1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!Register::isVirtualRegister(Regs[Part + i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1017 } 1018 1019 void SelectionDAGBuilder::clear() { 1020 NodeMap.clear(); 1021 UnusedArgNodeMap.clear(); 1022 PendingLoads.clear(); 1023 PendingExports.clear(); 1024 CurInst = nullptr; 1025 HasTailCall = false; 1026 SDNodeOrder = LowestSDNodeOrder; 1027 StatepointLowering.clear(); 1028 } 1029 1030 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1031 DanglingDebugInfoMap.clear(); 1032 } 1033 1034 SDValue SelectionDAGBuilder::getRoot() { 1035 if (PendingLoads.empty()) 1036 return DAG.getRoot(); 1037 1038 if (PendingLoads.size() == 1) { 1039 SDValue Root = PendingLoads[0]; 1040 DAG.setRoot(Root); 1041 PendingLoads.clear(); 1042 return Root; 1043 } 1044 1045 // Otherwise, we have to make a token factor node. 1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1047 PendingLoads.clear(); 1048 DAG.setRoot(Root); 1049 return Root; 1050 } 1051 1052 SDValue SelectionDAGBuilder::getControlRoot() { 1053 SDValue Root = DAG.getRoot(); 1054 1055 if (PendingExports.empty()) 1056 return Root; 1057 1058 // Turn all of the CopyToReg chains into one factored node. 1059 if (Root.getOpcode() != ISD::EntryToken) { 1060 unsigned i = 0, e = PendingExports.size(); 1061 for (; i != e; ++i) { 1062 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1063 if (PendingExports[i].getNode()->getOperand(0) == Root) 1064 break; // Don't add the root if we already indirectly depend on it. 1065 } 1066 1067 if (i == e) 1068 PendingExports.push_back(Root); 1069 } 1070 1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1072 PendingExports); 1073 PendingExports.clear(); 1074 DAG.setRoot(Root); 1075 return Root; 1076 } 1077 1078 void SelectionDAGBuilder::visit(const Instruction &I) { 1079 // Set up outgoing PHI node register values before emitting the terminator. 1080 if (I.isTerminator()) { 1081 HandlePHINodesInSuccessorBlocks(I.getParent()); 1082 } 1083 1084 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1085 if (!isa<DbgInfoIntrinsic>(I)) 1086 ++SDNodeOrder; 1087 1088 CurInst = &I; 1089 1090 visit(I.getOpcode(), I); 1091 1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1094 // maps to this instruction. 1095 // TODO: We could handle all flags (nsw, etc) here. 1096 // TODO: If an IR instruction maps to >1 node, only the final node will have 1097 // flags set. 1098 if (SDNode *Node = getNodeForIRValue(&I)) { 1099 SDNodeFlags IncomingFlags; 1100 IncomingFlags.copyFMF(*FPMO); 1101 if (!Node->getFlags().isDefined()) 1102 Node->setFlags(IncomingFlags); 1103 else 1104 Node->intersectFlagsWith(IncomingFlags); 1105 } 1106 } 1107 1108 if (!I.isTerminator() && !HasTailCall && 1109 !isStatepoint(&I)) // statepoints handle their exports internally 1110 CopyToExportRegsIfNeeded(&I); 1111 1112 CurInst = nullptr; 1113 } 1114 1115 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1117 } 1118 1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1120 // Note: this doesn't use InstVisitor, because it has to work with 1121 // ConstantExpr's in addition to instructions. 1122 switch (Opcode) { 1123 default: llvm_unreachable("Unknown instruction type encountered!"); 1124 // Build the switch statement using the Instruction.def file. 1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1127 #include "llvm/IR/Instruction.def" 1128 } 1129 } 1130 1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1132 const DIExpression *Expr) { 1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1134 const DbgValueInst *DI = DDI.getDI(); 1135 DIVariable *DanglingVariable = DI->getVariable(); 1136 DIExpression *DanglingExpr = DI->getExpression(); 1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1139 return true; 1140 } 1141 return false; 1142 }; 1143 1144 for (auto &DDIMI : DanglingDebugInfoMap) { 1145 DanglingDebugInfoVector &DDIV = DDIMI.second; 1146 1147 // If debug info is to be dropped, run it through final checks to see 1148 // whether it can be salvaged. 1149 for (auto &DDI : DDIV) 1150 if (isMatchingDbgValue(DDI)) 1151 salvageUnresolvedDbgValue(DDI); 1152 1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1154 } 1155 } 1156 1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1158 // generate the debug data structures now that we've seen its definition. 1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1160 SDValue Val) { 1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1163 return; 1164 1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1166 for (auto &DDI : DDIV) { 1167 const DbgValueInst *DI = DDI.getDI(); 1168 assert(DI && "Ill-formed DanglingDebugInfo"); 1169 DebugLoc dl = DDI.getdl(); 1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1172 DILocalVariable *Variable = DI->getVariable(); 1173 DIExpression *Expr = DI->getExpression(); 1174 assert(Variable->isValidLocationForIntrinsic(dl) && 1175 "Expected inlined-at fields to agree"); 1176 SDDbgValue *SDV; 1177 if (Val.getNode()) { 1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1180 // we couldn't resolve it directly when examining the DbgValue intrinsic 1181 // in the first place we should not be more successful here). Unless we 1182 // have some test case that prove this to be correct we should avoid 1183 // calling EmitFuncArgumentDbgValue here. 1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1189 // inserted after the definition of Val when emitting the instructions 1190 // after ISel. An alternative could be to teach 1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1194 << ValSDNodeOrder << "\n"); 1195 SDV = getDbgValue(Val, Variable, Expr, dl, 1196 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1197 DAG.AddDbgValue(SDV, Val.getNode(), false); 1198 } else 1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1200 << "in EmitFuncArgumentDbgValue\n"); 1201 } else { 1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1203 auto Undef = 1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1205 auto SDV = 1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1207 DAG.AddDbgValue(SDV, nullptr, false); 1208 } 1209 } 1210 DDIV.clear(); 1211 } 1212 1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1214 Value *V = DDI.getDI()->getValue(); 1215 DILocalVariable *Var = DDI.getDI()->getVariable(); 1216 DIExpression *Expr = DDI.getDI()->getExpression(); 1217 DebugLoc DL = DDI.getdl(); 1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1219 unsigned SDOrder = DDI.getSDNodeOrder(); 1220 1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1222 // that DW_OP_stack_value is desired. 1223 assert(isa<DbgValueInst>(DDI.getDI())); 1224 bool StackValue = true; 1225 1226 // Can this Value can be encoded without any further work? 1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1228 return; 1229 1230 // Attempt to salvage back through as many instructions as possible. Bail if 1231 // a non-instruction is seen, such as a constant expression or global 1232 // variable. FIXME: Further work could recover those too. 1233 while (isa<Instruction>(V)) { 1234 Instruction &VAsInst = *cast<Instruction>(V); 1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1236 1237 // If we cannot salvage any further, and haven't yet found a suitable debug 1238 // expression, bail out. 1239 if (!NewExpr) 1240 break; 1241 1242 // New value and expr now represent this debuginfo. 1243 V = VAsInst.getOperand(0); 1244 Expr = NewExpr; 1245 1246 // Some kind of simplification occurred: check whether the operand of the 1247 // salvaged debug expression can be encoded in this DAG. 1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1250 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1251 return; 1252 } 1253 } 1254 1255 // This was the final opportunity to salvage this debug information, and it 1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1257 // any earlier variable location. 1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1260 DAG.AddDbgValue(SDV, nullptr, false); 1261 1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1263 << "\n"); 1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1265 << "\n"); 1266 } 1267 1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1269 DIExpression *Expr, DebugLoc dl, 1270 DebugLoc InstDL, unsigned Order) { 1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1272 SDDbgValue *SDV; 1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1274 isa<ConstantPointerNull>(V)) { 1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1276 DAG.AddDbgValue(SDV, nullptr, false); 1277 return true; 1278 } 1279 1280 // If the Value is a frame index, we can create a FrameIndex debug value 1281 // without relying on the DAG at all. 1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1283 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1284 if (SI != FuncInfo.StaticAllocaMap.end()) { 1285 auto SDV = 1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1287 /*IsIndirect*/ false, dl, SDNodeOrder); 1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1289 // is still available even if the SDNode gets optimized out. 1290 DAG.AddDbgValue(SDV, nullptr, false); 1291 return true; 1292 } 1293 } 1294 1295 // Do not use getValue() in here; we don't want to generate code at 1296 // this point if it hasn't been done yet. 1297 SDValue N = NodeMap[V]; 1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1299 N = UnusedArgNodeMap[V]; 1300 if (N.getNode()) { 1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1302 return true; 1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, N.getNode(), false); 1305 return true; 1306 } 1307 1308 // Special rules apply for the first dbg.values of parameter variables in a 1309 // function. Identify them by the fact they reference Argument Values, that 1310 // they're parameters, and they are parameters of the current function. We 1311 // need to let them dangle until they get an SDNode. 1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1313 !InstDL.getInlinedAt(); 1314 if (!IsParamOfFunc) { 1315 // The value is not used in this block yet (or it would have an SDNode). 1316 // We still want the value to appear for the user if possible -- if it has 1317 // an associated VReg, we can refer to that instead. 1318 auto VMI = FuncInfo.ValueMap.find(V); 1319 if (VMI != FuncInfo.ValueMap.end()) { 1320 unsigned Reg = VMI->second; 1321 // If this is a PHI node, it may be split up into several MI PHI nodes 1322 // (in FunctionLoweringInfo::set). 1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1324 V->getType(), None); 1325 if (RFV.occupiesMultipleRegs()) { 1326 unsigned Offset = 0; 1327 unsigned BitsToDescribe = 0; 1328 if (auto VarSize = Var->getSizeInBits()) 1329 BitsToDescribe = *VarSize; 1330 if (auto Fragment = Expr->getFragmentInfo()) 1331 BitsToDescribe = Fragment->SizeInBits; 1332 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1333 unsigned RegisterSize = RegAndSize.second; 1334 // Bail out if all bits are described already. 1335 if (Offset >= BitsToDescribe) 1336 break; 1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1338 ? BitsToDescribe - Offset 1339 : RegisterSize; 1340 auto FragmentExpr = DIExpression::createFragmentExpression( 1341 Expr, Offset, FragmentSize); 1342 if (!FragmentExpr) 1343 continue; 1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1345 false, dl, SDNodeOrder); 1346 DAG.AddDbgValue(SDV, nullptr, false); 1347 Offset += RegisterSize; 1348 } 1349 } else { 1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1351 DAG.AddDbgValue(SDV, nullptr, false); 1352 } 1353 return true; 1354 } 1355 } 1356 1357 return false; 1358 } 1359 1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1362 for (auto &Pair : DanglingDebugInfoMap) 1363 for (auto &DDI : Pair.second) 1364 salvageUnresolvedDbgValue(DDI); 1365 clearDanglingDebugInfo(); 1366 } 1367 1368 /// getCopyFromRegs - If there was virtual register allocated for the value V 1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1372 SDValue Result; 1373 1374 if (It != FuncInfo.ValueMap.end()) { 1375 unsigned InReg = It->second; 1376 1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1378 DAG.getDataLayout(), InReg, Ty, 1379 None); // This is not an ABI copy. 1380 SDValue Chain = DAG.getEntryNode(); 1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1382 V); 1383 resolveDanglingDebugInfo(V, Result); 1384 } 1385 1386 return Result; 1387 } 1388 1389 /// getValue - Return an SDValue for the given Value. 1390 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1391 // If we already have an SDValue for this value, use it. It's important 1392 // to do this first, so that we don't create a CopyFromReg if we already 1393 // have a regular SDValue. 1394 SDValue &N = NodeMap[V]; 1395 if (N.getNode()) return N; 1396 1397 // If there's a virtual register allocated and initialized for this 1398 // value, use it. 1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1400 return copyFromReg; 1401 1402 // Otherwise create a new SDValue and remember it. 1403 SDValue Val = getValueImpl(V); 1404 NodeMap[V] = Val; 1405 resolveDanglingDebugInfo(V, Val); 1406 return Val; 1407 } 1408 1409 // Return true if SDValue exists for the given Value 1410 bool SelectionDAGBuilder::findValue(const Value *V) const { 1411 return (NodeMap.find(V) != NodeMap.end()) || 1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1413 } 1414 1415 /// getNonRegisterValue - Return an SDValue for the given Value, but 1416 /// don't look in FuncInfo.ValueMap for a virtual register. 1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1418 // If we already have an SDValue for this value, use it. 1419 SDValue &N = NodeMap[V]; 1420 if (N.getNode()) { 1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1422 // Remove the debug location from the node as the node is about to be used 1423 // in a location which may differ from the original debug location. This 1424 // is relevant to Constant and ConstantFP nodes because they can appear 1425 // as constant expressions inside PHI nodes. 1426 N->setDebugLoc(DebugLoc()); 1427 } 1428 return N; 1429 } 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1439 /// Create an SDValue for the given value. 1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1442 1443 if (const Constant *C = dyn_cast<Constant>(V)) { 1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1445 1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1447 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1448 1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1451 1452 if (isa<ConstantPointerNull>(C)) { 1453 unsigned AS = V->getType()->getPointerAddressSpace(); 1454 return DAG.getConstant(0, getCurSDLoc(), 1455 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1456 } 1457 1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1460 1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1462 return DAG.getUNDEF(VT); 1463 1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1465 visit(CE->getOpcode(), *CE); 1466 SDValue N1 = NodeMap[V]; 1467 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1468 return N1; 1469 } 1470 1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1472 SmallVector<SDValue, 4> Constants; 1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1474 OI != OE; ++OI) { 1475 SDNode *Val = getValue(*OI).getNode(); 1476 // If the operand is an empty aggregate, there are no values. 1477 if (!Val) continue; 1478 // Add each leaf value from the operand to the Constants list 1479 // to form a flattened list of all the values. 1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1481 Constants.push_back(SDValue(Val, i)); 1482 } 1483 1484 return DAG.getMergeValues(Constants, getCurSDLoc()); 1485 } 1486 1487 if (const ConstantDataSequential *CDS = 1488 dyn_cast<ConstantDataSequential>(C)) { 1489 SmallVector<SDValue, 4> Ops; 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1492 // Add each leaf value from the operand to the Constants list 1493 // to form a flattened list of all the values. 1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1495 Ops.push_back(SDValue(Val, i)); 1496 } 1497 1498 if (isa<ArrayType>(CDS->getType())) 1499 return DAG.getMergeValues(Ops, getCurSDLoc()); 1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1501 } 1502 1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1505 "Unknown struct or array constant!"); 1506 1507 SmallVector<EVT, 4> ValueVTs; 1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1509 unsigned NumElts = ValueVTs.size(); 1510 if (NumElts == 0) 1511 return SDValue(); // empty struct 1512 SmallVector<SDValue, 4> Constants(NumElts); 1513 for (unsigned i = 0; i != NumElts; ++i) { 1514 EVT EltVT = ValueVTs[i]; 1515 if (isa<UndefValue>(C)) 1516 Constants[i] = DAG.getUNDEF(EltVT); 1517 else if (EltVT.isFloatingPoint()) 1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1519 else 1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1521 } 1522 1523 return DAG.getMergeValues(Constants, getCurSDLoc()); 1524 } 1525 1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1527 return DAG.getBlockAddress(BA, VT); 1528 1529 VectorType *VecTy = cast<VectorType>(V->getType()); 1530 unsigned NumElements = VecTy->getNumElements(); 1531 1532 // Now that we know the number and type of the elements, get that number of 1533 // elements into the Ops array based on what kind of constant it is. 1534 SmallVector<SDValue, 16> Ops; 1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1536 for (unsigned i = 0; i != NumElements; ++i) 1537 Ops.push_back(getValue(CV->getOperand(i))); 1538 } else { 1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1540 EVT EltVT = 1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1542 1543 SDValue Op; 1544 if (EltVT.isFloatingPoint()) 1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1546 else 1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1548 Ops.assign(NumElements, Op); 1549 } 1550 1551 // Create a BUILD_VECTOR node. 1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1553 } 1554 1555 // If this is a static alloca, generate it as the frameindex instead of 1556 // computation. 1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1558 DenseMap<const AllocaInst*, int>::iterator SI = 1559 FuncInfo.StaticAllocaMap.find(AI); 1560 if (SI != FuncInfo.StaticAllocaMap.end()) 1561 return DAG.getFrameIndex(SI->second, 1562 TLI.getFrameIndexTy(DAG.getDataLayout())); 1563 } 1564 1565 // If this is an instruction which fast-isel has deferred, select it now. 1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1568 1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1570 Inst->getType(), getABIRegCopyCC(V)); 1571 SDValue Chain = DAG.getEntryNode(); 1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1573 } 1574 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1585 if (!IsSEH) 1586 CatchPadMBB->setIsEHScopeEntry(); 1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1588 if (IsMSVCCXX || IsCoreCLR) 1589 CatchPadMBB->setIsEHFuncletEntry(); 1590 // Wasm does not need catchpads anymore 1591 if (!IsWasmCXX) 1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1593 getControlRoot())); 1594 } 1595 1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1597 // Update machine-CFG edge. 1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1599 FuncInfo.MBB->addSuccessor(TargetMBB); 1600 1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1602 bool IsSEH = isAsynchronousEHPersonality(Pers); 1603 if (IsSEH) { 1604 // If this is not a fall-through branch or optimizations are switched off, 1605 // emit the branch. 1606 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1607 TM.getOptLevel() == CodeGenOpt::None) 1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1609 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1610 return; 1611 } 1612 1613 // Figure out the funclet membership for the catchret's successor. 1614 // This will be used by the FuncletLayout pass to determine how to order the 1615 // BB's. 1616 // A 'catchret' returns to the outer scope's color. 1617 Value *ParentPad = I.getCatchSwitchParentPad(); 1618 const BasicBlock *SuccessorColor; 1619 if (isa<ConstantTokenNone>(ParentPad)) 1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1621 else 1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1623 assert(SuccessorColor && "No parent funclet for catchret!"); 1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1626 1627 // Create the terminator node. 1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1629 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1630 DAG.getBasicBlock(SuccessorColorMBB)); 1631 DAG.setRoot(Ret); 1632 } 1633 1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1635 // Don't emit any special code for the cleanuppad instruction. It just marks 1636 // the start of an EH scope/funclet. 1637 FuncInfo.MBB->setIsEHScopeEntry(); 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 if (Pers != EHPersonality::Wasm_CXX) { 1640 FuncInfo.MBB->setIsEHFuncletEntry(); 1641 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1642 } 1643 } 1644 1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1646 // the control flow always stops at the single catch pad, as it does for a 1647 // cleanup pad. In case the exception caught is not of the types the catch pad 1648 // catches, it will be rethrown by a rethrow. 1649 static void findWasmUnwindDestinations( 1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1651 BranchProbability Prob, 1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1653 &UnwindDests) { 1654 while (EHPadBB) { 1655 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1656 if (isa<CleanupPadInst>(Pad)) { 1657 // Stop on cleanup pads. 1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1659 UnwindDests.back().first->setIsEHScopeEntry(); 1660 break; 1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1662 // Add the catchpad handlers to the possible destinations. We don't 1663 // continue to the unwind destination of the catchswitch for wasm. 1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1666 UnwindDests.back().first->setIsEHScopeEntry(); 1667 } 1668 break; 1669 } else { 1670 continue; 1671 } 1672 } 1673 } 1674 1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1676 /// many places it could ultimately go. In the IR, we have a single unwind 1677 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1678 /// This function skips over imaginary basic blocks that hold catchswitch 1679 /// instructions, and finds all the "real" machine 1680 /// basic block destinations. As those destinations may not be successors of 1681 /// EHPadBB, here we also calculate the edge probability to those destinations. 1682 /// The passed-in Prob is the edge probability to EHPadBB. 1683 static void findUnwindDestinations( 1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1685 BranchProbability Prob, 1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1687 &UnwindDests) { 1688 EHPersonality Personality = 1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1693 bool IsSEH = isAsynchronousEHPersonality(Personality); 1694 1695 if (IsWasmCXX) { 1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1697 assert(UnwindDests.size() <= 1 && 1698 "There should be at most one unwind destination for wasm"); 1699 return; 1700 } 1701 1702 while (EHPadBB) { 1703 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1704 BasicBlock *NewEHPadBB = nullptr; 1705 if (isa<LandingPadInst>(Pad)) { 1706 // Stop on landingpads. They are not funclets. 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1708 break; 1709 } else if (isa<CleanupPadInst>(Pad)) { 1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1711 // personalities. 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 break; 1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1717 // Add the catchpad handlers to the possible destinations. 