsic::usub_with_overflow: 5076 return implVisitAluOverflow(I, ISD::USUBO); 5077 case Intrinsic::ssub_with_overflow: 5078 return implVisitAluOverflow(I, ISD::SSUBO); 5079 case Intrinsic::umul_with_overflow: 5080 return implVisitAluOverflow(I, ISD::UMULO); 5081 case Intrinsic::smul_with_overflow: 5082 return implVisitAluOverflow(I, ISD::SMULO); 5083 5084 case Intrinsic::prefetch: { 5085 SDValue Ops[5]; 5086 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5087 Ops[0] = getRoot(); 5088 Ops[1] = getValue(I.getArgOperand(0)); 5089 Ops[2] = getValue(I.getArgOperand(1)); 5090 Ops[3] = getValue(I.getArgOperand(2)); 5091 Ops[4] = getValue(I.getArgOperand(3)); 5092 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5093 DAG.getVTList(MVT::Other), 5094 &Ops[0], 5, 5095 EVT::getIntegerVT(*Context, 8), 5096 MachinePointerInfo(I.getArgOperand(0)), 5097 0, /* align */ 5098 false, /* volatile */ 5099 rw==0, /* read */ 5100 rw==1)); /* write */ 5101 return 0; 5102 } 5103 case Intrinsic::memory_barrier: { 5104 SDValue Ops[6]; 5105 Ops[0] = getRoot(); 5106 for (int x = 1; x < 6; ++x) 5107 Ops[x] = getValue(I.getArgOperand(x - 1)); 5108 5109 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 5110 return 0; 5111 } 5112 case Intrinsic::atomic_cmp_swap: { 5113 SDValue Root = getRoot(); 5114 SDValue L = 5115 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 5116 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 5117 Root, 5118 getValue(I.getArgOperand(0)), 5119 getValue(I.getArgOperand(1)), 5120 getValue(I.getArgOperand(2)), 5121 MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */, 5122 Monotonic, CrossThread); 5123 setValue(&I, L); 5124 DAG.setRoot(L.getValue(1)); 5125 return 0; 5126 } 5127 case Intrinsic::atomic_load_add: 5128 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 5129 case Intrinsic::atomic_load_sub: 5130 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 5131 case Intrinsic::atomic_load_or: 5132 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 5133 case Intrinsic::atomic_load_xor: 5134 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 5135 case Intrinsic::atomic_load_and: 5136 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 5137 case Intrinsic::atomic_load_nand: 5138 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 5139 case Intrinsic::atomic_load_max: 5140 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 5141 case Intrinsic::atomic_load_min: 5142 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 5143 case Intrinsic::atomic_load_umin: 5144 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 5145 case Intrinsic::atomic_load_umax: 5146 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 5147 case Intrinsic::atomic_swap: 5148 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 5149 5150 case Intrinsic::invariant_start: 5151 case Intrinsic::lifetime_start: 5152 // Discard region information. 5153 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5154 return 0; 5155 case Intrinsic::invariant_end: 5156 case Intrinsic::lifetime_end: 5157 // Discard region information. 5158 return 0; 5159 } 5160 } 5161 5162 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5163 bool isTailCall, 5164 MachineBasicBlock *LandingPad) { 5165 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5166 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5167 Type *RetTy = FTy->getReturnType(); 5168 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5169 MCSymbol *BeginLabel = 0; 5170 5171 TargetLowering::ArgListTy Args; 5172 TargetLowering::ArgListEntry Entry; 5173 Args.reserve(CS.arg_size()); 5174 5175 // Check whether the function can return without sret-demotion. 5176 SmallVector<ISD::OutputArg, 4> Outs; 5177 SmallVector<uint64_t, 4> Offsets; 5178 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5179 Outs, TLI, &Offsets); 5180 5181 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5182 DAG.getMachineFunction(), 5183 FTy->isVarArg(), Outs, 5184 FTy->getContext()); 5185 5186 SDValue DemoteStackSlot; 5187 int DemoteStackIdx = -100; 5188 5189 if (!CanLowerReturn) { 5190 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5191 FTy->getReturnType()); 5192 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5193 FTy->getReturnType()); 5194 MachineFunction &MF = DAG.getMachineFunction(); 5195 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5196 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5197 5198 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5199 Entry.Node = DemoteStackSlot; 5200 Entry.Ty = StackSlotPtrType; 5201 Entry.isSExt = false; 5202 Entry.isZExt = false; 5203 Entry.isInReg = false; 5204 Entry.isSRet = true; 5205 Entry.isNest = false; 5206 Entry.isByVal = false; 5207 Entry.Alignment = Align; 5208 Args.push_back(Entry); 5209 RetTy = Type::getVoidTy(FTy->getContext()); 5210 } 5211 5212 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5213 i != e; ++i) { 5214 const Value *V = *i; 5215 5216 // Skip empty types 5217 if (V->getType()->isEmptyTy()) 5218 continue; 5219 5220 SDValue ArgNode = getValue(V); 5221 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5222 5223 unsigned attrInd = i - CS.arg_begin() + 1; 5224 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5225 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5226 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5227 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5228 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5229 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5230 Entry.Alignment = CS.getParamAlignment(attrInd); 5231 Args.push_back(Entry); 5232 } 5233 5234 if (LandingPad) { 5235 // Insert a label before the invoke call to mark the try range. This can be 5236 // used to detect deletion of the invoke via the MachineModuleInfo. 5237 BeginLabel = MMI.getContext().CreateTempSymbol(); 5238 5239 // For SjLj, keep track of which landing pads go with which invokes 5240 // so as to maintain the ordering of pads in the LSDA. 5241 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5242 if (CallSiteIndex) { 5243 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5244 // Now that the call site is handled, stop tracking it. 5245 MMI.setCurrentCallSite(0); 5246 } 5247 5248 // Both PendingLoads and PendingExports must be flushed here; 5249 // this call might not return. 5250 (void)getRoot(); 5251 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5252 } 5253 5254 // Check if target-independent constraints permit a tail call here. 5255 // Target-dependent constraints are checked within TLI.LowerCallTo. 5256 if (isTailCall && 5257 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5258 isTailCall = false; 5259 5260 // If there's a possibility that fast-isel has already selected some amount 5261 // of the current basic block, don't emit a tail call. 5262 if (isTailCall && EnableFastISel) 5263 isTailCall = false; 5264 5265 std::pair<SDValue,SDValue> Result = 5266 TLI.LowerCallTo(getRoot(), RetTy, 5267 CS.paramHasAttr(0, Attribute::SExt), 5268 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5269 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5270 CS.getCallingConv(), 5271 isTailCall, 5272 !CS.getInstruction()->use_empty(), 5273 Callee, Args, DAG, getCurDebugLoc()); 5274 assert((isTailCall || Result.second.getNode()) && 5275 "Non-null chain expected with non-tail call!"); 5276 assert((Result.second.getNode() || !Result.first.getNode()) && 5277 "Null value expected with tail call!"); 5278 if (Result.first.getNode()) { 5279 setValue(CS.getInstruction(), Result.first); 5280 } else if (!CanLowerReturn && Result.second.getNode()) { 5281 // The instruction result is the result of loading from the 5282 // hidden sret parameter. 