xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f1d8304fe31b7f840bd63a6d173587998ca877b8)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 using namespace llvm;
61 
62 /// LimitFloatPrecision - Generate low-precision inline sequences for
63 /// some float libcalls (6, 8 or 12 bits).
64 static unsigned LimitFloatPrecision;
65 
66 static cl::opt<unsigned, true>
67 LimitFPPrecision("limit-float-precision",
68                  cl::desc("Generate low-precision inline sequences "
69                           "for some float libcalls"),
70                  cl::location(LimitFloatPrecision),
71                  cl::init(0));
72 
73 /// getCopyFromParts - Create a value that contains the specified legal parts
74 /// combined into the value they represent.  If the parts combine to a type
75 /// larger then ValueVT then AssertOp can be used to specify whether the extra
76 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77 /// (ISD::AssertSext).
78 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                 const SDValue *Parts,
80                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82   assert(NumParts > 0 && "No parts to assemble!");
83   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84   SDValue Val = Parts[0];
85 
86   if (NumParts > 1) {
87     // Assemble the value from multiple parts.
88     if (!ValueVT.isVector() && ValueVT.isInteger()) {
89       unsigned PartBits = PartVT.getSizeInBits();
90       unsigned ValueBits = ValueVT.getSizeInBits();
91 
92       // Assemble the power of 2 part.
93       unsigned RoundParts = NumParts & (NumParts - 1) ?
94         1 << Log2_32(NumParts) : NumParts;
95       unsigned RoundBits = PartBits * RoundParts;
96       EVT RoundVT = RoundBits == ValueBits ?
97         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98       SDValue Lo, Hi;
99 
100       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101 
102       if (RoundParts > 2) {
103         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                               PartVT, HalfVT);
105         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                               RoundParts / 2, PartVT, HalfVT);
107       } else {
108         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110       }
111 
112       if (TLI.isBigEndian())
113         std::swap(Lo, Hi);
114 
115       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116 
117       if (RoundParts < NumParts) {
118         // Assemble the trailing non-power-of-2 part.
119         unsigned OddParts = NumParts - RoundParts;
120         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121         Hi = getCopyFromParts(DAG, dl,
122                               Parts + RoundParts, OddParts, PartVT, OddVT);
123 
124         // Combine the round and odd parts.
125         Lo = Val;
126         if (TLI.isBigEndian())
127           std::swap(Lo, Hi);
128         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                          TLI.getPointerTy()));
133         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135       }
136     } else if (ValueVT.isVector()) {
137       // Handle a multi-element vector.
138       EVT IntermediateVT, RegisterVT;
139       unsigned NumIntermediates;
140       unsigned NumRegs =
141         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                    NumIntermediates, RegisterVT);
143       assert(NumRegs == NumParts
144              && "Part count doesn't match vector breakdown!");
145       NumParts = NumRegs; // Silence a compiler warning.
146       assert(RegisterVT == PartVT
147              && "Part type doesn't match vector breakdown!");
148       assert(RegisterVT == Parts[0].getValueType() &&
149              "Part type doesn't match part!");
150 
151       // Assemble the parts into intermediate operands.
152       SmallVector<SDValue, 8> Ops(NumIntermediates);
153       if (NumIntermediates == NumParts) {
154         // If the register was not expanded, truncate or copy the value,
155         // as appropriate.
156         for (unsigned i = 0; i != NumParts; ++i)
157           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                     PartVT, IntermediateVT);
159       } else if (NumParts > 0) {
160         // If the intermediate type was expanded, build the intermediate
161         // operands from the parts.
162         assert(NumParts % NumIntermediates == 0 &&
163                "Must expand into a divisible number of parts!");
164         unsigned Factor = NumParts / NumIntermediates;
165         for (unsigned i = 0; i != NumIntermediates; ++i)
166           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                     PartVT, IntermediateVT);
168       }
169 
170       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171       // intermediate operands.
172       Val = DAG.getNode(IntermediateVT.isVector() ?
173                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                         ValueVT, &Ops[0], NumIntermediates);
175     } else if (PartVT.isFloatingPoint()) {
176       // FP split into multiple FP parts (for ppcf128)
177       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178              "Unexpected split");
179       SDValue Lo, Hi;
180       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182       if (TLI.isBigEndian())
183         std::swap(Lo, Hi);
184       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185     } else {
186       // FP split into integer parts (soft fp)
187       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188              !PartVT.isVector() && "Unexpected split");
189       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191     }
192   }
193 
194   // There is now one part, held in Val.  Correct it to match ValueVT.
195   PartVT = Val.getValueType();
196 
197   if (PartVT == ValueVT)
198     return Val;
199 
200   if (PartVT.isVector()) {
201     assert(ValueVT.isVector() && "Unknown vector conversion!");
202     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203   }
204 
205   if (ValueVT.isVector()) {
206     assert(ValueVT.getVectorElementType() == PartVT &&
207            ValueVT.getVectorNumElements() == 1 &&
208            "Only trivial scalar-to-vector conversions should get here!");
209     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210   }
211 
212   if (PartVT.isInteger() &&
213       ValueVT.isInteger()) {
214     if (ValueVT.bitsLT(PartVT)) {
215       // For a truncate, see if we have any information to
216       // indicate whether the truncated bits will always be
217       // zero or sign-extension.
218       if (AssertOp != ISD::DELETED_NODE)
219         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                           DAG.getValueType(ValueVT));
221       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222     } else {
223       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224     }
225   }
226 
227   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228     if (ValueVT.bitsLT(Val.getValueType())) {
229       // FP_ROUND's are always exact here.
230       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                          DAG.getIntPtrConstant(1));
232     }
233 
234     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235   }
236 
237   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239 
240   llvm_unreachable("Unknown mismatch!");
241   return SDValue();
242 }
243 
244 /// getCopyToParts - Create a series of nodes that contain the specified value
245 /// split into legal parts.  If the parts contain more bits than Val, then, for
246 /// integers, ExtendKind can be used to specify how to generate the extra bits.
247 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                            SDValue Val, SDValue *Parts, unsigned NumParts,
249                            EVT PartVT,
250                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252   EVT PtrVT = TLI.getPointerTy();
253   EVT ValueVT = Val.getValueType();
254   unsigned PartBits = PartVT.getSizeInBits();
255   unsigned OrigNumParts = NumParts;
256   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257 
258   if (!NumParts)
259     return;
260 
261   if (!ValueVT.isVector()) {
262     if (PartVT == ValueVT) {
263       assert(NumParts == 1 && "No-op copy with multiple parts!");
264       Parts[0] = Val;
265       return;
266     }
267 
268     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269       // If the parts cover more bits than the value has, promote the value.
270       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271         assert(NumParts == 1 && "Do not know what to promote to!");
272         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276       } else {
277         llvm_unreachable("Unknown mismatch!");
278       }
279     } else if (PartBits == ValueVT.getSizeInBits()) {
280       // Different types of the same size.
281       assert(NumParts == 1 && PartVT != ValueVT);
282       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284       // If the parts cover less bits than value has, truncate the value.
285       if (PartVT.isInteger() && ValueVT.isInteger()) {
286         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288       } else {
289         llvm_unreachable("Unknown mismatch!");
290       }
291     }
292 
293     // The value may have changed - recompute ValueVT.
294     ValueVT = Val.getValueType();
295     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296            "Failed to tile the value with PartVT!");
297 
298     if (NumParts == 1) {
299       assert(PartVT == ValueVT && "Type conversion failed!");
300       Parts[0] = Val;
301       return;
302     }
303 
304     // Expand the value into multiple parts.
305     if (NumParts & (NumParts - 1)) {
306       // The number of parts is not a power of 2.  Split off and copy the tail.
307       assert(PartVT.isInteger() && ValueVT.isInteger() &&
308              "Do not know what to expand to!");
309       unsigned RoundParts = 1 << Log2_32(NumParts);
310       unsigned RoundBits = RoundParts * PartBits;
311       unsigned OddParts = NumParts - RoundParts;
312       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                    DAG.getConstant(RoundBits,
314                                                    TLI.getPointerTy()));
315       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                      OddParts, PartVT);
317 
318       if (TLI.isBigEndian())
319         // The odd parts were reversed by getCopyToParts - unreverse them.
320         std::reverse(Parts + RoundParts, Parts + NumParts);
321 
322       NumParts = RoundParts;
323       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325     }
326 
327     // The number of parts is a power of 2.  Repeatedly bisect the value using
328     // EXTRACT_ELEMENT.
329     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                            EVT::getIntegerVT(*DAG.getContext(),
331                                              ValueVT.getSizeInBits()),
332                            Val);
333 
334     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335       for (unsigned i = 0; i < NumParts; i += StepSize) {
336         unsigned ThisBits = StepSize * PartBits / 2;
337         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338         SDValue &Part0 = Parts[i];
339         SDValue &Part1 = Parts[i+StepSize/2];
340 
341         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                             ThisVT, Part0,
343                             DAG.getConstant(1, PtrVT));
344         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                             ThisVT, Part0,
346                             DAG.getConstant(0, PtrVT));
347 
348         if (ThisBits == PartBits && ThisVT != PartVT) {
349           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                 PartVT, Part0);
351           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                 PartVT, Part1);
353         }
354       }
355     }
356 
357     if (TLI.isBigEndian())
358       std::reverse(Parts, Parts + OrigNumParts);
359 
360     return;
361   }
362 
363   // Vector ValueVT.
364   if (NumParts == 1) {
365     if (PartVT != ValueVT) {
366       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368       } else {
369         assert(ValueVT.getVectorElementType() == PartVT &&
370                ValueVT.getVectorNumElements() == 1 &&
371                "Only trivial vector-to-scalar conversions should get here!");
372         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                           PartVT, Val,
374                           DAG.getConstant(0, PtrVT));
375       }
376     }
377 
378     Parts[0] = Val;
379     return;
380   }
381 
382   // Handle a multi-element vector.
383   EVT IntermediateVT, RegisterVT;
384   unsigned NumIntermediates;
385   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                               IntermediateVT, NumIntermediates, RegisterVT);
387   unsigned NumElements = ValueVT.getVectorNumElements();
388 
389   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390   NumParts = NumRegs; // Silence a compiler warning.
391   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392 
393   // Split the vector into intermediate operands.
394   SmallVector<SDValue, 8> Ops(NumIntermediates);
395   for (unsigned i = 0; i != NumIntermediates; ++i) {
396     if (IntermediateVT.isVector())
397       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                            IntermediateVT, Val,
399                            DAG.getConstant(i * (NumElements / NumIntermediates),
400                                            PtrVT));
401     else
402       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                            IntermediateVT, Val,
404                            DAG.getConstant(i, PtrVT));
405   }
406 
407   // Split the intermediate operands into legal parts.
408   if (NumParts == NumIntermediates) {
409     // If the register was not expanded, promote or copy the value,
410     // as appropriate.
411     for (unsigned i = 0; i != NumParts; ++i)
412       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413   } else if (NumParts > 0) {
414     // If the intermediate type was expanded, split each the value into
415     // legal parts.
416     assert(NumParts % NumIntermediates == 0 &&
417            "Must expand into a divisible number of parts!");
418     unsigned Factor = NumParts / NumIntermediates;
419     for (unsigned i = 0; i != NumIntermediates; ++i)
420       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421   }
422 }
423 
424 namespace {
425   /// RegsForValue - This struct represents the registers (physical or virtual)
426   /// that a particular set of values is assigned, and the type information
427   /// about the value. The most common situation is to represent one value at a
428   /// time, but struct or array values are handled element-wise as multiple
429   /// values.  The splitting of aggregates is performed recursively, so that we
430   /// never have aggregate-typed registers. The values at this point do not
431   /// necessarily have legal types, so each value may require one or more
432   /// registers of some legal type.
433   ///
434   struct RegsForValue {
435     /// ValueVTs - The value types of the values, which may not be legal, and
436     /// may need be promoted or synthesized from one or more registers.
437     ///
438     SmallVector<EVT, 4> ValueVTs;
439 
440     /// RegVTs - The value types of the registers. This is the same size as
441     /// ValueVTs and it records, for each value, what the type of the assigned
442     /// register or registers are. (Individual values are never synthesized
443     /// from more than one type of register.)
444     ///
445     /// With virtual registers, the contents of RegVTs is redundant with TLI's
446     /// getRegisterType member function, however when with physical registers
447     /// it is necessary to have a separate record of the types.
448     ///
449     SmallVector<EVT, 4> RegVTs;
450 
451     /// Regs - This list holds the registers assigned to the values.
452     /// Each legal or promoted value requires one register, and each
453     /// expanded value requires multiple registers.
454     ///
455     SmallVector<unsigned, 4> Regs;
456 
457     RegsForValue() {}
458 
459     RegsForValue(const SmallVector<unsigned, 4> &regs,
460                  EVT regvt, EVT valuevt)
461       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462 
463     RegsForValue(const SmallVector<unsigned, 4> &regs,
464                  const SmallVector<EVT, 4> &regvts,
465                  const SmallVector<EVT, 4> &valuevts)
466       : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467 
468     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                  unsigned Reg, const Type *Ty) {
470       ComputeValueVTs(tli, Ty, ValueVTs);
471 
472       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473         EVT ValueVT = ValueVTs[Value];
474         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476         for (unsigned i = 0; i != NumRegs; ++i)
477           Regs.push_back(Reg + i);
478         RegVTs.push_back(RegisterVT);
479         Reg += NumRegs;
480       }
481     }
482 
483     /// areValueTypesLegal - Return true if types of all the values are legal.
484     bool areValueTypesLegal(const TargetLowering &TLI) {
485       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486         EVT RegisterVT = RegVTs[Value];
487         if (!TLI.isTypeLegal(RegisterVT))
488           return false;
489       }
490       return true;
491     }
492 
493     /// append - Add the specified values to this one.
494     void append(const RegsForValue &RHS) {
495       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498     }
499 
500     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501     /// this value and returns the result as a ValueVTs value.  This uses
502     /// Chain/Flag as the input and updates them for the output Chain/Flag.
503     /// If the Flag pointer is NULL, no flag is used.
504     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                             DebugLoc dl,
506                             SDValue &Chain, SDValue *Flag) const;
507 
508     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509     /// specified value into the registers specified by this object.  This uses
510     /// Chain/Flag as the input and updates them for the output Chain/Flag.
511     /// If the Flag pointer is NULL, no flag is used.
512     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                        SDValue &Chain, SDValue *Flag) const;
514 
515     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516     /// operand list.  This adds the code marker, matching input operand index
517     /// (if applicable), and includes the number of values added into it.
518     void AddInlineAsmOperands(unsigned Kind,
519                               bool HasMatching, unsigned MatchingIdx,
520                               SelectionDAG &DAG,
521                               std::vector<SDValue> &Ops) const;
522   };
523 }
524 
525 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526 /// this value and returns the result as a ValueVT value.  This uses
527 /// Chain/Flag as the input and updates them for the output Chain/Flag.
528 /// If the Flag pointer is NULL, no flag is used.
529 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                       FunctionLoweringInfo &FuncInfo,
531                                       DebugLoc dl,
532                                       SDValue &Chain, SDValue *Flag) const {
533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534 
535   // Assemble the legal parts into the final values.
536   SmallVector<SDValue, 4> Values(ValueVTs.size());
537   SmallVector<SDValue, 8> Parts;
538   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539     // Copy the legal parts from the registers.
540     EVT ValueVT = ValueVTs[Value];
541     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542     EVT RegisterVT = RegVTs[Value];
543 
544     Parts.resize(NumRegs);
545     for (unsigned i = 0; i != NumRegs; ++i) {
546       SDValue P;
547       if (Flag == 0) {
548         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549       } else {
550         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551         *Flag = P.getValue(2);
552       }
553 
554       Chain = P.getValue(1);
555 
556       // If the source register was virtual and if we know something about it,
557       // add an assert node.
558       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559           RegisterVT.isInteger() && !RegisterVT.isVector()) {
560         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561         if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562           const FunctionLoweringInfo::LiveOutInfo &LOI =
563             FuncInfo.LiveOutRegInfo[SlotNo];
564 
565           unsigned RegSize = RegisterVT.getSizeInBits();
566           unsigned NumSignBits = LOI.NumSignBits;
567           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568 
569           // FIXME: We capture more information than the dag can represent.  For
570           // now, just use the tightest assertzext/assertsext possible.
571           bool isSExt = true;
572           EVT FromVT(MVT::Other);
573           if (NumSignBits == RegSize)
574             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575           else if (NumZeroBits >= RegSize-1)
576             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577           else if (NumSignBits > RegSize-8)
578             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579           else if (NumZeroBits >= RegSize-8)
580             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581           else if (NumSignBits > RegSize-16)
582             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583           else if (NumZeroBits >= RegSize-16)
584             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585           else if (NumSignBits > RegSize-32)
586             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587           else if (NumZeroBits >= RegSize-32)
588             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589 
590           if (FromVT != MVT::Other)
591             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                             RegisterVT, P, DAG.getValueType(FromVT));
593         }
594       }
595 
596       Parts[i] = P;
597     }
598 
599     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                      NumRegs, RegisterVT, ValueVT);
601     Part += NumRegs;
602     Parts.clear();
603   }
604 
605   return DAG.getNode(ISD::MERGE_VALUES, dl,
606                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                      &Values[0], ValueVTs.size());
608 }
609 
610 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611 /// specified value into the registers specified by this object.  This uses
612 /// Chain/Flag as the input and updates them for the output Chain/Flag.
613 /// If the Flag pointer is NULL, no flag is used.
614 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                  SDValue &Chain, SDValue *Flag) const {
616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617 
618   // Get the list of the values's legal parts.
619   unsigned NumRegs = Regs.size();
620   SmallVector<SDValue, 8> Parts(NumRegs);
621   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622     EVT ValueVT = ValueVTs[Value];
623     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624     EVT RegisterVT = RegVTs[Value];
625 
626     getCopyToParts(DAG, dl,
627                    Val.getValue(Val.getResNo() + Value),
628                    &Parts[Part], NumParts, RegisterVT);
629     Part += NumParts;
630   }
631 
632   // Copy the parts into the registers.
633   SmallVector<SDValue, 8> Chains(NumRegs);
634   for (unsigned i = 0; i != NumRegs; ++i) {
635     SDValue Part;
636     if (Flag == 0) {
637       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638     } else {
639       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640       *Flag = Part.getValue(1);
641     }
642 
643     Chains[i] = Part.getValue(0);
644   }
645 
646   if (NumRegs == 1 || Flag)
647     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648     // flagged to it. That is the CopyToReg nodes and the user are considered
649     // a single scheduling unit. If we create a TokenFactor and return it as
650     // chain, then the TokenFactor is both a predecessor (operand) of the
651     // user as well as a successor (the TF operands are flagged to the user).
652     // c1, f1 = CopyToReg
653     // c2, f2 = CopyToReg
654     // c3     = TokenFactor c1, c2
655     // ...
656     //        = op c3, ..., f2
657     Chain = Chains[NumRegs-1];
658   else
659     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660 }
661 
662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663 /// operand list.  This adds the code marker and includes the number of
664 /// values added into it.
665 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                         unsigned MatchingIdx,
667                                         SelectionDAG &DAG,
668                                         std::vector<SDValue> &Ops) const {
669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670 
671   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672   if (HasMatching)
673     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675   Ops.push_back(Res);
676 
677   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679     EVT RegisterVT = RegVTs[Value];
680     for (unsigned i = 0; i != NumRegs; ++i) {
681       assert(Reg < Regs.size() && "Mismatch in # registers expected");
682       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683     }
684   }
685 }
686 
687 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688   AA = &aa;
689   GFI = gfi;
690   TD = DAG.getTarget().getTargetData();
691 }
692 
693 /// clear - Clear out the current SelectionDAG and the associated
694 /// state and prepare this SelectionDAGBuilder object to be used
695 /// for a new block. This doesn't clear out information about
696 /// additional blocks that are needed to complete switch lowering
697 /// or PHI node updating; that information is cleared out as it is
698 /// consumed.
699 void SelectionDAGBuilder::clear() {
700   NodeMap.clear();
701   UnusedArgNodeMap.clear();
702   PendingLoads.clear();
703   PendingExports.clear();
704   CurDebugLoc = DebugLoc();
705   HasTailCall = false;
706 }
707 
708 /// getRoot - Return the current virtual root of the Selection DAG,
709 /// flushing any PendingLoad items. This must be done before emitting
710 /// a store or any other node that may need to be ordered after any
711 /// prior load instructions.
712 ///
713 SDValue SelectionDAGBuilder::getRoot() {
714   if (PendingLoads.empty())
715     return DAG.getRoot();
716 
717   if (PendingLoads.size() == 1) {
718     SDValue Root = PendingLoads[0];
719     DAG.setRoot(Root);
720     PendingLoads.clear();
721     return Root;
722   }
723 
724   // Otherwise, we have to make a token factor node.
725   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                                &PendingLoads[0], PendingLoads.size());
727   PendingLoads.clear();
728   DAG.setRoot(Root);
729   return Root;
730 }
731 
732 /// getControlRoot - Similar to getRoot, but instead of flushing all the
733 /// PendingLoad items, flush all the PendingExports items. It is necessary
734 /// to do this before emitting a terminator instruction.
735 ///
736 SDValue SelectionDAGBuilder::getControlRoot() {
737   SDValue Root = DAG.getRoot();
738 
739   if (PendingExports.empty())
740     return Root;
741 
742   // Turn all of the CopyToReg chains into one factored node.
743   if (Root.getOpcode() != ISD::EntryToken) {
744     unsigned i = 0, e = PendingExports.size();
745     for (; i != e; ++i) {
746       assert(PendingExports[i].getNode()->getNumOperands() > 1);
747       if (PendingExports[i].getNode()->getOperand(0) == Root)
748         break;  // Don't add the root if we already indirectly depend on it.
749     }
750 
751     if (i == e)
752       PendingExports.push_back(Root);
753   }
754 
755   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                      &PendingExports[0],
757                      PendingExports.size());
758   PendingExports.clear();
759   DAG.setRoot(Root);
760   return Root;
761 }
762 
763 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765   DAG.AssignOrdering(Node, SDNodeOrder);
766 
767   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768     AssignOrderingToNode(Node->getOperand(I).getNode());
769 }
770 
771 void SelectionDAGBuilder::visit(const Instruction &I) {
772   // Set up outgoing PHI node register values before emitting the terminator.
773   if (isa<TerminatorInst>(&I))
774     HandlePHINodesInSuccessorBlocks(I.getParent());
775 
776   CurDebugLoc = I.getDebugLoc();
777 
778   visit(I.getOpcode(), I);
779 
780   if (!isa<TerminatorInst>(&I) && !HasTailCall)
781     CopyToExportRegsIfNeeded(&I);
782 
783   CurDebugLoc = DebugLoc();
784 }
785 
786 void SelectionDAGBuilder::visitPHI(const PHINode &) {
787   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788 }
789 
790 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791   // Note: this doesn't use InstVisitor, because it has to work with
792   // ConstantExpr's in addition to instructions.
793   switch (Opcode) {
794   default: llvm_unreachable("Unknown instruction type encountered!");
795     // Build the switch statement using the Instruction.def file.
796 #define HANDLE_INST(NUM, OPCODE, CLASS) \
797     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798 #include "llvm/Instruction.def"
799   }
800 
801   // Assign the ordering to the freshly created DAG nodes.
802   if (NodeMap.count(&I)) {
803     ++SDNodeOrder;
804     AssignOrderingToNode(getValue(&I).getNode());
805   }
806 }
807 
808 SDValue SelectionDAGBuilder::getValue(const Value *V) {
809   SDValue &N = NodeMap[V];
810   if (N.getNode()) return N;
811 
812   if (const Constant *C = dyn_cast<Constant>(V)) {
813     EVT VT = TLI.getValueType(V->getType(), true);
814 
815     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
816       return N = DAG.getConstant(*CI, VT);
817 
818     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
819       return N = DAG.getGlobalAddress(GV, VT);
820 
821     if (isa<ConstantPointerNull>(C))
822       return N = DAG.getConstant(0, TLI.getPointerTy());
823 
824     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
825       return N = DAG.getConstantFP(*CFP, VT);
826 
827     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
828       return N = DAG.getUNDEF(VT);
829 
830     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
831       visit(CE->getOpcode(), *CE);
832       SDValue N1 = NodeMap[V];
833       assert(N1.getNode() && "visit didn't populate the NodeMap!");
834       return N1;
835     }
836 
837     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
838       SmallVector<SDValue, 4> Constants;
839       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
840            OI != OE; ++OI) {
841         SDNode *Val = getValue(*OI).getNode();
842         // If the operand is an empty aggregate, there are no values.