1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1721 if (IsMSVCCXX || IsCoreCLR) 1722 UnwindDests.back().first->setIsEHFuncletEntry(); 1723 if (!IsSEH) 1724 UnwindDests.back().first->setIsEHScopeEntry(); 1725 } 1726 NewEHPadBB = CatchSwitch->getUnwindDest(); 1727 } else { 1728 continue; 1729 } 1730 1731 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1732 if (BPI && NewEHPadBB) 1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1734 EHPadBB = NewEHPadBB; 1735 } 1736 } 1737 1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1739 // Update successor info. 1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1741 auto UnwindDest = I.getUnwindDest(); 1742 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1743 BranchProbability UnwindDestProb = 1744 (BPI && UnwindDest) 1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1746 : BranchProbability::getZero(); 1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1748 for (auto &UnwindDest : UnwindDests) { 1749 UnwindDest.first->setIsEHPad(); 1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1751 } 1752 FuncInfo.MBB->normalizeSuccProbs(); 1753 1754 // Create the terminator node. 1755 SDValue Ret = 1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1757 DAG.setRoot(Ret); 1758 } 1759 1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1761 report_fatal_error("visitCatchSwitch not yet implemented!"); 1762 } 1763 1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1766 auto &DL = DAG.getDataLayout(); 1767 SDValue Chain = getControlRoot(); 1768 SmallVector<ISD::OutputArg, 8> Outs; 1769 SmallVector<SDValue, 8> OutVals; 1770 1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1772 // lower 1773 // 1774 // %val = call <ty> @llvm.experimental.deoptimize() 1775 // ret <ty> %val 1776 // 1777 // differently. 1778 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1779 LowerDeoptimizingReturn(); 1780 return; 1781 } 1782 1783 if (!FuncInfo.CanLowerReturn) { 1784 unsigned DemoteReg = FuncInfo.DemoteRegister; 1785 const Function *F = I.getParent()->getParent(); 1786 1787 // Emit a store of the return value through the virtual register. 1788 // Leave Outs empty so that LowerReturn won't try to load return 1789 // registers the usual way. 1790 SmallVector<EVT, 1> PtrValueVTs; 1791 ComputeValueVTs(TLI, DL, 1792 F->getReturnType()->getPointerTo( 1793 DAG.getDataLayout().getAllocaAddrSpace()), 1794 PtrValueVTs); 1795 1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1797 DemoteReg, PtrValueVTs[0]); 1798 SDValue RetOp = getValue(I.getOperand(0)); 1799 1800 SmallVector<EVT, 4> ValueVTs, MemVTs; 1801 SmallVector<uint64_t, 4> Offsets; 1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1803 &Offsets); 1804 unsigned NumValues = ValueVTs.size(); 1805 1806 SmallVector<SDValue, 4> Chains(NumValues); 1807 for (unsigned i = 0; i != NumValues; ++i) { 1808 // An aggregate return value cannot wrap around the address space, so 1809 // offsets to its parts don't wrap either. 1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1811 1812 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1813 if (MemVTs[i] != ValueVTs[i]) 1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1816 // FIXME: better loc info would be nice. 1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1818 } 1819 1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1821 MVT::Other, Chains); 1822 } else if (I.getNumOperands() != 0) { 1823 SmallVector<EVT, 4> ValueVTs; 1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1825 unsigned NumValues = ValueVTs.size(); 1826 if (NumValues) { 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 const Function *F = I.getParent()->getParent(); 1830 1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1832 I.getOperand(0)->getType(), F->getCallingConv(), 1833 /*IsVarArg*/ false); 1834 1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1837 Attribute::SExt)) 1838 ExtendKind = ISD::SIGN_EXTEND; 1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1840 Attribute::ZExt)) 1841 ExtendKind = ISD::ZERO_EXTEND; 1842 1843 LLVMContext &Context = F->getContext(); 1844 bool RetInReg = F->getAttributes().hasAttribute( 1845 AttributeList::ReturnIndex, Attribute::InReg); 1846 1847 for (unsigned j = 0; j != NumValues; ++j) { 1848 EVT VT = ValueVTs[j]; 1849 1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1852 1853 CallingConv::ID CC = F->getCallingConv(); 1854 1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1857 SmallVector<SDValue, 4> Parts(NumParts); 1858 getCopyToParts(DAG, getCurSDLoc(), 1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1861 1862 // 'inreg' on function refers to return value 1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1864 if (RetInReg) 1865 Flags.setInReg(); 1866 1867 if (I.getOperand(0)->getType()->isPointerTy()) { 1868 Flags.setPointer(); 1869 Flags.setPointerAddrSpace( 1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1871 } 1872 1873 if (NeedsRegBlock) { 1874 Flags.setInConsecutiveRegs(); 1875 if (j == NumValues - 1) 1876 Flags.setInConsecutiveRegsLast(); 1877 } 1878 1879 // Propagate extension type if any 1880 if (ExtendKind == ISD::SIGN_EXTEND) 1881 Flags.setSExt(); 1882 else if (ExtendKind == ISD::ZERO_EXTEND) 1883 Flags.setZExt(); 1884 1885 for (unsigned i = 0; i < NumParts; ++i) { 1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1887 VT, /*isfixed=*/true, 0, 0)); 1888 OutVals.push_back(Parts[i]); 1889 } 1890 } 1891 } 1892 } 1893 1894 // Push in swifterror virtual register as the last element of Outs. This makes 1895 // sure swifterror virtual register will be returned in the swifterror 1896 // physical register. 1897 const Function *F = I.getParent()->getParent(); 1898 if (TLI.supportSwiftError() && 1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1902 Flags.setSwiftError(); 1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1904 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1905 true /*isfixed*/, 1 /*origidx*/, 1906 0 /*partOffs*/)); 1907 // Create SDNode for the swifterror virtual register. 1908 OutVals.push_back( 1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1911 EVT(TLI.getPointerTy(DL)))); 1912 } 1913 1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1915 CallingConv::ID CallConv = 1916 DAG.getMachineFunction().getFunction().getCallingConv(); 1917 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1919 1920 // Verify that the target's LowerReturn behaved as expected. 1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1922 "LowerReturn didn't return a valid chain!"); 1923 1924 // Update the DAG with the new chain value resulting from return lowering. 1925 DAG.setRoot(Chain); 1926 } 1927 1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1929 /// created for it, emit nodes to copy the value into the virtual 1930 /// registers. 1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1932 // Skip empty types 1933 if (V->getType()->isEmptyTy()) 1934 return; 1935 1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1937 if (VMI != FuncInfo.ValueMap.end()) { 1938 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1939 CopyValueToVirtualRegister(V, VMI->second); 1940 } 1941 } 1942 1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1944 /// the current basic block, add it to ValueMap now so that we'll get a 1945 /// CopyTo/FromReg. 1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1947 // No need to export constants. 1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1949 1950 // Already exported? 1951 if (FuncInfo.isExportedInst(V)) return; 1952 1953 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1954 CopyValueToVirtualRegister(V, Reg); 1955 } 1956 1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1958 const BasicBlock *FromBB) { 1959 // The operands of the setcc have to be in this block. We don't know 1960 // how to export them from some other block. 1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1962 // Can export from current BB. 1963 if (VI->getParent() == FromBB) 1964 return true; 1965 1966 // Is already exported, noop. 1967 return FuncInfo.isExportedInst(V); 1968 } 1969 1970 // If this is an argument, we can export it if the BB is the entry block or 1971 // if it is already exported. 1972 if (isa<Argument>(V)) { 1973 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1974 return true; 1975 1976 // Otherwise, can only export this if it is already exported. 1977 return FuncInfo.isExportedInst(V); 1978 } 1979 1980 // Otherwise, constants can always be exported. 1981 return true; 1982 } 1983 1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1985 BranchProbability 1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1987 const MachineBasicBlock *Dst) const { 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 const BasicBlock *SrcBB = Src->getBasicBlock(); 1990 const BasicBlock *DstBB = Dst->getBasicBlock(); 1991 if (!BPI) { 1992 // If BPI is not available, set the default probability as 1 / N, where N is 1993 // the number of successors. 1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1995 return BranchProbability(1, SuccSize); 1996 } 1997 return BPI->getEdgeProbability(SrcBB, DstBB); 1998 } 1999 2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2001 MachineBasicBlock *Dst, 2002 BranchProbability Prob) { 2003 if (!FuncInfo.BPI) 2004 Src->addSuccessorWithoutProb(Dst); 2005 else { 2006 if (Prob.isUnknown()) 2007 Prob = getEdgeProbability(Src, Dst); 2008 Src->addSuccessor(Dst, Prob); 2009 } 2010 } 2011 2012 static bool InBlock(const Value *V, const BasicBlock *BB) { 2013 if (const Instruction *I = dyn_cast<Instruction>(V)) 2014 return I->getParent() == BB; 2015 return true; 2016 } 2017 2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2019 /// This function emits a branch and is used at the leaves of an OR or an 2020 /// AND operator tree. 2021 void 2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2023 MachineBasicBlock *TBB, 2024 MachineBasicBlock *FBB, 2025 MachineBasicBlock *CurBB, 2026 MachineBasicBlock *SwitchBB, 2027 BranchProbability TProb, 2028 BranchProbability FProb, 2029 bool InvertCond) { 2030 const BasicBlock *BB = CurBB->getBasicBlock(); 2031 2032 // If the leaf of the tree is a comparison, merge the condition into 2033 // the caseblock. 2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2035 // The operands of the cmp have to be in this block. We don't know 2036 // how to export them from some other block. If this is the first block 2037 // of the sequence, no exporting is needed. 2038 if (CurBB == SwitchBB || 2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2041 ISD::CondCode Condition; 2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2043 ICmpInst::Predicate Pred = 2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2045 Condition = getICmpCondCode(Pred); 2046 } else { 2047 const FCmpInst *FC = cast<FCmpInst>(Cond); 2048 FCmpInst::Predicate Pred = 2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2050 Condition = getFCmpCondCode(Pred); 2051 if (TM.Options.NoNaNsFPMath) 2052 Condition = getFCmpCodeWithoutNaN(Condition); 2053 } 2054 2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2057 SL->SwitchCases.push_back(CB); 2058 return; 2059 } 2060 } 2061 2062 // Create a CaseBlock record representing this branch. 2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2066 SL->SwitchCases.push_back(CB); 2067 } 2068 2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2070 MachineBasicBlock *TBB, 2071 MachineBasicBlock *FBB, 2072 MachineBasicBlock *CurBB, 2073 MachineBasicBlock *SwitchBB, 2074 Instruction::BinaryOps Opc, 2075 BranchProbability TProb, 2076 BranchProbability FProb, 2077 bool InvertCond) { 2078 // Skip over not part of the tree and remember to invert op and operands at 2079 // next level. 2080 Value *NotCond; 2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2082 InBlock(NotCond, CurBB->getBasicBlock())) { 2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2084 !InvertCond); 2085 return; 2086 } 2087 2088 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2089 // Compute the effective opcode for Cond, taking into account whether it needs 2090 // to be inverted, e.g. 2091 // and (not (or A, B)), C 2092 // gets lowered as 2093 // and (and (not A, not B), C) 2094 unsigned BOpc = 0; 2095 if (BOp) { 2096 BOpc = BOp->getOpcode(); 2097 if (InvertCond) { 2098 if (BOpc == Instruction::And) 2099 BOpc = Instruction::Or; 2100 else if (BOpc == Instruction::Or) 2101 BOpc = Instruction::And; 2102 } 2103 } 2104 2105 // If this node is not part of the or/and tree, emit it as a branch. 2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2108 BOp->getParent() != CurBB->getBasicBlock() || 2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2112 TProb, FProb, InvertCond); 2113 return; 2114 } 2115 2116 // Create TmpBB after CurBB. 2117 MachineFunction::iterator BBI(CurBB); 2118 MachineFunction &MF = DAG.getMachineFunction(); 2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2120 CurBB->getParent()->insert(++BBI, TmpBB); 2121 2122 if (Opc == Instruction::Or) { 2123 // Codegen X | Y as: 2124 // BB1: 2125 // jmp_if_X TBB 2126 // jmp TmpBB 2127 // TmpBB: 2128 // jmp_if_Y TBB 2129 // jmp FBB 2130 // 2131 2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2133 // The requirement is that 2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2135 // = TrueProb for original BB. 2136 // Assuming the original probabilities are A and B, one choice is to set 2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2138 // A/(1+B) and 2B/(1+B). This choice assumes that 2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2141 // TmpBB, but the math is more complicated. 2142 2143 auto NewTrueProb = TProb / 2; 2144 auto NewFalseProb = TProb / 2 + FProb; 2145 // Emit the LHS condition. 2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2147 NewTrueProb, NewFalseProb, InvertCond); 2148 2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2152 // Emit the RHS condition into TmpBB. 2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2154 Probs[0], Probs[1], InvertCond); 2155 } else { 2156 assert(Opc == Instruction::And && "Unknown merge op!"); 2157 // Codegen X & Y as: 2158 // BB1: 2159 // jmp_if_X TmpBB 2160 // jmp FBB 2161 // TmpBB: 2162 // jmp_if_Y TBB 2163 // jmp FBB 2164 // 2165 // This requires creation of TmpBB after CurBB. 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2170 // = FalseProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2174 // TrueProb for BB1 * FalseProb for TmpBB. 2175 2176 auto NewTrueProb = TProb + FProb / 2; 2177 auto NewFalseProb = FProb / 2; 2178 // Emit the LHS condition. 2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2180 NewTrueProb, NewFalseProb, InvertCond); 2181 2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2185 // Emit the RHS condition into TmpBB. 2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2187 Probs[0], Probs[1], InvertCond); 2188 } 2189 } 2190 2191 /// If the set of cases should be emitted as a series of branches, return true. 2192 /// If we should emit this as a bunch of and/or'd together conditions, return 2193 /// false. 2194 bool 2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2196 if (Cases.size() != 2) return true; 2197 2198 // If this is two comparisons of the same values or'd or and'd together, they 2199 // will get folded into a single comparison, so don't emit two blocks. 2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2201 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2202 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2204 return false; 2205 } 2206 2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2210 Cases[0].CC == Cases[1].CC && 2211 isa<Constant>(Cases[0].CmpRHS) && 2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2214 return false; 2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2216 return false; 2217 } 2218 2219 return true; 2220 } 2221 2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2223 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2224 2225 // Update machine-CFG edges. 2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 2228 if (I.isUnconditional()) { 2229 // Update machine-CFG edges. 2230 BrMBB->addSuccessor(Succ0MBB); 2231 2232 // If this is not a fall-through branch or optimizations are switched off, 2233 // emit the branch. 2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2236 MVT::Other, getControlRoot(), 2237 DAG.getBasicBlock(Succ0MBB))); 2238 2239 return; 2240 } 2241 2242 // If this condition is one of the special cases we handle, do special stuff 2243 // now. 2244 const Value *CondVal = I.getCondition(); 2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2246 2247 // If this is a series of conditions that are or'd or and'd together, emit 2248 // this as a sequence of branches instead of setcc's with and/or operations. 2249 // As long as jumps are not expensive, this should improve performance. 2250 // For example, instead of something like: 2251 // cmp A, B 2252 // C = seteq 2253 // cmp D, E 2254 // F = setle 2255 // or C, F 2256 // jnz foo 2257 // Emit: 2258 // cmp A, B 2259 // je foo 2260 // cmp D, E 2261 // jle foo 2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2263 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2265 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2268 Opcode, 2269 getEdgeProbability(BrMBB, Succ0MBB), 2270 getEdgeProbability(BrMBB, Succ1MBB), 2271 /*InvertCond=*/false); 2272 // If the compares in later blocks need to use values not currently 2273 // exported from this block, export them now. This block should always 2274 // be the first entry. 2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2276 2277 // Allow some cases to be rejected. 2278 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2282 } 2283 2284 // Emit the branch for this block. 2285 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2286 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2287 return; 2288 } 2289 2290 // Okay, we decided not to do this, remove any inserted MBB's and clear 2291 // SwitchCases. 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2294 2295 SL->SwitchCases.clear(); 2296 } 2297 } 2298 2299 // Create a CaseBlock record representing this branch. 2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2302 2303 // Use visitSwitchCase to actually insert the fast branch sequence for this 2304 // cond branch. 2305 visitSwitchCase(CB, BrMBB); 2306 } 2307 2308 /// visitSwitchCase - Emits the necessary code to represent a single node in 2309 /// the binary search tree resulting from lowering a switch instruction. 2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2311 MachineBasicBlock *SwitchBB) { 2312 SDValue Cond; 2313 SDValue CondLHS = getValue(CB.CmpLHS); 2314 SDLoc dl = CB.DL; 2315 2316 if (CB.CC == ISD::SETTRUE) { 2317 // Branch or fall through to TrueBB. 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 SwitchBB->normalizeSuccProbs(); 2320 if (CB.TrueBB != NextBlock(SwitchBB)) { 2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(CB.TrueBB))); 2323 } 2324 return; 2325 } 2326 2327 auto &TLI = DAG.getTargetLoweringInfo(); 2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2329 2330 // Build the setcc now. 2331 if (!CB.CmpMHS) { 2332 // Fold "(X == true)" to X and "(X == false)" to !X to 2333 // handle common cases produced by branch lowering. 2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2335 CB.CC == ISD::SETEQ) 2336 Cond = CondLHS; 2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2338 CB.CC == ISD::SETEQ) { 2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2341 } else { 2342 SDValue CondRHS = getValue(CB.CmpRHS); 2343 2344 // If a pointer's DAG type is larger than its memory type then the DAG 2345 // values are zero-extended. This breaks signed comparisons so truncate 2346 // back to the underlying type before doing the compare. 2347 if (CondLHS.getValueType() != MemVT) { 2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2350 } 2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2352 } 2353 } else { 2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2355 2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2358 2359 SDValue CmpOp = getValue(CB.CmpMHS); 2360 EVT VT = CmpOp.getValueType(); 2361 2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2364 ISD::SETLE); 2365 } else { 2366 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2367 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2370 } 2371 } 2372 2373 // Update successor info 2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2375 // TrueBB and FalseBB are always different unless the incoming IR is 2376 // degenerate. This only happens when running llc on weird IR. 2377 if (CB.TrueBB != CB.FalseBB) 2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 // If the lhs block is the next block, invert the condition so that we can 2382 // fall through to the lhs instead of the rhs block. 2383 if (CB.TrueBB == NextBlock(SwitchBB)) { 2384 std::swap(CB.TrueBB, CB.FalseBB); 2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2387 } 2388 2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2390 MVT::Other, getControlRoot(), Cond, 2391 DAG.getBasicBlock(CB.TrueBB)); 2392 2393 // Insert the false branch. Do this even if it's a fall through branch, 2394 // this makes it easier to do DAG optimizations which require inverting 2395 // the branch condition. 2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2397 DAG.getBasicBlock(CB.FalseBB)); 2398 2399 DAG.setRoot(BrCond); 2400 } 2401 2402 /// visitJumpTable - Emit JumpTable node in the current MBB 2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2404 // Emit the code for the jump table 2405 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2408 JT.Reg, PTy); 2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2411 MVT::Other, Index.getValue(1), 2412 Table, Index); 2413 DAG.setRoot(BrJumpTable); 2414 } 2415 2416 /// visitJumpTableHeader - This function emits necessary code to produce index 2417 /// in the JumpTable from switch case. 2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2419 JumpTableHeader &JTH, 2420 MachineBasicBlock *SwitchBB) { 2421 SDLoc dl = getCurSDLoc(); 2422 2423 // Subtract the lowest switch case value from the value being switched on. 2424 SDValue SwitchOp = getValue(JTH.SValue); 2425 EVT VT = SwitchOp.getValueType(); 2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2427 DAG.getConstant(JTH.First, dl, VT)); 2428 2429 // The SDNode we just created, which holds the value being switched on minus 2430 // the smallest case value, needs to be copied to a virtual register so it 2431 // can be used as an index into the jump table in a subsequent basic block. 2432 // This value may be smaller or larger than the target's pointer type, and 2433 // therefore require extension or truncating. 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2436 2437 unsigned JumpTableReg = 2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2440 JumpTableReg, SwitchOp); 2441 JT.Reg = JumpTableReg; 2442 2443 if (!JTH.OmitRangeCheck) { 2444 // Emit the range check for the jump table, and branch to the default block 2445 // for the switch statement if the value being switched on exceeds the 2446 // largest case in the switch. 2447 SDValue CMP = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2449 Sub.getValueType()), 2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2451 2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, CopyTo, CMP, 2454 DAG.getBasicBlock(JT.Default)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (JT.MBB != NextBlock(SwitchBB)) 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(JT.MBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } else { 2463 // Avoid emitting unnecessary branches to the next block. 