5283 SmallVector<EVT, 1> PVTs; 5284 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5285 5286 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5287 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5288 EVT PtrVT = PVTs[0]; 5289 unsigned NumValues = Outs.size(); 5290 SmallVector<SDValue, 4> Values(NumValues); 5291 SmallVector<SDValue, 4> Chains(NumValues); 5292 5293 for (unsigned i = 0; i < NumValues; ++i) { 5294 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5295 DemoteStackSlot, 5296 DAG.getConstant(Offsets[i], PtrVT)); 5297 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5298 Add, 5299 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5300 false, false, 1); 5301 Values[i] = L; 5302 Chains[i] = L.getValue(1); 5303 } 5304 5305 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5306 MVT::Other, &Chains[0], NumValues); 5307 PendingLoads.push_back(Chain); 5308 5309 // Collect the legal value parts into potentially illegal values 5310 // that correspond to the original function's return values. 5311 SmallVector<EVT, 4> RetTys; 5312 RetTy = FTy->getReturnType(); 5313 ComputeValueVTs(TLI, RetTy, RetTys); 5314 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5315 SmallVector<SDValue, 4> ReturnValues; 5316 unsigned CurReg = 0; 5317 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5318 EVT VT = RetTys[I]; 5319 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5320 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5321 5322 SDValue ReturnValue = 5323 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5324 RegisterVT, VT, AssertOp); 5325 ReturnValues.push_back(ReturnValue); 5326 CurReg += NumRegs; 5327 } 5328 5329 setValue(CS.getInstruction(), 5330 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5331 DAG.getVTList(&RetTys[0], RetTys.size()), 5332 &ReturnValues[0], ReturnValues.size())); 5333 } 5334 5335 // Assign order to nodes here. If the call does not produce a result, it won't 5336 // be mapped to a SDNode and visit() will not assign it an order number. 5337 if (!Result.second.getNode()) { 5338 // As a special case, a null chain means that a tail call has been emitted and 5339 // the DAG root is already updated. 5340 HasTailCall = true; 5341 ++SDNodeOrder; 5342 AssignOrderingToNode(DAG.getRoot().getNode()); 5343 } else { 5344 DAG.setRoot(Result.second); 5345 ++SDNodeOrder; 5346 AssignOrderingToNode(Result.second.getNode()); 5347 } 5348 5349 if (LandingPad) { 5350 // Insert a label at the end of the invoke call to mark the try range. This 5351 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5352 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5353 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5354 5355 // Inform MachineModuleInfo of range. 5356 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5357 } 5358 } 5359 5360 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5361 /// value is equal or not-equal to zero. 5362 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5363 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5364 UI != E; ++UI) { 5365 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5366 if (IC->isEquality()) 5367 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5368 if (C->isNullValue()) 5369 continue; 5370 // Unknown instruction. 5371 return false; 5372 } 5373 return true; 5374 } 5375 5376 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5377 Type *LoadTy, 5378 SelectionDAGBuilder &Builder) { 5379 5380 // Check to see if this load can be trivially constant folded, e.g. if the 5381 // input is from a string literal. 5382 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5383 // Cast pointer to the type we really want to load. 5384 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5385 PointerType::getUnqual(LoadTy)); 5386 5387 if (const Constant *LoadCst = 5388 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5389 Builder.TD)) 5390 return Builder.getValue(LoadCst); 5391 } 5392 5393 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5394 // still constant memory, the input chain can be the entry node. 5395 SDValue Root; 5396 bool ConstantMemory = false; 5397 5398 // Do not serialize (non-volatile) loads of constant memory with anything. 5399 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5400 Root = Builder.DAG.getEntryNode(); 5401 ConstantMemory = true; 5402 } else { 5403 // Do not serialize non-volatile loads against each other. 5404 Root = Builder.DAG.getRoot(); 5405 } 5406 5407 SDValue Ptr = Builder.getValue(PtrVal); 5408 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5409 Ptr, MachinePointerInfo(PtrVal), 5410 false /*volatile*/, 5411 false /*nontemporal*/, 1 /* align=1 */); 5412 5413 if (!ConstantMemory) 5414 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5415 return LoadVal; 5416 } 5417 5418 5419 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5420 /// If so, return true and lower it, otherwise return false and it will be 5421 /// lowered like a normal call. 5422 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5423 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5424 if (I.getNumArgOperands() != 3) 5425 return false; 5426 5427 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5428 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5429 !I.getArgOperand(2)->getType()->isIntegerTy() || 5430 !I.getType()->isIntegerTy()) 5431 return false; 5432 5433 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5434 5435 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5436 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5437 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5438 bool ActuallyDoIt = true; 5439 MVT LoadVT; 5440 Type *LoadTy; 5441 switch (Size->getZExtValue()) { 5442 default: 5443 LoadVT = MVT::Other; 5444 LoadTy = 0; 5445 ActuallyDoIt = false; 5446 break; 5447 case 2: 5448 LoadVT = MVT::i16; 5449 LoadTy = Type::getInt16Ty(Size->getContext()); 5450 break; 5451 case 4: 5452 LoadVT = MVT::i32; 5453 LoadTy = Type::getInt32Ty(Size->getContext()); 5454 break; 5455 case 8: 5456 LoadVT = MVT::i64; 5457 LoadTy = Type::getInt64Ty(Size->getContext()); 5458 break; 5459 /* 5460 case 16: 5461 LoadVT = MVT::v4i32; 5462 LoadTy = Type::getInt32Ty(Size->getContext()); 5463 LoadTy = VectorType::get(LoadTy, 4); 5464 break; 5465 */ 5466 } 5467 5468 // This turns into unaligned loads. We only do this if the target natively 5469 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5470 // we'll only produce a small number of byte loads. 5471 5472 // Require that we can find a legal MVT, and only do this if the target 5473 // supports unaligned loads of that type. Expanding into byte loads would 5474 // bloat the code. 5475 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5476 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5477 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5478 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5479 ActuallyDoIt = false; 5480 } 5481 5482 if (ActuallyDoIt) { 5483 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5484 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5485 5486 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5487 ISD::SETNE); 5488 EVT CallVT = TLI.getValueType(I.getType(), true); 5489 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5490 return true; 5491 } 5492 } 5493 5494 5495 return false; 5496 } 5497 5498 5499 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5500 // Handle inline assembly differently. 5501 if (isa<InlineAsm>(I.getCalledValue())) { 5502 visitInlineAsm(&I); 5503 return; 5504 } 5505 5506 // See if any floating point values are being passed to this function. This is 5507 // used to emit an undefined reference to fltused on Windows. 