843         if (!Val) continue;
844         // Add each leaf value from the operand to the Constants list
845         // to form a flattened list of all the values.
846         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
847           Constants.push_back(SDValue(Val, i));
848       }
849 
850       return DAG.getMergeValues(&Constants[0], Constants.size(),
851                                 getCurDebugLoc());
852     }
853 
854     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
855       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
856              "Unknown struct or array constant!");
857 
858       SmallVector<EVT, 4> ValueVTs;
859       ComputeValueVTs(TLI, C->getType(), ValueVTs);
860       unsigned NumElts = ValueVTs.size();
861       if (NumElts == 0)
862         return SDValue(); // empty struct
863       SmallVector<SDValue, 4> Constants(NumElts);
864       for (unsigned i = 0; i != NumElts; ++i) {
865         EVT EltVT = ValueVTs[i];
866         if (isa<UndefValue>(C))
867           Constants[i] = DAG.getUNDEF(EltVT);
868         else if (EltVT.isFloatingPoint())
869           Constants[i] = DAG.getConstantFP(0, EltVT);
870         else
871           Constants[i] = DAG.getConstant(0, EltVT);
872       }
873 
874       return DAG.getMergeValues(&Constants[0], NumElts,
875                                 getCurDebugLoc());
876     }
877 
878     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
879       return DAG.getBlockAddress(BA, VT);
880 
881     const VectorType *VecTy = cast<VectorType>(V->getType());
882     unsigned NumElements = VecTy->getNumElements();
883 
884     // Now that we know the number and type of the elements, get that number of
885     // elements into the Ops array based on what kind of constant it is.
886     SmallVector<SDValue, 16> Ops;
887     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
888       for (unsigned i = 0; i != NumElements; ++i)
889         Ops.push_back(getValue(CP->getOperand(i)));
890     } else {
891       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
892       EVT EltVT = TLI.getValueType(VecTy->getElementType());
893 
894       SDValue Op;
895       if (EltVT.isFloatingPoint())
896         Op = DAG.getConstantFP(0, EltVT);
897       else
898         Op = DAG.getConstant(0, EltVT);
899       Ops.assign(NumElements, Op);
900     }
901 
902     // Create a BUILD_VECTOR node.
903     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
904                                     VT, &Ops[0], Ops.size());
905   }
906 
907   // If this is a static alloca, generate it as the frameindex instead of
908   // computation.
909   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
910     DenseMap<const AllocaInst*, int>::iterator SI =
911       FuncInfo.StaticAllocaMap.find(AI);
912     if (SI != FuncInfo.StaticAllocaMap.end())
913       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
914   }
915 
916   unsigned InReg = FuncInfo.ValueMap[V];
917   assert(InReg && "Value not in map!");
918 
919   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
920   SDValue Chain = DAG.getEntryNode();
921   return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
922 }
923 
924 /// Get the EVTs and ArgFlags collections that represent the legalized return
925 /// type of the given function.  This does not require a DAG or a return value,
926 /// and is suitable for use before any DAGs for the function are constructed.
927 static void getReturnInfo(const Type* ReturnType,
928                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
929                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
930                    const TargetLowering &TLI,
931                    SmallVectorImpl<uint64_t> *Offsets = 0) {
932   SmallVector<EVT, 4> ValueVTs;
933   ComputeValueVTs(TLI, ReturnType, ValueVTs);
934   unsigned NumValues = ValueVTs.size();
935   if (NumValues == 0) return;
936   unsigned Offset = 0;
937 
938   for (unsigned j = 0, f = NumValues; j != f; ++j) {
939     EVT VT = ValueVTs[j];
940     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
941 
942     if (attr & Attribute::SExt)
943       ExtendKind = ISD::SIGN_EXTEND;
944     else if (attr & Attribute::ZExt)
945       ExtendKind = ISD::ZERO_EXTEND;
946 
947     // FIXME: C calling convention requires the return type to be promoted to
948     // at least 32-bit. But this is not necessary for non-C calling
949     // conventions. The frontend should mark functions whose return values
950     // require promoting with signext or zeroext attributes.
951     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
952       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
953       if (VT.bitsLT(MinVT))
954         VT = MinVT;
955     }
956 
957     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
958     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
959     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
960                         PartVT.getTypeForEVT(ReturnType->getContext()));
961 
962     // 'inreg' on function refers to return value
963     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
964     if (attr & Attribute::InReg)
965       Flags.setInReg();
966 
967     // Propagate extension type if any
968     if (attr & Attribute::SExt)
969       Flags.setSExt();
970     else if (attr & Attribute::ZExt)
971       Flags.setZExt();
972 
973     for (unsigned i = 0; i < NumParts; ++i) {
974       OutVTs.push_back(PartVT);
975       OutFlags.push_back(Flags);
976       if (Offsets)
977       {
978         Offsets->push_back(Offset);
979         Offset += PartSize;
980       }
981     }
982   }
983 }
984 
985 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
986   SDValue Chain = getControlRoot();
987   SmallVector<ISD::OutputArg, 8> Outs;
988 
989   if (!FuncInfo.CanLowerReturn) {
990     unsigned DemoteReg = FuncInfo.DemoteRegister;
991     const Function *F = I.getParent()->getParent();
992 
993     // Emit a store of the return value through the virtual register.
994     // Leave Outs empty so that LowerReturn won't try to load return
995     // registers the usual way.
996     SmallVector<EVT, 1> PtrValueVTs;
997     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
998                     PtrValueVTs);
999 
1000     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1001     SDValue RetOp = getValue(I.getOperand(0));
1002 
1003     SmallVector<EVT, 4> ValueVTs;
1004     SmallVector<uint64_t, 4> Offsets;
1005     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1006     unsigned NumValues = ValueVTs.size();
1007 
1008     SmallVector<SDValue, 4> Chains(NumValues);
1009     EVT PtrVT = PtrValueVTs[0];
1010     for (unsigned i = 0; i != NumValues; ++i) {
1011       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1012                                 DAG.getConstant(Offsets[i], PtrVT));
1013       Chains[i] =
1014         DAG.getStore(Chain, getCurDebugLoc(),
1015                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1016                      Add, NULL, Offsets[i], false, false, 0);
1017     }
1018 
1019     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1020                         MVT::Other, &Chains[0], NumValues);
1021   } else if (I.getNumOperands() != 0) {
1022     SmallVector<EVT, 4> ValueVTs;
1023     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1024     unsigned NumValues = ValueVTs.size();
1025     if (NumValues) {
1026       SDValue RetOp = getValue(I.getOperand(0));
1027       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1028         EVT VT = ValueVTs[j];
1029 
1030         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1031 
1032         const Function *F = I.getParent()->getParent();
1033         if (F->paramHasAttr(0, Attribute::SExt))
1034           ExtendKind = ISD::SIGN_EXTEND;
1035         else if (F->paramHasAttr(0, Attribute::ZExt))
1036           ExtendKind = ISD::ZERO_EXTEND;
1037 
1038         // FIXME: C calling convention requires the return type to be promoted
1039         // to at least 32-bit. But this is not necessary for non-C calling
1040         // conventions. The frontend should mark functions whose return values
1041         // require promoting with signext or zeroext attributes.
1042         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1043           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1044           if (VT.bitsLT(MinVT))
1045             VT = MinVT;
1046         }
1047 
1048         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1049         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1050         SmallVector<SDValue, 4> Parts(NumParts);
1051         getCopyToParts(DAG, getCurDebugLoc(),
1052                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1053                        &Parts[0], NumParts, PartVT, ExtendKind);
1054 
1055         // 'inreg' on function refers to return value
1056         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1057         if (F->paramHasAttr(0, Attribute::InReg))
1058           Flags.setInReg();
1059 
1060         // Propagate extension type if any
1061         if (F->paramHasAttr(0, Attribute::SExt))
1062           Flags.setSExt();
1063         else if (F->paramHasAttr(0, Attribute::ZExt))
1064           Flags.setZExt();
1065 
1066         for (unsigned i = 0; i < NumParts; ++i)
1067           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1068       }
1069     }
1070   }
1071 
1072   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1073   CallingConv::ID CallConv =
1074     DAG.getMachineFunction().getFunction()->getCallingConv();
1075   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1076                           Outs, getCurDebugLoc(), DAG);
1077 
1078   // Verify that the target's LowerReturn behaved as expected.
1079   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1080          "LowerReturn didn't return a valid chain!");
1081 
1082   // Update the DAG with the new chain value resulting from return lowering.
1083   DAG.setRoot(Chain);
1084 }
1085 
1086 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1087 /// created for it, emit nodes to copy the value into the virtual
1088 /// registers.
1089 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1090   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1091   if (VMI != FuncInfo.ValueMap.end()) {
1092     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1093     CopyValueToVirtualRegister(V, VMI->second);
1094   }
1095 }
1096 
1097 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1098 /// the current basic block, add it to ValueMap now so that we'll get a
1099 /// CopyTo/FromReg.
1100 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1101   // No need to export constants.
1102   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1103 
1104   // Already exported?
1105   if (FuncInfo.isExportedInst(V)) return;
1106 
1107   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1108   CopyValueToVirtualRegister(V, Reg);
1109 }
1110 
1111 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1112                                                      const BasicBlock *FromBB) {
1113   // The operands of the setcc have to be in this block.  We don't know
1114   // how to export them from some other block.
1115   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1116     // Can export from current BB.
1117     if (VI->getParent() == FromBB)
1118       return true;
1119 
1120     // Is already exported, noop.
1121     return FuncInfo.isExportedInst(V);
1122   }
1123 
1124   // If this is an argument, we can export it if the BB is the entry block or
1125   // if it is already exported.
1126   if (isa<Argument>(V)) {
1127     if (FromBB == &FromBB->getParent()->getEntryBlock())
1128       return true;
1129 
1130     // Otherwise, can only export this if it is already exported.
1131     return FuncInfo.isExportedInst(V);
1132   }
1133 
1134   // Otherwise, constants can always be exported.
1135   return true;
1136 }
1137 
1138 static bool InBlock(const Value *V, const BasicBlock *BB) {
1139   if (const Instruction *I = dyn_cast<Instruction>(V))
1140     return I->getParent() == BB;
1141   return true;
1142 }
1143 
1144 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1145 /// This function emits a branch and is used at the leaves of an OR or an
1146 /// AND operator tree.
1147 ///
1148 void
1149 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1150                                                   MachineBasicBlock *TBB,
1151                                                   MachineBasicBlock *FBB,
1152                                                   MachineBasicBlock *CurBB,
1153                                                   MachineBasicBlock *SwitchBB) {
1154   const BasicBlock *BB = CurBB->getBasicBlock();
1155 
1156   // If the leaf of the tree is a comparison, merge the condition into
1157   // the caseblock.
1158   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1159     // The operands of the cmp have to be in this block.  We don't know
1160     // how to export them from some other block.  If this is the first block
1161     // of the sequence, no exporting is needed.
1162     if (CurBB == SwitchBB ||
1163         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1164          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1165       ISD::CondCode Condition;
1166       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1167         Condition = getICmpCondCode(IC->getPredicate());
1168       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1169         Condition = getFCmpCondCode(FC->getPredicate());
1170       } else {
1171         Condition = ISD::SETEQ; // silence warning.
1172         llvm_unreachable("Unknown compare instruction");
1173       }
1174 
1175       CaseBlock CB(Condition, BOp->getOperand(0),
1176                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1177       SwitchCases.push_back(CB);
1178       return;
1179     }
1180   }
1181 
1182   // Create a CaseBlock record representing this branch.
1183   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1184                NULL, TBB, FBB, CurBB);
1185   SwitchCases.push_back(CB);
1186 }
1187 
1188 /// FindMergedConditions - If Cond is an expression like
1189 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1190                                                MachineBasicBlock *TBB,
1191                                                MachineBasicBlock *FBB,
1192                                                MachineBasicBlock *CurBB,
1193                                                MachineBasicBlock *SwitchBB,
1194                                                unsigned Opc) {
1195   // If this node is not part of the or/and tree, emit it as a branch.
1196   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1197   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1198       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1199       BOp->getParent() != CurBB->getBasicBlock() ||
1200       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1201       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1202     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1203     return;
1204   }
1205 
1206   //  Create TmpBB after CurBB.
1207   MachineFunction::iterator BBI = CurBB;
1208   MachineFunction &MF = DAG.getMachineFunction();
1209   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1210   CurBB->getParent()->insert(++BBI, TmpBB);
1211 
1212   if (Opc == Instruction::Or) {
1213     // Codegen X | Y as:
1214     //   jmp_if_X TBB
1215     //   jmp TmpBB
1216     // TmpBB:
1217     //   jmp_if_Y TBB
1218     //   jmp FBB
1219     //
1220 
1221     // Emit the LHS condition.
1222     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1223 
1224     // Emit the RHS condition into TmpBB.
1225     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1226   } else {
1227     assert(Opc == Instruction::And && "Unknown merge op!");
1228     // Codegen X & Y as:
1229     //   jmp_if_X TmpBB
1230     //   jmp FBB
1231     // TmpBB:
1232     //   jmp_if_Y TBB
1233     //   jmp FBB
1234     //
1235     //  This requires creation of TmpBB after CurBB.
1236 
1237     // Emit the LHS condition.
1238     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1239 
1240     // Emit the RHS condition into TmpBB.
1241     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1242   }
1243 }
1244 
1245 /// If the set of cases should be emitted as a series of branches, return true.
1246 /// If we should emit this as a bunch of and/or'd together conditions, return
1247 /// false.
1248 bool
1249 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1250   if (Cases.size() != 2) return true;
1251 
1252   // If this is two comparisons of the same values or'd or and'd together, they
1253   // will get folded into a single comparison, so don't emit two blocks.
1254   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1255        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1256       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1257        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1258     return false;
1259   }
1260 
1261   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1262   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1263   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1264       Cases[0].CC == Cases[1].CC &&
1265       isa<Constant>(Cases[0].CmpRHS) &&
1266       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1267     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1268       return false;
1269     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1270       return false;
1271   }
1272 
1273   return true;
1274 }
1275 
1276 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1277   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1278 
1279   // Update machine-CFG edges.
1280   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1281 
1282   // Figure out which block is immediately after the current one.
1283   MachineBasicBlock *NextBlock = 0;
1284   MachineFunction::iterator BBI = BrMBB;
1285   if (++BBI != FuncInfo.MF->end())
1286     NextBlock = BBI;
1287 
1288   if (I.isUnconditional()) {
1289     // Update machine-CFG edges.
1290     BrMBB->addSuccessor(Succ0MBB);
1291 
1292     // If this is not a fall-through branch, emit the branch.
1293     if (Succ0MBB != NextBlock)
1294       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1295                               MVT::Other, getControlRoot(),
1296                               DAG.getBasicBlock(Succ0MBB)));
1297 
1298     return;
1299   }
1300 
1301   // If this condition is one of the special cases we handle, do special stuff
1302   // now.
1303   const Value *CondVal = I.getCondition();
1304   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1305 
1306   // If this is a series of conditions that are or'd or and'd together, emit
1307   // this as a sequence of branches instead of setcc's with and/or operations.
1308   // For example, instead of something like:
1309   //     cmp A, B
1310   //     C = seteq
1311   //     cmp D, E
1312   //     F = setle
1313   //     or C, F
1314   //     jnz foo
1315   // Emit:
1316   //     cmp A, B
1317   //     je foo
1318   //     cmp D, E
1319   //     jle foo
1320   //
1321   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1322     if (BOp->hasOneUse() &&
1323         (BOp->getOpcode() == Instruction::And ||
1324          BOp->getOpcode() == Instruction::Or)) {
1325       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1326                            BOp->getOpcode());
1327       // If the compares in later blocks need to use values not currently
1328       // exported from this block, export them now.  This block should always
1329       // be the first entry.
1330       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1331 
1332       // Allow some cases to be rejected.
1333       if (ShouldEmitAsBranches(SwitchCases)) {
1334         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1335           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1336           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1337         }
1338 
1339         // Emit the branch for this block.
1340         visitSwitchCase(SwitchCases[0], BrMBB);
1341         SwitchCases.erase(SwitchCases.begin());
1342         return;
1343       }
1344 
1345       // Okay, we decided not to do this, remove any inserted MBB's and clear
1346       // SwitchCases.
1347       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1348         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1349 
1350       SwitchCases.clear();
1351     }
1352   }
1353 
1354   // Create a CaseBlock record representing this branch.
1355   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1356                NULL, Succ0MBB, Succ1MBB, BrMBB);
1357 
1358   // Use visitSwitchCase to actually insert the fast branch sequence for this
1359   // cond branch.
1360   visitSwitchCase(CB, BrMBB);
1361 }
1362 
1363 /// visitSwitchCase - Emits the necessary code to represent a single node in
1364 /// the binary search tree resulting from lowering a switch instruction.
1365 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1366                                           MachineBasicBlock *SwitchBB) {
1367   SDValue Cond;
1368   SDValue CondLHS = getValue(CB.CmpLHS);
1369   DebugLoc dl = getCurDebugLoc();
1370 
1371   // Build the setcc now.
1372   if (CB.CmpMHS == NULL) {
1373     // Fold "(X == true)" to X and "(X == false)" to !X to
1374     // handle common cases produced by branch lowering.
1375     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1376         CB.CC == ISD::SETEQ)
1377       Cond = CondLHS;
1378     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1379              CB.CC == ISD::SETEQ) {
1380       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1381       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1382     } else
1383       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1384   } else {
1385     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1386 
1387     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1388     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1389 
1390     SDValue CmpOp = getValue(CB.CmpMHS);
1391     EVT VT = CmpOp.getValueType();
1392 
1393     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1394       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1395                           ISD::SETLE);
1396     } else {
1397       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1398                                 VT, CmpOp, DAG.getConstant(Low, VT));
1399       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1400                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1401     }
1402   }
1403 
1404   // Update successor info
1405   SwitchBB->addSuccessor(CB.TrueBB);
1406   SwitchBB->addSuccessor(CB.FalseBB);
1407 
1408   // Set NextBlock to be the MBB immediately after the current one, if any.
1409   // This is used to avoid emitting unnecessary branches to the next block.
1410   MachineBasicBlock *NextBlock = 0;
1411   MachineFunction::iterator BBI = SwitchBB;
1412   if (++BBI != FuncInfo.MF->end())
1413     NextBlock = BBI;
1414 
1415   // If the lhs block is the next block, invert the condition so that we can
1416   // fall through to the lhs instead of the rhs block.
1417   if (CB.TrueBB == NextBlock) {
1418     std::swap(CB.TrueBB, CB.FalseBB);
1419     SDValue True = DAG.getConstant(1, Cond.getValueType());
1420     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1421   }
1422 
1423   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1424                                MVT::Other, getControlRoot(), Cond,
1425                                DAG.getBasicBlock(CB.TrueBB));
1426 
1427   // If the branch was constant folded, fix up the CFG.
1428   if (BrCond.getOpcode() == ISD::BR) {
1429     SwitchBB->removeSuccessor(CB.FalseBB);
1430   } else {
1431     // Otherwise, go ahead and insert the false branch.
1432     if (BrCond == getControlRoot())
1433       SwitchBB->removeSuccessor(CB.TrueBB);
1434 
1435     if (CB.FalseBB != NextBlock)
1436       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1437                            DAG.getBasicBlock(CB.FalseBB));
1438   }
1439 
1440   DAG.setRoot(BrCond);
1441 }
1442 
1443 /// visitJumpTable - Emit JumpTable node in the current MBB
1444 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1445   // Emit the code for the jump table
1446   assert(JT.Reg != -1U && "Should lower JT Header first!");
1447   EVT PTy = TLI.getPointerTy();
1448   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1449                                      JT.Reg, PTy);
1450   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1451   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1452                                     MVT::Other, Index.getValue(1),
1453                                     Table, Index);
1454   DAG.setRoot(BrJumpTable);
1455 }
1456 
1457 /// visitJumpTableHeader - This function emits necessary code to produce index
1458 /// in the JumpTable from switch case.
1459 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1460                                                JumpTableHeader &JTH,
1461                                                MachineBasicBlock *SwitchBB) {
1462   // Subtract the lowest switch case value from the value being switched on and
1463   // conditional branch to default mbb if the result is greater than the
1464   // difference between smallest and largest cases.
1465   SDValue SwitchOp = getValue(JTH.SValue);
1466   EVT VT = SwitchOp.getValueType();
1467   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1468                             DAG.getConstant(JTH.First, VT));
1469 
1470   // The SDNode we just created, which holds the value being switched on minus
1471   // the smallest case value, needs to be copied to a virtual register so it
1472   // can be used as an index into the jump table in a subsequent basic block.
1473   // This value may be smaller or larger than the target's pointer type, and
1474   // therefore require extension or truncating.
1475   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1476 
1477   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1478   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1479                                     JumpTableReg, SwitchOp);
1480   JT.Reg = JumpTableReg;
1481 
1482   // Emit the range check for the jump table, and branch to the default block
1483   // for the switch statement if the value being switched on exceeds the largest
1484   // case in the switch.
1485   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1486                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1487                              DAG.getConstant(JTH.Last-JTH.First,VT),
1488                              ISD::SETUGT);
1489 
1490   // Set NextBlock to be the MBB immediately after the current one, if any.
1491   // This is used to avoid emitting unnecessary branches to the next block.
1492   MachineBasicBlock *NextBlock = 0;
1493   MachineFunction::iterator BBI = SwitchBB;
1494 
1495   if (++BBI != FuncInfo.MF->end())
1496     NextBlock = BBI;
1497 
1498   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1499                                MVT::Other, CopyTo, CMP,
1500                                DAG.getBasicBlock(JT.Default));
1501 
1502   if (JT.MBB != NextBlock)
1503     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1504                          DAG.getBasicBlock(JT.MBB));
1505 
1506   DAG.setRoot(BrCond);
1507 }
1508 
1509 /// visitBitTestHeader - This function emits necessary code to produce value
1510 /// suitable for "bit tests"
1511 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1512                                              MachineBasicBlock *SwitchBB) {
1513   // Subtract the minimum value
1514   SDValue SwitchOp = getValue(B.SValue);
1515   EVT VT = SwitchOp.getValueType();
1516   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1517                             DAG.getConstant(B.First, VT));
1518 
1519   // Check range
1520   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1521                                   TLI.getSetCCResultType(Sub.getValueType()),
1522                                   Sub, DAG.getConstant(B.Range, VT),
1523                                   ISD::SETUGT);
1524 
1525   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1526                                        TLI.getPointerTy());
1527 
1528   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1529   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1530                                     B.Reg, ShiftOp);
1531 
1532   // Set NextBlock to be the MBB immediately after the current one, if any.
1533   // This is used to avoid emitting unnecessary branches to the next block.
1534   MachineBasicBlock *NextBlock = 0;
1535   MachineFunction::iterator BBI = SwitchBB;
1536   if (++BBI != FuncInfo.MF->end())
1537     NextBlock = BBI;
1538 
1539   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1540 
1541   SwitchBB->addSuccessor(B.Default);
1542   SwitchBB->addSuccessor(MBB);
1543 
1544   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1545                                 MVT::Other, CopyTo, RangeCmp,
1546                                 DAG.getBasicBlock(B.Default));
1547 
1548   if (MBB != NextBlock)
1549     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1550                           DAG.getBasicBlock(MBB));
1551 
1552   DAG.setRoot(BrRange);
1553 }
1554 
1555 /// visitBitTestCase - this function produces one "bit test"
1556 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1557                                            unsigned Reg,
1558                                            BitTestCase &B,
1559                                            MachineBasicBlock *SwitchBB) {
1560   // Make desired shift
1561   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1562                                        TLI.getPointerTy());
1563   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1564                                   TLI.getPointerTy(),
1565                                   DAG.getConstant(1, TLI.getPointerTy()),
1566                                   ShiftOp);
1567 
1568   // Emit bit tests and jumps
1569   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1570                               TLI.getPointerTy(), SwitchVal,
1571                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1572   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1573                                 TLI.getSetCCResultType(AndOp.getValueType()),
1574                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1575                                 ISD::SETNE);
1576 
1577   SwitchBB->addSuccessor(B.TargetBB);
1578   SwitchBB->addSuccessor(NextMBB);
1579 
1580   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1581                               MVT::Other, getControlRoot(),
1582                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1583 
1584   // Set NextBlock to be the MBB immediately after the current one, if any.