2464 if (JT.MBB != NextBlock(SwitchBB)) 2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2466 DAG.getBasicBlock(JT.MBB))); 2467 else 2468 DAG.setRoot(CopyTo); 2469 } 2470 } 2471 2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2473 /// variable if there exists one. 2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2475 SDValue &Chain) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2481 MachineSDNode *Node = 2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2483 if (Global) { 2484 MachinePointerInfo MPInfo(Global); 2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2486 MachineMemOperand::MODereferenceable; 2487 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2489 DAG.setNodeMemRefs(Node, {MemRef}); 2490 } 2491 if (PtrTy != PtrMemTy) 2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2493 return SDValue(Node, 0); 2494 } 2495 2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2497 /// tail spliced into a stack protector check success bb. 2498 /// 2499 /// For a high level explanation of how this fits into the stack protector 2500 /// generation see the comment on the declaration of class 2501 /// StackProtectorDescriptor. 2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2503 MachineBasicBlock *ParentBB) { 2504 2505 // First create the loads to the guard/stack slot for the comparison. 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2511 int FI = MFI.getStackProtectorIndex(); 2512 2513 SDValue Guard; 2514 SDLoc dl = getCurSDLoc(); 2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2516 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2518 2519 // Generate code to load the content of the guard slot. 2520 SDValue GuardVal = DAG.getLoad( 2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2523 MachineMemOperand::MOVolatile); 2524 2525 if (TLI.useStackGuardXorFP()) 2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2527 2528 // Retrieve guard check function, nullptr if instrumentation is inlined. 2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2530 // The target provides a guard check function to validate the guard value. 2531 // Generate a call to that function with the content of the guard slot as 2532 // argument. 2533 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2535 2536 TargetLowering::ArgListTy Args; 2537 TargetLowering::ArgListEntry Entry; 2538 Entry.Node = GuardVal; 2539 Entry.Ty = FnTy->getParamType(0); 2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2541 Entry.IsInReg = true; 2542 Args.push_back(Entry); 2543 2544 TargetLowering::CallLoweringInfo CLI(DAG); 2545 CLI.setDebugLoc(getCurSDLoc()) 2546 .setChain(DAG.getEntryNode()) 2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2548 getValue(GuardCheckFn), std::move(Args)); 2549 2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2551 DAG.setRoot(Result.second); 2552 return; 2553 } 2554 2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2556 // Otherwise, emit a volatile load to retrieve the stack guard value. 2557 SDValue Chain = DAG.getEntryNode(); 2558 if (TLI.useLoadStackGuardNode()) { 2559 Guard = getLoadStackGuard(DAG, dl, Chain); 2560 } else { 2561 const Value *IRGuard = TLI.getSDagStackGuard(M); 2562 SDValue GuardPtr = getValue(IRGuard); 2563 2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2565 MachinePointerInfo(IRGuard, 0), Align, 2566 MachineMemOperand::MOVolatile); 2567 } 2568 2569 // Perform the comparison via a subtract/getsetcc. 2570 EVT VT = Guard.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2572 2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2574 *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2577 2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2579 // branch to failure MBB. 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, GuardVal.getOperand(0), 2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2583 // Otherwise branch to success MBB. 2584 SDValue Br = DAG.getNode(ISD::BR, dl, 2585 MVT::Other, BrCond, 2586 DAG.getBasicBlock(SPD.getSuccessMBB())); 2587 2588 DAG.setRoot(Br); 2589 } 2590 2591 /// Codegen the failure basic block for a stack protector check. 2592 /// 2593 /// A failure stack protector machine basic block consists simply of a call to 2594 /// __stack_chk_fail(). 2595 /// 2596 /// For a high level explanation of how this fits into the stack protector 2597 /// generation see the comment on the declaration of class 2598 /// StackProtectorDescriptor. 2599 void 2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 TargetLowering::MakeLibCallOptions CallOptions; 2603 CallOptions.setDiscardResult(true); 2604 SDValue Chain = 2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2606 None, CallOptions, getCurSDLoc()).second; 2607 // On PS4, the "return address" must still be within the calling function, 2608 // even if it's at the very end, so emit an explicit TRAP here. 2609 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2610 if (TM.getTargetTriple().isPS4CPU()) 2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2612 2613 DAG.setRoot(Chain); 2614 } 2615 2616 /// visitBitTestHeader - This function emits necessary code to produce value 2617 /// suitable for "bit tests" 2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2619 MachineBasicBlock *SwitchBB) { 2620 SDLoc dl = getCurSDLoc(); 2621 2622 // Subtract the minimum value 2623 SDValue SwitchOp = getValue(B.SValue); 2624 EVT VT = SwitchOp.getValueType(); 2625 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2626 DAG.getConstant(B.First, dl, VT)); 2627 2628 // Check range 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 SDValue RangeCmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2632 Sub.getValueType()), 2633 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2634 2635 // Determine the type of the test operands. 2636 bool UsePtrType = false; 2637 if (!TLI.isTypeLegal(VT)) 2638 UsePtrType = true; 2639 else { 2640 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2641 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2642 // Switch table case range are encoded into series of masks. 2643 // Just use pointer type, it's guaranteed to fit. 2644 UsePtrType = true; 2645 break; 2646 } 2647 } 2648 if (UsePtrType) { 2649 VT = TLI.getPointerTy(DAG.getDataLayout()); 2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2651 } 2652 2653 B.RegVT = VT.getSimpleVT(); 2654 B.Reg = FuncInfo.CreateReg(B.RegVT); 2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2656 2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2658 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2664 MVT::Other, CopyTo, RangeCmp, 2665 DAG.getBasicBlock(B.Default)); 2666 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (MBB != NextBlock(SwitchBB)) 2669 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2670 DAG.getBasicBlock(MBB)); 2671 2672 DAG.setRoot(BrRange); 2673 } 2674 2675 /// visitBitTestCase - this function produces one "bit test" 2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2677 MachineBasicBlock* NextMBB, 2678 BranchProbability BranchProbToNext, 2679 unsigned Reg, 2680 BitTestCase &B, 2681 MachineBasicBlock *SwitchBB) { 2682 SDLoc dl = getCurSDLoc(); 2683 MVT VT = BB.RegVT; 2684 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2685 SDValue Cmp; 2686 unsigned PopCount = countPopulation(B.Mask); 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 if (PopCount == 1) { 2689 // Testing for a single bit; just compare the shift count with what it 2690 // would need to be to shift a 1 bit in that position. 2691 Cmp = DAG.getSetCC( 2692 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2693 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2694 ISD::SETEQ); 2695 } else if (PopCount == BB.Range) { 2696 // There is only one zero bit in the range, test for it directly. 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2700 ISD::SETNE); 2701 } else { 2702 // Make desired shift 2703 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2704 DAG.getConstant(1, dl, VT), ShiftOp); 2705 2706 // Emit bit tests and jumps 2707 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2708 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2709 Cmp = DAG.getSetCC( 2710 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2711 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2712 } 2713 2714 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2715 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2716 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2717 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2718 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2719 // one as they are relative probabilities (and thus work more like weights), 2720 // and hence we need to normalize them to let the sum of them become one. 2721 SwitchBB->normalizeSuccProbs(); 2722 2723 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, getControlRoot(), 2725 Cmp, DAG.getBasicBlock(B.TargetBB)); 2726 2727 // Avoid emitting unnecessary branches to the next block. 2728 if (NextMBB != NextBlock(SwitchBB)) 2729 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2730 DAG.getBasicBlock(NextMBB)); 2731 2732 DAG.setRoot(BrAnd); 2733 } 2734 2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2736 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2737 2738 // Retrieve successors. Look through artificial IR level blocks like 2739 // catchswitch for successors. 2740 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2741 const BasicBlock *EHPadBB = I.getSuccessor(1); 2742 2743 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2744 // have to do anything here to lower funclet bundles. 2745 assert(!I.hasOperandBundlesOtherThan( 2746 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2747 "Cannot lower invokes with arbitrary operand bundles yet!"); 2748 2749 const Value *Callee(I.getCalledValue()); 2750 const Function *Fn = dyn_cast<Function>(Callee); 2751 if (isa<InlineAsm>(Callee)) 2752 visitInlineAsm(&I); 2753 else if (Fn && Fn->isIntrinsic()) { 2754 switch (Fn->getIntrinsicID()) { 2755 default: 2756 llvm_unreachable("Cannot invoke this intrinsic"); 2757 case Intrinsic::donothing: 2758 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2759 break; 2760 case Intrinsic::experimental_patchpoint_void: 2761 case Intrinsic::experimental_patchpoint_i64: 2762 visitPatchpoint(&I, EHPadBB); 2763 break; 2764 case Intrinsic::experimental_gc_statepoint: 2765 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2766 break; 2767 case Intrinsic::wasm_rethrow_in_catch: { 2768 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2769 // special because it can be invoked, so we manually lower it to a DAG 2770 // node here. 2771 SmallVector<SDValue, 8> Ops; 2772 Ops.push_back(getRoot()); // inchain 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 Ops.push_back( 2775 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2776 TLI.getPointerTy(DAG.getDataLayout()))); 2777 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2778 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2779 break; 2780 } 2781 } 2782 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2783 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2784 // Eventually we will support lowering the @llvm.experimental.deoptimize 2785 // intrinsic, and right now there are no plans to support other intrinsics 2786 // with deopt state. 2787 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2788 } else { 2789 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2790 } 2791 2792 // If the value of the invoke is used outside of its defining block, make it 2793 // available as a virtual register. 2794 // We already took care of the exported value for the statepoint instruction 2795 // during call to the LowerStatepoint. 2796 if (!isStatepoint(I)) { 2797 CopyToExportRegsIfNeeded(&I); 2798 } 2799 2800 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2801 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2802 BranchProbability EHPadBBProb = 2803 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2804 : BranchProbability::getZero(); 2805 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2806 2807 // Update successor info. 2808 addSuccessorWithProb(InvokeMBB, Return); 2809 for (auto &UnwindDest : UnwindDests) { 2810 UnwindDest.first->setIsEHPad(); 2811 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2812 } 2813 InvokeMBB->normalizeSuccProbs(); 2814 2815 // Drop into normal successor. 2816 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2817 DAG.getBasicBlock(Return))); 2818 } 2819 2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2821 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2822 2823 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2824 // have to do anything here to lower funclet bundles. 2825 assert(!I.hasOperandBundlesOtherThan( 2826 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2827 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2828 2829 assert(isa<InlineAsm>(I.getCalledValue()) && 2830 "Only know how to handle inlineasm callbr"); 2831 visitInlineAsm(&I); 2832 2833 // Retrieve successors. 2834 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2835 2836 // Update successor info. 2837 addSuccessorWithProb(CallBrMBB, Return); 2838 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2839 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2840 addSuccessorWithProb(CallBrMBB, Target); 2841 } 2842 CallBrMBB->normalizeSuccProbs(); 2843 2844 // Drop into default successor. 2845 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2846 MVT::Other, getControlRoot(), 2847 DAG.getBasicBlock(Return))); 2848 } 2849 2850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2852 } 2853 2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2855 assert(FuncInfo.MBB->isEHPad() && 2856 "Call to landingpad not in landing pad!"); 2857 2858 // If there aren't registers to copy the values into (e.g., during SjLj 2859 // exceptions), then don't bother to create these DAG nodes. 2860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2861 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2862 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2863 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2864 return; 2865 2866 // If landingpad's return type is token type, we don't create DAG nodes 2867 // for its exception pointer and selector value. The extraction of exception 2868 // pointer or selector value from token type landingpads is not currently 2869 // supported. 2870 if (LP.getType()->isTokenTy()) 2871 return; 2872 2873 SmallVector<EVT, 2> ValueVTs; 2874 SDLoc dl = getCurSDLoc(); 2875 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2876 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2877 2878 // Get the two live-in registers as SDValues. The physregs have already been 2879 // copied into virtual registers. 2880 SDValue Ops[2]; 2881 if (FuncInfo.ExceptionPointerVirtReg) { 2882 Ops[0] = DAG.getZExtOrTrunc( 2883 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2884 FuncInfo.ExceptionPointerVirtReg, 2885 TLI.getPointerTy(DAG.getDataLayout())), 2886 dl, ValueVTs[0]); 2887 } else { 2888 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2889 } 2890 Ops[1] = DAG.getZExtOrTrunc( 2891 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2892 FuncInfo.ExceptionSelectorVirtReg, 2893 TLI.getPointerTy(DAG.getDataLayout())), 2894 dl, ValueVTs[1]); 2895 2896 // Merge into one. 2897 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2898 DAG.getVTList(ValueVTs), Ops); 2899 setValue(&LP, Res); 2900 } 2901 2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2903 MachineBasicBlock *Last) { 2904 // Update JTCases. 2905 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2906 if (SL->JTCases[i].first.HeaderBB == First) 2907 SL->JTCases[i].first.HeaderBB = Last; 2908 2909 // Update BitTestCases. 2910 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2911 if (SL->BitTestCases[i].Parent == First) 2912 SL->BitTestCases[i].Parent = Last; 2913 } 2914 2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2916 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2917 2918 // Update machine-CFG edges with unique successors. 2919 SmallSet<BasicBlock*, 32> Done; 2920 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2921 BasicBlock *BB = I.getSuccessor(i); 2922 bool Inserted = Done.insert(BB).second; 2923 if (!Inserted) 2924 continue; 2925 2926 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2927 addSuccessorWithProb(IndirectBrMBB, Succ); 2928 } 2929 IndirectBrMBB->normalizeSuccProbs(); 2930 2931 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2932 MVT::Other, getControlRoot(), 2933 getValue(I.getAddress()))); 2934 } 2935 2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2937 if (!DAG.getTarget().Options.TrapUnreachable) 2938 return; 2939 2940 // We may be able to ignore unreachable behind a noreturn call. 2941 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2942 const BasicBlock &BB = *I.getParent(); 2943 if (&I != &BB.front()) { 2944 BasicBlock::const_iterator PredI = 2945 std::prev(BasicBlock::const_iterator(&I)); 2946 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2947 if (Call->doesNotReturn()) 2948 return; 2949 } 2950 } 2951 } 2952 2953 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2954 } 2955 2956 void SelectionDAGBuilder::visitFSub(const User &I) { 2957 // -0.0 - X --> fneg 2958 Type *Ty = I.getType(); 2959 if (isa<Constant>(I.getOperand(0)) && 2960 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2961 SDValue Op2 = getValue(I.getOperand(1)); 2962 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2963 Op2.getValueType(), Op2)); 2964 return; 2965 } 2966 2967 visitBinary(I, ISD::FSUB); 2968 } 2969 2970 /// Checks if the given instruction performs a vector reduction, in which case 2971 /// we have the freedom to alter the elements in the result as long as the 2972 /// reduction of them stays unchanged. 2973 static bool isVectorReductionOp(const User *I) { 2974 const Instruction *Inst = dyn_cast<Instruction>(I); 2975 if (!Inst || !Inst->getType()->isVectorTy()) 2976 return false; 2977 2978 auto OpCode = Inst->getOpcode(); 2979 switch (OpCode) { 2980 case Instruction::Add: 2981 case Instruction::Mul: 2982 case Instruction::And: 2983 case Instruction::Or: 2984 case Instruction::Xor: 2985 break; 2986 case Instruction::FAdd: 2987 case Instruction::FMul: 2988 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2989 if (FPOp->getFastMathFlags().isFast()) 2990 break; 2991 LLVM_FALLTHROUGH; 2992 default: 2993 return false; 2994 } 2995 2996 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2997 // Ensure the reduction size is a power of 2. 2998 if (!isPowerOf2_32(ElemNum)) 2999 return false; 3000 3001 unsigned ElemNumToReduce = ElemNum; 3002 3003 // Do DFS search on the def-use chain from the given instruction. We only 3004 // allow four kinds of operations during the search until we reach the 3005 // instruction that extracts the first element from the vector: 3006 // 3007 // 1. The reduction operation of the same opcode as the given instruction. 3008 // 3009 // 2. PHI node. 3010 // 3011 // 3. ShuffleVector instruction together with a reduction operation that 3012 // does a partial reduction. 3013 // 3014 // 4. ExtractElement that extracts the first element from the vector, and we 3015 // stop searching the def-use chain here. 3016 // 3017 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3018 // from 1-3 to the stack to continue the DFS. The given instruction is not 3019 // a reduction operation if we meet any other instructions other than those 3020 // listed above. 3021 3022 SmallVector<const User *, 16> UsersToVisit{Inst}; 3023 SmallPtrSet<const User *, 16> Visited; 3024 bool ReduxExtracted = false; 3025 3026 while (!UsersToVisit.empty()) { 3027 auto User = UsersToVisit.back(); 3028 UsersToVisit.pop_back(); 3029 if (!Visited.insert(User).second) 3030 continue; 3031 3032 for (const auto &U : User->users()) { 3033 auto Inst = dyn_cast<Instruction>(U); 3034 if (!Inst) 3035 return false; 3036 3037 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3038 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3039 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3040 return false; 3041 UsersToVisit.push_back(U); 3042 } else if (const ShuffleVectorInst *ShufInst = 3043 dyn_cast<ShuffleVectorInst>(U)) { 3044 // Detect the following pattern: A ShuffleVector instruction together 3045 // with a reduction that do partial reduction on the first and second 3046 // ElemNumToReduce / 2 elements, and store the result in 3047 // ElemNumToReduce / 2 elements in another vector. 3048 3049 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3050 if (ResultElements < ElemNum) 3051 return false; 3052 3053 if (ElemNumToReduce == 1) 3054 return false; 3055 if (!isa<UndefValue>(U->getOperand(1))) 3056 return false; 3057 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3058 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3059 return false; 3060 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3061 if (ShufInst->getMaskValue(i) != -1) 3062 return false; 3063 3064 // There is only one user of this ShuffleVector instruction, which 3065 // must be a reduction operation. 3066 if (!U->hasOneUse()) 3067 return false; 3068 3069 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3070 if (!U2 || U2->getOpcode() != OpCode) 3071 return false; 3072 3073 // Check operands of the reduction operation. 3074 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3075 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3076 UsersToVisit.push_back(U2); 3077 ElemNumToReduce /= 2; 3078 } else 3079 return false; 3080 } else if (isa<ExtractElementInst>(U)) { 3081 // At this moment we should have reduced all elements in the vector. 3082 if (ElemNumToReduce != 1) 3083 return false; 3084 3085 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3086 if (!Val || !Val->isZero()) 3087 return false; 3088 3089 ReduxExtracted = true; 3090 } else 3091 return false; 3092 } 3093 } 3094 return ReduxExtracted; 3095 } 3096 3097 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3098 SDNodeFlags Flags; 3099 3100 SDValue Op = getValue(I.getOperand(0)); 3101 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3102 Op, Flags); 3103 setValue(&I, UnNodeValue); 3104 } 3105 3106 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3109 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3110 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3111 } 3112 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3113 Flags.setExact(ExactOp->isExact()); 3114 } 3115 if (isVectorReductionOp(&I)) { 3116 Flags.setVectorReduction(true); 3117 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3118 } 3119 3120 SDValue Op1 = getValue(I.getOperand(0)); 3121 SDValue Op2 = getValue(I.getOperand(1)); 3122 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3123 Op1, Op2, Flags); 3124 setValue(&I, BinNodeValue); 3125 } 3126 3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3128 SDValue Op1 = getValue(I.getOperand(0)); 3129 SDValue Op2 = getValue(I.getOperand(1)); 3130 3131 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3132 Op1.getValueType(), DAG.getDataLayout()); 3133 3134 // Coerce the shift amount to the right type if we can. 3135 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3136 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3137 unsigned Op2Size = Op2.getValueSizeInBits(); 3138 SDLoc DL = getCurSDLoc(); 3139 3140 // If the operand is smaller than the shift count type, promote it. 3141 if (ShiftSize > Op2Size) 3142 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3143 3144 // If the operand is larger than the shift count type but the shift 3145 // count type has enough bits to represent any shift value, truncate 3146 // it now. This is a common case and it exposes the truncate to 3147 // optimization early. 3148 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3149 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3150 // Otherwise we'll need to temporarily settle for some other convenient 3151 // type. Type legalization will make adjustments once the shiftee is split. 