5508 FunctionType *FT = 5509 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5510 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5511 if (FT->isVarArg() && 5512 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5513 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5514 Type* T = I.getArgOperand(i)->getType(); 5515 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5516 i != e; ++i) { 5517 if (!i->isFloatingPointTy()) continue; 5518 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5519 break; 5520 } 5521 } 5522 } 5523 5524 const char *RenameFn = 0; 5525 if (Function *F = I.getCalledFunction()) { 5526 if (F->isDeclaration()) { 5527 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5528 if (unsigned IID = II->getIntrinsicID(F)) { 5529 RenameFn = visitIntrinsicCall(I, IID); 5530 if (!RenameFn) 5531 return; 5532 } 5533 } 5534 if (unsigned IID = F->getIntrinsicID()) { 5535 RenameFn = visitIntrinsicCall(I, IID); 5536 if (!RenameFn) 5537 return; 5538 } 5539 } 5540 5541 // Check for well-known libc/libm calls. If the function is internal, it 5542 // can't be a library call. 5543 if (!F->hasLocalLinkage() && F->hasName()) { 5544 StringRef Name = F->getName(); 5545 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5546 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5547 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5548 I.getType() == I.getArgOperand(0)->getType() && 5549 I.getType() == I.getArgOperand(1)->getType()) { 5550 SDValue LHS = getValue(I.getArgOperand(0)); 5551 SDValue RHS = getValue(I.getArgOperand(1)); 5552 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5553 LHS.getValueType(), LHS, RHS)); 5554 return; 5555 } 5556 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5557 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5558 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5559 I.getType() == I.getArgOperand(0)->getType()) { 5560 SDValue Tmp = getValue(I.getArgOperand(0)); 5561 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5562 Tmp.getValueType(), Tmp)); 5563 return; 5564 } 5565 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5566 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5567 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5568 I.getType() == I.getArgOperand(0)->getType() && 5569 I.onlyReadsMemory()) { 5570 SDValue Tmp = getValue(I.getArgOperand(0)); 5571 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5572 Tmp.getValueType(), Tmp)); 5573 return; 5574 } 5575 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5576 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5577 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5578 I.getType() == I.getArgOperand(0)->getType() && 5579 I.onlyReadsMemory()) { 5580 SDValue Tmp = getValue(I.getArgOperand(0)); 5581 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5582 Tmp.getValueType(), Tmp)); 5583 return; 5584 } 5585 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5586 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5587 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5588 I.getType() == I.getArgOperand(0)->getType() && 5589 I.onlyReadsMemory()) { 5590 SDValue Tmp = getValue(I.getArgOperand(0)); 5591 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5592 Tmp.getValueType(), Tmp)); 5593 return; 5594 } 5595 } else if (Name == "memcmp") { 5596 if (visitMemCmpCall(I)) 5597 return; 5598 } 5599 } 5600 } 5601 5602 SDValue Callee; 5603 if (!RenameFn) 5604 Callee = getValue(I.getCalledValue()); 5605 else 5606 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5607 5608 // Check if we can potentially perform a tail call. More detailed checking is 5609 // be done within LowerCallTo, after more information about the call is known. 5610 LowerCallTo(&I, Callee, I.isTailCall()); 5611 } 5612 5613 namespace { 5614 5615 /// AsmOperandInfo - This contains information for each constraint that we are 5616 /// lowering. 5617 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5618 public: 5619 /// CallOperand - If this is the result output operand or a clobber 5620 /// this is null, otherwise it is the incoming operand to the CallInst. 5621 /// This gets modified as the asm is processed. 5622 SDValue CallOperand; 5623 5624 /// AssignedRegs - If this is a register or register class operand, this 5625 /// contains the set of register corresponding to the operand. 5626 RegsForValue AssignedRegs; 5627 5628 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5629 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5630 } 5631 5632 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5633 /// busy in OutputRegs/InputRegs. 5634 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5635 std::set<unsigned> &OutputRegs, 5636 std::set<unsigned> &InputRegs, 5637 const TargetRegisterInfo &TRI) const { 5638 if (isOutReg) { 5639 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5640 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5641 } 5642 if (isInReg) { 5643 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5644 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5645 } 5646 } 5647 5648 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5649 /// corresponds to. If there is no Value* for this operand, it returns 5650 /// MVT::Other. 5651 EVT getCallOperandValEVT(LLVMContext &Context, 5652 const TargetLowering &TLI, 5653 const TargetData *TD) const { 5654 if (CallOperandVal == 0) return MVT::Other; 5655 5656 if (isa<BasicBlock>(CallOperandVal)) 5657 return TLI.getPointerTy(); 5658 5659 llvm::Type *OpTy = CallOperandVal->getType(); 5660 5661 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5662 // If this is an indirect operand, the operand is a pointer to the 5663 // accessed type. 5664 if (isIndirect) { 5665 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5666 if (!PtrTy) 5667 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5668 OpTy = PtrTy->getElementType(); 5669 } 5670 5671 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5672 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5673 if (STy->getNumElements() == 1) 5674 OpTy = STy->getElementType(0); 5675 5676 // If OpTy is not a single value, it may be a struct/union that we 5677 // can tile with integers. 5678 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5679 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5680 switch (BitSize) { 5681 default: break; 5682 case 1: 5683 case 8: 5684 case 16: 5685 case 32: 5686 case 64: 5687 case 128: 5688 OpTy = IntegerType::get(Context, BitSize); 5689 break; 5690 } 5691 } 5692 5693 return TLI.getValueType(OpTy, true); 5694 } 5695 5696 private: 5697 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5698 /// specified set. 5699 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5700 const TargetRegisterInfo &TRI) { 5701 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5702 Regs.insert(Reg); 5703 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5704 for (; *Aliases; ++Aliases) 5705 Regs.insert(*Aliases); 5706 } 5707 }; 5708 5709 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5710 5711 } // end anonymous namespace 5712 5713 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5714 /// specified operand. We prefer to assign virtual registers, to allow the 5715 /// register allocator to handle the assignment process. However, if the asm 5716 /// uses features that we can't model on machineinstrs, we have SDISel do the 5717 /// allocation. This produces generally horrible, but correct, code. 5718 /// 5719 /// OpInfo describes the operand. 5720 /// Input and OutputRegs are the set of already allocated physical registers. 5721 /// 5722 static void GetRegistersForValue(SelectionDAG &DAG, 5723 const TargetLowering &TLI, 5724 DebugLoc DL, 5725 SDISelAsmOperandInfo &OpInfo, 5726 std::set<unsigned> &OutputRegs, 5727 std::set<unsigned> &InputRegs) { 5728 LLVMContext &Context = *DAG.getContext(); 5729 5730 // Compute whether this value requires an input register, an output register, 5731 // or both. 5732 bool isOutReg = false; 5733 bool isInReg = false; 5734 switch (OpInfo.Type) { 5735 case InlineAsm::isOutput: 5736 isOutReg = true; 5737 5738 // If there is an input constraint that matches this, we need to reserve 5739 // the input register so no other inputs allocate to it. 5740 isInReg = OpInfo.hasMatchingInput(); 5741 break; 5742 case InlineAsm::isInput: 5743 isInReg = true; 5744 isOutReg = false; 5745 break; 5746 case InlineAsm::isClobber: 5747 isOutReg = true; 5748 isInReg = true; 5749 break; 5750 } 5751 5752 5753 MachineFunction &MF = DAG.getMachineFunction(); 5754 SmallVector<unsigned, 4> Regs; 5755 5756 // If this is a constraint for a single physreg, or a constraint for a 5757 // register class, find it. 5758 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5759 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5760 OpInfo.ConstraintVT); 5761 5762 unsigned NumRegs = 1; 5763 if (OpInfo.ConstraintVT != MVT::Other) { 5764 // If this is a FP input in an integer register (or visa versa) insert a bit 5765 // cast of the input value. More generally, handle any case where the input 5766 // value disagrees with the register class we plan to stick this in. 5767 if (OpInfo.Type == InlineAsm::isInput && 5768 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5769 // Try to convert to the first EVT that the reg class contains. If the 5770 // types are identical size, use a bitcast to convert (e.g. two differing 5771 // vector types). 