1585   // This is used to avoid emitting unnecessary branches to the next block.
1586   MachineBasicBlock *NextBlock = 0;
1587   MachineFunction::iterator BBI = SwitchBB;
1588   if (++BBI != FuncInfo.MF->end())
1589     NextBlock = BBI;
1590 
1591   if (NextMBB != NextBlock)
1592     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1593                         DAG.getBasicBlock(NextMBB));
1594 
1595   DAG.setRoot(BrAnd);
1596 }
1597 
1598 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1599   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1600 
1601   // Retrieve successors.
1602   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1603   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1604 
1605   const Value *Callee(I.getCalledValue());
1606   if (isa<InlineAsm>(Callee))
1607     visitInlineAsm(&I);
1608   else
1609     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1610 
1611   // If the value of the invoke is used outside of its defining block, make it
1612   // available as a virtual register.
1613   CopyToExportRegsIfNeeded(&I);
1614 
1615   // Update successor info
1616   InvokeMBB->addSuccessor(Return);
1617   InvokeMBB->addSuccessor(LandingPad);
1618 
1619   // Drop into normal successor.
1620   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1621                           MVT::Other, getControlRoot(),
1622                           DAG.getBasicBlock(Return)));
1623 }
1624 
1625 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1626 }
1627 
1628 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1629 /// small case ranges).
1630 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1631                                                  CaseRecVector& WorkList,
1632                                                  const Value* SV,
1633                                                  MachineBasicBlock *Default,
1634                                                  MachineBasicBlock *SwitchBB) {
1635   Case& BackCase  = *(CR.Range.second-1);
1636 
1637   // Size is the number of Cases represented by this range.
1638   size_t Size = CR.Range.second - CR.Range.first;
1639   if (Size > 3)
1640     return false;
1641 
1642   // Get the MachineFunction which holds the current MBB.  This is used when
1643   // inserting any additional MBBs necessary to represent the switch.
1644   MachineFunction *CurMF = FuncInfo.MF;
1645 
1646   // Figure out which block is immediately after the current one.
1647   MachineBasicBlock *NextBlock = 0;
1648   MachineFunction::iterator BBI = CR.CaseBB;
1649 
1650   if (++BBI != FuncInfo.MF->end())
1651     NextBlock = BBI;
1652 
1653   // TODO: If any two of the cases has the same destination, and if one value
1654   // is the same as the other, but has one bit unset that the other has set,
1655   // use bit manipulation to do two compares at once.  For example:
1656   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1657 
1658   // Rearrange the case blocks so that the last one falls through if possible.
1659   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1660     // The last case block won't fall through into 'NextBlock' if we emit the
1661     // branches in this order.  See if rearranging a case value would help.
1662     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1663       if (I->BB == NextBlock) {
1664         std::swap(*I, BackCase);
1665         break;
1666       }
1667     }
1668   }
1669 
1670   // Create a CaseBlock record representing a conditional branch to
1671   // the Case's target mbb if the value being switched on SV is equal
1672   // to C.
1673   MachineBasicBlock *CurBlock = CR.CaseBB;
1674   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1675     MachineBasicBlock *FallThrough;
1676     if (I != E-1) {
1677       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1678       CurMF->insert(BBI, FallThrough);
1679 
1680       // Put SV in a virtual register to make it available from the new blocks.
1681       ExportFromCurrentBlock(SV);
1682     } else {
1683       // If the last case doesn't match, go to the default block.
1684       FallThrough = Default;
1685     }
1686 
1687     const Value *RHS, *LHS, *MHS;
1688     ISD::CondCode CC;
1689     if (I->High == I->Low) {
1690       // This is just small small case range :) containing exactly 1 case
1691       CC = ISD::SETEQ;
1692       LHS = SV; RHS = I->High; MHS = NULL;
1693     } else {
1694       CC = ISD::SETLE;
1695       LHS = I->Low; MHS = SV; RHS = I->High;
1696     }
1697     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1698 
1699     // If emitting the first comparison, just call visitSwitchCase to emit the
1700     // code into the current block.  Otherwise, push the CaseBlock onto the
1701     // vector to be later processed by SDISel, and insert the node's MBB
1702     // before the next MBB.
1703     if (CurBlock == SwitchBB)
1704       visitSwitchCase(CB, SwitchBB);
1705     else
1706       SwitchCases.push_back(CB);
1707 
1708     CurBlock = FallThrough;
1709   }
1710 
1711   return true;
1712 }
1713 
1714 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1715   return !DisableJumpTables &&
1716           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1717            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1718 }
1719 
1720 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1721   APInt LastExt(Last), FirstExt(First);
1722   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1723   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1724   return (LastExt - FirstExt + 1ULL);
1725 }
1726 
1727 /// handleJTSwitchCase - Emit jumptable for current switch case range
1728 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1729                                              CaseRecVector& WorkList,
1730                                              const Value* SV,
1731                                              MachineBasicBlock* Default,
1732                                              MachineBasicBlock *SwitchBB) {
1733   Case& FrontCase = *CR.Range.first;
1734   Case& BackCase  = *(CR.Range.second-1);
1735 
1736   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1737   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1738 
1739   APInt TSize(First.getBitWidth(), 0);
1740   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1741        I!=E; ++I)
1742     TSize += I->size();
1743 
1744   if (!areJTsAllowed(TLI) || TSize.ult(4))
1745     return false;
1746 
1747   APInt Range = ComputeRange(First, Last);
1748   double Density = TSize.roundToDouble() / Range.roundToDouble();
1749   if (Density < 0.4)
1750     return false;
1751 
1752   DEBUG(dbgs() << "Lowering jump table\n"
1753                << "First entry: " << First << ". Last entry: " << Last << '\n'
1754                << "Range: " << Range
1755                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1756 
1757   // Get the MachineFunction which holds the current MBB.  This is used when
1758   // inserting any additional MBBs necessary to represent the switch.
1759   MachineFunction *CurMF = FuncInfo.MF;
1760 
1761   // Figure out which block is immediately after the current one.
1762   MachineFunction::iterator BBI = CR.CaseBB;
1763   ++BBI;
1764 
1765   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1766 
1767   // Create a new basic block to hold the code for loading the address
1768   // of the jump table, and jumping to it.  Update successor information;
1769   // we will either branch to the default case for the switch, or the jump
1770   // table.
1771   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1772   CurMF->insert(BBI, JumpTableBB);
1773   CR.CaseBB->addSuccessor(Default);
1774   CR.CaseBB->addSuccessor(JumpTableBB);
1775 
1776   // Build a vector of destination BBs, corresponding to each target
1777   // of the jump table. If the value of the jump table slot corresponds to
1778   // a case statement, push the case's BB onto the vector, otherwise, push
1779   // the default BB.
1780   std::vector<MachineBasicBlock*> DestBBs;
1781   APInt TEI = First;
1782   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1783     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1784     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1785 
1786     if (Low.sle(TEI) && TEI.sle(High)) {
1787       DestBBs.push_back(I->BB);
1788       if (TEI==High)
1789         ++I;
1790     } else {
1791       DestBBs.push_back(Default);
1792     }
1793   }
1794 
1795   // Update successor info. Add one edge to each unique successor.
1796   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1797   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1798          E = DestBBs.end(); I != E; ++I) {
1799     if (!SuccsHandled[(*I)->getNumber()]) {
1800       SuccsHandled[(*I)->getNumber()] = true;
1801       JumpTableBB->addSuccessor(*I);
1802     }
1803   }
1804 
1805   // Create a jump table index for this jump table.
1806   unsigned JTEncoding = TLI.getJumpTableEncoding();
1807   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1808                        ->createJumpTableIndex(DestBBs);
1809 
1810   // Set the jump table information so that we can codegen it as a second
1811   // MachineBasicBlock
1812   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1813   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1814   if (CR.CaseBB == SwitchBB)
1815     visitJumpTableHeader(JT, JTH, SwitchBB);
1816 
1817   JTCases.push_back(JumpTableBlock(JTH, JT));
1818 
1819   return true;
1820 }
1821 
1822 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1823 /// 2 subtrees.
1824 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1825                                                   CaseRecVector& WorkList,
1826                                                   const Value* SV,
1827                                                   MachineBasicBlock *Default,
1828                                                   MachineBasicBlock *SwitchBB) {
1829   // Get the MachineFunction which holds the current MBB.  This is used when
1830   // inserting any additional MBBs necessary to represent the switch.
1831   MachineFunction *CurMF = FuncInfo.MF;
1832 
1833   // Figure out which block is immediately after the current one.
1834   MachineFunction::iterator BBI = CR.CaseBB;
1835   ++BBI;
1836 
1837   Case& FrontCase = *CR.Range.first;
1838   Case& BackCase  = *(CR.Range.second-1);
1839   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1840 
1841   // Size is the number of Cases represented by this range.
1842   unsigned Size = CR.Range.second - CR.Range.first;
1843 
1844   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1845   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1846   double FMetric = 0;
1847   CaseItr Pivot = CR.Range.first + Size/2;
1848 
1849   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1850   // (heuristically) allow us to emit JumpTable's later.
1851   APInt TSize(First.getBitWidth(), 0);
1852   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1853        I!=E; ++I)
1854     TSize += I->size();
1855 
1856   APInt LSize = FrontCase.size();
1857   APInt RSize = TSize-LSize;
1858   DEBUG(dbgs() << "Selecting best pivot: \n"
1859                << "First: " << First << ", Last: " << Last <<'\n'
1860                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1861   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1862        J!=E; ++I, ++J) {
1863     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1864     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1865     APInt Range = ComputeRange(LEnd, RBegin);
1866     assert((Range - 2ULL).isNonNegative() &&
1867            "Invalid case distance");
1868     double LDensity = (double)LSize.roundToDouble() /
1869                            (LEnd - First + 1ULL).roundToDouble();
1870     double RDensity = (double)RSize.roundToDouble() /
1871                            (Last - RBegin + 1ULL).roundToDouble();
1872     double Metric = Range.logBase2()*(LDensity+RDensity);
1873     // Should always split in some non-trivial place
1874     DEBUG(dbgs() <<"=>Step\n"
1875                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1876                  << "LDensity: " << LDensity
1877                  << ", RDensity: " << RDensity << '\n'
1878                  << "Metric: " << Metric << '\n');
1879     if (FMetric < Metric) {
1880       Pivot = J;
1881       FMetric = Metric;
1882       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1883     }
1884 
1885     LSize += J->size();
1886     RSize -= J->size();
1887   }
1888   if (areJTsAllowed(TLI)) {
1889     // If our case is dense we *really* should handle it earlier!
1890     assert((FMetric > 0) && "Should handle dense range earlier!");
1891   } else {
1892     Pivot = CR.Range.first + Size/2;
1893   }
1894 
1895   CaseRange LHSR(CR.Range.first, Pivot);
1896   CaseRange RHSR(Pivot, CR.Range.second);
1897   Constant *C = Pivot->Low;
1898   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1899 
1900   // We know that we branch to the LHS if the Value being switched on is
1901   // less than the Pivot value, C.  We use this to optimize our binary
1902   // tree a bit, by recognizing that if SV is greater than or equal to the
1903   // LHS's Case Value, and that Case Value is exactly one less than the
1904   // Pivot's Value, then we can branch directly to the LHS's Target,
1905   // rather than creating a leaf node for it.
1906   if ((LHSR.second - LHSR.first) == 1 &&
1907       LHSR.first->High == CR.GE &&
1908       cast<ConstantInt>(C)->getValue() ==
1909       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1910     TrueBB = LHSR.first->BB;
1911   } else {
1912     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1913     CurMF->insert(BBI, TrueBB);
1914     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1915 
1916     // Put SV in a virtual register to make it available from the new blocks.
1917     ExportFromCurrentBlock(SV);
1918   }
1919 
1920   // Similar to the optimization above, if the Value being switched on is
1921   // known to be less than the Constant CR.LT, and the current Case Value
1922   // is CR.LT - 1, then we can branch directly to the target block for
1923   // the current Case Value, rather than emitting a RHS leaf node for it.
1924   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1925       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1926       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1927     FalseBB = RHSR.first->BB;
1928   } else {
1929     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1930     CurMF->insert(BBI, FalseBB);
1931     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1932 
1933     // Put SV in a virtual register to make it available from the new blocks.
1934     ExportFromCurrentBlock(SV);
1935   }
1936 
1937   // Create a CaseBlock record representing a conditional branch to
1938   // the LHS node if the value being switched on SV is less than C.
1939   // Otherwise, branch to LHS.
1940   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1941 
1942   if (CR.CaseBB == SwitchBB)
1943     visitSwitchCase(CB, SwitchBB);
1944   else
1945     SwitchCases.push_back(CB);
1946 
1947   return true;
1948 }
1949 
1950 /// handleBitTestsSwitchCase - if current case range has few destination and
1951 /// range span less, than machine word bitwidth, encode case range into series
1952 /// of masks and emit bit tests with these masks.
1953 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1954                                                    CaseRecVector& WorkList,
1955                                                    const Value* SV,
1956                                                    MachineBasicBlock* Default,
1957                                                    MachineBasicBlock *SwitchBB){
1958   EVT PTy = TLI.getPointerTy();
1959   unsigned IntPtrBits = PTy.getSizeInBits();
1960 
1961   Case& FrontCase = *CR.Range.first;
1962   Case& BackCase  = *(CR.Range.second-1);
1963 
1964   // Get the MachineFunction which holds the current MBB.  This is used when
1965   // inserting any additional MBBs necessary to represent the switch.
1966   MachineFunction *CurMF = FuncInfo.MF;
1967 
1968   // If target does not have legal shift left, do not emit bit tests at all.
1969   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1970     return false;
1971 
1972   size_t numCmps = 0;
1973   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1974        I!=E; ++I) {
1975     // Single case counts one, case range - two.
1976     numCmps += (I->Low == I->High ? 1 : 2);
1977   }
1978 
1979   // Count unique destinations
1980   SmallSet<MachineBasicBlock*, 4> Dests;
1981   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1982     Dests.insert(I->BB);
1983     if (Dests.size() > 3)
1984       // Don't bother the code below, if there are too much unique destinations
1985       return false;
1986   }
1987   DEBUG(dbgs() << "Total number of unique destinations: "
1988         << Dests.size() << '\n'
1989         << "Total number of comparisons: " << numCmps << '\n');
1990 
1991   // Compute span of values.
1992   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1993   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1994   APInt cmpRange = maxValue - minValue;
1995 
1996   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1997                << "Low bound: " << minValue << '\n'
1998                << "High bound: " << maxValue << '\n');
1999 
2000   if (cmpRange.uge(IntPtrBits) ||
2001       (!(Dests.size() == 1 && numCmps >= 3) &&
2002        !(Dests.size() == 2 && numCmps >= 5) &&
2003        !(Dests.size() >= 3 && numCmps >= 6)))
2004     return false;
2005 
2006   DEBUG(dbgs() << "Emitting bit tests\n");
2007   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2008 
2009   // Optimize the case where all the case values fit in a
2010   // word without having to subtract minValue. In this case,
2011   // we can optimize away the subtraction.
2012   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2013     cmpRange = maxValue;
2014   } else {
2015     lowBound = minValue;
2016   }
2017 
2018   CaseBitsVector CasesBits;
2019   unsigned i, count = 0;
2020 
2021   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2022     MachineBasicBlock* Dest = I->BB;
2023     for (i = 0; i < count; ++i)
2024       if (Dest == CasesBits[i].BB)
2025         break;
2026 
2027     if (i == count) {
2028       assert((count < 3) && "Too much destinations to test!");
2029       CasesBits.push_back(CaseBits(0, Dest, 0));
2030       count++;
2031     }
2032 
2033     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2034     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2035 
2036     uint64_t lo = (lowValue - lowBound).getZExtValue();
2037     uint64_t hi = (highValue - lowBound).getZExtValue();
2038 
2039     for (uint64_t j = lo; j <= hi; j++) {
2040       CasesBits[i].Mask |=  1ULL << j;
2041       CasesBits[i].Bits++;
2042     }
2043 
2044   }
2045   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2046 
2047   BitTestInfo BTC;
2048 
2049   // Figure out which block is immediately after the current one.
2050   MachineFunction::iterator BBI = CR.CaseBB;
2051   ++BBI;
2052 
2053   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2054 
2055   DEBUG(dbgs() << "Cases:\n");
2056   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2057     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2058                  << ", Bits: " << CasesBits[i].Bits
2059                  << ", BB: " << CasesBits[i].BB << '\n');
2060 
2061     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2062     CurMF->insert(BBI, CaseBB);
2063     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2064                               CaseBB,
2065                               CasesBits[i].BB));
2066 
2067     // Put SV in a virtual register to make it available from the new blocks.
2068     ExportFromCurrentBlock(SV);
2069   }
2070 
2071   BitTestBlock BTB(lowBound, cmpRange, SV,
2072                    -1U, (CR.CaseBB == SwitchBB),
2073                    CR.CaseBB, Default, BTC);
2074 
2075   if (CR.CaseBB == SwitchBB)
2076     visitBitTestHeader(BTB, SwitchBB);
2077 
2078   BitTestCases.push_back(BTB);
2079 
2080   return true;
2081 }
2082 
2083 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2084 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2085                                        const SwitchInst& SI) {
2086   size_t numCmps = 0;
2087 
2088   // Start with "simple" cases
2089   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2090     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2091     Cases.push_back(Case(SI.getSuccessorValue(i),
2092                          SI.getSuccessorValue(i),
2093                          SMBB));
2094   }
2095   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2096 
2097   // Merge case into clusters
2098   if (Cases.size() >= 2)
2099     // Must recompute end() each iteration because it may be
2100     // invalidated by erase if we hold on to it
2101     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2102       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2103       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2104       MachineBasicBlock* nextBB = J->BB;
2105       MachineBasicBlock* currentBB = I->BB;
2106 
2107       // If the two neighboring cases go to the same destination, merge them
2108       // into a single case.
2109       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2110         I->High = J->High;
2111         J = Cases.erase(J);
2112       } else {
2113         I = J++;
2114       }
2115     }
2116 
2117   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2118     if (I->Low != I->High)
2119       // A range counts double, since it requires two compares.
2120       ++numCmps;
2121   }
2122 
2123   return numCmps;
2124 }
2125 
2126 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2127   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2128 
2129   // Figure out which block is immediately after the current one.
2130   MachineBasicBlock *NextBlock = 0;
2131   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2132 
2133   // If there is only the default destination, branch to it if it is not the
2134   // next basic block.  Otherwise, just fall through.
2135   if (SI.getNumOperands() == 2) {
2136     // Update machine-CFG edges.
2137 
2138     // If this is not a fall-through branch, emit the branch.
2139     SwitchMBB->addSuccessor(Default);
2140     if (Default != NextBlock)
2141       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2142                               MVT::Other, getControlRoot(),
2143                               DAG.getBasicBlock(Default)));
2144 
2145     return;
2146   }
2147 
2148   // If there are any non-default case statements, create a vector of Cases
2149   // representing each one, and sort the vector so that we can efficiently
2150   // create a binary search tree from them.
2151   CaseVector Cases;
2152   size_t numCmps = Clusterify(Cases, SI);
2153   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2154                << ". Total compares: " << numCmps << '\n');
2155   numCmps = 0;
2156 
2157   // Get the Value to be switched on and default basic blocks, which will be
2158   // inserted into CaseBlock records, representing basic blocks in the binary
2159   // search tree.
2160   const Value *SV = SI.getOperand(0);
2161 
2162   // Push the initial CaseRec onto the worklist
2163   CaseRecVector WorkList;
2164   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2165                              CaseRange(Cases.begin(),Cases.end())));
2166 
2167   while (!WorkList.empty()) {
2168     // Grab a record representing a case range to process off the worklist
2169     CaseRec CR = WorkList.back();
2170     WorkList.pop_back();
2171 
2172     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2173       continue;
2174 
2175     // If the range has few cases (two or less) emit a series of specific
2176     // tests.
2177     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2178       continue;
2179 
2180     // If the switch has more than 5 blocks, and at least 40% dense, and the
2181     // target supports indirect branches, then emit a jump table rather than
2182     // lowering the switch to a binary tree of conditional branches.
2183     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2184       continue;
2185 
2186     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2187     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2188     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2189   }
2190 }
2191 
2192 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2193   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2194 
2195   // Update machine-CFG edges with unique successors.
2196   SmallVector<BasicBlock*, 32> succs;
2197   succs.reserve(I.getNumSuccessors());
2198   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2199     succs.push_back(I.getSuccessor(i));
2200   array_pod_sort(succs.begin(), succs.end());
2201   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2202   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2203     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2204 
2205   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2206                           MVT::Other, getControlRoot(),
2207                           getValue(I.getAddress())));
2208 }
2209 
2210 void SelectionDAGBuilder::visitFSub(const User &I) {
2211   // -0.0 - X --> fneg
2212   const Type *Ty = I.getType();
2213   if (Ty->isVectorTy()) {
2214     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2215       const VectorType *DestTy = cast<VectorType>(I.getType());
2216       const Type *ElTy = DestTy->getElementType();
2217       unsigned VL = DestTy->getNumElements();
2218       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2219       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2220       if (CV == CNZ) {
2221         SDValue Op2 = getValue(I.getOperand(1));
2222         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2223                                  Op2.getValueType(), Op2));
2224         return;
2225       }
2226     }
2227   }
2228 
2229   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2230     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2231       SDValue Op2 = getValue(I.getOperand(1));
2232       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2233                                Op2.getValueType(), Op2));
2234       return;
2235     }
2236 
2237   visitBinary(I, ISD::FSUB);
2238 }
2239 
2240 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2241   SDValue Op1 = getValue(I.getOperand(0));
2242   SDValue Op2 = getValue(I.getOperand(1));
2243   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2244                            Op1.getValueType(), Op1, Op2));
2245 }
2246 
2247 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2248   SDValue Op1 = getValue(I.getOperand(0));
2249   SDValue Op2 = getValue(I.getOperand(1));
2250   if (!I.getType()->isVectorTy() &&
2251       Op2.getValueType() != TLI.getShiftAmountTy()) {
2252     // If the operand is smaller than the shift count type, promote it.
2253     EVT PTy = TLI.getPointerTy();
2254     EVT STy = TLI.getShiftAmountTy();
2255     if (STy.bitsGT(Op2.getValueType()))
2256       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2257                         TLI.getShiftAmountTy(), Op2);
2258     // If the operand is larger than the shift count type but the shift
2259     // count type has enough bits to represent any shift value, truncate
2260     // it now. This is a common case and it exposes the truncate to
2261     // optimization early.
2262     else if (STy.getSizeInBits() >=
2263              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2264       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2265                         TLI.getShiftAmountTy(), Op2);
2266     // Otherwise we'll need to temporarily settle for some other
2267     // convenient type; type legalization will make adjustments as
2268     // needed.