3152 else 3153 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3154 } 3155 3156 bool nuw = false; 3157 bool nsw = false; 3158 bool exact = false; 3159 3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3161 3162 if (const OverflowingBinaryOperator *OFBinOp = 3163 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3164 nuw = OFBinOp->hasNoUnsignedWrap(); 3165 nsw = OFBinOp->hasNoSignedWrap(); 3166 } 3167 if (const PossiblyExactOperator *ExactOp = 3168 dyn_cast<const PossiblyExactOperator>(&I)) 3169 exact = ExactOp->isExact(); 3170 } 3171 SDNodeFlags Flags; 3172 Flags.setExact(exact); 3173 Flags.setNoSignedWrap(nsw); 3174 Flags.setNoUnsignedWrap(nuw); 3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3176 Flags); 3177 setValue(&I, Res); 3178 } 3179 3180 void SelectionDAGBuilder::visitSDiv(const User &I) { 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 3184 SDNodeFlags Flags; 3185 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3186 cast<PossiblyExactOperator>(&I)->isExact()); 3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3188 Op2, Flags)); 3189 } 3190 3191 void SelectionDAGBuilder::visitICmp(const User &I) { 3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3194 predicate = IC->getPredicate(); 3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3196 predicate = ICmpInst::Predicate(IC->getPredicate()); 3197 SDValue Op1 = getValue(I.getOperand(0)); 3198 SDValue Op2 = getValue(I.getOperand(1)); 3199 ISD::CondCode Opcode = getICmpCondCode(predicate); 3200 3201 auto &TLI = DAG.getTargetLoweringInfo(); 3202 EVT MemVT = 3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3204 3205 // If a pointer's DAG type is larger than its memory type then the DAG values 3206 // are zero-extended. This breaks signed comparisons so truncate back to the 3207 // underlying type before doing the compare. 3208 if (Op1.getValueType() != MemVT) { 3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3211 } 3212 3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3214 I.getType()); 3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3216 } 3217 3218 void SelectionDAGBuilder::visitFCmp(const User &I) { 3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3221 predicate = FC->getPredicate(); 3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3223 predicate = FCmpInst::Predicate(FC->getPredicate()); 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 3227 ISD::CondCode Condition = getFCmpCondCode(predicate); 3228 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3229 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3230 Condition = getFCmpCodeWithoutNaN(Condition); 3231 3232 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3233 I.getType()); 3234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3235 } 3236 3237 // Check if the condition of the select has one use or two users that are both 3238 // selects with the same condition. 3239 static bool hasOnlySelectUsers(const Value *Cond) { 3240 return llvm::all_of(Cond->users(), [](const Value *V) { 3241 return isa<SelectInst>(V); 3242 }); 3243 } 3244 3245 void SelectionDAGBuilder::visitSelect(const User &I) { 3246 SmallVector<EVT, 4> ValueVTs; 3247 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3248 ValueVTs); 3249 unsigned NumValues = ValueVTs.size(); 3250 if (NumValues == 0) return; 3251 3252 SmallVector<SDValue, 4> Values(NumValues); 3253 SDValue Cond = getValue(I.getOperand(0)); 3254 SDValue LHSVal = getValue(I.getOperand(1)); 3255 SDValue RHSVal = getValue(I.getOperand(2)); 3256 auto BaseOps = {Cond}; 3257 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3258 ISD::VSELECT : ISD::SELECT; 3259 3260 bool IsUnaryAbs = false; 3261 3262 // Min/max matching is only viable if all output VTs are the same. 3263 if (is_splat(ValueVTs)) { 3264 EVT VT = ValueVTs[0]; 3265 LLVMContext &Ctx = *DAG.getContext(); 3266 auto &TLI = DAG.getTargetLoweringInfo(); 3267 3268 // We care about the legality of the operation after it has been type 3269 // legalized. 3270 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3271 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3272 VT = TLI.getTypeToTransformTo(Ctx, VT); 3273 3274 // If the vselect is legal, assume we want to leave this as a vector setcc + 3275 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3276 // min/max is legal on the scalar type. 3277 bool UseScalarMinMax = VT.isVector() && 3278 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3279 3280 Value *LHS, *RHS; 3281 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3282 ISD::NodeType Opc = ISD::DELETED_NODE; 3283 switch (SPR.Flavor) { 3284 case SPF_UMAX: Opc = ISD::UMAX; break; 3285 case SPF_UMIN: Opc = ISD::UMIN; break; 3286 case SPF_SMAX: Opc = ISD::SMAX; break; 3287 case SPF_SMIN: Opc = ISD::SMIN; break; 3288 case SPF_FMINNUM: 3289 switch (SPR.NaNBehavior) { 3290 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3291 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3292 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3293 case SPNB_RETURNS_ANY: { 3294 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3295 Opc = ISD::FMINNUM; 3296 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3297 Opc = ISD::FMINIMUM; 3298 else if (UseScalarMinMax) 3299 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3300 ISD::FMINNUM : ISD::FMINIMUM; 3301 break; 3302 } 3303 } 3304 break; 3305 case SPF_FMAXNUM: 3306 switch (SPR.NaNBehavior) { 3307 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3308 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3309 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3310 case SPNB_RETURNS_ANY: 3311 3312 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3313 Opc = ISD::FMAXNUM; 3314 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3315 Opc = ISD::FMAXIMUM; 3316 else if (UseScalarMinMax) 3317 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3318 ISD::FMAXNUM : ISD::FMAXIMUM; 3319 break; 3320 } 3321 break; 3322 case SPF_ABS: 3323 IsUnaryAbs = true; 3324 Opc = ISD::ABS; 3325 break; 3326 case SPF_NABS: 3327 // TODO: we need to produce sub(0, abs(X)). 3328 default: break; 3329 } 3330 3331 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3332 (TLI.isOperationLegalOrCustom(Opc, VT) || 3333 (UseScalarMinMax && 3334 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3335 // If the underlying comparison instruction is used by any other 3336 // instruction, the consumed instructions won't be destroyed, so it is 3337 // not profitable to convert to a min/max. 3338 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3339 OpCode = Opc; 3340 LHSVal = getValue(LHS); 3341 RHSVal = getValue(RHS); 3342 BaseOps = {}; 3343 } 3344 3345 if (IsUnaryAbs) { 3346 OpCode = Opc; 3347 LHSVal = getValue(LHS); 3348 BaseOps = {}; 3349 } 3350 } 3351 3352 if (IsUnaryAbs) { 3353 for (unsigned i = 0; i != NumValues; ++i) { 3354 Values[i] = 3355 DAG.getNode(OpCode, getCurSDLoc(), 3356 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3357 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3358 } 3359 } else { 3360 for (unsigned i = 0; i != NumValues; ++i) { 3361 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3362 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3363 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3364 Values[i] = DAG.getNode( 3365 OpCode, getCurSDLoc(), 3366 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3367 } 3368 } 3369 3370 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3371 DAG.getVTList(ValueVTs), Values)); 3372 } 3373 3374 void SelectionDAGBuilder::visitTrunc(const User &I) { 3375 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3376 SDValue N = getValue(I.getOperand(0)); 3377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3378 I.getType()); 3379 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3380 } 3381 3382 void SelectionDAGBuilder::visitZExt(const User &I) { 3383 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3384 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3385 SDValue N = getValue(I.getOperand(0)); 3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3387 I.getType()); 3388 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3389 } 3390 3391 void SelectionDAGBuilder::visitSExt(const User &I) { 3392 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3393 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3394 SDValue N = getValue(I.getOperand(0)); 3395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3396 I.getType()); 3397 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3398 } 3399 3400 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3401 // FPTrunc is never a no-op cast, no need to check 3402 SDValue N = getValue(I.getOperand(0)); 3403 SDLoc dl = getCurSDLoc(); 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3407 DAG.getTargetConstant( 3408 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3409 } 3410 3411 void SelectionDAGBuilder::visitFPExt(const User &I) { 3412 // FPExt is never a no-op cast, no need to check 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3420 // FPToUI is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3428 // FPToSI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3436 // UIToFP is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3444 // SIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3452 // What to do depends on the size of the integer and the size of the pointer. 3453 // We can either truncate, zero extend, or no-op, accordingly. 3454 SDValue N = getValue(I.getOperand(0)); 3455 auto &TLI = DAG.getTargetLoweringInfo(); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 EVT PtrMemVT = 3459 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3460 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3461 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3462 setValue(&I, N); 3463 } 3464 3465 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3466 // What to do depends on the size of the integer and the size of the pointer. 3467 // We can either truncate, zero extend, or no-op, accordingly. 3468 SDValue N = getValue(I.getOperand(0)); 3469 auto &TLI = DAG.getTargetLoweringInfo(); 3470 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3471 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3472 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3474 setValue(&I, N); 3475 } 3476 3477 void SelectionDAGBuilder::visitBitCast(const User &I) { 3478 SDValue N = getValue(I.getOperand(0)); 3479 SDLoc dl = getCurSDLoc(); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 3483 // BitCast assures us that source and destination are the same size so this is 3484 // either a BITCAST or a no-op. 3485 if (DestVT != N.getValueType()) 3486 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3487 DestVT, N)); // convert types. 3488 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3489 // might fold any kind of constant expression to an integer constant and that 3490 // is not what we are looking for. Only recognize a bitcast of a genuine 3491 // constant integer as an opaque constant. 3492 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3493 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3494 /*isOpaque*/true)); 3495 else 3496 setValue(&I, N); // noop cast. 3497 } 3498 3499 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 const Value *SV = I.getOperand(0); 3502 SDValue N = getValue(SV); 3503 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3504 3505 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3506 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3507 3508 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3509 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3510 3511 setValue(&I, N); 3512 } 3513 3514 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 SDValue InVec = getValue(I.getOperand(0)); 3517 SDValue InVal = getValue(I.getOperand(1)); 3518 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3519 TLI.getVectorIdxTy(DAG.getDataLayout())); 3520 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3521 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3522 InVec, InVal, InIdx)); 3523 } 3524 3525 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3527 SDValue InVec = getValue(I.getOperand(0)); 3528 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3529 TLI.getVectorIdxTy(DAG.getDataLayout())); 3530 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3531 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3532 InVec, InIdx)); 3533 } 3534 3535 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3536 SDValue Src1 = getValue(I.getOperand(0)); 3537 SDValue Src2 = getValue(I.getOperand(1)); 3538 SDLoc DL = getCurSDLoc(); 3539 3540 SmallVector<int, 8> Mask; 3541 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3542 unsigned MaskNumElts = Mask.size(); 3543 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 EVT SrcVT = Src1.getValueType(); 3547 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3548 3549 if (SrcNumElts == MaskNumElts) { 3550 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3551 return; 3552 } 3553 3554 // Normalize the shuffle vector since mask and vector length don't match. 3555 if (SrcNumElts < MaskNumElts) { 3556 // Mask is longer than the source vectors. We can use concatenate vector to 3557 // make the mask and vectors lengths match. 3558 3559 if (MaskNumElts % SrcNumElts == 0) { 3560 // Mask length is a multiple of the source vector length. 3561 // Check if the shuffle is some kind of concatenation of the input 3562 // vectors. 3563 unsigned NumConcat = MaskNumElts / SrcNumElts; 3564 bool IsConcat = true; 3565 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3566 for (unsigned i = 0; i != MaskNumElts; ++i) { 3567 int Idx = Mask[i]; 3568 if (Idx < 0) 3569 continue; 3570 // Ensure the indices in each SrcVT sized piece are sequential and that 3571 // the same source is used for the whole piece. 3572 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3573 (ConcatSrcs[i / SrcNumElts] >= 0 && 3574 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3575 IsConcat = false; 3576 break; 3577 } 3578 // Remember which source this index came from. 3579 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3580 } 3581 3582 // The shuffle is concatenating multiple vectors together. Just emit 3583 // a CONCAT_VECTORS operation. 3584 if (IsConcat) { 3585 SmallVector<SDValue, 8> ConcatOps; 3586 for (auto Src : ConcatSrcs) { 3587 if (Src < 0) 3588 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3589 else if (Src == 0) 3590 ConcatOps.push_back(Src1); 3591 else 3592 ConcatOps.push_back(Src2); 3593 } 3594 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3595 return; 3596 } 3597 } 3598 3599 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3600 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3601 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3602 PaddedMaskNumElts); 3603 3604 // Pad both vectors with undefs to make them the same length as the mask. 3605 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3606 3607 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3608 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3609 MOps1[0] = Src1; 3610 MOps2[0] = Src2; 3611 3612 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3613 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3614 3615 // Readjust mask for new input vector length. 3616 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3617 for (unsigned i = 0; i != MaskNumElts; ++i) { 3618 int Idx = Mask[i]; 3619 if (Idx >= (int)SrcNumElts) 3620 Idx -= SrcNumElts - PaddedMaskNumElts; 3621 MappedOps[i] = Idx; 3622 } 3623 3624 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3625 3626 // If the concatenated vector was padded, extract a subvector with the 3627 // correct number of elements. 3628 if (MaskNumElts != PaddedMaskNumElts) 3629 Result = DAG.getNode( 3630 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3631 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3632 3633 setValue(&I, Result); 3634 return; 3635 } 3636 3637 if (SrcNumElts > MaskNumElts) { 3638 // Analyze the access pattern of the vector to see if we can extract 3639 // two subvectors and do the shuffle. 3640 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3641 bool CanExtract = true; 3642 for (int Idx : Mask) { 3643 unsigned Input = 0; 3644 if (Idx < 0) 3645 continue; 3646 3647 if (Idx >= (int)SrcNumElts) { 3648 Input = 1; 3649 Idx -= SrcNumElts; 3650 } 3651 3652 // If all the indices come from the same MaskNumElts sized portion of 3653 // the sources we can use extract. Also make sure the extract wouldn't 3654 // extract past the end of the source. 3655 int NewStartIdx = alignDown(Idx, MaskNumElts); 3656 if (NewStartIdx + MaskNumElts > SrcNumElts || 3657 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3658 CanExtract = false; 3659 // Make sure we always update StartIdx as we use it to track if all 3660 // elements are undef. 3661 StartIdx[Input] = NewStartIdx; 3662 } 3663 3664 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3665 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3666 return; 3667 } 3668 if (CanExtract) { 3669 // Extract appropriate subvector and generate a vector shuffle 3670 for (unsigned Input = 0; Input < 2; ++Input) { 3671 SDValue &Src = Input == 0 ? Src1 : Src2; 3672 if (StartIdx[Input] < 0) 3673 Src = DAG.getUNDEF(VT); 3674 else { 3675 Src = DAG.getNode( 3676 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3677 DAG.getConstant(StartIdx[Input], DL, 3678 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3679 } 3680 } 3681 3682 // Calculate new mask. 3683 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3684 for (int &Idx : MappedOps) { 3685 if (Idx >= (int)SrcNumElts) 3686 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3687 else if (Idx >= 0) 3688 Idx -= StartIdx[0]; 3689 } 3690 3691 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3692 return; 3693 } 3694 } 3695 3696 // We can't use either concat vectors or extract subvectors so fall back to 3697 // replacing the shuffle with extract and build vector. 3698 // to insert and build vector. 3699 EVT EltVT = VT.getVectorElementType(); 3700 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3701 SmallVector<SDValue,8> Ops; 3702 for (int Idx : Mask) { 3703 SDValue Res; 3704 3705 if (Idx < 0) { 3706 Res = DAG.getUNDEF(EltVT); 3707 } else { 3708 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3709 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3710 3711 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3712 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3713 } 3714 3715 Ops.push_back(Res); 3716 } 3717 3718 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3719 } 3720 3721 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3722 ArrayRef<unsigned> Indices; 3723 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3724 Indices = IV->getIndices(); 3725 else 3726 Indices = cast<ConstantExpr>(&I)->getIndices(); 3727 3728 const Value *Op0 = I.getOperand(0); 3729 const Value *Op1 = I.getOperand(1); 3730 Type *AggTy = I.getType(); 3731 Type *ValTy = Op1->getType(); 3732 bool IntoUndef = isa<UndefValue>(Op0); 3733 bool FromUndef = isa<UndefValue>(Op1); 3734 3735 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3736 3737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3738 SmallVector<EVT, 4> AggValueVTs; 3739 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3740 SmallVector<EVT, 4> ValValueVTs; 3741 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3742 3743 unsigned NumAggValues = AggValueVTs.size(); 3744 unsigned NumValValues = ValValueVTs.size(); 3745 SmallVector<SDValue, 4> Values(NumAggValues); 3746 3747 // Ignore an insertvalue that produces an empty object 3748 if (!NumAggValues) { 3749 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3750 return; 3751 } 3752 3753 SDValue Agg = getValue(Op0); 3754 unsigned i = 0; 3755 // Copy the beginning value(s) from the original aggregate. 3756 for (; i != LinearIndex; ++i) 3757 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3758 SDValue(Agg.getNode(), Agg.getResNo() + i); 3759 // Copy values from the inserted value(s). 3760 if (NumValValues) { 3761 SDValue Val = getValue(Op1); 3762 for (; i != LinearIndex + NumValValues; ++i) 3763 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3764 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3765 } 3766 // Copy remaining value(s) from the original aggregate. 3767 for (; i != NumAggValues; ++i) 3768 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3769 SDValue(Agg.getNode(), Agg.getResNo() + i); 3770 3771 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3772 DAG.getVTList(AggValueVTs), Values)); 3773 } 3774 3775 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3776 ArrayRef<unsigned> Indices; 3777 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3778 Indices = EV->getIndices(); 3779 else 3780 Indices = cast<ConstantExpr>(&I)->getIndices(); 3781 3782 const Value *Op0 = I.getOperand(0); 3783 Type *AggTy = Op0->getType(); 3784 Type *ValTy = I.getType(); 3785 bool OutOfUndef = isa<UndefValue>(Op0); 3786 3787 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3788 3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3790 SmallVector<EVT, 4> ValValueVTs; 3791 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3792 3793 unsigned NumValValues = ValValueVTs.size(); 3794 3795 // Ignore a extractvalue that produces an empty object 3796 if (!NumValValues) { 3797 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3798 return; 3799 } 3800 3801 SmallVector<SDValue, 4> Values(NumValValues); 3802 3803 SDValue Agg = getValue(Op0); 3804 // Copy out the selected value(s). 3805 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3806 Values[i - LinearIndex] = 3807 OutOfUndef ? 3808 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3809 SDValue(Agg.getNode(), Agg.getResNo() + i); 3810 3811 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3812 DAG.getVTList(ValValueVTs), Values)); 3813 } 3814 3815 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3816 Value *Op0 = I.getOperand(0); 3817 // Note that the pointer operand may be a vector of pointers. Take the scalar 3818 // element which holds a pointer. 3819 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3820 SDValue N = getValue(Op0); 3821 SDLoc dl = getCurSDLoc(); 3822 auto &TLI = DAG.getTargetLoweringInfo(); 3823 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3824 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3825 3826 // Normalize Vector GEP - all scalar operands should be converted to the 3827 // splat vector. 3828 unsigned VectorWidth = I.getType()->isVectorTy() ? 3829 I.getType()->getVectorNumElements() : 0; 3830 3831 if (VectorWidth && !N.getValueType().isVector()) { 3832 LLVMContext &Context = *DAG.getContext(); 3833 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3834 N = DAG.getSplatBuildVector(VT, dl, N); 3835 } 3836 3837 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3838 GTI != E; ++GTI) { 3839 const Value *Idx = GTI.getOperand(); 3840 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3841 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3842 if (Field) { 3843 // N = N + Offset 3844 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3845 3846 // In an inbounds GEP with an offset that is nonnegative even when 3847 // interpreted as signed, assume there is no unsigned overflow. 3848 SDNodeFlags Flags; 3849 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3850 Flags.setNoUnsignedWrap(true); 3851 3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3853 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3854 } 3855 } else { 3856 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3857 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3858 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3859 3860 // If this is a scalar constant or a splat vector of constants, 3861 // handle it quickly. 