5772 EVT RegVT = *PhysReg.second->vt_begin(); 5773 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5774 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5775 RegVT, OpInfo.CallOperand); 5776 OpInfo.ConstraintVT = RegVT; 5777 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5778 // If the input is a FP value and we want it in FP registers, do a 5779 // bitcast to the corresponding integer type. This turns an f64 value 5780 // into i64, which can be passed with two i32 values on a 32-bit 5781 // machine. 5782 RegVT = EVT::getIntegerVT(Context, 5783 OpInfo.ConstraintVT.getSizeInBits()); 5784 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5785 RegVT, OpInfo.CallOperand); 5786 OpInfo.ConstraintVT = RegVT; 5787 } 5788 } 5789 5790 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5791 } 5792 5793 EVT RegVT; 5794 EVT ValueVT = OpInfo.ConstraintVT; 5795 5796 // If this is a constraint for a specific physical register, like {r17}, 5797 // assign it now. 5798 if (unsigned AssignedReg = PhysReg.first) { 5799 const TargetRegisterClass *RC = PhysReg.second; 5800 if (OpInfo.ConstraintVT == MVT::Other) 5801 ValueVT = *RC->vt_begin(); 5802 5803 // Get the actual register value type. This is important, because the user 5804 // may have asked for (e.g.) the AX register in i32 type. We need to 5805 // remember that AX is actually i16 to get the right extension. 5806 RegVT = *RC->vt_begin(); 5807 5808 // This is a explicit reference to a physical register. 5809 Regs.push_back(AssignedReg); 5810 5811 // If this is an expanded reference, add the rest of the regs to Regs. 5812 if (NumRegs != 1) { 5813 TargetRegisterClass::iterator I = RC->begin(); 5814 for (; *I != AssignedReg; ++I) 5815 assert(I != RC->end() && "Didn't find reg!"); 5816 5817 // Already added the first reg. 5818 --NumRegs; ++I; 5819 for (; NumRegs; --NumRegs, ++I) { 5820 assert(I != RC->end() && "Ran out of registers to allocate!"); 5821 Regs.push_back(*I); 5822 } 5823 } 5824 5825 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5826 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5827 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5828 return; 5829 } 5830 5831 // Otherwise, if this was a reference to an LLVM register class, create vregs 5832 // for this reference. 5833 if (const TargetRegisterClass *RC = PhysReg.second) { 5834 RegVT = *RC->vt_begin(); 5835 if (OpInfo.ConstraintVT == MVT::Other) 5836 ValueVT = RegVT; 5837 5838 // Create the appropriate number of virtual registers. 5839 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5840 for (; NumRegs; --NumRegs) 5841 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5842 5843 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5844 return; 5845 } 5846 5847 // Otherwise, we couldn't allocate enough registers for this. 5848 } 5849 5850 /// visitInlineAsm - Handle a call to an InlineAsm object. 5851 /// 5852 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5853 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5854 5855 /// ConstraintOperands - Information about all of the constraints. 5856 SDISelAsmOperandInfoVector ConstraintOperands; 5857 5858 std::set<unsigned> OutputRegs, InputRegs; 5859 5860 TargetLowering::AsmOperandInfoVector 5861 TargetConstraints = TLI.ParseConstraints(CS); 5862 5863 bool hasMemory = false; 5864 5865 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5866 unsigned ResNo = 0; // ResNo - The result number of the next output. 5867 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5868 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5869 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5870 5871 EVT OpVT = MVT::Other; 5872 5873 // Compute the value type for each operand. 5874 switch (OpInfo.Type) { 5875 case InlineAsm::isOutput: 5876 // Indirect outputs just consume an argument. 5877 if (OpInfo.isIndirect) { 5878 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5879 break; 5880 } 5881 5882 // The return value of the call is this value. As such, there is no 5883 // corresponding argument. 5884 assert(!CS.getType()->isVoidTy() && 5885 "Bad inline asm!"); 5886 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5887 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5888 } else { 5889 assert(ResNo == 0 && "Asm only has one result!"); 5890 OpVT = TLI.getValueType(CS.getType()); 5891 } 5892 ++ResNo; 5893 break; 5894 case InlineAsm::isInput: 5895 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5896 break; 5897 case InlineAsm::isClobber: 5898 // Nothing to do. 5899 break; 5900 } 5901 5902 // If this is an input or an indirect output, process the call argument. 5903 // BasicBlocks are labels, currently appearing only in asm's. 5904 if (OpInfo.CallOperandVal) { 5905 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5906 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5907 } else { 5908 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5909 } 5910 5911 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5912 } 5913 5914 OpInfo.ConstraintVT = OpVT; 5915 5916 // Indirect operand accesses access memory. 5917 if (OpInfo.isIndirect) 5918 hasMemory = true; 5919 else { 5920 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5921 TargetLowering::ConstraintType 5922 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5923 if (CType == TargetLowering::C_Memory) { 5924 hasMemory = true; 5925 break; 5926 } 5927 } 5928 } 5929 } 5930 5931 SDValue Chain, Flag; 5932 5933 // We won't need to flush pending loads if this asm doesn't touch 5934 // memory and is nonvolatile. 5935 if (hasMemory || IA->hasSideEffects()) 5936 Chain = getRoot(); 5937 else 5938 Chain = DAG.getRoot(); 5939 5940 // Second pass over the constraints: compute which constraint option to use 5941 // and assign registers to constraints that want a specific physreg. 5942 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5943 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5944 5945 // If this is an output operand with a matching input operand, look up the 5946 // matching input. If their types mismatch, e.g. one is an integer, the 5947 // other is floating point, or their sizes are different, flag it as an 5948 // error. 5949 if (OpInfo.hasMatchingInput()) { 5950 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5951 5952 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5953 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5954 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5955 OpInfo.ConstraintVT); 5956 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5957 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5958 Input.ConstraintVT); 5959 if ((OpInfo.ConstraintVT.isInteger() != 5960 Input.ConstraintVT.isInteger()) || 5961 (MatchRC.second != InputRC.second)) { 5962 report_fatal_error("Unsupported asm: input constraint" 5963 " with a matching output constraint of" 5964 " incompatible type!"); 5965 } 5966 Input.ConstraintVT = OpInfo.ConstraintVT; 5967 } 5968 } 5969 5970 // Compute the constraint code and ConstraintType to use. 5971 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5972 5973 // If this is a memory input, and if the operand is not indirect, do what we 5974 // need to to provide an address for the memory input. 5975 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5976 !OpInfo.isIndirect) { 5977 assert((OpInfo.isMultipleAlternative || 5978 (OpInfo.Type == InlineAsm::isInput)) && 5979 "Can only indirectify direct input operands!"); 5980 5981 // Memory operands really want the address of the value. If we don't have 5982 // an indirect input, put it in the constpool if we can, otherwise spill 5983 // it to a stack slot. 5984 // TODO: This isn't quite right. We need to handle these according to 5985 // the addressing mode that the constraint wants. Also, this may take 5986 // an additional register for the computation and we don't want that 5987 // either. 