2269     else if (PTy.bitsLT(Op2.getValueType()))
2270       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2271                         TLI.getPointerTy(), Op2);
2272     else if (PTy.bitsGT(Op2.getValueType()))
2273       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2274                         TLI.getPointerTy(), Op2);
2275   }
2276 
2277   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2278                            Op1.getValueType(), Op1, Op2));
2279 }
2280 
2281 void SelectionDAGBuilder::visitICmp(const User &I) {
2282   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2283   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2284     predicate = IC->getPredicate();
2285   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2286     predicate = ICmpInst::Predicate(IC->getPredicate());
2287   SDValue Op1 = getValue(I.getOperand(0));
2288   SDValue Op2 = getValue(I.getOperand(1));
2289   ISD::CondCode Opcode = getICmpCondCode(predicate);
2290 
2291   EVT DestVT = TLI.getValueType(I.getType());
2292   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2293 }
2294 
2295 void SelectionDAGBuilder::visitFCmp(const User &I) {
2296   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2297   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2298     predicate = FC->getPredicate();
2299   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2300     predicate = FCmpInst::Predicate(FC->getPredicate());
2301   SDValue Op1 = getValue(I.getOperand(0));
2302   SDValue Op2 = getValue(I.getOperand(1));
2303   ISD::CondCode Condition = getFCmpCondCode(predicate);
2304   EVT DestVT = TLI.getValueType(I.getType());
2305   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2306 }
2307 
2308 void SelectionDAGBuilder::visitSelect(const User &I) {
2309   SmallVector<EVT, 4> ValueVTs;
2310   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2311   unsigned NumValues = ValueVTs.size();
2312   if (NumValues == 0) return;
2313 
2314   SmallVector<SDValue, 4> Values(NumValues);
2315   SDValue Cond     = getValue(I.getOperand(0));
2316   SDValue TrueVal  = getValue(I.getOperand(1));
2317   SDValue FalseVal = getValue(I.getOperand(2));
2318 
2319   for (unsigned i = 0; i != NumValues; ++i)
2320     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2321                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2322                             Cond,
2323                             SDValue(TrueVal.getNode(),
2324                                     TrueVal.getResNo() + i),
2325                             SDValue(FalseVal.getNode(),
2326                                     FalseVal.getResNo() + i));
2327 
2328   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2329                            DAG.getVTList(&ValueVTs[0], NumValues),
2330                            &Values[0], NumValues));
2331 }
2332 
2333 void SelectionDAGBuilder::visitTrunc(const User &I) {
2334   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2335   SDValue N = getValue(I.getOperand(0));
2336   EVT DestVT = TLI.getValueType(I.getType());
2337   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2338 }
2339 
2340 void SelectionDAGBuilder::visitZExt(const User &I) {
2341   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2342   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2343   SDValue N = getValue(I.getOperand(0));
2344   EVT DestVT = TLI.getValueType(I.getType());
2345   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2346 }
2347 
2348 void SelectionDAGBuilder::visitSExt(const User &I) {
2349   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2350   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2351   SDValue N = getValue(I.getOperand(0));
2352   EVT DestVT = TLI.getValueType(I.getType());
2353   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2354 }
2355 
2356 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2357   // FPTrunc is never a no-op cast, no need to check
2358   SDValue N = getValue(I.getOperand(0));
2359   EVT DestVT = TLI.getValueType(I.getType());
2360   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2361                            DestVT, N, DAG.getIntPtrConstant(0)));
2362 }
2363 
2364 void SelectionDAGBuilder::visitFPExt(const User &I){
2365   // FPTrunc is never a no-op cast, no need to check
2366   SDValue N = getValue(I.getOperand(0));
2367   EVT DestVT = TLI.getValueType(I.getType());
2368   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2369 }
2370 
2371 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2372   // FPToUI is never a no-op cast, no need to check
2373   SDValue N = getValue(I.getOperand(0));
2374   EVT DestVT = TLI.getValueType(I.getType());
2375   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2376 }
2377 
2378 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2379   // FPToSI is never a no-op cast, no need to check
2380   SDValue N = getValue(I.getOperand(0));
2381   EVT DestVT = TLI.getValueType(I.getType());
2382   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2383 }
2384 
2385 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2386   // UIToFP is never a no-op cast, no need to check
2387   SDValue N = getValue(I.getOperand(0));
2388   EVT DestVT = TLI.getValueType(I.getType());
2389   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2390 }
2391 
2392 void SelectionDAGBuilder::visitSIToFP(const User &I){
2393   // SIToFP is never a no-op cast, no need to check
2394   SDValue N = getValue(I.getOperand(0));
2395   EVT DestVT = TLI.getValueType(I.getType());
2396   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2397 }
2398 
2399 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2400   // What to do depends on the size of the integer and the size of the pointer.
2401   // We can either truncate, zero extend, or no-op, accordingly.
2402   SDValue N = getValue(I.getOperand(0));
2403   EVT SrcVT = N.getValueType();
2404   EVT DestVT = TLI.getValueType(I.getType());
2405   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2406 }
2407 
2408 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2409   // What to do depends on the size of the integer and the size of the pointer.
2410   // We can either truncate, zero extend, or no-op, accordingly.
2411   SDValue N = getValue(I.getOperand(0));
2412   EVT SrcVT = N.getValueType();
2413   EVT DestVT = TLI.getValueType(I.getType());
2414   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2415 }
2416 
2417 void SelectionDAGBuilder::visitBitCast(const User &I) {
2418   SDValue N = getValue(I.getOperand(0));
2419   EVT DestVT = TLI.getValueType(I.getType());
2420 
2421   // BitCast assures us that source and destination are the same size so this is
2422   // either a BIT_CONVERT or a no-op.
2423   if (DestVT != N.getValueType())
2424     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2425                              DestVT, N)); // convert types.
2426   else
2427     setValue(&I, N);            // noop cast.
2428 }
2429 
2430 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2431   SDValue InVec = getValue(I.getOperand(0));
2432   SDValue InVal = getValue(I.getOperand(1));
2433   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2434                               TLI.getPointerTy(),
2435                               getValue(I.getOperand(2)));
2436   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2437                            TLI.getValueType(I.getType()),
2438                            InVec, InVal, InIdx));
2439 }
2440 
2441 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2442   SDValue InVec = getValue(I.getOperand(0));
2443   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2444                               TLI.getPointerTy(),
2445                               getValue(I.getOperand(1)));
2446   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2447                            TLI.getValueType(I.getType()), InVec, InIdx));
2448 }
2449 
2450 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2451 // from SIndx and increasing to the element length (undefs are allowed).
2452 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2453   unsigned MaskNumElts = Mask.size();
2454   for (unsigned i = 0; i != MaskNumElts; ++i)
2455     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2456       return false;
2457   return true;
2458 }
2459 
2460 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2461   SmallVector<int, 8> Mask;
2462   SDValue Src1 = getValue(I.getOperand(0));
2463   SDValue Src2 = getValue(I.getOperand(1));
2464 
2465   // Convert the ConstantVector mask operand into an array of ints, with -1
2466   // representing undef values.
2467   SmallVector<Constant*, 8> MaskElts;
2468   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2469   unsigned MaskNumElts = MaskElts.size();
2470   for (unsigned i = 0; i != MaskNumElts; ++i) {
2471     if (isa<UndefValue>(MaskElts[i]))
2472       Mask.push_back(-1);
2473     else
2474       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2475   }
2476 
2477   EVT VT = TLI.getValueType(I.getType());
2478   EVT SrcVT = Src1.getValueType();
2479   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2480 
2481   if (SrcNumElts == MaskNumElts) {
2482     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2483                                       &Mask[0]));
2484     return;
2485   }
2486 
2487   // Normalize the shuffle vector since mask and vector length don't match.
2488   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2489     // Mask is longer than the source vectors and is a multiple of the source
2490     // vectors.  We can use concatenate vector to make the mask and vectors
2491     // lengths match.
2492     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2493       // The shuffle is concatenating two vectors together.
2494       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2495                                VT, Src1, Src2));
2496       return;
2497     }
2498 
2499     // Pad both vectors with undefs to make them the same length as the mask.
2500     unsigned NumConcat = MaskNumElts / SrcNumElts;
2501     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2502     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2503     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2504 
2505     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2506     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2507     MOps1[0] = Src1;
2508     MOps2[0] = Src2;
2509 
2510     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2511                                                   getCurDebugLoc(), VT,
2512                                                   &MOps1[0], NumConcat);
2513     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2514                                                   getCurDebugLoc(), VT,
2515                                                   &MOps2[0], NumConcat);
2516 
2517     // Readjust mask for new input vector length.
2518     SmallVector<int, 8> MappedOps;
2519     for (unsigned i = 0; i != MaskNumElts; ++i) {
2520       int Idx = Mask[i];
2521       if (Idx < (int)SrcNumElts)
2522         MappedOps.push_back(Idx);
2523       else
2524         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2525     }
2526 
2527     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2528                                       &MappedOps[0]));
2529     return;
2530   }
2531 
2532   if (SrcNumElts > MaskNumElts) {
2533     // Analyze the access pattern of the vector to see if we can extract
2534     // two subvectors and do the shuffle. The analysis is done by calculating
2535     // the range of elements the mask access on both vectors.
2536     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2537     int MaxRange[2] = {-1, -1};
2538 
2539     for (unsigned i = 0; i != MaskNumElts; ++i) {
2540       int Idx = Mask[i];
2541       int Input = 0;
2542       if (Idx < 0)
2543         continue;
2544 
2545       if (Idx >= (int)SrcNumElts) {
2546         Input = 1;
2547         Idx -= SrcNumElts;
2548       }
2549       if (Idx > MaxRange[Input])
2550         MaxRange[Input] = Idx;
2551       if (Idx < MinRange[Input])
2552         MinRange[Input] = Idx;
2553     }
2554 
2555     // Check if the access is smaller than the vector size and can we find
2556     // a reasonable extract index.
2557     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2558                                  // Extract.
2559     int StartIdx[2];  // StartIdx to extract from
2560     for (int Input=0; Input < 2; ++Input) {
2561       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2562         RangeUse[Input] = 0; // Unused
2563         StartIdx[Input] = 0;
2564       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2565         // Fits within range but we should see if we can find a good
2566         // start index that is a multiple of the mask length.
2567         if (MaxRange[Input] < (int)MaskNumElts) {
2568           RangeUse[Input] = 1; // Extract from beginning of the vector
2569           StartIdx[Input] = 0;
2570         } else {
2571           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2572           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2573               StartIdx[Input] + MaskNumElts < SrcNumElts)
2574             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2575         }
2576       }
2577     }
2578 
2579     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2580       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2581       return;
2582     }
2583     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2584       // Extract appropriate subvector and generate a vector shuffle
2585       for (int Input=0; Input < 2; ++Input) {
2586         SDValue &Src = Input == 0 ? Src1 : Src2;
2587         if (RangeUse[Input] == 0)
2588           Src = DAG.getUNDEF(VT);
2589         else
2590           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2591                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2592       }
2593 
2594       // Calculate new mask.
2595       SmallVector<int, 8> MappedOps;
2596       for (unsigned i = 0; i != MaskNumElts; ++i) {
2597         int Idx = Mask[i];
2598         if (Idx < 0)
2599           MappedOps.push_back(Idx);
2600         else if (Idx < (int)SrcNumElts)
2601           MappedOps.push_back(Idx - StartIdx[0]);
2602         else
2603           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2604       }
2605 
2606       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2607                                         &MappedOps[0]));
2608       return;
2609     }
2610   }
2611 
2612   // We can't use either concat vectors or extract subvectors so fall back to
2613   // replacing the shuffle with extract and build vector.
2614   // to insert and build vector.
2615   EVT EltVT = VT.getVectorElementType();
2616   EVT PtrVT = TLI.getPointerTy();
2617   SmallVector<SDValue,8> Ops;
2618   for (unsigned i = 0; i != MaskNumElts; ++i) {
2619     if (Mask[i] < 0) {
2620       Ops.push_back(DAG.getUNDEF(EltVT));
2621     } else {
2622       int Idx = Mask[i];
2623       SDValue Res;
2624 
2625       if (Idx < (int)SrcNumElts)
2626         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2627                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2628       else
2629         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2630                           EltVT, Src2,
2631                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2632 
2633       Ops.push_back(Res);
2634     }
2635   }
2636 
2637   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2638                            VT, &Ops[0], Ops.size()));
2639 }
2640 
2641 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2642   const Value *Op0 = I.getOperand(0);
2643   const Value *Op1 = I.getOperand(1);
2644   const Type *AggTy = I.getType();
2645   const Type *ValTy = Op1->getType();
2646   bool IntoUndef = isa<UndefValue>(Op0);
2647   bool FromUndef = isa<UndefValue>(Op1);
2648 
2649   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2650                                             I.idx_begin(), I.idx_end());
2651 
2652   SmallVector<EVT, 4> AggValueVTs;
2653   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2654   SmallVector<EVT, 4> ValValueVTs;
2655   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2656 
2657   unsigned NumAggValues = AggValueVTs.size();
2658   unsigned NumValValues = ValValueVTs.size();
2659   SmallVector<SDValue, 4> Values(NumAggValues);
2660 
2661   SDValue Agg = getValue(Op0);
2662   SDValue Val = getValue(Op1);
2663   unsigned i = 0;
2664   // Copy the beginning value(s) from the original aggregate.
2665   for (; i != LinearIndex; ++i)
2666     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2667                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2668   // Copy values from the inserted value(s).
2669   for (; i != LinearIndex + NumValValues; ++i)
2670     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2671                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2672   // Copy remaining value(s) from the original aggregate.
2673   for (; i != NumAggValues; ++i)
2674     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2675                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2676 
2677   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2678                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2679                            &Values[0], NumAggValues));
2680 }
2681 
2682 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2683   const Value *Op0 = I.getOperand(0);
2684   const Type *AggTy = Op0->getType();
2685   const Type *ValTy = I.getType();
2686   bool OutOfUndef = isa<UndefValue>(Op0);
2687 
2688   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2689                                             I.idx_begin(), I.idx_end());
2690 
2691   SmallVector<EVT, 4> ValValueVTs;
2692   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2693 
2694   unsigned NumValValues = ValValueVTs.size();
2695   SmallVector<SDValue, 4> Values(NumValValues);
2696 
2697   SDValue Agg = getValue(Op0);
2698   // Copy out the selected value(s).
2699   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2700     Values[i - LinearIndex] =
2701       OutOfUndef ?
2702         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2703         SDValue(Agg.getNode(), Agg.getResNo() + i);
2704 
2705   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2706                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2707                            &Values[0], NumValValues));
2708 }
2709 
2710 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2711   SDValue N = getValue(I.getOperand(0));
2712   const Type *Ty = I.getOperand(0)->getType();
2713 
2714   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2715        OI != E; ++OI) {
2716     const Value *Idx = *OI;
2717     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2718       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2719       if (Field) {
2720         // N = N + Offset
2721         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2722         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2723                         DAG.getIntPtrConstant(Offset));
2724       }
2725 
2726       Ty = StTy->getElementType(Field);
2727     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2728       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2729 
2730       // Offset canonically 0 for unions, but type changes
2731       Ty = UnTy->getElementType(Field);
2732     } else {
2733       Ty = cast<SequentialType>(Ty)->getElementType();
2734 
2735       // If this is a constant subscript, handle it quickly.
2736       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2737         if (CI->isZero()) continue;
2738         uint64_t Offs =
2739             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2740         SDValue OffsVal;
2741         EVT PTy = TLI.getPointerTy();
2742         unsigned PtrBits = PTy.getSizeInBits();
2743         if (PtrBits < 64)
2744           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2745                                 TLI.getPointerTy(),
2746                                 DAG.getConstant(Offs, MVT::i64));
2747         else
2748           OffsVal = DAG.getIntPtrConstant(Offs);
2749 
2750         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2751                         OffsVal);
2752         continue;
2753       }
2754 
2755       // N = N + Idx * ElementSize;
2756       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2757                                 TD->getTypeAllocSize(Ty));
2758       SDValue IdxN = getValue(Idx);
2759 
2760       // If the index is smaller or larger than intptr_t, truncate or extend
2761       // it.
2762       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2763 
2764       // If this is a multiply by a power of two, turn it into a shl
2765       // immediately.  This is a very common case.
2766       if (ElementSize != 1) {
2767         if (ElementSize.isPowerOf2()) {
2768           unsigned Amt = ElementSize.logBase2();
2769           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2770                              N.getValueType(), IdxN,
2771                              DAG.getConstant(Amt, TLI.getPointerTy()));
2772         } else {
2773           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2774           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2775                              N.getValueType(), IdxN, Scale);
2776         }
2777       }
2778 
2779       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2780                       N.getValueType(), N, IdxN);
2781     }
2782   }
2783 
2784   setValue(&I, N);
2785 }
2786 
2787 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2788   // If this is a fixed sized alloca in the entry block of the function,
2789   // allocate it statically on the stack.
2790   if (FuncInfo.StaticAllocaMap.count(&I))
2791     return;   // getValue will auto-populate this.
2792 
2793   const Type *Ty = I.getAllocatedType();
2794   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2795   unsigned Align =
2796     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2797              I.getAlignment());
2798 
2799   SDValue AllocSize = getValue(I.getArraySize());
2800 
2801   EVT IntPtr = TLI.getPointerTy();
2802   if (AllocSize.getValueType() != IntPtr)
2803     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2804 
2805   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2806                           AllocSize,
2807                           DAG.getConstant(TySize, IntPtr));
2808 
2809   // Handle alignment.  If the requested alignment is less than or equal to
2810   // the stack alignment, ignore it.  If the size is greater than or equal to
2811   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2812   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2813   if (Align <= StackAlign)
2814     Align = 0;
2815 
2816   // Round the size of the allocation up to the stack alignment size
2817   // by add SA-1 to the size.
2818   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2819                           AllocSize.getValueType(), AllocSize,
2820                           DAG.getIntPtrConstant(StackAlign-1));
2821 
2822   // Mask out the low bits for alignment purposes.
2823   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2824                           AllocSize.getValueType(), AllocSize,
2825                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2826 
2827   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2828   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2829   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2830                             VTs, Ops, 3);
2831   setValue(&I, DSA);
2832   DAG.setRoot(DSA.getValue(1));
2833 
2834   // Inform the Frame Information that we have just allocated a variable-sized
2835   // object.
2836   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2837 }
2838 
2839 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2840   const Value *SV = I.getOperand(0);
2841   SDValue Ptr = getValue(SV);
2842 
2843   const Type *Ty = I.getType();
2844 
2845   bool isVolatile = I.isVolatile();
2846   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2847   unsigned Alignment = I.getAlignment();
2848 
2849   SmallVector<EVT, 4> ValueVTs;
2850   SmallVector<uint64_t, 4> Offsets;
2851   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2852   unsigned NumValues = ValueVTs.size();
2853   if (NumValues == 0)
2854     return;
2855 
2856   SDValue Root;
2857   bool ConstantMemory = false;
2858   if (I.isVolatile())
2859     // Serialize volatile loads with other side effects.
2860     Root = getRoot();
2861   else if (AA->pointsToConstantMemory(SV)) {
2862     // Do not serialize (non-volatile) loads of constant memory with anything.
2863     Root = DAG.getEntryNode();
2864     ConstantMemory = true;
2865   } else {
2866     // Do not serialize non-volatile loads against each other.
2867     Root = DAG.getRoot();
2868   }
2869 
2870   SmallVector<SDValue, 4> Values(NumValues);
2871   SmallVector<SDValue, 4> Chains(NumValues);
2872   EVT PtrVT = Ptr.getValueType();
2873   for (unsigned i = 0; i != NumValues; ++i) {
2874     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2875                             PtrVT, Ptr,
2876                             DAG.getConstant(Offsets[i], PtrVT));
2877     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2878                             A, SV, Offsets[i], isVolatile,
2879                             isNonTemporal, Alignment);
2880 
2881     Values[i] = L;
2882     Chains[i] = L.getValue(1);
2883   }
2884 
2885   if (!ConstantMemory) {
2886     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2887                                 MVT::Other, &Chains[0], NumValues);
2888     if (isVolatile)
2889       DAG.setRoot(Chain);
2890     else
2891       PendingLoads.push_back(Chain);
2892   }
2893 
2894   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2895                            DAG.getVTList(&ValueVTs[0], NumValues),
2896                            &Values[0], NumValues));
2897 }
2898 
2899 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2900   const Value *SrcV = I.getOperand(0);
2901   const Value *PtrV = I.getOperand(1);
2902 
2903   SmallVector<EVT, 4> ValueVTs;
2904   SmallVector<uint64_t, 4> Offsets;
2905   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2906   unsigned NumValues = ValueVTs.size();
2907   if (NumValues == 0)
2908     return;
2909 
2910   // Get the lowered operands. Note that we do this after
2911   // checking if NumResults is zero, because with zero results
2912   // the operands won't have values in the map.
2913   SDValue Src = getValue(SrcV);
2914   SDValue Ptr = getValue(PtrV);
2915 
2916   SDValue Root = getRoot();
2917   SmallVector<SDValue, 4> Chains(NumValues);
2918   EVT PtrVT = Ptr.getValueType();
2919   bool isVolatile = I.isVolatile();
2920   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2921   unsigned Alignment = I.getAlignment();
2922 
2923   for (unsigned i = 0; i != NumValues; ++i) {
2924     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2925                               DAG.getConstant(Offsets[i], PtrVT));
2926     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2927                              SDValue(Src.getNode(), Src.getResNo() + i),
2928                              Add, PtrV, Offsets[i], isVolatile,
2929                              isNonTemporal, Alignment);
2930   }
2931 
2932   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2933                           MVT::Other, &Chains[0], NumValues));
2934 }
2935 
2936 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2937 /// node.
2938 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2939                                                unsigned Intrinsic) {
2940   bool HasChain = !I.doesNotAccessMemory();
2941   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2942 
2943   // Build the operand list.
2944   SmallVector<SDValue, 8> Ops;
2945   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2946     if (OnlyLoad) {
2947       // We don't need to serialize loads against other loads.
2948       Ops.push_back(DAG.getRoot());
2949     } else {
2950       Ops.push_back(getRoot());
2951     }
2952   }
2953 
2954   // Info is set by getTgtMemInstrinsic
2955   TargetLowering::IntrinsicInfo Info;
2956   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2957 
2958   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2959   if (!IsTgtIntrinsic)
2960     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2961 
2962   // Add all operands of the call to the operand list.
2963   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2964     SDValue Op = getValue(I.getOperand(i));
2965     assert(TLI.isTypeLegal(Op.getValueType()) &&
2966            "Intrinsic uses a non-legal type?");
2967     Ops.push_back(Op);
2968   }
2969 
2970   SmallVector<EVT, 4> ValueVTs;
2971   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2972 #ifndef NDEBUG
2973   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2974     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2975            "Intrinsic uses a non-legal type?");
2976   }
2977 #endif // NDEBUG
2978 
2979   if (HasChain)
2980     ValueVTs.push_back(MVT::Other);
2981 
2982   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2983 
2984   // Create the node.
2985   SDValue Result;
2986   if (IsTgtIntrinsic) {
2987     // This is target intrinsic that touches memory
2988     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2989                                      VTs, &Ops[0], Ops.size(),
2990                                      Info.memVT, Info.ptrVal, Info.offset,
2991                                      Info.align, Info.vol,
2992                                      Info.readMem, Info.writeMem);
2993   } else if (!HasChain) {
2994     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2995                          VTs, &Ops[0], Ops.size());
2996   } else if (!I.getType()->isVoidTy()) {
2997     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2998                          VTs, &Ops[0], Ops.size());
2999   } else {
3000     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3001                          VTs, &Ops[0], Ops.size());
3002   }
3003 
3004   if (HasChain) {
3005     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3006     if (OnlyLoad)
3007       PendingLoads.push_back(Chain);
3008     else
3009       DAG.setRoot(Chain);
3010   }
3011 
3012   if (!I.getType()->isVoidTy()) {
3013     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3014       EVT VT = TLI.getValueType(PTy);
3015       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3016     }
3017 
3018     setValue(&I, Result);
3019   }
3020 }
3021 
3022 /// GetSignificand - Get the significand and build it into a floating-point
3023 /// number with exponent of 1:
3024 ///
3025 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3026 ///
3027 /// where Op is the hexidecimal representation of floating point value.
3028 static SDValue
3029 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3030   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3031                            DAG.getConstant(0x007fffff, MVT::i32));
3032   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3033                            DAG.getConstant(0x3f800000, MVT::i32));
3034   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3035 }
3036 
3037 /// GetExponent - Get the exponent:
3038 ///
3039 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3040 ///
3041 /// where Op is the hexidecimal representation of floating point value.
3042 static SDValue
3043 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3044             DebugLoc dl) {
3045   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3046                            DAG.getConstant(0x7f800000, MVT::i32));
3047   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3048                            DAG.getConstant(23, TLI.getPointerTy()));
3049   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3050                            DAG.getConstant(127, MVT::i32));
3051   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3052 }
3053 
3054 /// getF32Constant - Get 32-bit floating point constant.