3862 const auto *C = dyn_cast<Constant>(Idx); 3863 if (C && isa<VectorType>(C->getType())) 3864 C = C->getSplatValue(); 3865 3866 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3867 if (CI->isZero()) 3868 continue; 3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3870 LLVMContext &Context = *DAG.getContext(); 3871 SDValue OffsVal = VectorWidth ? 3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3873 DAG.getConstant(Offs, dl, IdxTy); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3882 3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3884 continue; 3885 } 3886 3887 // N = N + Idx * ElementSize; 3888 SDValue IdxN = getValue(Idx); 3889 3890 if (!IdxN.getValueType().isVector() && VectorWidth) { 3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3893 } 3894 3895 // If the index is smaller or larger than intptr_t, truncate or extend 3896 // it. 3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3898 3899 // If this is a multiply by a power of two, turn it into a shl 3900 // immediately. This is a very common case. 3901 if (ElementSize != 1) { 3902 if (ElementSize.isPowerOf2()) { 3903 unsigned Amt = ElementSize.logBase2(); 3904 IdxN = DAG.getNode(ISD::SHL, dl, 3905 N.getValueType(), IdxN, 3906 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3907 } else { 3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3909 IdxN.getValueType()); 3910 IdxN = DAG.getNode(ISD::MUL, dl, 3911 N.getValueType(), IdxN, Scale); 3912 } 3913 } 3914 3915 N = DAG.getNode(ISD::ADD, dl, 3916 N.getValueType(), N, IdxN); 3917 } 3918 } 3919 3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3922 3923 setValue(&I, N); 3924 } 3925 3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3927 // If this is a fixed sized alloca in the entry block of the function, 3928 // allocate it statically on the stack. 3929 if (FuncInfo.StaticAllocaMap.count(&I)) 3930 return; // getValue will auto-populate this. 3931 3932 SDLoc dl = getCurSDLoc(); 3933 Type *Ty = I.getAllocatedType(); 3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3935 auto &DL = DAG.getDataLayout(); 3936 uint64_t TySize = DL.getTypeAllocSize(Ty); 3937 unsigned Align = 3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3939 3940 SDValue AllocSize = getValue(I.getArraySize()); 3941 3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3943 if (AllocSize.getValueType() != IntPtr) 3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3945 3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3947 AllocSize, 3948 DAG.getConstant(TySize, dl, IntPtr)); 3949 3950 // Handle alignment. If the requested alignment is less than or equal to 3951 // the stack alignment, ignore it. If the size is greater than or equal to 3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3953 unsigned StackAlign = 3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3955 if (Align <= StackAlign) 3956 Align = 0; 3957 3958 // Round the size of the allocation up to the stack alignment size 3959 // by add SA-1 to the size. This doesn't overflow because we're computing 3960 // an address inside an alloca. 3961 SDNodeFlags Flags; 3962 Flags.setNoUnsignedWrap(true); 3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3965 3966 // Mask out the low bits for alignment purposes. 3967 AllocSize = 3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3970 3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3974 setValue(&I, DSA); 3975 DAG.setRoot(DSA.getValue(1)); 3976 3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3978 } 3979 3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3981 if (I.isAtomic()) 3982 return visitAtomicLoad(I); 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const Value *SV = I.getOperand(0); 3986 if (TLI.supportSwiftError()) { 3987 // Swifterror values can come from either a function parameter with 3988 // swifterror attribute or an alloca with swifterror attribute. 3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3990 if (Arg->hasSwiftErrorAttr()) 3991 return visitLoadFromSwiftError(I); 3992 } 3993 3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3995 if (Alloca->isSwiftError()) 3996 return visitLoadFromSwiftError(I); 3997 } 3998 } 3999 4000 SDValue Ptr = getValue(SV); 4001 4002 Type *Ty = I.getType(); 4003 4004 bool isVolatile = I.isVolatile(); 4005 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4006 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4007 bool isDereferenceable = 4008 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4009 unsigned Alignment = I.getAlignment(); 4010 4011 AAMDNodes AAInfo; 4012 I.getAAMetadata(AAInfo); 4013 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4014 4015 SmallVector<EVT, 4> ValueVTs, MemVTs; 4016 SmallVector<uint64_t, 4> Offsets; 4017 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4018 unsigned NumValues = ValueVTs.size(); 4019 if (NumValues == 0) 4020 return; 4021 4022 SDValue Root; 4023 bool ConstantMemory = false; 4024 if (isVolatile || NumValues > MaxParallelChains) 4025 // Serialize volatile loads with other side effects. 4026 Root = getRoot(); 4027 else if (AA && 4028 AA->pointsToConstantMemory(MemoryLocation( 4029 SV, 4030 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4031 AAInfo))) { 4032 // Do not serialize (non-volatile) loads of constant memory with anything. 4033 Root = DAG.getEntryNode(); 4034 ConstantMemory = true; 4035 } else { 4036 // Do not serialize non-volatile loads against each other. 4037 Root = DAG.getRoot(); 4038 } 4039 4040 SDLoc dl = getCurSDLoc(); 4041 4042 if (isVolatile) 4043 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4044 4045 // An aggregate load cannot wrap around the address space, so offsets to its 4046 // parts don't wrap either. 4047 SDNodeFlags Flags; 4048 Flags.setNoUnsignedWrap(true); 4049 4050 SmallVector<SDValue, 4> Values(NumValues); 4051 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4052 EVT PtrVT = Ptr.getValueType(); 4053 unsigned ChainI = 0; 4054 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4055 // Serializing loads here may result in excessive register pressure, and 4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4057 // could recover a bit by hoisting nodes upward in the chain by recognizing 4058 // they are side-effect free or do not alias. The optimizer should really 4059 // avoid this case by converting large object/array copies to llvm.memcpy 4060 // (MaxParallelChains should always remain as failsafe). 4061 if (ChainI == MaxParallelChains) { 4062 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4063 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4064 makeArrayRef(Chains.data(), ChainI)); 4065 Root = Chain; 4066 ChainI = 0; 4067 } 4068 SDValue A = DAG.getNode(ISD::ADD, dl, 4069 PtrVT, Ptr, 4070 DAG.getConstant(Offsets[i], dl, PtrVT), 4071 Flags); 4072 auto MMOFlags = MachineMemOperand::MONone; 4073 if (isVolatile) 4074 MMOFlags |= MachineMemOperand::MOVolatile; 4075 if (isNonTemporal) 4076 MMOFlags |= MachineMemOperand::MONonTemporal; 4077 if (isInvariant) 4078 MMOFlags |= MachineMemOperand::MOInvariant; 4079 if (isDereferenceable) 4080 MMOFlags |= MachineMemOperand::MODereferenceable; 4081 MMOFlags |= TLI.getMMOFlags(I); 4082 4083 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4084 MachinePointerInfo(SV, Offsets[i]), Alignment, 4085 MMOFlags, AAInfo, Ranges); 4086 Chains[ChainI] = L.getValue(1); 4087 4088 if (MemVTs[i] != ValueVTs[i]) 4089 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4090 4091 Values[i] = L; 4092 } 4093 4094 if (!ConstantMemory) { 4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4096 makeArrayRef(Chains.data(), ChainI)); 4097 if (isVolatile) 4098 DAG.setRoot(Chain); 4099 else 4100 PendingLoads.push_back(Chain); 4101 } 4102 4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4104 DAG.getVTList(ValueVTs), Values)); 4105 } 4106 4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4108 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4109 "call visitStoreToSwiftError when backend supports swifterror"); 4110 4111 SmallVector<EVT, 4> ValueVTs; 4112 SmallVector<uint64_t, 4> Offsets; 4113 const Value *SrcV = I.getOperand(0); 4114 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4115 SrcV->getType(), ValueVTs, &Offsets); 4116 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4117 "expect a single EVT for swifterror"); 4118 4119 SDValue Src = getValue(SrcV); 4120 // Create a virtual register, then update the virtual register. 4121 Register VReg = 4122 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4124 // Chain can be getRoot or getControlRoot. 4125 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4126 SDValue(Src.getNode(), Src.getResNo())); 4127 DAG.setRoot(CopyNode); 4128 } 4129 4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitLoadFromSwiftError when backend supports swifterror"); 4133 4134 assert(!I.isVolatile() && 4135 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4136 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4137 "Support volatile, non temporal, invariant for load_from_swift_error"); 4138 4139 const Value *SV = I.getOperand(0); 4140 Type *Ty = I.getType(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 assert( 4144 (!AA || 4145 !AA->pointsToConstantMemory(MemoryLocation( 4146 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4147 AAInfo))) && 4148 "load_from_swift_error should not be constant memory"); 4149 4150 SmallVector<EVT, 4> ValueVTs; 4151 SmallVector<uint64_t, 4> Offsets; 4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4153 ValueVTs, &Offsets); 4154 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4155 "expect a single EVT for swifterror"); 4156 4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4158 SDValue L = DAG.getCopyFromReg( 4159 getRoot(), getCurSDLoc(), 4160 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4161 4162 setValue(&I, L); 4163 } 4164 4165 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4166 if (I.isAtomic()) 4167 return visitAtomicStore(I); 4168 4169 const Value *SrcV = I.getOperand(0); 4170 const Value *PtrV = I.getOperand(1); 4171 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 if (TLI.supportSwiftError()) { 4174 // Swifterror values can come from either a function parameter with 4175 // swifterror attribute or an alloca with swifterror attribute. 4176 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4177 if (Arg->hasSwiftErrorAttr()) 4178 return visitStoreToSwiftError(I); 4179 } 4180 4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4182 if (Alloca->isSwiftError()) 4183 return visitStoreToSwiftError(I); 4184 } 4185 } 4186 4187 SmallVector<EVT, 4> ValueVTs, MemVTs; 4188 SmallVector<uint64_t, 4> Offsets; 4189 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4190 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4191 unsigned NumValues = ValueVTs.size(); 4192 if (NumValues == 0) 4193 return; 4194 4195 // Get the lowered operands. Note that we do this after 4196 // checking if NumResults is zero, because with zero results 4197 // the operands won't have values in the map. 4198 SDValue Src = getValue(SrcV); 4199 SDValue Ptr = getValue(PtrV); 4200 4201 SDValue Root = getRoot(); 4202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4203 SDLoc dl = getCurSDLoc(); 4204 EVT PtrVT = Ptr.getValueType(); 4205 unsigned Alignment = I.getAlignment(); 4206 AAMDNodes AAInfo; 4207 I.getAAMetadata(AAInfo); 4208 4209 auto MMOFlags = MachineMemOperand::MONone; 4210 if (I.isVolatile()) 4211 MMOFlags |= MachineMemOperand::MOVolatile; 4212 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4213 MMOFlags |= MachineMemOperand::MONonTemporal; 4214 MMOFlags |= TLI.getMMOFlags(I); 4215 4216 // An aggregate load cannot wrap around the address space, so offsets to its 4217 // parts don't wrap either. 4218 SDNodeFlags Flags; 4219 Flags.setNoUnsignedWrap(true); 4220 4221 unsigned ChainI = 0; 4222 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4223 // See visitLoad comments. 4224 if (ChainI == MaxParallelChains) { 4225 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4226 makeArrayRef(Chains.data(), ChainI)); 4227 Root = Chain; 4228 ChainI = 0; 4229 } 4230 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4231 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4232 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4233 if (MemVTs[i] != ValueVTs[i]) 4234 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4235 SDValue St = 4236 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4237 Alignment, MMOFlags, AAInfo); 4238 Chains[ChainI] = St; 4239 } 4240 4241 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4242 makeArrayRef(Chains.data(), ChainI)); 4243 DAG.setRoot(StoreNode); 4244 } 4245 4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4247 bool IsCompressing) { 4248 SDLoc sdl = getCurSDLoc(); 4249 4250 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4251 unsigned& Alignment) { 4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4253 Src0 = I.getArgOperand(0); 4254 Ptr = I.getArgOperand(1); 4255 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4256 Mask = I.getArgOperand(3); 4257 }; 4258 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4259 unsigned& Alignment) { 4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4261 Src0 = I.getArgOperand(0); 4262 Ptr = I.getArgOperand(1); 4263 Mask = I.getArgOperand(2); 4264 Alignment = 0; 4265 }; 4266 4267 Value *PtrOperand, *MaskOperand, *Src0Operand; 4268 unsigned Alignment; 4269 if (IsCompressing) 4270 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4271 else 4272 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4273 4274 SDValue Ptr = getValue(PtrOperand); 4275 SDValue Src0 = getValue(Src0Operand); 4276 SDValue Mask = getValue(MaskOperand); 4277 4278 EVT VT = Src0.getValueType(); 4279 if (!Alignment) 4280 Alignment = DAG.getEVTAlignment(VT); 4281 4282 AAMDNodes AAInfo; 4283 I.getAAMetadata(AAInfo); 4284 4285 MachineMemOperand *MMO = 4286 DAG.getMachineFunction(). 4287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4288 MachineMemOperand::MOStore, VT.getStoreSize(), 4289 Alignment, AAInfo); 4290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4291 MMO, false /* Truncating */, 4292 IsCompressing); 4293 DAG.setRoot(StoreNode); 4294 setValue(&I, StoreNode); 4295 } 4296 4297 // Get a uniform base for the Gather/Scatter intrinsic. 4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4299 // We try to represent it as a base pointer + vector of indices. 4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4301 // The first operand of the GEP may be a single pointer or a vector of pointers 4302 // Example: 4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4304 // or 4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4307 // 4308 // When the first GEP operand is a single pointer - it is the uniform base we 4309 // are looking for. If first operand of the GEP is a splat vector - we 4310 // extract the splat value and use it as a uniform base. 4311 // In all other cases the function returns 'false'. 4312 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4313 ISD::MemIndexType &IndexType, SDValue &Scale, 4314 SelectionDAGBuilder *SDB) { 4315 SelectionDAG& DAG = SDB->DAG; 4316 LLVMContext &Context = *DAG.getContext(); 4317 4318 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4319 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4320 if (!GEP) 4321 return false; 4322 4323 const Value *GEPPtr = GEP->getPointerOperand(); 4324 if (!GEPPtr->getType()->isVectorTy()) 4325 Ptr = GEPPtr; 4326 else if (!(Ptr = getSplatValue(GEPPtr))) 4327 return false; 4328 4329 unsigned FinalIndex = GEP->getNumOperands() - 1; 4330 Value *IndexVal = GEP->getOperand(FinalIndex); 4331 4332 // Ensure all the other indices are 0. 4333 for (unsigned i = 1; i < FinalIndex; ++i) { 4334 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4335 if (!C) 4336 return false; 4337 if (isa<VectorType>(C->getType())) 4338 C = C->getSplatValue(); 4339 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4340 if (!CI || !CI->isZero()) 4341 return false; 4342 } 4343 4344 // The operands of the GEP may be defined in another basic block. 4345 // In this case we'll not find nodes for the operands. 4346 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4347 return false; 4348 4349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4350 const DataLayout &DL = DAG.getDataLayout(); 4351 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4352 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4353 Base = SDB->getValue(Ptr); 4354 Index = SDB->getValue(IndexVal); 4355 IndexType = ISD::SIGNED_SCALED; 4356 4357 if (!Index.getValueType().isVector()) { 4358 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4359 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4360 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4361 } 4362 return true; 4363 } 4364 4365 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4366 SDLoc sdl = getCurSDLoc(); 4367 4368 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4369 const Value *Ptr = I.getArgOperand(1); 4370 SDValue Src0 = getValue(I.getArgOperand(0)); 4371 SDValue Mask = getValue(I.getArgOperand(3)); 4372 EVT VT = Src0.getValueType(); 4373 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4374 if (!Alignment) 4375 Alignment = DAG.getEVTAlignment(VT); 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 4378 AAMDNodes AAInfo; 4379 I.getAAMetadata(AAInfo); 4380 4381 SDValue Base; 4382 SDValue Index; 4383 ISD::MemIndexType IndexType; 4384 SDValue Scale; 4385 const Value *BasePtr = Ptr; 4386 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4387 this); 4388 4389 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4390 MachineMemOperand *MMO = DAG.getMachineFunction(). 4391 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4392 MachineMemOperand::MOStore, VT.getStoreSize(), 4393 Alignment, AAInfo); 4394 if (!UniformBase) { 4395 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4396 Index = getValue(Ptr); 4397 IndexType = ISD::SIGNED_SCALED; 4398 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4399 } 4400 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4401 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4402 Ops, MMO, IndexType); 4403 DAG.setRoot(Scatter); 4404 setValue(&I, Scatter); 4405 } 4406 4407 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4408 SDLoc sdl = getCurSDLoc(); 4409 4410 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4411 unsigned& Alignment) { 4412 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4413 Ptr = I.getArgOperand(0); 4414 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4415 Mask = I.getArgOperand(2); 4416 Src0 = I.getArgOperand(3); 4417 }; 4418 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4419 unsigned& Alignment) { 4420 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4421 Ptr = I.getArgOperand(0); 4422 Alignment = 0; 4423 Mask = I.getArgOperand(1); 4424 Src0 = I.getArgOperand(2); 4425 }; 4426 4427 Value *PtrOperand, *MaskOperand, *Src0Operand; 4428 unsigned Alignment; 4429 if (IsExpanding) 4430 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4431 else 4432 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4433 4434 SDValue Ptr = getValue(PtrOperand); 4435 SDValue Src0 = getValue(Src0Operand); 4436 SDValue Mask = getValue(MaskOperand); 4437 4438 EVT VT = Src0.getValueType(); 4439 if (!Alignment) 4440 Alignment = DAG.getEVTAlignment(VT); 4441 4442 AAMDNodes AAInfo; 4443 I.getAAMetadata(AAInfo); 4444 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4445 4446 // Do not serialize masked loads of constant memory with anything. 4447 bool AddToChain = 4448 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4449 PtrOperand, 4450 LocationSize::precise( 4451 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4452 AAInfo)); 4453 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4454 4455 MachineMemOperand *MMO = 4456 DAG.getMachineFunction(). 4457 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4458 MachineMemOperand::MOLoad, VT.getStoreSize(), 4459 Alignment, AAInfo, Ranges); 4460 4461 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4462 ISD::NON_EXTLOAD, IsExpanding); 4463 if (AddToChain) 4464 PendingLoads.push_back(Load.getValue(1)); 4465 setValue(&I, Load); 4466 } 4467 4468 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4469 SDLoc sdl = getCurSDLoc(); 4470 4471 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4472 const Value *Ptr = I.getArgOperand(0); 4473 SDValue Src0 = getValue(I.getArgOperand(3)); 4474 SDValue Mask = getValue(I.getArgOperand(2)); 4475 4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4477 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4478 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4479 if (!Alignment) 4480 Alignment = DAG.getEVTAlignment(VT); 4481 4482 AAMDNodes AAInfo; 4483 I.getAAMetadata(AAInfo); 4484 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4485 4486 SDValue Root = DAG.getRoot(); 4487 SDValue Base; 4488 SDValue Index; 4489 ISD::MemIndexType IndexType; 4490 SDValue Scale; 4491 const Value *BasePtr = Ptr; 4492 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4493 this); 4494 bool ConstantMemory = false; 4495 if (UniformBase && AA && 4496 AA->pointsToConstantMemory( 4497 MemoryLocation(BasePtr, 4498 LocationSize::precise( 4499 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4500 AAInfo))) { 4501 // Do not serialize (non-volatile) loads of constant memory with anything. 4502 Root = DAG.getEntryNode(); 4503 ConstantMemory = true; 4504 } 4505 4506 MachineMemOperand *MMO = 4507 DAG.getMachineFunction(). 