5988 5989 // If the operand is a float, integer, or vector constant, spill to a 5990 // constant pool entry to get its address. 5991 const Value *OpVal = OpInfo.CallOperandVal; 5992 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5993 isa<ConstantVector>(OpVal)) { 5994 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5995 TLI.getPointerTy()); 5996 } else { 5997 // Otherwise, create a stack slot and emit a store to it before the 5998 // asm. 5999 Type *Ty = OpVal->getType(); 6000 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6001 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6002 MachineFunction &MF = DAG.getMachineFunction(); 6003 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6004 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6005 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6006 OpInfo.CallOperand, StackSlot, 6007 MachinePointerInfo::getFixedStack(SSFI), 6008 false, false, 0); 6009 OpInfo.CallOperand = StackSlot; 6010 } 6011 6012 // There is no longer a Value* corresponding to this operand. 6013 OpInfo.CallOperandVal = 0; 6014 6015 // It is now an indirect operand. 6016 OpInfo.isIndirect = true; 6017 } 6018 6019 // If this constraint is for a specific register, allocate it before 6020 // anything else. 6021 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6022 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6023 InputRegs); 6024 } 6025 6026 // Second pass - Loop over all of the operands, assigning virtual or physregs 6027 // to register class operands. 6028 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6029 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6030 6031 // C_Register operands have already been allocated, Other/Memory don't need 6032 // to be. 6033 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6034 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6035 InputRegs); 6036 } 6037 6038 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6039 std::vector<SDValue> AsmNodeOperands; 6040 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6041 AsmNodeOperands.push_back( 6042 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6043 TLI.getPointerTy())); 6044 6045 // If we have a !srcloc metadata node associated with it, we want to attach 6046 // this to the ultimately generated inline asm machineinstr. To do this, we 6047 // pass in the third operand as this (potentially null) inline asm MDNode. 6048 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6049 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6050 6051 // Remember the HasSideEffect and AlignStack bits as operand 3. 6052 unsigned ExtraInfo = 0; 6053 if (IA->hasSideEffects()) 6054 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6055 if (IA->isAlignStack()) 6056 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6057 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6058 TLI.getPointerTy())); 6059 6060 // Loop over all of the inputs, copying the operand values into the 6061 // appropriate registers and processing the output regs. 6062 RegsForValue RetValRegs; 6063 6064 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6065 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6066 6067 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6068 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6069 6070 switch (OpInfo.Type) { 6071 case InlineAsm::isOutput: { 6072 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6073 OpInfo.ConstraintType != TargetLowering::C_Register) { 6074 // Memory output, or 'other' output (e.g. 'X' constraint). 6075 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6076 6077 // Add information to the INLINEASM node to know about this output. 6078 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6079 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6080 TLI.getPointerTy())); 6081 AsmNodeOperands.push_back(OpInfo.CallOperand); 6082 break; 6083 } 6084 6085 // Otherwise, this is a register or register class output. 6086 6087 // Copy the output from the appropriate register. Find a register that 6088 // we can use. 6089 if (OpInfo.AssignedRegs.Regs.empty()) 6090 report_fatal_error("Couldn't allocate output reg for constraint '" + 6091 Twine(OpInfo.ConstraintCode) + "'!"); 6092 6093 // If this is an indirect operand, store through the pointer after the 6094 // asm. 6095 if (OpInfo.isIndirect) { 6096 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6097 OpInfo.CallOperandVal)); 6098 } else { 6099 // This is the result value of the call. 6100 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6101 // Concatenate this output onto the outputs list. 6102 RetValRegs.append(OpInfo.AssignedRegs); 6103 } 6104 6105 // Add information to the INLINEASM node to know that this register is 6106 // set. 6107 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6108 InlineAsm::Kind_RegDefEarlyClobber : 6109 InlineAsm::Kind_RegDef, 6110 false, 6111 0, 6112 DAG, 6113 AsmNodeOperands); 6114 break; 6115 } 6116 case InlineAsm::isInput: { 6117 SDValue InOperandVal = OpInfo.CallOperand; 6118 6119 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6120 // If this is required to match an output register we have already set, 6121 // just use its register. 6122 unsigned OperandNo = OpInfo.getMatchedOperand(); 6123 6124 // Scan until we find the definition we already emitted of this operand. 6125 // When we find it, create a RegsForValue operand. 6126 unsigned CurOp = InlineAsm::Op_FirstOperand; 6127 for (; OperandNo; --OperandNo) { 6128 // Advance to the next operand. 6129 unsigned OpFlag = 6130 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6131 assert((InlineAsm::isRegDefKind(OpFlag) || 6132 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6133 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6134 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6135 } 6136 6137 unsigned OpFlag = 6138 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6139 if (InlineAsm::isRegDefKind(OpFlag) || 6140 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6141 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6142 if (OpInfo.isIndirect) { 6143 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6144 LLVMContext &Ctx = *DAG.getContext(); 6145 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6146 " don't know how to handle tied " 6147 "indirect register inputs"); 6148 } 6149 6150 RegsForValue MatchedRegs; 6151 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6152 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6153 MatchedRegs.RegVTs.push_back(RegVT); 6154 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6155 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6156 i != e; ++i) 6157 MatchedRegs.Regs.push_back 6158 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6159 6160 // Use the produced MatchedRegs object to 6161 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6162 Chain, &Flag); 6163 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6164 true, OpInfo.getMatchedOperand(), 6165 DAG, AsmNodeOperands); 6166 break; 6167 } 6168 6169 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6170 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6171 "Unexpected number of operands"); 6172 // Add information to the INLINEASM node to know about this input. 6173 // See InlineAsm.h isUseOperandTiedToDef. 6174 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6175 OpInfo.getMatchedOperand()); 6176 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6177 TLI.getPointerTy())); 6178 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6179 break; 6180 } 6181 6182 // Treat indirect 'X' constraint as memory. 6183 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6184 OpInfo.isIndirect) 6185 OpInfo.ConstraintType = TargetLowering::C_Memory; 6186 6187 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6188 std::vector<SDValue> Ops; 6189 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6190 Ops, DAG); 6191 if (Ops.empty()) 6192 report_fatal_error("Invalid operand for inline asm constraint '" + 6193 Twine(OpInfo.ConstraintCode) + "'!"); 6194 6195 // Add information to the INLINEASM node to know about this input. 