3055 static SDValue
3056 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3057   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3058 }
3059 
3060 /// Inlined utility function to implement binary input atomic intrinsics for
3061 /// visitIntrinsicCall: I is a call instruction
3062 ///                     Op is the associated NodeType for I
3063 const char *
3064 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3065                                            ISD::NodeType Op) {
3066   SDValue Root = getRoot();
3067   SDValue L =
3068     DAG.getAtomic(Op, getCurDebugLoc(),
3069                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3070                   Root,
3071                   getValue(I.getOperand(1)),
3072                   getValue(I.getOperand(2)),
3073                   I.getOperand(1));
3074   setValue(&I, L);
3075   DAG.setRoot(L.getValue(1));
3076   return 0;
3077 }
3078 
3079 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3080 const char *
3081 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3082   SDValue Op1 = getValue(I.getOperand(1));
3083   SDValue Op2 = getValue(I.getOperand(2));
3084 
3085   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3086   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3087   return 0;
3088 }
3089 
3090 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3091 /// limited-precision mode.
3092 void
3093 SelectionDAGBuilder::visitExp(const CallInst &I) {
3094   SDValue result;
3095   DebugLoc dl = getCurDebugLoc();
3096 
3097   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3098       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3099     SDValue Op = getValue(I.getOperand(1));
3100 
3101     // Put the exponent in the right bit position for later addition to the
3102     // final result:
3103     //
3104     //   #define LOG2OFe 1.4426950f
3105     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3106     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3107                              getF32Constant(DAG, 0x3fb8aa3b));
3108     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3109 
3110     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3111     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3112     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3113 
3114     //   IntegerPartOfX <<= 23;
3115     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3116                                  DAG.getConstant(23, TLI.getPointerTy()));
3117 
3118     if (LimitFloatPrecision <= 6) {
3119       // For floating-point precision of 6:
3120       //
3121       //   TwoToFractionalPartOfX =
3122       //     0.997535578f +
3123       //       (0.735607626f + 0.252464424f * x) * x;
3124       //
3125       // error 0.0144103317, which is 6 bits
3126       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3127                                getF32Constant(DAG, 0x3e814304));
3128       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3129                                getF32Constant(DAG, 0x3f3c50c8));
3130       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3131       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3132                                getF32Constant(DAG, 0x3f7f5e7e));
3133       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3134 
3135       // Add the exponent into the result in integer domain.
3136       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3137                                TwoToFracPartOfX, IntegerPartOfX);
3138 
3139       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3140     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3141       // For floating-point precision of 12:
3142       //
3143       //   TwoToFractionalPartOfX =
3144       //     0.999892986f +
3145       //       (0.696457318f +
3146       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3147       //
3148       // 0.000107046256 error, which is 13 to 14 bits
3149       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3150                                getF32Constant(DAG, 0x3da235e3));
3151       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3152                                getF32Constant(DAG, 0x3e65b8f3));
3153       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3154       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3155                                getF32Constant(DAG, 0x3f324b07));
3156       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3157       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3158                                getF32Constant(DAG, 0x3f7ff8fd));
3159       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3160 
3161       // Add the exponent into the result in integer domain.
3162       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3163                                TwoToFracPartOfX, IntegerPartOfX);
3164 
3165       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3166     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3167       // For floating-point precision of 18:
3168       //
3169       //   TwoToFractionalPartOfX =
3170       //     0.999999982f +
3171       //       (0.693148872f +
3172       //         (0.240227044f +
3173       //           (0.554906021e-1f +
3174       //             (0.961591928e-2f +
3175       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3176       //
3177       // error 2.47208000*10^(-7), which is better than 18 bits
3178       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3179                                getF32Constant(DAG, 0x3924b03e));
3180       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3181                                getF32Constant(DAG, 0x3ab24b87));
3182       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3183       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3184                                getF32Constant(DAG, 0x3c1d8c17));
3185       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3186       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3187                                getF32Constant(DAG, 0x3d634a1d));
3188       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3189       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3190                                getF32Constant(DAG, 0x3e75fe14));
3191       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3192       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3193                                 getF32Constant(DAG, 0x3f317234));
3194       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3195       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3196                                 getF32Constant(DAG, 0x3f800000));
3197       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3198                                              MVT::i32, t13);
3199 
3200       // Add the exponent into the result in integer domain.
3201       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3202                                 TwoToFracPartOfX, IntegerPartOfX);
3203 
3204       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3205     }
3206   } else {
3207     // No special expansion.
3208     result = DAG.getNode(ISD::FEXP, dl,
3209                          getValue(I.getOperand(1)).getValueType(),
3210                          getValue(I.getOperand(1)));
3211   }
3212 
3213   setValue(&I, result);
3214 }
3215 
3216 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3217 /// limited-precision mode.
3218 void
3219 SelectionDAGBuilder::visitLog(const CallInst &I) {
3220   SDValue result;
3221   DebugLoc dl = getCurDebugLoc();
3222 
3223   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3224       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3225     SDValue Op = getValue(I.getOperand(1));
3226     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3227 
3228     // Scale the exponent by log(2) [0.69314718f].
3229     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3230     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3231                                         getF32Constant(DAG, 0x3f317218));
3232 
3233     // Get the significand and build it into a floating-point number with
3234     // exponent of 1.
3235     SDValue X = GetSignificand(DAG, Op1, dl);
3236 
3237     if (LimitFloatPrecision <= 6) {
3238       // For floating-point precision of 6:
3239       //
3240       //   LogofMantissa =
3241       //     -1.1609546f +
3242       //       (1.4034025f - 0.23903021f * x) * x;
3243       //
3244       // error 0.0034276066, which is better than 8 bits
3245       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3246                                getF32Constant(DAG, 0xbe74c456));
3247       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3248                                getF32Constant(DAG, 0x3fb3a2b1));
3249       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3250       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3251                                           getF32Constant(DAG, 0x3f949a29));
3252 
3253       result = DAG.getNode(ISD::FADD, dl,
3254                            MVT::f32, LogOfExponent, LogOfMantissa);
3255     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3256       // For floating-point precision of 12:
3257       //
3258       //   LogOfMantissa =
3259       //     -1.7417939f +
3260       //       (2.8212026f +
3261       //         (-1.4699568f +
3262       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3263       //
3264       // error 0.000061011436, which is 14 bits
3265       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3266                                getF32Constant(DAG, 0xbd67b6d6));
3267       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3268                                getF32Constant(DAG, 0x3ee4f4b8));
3269       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3270       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3271                                getF32Constant(DAG, 0x3fbc278b));
3272       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3273       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3274                                getF32Constant(DAG, 0x40348e95));
3275       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3276       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3277                                           getF32Constant(DAG, 0x3fdef31a));
3278 
3279       result = DAG.getNode(ISD::FADD, dl,
3280                            MVT::f32, LogOfExponent, LogOfMantissa);
3281     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3282       // For floating-point precision of 18:
3283       //
3284       //   LogOfMantissa =
3285       //     -2.1072184f +
3286       //       (4.2372794f +
3287       //         (-3.7029485f +
3288       //           (2.2781945f +
3289       //             (-0.87823314f +
3290       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3291       //
3292       // error 0.0000023660568, which is better than 18 bits
3293       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3294                                getF32Constant(DAG, 0xbc91e5ac));
3295       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3296                                getF32Constant(DAG, 0x3e4350aa));
3297       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3298       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3299                                getF32Constant(DAG, 0x3f60d3e3));
3300       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3301       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3302                                getF32Constant(DAG, 0x4011cdf0));
3303       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3304       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3305                                getF32Constant(DAG, 0x406cfd1c));
3306       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3307       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3308                                getF32Constant(DAG, 0x408797cb));
3309       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3310       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3311                                           getF32Constant(DAG, 0x4006dcab));
3312 
3313       result = DAG.getNode(ISD::FADD, dl,
3314                            MVT::f32, LogOfExponent, LogOfMantissa);
3315     }
3316   } else {
3317     // No special expansion.
3318     result = DAG.getNode(ISD::FLOG, dl,
3319                          getValue(I.getOperand(1)).getValueType(),
3320                          getValue(I.getOperand(1)));
3321   }
3322 
3323   setValue(&I, result);
3324 }
3325 
3326 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3327 /// limited-precision mode.
3328 void
3329 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3330   SDValue result;
3331   DebugLoc dl = getCurDebugLoc();
3332 
3333   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3334       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3335     SDValue Op = getValue(I.getOperand(1));
3336     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3337 
3338     // Get the exponent.
3339     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3340 
3341     // Get the significand and build it into a floating-point number with
3342     // exponent of 1.
3343     SDValue X = GetSignificand(DAG, Op1, dl);
3344 
3345     // Different possible minimax approximations of significand in
3346     // floating-point for various degrees of accuracy over [1,2].
3347     if (LimitFloatPrecision <= 6) {
3348       // For floating-point precision of 6:
3349       //
3350       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3351       //
3352       // error 0.0049451742, which is more than 7 bits
3353       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3354                                getF32Constant(DAG, 0xbeb08fe0));
3355       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3356                                getF32Constant(DAG, 0x40019463));
3357       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3358       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3359                                            getF32Constant(DAG, 0x3fd6633d));
3360 
3361       result = DAG.getNode(ISD::FADD, dl,
3362                            MVT::f32, LogOfExponent, Log2ofMantissa);
3363     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3364       // For floating-point precision of 12:
3365       //
3366       //   Log2ofMantissa =
3367       //     -2.51285454f +
3368       //       (4.07009056f +
3369       //         (-2.12067489f +
3370       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3371       //
3372       // error 0.0000876136000, which is better than 13 bits
3373       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3374                                getF32Constant(DAG, 0xbda7262e));
3375       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3376                                getF32Constant(DAG, 0x3f25280b));
3377       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3378       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3379                                getF32Constant(DAG, 0x4007b923));
3380       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3381       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3382                                getF32Constant(DAG, 0x40823e2f));
3383       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3384       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3385                                            getF32Constant(DAG, 0x4020d29c));
3386 
3387       result = DAG.getNode(ISD::FADD, dl,
3388                            MVT::f32, LogOfExponent, Log2ofMantissa);
3389     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3390       // For floating-point precision of 18:
3391       //
3392       //   Log2ofMantissa =
3393       //     -3.0400495f +
3394       //       (6.1129976f +
3395       //         (-5.3420409f +
3396       //           (3.2865683f +
3397       //             (-1.2669343f +
3398       //               (0.27515199f -
3399       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3400       //
3401       // error 0.0000018516, which is better than 18 bits
3402       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3403                                getF32Constant(DAG, 0xbcd2769e));
3404       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3405                                getF32Constant(DAG, 0x3e8ce0b9));
3406       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3407       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3408                                getF32Constant(DAG, 0x3fa22ae7));
3409       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3410       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3411                                getF32Constant(DAG, 0x40525723));
3412       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3413       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3414                                getF32Constant(DAG, 0x40aaf200));
3415       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3416       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3417                                getF32Constant(DAG, 0x40c39dad));
3418       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3419       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3420                                            getF32Constant(DAG, 0x4042902c));
3421 
3422       result = DAG.getNode(ISD::FADD, dl,
3423                            MVT::f32, LogOfExponent, Log2ofMantissa);
3424     }
3425   } else {
3426     // No special expansion.
3427     result = DAG.getNode(ISD::FLOG2, dl,
3428                          getValue(I.getOperand(1)).getValueType(),
3429                          getValue(I.getOperand(1)));
3430   }
3431 
3432   setValue(&I, result);
3433 }
3434 
3435 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3436 /// limited-precision mode.
3437 void
3438 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3439   SDValue result;
3440   DebugLoc dl = getCurDebugLoc();
3441 
3442   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3443       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3444     SDValue Op = getValue(I.getOperand(1));
3445     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3446 
3447     // Scale the exponent by log10(2) [0.30102999f].
3448     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3449     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3450                                         getF32Constant(DAG, 0x3e9a209a));
3451 
3452     // Get the significand and build it into a floating-point number with
3453     // exponent of 1.
3454     SDValue X = GetSignificand(DAG, Op1, dl);
3455 
3456     if (LimitFloatPrecision <= 6) {
3457       // For floating-point precision of 6:
3458       //
3459       //   Log10ofMantissa =
3460       //     -0.50419619f +
3461       //       (0.60948995f - 0.10380950f * x) * x;
3462       //
3463       // error 0.0014886165, which is 6 bits
3464       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3465                                getF32Constant(DAG, 0xbdd49a13));
3466       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3467                                getF32Constant(DAG, 0x3f1c0789));
3468       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3469       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3470                                             getF32Constant(DAG, 0x3f011300));
3471 
3472       result = DAG.getNode(ISD::FADD, dl,
3473                            MVT::f32, LogOfExponent, Log10ofMantissa);
3474     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3475       // For floating-point precision of 12:
3476       //
3477       //   Log10ofMantissa =
3478       //     -0.64831180f +
3479       //       (0.91751397f +
3480       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3481       //
3482       // error 0.00019228036, which is better than 12 bits
3483       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3484                                getF32Constant(DAG, 0x3d431f31));
3485       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3486                                getF32Constant(DAG, 0x3ea21fb2));
3487       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3488       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3489                                getF32Constant(DAG, 0x3f6ae232));
3490       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3491       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3492                                             getF32Constant(DAG, 0x3f25f7c3));
3493 
3494       result = DAG.getNode(ISD::FADD, dl,
3495                            MVT::f32, LogOfExponent, Log10ofMantissa);
3496     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3497       // For floating-point precision of 18:
3498       //
3499       //   Log10ofMantissa =
3500       //     -0.84299375f +
3501       //       (1.5327582f +
3502       //         (-1.0688956f +
3503       //           (0.49102474f +
3504       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3505       //
3506       // error 0.0000037995730, which is better than 18 bits
3507       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3508                                getF32Constant(DAG, 0x3c5d51ce));
3509       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3510                                getF32Constant(DAG, 0x3e00685a));
3511       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3512       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3513                                getF32Constant(DAG, 0x3efb6798));
3514       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3515       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3516                                getF32Constant(DAG, 0x3f88d192));
3517       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3518       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3519                                getF32Constant(DAG, 0x3fc4316c));
3520       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3521       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3522                                             getF32Constant(DAG, 0x3f57ce70));
3523 
3524       result = DAG.getNode(ISD::FADD, dl,
3525                            MVT::f32, LogOfExponent, Log10ofMantissa);
3526     }
3527   } else {
3528     // No special expansion.
3529     result = DAG.getNode(ISD::FLOG10, dl,
3530                          getValue(I.getOperand(1)).getValueType(),
3531                          getValue(I.getOperand(1)));
3532   }
3533 
3534   setValue(&I, result);
3535 }
3536 
3537 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3538 /// limited-precision mode.
3539 void
3540 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3541   SDValue result;
3542   DebugLoc dl = getCurDebugLoc();
3543 
3544   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3545       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3546     SDValue Op = getValue(I.getOperand(1));
3547 
3548     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3549 
3550     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3551     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3552     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3553 
3554     //   IntegerPartOfX <<= 23;
3555     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3556                                  DAG.getConstant(23, TLI.getPointerTy()));
3557 
3558     if (LimitFloatPrecision <= 6) {
3559       // For floating-point precision of 6:
3560       //
3561       //   TwoToFractionalPartOfX =
3562       //     0.997535578f +
3563       //       (0.735607626f + 0.252464424f * x) * x;
3564       //
3565       // error 0.0144103317, which is 6 bits
3566       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3567                                getF32Constant(DAG, 0x3e814304));
3568       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3569                                getF32Constant(DAG, 0x3f3c50c8));
3570       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3571       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3572                                getF32Constant(DAG, 0x3f7f5e7e));
3573       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3574       SDValue TwoToFractionalPartOfX =
3575         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3576 
3577       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3578                            MVT::f32, TwoToFractionalPartOfX);
3579     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3580       // For floating-point precision of 12:
3581       //
3582       //   TwoToFractionalPartOfX =
3583       //     0.999892986f +
3584       //       (0.696457318f +
3585       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3586       //
3587       // error 0.000107046256, which is 13 to 14 bits
3588       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                                getF32Constant(DAG, 0x3da235e3));
3590       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3591                                getF32Constant(DAG, 0x3e65b8f3));
3592       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3593       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3594                                getF32Constant(DAG, 0x3f324b07));
3595       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3596       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3597                                getF32Constant(DAG, 0x3f7ff8fd));
3598       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3599       SDValue TwoToFractionalPartOfX =
3600         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3601 
3602       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3603                            MVT::f32, TwoToFractionalPartOfX);
3604     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3605       // For floating-point precision of 18:
3606       //
3607       //   TwoToFractionalPartOfX =
3608       //     0.999999982f +
3609       //       (0.693148872f +
3610       //         (0.240227044f +
3611       //           (0.554906021e-1f +
3612       //             (0.961591928e-2f +
3613       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3614       // error 2.47208000*10^(-7), which is better than 18 bits
3615       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3616                                getF32Constant(DAG, 0x3924b03e));
3617       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3618                                getF32Constant(DAG, 0x3ab24b87));
3619       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3620       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3621                                getF32Constant(DAG, 0x3c1d8c17));
3622       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3623       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3624                                getF32Constant(DAG, 0x3d634a1d));
3625       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3626       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3627                                getF32Constant(DAG, 0x3e75fe14));
3628       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3629       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3630                                 getF32Constant(DAG, 0x3f317234));
3631       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3632       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3633                                 getF32Constant(DAG, 0x3f800000));
3634       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3635       SDValue TwoToFractionalPartOfX =
3636         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3637 
3638       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3639                            MVT::f32, TwoToFractionalPartOfX);
3640     }
3641   } else {
3642     // No special expansion.
3643     result = DAG.getNode(ISD::FEXP2, dl,
3644                          getValue(I.getOperand(1)).getValueType(),
3645                          getValue(I.getOperand(1)));
3646   }
3647 
3648   setValue(&I, result);
3649 }
3650 
3651 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3652 /// limited-precision mode with x == 10.0f.
3653 void
3654 SelectionDAGBuilder::visitPow(const CallInst &I) {
3655   SDValue result;
3656   const Value *Val = I.getOperand(1);
3657   DebugLoc dl = getCurDebugLoc();
3658   bool IsExp10 = false;
3659 
3660   if (getValue(Val).getValueType() == MVT::f32 &&
3661       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3662       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3663     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3664       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3665         APFloat Ten(10.0f);
3666         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3667       }
3668     }
3669   }
3670 
3671   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3672     SDValue Op = getValue(I.getOperand(2));
3673 
3674     // Put the exponent in the right bit position for later addition to the
3675     // final result:
3676     //
3677     //   #define LOG2OF10 3.3219281f
3678     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3679     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3680                              getF32Constant(DAG, 0x40549a78));
3681     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3682 
3683     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3684     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3685     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3686 
3687     //   IntegerPartOfX <<= 23;
3688     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3689                                  DAG.getConstant(23, TLI.getPointerTy()));
3690 
3691     if (LimitFloatPrecision <= 6) {
3692       // For floating-point precision of 6:
3693       //
3694       //   twoToFractionalPartOfX =
3695       //     0.997535578f +
3696       //       (0.735607626f + 0.252464424f * x) * x;
3697       //
3698       // error 0.0144103317, which is 6 bits
3699       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700                                getF32Constant(DAG, 0x3e814304));
3701       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3702                                getF32Constant(DAG, 0x3f3c50c8));
3703       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3704       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3705                                getF32Constant(DAG, 0x3f7f5e7e));
3706       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3707       SDValue TwoToFractionalPartOfX =
3708         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3709 
3710       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3711                            MVT::f32, TwoToFractionalPartOfX);
3712     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3713       // For floating-point precision of 12:
3714       //
3715       //   TwoToFractionalPartOfX =
3716       //     0.999892986f +
3717       //       (0.696457318f +
3718       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3719       //
3720       // error 0.000107046256, which is 13 to 14 bits
3721       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3722                                getF32Constant(DAG, 0x3da235e3));
3723       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3724                                getF32Constant(DAG, 0x3e65b8f3));
3725       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3726       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3727                                getF32Constant(DAG, 0x3f324b07));
3728       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3729       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3730                                getF32Constant(DAG, 0x3f7ff8fd));
3731       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3732       SDValue TwoToFractionalPartOfX =
3733         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3734 
3735       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3736                            MVT::f32, TwoToFractionalPartOfX);
3737     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3738       // For floating-point precision of 18:
3739       //
3740       //   TwoToFractionalPartOfX =
3741       //     0.999999982f +
3742       //       (0.693148872f +
3743       //         (0.240227044f +
3744       //           (0.554906021e-1f +
3745       //             (0.961591928e-2f +
3746       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3747       // error 2.47208000*10^(-7), which is better than 18 bits
3748       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3749                                getF32Constant(DAG, 0x3924b03e));
3750       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3751                                getF32Constant(DAG, 0x3ab24b87));
3752       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3753       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3754                                getF32Constant(DAG, 0x3c1d8c17));
3755       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3756       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3757                                getF32Constant(DAG, 0x3d634a1d));
3758       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3759       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3760                                getF32Constant(DAG, 0x3e75fe14));
3761       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3762       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3763                                 getF32Constant(DAG, 0x3f317234));
3764       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3765       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3766                                 getF32Constant(DAG, 0x3f800000));
3767       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3768       SDValue TwoToFractionalPartOfX =
3769         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3770 
3771       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3772                            MVT::f32, TwoToFractionalPartOfX);
3773     }
3774   } else {
3775     // No special expansion.
3776     result = DAG.getNode(ISD::FPOW, dl,
3777                          getValue(I.getOperand(1)).getValueType(),
3778                          getValue(I.getOperand(1)),
3779                          getValue(I.getOperand(2)));
3780   }
3781 
3782   setValue(&I, result);
3783 }
3784 
3785 
3786 /// ExpandPowI - Expand a llvm.powi intrinsic.
3787 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3788                           SelectionDAG &DAG) {
3789   // If RHS is a constant, we can expand this out to a multiplication tree,
3790   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3791   // optimizing for size, we only want to do this if the expansion would produce
3792   // a small number of multiplies, otherwise we do the full expansion.
3793   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3794     // Get the exponent as a positive value.
3795     unsigned Val = RHSC->getSExtValue();
3796     if ((int)Val < 0) Val = -Val;
3797 
3798     // powi(x, 0) -> 1.0
3799     if (Val == 0)
3800       return DAG.getConstantFP(1.0, LHS.getValueType());
3801 
3802     const Function *F = DAG.getMachineFunction().getFunction();
3803     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3804         // If optimizing for size, don't insert too many multiplies.  This
3805         // inserts up to 5 multiplies.
3806         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3807       // We use the simple binary decomposition method to generate the multiply
3808       // sequence.  There are more optimal ways to do this (for example,
3809       // powi(x,15) generates one more multiply than it should), but this has
3810       // the benefit of being both really simple and much better than a libcall.
3811       SDValue Res;  // Logically starts equal to 1.0
3812       SDValue CurSquare = LHS;
3813       while (Val) {
3814         if (Val & 1) {
3815           if (Res.getNode())
3816             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3817           else
3818             Res = CurSquare;  // 1.0*CurSquare.
3819         }
3820 
3821         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3822                                 CurSquare, CurSquare);
3823         Val >>= 1;
3824       }
3825 
3826       // If the original was negative, invert the result, producing 1/(x*x*x).
3827       if (RHSC->getSExtValue() < 0)
3828         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3829                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3830       return Res;
3831     }
3832   }
3833 
3834   // Otherwise, expand to a libcall.
3835   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3836 }
3837 
3838 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3839 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3840 /// At the end of instruction selection, they will be inserted to the entry BB.
3841 bool
3842 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3843                                               const Value *V, MDNode *Variable,
3844                                               uint64_t Offset,
3845                                               const SDValue &N) {
3846   if (!isa<Argument>(V))
3847     return false;
3848 
3849   MachineFunction &MF = DAG.getMachineFunction();
3850   // Ignore inlined function arguments here.
3851   DIVariable DV(Variable);
3852   if (DV.isInlinedFnArgument(MF.getFunction()))
3853     return false;
3854 
3855   MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3856   if (MBB != &MF.front())
3857     return false;
3858 
3859   unsigned Reg = 0;
3860   if (N.getOpcode() == ISD::CopyFromReg) {
3861     Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3862     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3863       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3864       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3865       if (PR)
3866         Reg = PR;
3867     }
3868   }
3869 
3870   if (!Reg) {
3871     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3872     if (VMI == FuncInfo.ValueMap.end())
3873       return false;
3874     Reg = VMI->second;
3875   }
3876 
3877   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3878   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3879                                     TII->get(TargetOpcode::DBG_VALUE))
3880     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3881   FuncInfo.ArgDbgValues.push_back(&*MIB);
3882   return true;
3883 }
3884 
3885 // VisualStudio defines setjmp as _setjmp
3886 #if defined(_MSC_VER) && defined(setjmp)
3887 #define setjmp_undefined_for_visual_studio
3888 #undef setjmp
3889 #endif
3890 
3891 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3892 /// we want to emit this as a call to a named external function, return the name
3893 /// otherwise lower it and return null.