4508 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4509 MachineMemOperand::MOLoad, VT.getStoreSize(), 4510 Alignment, AAInfo, Ranges); 4511 4512 if (!UniformBase) { 4513 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4514 Index = getValue(Ptr); 4515 IndexType = ISD::SIGNED_SCALED; 4516 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4517 } 4518 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4519 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4520 Ops, MMO, IndexType); 4521 4522 SDValue OutChain = Gather.getValue(1); 4523 if (!ConstantMemory) 4524 PendingLoads.push_back(OutChain); 4525 setValue(&I, Gather); 4526 } 4527 4528 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4529 SDLoc dl = getCurSDLoc(); 4530 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4531 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4532 SyncScope::ID SSID = I.getSyncScopeID(); 4533 4534 SDValue InChain = getRoot(); 4535 4536 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4537 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4538 4539 auto Alignment = DAG.getEVTAlignment(MemVT); 4540 4541 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4542 if (I.isVolatile()) 4543 Flags |= MachineMemOperand::MOVolatile; 4544 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4545 4546 MachineFunction &MF = DAG.getMachineFunction(); 4547 MachineMemOperand *MMO = 4548 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4549 Flags, MemVT.getStoreSize(), Alignment, 4550 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4551 FailureOrdering); 4552 4553 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4554 dl, MemVT, VTs, InChain, 4555 getValue(I.getPointerOperand()), 4556 getValue(I.getCompareOperand()), 4557 getValue(I.getNewValOperand()), MMO); 4558 4559 SDValue OutChain = L.getValue(2); 4560 4561 setValue(&I, L); 4562 DAG.setRoot(OutChain); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 ISD::NodeType NT; 4568 switch (I.getOperation()) { 4569 default: llvm_unreachable("Unknown atomicrmw operation"); 4570 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4571 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4572 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4573 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4574 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4575 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4576 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4577 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4578 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4579 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4580 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4581 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4582 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4583 } 4584 AtomicOrdering Ordering = I.getOrdering(); 4585 SyncScope::ID SSID = I.getSyncScopeID(); 4586 4587 SDValue InChain = getRoot(); 4588 4589 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4590 auto Alignment = DAG.getEVTAlignment(MemVT); 4591 4592 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4593 if (I.isVolatile()) 4594 Flags |= MachineMemOperand::MOVolatile; 4595 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4596 4597 MachineFunction &MF = DAG.getMachineFunction(); 4598 MachineMemOperand *MMO = 4599 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4600 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4601 nullptr, SSID, Ordering); 4602 4603 SDValue L = 4604 DAG.getAtomic(NT, dl, MemVT, InChain, 4605 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4606 MMO); 4607 4608 SDValue OutChain = L.getValue(1); 4609 4610 setValue(&I, L); 4611 DAG.setRoot(OutChain); 4612 } 4613 4614 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4615 SDLoc dl = getCurSDLoc(); 4616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4617 SDValue Ops[3]; 4618 Ops[0] = getRoot(); 4619 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4620 TLI.getFenceOperandTy(DAG.getDataLayout())); 4621 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4622 TLI.getFenceOperandTy(DAG.getDataLayout())); 4623 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4624 } 4625 4626 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4627 SDLoc dl = getCurSDLoc(); 4628 AtomicOrdering Order = I.getOrdering(); 4629 SyncScope::ID SSID = I.getSyncScopeID(); 4630 4631 SDValue InChain = getRoot(); 4632 4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4634 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4635 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4636 4637 if (!TLI.supportsUnalignedAtomics() && 4638 I.getAlignment() < MemVT.getSizeInBits() / 8) 4639 report_fatal_error("Cannot generate unaligned atomic load"); 4640 4641 auto Flags = MachineMemOperand::MOLoad; 4642 if (I.isVolatile()) 4643 Flags |= MachineMemOperand::MOVolatile; 4644 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4645 Flags |= MachineMemOperand::MOInvariant; 4646 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4647 DAG.getDataLayout())) 4648 Flags |= MachineMemOperand::MODereferenceable; 4649 4650 Flags |= TLI.getMMOFlags(I); 4651 4652 MachineMemOperand *MMO = 4653 DAG.getMachineFunction(). 4654 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4655 Flags, MemVT.getStoreSize(), 4656 I.getAlignment() ? I.getAlignment() : 4657 DAG.getEVTAlignment(MemVT), 4658 AAMDNodes(), nullptr, SSID, Order); 4659 4660 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4661 4662 SDValue Ptr = getValue(I.getPointerOperand()); 4663 4664 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4665 // TODO: Once this is better exercised by tests, it should be merged with 4666 // the normal path for loads to prevent future divergence. 4667 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4668 if (MemVT != VT) 4669 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4670 4671 setValue(&I, L); 4672 if (!I.isUnordered()) { 4673 SDValue OutChain = L.getValue(1); 4674 DAG.setRoot(OutChain); 4675 } 4676 return; 4677 } 4678 4679 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4680 Ptr, MMO); 4681 4682 SDValue OutChain = L.getValue(1); 4683 if (MemVT != VT) 4684 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4685 4686 setValue(&I, L); 4687 DAG.setRoot(OutChain); 4688 } 4689 4690 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4691 SDLoc dl = getCurSDLoc(); 4692 4693 AtomicOrdering Ordering = I.getOrdering(); 4694 SyncScope::ID SSID = I.getSyncScopeID(); 4695 4696 SDValue InChain = getRoot(); 4697 4698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4699 EVT MemVT = 4700 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4701 4702 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4703 report_fatal_error("Cannot generate unaligned atomic store"); 4704 4705 auto Flags = MachineMemOperand::MOStore; 4706 if (I.isVolatile()) 4707 Flags |= MachineMemOperand::MOVolatile; 4708 Flags |= TLI.getMMOFlags(I); 4709 4710 MachineFunction &MF = DAG.getMachineFunction(); 4711 MachineMemOperand *MMO = 4712 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4713 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4714 nullptr, SSID, Ordering); 4715 4716 SDValue Val = getValue(I.getValueOperand()); 4717 if (Val.getValueType() != MemVT) 4718 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4719 SDValue Ptr = getValue(I.getPointerOperand()); 4720 4721 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4722 // TODO: Once this is better exercised by tests, it should be merged with 4723 // the normal path for stores to prevent future divergence. 4724 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4725 DAG.setRoot(S); 4726 return; 4727 } 4728 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4729 Ptr, Val, MMO); 4730 4731 4732 DAG.setRoot(OutChain); 4733 } 4734 4735 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4736 /// node. 4737 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4738 unsigned Intrinsic) { 4739 // Ignore the callsite's attributes. A specific call site may be marked with 4740 // readnone, but the lowering code will expect the chain based on the 4741 // definition. 4742 const Function *F = I.getCalledFunction(); 4743 bool HasChain = !F->doesNotAccessMemory(); 4744 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4745 4746 // Build the operand list. 4747 SmallVector<SDValue, 8> Ops; 4748 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4749 if (OnlyLoad) { 4750 // We don't need to serialize loads against other loads. 4751 Ops.push_back(DAG.getRoot()); 4752 } else { 4753 Ops.push_back(getRoot()); 4754 } 4755 } 4756 4757 // Info is set by getTgtMemInstrinsic 4758 TargetLowering::IntrinsicInfo Info; 4759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4760 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4761 DAG.getMachineFunction(), 4762 Intrinsic); 4763 4764 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4765 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4766 Info.opc == ISD::INTRINSIC_W_CHAIN) 4767 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4768 TLI.getPointerTy(DAG.getDataLayout()))); 4769 4770 // Add all operands of the call to the operand list. 4771 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4772 SDValue Op = getValue(I.getArgOperand(i)); 4773 Ops.push_back(Op); 4774 } 4775 4776 SmallVector<EVT, 4> ValueVTs; 4777 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4778 4779 if (HasChain) 4780 ValueVTs.push_back(MVT::Other); 4781 4782 SDVTList VTs = DAG.getVTList(ValueVTs); 4783 4784 // Create the node. 4785 SDValue Result; 4786 if (IsTgtIntrinsic) { 4787 // This is target intrinsic that touches memory 4788 AAMDNodes AAInfo; 4789 I.getAAMetadata(AAInfo); 4790 Result = DAG.getMemIntrinsicNode( 4791 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4792 MachinePointerInfo(Info.ptrVal, Info.offset), 4793 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4794 } else if (!HasChain) { 4795 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4796 } else if (!I.getType()->isVoidTy()) { 4797 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4798 } else { 4799 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4800 } 4801 4802 if (HasChain) { 4803 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4804 if (OnlyLoad) 4805 PendingLoads.push_back(Chain); 4806 else 4807 DAG.setRoot(Chain); 4808 } 4809 4810 if (!I.getType()->isVoidTy()) { 4811 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4812 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4813 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4814 } else 4815 Result = lowerRangeToAssertZExt(DAG, I, Result); 4816 4817 setValue(&I, Result); 4818 } 4819 } 4820 4821 /// GetSignificand - Get the significand and build it into a floating-point 4822 /// number with exponent of 1: 4823 /// 4824 /// Op = (Op & 0x007fffff) | 0x3f800000; 4825 /// 4826 /// where Op is the hexadecimal representation of floating point value. 4827 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4828 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4829 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4830 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4831 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4832 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4833 } 4834 4835 /// GetExponent - Get the exponent: 4836 /// 4837 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4838 /// 4839 /// where Op is the hexadecimal representation of floating point value. 4840 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4841 const TargetLowering &TLI, const SDLoc &dl) { 4842 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4843 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4844 SDValue t1 = DAG.getNode( 4845 ISD::SRL, dl, MVT::i32, t0, 4846 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4847 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4848 DAG.getConstant(127, dl, MVT::i32)); 4849 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4850 } 4851 4852 /// getF32Constant - Get 32-bit floating point constant. 4853 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4854 const SDLoc &dl) { 4855 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4856 MVT::f32); 4857 } 4858 4859 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4860 SelectionDAG &DAG) { 4861 // TODO: What fast-math-flags should be set on the floating-point nodes? 4862 4863 // IntegerPartOfX = ((int32_t)(t0); 4864 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4865 4866 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4867 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4868 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4869 4870 // IntegerPartOfX <<= 23; 4871 IntegerPartOfX = DAG.getNode( 4872 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4873 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4874 DAG.getDataLayout()))); 4875 4876 SDValue TwoToFractionalPartOfX; 4877 if (LimitFloatPrecision <= 6) { 4878 // For floating-point precision of 6: 4879 // 4880 // TwoToFractionalPartOfX = 4881 // 0.997535578f + 4882 // (0.735607626f + 0.252464424f * x) * x; 4883 // 4884 // error 0.0144103317, which is 6 bits 4885 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4886 getF32Constant(DAG, 0x3e814304, dl)); 4887 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4888 getF32Constant(DAG, 0x3f3c50c8, dl)); 4889 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4890 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4891 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4892 } else if (LimitFloatPrecision <= 12) { 4893 // For floating-point precision of 12: 4894 // 4895 // TwoToFractionalPartOfX = 4896 // 0.999892986f + 4897 // (0.696457318f + 4898 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4899 // 4900 // error 0.000107046256, which is 13 to 14 bits 4901 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4902 getF32Constant(DAG, 0x3da235e3, dl)); 4903 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4904 getF32Constant(DAG, 0x3e65b8f3, dl)); 4905 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4906 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4907 getF32Constant(DAG, 0x3f324b07, dl)); 4908 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4909 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4910 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4911 } else { // LimitFloatPrecision <= 18 4912 // For floating-point precision of 18: 4913 // 4914 // TwoToFractionalPartOfX = 4915 // 0.999999982f + 4916 // (0.693148872f + 4917 // (0.240227044f + 4918 // (0.554906021e-1f + 4919 // (0.961591928e-2f + 4920 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4921 // error 2.47208000*10^(-7), which is better than 18 bits 4922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4923 getF32Constant(DAG, 0x3924b03e, dl)); 4924 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4925 getF32Constant(DAG, 0x3ab24b87, dl)); 4926 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4927 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4928 getF32Constant(DAG, 0x3c1d8c17, dl)); 4929 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4930 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4931 getF32Constant(DAG, 0x3d634a1d, dl)); 4932 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4933 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4934 getF32Constant(DAG, 0x3e75fe14, dl)); 4935 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4936 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4937 getF32Constant(DAG, 0x3f317234, dl)); 4938 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4939 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4940 getF32Constant(DAG, 0x3f800000, dl)); 4941 } 4942 4943 // Add the exponent into the result in integer domain. 4944 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4945 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4946 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4947 } 4948 4949 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4950 /// limited-precision mode. 4951 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4952 const TargetLowering &TLI) { 4953 if (Op.getValueType() == MVT::f32 && 4954 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4955 4956 // Put the exponent in the right bit position for later addition to the 4957 // final result: 4958 // 4959 // #define LOG2OFe 1.4426950f 4960 // t0 = Op * LOG2OFe 4961 4962 // TODO: What fast-math-flags should be set here? 4963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4964 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4965 return getLimitedPrecisionExp2(t0, dl, DAG); 4966 } 4967 4968 // No special expansion. 4969 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4970 } 4971 4972 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4973 /// limited-precision mode. 4974 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4975 const TargetLowering &TLI) { 4976 // TODO: What fast-math-flags should be set on the floating-point nodes? 4977 4978 if (Op.getValueType() == MVT::f32 && 4979 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4980 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4981 4982 // Scale the exponent by log(2) [0.69314718f]. 4983 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4984 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4985 getF32Constant(DAG, 0x3f317218, dl)); 4986 4987 // Get the significand and build it into a floating-point number with 4988 // exponent of 1. 4989 SDValue X = GetSignificand(DAG, Op1, dl); 4990 4991 SDValue LogOfMantissa; 4992 if (LimitFloatPrecision <= 6) { 4993 // For floating-point precision of 6: 4994 // 4995 // LogofMantissa = 4996 // -1.1609546f + 4997 // (1.4034025f - 0.23903021f * x) * x; 4998 // 4999 // error 0.0034276066, which is better than 8 bits 5000 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0xbe74c456, dl)); 5002 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5003 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5004 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5005 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5006 getF32Constant(DAG, 0x3f949a29, dl)); 5007 } else if (LimitFloatPrecision <= 12) { 5008 // For floating-point precision of 12: 5009 // 5010 // LogOfMantissa = 5011 // -1.7417939f + 5012 // (2.8212026f + 5013 // (-1.4699568f + 5014 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5015 // 5016 // error 0.000061011436, which is 14 bits 5017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5018 getF32Constant(DAG, 0xbd67b6d6, dl)); 5019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5020 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5022 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5023 getF32Constant(DAG, 0x3fbc278b, dl)); 5024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5026 getF32Constant(DAG, 0x40348e95, dl)); 5027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5028 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5029 getF32Constant(DAG, 0x3fdef31a, dl)); 5030 } else { // LimitFloatPrecision <= 18 5031 // For floating-point precision of 18: 5032 // 5033 // LogOfMantissa = 5034 // -2.1072184f + 5035 // (4.2372794f + 5036 // (-3.7029485f + 5037 // (2.2781945f + 5038 // (-0.87823314f + 5039 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5040 // 5041 // error 0.0000023660568, which is better than 18 bits 5042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5043 getF32Constant(DAG, 0xbc91e5ac, dl)); 5044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5045 getF32Constant(DAG, 0x3e4350aa, dl)); 5046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5047 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5048 getF32Constant(DAG, 0x3f60d3e3, dl)); 5049 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5050 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5051 getF32Constant(DAG, 0x4011cdf0, dl)); 5052 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5053 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5054 getF32Constant(DAG, 0x406cfd1c, dl)); 5055 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5056 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5057 getF32Constant(DAG, 0x408797cb, dl)); 5058 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5059 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5060 getF32Constant(DAG, 0x4006dcab, dl)); 5061 } 5062 5063 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5064 } 5065 5066 // No special expansion. 5067 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5068 } 5069 5070 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5071 /// limited-precision mode. 5072 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5073 const TargetLowering &TLI) { 5074 // TODO: What fast-math-flags should be set on the floating-point nodes? 5075 5076 if (Op.getValueType() == MVT::f32 && 5077 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5078 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5079 5080 // Get the exponent. 5081 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5082 5083 // Get the significand and build it into a floating-point number with 5084 // exponent of 1. 5085 SDValue X = GetSignificand(DAG, Op1, dl); 5086 5087 // Different possible minimax approximations of significand in 5088 // floating-point for various degrees of accuracy over [1,2]. 5089 SDValue Log2ofMantissa; 5090 if (LimitFloatPrecision <= 6) { 5091 // For floating-point precision of 6: 5092 // 5093 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5094 // 5095 // error 0.0049451742, which is more than 7 bits 5096 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5097 getF32Constant(DAG, 0xbeb08fe0, dl)); 5098 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5099 getF32Constant(DAG, 0x40019463, dl)); 5100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5101 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5102 getF32Constant(DAG, 0x3fd6633d, dl)); 5103 } else if (LimitFloatPrecision <= 12) { 5104 // For floating-point precision of 12: 5105 // 5106 // Log2ofMantissa = 5107 // -2.51285454f + 5108 // (4.07009056f + 5109 // (-2.12067489f + 5110 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5111 // 5112 // error 0.0000876136000, which is better than 13 bits 5113 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5114 getF32Constant(DAG, 0xbda7262e, dl)); 5115 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5116 getF32Constant(DAG, 0x3f25280b, dl)); 5117 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5118 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5119 getF32Constant(DAG, 0x4007b923, dl)); 5120 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5121 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5122 getF32Constant(DAG, 0x40823e2f, dl)); 5123 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5124 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5125 getF32Constant(DAG, 0x4020d29c, dl)); 5126 } else { // LimitFloatPrecision <= 18 5127 // For floating-point precision of 18: 5128 // 5129 // Log2ofMantissa = 5130 // -3.0400495f + 5131 // (6.1129976f + 5132 // (-5.3420409f + 5133 // (3.2865683f + 5134 // (-1.2669343f + 5135 // (0.27515199f - 5136 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5137 // 5138 // error 0.0000018516, which is better than 18 bits 5139 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5140 getF32Constant(DAG, 0xbcd2769e, dl)); 5141 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5142 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5144 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5145 getF32Constant(DAG, 0x3fa22ae7, dl)); 5146 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5147 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5148 getF32Constant(DAG, 0x40525723, dl)); 5149 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5150 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5151 getF32Constant(DAG, 0x40aaf200, dl)); 5152 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5153 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5154 getF32Constant(DAG, 0x40c39dad, dl)); 5155 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5156 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5157 getF32Constant(DAG, 0x4042902c, dl)); 5158 } 5159 5160 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5161 } 5162 5163 // No special expansion. 5164 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5165 } 5166 5167 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5168 /// limited-precision mode. 5169 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5170 const TargetLowering &TLI) { 5171 // TODO: What fast-math-flags should be set on the floating-point nodes? 5172 5173 if (Op.getValueType() == MVT::f32 && 5174 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5175 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5176 5177 // Scale the exponent by log10(2) [0.30102999f]. 5178 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5179 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5180 getF32Constant(DAG, 0x3e9a209a, dl)); 5181 5182 // Get the significand and build it into a floating-point number with 5183 // exponent of 1. 