6196 unsigned ResOpType = 6197 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6198 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6199 TLI.getPointerTy())); 6200 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6201 break; 6202 } 6203 6204 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6205 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6206 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6207 "Memory operands expect pointer values"); 6208 6209 // Add information to the INLINEASM node to know about this input. 6210 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6211 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6212 TLI.getPointerTy())); 6213 AsmNodeOperands.push_back(InOperandVal); 6214 break; 6215 } 6216 6217 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6218 OpInfo.ConstraintType == TargetLowering::C_Register) && 6219 "Unknown constraint type!"); 6220 assert(!OpInfo.isIndirect && 6221 "Don't know how to handle indirect register inputs yet!"); 6222 6223 // Copy the input into the appropriate registers. 6224 if (OpInfo.AssignedRegs.Regs.empty()) 6225 report_fatal_error("Couldn't allocate input reg for constraint '" + 6226 Twine(OpInfo.ConstraintCode) + "'!"); 6227 6228 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6229 Chain, &Flag); 6230 6231 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6232 DAG, AsmNodeOperands); 6233 break; 6234 } 6235 case InlineAsm::isClobber: { 6236 // Add the clobbered value to the operand list, so that the register 6237 // allocator is aware that the physreg got clobbered. 6238 if (!OpInfo.AssignedRegs.Regs.empty()) 6239 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6240 false, 0, DAG, 6241 AsmNodeOperands); 6242 break; 6243 } 6244 } 6245 } 6246 6247 // Finish up input operands. Set the input chain and add the flag last. 6248 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6249 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6250 6251 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6252 DAG.getVTList(MVT::Other, MVT::Glue), 6253 &AsmNodeOperands[0], AsmNodeOperands.size()); 6254 Flag = Chain.getValue(1); 6255 6256 // If this asm returns a register value, copy the result from that register 6257 // and set it as the value of the call. 6258 if (!RetValRegs.Regs.empty()) { 6259 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6260 Chain, &Flag); 6261 6262 // FIXME: Why don't we do this for inline asms with MRVs? 6263 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6264 EVT ResultType = TLI.getValueType(CS.getType()); 6265 6266 // If any of the results of the inline asm is a vector, it may have the 6267 // wrong width/num elts. This can happen for register classes that can 6268 // contain multiple different value types. The preg or vreg allocated may 6269 // not have the same VT as was expected. Convert it to the right type 6270 // with bit_convert. 6271 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6272 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6273 ResultType, Val); 6274 6275 } else if (ResultType != Val.getValueType() && 6276 ResultType.isInteger() && Val.getValueType().isInteger()) { 6277 // If a result value was tied to an input value, the computed result may 6278 // have a wider width than the expected result. Extract the relevant 6279 // portion. 6280 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6281 } 6282 6283 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6284 } 6285 6286 setValue(CS.getInstruction(), Val); 6287 // Don't need to use this as a chain in this case. 6288 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6289 return; 6290 } 6291 6292 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6293 6294 // Process indirect outputs, first output all of the flagged copies out of 6295 // physregs. 6296 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6297 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6298 const Value *Ptr = IndirectStoresToEmit[i].second; 6299 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6300 Chain, &Flag); 6301 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6302 } 6303 6304 // Emit the non-flagged stores from the physregs. 6305 SmallVector<SDValue, 8> OutChains; 6306 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6307 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6308 StoresToEmit[i].first, 6309 getValue(StoresToEmit[i].second), 6310 MachinePointerInfo(StoresToEmit[i].second), 6311 false, false, 0); 6312 OutChains.push_back(Val); 6313 } 6314 6315 if (!OutChains.empty()) 6316 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6317 &OutChains[0], OutChains.size()); 6318 6319 DAG.setRoot(Chain); 6320 } 6321 6322 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6323 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6324 MVT::Other, getRoot(), 6325 getValue(I.getArgOperand(0)), 6326 DAG.getSrcValue(I.getArgOperand(0)))); 6327 } 6328 6329 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6330 const TargetData &TD = *TLI.getTargetData(); 6331 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6332 getRoot(), getValue(I.getOperand(0)), 6333 DAG.getSrcValue(I.getOperand(0)), 6334 TD.getABITypeAlignment(I.getType())); 6335 setValue(&I, V); 6336 DAG.setRoot(V.getValue(1)); 6337 } 6338 6339 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6340 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6341 MVT::Other, getRoot(), 6342 getValue(I.getArgOperand(0)), 6343 DAG.getSrcValue(I.getArgOperand(0)))); 6344 } 6345 6346 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6347 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6348 MVT::Other, getRoot(), 6349 getValue(I.getArgOperand(0)), 6350 getValue(I.getArgOperand(1)), 6351 DAG.getSrcValue(I.getArgOperand(0)), 6352 DAG.getSrcValue(I.getArgOperand(1)))); 6353 } 6354 6355 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6356 /// implementation, which just calls LowerCall. 6357 /// FIXME: When all targets are 6358 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6359 std::pair<SDValue, SDValue> 6360 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6361 bool RetSExt, bool RetZExt, bool isVarArg, 6362 bool isInreg, unsigned NumFixedArgs, 6363 CallingConv::ID CallConv, bool isTailCall, 6364 bool isReturnValueUsed, 6365 SDValue Callee, 6366 ArgListTy &Args, SelectionDAG &DAG, 6367 DebugLoc dl) const { 6368 // Handle all of the outgoing arguments. 6369 SmallVector<ISD::OutputArg, 32> Outs; 6370 SmallVector<SDValue, 32> OutVals; 6371 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6372 SmallVector<EVT, 4> ValueVTs; 6373 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6374 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6375 Value != NumValues; ++Value) { 6376 EVT VT = ValueVTs[Value]; 6377 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6378 SDValue Op = SDValue(Args[i].Node.getNode(), 6379 Args[i].Node.getResNo() + Value); 6380 ISD::ArgFlagsTy Flags; 6381 unsigned OriginalAlignment = 6382 getTargetData()->getABITypeAlignment(ArgTy); 6383 6384 if (Args[i].isZExt) 6385 Flags.setZExt(); 6386 if (Args[i].isSExt) 6387 Flags.setSExt(); 6388 if (Args[i].isInReg) 6389 Flags.setInReg(); 6390 if (Args[i].isSRet) 6391 Flags.setSRet(); 6392 if (Args[i].isByVal) { 6393 Flags.setByVal(); 6394 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6395 Type *ElementTy = Ty->getElementType(); 6396 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6397 // For ByVal, alignment should come from FE. BE will guess if this 6398 // info is not there but there are cases it cannot get right. 