3894 const char *
3895 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3896   DebugLoc dl = getCurDebugLoc();
3897   SDValue Res;
3898 
3899   switch (Intrinsic) {
3900   default:
3901     // By default, turn this into a target intrinsic node.
3902     visitTargetIntrinsic(I, Intrinsic);
3903     return 0;
3904   case Intrinsic::vastart:  visitVAStart(I); return 0;
3905   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3906   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3907   case Intrinsic::returnaddress:
3908     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3909                              getValue(I.getOperand(1))));
3910     return 0;
3911   case Intrinsic::frameaddress:
3912     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3913                              getValue(I.getOperand(1))));
3914     return 0;
3915   case Intrinsic::setjmp:
3916     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3917   case Intrinsic::longjmp:
3918     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3919   case Intrinsic::memcpy: {
3920     // Assert for address < 256 since we support only user defined address
3921     // spaces.
3922     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3923            < 256 &&
3924            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3925            < 256 &&
3926            "Unknown address space");
3927     SDValue Op1 = getValue(I.getOperand(1));
3928     SDValue Op2 = getValue(I.getOperand(2));
3929     SDValue Op3 = getValue(I.getOperand(3));
3930     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3931     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3932     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3933                               I.getOperand(1), 0, I.getOperand(2), 0));
3934     return 0;
3935   }
3936   case Intrinsic::memset: {
3937     // Assert for address < 256 since we support only user defined address
3938     // spaces.
3939     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3940            < 256 &&
3941            "Unknown address space");
3942     SDValue Op1 = getValue(I.getOperand(1));
3943     SDValue Op2 = getValue(I.getOperand(2));
3944     SDValue Op3 = getValue(I.getOperand(3));
3945     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3946     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3947     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3948                               I.getOperand(1), 0));
3949     return 0;
3950   }
3951   case Intrinsic::memmove: {
3952     // Assert for address < 256 since we support only user defined address
3953     // spaces.
3954     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3955            < 256 &&
3956            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3957            < 256 &&
3958            "Unknown address space");
3959     SDValue Op1 = getValue(I.getOperand(1));
3960     SDValue Op2 = getValue(I.getOperand(2));
3961     SDValue Op3 = getValue(I.getOperand(3));
3962     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3963     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3964 
3965     // If the source and destination are known to not be aliases, we can
3966     // lower memmove as memcpy.
3967     uint64_t Size = -1ULL;
3968     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3969       Size = C->getZExtValue();
3970     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3971         AliasAnalysis::NoAlias) {
3972       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3973                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
3974       return 0;
3975     }
3976 
3977     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3978                                I.getOperand(1), 0, I.getOperand(2), 0));
3979     return 0;
3980   }
3981   case Intrinsic::dbg_declare: {
3982     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3983     if (!DIVariable(DI.getVariable()).Verify())
3984       return 0;
3985 
3986     MDNode *Variable = DI.getVariable();
3987     // Parameters are handled specially.
3988     bool isParameter =
3989       DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3990     const Value *Address = DI.getAddress();
3991     if (!Address)
3992       return 0;
3993     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3994       Address = BCI->getOperand(0);
3995     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3996     if (AI) {
3997       // Don't handle byval arguments or VLAs, for example.
3998       // Non-byval arguments are handled here (they refer to the stack temporary
3999       // alloca at this point).
4000       DenseMap<const AllocaInst*, int>::iterator SI =
4001         FuncInfo.StaticAllocaMap.find(AI);
4002       if (SI == FuncInfo.StaticAllocaMap.end())
4003         return 0; // VLAs.
4004       int FI = SI->second;
4005 
4006       MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4007       if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4008         MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4009     }
4010 
4011     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4012     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4013     // absolute, but not relative, values are different depending on whether
4014     // debug info exists.
4015     ++SDNodeOrder;
4016     SDValue &N = NodeMap[Address];
4017     SDDbgValue *SDV;
4018     if (N.getNode()) {
4019       if (isParameter && !AI) {
4020         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4021         if (FINode)
4022           // Byval parameter.  We have a frame index at this point.
4023           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4024                                 0, dl, SDNodeOrder);
4025         else
4026           // Can't do anything with other non-AI cases yet.  This might be a
4027           // parameter of a callee function that got inlined, for example.
4028           return 0;
4029       } else if (AI)
4030         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4031                               0, dl, SDNodeOrder);
4032       else
4033         // Can't do anything with other non-AI cases yet.
4034         return 0;
4035       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4036     } else {
4037       // This isn't useful, but it shows what we're missing.
4038       SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4039                             0, dl, SDNodeOrder);
4040       DAG.AddDbgValue(SDV, 0, isParameter);
4041     }
4042     return 0;
4043   }
4044   case Intrinsic::dbg_value: {
4045     const DbgValueInst &DI = cast<DbgValueInst>(I);
4046     if (!DIVariable(DI.getVariable()).Verify())
4047       return 0;
4048 
4049     MDNode *Variable = DI.getVariable();
4050     uint64_t Offset = DI.getOffset();
4051     const Value *V = DI.getValue();
4052     if (!V)
4053       return 0;
4054 
4055     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4056     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4057     // absolute, but not relative, values are different depending on whether
4058     // debug info exists.
4059     ++SDNodeOrder;
4060     SDDbgValue *SDV;
4061     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4062       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4063       DAG.AddDbgValue(SDV, 0, false);
4064     } else {
4065       bool createUndef = false;
4066       // FIXME : Why not use getValue() directly ?
4067       SDValue N = NodeMap[V];
4068       if (!N.getNode() && isa<Argument>(V))
4069         // Check unused arguments map.
4070         N = UnusedArgNodeMap[V];
4071       if (N.getNode()) {
4072         if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4073           SDV = DAG.getDbgValue(Variable, N.getNode(),
4074                                 N.getResNo(), Offset, dl, SDNodeOrder);
4075           DAG.AddDbgValue(SDV, N.getNode(), false);
4076         }
4077       } else if (isa<PHINode>(V) && !V->use_empty()) {
4078         SDValue N = getValue(V);
4079         if (N.getNode()) {
4080           if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4081             SDV = DAG.getDbgValue(Variable, N.getNode(),
4082                                   N.getResNo(), Offset, dl, SDNodeOrder);
4083             DAG.AddDbgValue(SDV, N.getNode(), false);
4084           }
4085         } else
4086           createUndef = true;
4087       } else
4088         createUndef = true;
4089       if (createUndef) {
4090         // We may expand this to cover more cases.  One case where we have no
4091         // data available is an unreferenced parameter; we need this fallback.
4092         SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4093                               Offset, dl, SDNodeOrder);
4094         DAG.AddDbgValue(SDV, 0, false);
4095       }
4096     }
4097 
4098     // Build a debug info table entry.
4099     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4100       V = BCI->getOperand(0);
4101     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4102     // Don't handle byval struct arguments or VLAs, for example.
4103     if (!AI)
4104       return 0;
4105     DenseMap<const AllocaInst*, int>::iterator SI =
4106       FuncInfo.StaticAllocaMap.find(AI);
4107     if (SI == FuncInfo.StaticAllocaMap.end())
4108       return 0; // VLAs.
4109     int FI = SI->second;
4110 
4111     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4112     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4113       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4114     return 0;
4115   }
4116   case Intrinsic::eh_exception: {
4117     // Insert the EXCEPTIONADDR instruction.
4118     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4119            "Call to eh.exception not in landing pad!");
4120     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4121     SDValue Ops[1];
4122     Ops[0] = DAG.getRoot();
4123     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4124     setValue(&I, Op);
4125     DAG.setRoot(Op.getValue(1));
4126     return 0;
4127   }
4128 
4129   case Intrinsic::eh_selector: {
4130     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4131     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4132     if (CallMBB->isLandingPad())
4133       AddCatchInfo(I, &MMI, CallMBB);
4134     else {
4135 #ifndef NDEBUG
4136       FuncInfo.CatchInfoLost.insert(&I);
4137 #endif
4138       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4139       unsigned Reg = TLI.getExceptionSelectorRegister();
4140       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4141     }
4142 
4143     // Insert the EHSELECTION instruction.
4144     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4145     SDValue Ops[2];
4146     Ops[0] = getValue(I.getOperand(1));
4147     Ops[1] = getRoot();
4148     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4149     DAG.setRoot(Op.getValue(1));
4150     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4151     return 0;
4152   }
4153 
4154   case Intrinsic::eh_typeid_for: {
4155     // Find the type id for the given typeinfo.
4156     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4157     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4158     Res = DAG.getConstant(TypeID, MVT::i32);
4159     setValue(&I, Res);
4160     return 0;
4161   }
4162 
4163   case Intrinsic::eh_return_i32:
4164   case Intrinsic::eh_return_i64:
4165     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4166     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4167                             MVT::Other,
4168                             getControlRoot(),
4169                             getValue(I.getOperand(1)),
4170                             getValue(I.getOperand(2))));
4171     return 0;
4172   case Intrinsic::eh_unwind_init:
4173     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4174     return 0;
4175   case Intrinsic::eh_dwarf_cfa: {
4176     EVT VT = getValue(I.getOperand(1)).getValueType();
4177     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4178                                         TLI.getPointerTy());
4179     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4180                                  TLI.getPointerTy(),
4181                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4182                                              TLI.getPointerTy()),
4183                                  CfaArg);
4184     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4185                              TLI.getPointerTy(),
4186                              DAG.getConstant(0, TLI.getPointerTy()));
4187     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4188                              FA, Offset));
4189     return 0;
4190   }
4191   case Intrinsic::eh_sjlj_callsite: {
4192     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4193     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4194     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4195     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4196 
4197     MMI.setCurrentCallSite(CI->getZExtValue());
4198     return 0;
4199   }
4200   case Intrinsic::eh_sjlj_setjmp: {
4201     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4202                              getValue(I.getOperand(1))));
4203     return 0;
4204   }
4205   case Intrinsic::eh_sjlj_longjmp: {
4206     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4207                             getRoot(),
4208                             getValue(I.getOperand(1))));
4209     return 0;
4210   }
4211 
4212   case Intrinsic::convertff:
4213   case Intrinsic::convertfsi:
4214   case Intrinsic::convertfui:
4215   case Intrinsic::convertsif:
4216   case Intrinsic::convertuif:
4217   case Intrinsic::convertss:
4218   case Intrinsic::convertsu:
4219   case Intrinsic::convertus:
4220   case Intrinsic::convertuu: {
4221     ISD::CvtCode Code = ISD::CVT_INVALID;
4222     switch (Intrinsic) {
4223     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4224     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4225     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4226     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4227     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4228     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4229     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4230     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4231     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4232     }
4233     EVT DestVT = TLI.getValueType(I.getType());
4234     const Value *Op1 = I.getOperand(1);
4235     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4236                                DAG.getValueType(DestVT),
4237                                DAG.getValueType(getValue(Op1).getValueType()),
4238                                getValue(I.getOperand(2)),
4239                                getValue(I.getOperand(3)),
4240                                Code);
4241     setValue(&I, Res);
4242     return 0;
4243   }
4244   case Intrinsic::sqrt:
4245     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4246                              getValue(I.getOperand(1)).getValueType(),
4247                              getValue(I.getOperand(1))));
4248     return 0;
4249   case Intrinsic::powi:
4250     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4251                             getValue(I.getOperand(2)), DAG));
4252     return 0;
4253   case Intrinsic::sin:
4254     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4255                              getValue(I.getOperand(1)).getValueType(),
4256                              getValue(I.getOperand(1))));
4257     return 0;
4258   case Intrinsic::cos:
4259     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4260                              getValue(I.getOperand(1)).getValueType(),
4261                              getValue(I.getOperand(1))));
4262     return 0;
4263   case Intrinsic::log:
4264     visitLog(I);
4265     return 0;
4266   case Intrinsic::log2:
4267     visitLog2(I);
4268     return 0;
4269   case Intrinsic::log10:
4270     visitLog10(I);
4271     return 0;
4272   case Intrinsic::exp:
4273     visitExp(I);
4274     return 0;
4275   case Intrinsic::exp2:
4276     visitExp2(I);
4277     return 0;
4278   case Intrinsic::pow:
4279     visitPow(I);
4280     return 0;
4281   case Intrinsic::convert_to_fp16:
4282     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4283                              MVT::i16, getValue(I.getOperand(1))));
4284     return 0;
4285   case Intrinsic::convert_from_fp16:
4286     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4287                              MVT::f32, getValue(I.getOperand(1))));
4288     return 0;
4289   case Intrinsic::pcmarker: {
4290     SDValue Tmp = getValue(I.getOperand(1));
4291     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4292     return 0;
4293   }
4294   case Intrinsic::readcyclecounter: {
4295     SDValue Op = getRoot();
4296     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4297                       DAG.getVTList(MVT::i64, MVT::Other),
4298                       &Op, 1);
4299     setValue(&I, Res);
4300     DAG.setRoot(Res.getValue(1));
4301     return 0;
4302   }
4303   case Intrinsic::bswap:
4304     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4305                              getValue(I.getOperand(1)).getValueType(),
4306                              getValue(I.getOperand(1))));
4307     return 0;
4308   case Intrinsic::cttz: {
4309     SDValue Arg = getValue(I.getOperand(1));
4310     EVT Ty = Arg.getValueType();
4311     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4312     return 0;
4313   }
4314   case Intrinsic::ctlz: {
4315     SDValue Arg = getValue(I.getOperand(1));
4316     EVT Ty = Arg.getValueType();
4317     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4318     return 0;
4319   }
4320   case Intrinsic::ctpop: {
4321     SDValue Arg = getValue(I.getOperand(1));
4322     EVT Ty = Arg.getValueType();
4323     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4324     return 0;
4325   }
4326   case Intrinsic::stacksave: {
4327     SDValue Op = getRoot();
4328     Res = DAG.getNode(ISD::STACKSAVE, dl,
4329                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4330     setValue(&I, Res);
4331     DAG.setRoot(Res.getValue(1));
4332     return 0;
4333   }
4334   case Intrinsic::stackrestore: {
4335     Res = getValue(I.getOperand(1));
4336     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4337     return 0;
4338   }
4339   case Intrinsic::stackprotector: {
4340     // Emit code into the DAG to store the stack guard onto the stack.
4341     MachineFunction &MF = DAG.getMachineFunction();
4342     MachineFrameInfo *MFI = MF.getFrameInfo();
4343     EVT PtrTy = TLI.getPointerTy();
4344 
4345     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4346     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4347 
4348     int FI = FuncInfo.StaticAllocaMap[Slot];
4349     MFI->setStackProtectorIndex(FI);
4350 
4351     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4352 
4353     // Store the stack protector onto the stack.
4354     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4355                        PseudoSourceValue::getFixedStack(FI),
4356                        0, true, false, 0);
4357     setValue(&I, Res);
4358     DAG.setRoot(Res);
4359     return 0;
4360   }
4361   case Intrinsic::objectsize: {
4362     // If we don't know by now, we're never going to know.
4363     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4364 
4365     assert(CI && "Non-constant type in __builtin_object_size?");
4366 
4367     SDValue Arg = getValue(I.getOperand(0));
4368     EVT Ty = Arg.getValueType();
4369 
4370     if (CI->isZero())
4371       Res = DAG.getConstant(-1ULL, Ty);
4372     else
4373       Res = DAG.getConstant(0, Ty);
4374 
4375     setValue(&I, Res);
4376     return 0;
4377   }
4378   case Intrinsic::var_annotation:
4379     // Discard annotate attributes
4380     return 0;
4381 
4382   case Intrinsic::init_trampoline: {
4383     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4384 
4385     SDValue Ops[6];
4386     Ops[0] = getRoot();
4387     Ops[1] = getValue(I.getOperand(1));
4388     Ops[2] = getValue(I.getOperand(2));
4389     Ops[3] = getValue(I.getOperand(3));
4390     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4391     Ops[5] = DAG.getSrcValue(F);
4392 
4393     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4394                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4395                       Ops, 6);
4396 
4397     setValue(&I, Res);
4398     DAG.setRoot(Res.getValue(1));
4399     return 0;
4400   }
4401   case Intrinsic::gcroot:
4402     if (GFI) {
4403       const Value *Alloca = I.getOperand(1);
4404       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4405 
4406       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4407       GFI->addStackRoot(FI->getIndex(), TypeMap);
4408     }
4409     return 0;
4410   case Intrinsic::gcread:
4411   case Intrinsic::gcwrite:
4412     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4413     return 0;
4414   case Intrinsic::flt_rounds:
4415     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4416     return 0;
4417   case Intrinsic::trap:
4418     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4419     return 0;
4420   case Intrinsic::uadd_with_overflow:
4421     return implVisitAluOverflow(I, ISD::UADDO);
4422   case Intrinsic::sadd_with_overflow:
4423     return implVisitAluOverflow(I, ISD::SADDO);
4424   case Intrinsic::usub_with_overflow:
4425     return implVisitAluOverflow(I, ISD::USUBO);
4426   case Intrinsic::ssub_with_overflow:
4427     return implVisitAluOverflow(I, ISD::SSUBO);
4428   case Intrinsic::umul_with_overflow:
4429     return implVisitAluOverflow(I, ISD::UMULO);
4430   case Intrinsic::smul_with_overflow:
4431     return implVisitAluOverflow(I, ISD::SMULO);
4432 
4433   case Intrinsic::prefetch: {
4434     SDValue Ops[4];
4435     Ops[0] = getRoot();
4436     Ops[1] = getValue(I.getOperand(1));
4437     Ops[2] = getValue(I.getOperand(2));
4438     Ops[3] = getValue(I.getOperand(3));
4439     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4440     return 0;
4441   }
4442 
4443   case Intrinsic::memory_barrier: {
4444     SDValue Ops[6];
4445     Ops[0] = getRoot();
4446     for (int x = 1; x < 6; ++x)
4447       Ops[x] = getValue(I.getOperand(x));
4448 
4449     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4450     return 0;
4451   }
4452   case Intrinsic::atomic_cmp_swap: {
4453     SDValue Root = getRoot();
4454     SDValue L =
4455       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4456                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4457                     Root,
4458                     getValue(I.getOperand(1)),
4459                     getValue(I.getOperand(2)),
4460                     getValue(I.getOperand(3)),
4461                     I.getOperand(1));
4462     setValue(&I, L);
4463     DAG.setRoot(L.getValue(1));
4464     return 0;
4465   }
4466   case Intrinsic::atomic_load_add:
4467     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4468   case Intrinsic::atomic_load_sub:
4469     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4470   case Intrinsic::atomic_load_or:
4471     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4472   case Intrinsic::atomic_load_xor:
4473     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4474   case Intrinsic::atomic_load_and:
4475     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4476   case Intrinsic::atomic_load_nand:
4477     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4478   case Intrinsic::atomic_load_max:
4479     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4480   case Intrinsic::atomic_load_min:
4481     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4482   case Intrinsic::atomic_load_umin:
4483     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4484   case Intrinsic::atomic_load_umax:
4485     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4486   case Intrinsic::atomic_swap:
4487     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4488 
4489   case Intrinsic::invariant_start:
4490   case Intrinsic::lifetime_start:
4491     // Discard region information.
4492     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4493     return 0;
4494   case Intrinsic::invariant_end:
4495   case Intrinsic::lifetime_end:
4496     // Discard region information.
4497     return 0;
4498   }
4499 }
4500 
4501 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4502                                       bool isTailCall,
4503                                       MachineBasicBlock *LandingPad) {
4504   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4505   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4506   const Type *RetTy = FTy->getReturnType();
4507   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4508   MCSymbol *BeginLabel = 0;
4509 
4510   TargetLowering::ArgListTy Args;
4511   TargetLowering::ArgListEntry Entry;
4512   Args.reserve(CS.arg_size());
4513 
4514   // Check whether the function can return without sret-demotion.
4515   SmallVector<EVT, 4> OutVTs;
4516   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4517   SmallVector<uint64_t, 4> Offsets;
4518   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4519                 OutVTs, OutsFlags, TLI, &Offsets);
4520 
4521   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4522                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4523 
4524   SDValue DemoteStackSlot;
4525 
4526   if (!CanLowerReturn) {
4527     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4528                       FTy->getReturnType());
4529     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4530                       FTy->getReturnType());
4531     MachineFunction &MF = DAG.getMachineFunction();
4532     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4533     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4534 
4535     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4536     Entry.Node = DemoteStackSlot;
4537     Entry.Ty = StackSlotPtrType;
4538     Entry.isSExt = false;
4539     Entry.isZExt = false;
4540     Entry.isInReg = false;
4541     Entry.isSRet = true;
4542     Entry.isNest = false;
4543     Entry.isByVal = false;
4544     Entry.Alignment = Align;
4545     Args.push_back(Entry);
4546     RetTy = Type::getVoidTy(FTy->getContext());
4547   }
4548 
4549   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4550        i != e; ++i) {
4551     SDValue ArgNode = getValue(*i);
4552     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4553 
4554     unsigned attrInd = i - CS.arg_begin() + 1;
4555     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4556     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4557     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4558     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4559     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4560     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4561     Entry.Alignment = CS.getParamAlignment(attrInd);
4562     Args.push_back(Entry);
4563   }
4564 
4565   if (LandingPad) {
4566     // Insert a label before the invoke call to mark the try range.  This can be
4567     // used to detect deletion of the invoke via the MachineModuleInfo.
4568     BeginLabel = MMI.getContext().CreateTempSymbol();
4569 
4570     // For SjLj, keep track of which landing pads go with which invokes
4571     // so as to maintain the ordering of pads in the LSDA.
4572     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4573     if (CallSiteIndex) {
4574       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4575       // Now that the call site is handled, stop tracking it.
4576       MMI.setCurrentCallSite(0);
4577     }
4578 
4579     // Both PendingLoads and PendingExports must be flushed here;
4580     // this call might not return.
4581     (void)getRoot();
4582     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4583   }
4584 
4585   // Check if target-independent constraints permit a tail call here.
4586   // Target-dependent constraints are checked within TLI.LowerCallTo.
4587   if (isTailCall &&
4588       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4589     isTailCall = false;
4590 
4591   std::pair<SDValue,SDValue> Result =
4592     TLI.LowerCallTo(getRoot(), RetTy,
4593                     CS.paramHasAttr(0, Attribute::SExt),
4594                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4595                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4596                     CS.getCallingConv(),
4597                     isTailCall,
4598                     !CS.getInstruction()->use_empty(),
4599                     Callee, Args, DAG, getCurDebugLoc());
4600   assert((isTailCall || Result.second.getNode()) &&
4601          "Non-null chain expected with non-tail call!");
4602   assert((Result.second.getNode() || !Result.first.getNode()) &&
4603          "Null value expected with tail call!");
4604   if (Result.first.getNode()) {
4605     setValue(CS.getInstruction(), Result.first);
4606   } else if (!CanLowerReturn && Result.second.getNode()) {
4607     // The instruction result is the result of loading from the
4608     // hidden sret parameter.
4609     SmallVector<EVT, 1> PVTs;
4610     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4611 
4612     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4613     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4614     EVT PtrVT = PVTs[0];
4615     unsigned NumValues = OutVTs.size();
4616     SmallVector<SDValue, 4> Values(NumValues);
4617     SmallVector<SDValue, 4> Chains(NumValues);
4618 
4619     for (unsigned i = 0; i < NumValues; ++i) {
4620       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4621                                 DemoteStackSlot,
4622                                 DAG.getConstant(Offsets[i], PtrVT));
4623       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4624                               Add, NULL, Offsets[i], false, false, 1);
4625       Values[i] = L;
4626       Chains[i] = L.getValue(1);
4627     }
4628 
4629     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4630                                 MVT::Other, &Chains[0], NumValues);
4631     PendingLoads.push_back(Chain);
4632 
4633     // Collect the legal value parts into potentially illegal values
4634     // that correspond to the original function's return values.