5184 SDValue X = GetSignificand(DAG, Op1, dl); 5185 5186 SDValue Log10ofMantissa; 5187 if (LimitFloatPrecision <= 6) { 5188 // For floating-point precision of 6: 5189 // 5190 // Log10ofMantissa = 5191 // -0.50419619f + 5192 // (0.60948995f - 0.10380950f * x) * x; 5193 // 5194 // error 0.0014886165, which is 6 bits 5195 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5196 getF32Constant(DAG, 0xbdd49a13, dl)); 5197 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5198 getF32Constant(DAG, 0x3f1c0789, dl)); 5199 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5200 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5201 getF32Constant(DAG, 0x3f011300, dl)); 5202 } else if (LimitFloatPrecision <= 12) { 5203 // For floating-point precision of 12: 5204 // 5205 // Log10ofMantissa = 5206 // -0.64831180f + 5207 // (0.91751397f + 5208 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5209 // 5210 // error 0.00019228036, which is better than 12 bits 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5212 getF32Constant(DAG, 0x3d431f31, dl)); 5213 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5214 getF32Constant(DAG, 0x3ea21fb2, dl)); 5215 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5216 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5217 getF32Constant(DAG, 0x3f6ae232, dl)); 5218 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5219 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5220 getF32Constant(DAG, 0x3f25f7c3, dl)); 5221 } else { // LimitFloatPrecision <= 18 5222 // For floating-point precision of 18: 5223 // 5224 // Log10ofMantissa = 5225 // -0.84299375f + 5226 // (1.5327582f + 5227 // (-1.0688956f + 5228 // (0.49102474f + 5229 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5230 // 5231 // error 0.0000037995730, which is better than 18 bits 5232 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5233 getF32Constant(DAG, 0x3c5d51ce, dl)); 5234 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5235 getF32Constant(DAG, 0x3e00685a, dl)); 5236 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5237 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5238 getF32Constant(DAG, 0x3efb6798, dl)); 5239 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5240 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5241 getF32Constant(DAG, 0x3f88d192, dl)); 5242 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5243 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5244 getF32Constant(DAG, 0x3fc4316c, dl)); 5245 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5246 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5247 getF32Constant(DAG, 0x3f57ce70, dl)); 5248 } 5249 5250 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5251 } 5252 5253 // No special expansion. 5254 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5255 } 5256 5257 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5258 /// limited-precision mode. 5259 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5260 const TargetLowering &TLI) { 5261 if (Op.getValueType() == MVT::f32 && 5262 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5263 return getLimitedPrecisionExp2(Op, dl, DAG); 5264 5265 // No special expansion. 5266 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5267 } 5268 5269 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5270 /// limited-precision mode with x == 10.0f. 5271 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5272 SelectionDAG &DAG, const TargetLowering &TLI) { 5273 bool IsExp10 = false; 5274 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5275 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5276 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5277 APFloat Ten(10.0f); 5278 IsExp10 = LHSC->isExactlyValue(Ten); 5279 } 5280 } 5281 5282 // TODO: What fast-math-flags should be set on the FMUL node? 5283 if (IsExp10) { 5284 // Put the exponent in the right bit position for later addition to the 5285 // final result: 5286 // 5287 // #define LOG2OF10 3.3219281f 5288 // t0 = Op * LOG2OF10; 5289 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5290 getF32Constant(DAG, 0x40549a78, dl)); 5291 return getLimitedPrecisionExp2(t0, dl, DAG); 5292 } 5293 5294 // No special expansion. 5295 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5296 } 5297 5298 /// ExpandPowI - Expand a llvm.powi intrinsic. 5299 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5300 SelectionDAG &DAG) { 5301 // If RHS is a constant, we can expand this out to a multiplication tree, 5302 // otherwise we end up lowering to a call to __powidf2 (for example). When 5303 // optimizing for size, we only want to do this if the expansion would produce 5304 // a small number of multiplies, otherwise we do the full expansion. 5305 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5306 // Get the exponent as a positive value. 5307 unsigned Val = RHSC->getSExtValue(); 5308 if ((int)Val < 0) Val = -Val; 5309 5310 // powi(x, 0) -> 1.0 5311 if (Val == 0) 5312 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5313 5314 const Function &F = DAG.getMachineFunction().getFunction(); 5315 if (!F.hasOptSize() || 5316 // If optimizing for size, don't insert too many multiplies. 5317 // This inserts up to 5 multiplies. 5318 countPopulation(Val) + Log2_32(Val) < 7) { 5319 // We use the simple binary decomposition method to generate the multiply 5320 // sequence. There are more optimal ways to do this (for example, 5321 // powi(x,15) generates one more multiply than it should), but this has 5322 // the benefit of being both really simple and much better than a libcall. 5323 SDValue Res; // Logically starts equal to 1.0 5324 SDValue CurSquare = LHS; 5325 // TODO: Intrinsics should have fast-math-flags that propagate to these 5326 // nodes. 5327 while (Val) { 5328 if (Val & 1) { 5329 if (Res.getNode()) 5330 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5331 else 5332 Res = CurSquare; // 1.0*CurSquare. 5333 } 5334 5335 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5336 CurSquare, CurSquare); 5337 Val >>= 1; 5338 } 5339 5340 // If the original was negative, invert the result, producing 1/(x*x*x). 5341 if (RHSC->getSExtValue() < 0) 5342 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5343 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5344 return Res; 5345 } 5346 } 5347 5348 // Otherwise, expand to a libcall. 5349 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5350 } 5351 5352 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5353 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5354 static void 5355 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5356 const SDValue &N) { 5357 switch (N.getOpcode()) { 5358 case ISD::CopyFromReg: { 5359 SDValue Op = N.getOperand(1); 5360 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5361 Op.getValueType().getSizeInBits()); 5362 return; 5363 } 5364 case ISD::BITCAST: 5365 case ISD::AssertZext: 5366 case ISD::AssertSext: 5367 case ISD::TRUNCATE: 5368 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5369 return; 5370 case ISD::BUILD_PAIR: 5371 case ISD::BUILD_VECTOR: 5372 case ISD::CONCAT_VECTORS: 5373 for (SDValue Op : N->op_values()) 5374 getUnderlyingArgRegs(Regs, Op); 5375 return; 5376 default: 5377 return; 5378 } 5379 } 5380 5381 /// If the DbgValueInst is a dbg_value of a function argument, create the 5382 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5383 /// instruction selection, they will be inserted to the entry BB. 5384 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5385 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5386 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5387 const Argument *Arg = dyn_cast<Argument>(V); 5388 if (!Arg) 5389 return false; 5390 5391 if (!IsDbgDeclare) { 5392 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5393 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5394 // the entry block. 5395 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5396 if (!IsInEntryBlock) 5397 return false; 5398 5399 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5400 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5401 // variable that also is a param. 5402 // 5403 // Although, if we are at the top of the entry block already, we can still 5404 // emit using ArgDbgValue. This might catch some situations when the 5405 // dbg.value refers to an argument that isn't used in the entry block, so 5406 // any CopyToReg node would be optimized out and the only way to express 5407 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5408 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5409 // we should only emit as ArgDbgValue if the Variable is an argument to the 5410 // current function, and the dbg.value intrinsic is found in the entry 5411 // block. 5412 bool VariableIsFunctionInputArg = Variable->isParameter() && 5413 !DL->getInlinedAt(); 5414 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5415 if (!IsInPrologue && !VariableIsFunctionInputArg) 5416 return false; 5417 5418 // Here we assume that a function argument on IR level only can be used to 5419 // describe one input parameter on source level. If we for example have 5420 // source code like this 5421 // 5422 // struct A { long x, y; }; 5423 // void foo(struct A a, long b) { 5424 // ... 5425 // b = a.x; 5426 // ... 5427 // } 5428 // 5429 // and IR like this 5430 // 5431 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5432 // entry: 5433 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5434 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5435 // call void @llvm.dbg.value(metadata i32 %b, "b", 5436 // ... 5437 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5438 // ... 5439 // 5440 // then the last dbg.value is describing a parameter "b" using a value that 5441 // is an argument. But since we already has used %a1 to describe a parameter 5442 // we should not handle that last dbg.value here (that would result in an 5443 // incorrect hoisting of the DBG_VALUE to the function entry). 5444 // Notice that we allow one dbg.value per IR level argument, to accomodate 5445 // for the situation with fragments above. 5446 if (VariableIsFunctionInputArg) { 5447 unsigned ArgNo = Arg->getArgNo(); 5448 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5449 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5450 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5451 return false; 5452 FuncInfo.DescribedArgs.set(ArgNo); 5453 } 5454 } 5455 5456 MachineFunction &MF = DAG.getMachineFunction(); 5457 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5458 5459 bool IsIndirect = false; 5460 Optional<MachineOperand> Op; 5461 // Some arguments' frame index is recorded during argument lowering. 5462 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5463 if (FI != std::numeric_limits<int>::max()) 5464 Op = MachineOperand::CreateFI(FI); 5465 5466 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5467 if (!Op && N.getNode()) { 5468 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5469 Register Reg; 5470 if (ArgRegsAndSizes.size() == 1) 5471 Reg = ArgRegsAndSizes.front().first; 5472 5473 if (Reg && Reg.isVirtual()) { 5474 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5475 Register PR = RegInfo.getLiveInPhysReg(Reg); 5476 if (PR) 5477 Reg = PR; 5478 } 5479 if (Reg) { 5480 Op = MachineOperand::CreateReg(Reg, false); 5481 IsIndirect = IsDbgDeclare; 5482 } 5483 } 5484 5485 if (!Op && N.getNode()) { 5486 // Check if frame index is available. 5487 SDValue LCandidate = peekThroughBitcasts(N); 5488 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5489 if (FrameIndexSDNode *FINode = 5490 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5491 Op = MachineOperand::CreateFI(FINode->getIndex()); 5492 } 5493 5494 if (!Op) { 5495 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5496 auto splitMultiRegDbgValue 5497 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5498 unsigned Offset = 0; 5499 for (auto RegAndSize : SplitRegs) { 5500 auto FragmentExpr = DIExpression::createFragmentExpression( 5501 Expr, Offset, RegAndSize.second); 5502 if (!FragmentExpr) 5503 continue; 5504 FuncInfo.ArgDbgValues.push_back( 5505 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5506 RegAndSize.first, Variable, *FragmentExpr)); 5507 Offset += RegAndSize.second; 5508 } 5509 }; 5510 5511 // Check if ValueMap has reg number. 5512 DenseMap<const Value *, unsigned>::const_iterator 5513 VMI = FuncInfo.ValueMap.find(V); 5514 if (VMI != FuncInfo.ValueMap.end()) { 5515 const auto &TLI = DAG.getTargetLoweringInfo(); 5516 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5517 V->getType(), getABIRegCopyCC(V)); 5518 if (RFV.occupiesMultipleRegs()) { 5519 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5520 return true; 5521 } 5522 5523 Op = MachineOperand::CreateReg(VMI->second, false); 5524 IsIndirect = IsDbgDeclare; 5525 } else if (ArgRegsAndSizes.size() > 1) { 5526 // This was split due to the calling convention, and no virtual register 5527 // mapping exists for the value. 5528 splitMultiRegDbgValue(ArgRegsAndSizes); 5529 return true; 5530 } 5531 } 5532 5533 if (!Op) 5534 return false; 5535 5536 assert(Variable->isValidLocationForIntrinsic(DL) && 5537 "Expected inlined-at fields to agree"); 5538 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5539 FuncInfo.ArgDbgValues.push_back( 5540 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5541 *Op, Variable, Expr)); 5542 5543 return true; 5544 } 5545 5546 /// Return the appropriate SDDbgValue based on N. 5547 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5548 DILocalVariable *Variable, 5549 DIExpression *Expr, 5550 const DebugLoc &dl, 5551 unsigned DbgSDNodeOrder) { 5552 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5553 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5554 // stack slot locations. 5555 // 5556 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5557 // debug values here after optimization: 5558 // 5559 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5560 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5561 // 5562 // Both describe the direct values of their associated variables. 5563 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5564 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5565 } 5566 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5567 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5568 } 5569 5570 // VisualStudio defines setjmp as _setjmp 5571 #if defined(_MSC_VER) && defined(setjmp) && \ 5572 !defined(setjmp_undefined_for_msvc) 5573 # pragma push_macro("setjmp") 5574 # undef setjmp 5575 # define setjmp_undefined_for_msvc 5576 #endif 5577 5578 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5579 switch (Intrinsic) { 5580 case Intrinsic::smul_fix: 5581 return ISD::SMULFIX; 5582 case Intrinsic::umul_fix: 5583 return ISD::UMULFIX; 5584 default: 5585 llvm_unreachable("Unhandled fixed point intrinsic"); 5586 } 5587 } 5588 5589 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5590 const char *FunctionName) { 5591 assert(FunctionName && "FunctionName must not be nullptr"); 5592 SDValue Callee = DAG.getExternalSymbol( 5593 FunctionName, 5594 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5595 LowerCallTo(&I, Callee, I.isTailCall()); 5596 } 5597 5598 /// Lower the call to the specified intrinsic function. 5599 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5600 unsigned Intrinsic) { 5601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5602 SDLoc sdl = getCurSDLoc(); 5603 DebugLoc dl = getCurDebugLoc(); 5604 SDValue Res; 5605 5606 switch (Intrinsic) { 5607 default: 5608 // By default, turn this into a target intrinsic node. 5609 visitTargetIntrinsic(I, Intrinsic); 5610 return; 5611 case Intrinsic::vastart: visitVAStart(I); return; 5612 case Intrinsic::vaend: visitVAEnd(I); return; 5613 case Intrinsic::vacopy: visitVACopy(I); return; 5614 case Intrinsic::returnaddress: 5615 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5616 TLI.getPointerTy(DAG.getDataLayout()), 5617 getValue(I.getArgOperand(0)))); 5618 return; 5619 case Intrinsic::addressofreturnaddress: 5620 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5621 TLI.getPointerTy(DAG.getDataLayout()))); 5622 return; 5623 case Intrinsic::sponentry: 5624 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5625 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5626 return; 5627 case Intrinsic::frameaddress: 5628 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5629 TLI.getFrameIndexTy(DAG.getDataLayout()), 5630 getValue(I.getArgOperand(0)))); 5631 return; 5632 case Intrinsic::read_register: { 5633 Value *Reg = I.getArgOperand(0); 5634 SDValue Chain = getRoot(); 5635 SDValue RegName = 5636 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5637 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5638 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5639 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5640 setValue(&I, Res); 5641 DAG.setRoot(Res.getValue(1)); 5642 return; 5643 } 5644 case Intrinsic::write_register: { 5645 Value *Reg = I.getArgOperand(0); 5646 Value *RegValue = I.getArgOperand(1); 5647 SDValue Chain = getRoot(); 5648 SDValue RegName = 5649 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5650 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5651 RegName, getValue(RegValue))); 5652 return; 5653 } 5654 case Intrinsic::setjmp: 5655 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5656 return; 5657 case Intrinsic::longjmp: 5658 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5659 return; 5660 case Intrinsic::memcpy: { 5661 const auto &MCI = cast<MemCpyInst>(I); 5662 SDValue Op1 = getValue(I.getArgOperand(0)); 5663 SDValue Op2 = getValue(I.getArgOperand(1)); 5664 SDValue Op3 = getValue(I.getArgOperand(2)); 5665 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5666 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5667 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5668 unsigned Align = MinAlign(DstAlign, SrcAlign); 5669 bool isVol = MCI.isVolatile(); 5670 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5671 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5672 // node. 5673 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5674 false, isTC, 5675 MachinePointerInfo(I.getArgOperand(0)), 5676 MachinePointerInfo(I.getArgOperand(1))); 5677 updateDAGForMaybeTailCall(MC); 5678 return; 5679 } 5680 case Intrinsic::memset: { 5681 const auto &MSI = cast<MemSetInst>(I); 5682 SDValue Op1 = getValue(I.getArgOperand(0)); 5683 SDValue Op2 = getValue(I.getArgOperand(1)); 5684 SDValue Op3 = getValue(I.getArgOperand(2)); 5685 // @llvm.memset defines 0 and 1 to both mean no alignment. 5686 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5687 bool isVol = MSI.isVolatile(); 5688 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5689 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5690 isTC, MachinePointerInfo(I.getArgOperand(0))); 5691 updateDAGForMaybeTailCall(MS); 5692 return; 5693 } 5694 case Intrinsic::memmove: { 5695 const auto &MMI = cast<MemMoveInst>(I); 5696 SDValue Op1 = getValue(I.getArgOperand(0)); 5697 SDValue Op2 = getValue(I.getArgOperand(1)); 5698 SDValue Op3 = getValue(I.getArgOperand(2)); 5699 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5700 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5701 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5702 unsigned Align = MinAlign(DstAlign, SrcAlign); 5703 bool isVol = MMI.isVolatile(); 5704 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5705 // FIXME: Support passing different dest/src alignments to the memmove DAG 5706 // node. 5707 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5708 isTC, MachinePointerInfo(I.getArgOperand(0)), 5709 MachinePointerInfo(I.getArgOperand(1))); 5710 updateDAGForMaybeTailCall(MM); 5711 return; 5712 } 5713 case Intrinsic::memcpy_element_unordered_atomic: { 5714 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5715 SDValue Dst = getValue(MI.getRawDest()); 5716 SDValue Src = getValue(MI.getRawSource()); 5717 SDValue Length = getValue(MI.getLength()); 5718 5719 unsigned DstAlign = MI.getDestAlignment(); 5720 unsigned SrcAlign = MI.getSourceAlignment(); 5721 Type *LengthTy = MI.getLength()->getType(); 5722 unsigned ElemSz = MI.getElementSizeInBytes(); 5723 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5724 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5725 SrcAlign, Length, LengthTy, ElemSz, isTC, 5726 MachinePointerInfo(MI.getRawDest()), 5727 MachinePointerInfo(MI.getRawSource())); 5728 updateDAGForMaybeTailCall(MC); 5729 return; 5730 } 5731 case Intrinsic::memmove_element_unordered_atomic: { 5732 auto &MI = cast<AtomicMemMoveInst>(I); 5733 SDValue Dst = getValue(MI.getRawDest()); 5734 SDValue Src = getValue(MI.getRawSource()); 5735 SDValue Length = getValue(MI.getLength()); 5736 5737 unsigned DstAlign = MI.getDestAlignment(); 5738 unsigned SrcAlign = MI.getSourceAlignment(); 5739 Type *LengthTy = MI.getLength()->getType(); 5740 unsigned ElemSz = MI.getElementSizeInBytes(); 5741 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5742 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5743 SrcAlign, Length, LengthTy, ElemSz, isTC, 5744 MachinePointerInfo(MI.getRawDest()), 5745 MachinePointerInfo(MI.getRawSource())); 5746 updateDAGForMaybeTailCall(MC); 5747 return; 5748 } 5749 case Intrinsic::memset_element_unordered_atomic: { 5750 auto &MI = cast<AtomicMemSetInst>(I); 5751 SDValue Dst = getValue(MI.getRawDest()); 5752 SDValue Val = getValue(MI.getValue()); 5753 SDValue Length = getValue(MI.getLength()); 5754 5755 unsigned DstAlign = MI.getDestAlignment(); 5756 Type *LengthTy = MI.getLength()->getType(); 5757 unsigned ElemSz = MI.getElementSizeInBytes(); 5758 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5759 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5760 LengthTy, ElemSz, isTC, 5761 MachinePointerInfo(MI.getRawDest())); 5762 updateDAGForMaybeTailCall(MC); 5763 return; 5764 } 5765 case Intrinsic::dbg_addr: 5766 case Intrinsic::dbg_declare: { 5767 const auto &DI = cast<DbgVariableIntrinsic>(I); 5768 DILocalVariable *Variable = DI.getVariable(); 5769 DIExpression *Expression = DI.getExpression(); 5770 dropDanglingDebugInfo(Variable, Expression); 5771 assert(Variable && "Missing variable"); 5772 5773 // Check if address has undef value. 5774 const Value *Address = DI.getVariableLocation(); 5775 if (!Address || isa<UndefValue>(Address) || 5776 (Address->use_empty() && !isa<Argument>(Address))) { 5777 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5778 return; 5779 } 5780 5781 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5782 5783 // Check if this variable can be described by a frame index, typically 5784 // either as a static alloca or a byval parameter. 5785 int FI = std::numeric_limits<int>::max(); 5786 if (const auto *AI = 5787 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5788 if (AI->isStaticAlloca()) { 5789 auto I = FuncInfo.StaticAllocaMap.find(AI); 5790 if (I != FuncInfo.StaticAllocaMap.end()) 5791 FI = I->second; 5792 } 5793 } else if (const auto *Arg = dyn_cast<Argument>( 5794 Address->stripInBoundsConstantOffsets())) { 5795 FI = FuncInfo.getArgumentFrameIndex(Arg); 5796 } 5797 5798 // llvm.dbg.addr is control dependent and always generates indirect 5799 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5800 // the MachineFunction variable table. 5801 if (FI != std::numeric_limits<int>::max()) { 5802 if (Intrinsic == Intrinsic::dbg_addr) { 5803 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5804 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5805 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5806 } 5807 return; 5808 } 5809 5810 SDValue &N = NodeMap[Address]; 5811 if (!N.getNode() && isa<Argument>(Address)) 5812 // Check unused arguments map. 5813 N = UnusedArgNodeMap[Address]; 5814 SDDbgValue *SDV; 5815 if (N.getNode()) { 5816 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5817 Address = BCI->getOperand(0); 5818 // Parameters are handled specially. 5819 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5820 if (isParameter && FINode) { 5821 // Byval parameter. We have a frame index at this point. 5822 SDV = 5823 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5824 /*IsIndirect*/ true, dl, SDNodeOrder); 5825 } else if (isa<Argument>(Address)) { 5826 // Address is an argument, so try to emit its dbg value using 5827 // virtual register info from the FuncInfo.ValueMap. 5828 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5829 return; 5830 } else { 5831 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5832 true, dl, SDNodeOrder); 5833 } 5834 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5835 } else { 5836 // If Address is an argument then try to emit its dbg value using 5837 // virtual register info from the FuncInfo.ValueMap. 