6399 unsigned FrameAlign; 6400 if (Args[i].Alignment) 6401 FrameAlign = Args[i].Alignment; 6402 else 6403 FrameAlign = getByValTypeAlignment(ElementTy); 6404 Flags.setByValAlign(FrameAlign); 6405 } 6406 if (Args[i].isNest) 6407 Flags.setNest(); 6408 Flags.setOrigAlign(OriginalAlignment); 6409 6410 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6411 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6412 SmallVector<SDValue, 4> Parts(NumParts); 6413 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6414 6415 if (Args[i].isSExt) 6416 ExtendKind = ISD::SIGN_EXTEND; 6417 else if (Args[i].isZExt) 6418 ExtendKind = ISD::ZERO_EXTEND; 6419 6420 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6421 PartVT, ExtendKind); 6422 6423 for (unsigned j = 0; j != NumParts; ++j) { 6424 // if it isn't first piece, alignment must be 1 6425 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6426 i < NumFixedArgs); 6427 if (NumParts > 1 && j == 0) 6428 MyFlags.Flags.setSplit(); 6429 else if (j != 0) 6430 MyFlags.Flags.setOrigAlign(1); 6431 6432 Outs.push_back(MyFlags); 6433 OutVals.push_back(Parts[j]); 6434 } 6435 } 6436 } 6437 6438 // Handle the incoming return values from the call. 6439 SmallVector<ISD::InputArg, 32> Ins; 6440 SmallVector<EVT, 4> RetTys; 6441 ComputeValueVTs(*this, RetTy, RetTys); 6442 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6443 EVT VT = RetTys[I]; 6444 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6445 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6446 for (unsigned i = 0; i != NumRegs; ++i) { 6447 ISD::InputArg MyFlags; 6448 MyFlags.VT = RegisterVT.getSimpleVT(); 6449 MyFlags.Used = isReturnValueUsed; 6450 if (RetSExt) 6451 MyFlags.Flags.setSExt(); 6452 if (RetZExt) 6453 MyFlags.Flags.setZExt(); 6454 if (isInreg) 6455 MyFlags.Flags.setInReg(); 6456 Ins.push_back(MyFlags); 6457 } 6458 } 6459 6460 SmallVector<SDValue, 4> InVals; 6461 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6462 Outs, OutVals, Ins, dl, DAG, InVals); 6463 6464 // Verify that the target's LowerCall behaved as expected. 6465 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6466 "LowerCall didn't return a valid chain!"); 6467 assert((!isTailCall || InVals.empty()) && 6468 "LowerCall emitted a return value for a tail call!"); 6469 assert((isTailCall || InVals.size() == Ins.size()) && 6470 "LowerCall didn't emit the correct number of values!"); 6471 6472 // For a tail call, the return value is merely live-out and there aren't 6473 // any nodes in the DAG representing it. Return a special value to 6474 // indicate that a tail call has been emitted and no more Instructions 6475 // should be processed in the current block. 6476 if (isTailCall) { 6477 DAG.setRoot(Chain); 6478 return std::make_pair(SDValue(), SDValue()); 6479 } 6480 6481 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6482 assert(InVals[i].getNode() && 6483 "LowerCall emitted a null value!"); 6484 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6485 "LowerCall emitted a value with the wrong type!"); 6486 }); 6487 6488 // Collect the legal value parts into potentially illegal values 6489 // that correspond to the original function's return values. 6490 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6491 if (RetSExt) 6492 AssertOp = ISD::AssertSext; 6493 else if (RetZExt) 6494 AssertOp = ISD::AssertZext; 6495 SmallVector<SDValue, 4> ReturnValues; 6496 unsigned CurReg = 0; 6497 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6498 EVT VT = RetTys[I]; 6499 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6500 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6501 6502 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6503 NumRegs, RegisterVT, VT, 6504 AssertOp)); 6505 CurReg += NumRegs; 6506 } 6507 6508 // For a function returning void, there is no return value. We can't create 6509 // such a node, so we just return a null return value in that case. In 6510 // that case, nothing will actually look at the value. 6511 if (ReturnValues.empty()) 6512 return std::make_pair(SDValue(), Chain); 6513 6514 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6515 DAG.getVTList(&RetTys[0], RetTys.size()), 6516 &ReturnValues[0], ReturnValues.size()); 6517 return std::make_pair(Res, Chain); 6518 } 6519 6520 void TargetLowering::LowerOperationWrapper(SDNode *N, 6521 SmallVectorImpl<SDValue> &Results, 6522 SelectionDAG &DAG) const { 6523 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6524 if (Res.getNode()) 6525 Results.push_back(Res); 6526 } 6527 6528 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6529 llvm_unreachable("LowerOperation not implemented for this target!"); 6530 return SDValue(); 6531 } 6532 6533 void 6534 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6535 SDValue Op = getNonRegisterValue(V); 6536 assert((Op.getOpcode() != ISD::CopyFromReg || 6537 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6538 "Copy from a reg to the same reg!"); 6539 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6540 6541 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6542 SDValue Chain = DAG.getEntryNode(); 6543 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6544 PendingExports.push_back(Chain); 6545 } 6546 6547 #include "llvm/CodeGen/SelectionDAGISel.h" 6548 6549 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6550 /// entry block, return true. This includes arguments used by switches, since 6551 /// the switch may expand into multiple basic blocks. 6552 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6553 // With FastISel active, we may be splitting blocks, so force creation 6554 // of virtual registers for all non-dead arguments. 6555 if (EnableFastISel) 6556 return A->use_empty(); 6557 6558 const BasicBlock *Entry = A->getParent()->begin(); 6559 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6560 UI != E; ++UI) { 6561 const User *U = *UI; 6562 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6563 return false; // Use not in entry block. 6564 } 6565 return true; 6566 } 6567 6568 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6569 // If this is the entry block, emit arguments. 6570 const Function &F = *LLVMBB->getParent(); 6571 SelectionDAG &DAG = SDB->DAG; 6572 DebugLoc dl = SDB->getCurDebugLoc(); 6573 const TargetData *TD = TLI.getTargetData(); 6574 SmallVector<ISD::InputArg, 16> Ins; 6575 6576 // Check whether the function can return without sret-demotion. 6577 SmallVector<ISD::OutputArg, 4> Outs; 6578 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6579 Outs, TLI); 6580 6581 if (!FuncInfo->CanLowerReturn) { 6582 // Put in an sret pointer parameter before all the other parameters. 6583 SmallVector<EVT, 1> ValueVTs; 6584 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6585 6586 // NOTE: Assuming that a pointer will never break down to more than one VT 6587 // or one register. 6588 ISD::ArgFlagsTy Flags; 6589 Flags.setSRet(); 6590 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6591 ISD::InputArg RetArg(Flags, RegisterVT, true); 6592 Ins.push_back(RetArg); 6593 } 6594 6595 // Set up the incoming argument description vector. 6596 unsigned Idx = 1; 6597 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6598 I != E; ++I, ++Idx) { 6599 SmallVector<EVT, 4> ValueVTs; 6600 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6601 bool isArgValueUsed = !I->use_empty(); 6602 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6603 Value != NumValues; ++Value) { 6604 EVT VT = ValueVTs[Value]; 6605 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6606 ISD::ArgFlagsTy Flags; 6607 unsigned OriginalAlignment = 6608 TD->getABITypeAlignment(ArgTy); 6609 6610 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6611 Flags.setZExt(); 6612 if (F.paramHasAttr(Idx, Attribute::SExt)) 6613 Flags.setSExt(); 6614 if (F.paramHasAttr(Idx, Attribute::InReg)) 6615 Flags.setInReg(); 6616 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6617 Flags.setSRet(); 6618 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6619 Flags.setByVal(); 6620 PointerType *Ty = cast<PointerType>(I->getType()); 6621 Type *ElementTy = Ty->getElementType(); 6622 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6623 // For ByVal, alignment should be passed from FE. BE will guess if 6624 // this info is not there but there are cases it cannot get right. 