4635     SmallVector<EVT, 4> RetTys;
4636     RetTy = FTy->getReturnType();
4637     ComputeValueVTs(TLI, RetTy, RetTys);
4638     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4639     SmallVector<SDValue, 4> ReturnValues;
4640     unsigned CurReg = 0;
4641     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4642       EVT VT = RetTys[I];
4643       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4644       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4645 
4646       SDValue ReturnValue =
4647         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4648                          RegisterVT, VT, AssertOp);
4649       ReturnValues.push_back(ReturnValue);
4650       CurReg += NumRegs;
4651     }
4652 
4653     setValue(CS.getInstruction(),
4654              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4655                          DAG.getVTList(&RetTys[0], RetTys.size()),
4656                          &ReturnValues[0], ReturnValues.size()));
4657 
4658   }
4659 
4660   // As a special case, a null chain means that a tail call has been emitted and
4661   // the DAG root is already updated.
4662   if (Result.second.getNode())
4663     DAG.setRoot(Result.second);
4664   else
4665     HasTailCall = true;
4666 
4667   if (LandingPad) {
4668     // Insert a label at the end of the invoke call to mark the try range.  This
4669     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4670     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4671     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4672 
4673     // Inform MachineModuleInfo of range.
4674     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4675   }
4676 }
4677 
4678 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4679 /// value is equal or not-equal to zero.
4680 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4681   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4682        UI != E; ++UI) {
4683     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4684       if (IC->isEquality())
4685         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4686           if (C->isNullValue())
4687             continue;
4688     // Unknown instruction.
4689     return false;
4690   }
4691   return true;
4692 }
4693 
4694 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4695                              const Type *LoadTy,
4696                              SelectionDAGBuilder &Builder) {
4697 
4698   // Check to see if this load can be trivially constant folded, e.g. if the
4699   // input is from a string literal.
4700   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4701     // Cast pointer to the type we really want to load.
4702     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4703                                          PointerType::getUnqual(LoadTy));
4704 
4705     if (const Constant *LoadCst =
4706           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4707                                        Builder.TD))
4708       return Builder.getValue(LoadCst);
4709   }
4710 
4711   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4712   // still constant memory, the input chain can be the entry node.
4713   SDValue Root;
4714   bool ConstantMemory = false;
4715 
4716   // Do not serialize (non-volatile) loads of constant memory with anything.
4717   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4718     Root = Builder.DAG.getEntryNode();
4719     ConstantMemory = true;
4720   } else {
4721     // Do not serialize non-volatile loads against each other.
4722     Root = Builder.DAG.getRoot();
4723   }
4724 
4725   SDValue Ptr = Builder.getValue(PtrVal);
4726   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4727                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4728                                         false /*volatile*/,
4729                                         false /*nontemporal*/, 1 /* align=1 */);
4730 
4731   if (!ConstantMemory)
4732     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4733   return LoadVal;
4734 }
4735 
4736 
4737 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4738 /// If so, return true and lower it, otherwise return false and it will be
4739 /// lowered like a normal call.
4740 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4741   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4742   if (I.getNumOperands() != 4)
4743     return false;
4744 
4745   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4746   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4747       !I.getOperand(3)->getType()->isIntegerTy() ||
4748       !I.getType()->isIntegerTy())
4749     return false;
4750 
4751   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4752 
4753   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4754   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4755   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4756     bool ActuallyDoIt = true;
4757     MVT LoadVT;
4758     const Type *LoadTy;
4759     switch (Size->getZExtValue()) {
4760     default:
4761       LoadVT = MVT::Other;
4762       LoadTy = 0;
4763       ActuallyDoIt = false;
4764       break;
4765     case 2:
4766       LoadVT = MVT::i16;
4767       LoadTy = Type::getInt16Ty(Size->getContext());
4768       break;
4769     case 4:
4770       LoadVT = MVT::i32;
4771       LoadTy = Type::getInt32Ty(Size->getContext());
4772       break;
4773     case 8:
4774       LoadVT = MVT::i64;
4775       LoadTy = Type::getInt64Ty(Size->getContext());
4776       break;
4777         /*
4778     case 16:
4779       LoadVT = MVT::v4i32;
4780       LoadTy = Type::getInt32Ty(Size->getContext());
4781       LoadTy = VectorType::get(LoadTy, 4);
4782       break;
4783          */
4784     }
4785 
4786     // This turns into unaligned loads.  We only do this if the target natively
4787     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4788     // we'll only produce a small number of byte loads.
4789 
4790     // Require that we can find a legal MVT, and only do this if the target
4791     // supports unaligned loads of that type.  Expanding into byte loads would
4792     // bloat the code.
4793     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4794       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4795       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4796       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4797         ActuallyDoIt = false;
4798     }
4799 
4800     if (ActuallyDoIt) {
4801       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4802       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4803 
4804       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4805                                  ISD::SETNE);
4806       EVT CallVT = TLI.getValueType(I.getType(), true);
4807       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4808       return true;
4809     }
4810   }
4811 
4812 
4813   return false;
4814 }
4815 
4816 
4817 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4818   const char *RenameFn = 0;
4819   if (Function *F = I.getCalledFunction()) {
4820     if (F->isDeclaration()) {
4821       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4822       if (II) {
4823         if (unsigned IID = II->getIntrinsicID(F)) {
4824           RenameFn = visitIntrinsicCall(I, IID);
4825           if (!RenameFn)
4826             return;
4827         }
4828       }
4829       if (unsigned IID = F->getIntrinsicID()) {
4830         RenameFn = visitIntrinsicCall(I, IID);
4831         if (!RenameFn)
4832           return;
4833       }
4834     }
4835 
4836     // Check for well-known libc/libm calls.  If the function is internal, it
4837     // can't be a library call.
4838     if (!F->hasLocalLinkage() && F->hasName()) {
4839       StringRef Name = F->getName();
4840       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4841         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4842             I.getOperand(1)->getType()->isFloatingPointTy() &&
4843             I.getType() == I.getOperand(1)->getType() &&
4844             I.getType() == I.getOperand(2)->getType()) {
4845           SDValue LHS = getValue(I.getOperand(1));
4846           SDValue RHS = getValue(I.getOperand(2));
4847           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4848                                    LHS.getValueType(), LHS, RHS));
4849           return;
4850         }
4851       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4852         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4853             I.getOperand(1)->getType()->isFloatingPointTy() &&
4854             I.getType() == I.getOperand(1)->getType()) {
4855           SDValue Tmp = getValue(I.getOperand(1));
4856           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4857                                    Tmp.getValueType(), Tmp));
4858           return;
4859         }
4860       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4861         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4862             I.getOperand(1)->getType()->isFloatingPointTy() &&
4863             I.getType() == I.getOperand(1)->getType() &&
4864             I.onlyReadsMemory()) {
4865           SDValue Tmp = getValue(I.getOperand(1));
4866           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4867                                    Tmp.getValueType(), Tmp));
4868           return;
4869         }
4870       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4871         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4872             I.getOperand(1)->getType()->isFloatingPointTy() &&
4873             I.getType() == I.getOperand(1)->getType() &&
4874             I.onlyReadsMemory()) {
4875           SDValue Tmp = getValue(I.getOperand(1));
4876           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4877                                    Tmp.getValueType(), Tmp));
4878           return;
4879         }
4880       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4881         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4882             I.getOperand(1)->getType()->isFloatingPointTy() &&
4883             I.getType() == I.getOperand(1)->getType() &&
4884             I.onlyReadsMemory()) {
4885           SDValue Tmp = getValue(I.getOperand(1));
4886           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4887                                    Tmp.getValueType(), Tmp));
4888           return;
4889         }
4890       } else if (Name == "memcmp") {
4891         if (visitMemCmpCall(I))
4892           return;
4893       }
4894     }
4895   } else if (isa<InlineAsm>(I.getOperand(0))) {
4896     visitInlineAsm(&I);
4897     return;
4898   }
4899 
4900   SDValue Callee;
4901   if (!RenameFn)
4902     Callee = getValue(I.getOperand(0));
4903   else
4904     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4905 
4906   // Check if we can potentially perform a tail call. More detailed checking is
4907   // be done within LowerCallTo, after more information about the call is known.
4908   LowerCallTo(&I, Callee, I.isTailCall());
4909 }
4910 
4911 namespace llvm {
4912 
4913 /// AsmOperandInfo - This contains information for each constraint that we are
4914 /// lowering.
4915 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4916     public TargetLowering::AsmOperandInfo {
4917 public:
4918   /// CallOperand - If this is the result output operand or a clobber
4919   /// this is null, otherwise it is the incoming operand to the CallInst.
4920   /// This gets modified as the asm is processed.
4921   SDValue CallOperand;
4922 
4923   /// AssignedRegs - If this is a register or register class operand, this
4924   /// contains the set of register corresponding to the operand.
4925   RegsForValue AssignedRegs;
4926 
4927   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4928     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4929   }
4930 
4931   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4932   /// busy in OutputRegs/InputRegs.
4933   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4934                          std::set<unsigned> &OutputRegs,
4935                          std::set<unsigned> &InputRegs,
4936                          const TargetRegisterInfo &TRI) const {
4937     if (isOutReg) {
4938       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4939         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4940     }
4941     if (isInReg) {
4942       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4943         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4944     }
4945   }
4946 
4947   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4948   /// corresponds to.  If there is no Value* for this operand, it returns
4949   /// MVT::Other.
4950   EVT getCallOperandValEVT(LLVMContext &Context,
4951                            const TargetLowering &TLI,
4952                            const TargetData *TD) const {
4953     if (CallOperandVal == 0) return MVT::Other;
4954 
4955     if (isa<BasicBlock>(CallOperandVal))
4956       return TLI.getPointerTy();
4957 
4958     const llvm::Type *OpTy = CallOperandVal->getType();
4959 
4960     // If this is an indirect operand, the operand is a pointer to the
4961     // accessed type.
4962     if (isIndirect) {
4963       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4964       if (!PtrTy)
4965         report_fatal_error("Indirect operand for inline asm not a pointer!");
4966       OpTy = PtrTy->getElementType();
4967     }
4968 
4969     // If OpTy is not a single value, it may be a struct/union that we
4970     // can tile with integers.
4971     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4972       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4973       switch (BitSize) {
4974       default: break;
4975       case 1:
4976       case 8:
4977       case 16:
4978       case 32:
4979       case 64:
4980       case 128:
4981         OpTy = IntegerType::get(Context, BitSize);
4982         break;
4983       }
4984     }
4985 
4986     return TLI.getValueType(OpTy, true);
4987   }
4988 
4989 private:
4990   /// MarkRegAndAliases - Mark the specified register and all aliases in the
4991   /// specified set.
4992   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4993                                 const TargetRegisterInfo &TRI) {
4994     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4995     Regs.insert(Reg);
4996     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4997       for (; *Aliases; ++Aliases)
4998         Regs.insert(*Aliases);
4999   }
5000 };
5001 
5002 } // end llvm namespace.
5003 
5004 /// isAllocatableRegister - If the specified register is safe to allocate,
5005 /// i.e. it isn't a stack pointer or some other special register, return the
5006 /// register class for the register.  Otherwise, return null.
5007 static const TargetRegisterClass *
5008 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5009                       const TargetLowering &TLI,
5010                       const TargetRegisterInfo *TRI) {
5011   EVT FoundVT = MVT::Other;
5012   const TargetRegisterClass *FoundRC = 0;
5013   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5014        E = TRI->regclass_end(); RCI != E; ++RCI) {
5015     EVT ThisVT = MVT::Other;
5016 
5017     const TargetRegisterClass *RC = *RCI;
5018     // If none of the value types for this register class are valid, we
5019     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5020     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5021          I != E; ++I) {
5022       if (TLI.isTypeLegal(*I)) {
5023         // If we have already found this register in a different register class,
5024         // choose the one with the largest VT specified.  For example, on
5025         // PowerPC, we favor f64 register classes over f32.
5026         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5027           ThisVT = *I;
5028           break;
5029         }
5030       }
5031     }
5032 
5033     if (ThisVT == MVT::Other) continue;
5034 
5035     // NOTE: This isn't ideal.  In particular, this might allocate the
5036     // frame pointer in functions that need it (due to them not being taken
5037     // out of allocation, because a variable sized allocation hasn't been seen
5038     // yet).  This is a slight code pessimization, but should still work.
5039     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5040          E = RC->allocation_order_end(MF); I != E; ++I)
5041       if (*I == Reg) {
5042         // We found a matching register class.  Keep looking at others in case
5043         // we find one with larger registers that this physreg is also in.
5044         FoundRC = RC;
5045         FoundVT = ThisVT;
5046         break;
5047       }
5048   }
5049   return FoundRC;
5050 }
5051 
5052 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5053 /// specified operand.  We prefer to assign virtual registers, to allow the
5054 /// register allocator to handle the assignment process.  However, if the asm
5055 /// uses features that we can't model on machineinstrs, we have SDISel do the
5056 /// allocation.  This produces generally horrible, but correct, code.
5057 ///
5058 ///   OpInfo describes the operand.
5059 ///   Input and OutputRegs are the set of already allocated physical registers.
5060 ///
5061 void SelectionDAGBuilder::
5062 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5063                      std::set<unsigned> &OutputRegs,
5064                      std::set<unsigned> &InputRegs) {
5065   LLVMContext &Context = FuncInfo.Fn->getContext();
5066 
5067   // Compute whether this value requires an input register, an output register,
5068   // or both.
5069   bool isOutReg = false;
5070   bool isInReg = false;
5071   switch (OpInfo.Type) {
5072   case InlineAsm::isOutput:
5073     isOutReg = true;
5074 
5075     // If there is an input constraint that matches this, we need to reserve
5076     // the input register so no other inputs allocate to it.
5077     isInReg = OpInfo.hasMatchingInput();
5078     break;
5079   case InlineAsm::isInput:
5080     isInReg = true;
5081     isOutReg = false;
5082     break;
5083   case InlineAsm::isClobber:
5084     isOutReg = true;
5085     isInReg = true;
5086     break;
5087   }
5088 
5089 
5090   MachineFunction &MF = DAG.getMachineFunction();
5091   SmallVector<unsigned, 4> Regs;
5092 
5093   // If this is a constraint for a single physreg, or a constraint for a
5094   // register class, find it.
5095   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5096     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5097                                      OpInfo.ConstraintVT);
5098 
5099   unsigned NumRegs = 1;
5100   if (OpInfo.ConstraintVT != MVT::Other) {
5101     // If this is a FP input in an integer register (or visa versa) insert a bit
5102     // cast of the input value.  More generally, handle any case where the input
5103     // value disagrees with the register class we plan to stick this in.
5104     if (OpInfo.Type == InlineAsm::isInput &&
5105         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5106       // Try to convert to the first EVT that the reg class contains.  If the
5107       // types are identical size, use a bitcast to convert (e.g. two differing
5108       // vector types).
5109       EVT RegVT = *PhysReg.second->vt_begin();
5110       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5111         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5112                                          RegVT, OpInfo.CallOperand);
5113         OpInfo.ConstraintVT = RegVT;
5114       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5115         // If the input is a FP value and we want it in FP registers, do a
5116         // bitcast to the corresponding integer type.  This turns an f64 value
5117         // into i64, which can be passed with two i32 values on a 32-bit
5118         // machine.
5119         RegVT = EVT::getIntegerVT(Context,
5120                                   OpInfo.ConstraintVT.getSizeInBits());
5121         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5122                                          RegVT, OpInfo.CallOperand);
5123         OpInfo.ConstraintVT = RegVT;
5124       }
5125     }
5126 
5127     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5128   }
5129 
5130   EVT RegVT;
5131   EVT ValueVT = OpInfo.ConstraintVT;
5132 
5133   // If this is a constraint for a specific physical register, like {r17},
5134   // assign it now.
5135   if (unsigned AssignedReg = PhysReg.first) {
5136     const TargetRegisterClass *RC = PhysReg.second;
5137     if (OpInfo.ConstraintVT == MVT::Other)
5138       ValueVT = *RC->vt_begin();
5139 
5140     // Get the actual register value type.  This is important, because the user
5141     // may have asked for (e.g.) the AX register in i32 type.  We need to
5142     // remember that AX is actually i16 to get the right extension.
5143     RegVT = *RC->vt_begin();
5144 
5145     // This is a explicit reference to a physical register.
5146     Regs.push_back(AssignedReg);
5147 
5148     // If this is an expanded reference, add the rest of the regs to Regs.
5149     if (NumRegs != 1) {
5150       TargetRegisterClass::iterator I = RC->begin();
5151       for (; *I != AssignedReg; ++I)
5152         assert(I != RC->end() && "Didn't find reg!");
5153 
5154       // Already added the first reg.
5155       --NumRegs; ++I;
5156       for (; NumRegs; --NumRegs, ++I) {
5157         assert(I != RC->end() && "Ran out of registers to allocate!");
5158         Regs.push_back(*I);
5159       }
5160     }
5161 
5162     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5163     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5164     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5165     return;
5166   }
5167 
5168   // Otherwise, if this was a reference to an LLVM register class, create vregs
5169   // for this reference.
5170   if (const TargetRegisterClass *RC = PhysReg.second) {
5171     RegVT = *RC->vt_begin();
5172     if (OpInfo.ConstraintVT == MVT::Other)
5173       ValueVT = RegVT;
5174 
5175     // Create the appropriate number of virtual registers.
5176     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5177     for (; NumRegs; --NumRegs)
5178       Regs.push_back(RegInfo.createVirtualRegister(RC));
5179 
5180     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5181     return;
5182   }
5183 
5184   // This is a reference to a register class that doesn't directly correspond
5185   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5186   // registers from the class.
5187   std::vector<unsigned> RegClassRegs
5188     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5189                                             OpInfo.ConstraintVT);
5190 
5191   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5192   unsigned NumAllocated = 0;
5193   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5194     unsigned Reg = RegClassRegs[i];
5195     // See if this register is available.
5196     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5197         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5198       // Make sure we find consecutive registers.
5199       NumAllocated = 0;
5200       continue;
5201     }
5202 
5203     // Check to see if this register is allocatable (i.e. don't give out the
5204     // stack pointer).
5205     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5206     if (!RC) {        // Couldn't allocate this register.
5207       // Reset NumAllocated to make sure we return consecutive registers.
5208       NumAllocated = 0;
5209       continue;
5210     }
5211 
5212     // Okay, this register is good, we can use it.
5213     ++NumAllocated;
5214 
5215     // If we allocated enough consecutive registers, succeed.
5216     if (NumAllocated == NumRegs) {
5217       unsigned RegStart = (i-NumAllocated)+1;
5218       unsigned RegEnd   = i+1;
5219       // Mark all of the allocated registers used.
5220       for (unsigned i = RegStart; i != RegEnd; ++i)
5221         Regs.push_back(RegClassRegs[i]);
5222 
5223       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5224                                          OpInfo.ConstraintVT);
5225       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5226       return;
5227     }
5228   }
5229 
5230   // Otherwise, we couldn't allocate enough registers for this.
5231 }
5232 
5233 /// visitInlineAsm - Handle a call to an InlineAsm object.
5234 ///
5235 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5236   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5237 
5238   /// ConstraintOperands - Information about all of the constraints.
5239   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5240 
5241   std::set<unsigned> OutputRegs, InputRegs;
5242 
5243   // Do a prepass over the constraints, canonicalizing them, and building up the
5244   // ConstraintOperands list.
5245   std::vector<InlineAsm::ConstraintInfo>
5246     ConstraintInfos = IA->ParseConstraints();
5247 
5248   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5249 
5250   SDValue Chain, Flag;
5251 
5252   // We won't need to flush pending loads if this asm doesn't touch
5253   // memory and is nonvolatile.
5254   if (hasMemory || IA->hasSideEffects())
5255     Chain = getRoot();
5256   else
5257     Chain = DAG.getRoot();
5258 
5259   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5260   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5261   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5262     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5263     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5264 
5265     EVT OpVT = MVT::Other;
5266 
5267     // Compute the value type for each operand.
5268     switch (OpInfo.Type) {
5269     case InlineAsm::isOutput:
5270       // Indirect outputs just consume an argument.
5271       if (OpInfo.isIndirect) {
5272         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5273         break;
5274       }
5275 
5276       // The return value of the call is this value.  As such, there is no
5277       // corresponding argument.
5278       assert(!CS.getType()->isVoidTy() &&
5279              "Bad inline asm!");
5280       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5281         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5282       } else {
5283         assert(ResNo == 0 && "Asm only has one result!");
5284         OpVT = TLI.getValueType(CS.getType());
5285       }
5286       ++ResNo;
5287       break;
5288     case InlineAsm::isInput:
5289       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5290       break;
5291     case InlineAsm::isClobber:
5292       // Nothing to do.
5293       break;
5294     }
5295 
5296     // If this is an input or an indirect output, process the call argument.
5297     // BasicBlocks are labels, currently appearing only in asm's.
5298     if (OpInfo.CallOperandVal) {
5299       // Strip bitcasts, if any.  This mostly comes up for functions.
5300       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5301 
5302       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5303         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5304       } else {
5305         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5306       }
5307 
5308       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5309     }
5310 
5311     OpInfo.ConstraintVT = OpVT;
5312   }
5313 
5314   // Second pass over the constraints: compute which constraint option to use
5315   // and assign registers to constraints that want a specific physreg.
5316   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5317     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5318 
5319     // If this is an output operand with a matching input operand, look up the
5320     // matching input. If their types mismatch, e.g. one is an integer, the
5321     // other is floating point, or their sizes are different, flag it as an
5322     // error.
5323     if (OpInfo.hasMatchingInput()) {
5324       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5325 
5326       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5327         if ((OpInfo.ConstraintVT.isInteger() !=
5328              Input.ConstraintVT.isInteger()) ||
5329             (OpInfo.ConstraintVT.getSizeInBits() !=
5330              Input.ConstraintVT.getSizeInBits())) {
5331           report_fatal_error("Unsupported asm: input constraint"
5332                              " with a matching output constraint of"
5333                              " incompatible type!");
5334         }
5335         Input.ConstraintVT = OpInfo.ConstraintVT;
5336       }
5337     }
5338 
5339     // Compute the constraint code and ConstraintType to use.
5340     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5341 
5342     // If this is a memory input, and if the operand is not indirect, do what we
5343     // need to to provide an address for the memory input.
5344     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5345         !OpInfo.isIndirect) {
5346       assert(OpInfo.Type == InlineAsm::isInput &&
5347              "Can only indirectify direct input operands!");
5348 
5349       // Memory operands really want the address of the value.  If we don't have
5350       // an indirect input, put it in the constpool if we can, otherwise spill
5351       // it to a stack slot.
5352 
5353       // If the operand is a float, integer, or vector constant, spill to a
5354       // constant pool entry to get its address.
5355       const Value *OpVal = OpInfo.CallOperandVal;
5356       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5357           isa<ConstantVector>(OpVal)) {
5358         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5359                                                  TLI.getPointerTy());
5360       } else {
5361         // Otherwise, create a stack slot and emit a store to it before the
5362         // asm.
5363         const Type *Ty = OpVal->getType();
5364         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5365         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5366         MachineFunction &MF = DAG.getMachineFunction();
5367         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5368         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5369         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5370                              OpInfo.CallOperand, StackSlot, NULL, 0,
5371                              false, false, 0);
5372         OpInfo.CallOperand = StackSlot;
5373       }
5374 
5375       // There is no longer a Value* corresponding to this operand.
5376       OpInfo.CallOperandVal = 0;
5377 
5378       // It is now an indirect operand.
5379       OpInfo.isIndirect = true;
5380     }
5381 
5382     // If this constraint is for a specific register, allocate it before
5383     // anything else.
5384     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5385       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5386   }
5387 
5388   ConstraintInfos.clear();
5389 
5390   // Second pass - Loop over all of the operands, assigning virtual or physregs
5391   // to register class operands.
5392   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5393     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5394 
5395     // C_Register operands have already been allocated, Other/Memory don't need
5396     // to be.
5397     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5398       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5399   }
5400 
5401   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5402   std::vector<SDValue> AsmNodeOperands;
5403   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5404   AsmNodeOperands.push_back(
5405           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5406                                       TLI.getPointerTy()));
5407 
5408   // If we have a !srcloc metadata node associated with it, we want to attach
5409   // this to the ultimately generated inline asm machineinstr.  To do this, we
5410   // pass in the third operand as this (potentially null) inline asm MDNode.
5411   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5412   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5413 
5414   // Loop over all of the inputs, copying the operand values into the
5415   // appropriate registers and processing the output regs.
5416   RegsForValue RetValRegs;
5417 
5418   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5419   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5420 
5421   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5422     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5423 
5424     switch (OpInfo.Type) {
5425     case InlineAsm::isOutput: {
5426       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5427           OpInfo.ConstraintType != TargetLowering::C_Register) {
5428         // Memory output, or 'other' output (e.g. 'X' constraint).
5429         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5430 
5431         // Add information to the INLINEASM node to know about this output.
5432         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5433         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5434                                                         TLI.getPointerTy()));
5435         AsmNodeOperands.push_back(OpInfo.CallOperand);
5436         break;
5437       }
5438 
5439       // Otherwise, this is a register or register class output.
5440 
5441       // Copy the output from the appropriate register.  Find a register that
5442       // we can use.
5443       if (OpInfo.AssignedRegs.Regs.empty())
5444         report_fatal_error("Couldn't allocate output reg for constraint '" +
5445                            Twine(OpInfo.ConstraintCode) + "'!");
5446 
5447       // If this is an indirect operand, store through the pointer after the
5448       // asm.
5449       if (OpInfo.isIndirect) {
5450         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5451                                                       OpInfo.CallOperandVal));
5452       } else {
5453         // This is the result value of the call.
5454         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5455         // Concatenate this output onto the outputs list.
5456         RetValRegs.append(OpInfo.AssignedRegs);
5457       }
5458 
5459       // Add information to the INLINEASM node to know that this register is
5460       // set.
5461       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5462                                            InlineAsm::Kind_RegDefEarlyClobber :
5463                                                InlineAsm::Kind_RegDef,
5464                                                false,
5465                                                0,
5466                                                DAG,
5467                                                AsmNodeOperands);
5468       break;
5469     }
5470     case InlineAsm::isInput: {
5471       SDValue InOperandVal = OpInfo.CallOperand;
5472 
5473       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5474         // If this is required to match an output register we have already set,
5475         // just use its register.
5476         unsigned OperandNo = OpInfo.getMatchedOperand();
5477 
5478         // Scan until we find the definition we already emitted of this operand.
5479         // When we find it, create a RegsForValue operand.
5480         unsigned CurOp = InlineAsm::Op_FirstOperand;
5481         for (; OperandNo; --OperandNo) {
5482           // Advance to the next operand.
5483           unsigned OpFlag =
5484             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5485           assert((InlineAsm::isRegDefKind(OpFlag) ||
5486                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5487                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5488           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5489         }
5490 
5491         unsigned OpFlag =
5492           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5493         if (InlineAsm::isRegDefKind(OpFlag) ||
5494             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5495           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5496           if (OpInfo.isIndirect) {
5497             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5498             LLVMContext &Ctx = *DAG.getContext();
5499             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5500                           " don't know how to handle tied "
5501                           "indirect register inputs");
5502           }
5503 
5504           RegsForValue MatchedRegs;
5505           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5506           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5507           MatchedRegs.RegVTs.push_back(RegVT);
5508           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5509           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5510                i != e; ++i)
5511             MatchedRegs.Regs.push_back
5512               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5513 
5514           // Use the produced MatchedRegs object to
5515           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5516                                     Chain, &Flag);
5517           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5518                                            true, OpInfo.getMatchedOperand(),
5519                                            DAG, AsmNodeOperands);
5520           break;
5521         }
5522 
5523         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5524         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5525                "Unexpected number of operands");
5526         // Add information to the INLINEASM node to know about this input.
5527         // See InlineAsm.h isUseOperandTiedToDef.
5528         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5529                                                     OpInfo.getMatchedOperand());
5530         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5531                                                         TLI.getPointerTy()));
5532         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5533         break;
5534       }
5535 
5536       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5537         assert(!OpInfo.isIndirect &&
5538                "Don't know how to handle indirect other inputs yet!");
5539 
5540         std::vector<SDValue> Ops;
5541         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5542                                          hasMemory, Ops, DAG);
5543         if (Ops.empty())
5544           report_fatal_error("Invalid operand for inline asm constraint '" +
5545                              Twine(OpInfo.ConstraintCode) + "'!");
5546 
5547         // Add information to the INLINEASM node to know about this input.
5548         unsigned ResOpType =
5549           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5550         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5551                                                         TLI.getPointerTy()));
5552         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5553         break;
5554       }
5555 
5556       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5557         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5558         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5559                "Memory operands expect pointer values");
5560 
5561         // Add information to the INLINEASM node to know about this input.
5562         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5563         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5564                                                         TLI.getPointerTy()));
5565         AsmNodeOperands.push_back(InOperandVal);
5566         break;
5567       }
5568 
5569       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5570               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5571              "Unknown constraint type!");
5572       assert(!OpInfo.isIndirect &&
5573              "Don't know how to handle indirect register inputs yet!");
5574 
5575       // Copy the input into the appropriate registers.
5576       if (OpInfo.AssignedRegs.Regs.empty() ||
5577           !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5578         report_fatal_error("Couldn't allocate input reg for constraint '" +
5579                            Twine(OpInfo.ConstraintCode) + "'!");
5580 
5581       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5582                                         Chain, &Flag);
5583 
5584       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5585                                                DAG, AsmNodeOperands);
5586       break;
5587     }
5588     case InlineAsm::isClobber: {
5589       // Add the clobbered value to the operand list, so that the register
5590       // allocator is aware that the physreg got clobbered.
5591       if (!OpInfo.AssignedRegs.Regs.empty())
5592         OpInfo.AssignedRegs.AddInlineAsmOperands(
5593                                             InlineAsm::Kind_RegDefEarlyClobber,
5594                                                  false, 0, DAG,
5595                                                  AsmNodeOperands);
5596       break;
5597     }
5598     }
5599   }
5600 
5601   // Finish up input operands.  Set the input chain and add the flag last.
5602   AsmNodeOperands[0] = Chain;
5603   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5604 
5605   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5606                       DAG.getVTList(MVT::Other, MVT::Flag),
5607                       &AsmNodeOperands[0], AsmNodeOperands.size());
5608   Flag = Chain.getValue(1);
5609 
5610   // If this asm returns a register value, copy the result from that register
5611   // and set it as the value of the call.
5612   if (!RetValRegs.Regs.empty()) {
5613     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5614                                              Chain, &Flag);
5615 
5616     // FIXME: Why don't we do this for inline asms with MRVs?
5617     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5618       EVT ResultType = TLI.getValueType(CS.getType());
5619 
5620       // If any of the results of the inline asm is a vector, it may have the
5621       // wrong width/num elts.  This can happen for register classes that can
5622       // contain multiple different value types.  The preg or vreg allocated may
5623       // not have the same VT as was expected.  Convert it to the right type
5624       // with bit_convert.
5625       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5626         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5627                           ResultType, Val);
5628 
5629       } else if (ResultType != Val.getValueType() &&
5630                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5631         // If a result value was tied to an input value, the computed result may
5632         // have a wider width than the expected result.  Extract the relevant
5633         // portion.
5634         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5635       }
5636 
5637       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5638     }
5639 
5640     setValue(CS.getInstruction(), Val);
5641     // Don't need to use this as a chain in this case.
5642     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5643       return;
5644   }
5645 
5646   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5647 
5648   // Process indirect outputs, first output all of the flagged copies out of
5649   // physregs.
5650   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5651     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5652     const Value *Ptr = IndirectStoresToEmit[i].second;
5653     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5654                                              Chain, &Flag);
5655     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5656   }
5657 
5658   // Emit the non-flagged stores from the physregs.
5659   SmallVector<SDValue, 8> OutChains;
5660   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5661     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5662                                StoresToEmit[i].first,
5663                                getValue(StoresToEmit[i].second),
5664                                StoresToEmit[i].second, 0,
5665                                false, false, 0);
5666     OutChains.push_back(Val);
5667   }
5668 
5669   if (!OutChains.empty())
5670     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5671                         &OutChains[0], OutChains.size());
5672 
5673   DAG.setRoot(Chain);
5674 }
5675 
5676 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5677   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5678                           MVT::Other, getRoot(),
5679                           getValue(I.getOperand(1)),
5680                           DAG.getSrcValue(I.getOperand(1))));
5681 }
5682 
5683 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5684   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5685                            getRoot(), getValue(I.getOperand(0)),
5686                            DAG.getSrcValue(I.getOperand(0)));
5687   setValue(&I, V);
5688   DAG.setRoot(V.getValue(1));
5689 }
5690 
5691 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5692   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5693                           MVT::Other, getRoot(),
5694                           getValue(I.getOperand(1)),
5695                           DAG.getSrcValue(I.getOperand(1))));
5696 }
5697 
5698 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5699   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5700                           MVT::Other, getRoot(),
5701                           getValue(I.getOperand(1)),
5702                           getValue(I.getOperand(2)),
5703                           DAG.getSrcValue(I.getOperand(1)),
5704                           DAG.getSrcValue(I.getOperand(2))));
5705 }
5706 
5707 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5708 /// implementation, which just calls LowerCall.
5709 /// FIXME: When all targets are
5710 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5711 std::pair<SDValue, SDValue>
5712 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5713                             bool RetSExt, bool RetZExt, bool isVarArg,
5714                             bool isInreg, unsigned NumFixedArgs,
5715                             CallingConv::ID CallConv, bool isTailCall,
5716                             bool isReturnValueUsed,
5717                             SDValue Callee,
5718                             ArgListTy &Args, SelectionDAG &DAG,
5719                             DebugLoc dl) const {
5720   // Handle all of the outgoing arguments.
5721   SmallVector<ISD::OutputArg, 32> Outs;
5722   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5723     SmallVector<EVT, 4> ValueVTs;
5724     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5725     for (unsigned Value = 0, NumValues = ValueVTs.size();
5726          Value != NumValues; ++Value) {
5727       EVT VT = ValueVTs[Value];
5728       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5729       SDValue Op = SDValue(Args[i].Node.getNode(),
5730                            Args[i].Node.getResNo() + Value);
5731       ISD::ArgFlagsTy Flags;
5732       unsigned OriginalAlignment =
5733         getTargetData()->getABITypeAlignment(ArgTy);
5734 
5735       if (Args[i].isZExt)
5736         Flags.setZExt();
5737       if (Args[i].isSExt)
5738         Flags.setSExt();
5739       if (Args[i].isInReg)
5740         Flags.setInReg();
5741       if (Args[i].isSRet)
5742         Flags.setSRet();
5743       if (Args[i].isByVal) {
5744         Flags.setByVal();
5745         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5746         const Type *ElementTy = Ty->getElementType();
5747         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5748         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5749         // For ByVal, alignment should come from FE.  BE will guess if this
5750         // info is not there but there are cases it cannot get right.
5751         if (Args[i].Alignment)
5752           FrameAlign = Args[i].Alignment;
5753         Flags.setByValAlign(FrameAlign);
5754         Flags.setByValSize(FrameSize);
5755       }
5756       if (Args[i].isNest)
5757         Flags.setNest();
5758       Flags.setOrigAlign(OriginalAlignment);
5759 
5760       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5761       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5762       SmallVector<SDValue, 4> Parts(NumParts);
5763       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5764 
5765       if (Args[i].isSExt)
5766         ExtendKind = ISD::SIGN_EXTEND;
5767       else if (Args[i].isZExt)
5768         ExtendKind = ISD::ZERO_EXTEND;
5769 
5770       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5771                      PartVT, ExtendKind);
5772 
5773       for (unsigned j = 0; j != NumParts; ++j) {
5774         // if it isn't first piece, alignment must be 1
5775         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5776         if (NumParts > 1 && j == 0)
5777           MyFlags.Flags.setSplit();
5778         else if (j != 0)
5779           MyFlags.Flags.setOrigAlign(1);
5780 
5781         Outs.push_back(MyFlags);
5782       }
5783     }
5784   }
5785 
5786   // Handle the incoming return values from the call.
5787   SmallVector<ISD::InputArg, 32> Ins;
5788   SmallVector<EVT, 4> RetTys;
5789   ComputeValueVTs(*this, RetTy, RetTys);
5790   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5791     EVT VT = RetTys[I];
5792     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5793     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5794     for (unsigned i = 0; i != NumRegs; ++i) {
5795       ISD::InputArg MyFlags;
5796       MyFlags.VT = RegisterVT;
5797       MyFlags.Used = isReturnValueUsed;
5798       if (RetSExt)
5799         MyFlags.Flags.setSExt();
5800       if (RetZExt)
5801         MyFlags.Flags.setZExt();
5802       if (isInreg)
5803         MyFlags.Flags.setInReg();
5804       Ins.push_back(MyFlags);
5805     }
5806   }
5807 
5808   SmallVector<SDValue, 4> InVals;
5809   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5810                     Outs, Ins, dl, DAG, InVals);
5811 
5812   // Verify that the target's LowerCall behaved as expected.
5813   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5814          "LowerCall didn't return a valid chain!");
5815   assert((!isTailCall || InVals.empty()) &&
5816          "LowerCall emitted a return value for a tail call!");
5817   assert((isTailCall || InVals.size() == Ins.size()) &&
5818          "LowerCall didn't emit the correct number of values!");
5819 
5820   // For a tail call, the return value is merely live-out and there aren't
5821   // any nodes in the DAG representing it. Return a special value to
5822   // indicate that a tail call has been emitted and no more Instructions
5823   // should be processed in the current block.
5824   if (isTailCall) {
5825     DAG.setRoot(Chain);
5826     return std::make_pair(SDValue(), SDValue());
5827   }
5828 
5829   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5830           assert(InVals[i].getNode() &&
5831                  "LowerCall emitted a null value!");
5832           assert(Ins[i].VT == InVals[i].getValueType() &&
5833                  "LowerCall emitted a value with the wrong type!");
5834         });
5835 
5836   // Collect the legal value parts into potentially illegal values
5837   // that correspond to the original function's return values.
5838   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5839   if (RetSExt)
5840     AssertOp = ISD::AssertSext;
5841   else if (RetZExt)
5842     AssertOp = ISD::AssertZext;
5843   SmallVector<SDValue, 4> ReturnValues;
5844   unsigned CurReg = 0;
5845   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5846     EVT VT = RetTys[I];
5847     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5848     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5849 
5850     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5851                                             NumRegs, RegisterVT, VT,
5852                                             AssertOp));
5853     CurReg += NumRegs;
5854   }
5855 
5856   // For a function returning void, there is no return value. We can't create
5857   // such a node, so we just return a null return value in that case. In
5858   // that case, nothing will actualy look at the value.
5859   if (ReturnValues.empty())
5860     return std::make_pair(SDValue(), Chain);
5861 
5862   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5863                             DAG.getVTList(&RetTys[0], RetTys.size()),
5864                             &ReturnValues[0], ReturnValues.size());
5865   return std::make_pair(Res, Chain);
5866 }
5867 
5868 void TargetLowering::LowerOperationWrapper(SDNode *N,
5869                                            SmallVectorImpl<SDValue> &Results,
5870                                            SelectionDAG &DAG) const {
5871   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5872   if (Res.getNode())
5873     Results.push_back(Res);
5874 }
5875 
5876 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5877   llvm_unreachable("LowerOperation not implemented for this target!");
5878   return SDValue();
5879 }
5880 
5881 void
5882 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5883   SDValue Op = getValue(V);
5884   assert((Op.getOpcode() != ISD::CopyFromReg ||
5885           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5886          "Copy from a reg to the same reg!");
5887   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5888 
5889   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5890   SDValue Chain = DAG.getEntryNode();
5891   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5892   PendingExports.push_back(Chain);
5893 }
5894 
5895 #include "llvm/CodeGen/SelectionDAGISel.h"
5896 
5897 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5898   // If this is the entry block, emit arguments.
5899   const Function &F = *LLVMBB->getParent();
5900   SelectionDAG &DAG = SDB->DAG;
5901   SDValue OldRoot = DAG.getRoot();
5902   DebugLoc dl = SDB->getCurDebugLoc();
5903   const TargetData *TD = TLI.getTargetData();
5904   SmallVector<ISD::InputArg, 16> Ins;
5905 
5906   // Check whether the function can return without sret-demotion.
5907   SmallVector<EVT, 4> OutVTs;
5908   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5909   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5910                 OutVTs, OutsFlags, TLI);
5911 
5912   FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5913                                                 F.isVarArg(),
5914                                                 OutVTs, OutsFlags, DAG);
5915   if (!FuncInfo->CanLowerReturn) {
5916     // Put in an sret pointer parameter before all the other parameters.
5917     SmallVector<EVT, 1> ValueVTs;
5918     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5919 
5920     // NOTE: Assuming that a pointer will never break down to more than one VT
5921     // or one register.
5922     ISD::ArgFlagsTy Flags;
5923     Flags.setSRet();
5924     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5925     ISD::InputArg RetArg(Flags, RegisterVT, true);
5926     Ins.push_back(RetArg);
5927   }
5928 
5929   // Set up the incoming argument description vector.
5930   unsigned Idx = 1;
5931   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5932        I != E; ++I, ++Idx) {
5933     SmallVector<EVT, 4> ValueVTs;
5934     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5935     bool isArgValueUsed = !I->use_empty();
5936     for (unsigned Value = 0, NumValues = ValueVTs.size();
5937          Value != NumValues; ++Value) {
5938       EVT VT = ValueVTs[Value];
5939       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5940       ISD::ArgFlagsTy Flags;
5941       unsigned OriginalAlignment =
5942         TD->getABITypeAlignment(ArgTy);
5943 
5944       if (F.paramHasAttr(Idx, Attribute::ZExt))
5945         Flags.setZExt();
5946       if (F.paramHasAttr(Idx, Attribute::SExt))
5947         Flags.setSExt();
5948       if (F.paramHasAttr(Idx, Attribute::InReg))
5949         Flags.setInReg();
5950       if (F.paramHasAttr(Idx, Attribute::StructRet))
5951         Flags.setSRet();
5952       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5953         Flags.setByVal();
5954         const PointerType *Ty = cast<PointerType>(I->getType());
5955         const Type *ElementTy = Ty->getElementType();
5956         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5957         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5958         // For ByVal, alignment should be passed from FE.  BE will guess if
5959         // this info is not there but there are cases it cannot get right.
5960         if (F.getParamAlignment(Idx))
5961           FrameAlign = F.getParamAlignment(Idx);
5962         Flags.setByValAlign(FrameAlign);
5963         Flags.setByValSize(FrameSize);
5964       }
5965       if (F.paramHasAttr(Idx, Attribute::Nest))
5966         Flags.setNest();
5967       Flags.setOrigAlign(OriginalAlignment);
5968 
5969       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5970       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5971       for (unsigned i = 0; i != NumRegs; ++i) {
5972         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5973         if (NumRegs > 1 && i == 0)
5974           MyFlags.Flags.setSplit();
5975         // if it isn't first piece, alignment must be 1
5976         else if (i > 0)
5977           MyFlags.Flags.setOrigAlign(1);
5978         Ins.push_back(MyFlags);
5979       }
5980     }
5981   }
5982 
5983   // Call the target to set up the argument values.
5984   SmallVector<SDValue, 8> InVals;
5985   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5986                                              F.isVarArg(), Ins,
5987                                              dl, DAG, InVals);
5988 
5989   // Verify that the target's LowerFormalArguments behaved as expected.
5990   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5991          "LowerFormalArguments didn't return a valid chain!");
5992   assert(InVals.size() == Ins.size() &&
5993          "LowerFormalArguments didn't emit the correct number of values!");
5994   DEBUG({
5995       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5996         assert(InVals[i].getNode() &&
5997                "LowerFormalArguments emitted a null value!");
5998         assert(Ins[i].VT == InVals[i].getValueType() &&
5999                "LowerFormalArguments emitted a value with the wrong type!");
6000       }
6001     });
6002 
6003   // Update the DAG with the new chain value resulting from argument lowering.
6004   DAG.setRoot(NewRoot);
6005 
6006   // Set up the argument values.
6007   unsigned i = 0;
6008   Idx = 1;
6009   if (!FuncInfo->CanLowerReturn) {
6010     // Create a virtual register for the sret pointer, and put in a copy
6011     // from the sret argument into it.
6012     SmallVector<EVT, 1> ValueVTs;
6013     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6014     EVT VT = ValueVTs[0];
6015     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6016     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6017     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6018                                         RegVT, VT, AssertOp);
6019 
6020     MachineFunction& MF = SDB->DAG.getMachineFunction();
6021     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6022     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6023     FuncInfo->DemoteRegister = SRetReg;
6024     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6025                                     SRetReg, ArgValue);
6026     DAG.setRoot(NewRoot);
6027 
6028     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6029     // Idx indexes LLVM arguments.  Don't touch it.
6030     ++i;
6031   }
6032 
6033   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6034       ++I, ++Idx) {
6035     SmallVector<SDValue, 4> ArgValues;
6036     SmallVector<EVT, 4> ValueVTs;
6037     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6038     unsigned NumValues = ValueVTs.size();
6039 
6040     // If this argument is unused then remember its value. It is used to generate
6041     // debugging information.
6042     if (I->use_empty() && NumValues)
6043       SDB->setUnusedArgValue(I, InVals[i]);
6044 
6045     for (unsigned Value = 0; Value != NumValues; ++Value) {
6046       EVT VT = ValueVTs[Value];
6047       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6048       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6049 
6050       if (!I->use_empty()) {
6051         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6052         if (F.paramHasAttr(Idx, Attribute::SExt))
6053           AssertOp = ISD::AssertSext;
6054         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6055           AssertOp = ISD::AssertZext;
6056 
6057         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6058                                              NumParts, PartVT, VT,
6059                                              AssertOp));
6060       }
6061 
6062       i += NumParts;
6063     }
6064 
6065     if (!I->use_empty()) {
6066       SDValue Res;
6067       if (!ArgValues.empty())
6068         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6069                                  SDB->getCurDebugLoc());
6070       SDB->setValue(I, Res);
6071 
6072       // If this argument is live outside of the entry block, insert a copy from
6073       // whereever we got it to the vreg that other BB's will reference it as.
6074       SDB->CopyToExportRegsIfNeeded(I);
6075     }
6076   }
6077 
6078   assert(i == InVals.size() && "Argument register count mismatch!");
6079 
6080   // Finally, if the target has anything special to do, allow it to do so.
6081   // FIXME: this should insert code into the DAG!
6082   EmitFunctionEntryCode();
6083 }
6084 
6085 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6086 /// ensure constants are generated when needed.  Remember the virtual registers
6087 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6088 /// directly add them, because expansion might result in multiple MBB's for one
6089 /// BB.  As such, the start of the BB might correspond to a different MBB than
6090 /// the end.
6091 ///
6092 void
6093 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6094   const TerminatorInst *TI = LLVMBB->getTerminator();
6095 
6096   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6097 
6098   // Check successor nodes' PHI nodes that expect a constant to be available
6099   // from this block.
6100   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6101     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6102     if (!isa<PHINode>(SuccBB->begin())) continue;
6103     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6104 
6105     // If this terminator has multiple identical successors (common for
6106     // switches), only handle each succ once.
6107     if (!SuccsHandled.insert(SuccMBB)) continue;
6108 
6109     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6110 
6111     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6112     // nodes and Machine PHI nodes, but the incoming operands have not been
6113     // emitted yet.
6114     for (BasicBlock::const_iterator I = SuccBB->begin();
6115          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6116       // Ignore dead phi's.
6117       if (PN->use_empty()) continue;
6118 
6119       unsigned Reg;
6120       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6121 
6122       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6123         unsigned &RegOut = ConstantsOut[C];
6124         if (RegOut == 0) {
6125           RegOut = FuncInfo.CreateRegForValue(C);
6126           CopyValueToVirtualRegister(C, RegOut);
6127         }
6128         Reg = RegOut;
6129       } else {
6130         Reg = FuncInfo.ValueMap[PHIOp];
6131         if (Reg == 0) {
6132           assert(isa<AllocaInst>(PHIOp) &&
6133                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6134                  "Didn't codegen value into a register!??");
6135           Reg = FuncInfo.CreateRegForValue(PHIOp);
6136           CopyValueToVirtualRegister(PHIOp, Reg);
6137         }
6138       }
6139 
6140       // Remember that this register needs to added to the machine PHI node as
6141       // the input for this MBB.
6142       SmallVector<EVT, 4> ValueVTs;
6143       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6144       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6145         EVT VT = ValueVTs[vti];
6146         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6147         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6148           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6149         Reg += NumRegisters;
6150       }
6151     }
6152   }
6153   ConstantsOut.clear();
6154 }
6155