6625 unsigned FrameAlign; 6626 if (F.getParamAlignment(Idx)) 6627 FrameAlign = F.getParamAlignment(Idx); 6628 else 6629 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6630 Flags.setByValAlign(FrameAlign); 6631 } 6632 if (F.paramHasAttr(Idx, Attribute::Nest)) 6633 Flags.setNest(); 6634 Flags.setOrigAlign(OriginalAlignment); 6635 6636 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6637 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6638 for (unsigned i = 0; i != NumRegs; ++i) { 6639 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6640 if (NumRegs > 1 && i == 0) 6641 MyFlags.Flags.setSplit(); 6642 // if it isn't first piece, alignment must be 1 6643 else if (i > 0) 6644 MyFlags.Flags.setOrigAlign(1); 6645 Ins.push_back(MyFlags); 6646 } 6647 } 6648 } 6649 6650 // Call the target to set up the argument values. 6651 SmallVector<SDValue, 8> InVals; 6652 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6653 F.isVarArg(), Ins, 6654 dl, DAG, InVals); 6655 6656 // Verify that the target's LowerFormalArguments behaved as expected. 6657 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6658 "LowerFormalArguments didn't return a valid chain!"); 6659 assert(InVals.size() == Ins.size() && 6660 "LowerFormalArguments didn't emit the correct number of values!"); 6661 DEBUG({ 6662 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6663 assert(InVals[i].getNode() && 6664 "LowerFormalArguments emitted a null value!"); 6665 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6666 "LowerFormalArguments emitted a value with the wrong type!"); 6667 } 6668 }); 6669 6670 // Update the DAG with the new chain value resulting from argument lowering. 6671 DAG.setRoot(NewRoot); 6672 6673 // Set up the argument values. 6674 unsigned i = 0; 6675 Idx = 1; 6676 if (!FuncInfo->CanLowerReturn) { 6677 // Create a virtual register for the sret pointer, and put in a copy 6678 // from the sret argument into it. 6679 SmallVector<EVT, 1> ValueVTs; 6680 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6681 EVT VT = ValueVTs[0]; 6682 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6683 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6684 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6685 RegVT, VT, AssertOp); 6686 6687 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6688 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6689 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6690 FuncInfo->DemoteRegister = SRetReg; 6691 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6692 SRetReg, ArgValue); 6693 DAG.setRoot(NewRoot); 6694 6695 // i indexes lowered arguments. Bump it past the hidden sret argument. 6696 // Idx indexes LLVM arguments. Don't touch it. 6697 ++i; 6698 } 6699 6700 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6701 ++I, ++Idx) { 6702 SmallVector<SDValue, 4> ArgValues; 6703 SmallVector<EVT, 4> ValueVTs; 6704 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6705 unsigned NumValues = ValueVTs.size(); 6706 6707 // If this argument is unused then remember its value. It is used to generate 6708 // debugging information. 6709 if (I->use_empty() && NumValues) 6710 SDB->setUnusedArgValue(I, InVals[i]); 6711 6712 for (unsigned Val = 0; Val != NumValues; ++Val) { 6713 EVT VT = ValueVTs[Val]; 6714 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6715 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6716 6717 if (!I->use_empty()) { 6718 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6719 if (F.paramHasAttr(Idx, Attribute::SExt)) 6720 AssertOp = ISD::AssertSext; 6721 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6722 AssertOp = ISD::AssertZext; 6723 6724 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6725 NumParts, PartVT, VT, 6726 AssertOp)); 6727 } 6728 6729 i += NumParts; 6730 } 6731 6732 // We don't need to do anything else for unused arguments. 6733 if (ArgValues.empty()) 6734 continue; 6735 6736 // Note down frame index for byval arguments. 6737 if (I->hasByValAttr()) 6738 if (FrameIndexSDNode *FI = 6739 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6740 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6741 6742 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6743 SDB->getCurDebugLoc()); 6744 SDB->setValue(I, Res); 6745 6746 // If this argument is live outside of the entry block, insert a copy from 6747 // wherever we got it to the vreg that other BB's will reference it as. 6748 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6749 // If we can, though, try to skip creating an unnecessary vreg. 6750 // FIXME: This isn't very clean... it would be nice to make this more 6751 // general. It's also subtly incompatible with the hacks FastISel 6752 // uses with vregs. 6753 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6754 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6755 FuncInfo->ValueMap[I] = Reg; 6756 continue; 6757 } 6758 } 6759 if (!isOnlyUsedInEntryBlock(I)) { 6760 FuncInfo->InitializeRegForValue(I); 6761 SDB->CopyToExportRegsIfNeeded(I); 6762 } 6763 } 6764 6765 assert(i == InVals.size() && "Argument register count mismatch!"); 6766 6767 // Finally, if the target has anything special to do, allow it to do so. 6768 // FIXME: this should insert code into the DAG! 6769 EmitFunctionEntryCode(); 6770 } 6771 6772 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6773 /// ensure constants are generated when needed. Remember the virtual registers 6774 /// that need to be added to the Machine PHI nodes as input. We cannot just 6775 /// directly add them, because expansion might result in multiple MBB's for one 6776 /// BB. As such, the start of the BB might correspond to a different MBB than 6777 /// the end. 6778 /// 6779 void 6780 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6781 const TerminatorInst *TI = LLVMBB->getTerminator(); 6782 6783 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6784 6785 // Check successor nodes' PHI nodes that expect a constant to be available 6786 // from this block. 6787 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6788 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6789 if (!isa<PHINode>(SuccBB->begin())) continue; 6790 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6791 6792 // If this terminator has multiple identical successors (common for 6793 // switches), only handle each succ once. 6794 if (!SuccsHandled.insert(SuccMBB)) continue; 6795 6796 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6797 6798 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6799 // nodes and Machine PHI nodes, but the incoming operands have not been 6800 // emitted yet. 6801 for (BasicBlock::const_iterator I = SuccBB->begin(); 6802 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6803 // Ignore dead phi's. 6804 if (PN->use_empty()) continue; 6805 6806 // Skip empty types 6807 if (PN->getType()->isEmptyTy()) 6808 continue; 6809 6810 unsigned Reg; 6811 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6812 6813 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6814 unsigned &RegOut = ConstantsOut[C]; 6815 if (RegOut == 0) { 6816 RegOut = FuncInfo.CreateRegs(C->getType()); 6817 CopyValueToVirtualRegister(C, RegOut); 6818 } 6819 Reg = RegOut; 6820 } else { 6821 DenseMap<const Value *, unsigned>::iterator I = 6822 FuncInfo.ValueMap.find(PHIOp); 6823 if (I != FuncInfo.ValueMap.end()) 6824 Reg = I->second; 6825 else { 6826 assert(isa<AllocaInst>(PHIOp) && 6827 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6828 "Didn't codegen value into a register!??"); 6829 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6830 CopyValueToVirtualRegister(PHIOp, Reg); 6831 } 6832 } 6833 6834 // Remember that this register needs to added to the machine PHI node as 6835 // the input for this MBB. 6836 SmallVector<EVT, 4> ValueVTs; 6837 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6838 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6839 EVT VT = ValueVTs[vti]; 6840 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6841 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6842 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6843 Reg += NumRegisters; 6844 } 6845 } 6846 } 6847 ConstantsOut.clear(); 6848 } 6849