5838 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5839 N)) { 5840 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5841 } 5842 } 5843 return; 5844 } 5845 case Intrinsic::dbg_label: { 5846 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5847 DILabel *Label = DI.getLabel(); 5848 assert(Label && "Missing label"); 5849 5850 SDDbgLabel *SDV; 5851 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5852 DAG.AddDbgLabel(SDV); 5853 return; 5854 } 5855 case Intrinsic::dbg_value: { 5856 const DbgValueInst &DI = cast<DbgValueInst>(I); 5857 assert(DI.getVariable() && "Missing variable"); 5858 5859 DILocalVariable *Variable = DI.getVariable(); 5860 DIExpression *Expression = DI.getExpression(); 5861 dropDanglingDebugInfo(Variable, Expression); 5862 const Value *V = DI.getValue(); 5863 if (!V) 5864 return; 5865 5866 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5867 SDNodeOrder)) 5868 return; 5869 5870 // TODO: Dangling debug info will eventually either be resolved or produce 5871 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5872 // between the original dbg.value location and its resolved DBG_VALUE, which 5873 // we should ideally fill with an extra Undef DBG_VALUE. 5874 5875 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5876 return; 5877 } 5878 5879 case Intrinsic::eh_typeid_for: { 5880 // Find the type id for the given typeinfo. 5881 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5882 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5883 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5884 setValue(&I, Res); 5885 return; 5886 } 5887 5888 case Intrinsic::eh_return_i32: 5889 case Intrinsic::eh_return_i64: 5890 DAG.getMachineFunction().setCallsEHReturn(true); 5891 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5892 MVT::Other, 5893 getControlRoot(), 5894 getValue(I.getArgOperand(0)), 5895 getValue(I.getArgOperand(1)))); 5896 return; 5897 case Intrinsic::eh_unwind_init: 5898 DAG.getMachineFunction().setCallsUnwindInit(true); 5899 return; 5900 case Intrinsic::eh_dwarf_cfa: 5901 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5902 TLI.getPointerTy(DAG.getDataLayout()), 5903 getValue(I.getArgOperand(0)))); 5904 return; 5905 case Intrinsic::eh_sjlj_callsite: { 5906 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5907 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5908 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5909 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5910 5911 MMI.setCurrentCallSite(CI->getZExtValue()); 5912 return; 5913 } 5914 case Intrinsic::eh_sjlj_functioncontext: { 5915 // Get and store the index of the function context. 5916 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5917 AllocaInst *FnCtx = 5918 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5919 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5920 MFI.setFunctionContextIndex(FI); 5921 return; 5922 } 5923 case Intrinsic::eh_sjlj_setjmp: { 5924 SDValue Ops[2]; 5925 Ops[0] = getRoot(); 5926 Ops[1] = getValue(I.getArgOperand(0)); 5927 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5928 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5929 setValue(&I, Op.getValue(0)); 5930 DAG.setRoot(Op.getValue(1)); 5931 return; 5932 } 5933 case Intrinsic::eh_sjlj_longjmp: 5934 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5935 getRoot(), getValue(I.getArgOperand(0)))); 5936 return; 5937 case Intrinsic::eh_sjlj_setup_dispatch: 5938 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5939 getRoot())); 5940 return; 5941 case Intrinsic::masked_gather: 5942 visitMaskedGather(I); 5943 return; 5944 case Intrinsic::masked_load: 5945 visitMaskedLoad(I); 5946 return; 5947 case Intrinsic::masked_scatter: 5948 visitMaskedScatter(I); 5949 return; 5950 case Intrinsic::masked_store: 5951 visitMaskedStore(I); 5952 return; 5953 case Intrinsic::masked_expandload: 5954 visitMaskedLoad(I, true /* IsExpanding */); 5955 return; 5956 case Intrinsic::masked_compressstore: 5957 visitMaskedStore(I, true /* IsCompressing */); 5958 return; 5959 case Intrinsic::x86_mmx_pslli_w: 5960 case Intrinsic::x86_mmx_pslli_d: 5961 case Intrinsic::x86_mmx_pslli_q: 5962 case Intrinsic::x86_mmx_psrli_w: 5963 case Intrinsic::x86_mmx_psrli_d: 5964 case Intrinsic::x86_mmx_psrli_q: 5965 case Intrinsic::x86_mmx_psrai_w: 5966 case Intrinsic::x86_mmx_psrai_d: { 5967 SDValue ShAmt = getValue(I.getArgOperand(1)); 5968 if (isa<ConstantSDNode>(ShAmt)) { 5969 visitTargetIntrinsic(I, Intrinsic); 5970 return; 5971 } 5972 unsigned NewIntrinsic = 0; 5973 EVT ShAmtVT = MVT::v2i32; 5974 switch (Intrinsic) { 5975 case Intrinsic::x86_mmx_pslli_w: 5976 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5977 break; 5978 case Intrinsic::x86_mmx_pslli_d: 5979 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5980 break; 5981 case Intrinsic::x86_mmx_pslli_q: 5982 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5983 break; 5984 case Intrinsic::x86_mmx_psrli_w: 5985 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5986 break; 5987 case Intrinsic::x86_mmx_psrli_d: 5988 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5989 break; 5990 case Intrinsic::x86_mmx_psrli_q: 5991 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5992 break; 5993 case Intrinsic::x86_mmx_psrai_w: 5994 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5995 break; 5996 case Intrinsic::x86_mmx_psrai_d: 5997 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5998 break; 5999 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6000 } 6001 6002 // The vector shift intrinsics with scalars uses 32b shift amounts but 6003 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 6004 // to be zero. 6005 // We must do this early because v2i32 is not a legal type. 6006 SDValue ShOps[2]; 6007 ShOps[0] = ShAmt; 6008 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 6009 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 6010 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6011 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 6012 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 6013 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 6014 getValue(I.getArgOperand(0)), ShAmt); 6015 setValue(&I, Res); 6016 return; 6017 } 6018 case Intrinsic::powi: 6019 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6020 getValue(I.getArgOperand(1)), DAG)); 6021 return; 6022 case Intrinsic::log: 6023 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6024 return; 6025 case Intrinsic::log2: 6026 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6027 return; 6028 case Intrinsic::log10: 6029 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6030 return; 6031 case Intrinsic::exp: 6032 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6033 return; 6034 case Intrinsic::exp2: 6035 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6036 return; 6037 case Intrinsic::pow: 6038 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6039 getValue(I.getArgOperand(1)), DAG, TLI)); 6040 return; 6041 case Intrinsic::sqrt: 6042 case Intrinsic::fabs: 6043 case Intrinsic::sin: 6044 case Intrinsic::cos: 6045 case Intrinsic::floor: 6046 case Intrinsic::ceil: 6047 case Intrinsic::trunc: 6048 case Intrinsic::rint: 6049 case Intrinsic::nearbyint: 6050 case Intrinsic::round: 6051 case Intrinsic::canonicalize: { 6052 unsigned Opcode; 6053 switch (Intrinsic) { 6054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6055 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6056 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6057 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6058 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6059 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6060 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6061 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6062 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6063 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6064 case Intrinsic::round: Opcode = ISD::FROUND; break; 6065 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6066 } 6067 6068 setValue(&I, DAG.getNode(Opcode, sdl, 6069 getValue(I.getArgOperand(0)).getValueType(), 6070 getValue(I.getArgOperand(0)))); 6071 return; 6072 } 6073 case Intrinsic::lround: 6074 case Intrinsic::llround: 6075 case Intrinsic::lrint: 6076 case Intrinsic::llrint: { 6077 unsigned Opcode; 6078 switch (Intrinsic) { 6079 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6080 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6081 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6082 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6083 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6084 } 6085 6086 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6087 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6088 getValue(I.getArgOperand(0)))); 6089 return; 6090 } 6091 case Intrinsic::minnum: 6092 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6093 getValue(I.getArgOperand(0)).getValueType(), 6094 getValue(I.getArgOperand(0)), 6095 getValue(I.getArgOperand(1)))); 6096 return; 6097 case Intrinsic::maxnum: 6098 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6099 getValue(I.getArgOperand(0)).getValueType(), 6100 getValue(I.getArgOperand(0)), 6101 getValue(I.getArgOperand(1)))); 6102 return; 6103 case Intrinsic::minimum: 6104 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6105 getValue(I.getArgOperand(0)).getValueType(), 6106 getValue(I.getArgOperand(0)), 6107 getValue(I.getArgOperand(1)))); 6108 return; 6109 case Intrinsic::maximum: 6110 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6111 getValue(I.getArgOperand(0)).getValueType(), 6112 getValue(I.getArgOperand(0)), 6113 getValue(I.getArgOperand(1)))); 6114 return; 6115 case Intrinsic::copysign: 6116 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6117 getValue(I.getArgOperand(0)).getValueType(), 6118 getValue(I.getArgOperand(0)), 6119 getValue(I.getArgOperand(1)))); 6120 return; 6121 case Intrinsic::fma: 6122 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6123 getValue(I.getArgOperand(0)).getValueType(), 6124 getValue(I.getArgOperand(0)), 6125 getValue(I.getArgOperand(1)), 6126 getValue(I.getArgOperand(2)))); 6127 return; 6128 case Intrinsic::experimental_constrained_fadd: 6129 case Intrinsic::experimental_constrained_fsub: 6130 case Intrinsic::experimental_constrained_fmul: 6131 case Intrinsic::experimental_constrained_fdiv: 6132 case Intrinsic::experimental_constrained_frem: 6133 case Intrinsic::experimental_constrained_fma: 6134 case Intrinsic::experimental_constrained_fptosi: 6135 case Intrinsic::experimental_constrained_fptoui: 6136 case Intrinsic::experimental_constrained_fptrunc: 6137 case Intrinsic::experimental_constrained_fpext: 6138 case Intrinsic::experimental_constrained_sqrt: 6139 case Intrinsic::experimental_constrained_pow: 6140 case Intrinsic::experimental_constrained_powi: 6141 case Intrinsic::experimental_constrained_sin: 6142 case Intrinsic::experimental_constrained_cos: 6143 case Intrinsic::experimental_constrained_exp: 6144 case Intrinsic::experimental_constrained_exp2: 6145 case Intrinsic::experimental_constrained_log: 6146 case Intrinsic::experimental_constrained_log10: 6147 case Intrinsic::experimental_constrained_log2: 6148 case Intrinsic::experimental_constrained_rint: 6149 case Intrinsic::experimental_constrained_nearbyint: 6150 case Intrinsic::experimental_constrained_maxnum: 6151 case Intrinsic::experimental_constrained_minnum: 6152 case Intrinsic::experimental_constrained_ceil: 6153 case Intrinsic::experimental_constrained_floor: 6154 case Intrinsic::experimental_constrained_round: 6155 case Intrinsic::experimental_constrained_trunc: 6156 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6157 return; 6158 case Intrinsic::fmuladd: { 6159 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6160 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6161 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6162 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6163 getValue(I.getArgOperand(0)).getValueType(), 6164 getValue(I.getArgOperand(0)), 6165 getValue(I.getArgOperand(1)), 6166 getValue(I.getArgOperand(2)))); 6167 } else { 6168 // TODO: Intrinsic calls should have fast-math-flags. 6169 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6170 getValue(I.getArgOperand(0)).getValueType(), 6171 getValue(I.getArgOperand(0)), 6172 getValue(I.getArgOperand(1))); 6173 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6174 getValue(I.getArgOperand(0)).getValueType(), 6175 Mul, 6176 getValue(I.getArgOperand(2))); 6177 setValue(&I, Add); 6178 } 6179 return; 6180 } 6181 case Intrinsic::convert_to_fp16: 6182 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6183 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6184 getValue(I.getArgOperand(0)), 6185 DAG.getTargetConstant(0, sdl, 6186 MVT::i32)))); 6187 return; 6188 case Intrinsic::convert_from_fp16: 6189 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6190 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6191 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6192 getValue(I.getArgOperand(0))))); 6193 return; 6194 case Intrinsic::pcmarker: { 6195 SDValue Tmp = getValue(I.getArgOperand(0)); 6196 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6197 return; 6198 } 6199 case Intrinsic::readcyclecounter: { 6200 SDValue Op = getRoot(); 6201 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6202 DAG.getVTList(MVT::i64, MVT::Other), Op); 6203 setValue(&I, Res); 6204 DAG.setRoot(Res.getValue(1)); 6205 return; 6206 } 6207 case Intrinsic::bitreverse: 6208 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6209 getValue(I.getArgOperand(0)).getValueType(), 6210 getValue(I.getArgOperand(0)))); 6211 return; 6212 case Intrinsic::bswap: 6213 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6214 getValue(I.getArgOperand(0)).getValueType(), 6215 getValue(I.getArgOperand(0)))); 6216 return; 6217 case Intrinsic::cttz: { 6218 SDValue Arg = getValue(I.getArgOperand(0)); 6219 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6220 EVT Ty = Arg.getValueType(); 6221 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6222 sdl, Ty, Arg)); 6223 return; 6224 } 6225 case Intrinsic::ctlz: { 6226 SDValue Arg = getValue(I.getArgOperand(0)); 6227 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6228 EVT Ty = Arg.getValueType(); 6229 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6230 sdl, Ty, Arg)); 6231 return; 6232 } 6233 case Intrinsic::ctpop: { 6234 SDValue Arg = getValue(I.getArgOperand(0)); 6235 EVT Ty = Arg.getValueType(); 6236 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6237 return; 6238 } 6239 case Intrinsic::fshl: 6240 case Intrinsic::fshr: { 6241 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6242 SDValue X = getValue(I.getArgOperand(0)); 6243 SDValue Y = getValue(I.getArgOperand(1)); 6244 SDValue Z = getValue(I.getArgOperand(2)); 6245 EVT VT = X.getValueType(); 6246 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6247 SDValue Zero = DAG.getConstant(0, sdl, VT); 6248 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6249 6250 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6251 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6252 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6253 return; 6254 } 6255 6256 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6257 // avoid the select that is necessary in the general case to filter out 6258 // the 0-shift possibility that leads to UB. 6259 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6260 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6261 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6262 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6263 return; 6264 } 6265 6266 // Some targets only rotate one way. Try the opposite direction. 6267 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6268 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6269 // Negate the shift amount because it is safe to ignore the high bits. 6270 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6271 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6272 return; 6273 } 6274 6275 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6276 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6277 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6278 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6279 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6280 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6281 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6282 return; 6283 } 6284 6285 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6286 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6287 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6288 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6289 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6290 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6291 6292 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6293 // and that is undefined. We must compare and select to avoid UB. 6294 EVT CCVT = MVT::i1; 6295 if (VT.isVector()) 6296 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6297 6298 // For fshl, 0-shift returns the 1st arg (X). 6299 // For fshr, 0-shift returns the 2nd arg (Y). 6300 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6301 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6302 return; 6303 } 6304 case Intrinsic::sadd_sat: { 6305 SDValue Op1 = getValue(I.getArgOperand(0)); 6306 SDValue Op2 = getValue(I.getArgOperand(1)); 6307 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6308 return; 6309 } 6310 case Intrinsic::uadd_sat: { 6311 SDValue Op1 = getValue(I.getArgOperand(0)); 6312 SDValue Op2 = getValue(I.getArgOperand(1)); 6313 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6314 return; 6315 } 6316 case Intrinsic::ssub_sat: { 6317 SDValue Op1 = getValue(I.getArgOperand(0)); 6318 SDValue Op2 = getValue(I.getArgOperand(1)); 6319 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6320 return; 6321 } 6322 case Intrinsic::usub_sat: { 6323 SDValue Op1 = getValue(I.getArgOperand(0)); 6324 SDValue Op2 = getValue(I.getArgOperand(1)); 6325 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6326 return; 6327 } 6328 case Intrinsic::smul_fix: 6329 case Intrinsic::umul_fix: { 6330 SDValue Op1 = getValue(I.getArgOperand(0)); 6331 SDValue Op2 = getValue(I.getArgOperand(1)); 6332 SDValue Op3 = getValue(I.getArgOperand(2)); 6333 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6334 Op1.getValueType(), Op1, Op2, Op3)); 6335 return; 6336 } 6337 case Intrinsic::smul_fix_sat: { 6338 SDValue Op1 = getValue(I.getArgOperand(0)); 6339 SDValue Op2 = getValue(I.getArgOperand(1)); 6340 SDValue Op3 = getValue(I.getArgOperand(2)); 6341 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6342 Op3)); 6343 return; 6344 } 6345 case Intrinsic::umul_fix_sat: { 6346 SDValue Op1 = getValue(I.getArgOperand(0)); 6347 SDValue Op2 = getValue(I.getArgOperand(1)); 6348 SDValue Op3 = getValue(I.getArgOperand(2)); 6349 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6350 Op3)); 6351 return; 6352 } 6353 case Intrinsic::stacksave: { 6354 SDValue Op = getRoot(); 6355 Res = DAG.getNode( 6356 ISD::STACKSAVE, sdl, 6357 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6358 setValue(&I, Res); 6359 DAG.setRoot(Res.getValue(1)); 6360 return; 6361 } 6362 case Intrinsic::stackrestore: 6363 Res = getValue(I.getArgOperand(0)); 6364 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6365 return; 6366 case Intrinsic::get_dynamic_area_offset: { 6367 SDValue Op = getRoot(); 6368 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6369 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6370 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6371 // target. 6372 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6373 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6374 " intrinsic!"); 6375 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6376 Op); 6377 DAG.setRoot(Op); 6378 setValue(&I, Res); 6379 return; 6380 } 6381 case Intrinsic::stackguard: { 6382 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6383 MachineFunction &MF = DAG.getMachineFunction(); 6384 const Module &M = *MF.getFunction().getParent(); 6385 SDValue Chain = getRoot(); 6386 if (TLI.useLoadStackGuardNode()) { 6387 Res = getLoadStackGuard(DAG, sdl, Chain); 6388 } else { 6389 const Value *Global = TLI.getSDagStackGuard(M); 6390 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6391 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6392 MachinePointerInfo(Global, 0), Align, 6393 MachineMemOperand::MOVolatile); 6394 } 6395 if (TLI.useStackGuardXorFP()) 6396 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6397 DAG.setRoot(Chain); 6398 setValue(&I, Res); 6399 return; 6400 } 6401 case Intrinsic::stackprotector: { 6402 // Emit code into the DAG to store the stack guard onto the stack. 6403 MachineFunction &MF = DAG.getMachineFunction(); 6404 MachineFrameInfo &MFI = MF.getFrameInfo(); 6405 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6406 SDValue Src, Chain = getRoot(); 6407 6408 if (TLI.useLoadStackGuardNode()) 6409 Src = getLoadStackGuard(DAG, sdl, Chain); 6410 else 6411 Src = getValue(I.getArgOperand(0)); // The guard's value. 6412 6413 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6414 6415 int FI = FuncInfo.StaticAllocaMap[Slot]; 6416 MFI.setStackProtectorIndex(FI); 6417 6418 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6419 6420 // Store the stack protector onto the stack. 6421 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6422 DAG.getMachineFunction(), FI), 6423 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6424 setValue(&I, Res); 6425 DAG.setRoot(Res); 6426 return; 6427 } 6428 case Intrinsic::objectsize: { 6429 // If we don't know by now, we're never going to know. 6430 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6431 6432 assert(CI && "Non-constant type in __builtin_object_size?"); 6433 6434 SDValue Arg = getValue(I.getCalledValue()); 6435 EVT Ty = Arg.getValueType(); 6436 6437 if (CI->isZero()) 6438 Res = DAG.getConstant(-1ULL, sdl, Ty); 6439 else 6440 Res = DAG.getConstant(0, sdl, Ty); 6441 6442 setValue(&I, Res); 6443 return; 6444 } 6445 6446 case Intrinsic::is_constant: 6447 // If this wasn't constant-folded away by now, then it's not a 6448 // constant. 6449 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6450 return; 6451 6452 case Intrinsic::annotation: 6453 case Intrinsic::ptr_annotation: 6454 case Intrinsic::launder_invariant_group: 6455 case Intrinsic::strip_invariant_group: 6456 // Drop the intrinsic, but forward the value 6457 setValue(&I, getValue(I.getOperand(0))); 6458 return; 6459 case Intrinsic::assume: 6460 case Intrinsic::var_annotation: 6461 case Intrinsic::sideeffect: 6462 // Discard annotate attributes, assumptions, and artificial side-effects. 6463 return; 6464 6465 case Intrinsic::codeview_annotation: { 6466 // Emit a label associated with this metadata. 6467 MachineFunction &MF = DAG.getMachineFunction(); 6468 MCSymbol *Label = 6469 MF.getMMI().getContext().createTempSymbol("annotation", true); 6470 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6471 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6472 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6473 DAG.setRoot(Res); 6474 return; 6475 } 6476 6477 case Intrinsic::init_trampoline: { 6478 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6479 6480 SDValue Ops[6]; 6481 Ops[0] = getRoot(); 6482 Ops[1] = getValue(I.getArgOperand(0)); 6483 Ops[2] = getValue(I.getArgOperand(1)); 6484 Ops[3] = getValue(I.getArgOperand(2)); 6485 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6486 Ops[5] = DAG.getSrcValue(F); 6487 6488 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6489 6490 DAG.setRoot(Res); 6491 return; 6492 } 6493 case Intrinsic::adjust_trampoline: 6494 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6495 TLI.getPointerTy(DAG.getDataLayout()), 6496 getValue(I.getArgOperand(0)))); 6497 return; 6498 case Intrinsic::gcroot: { 6499 assert(DAG.getMachineFunction().getFunction().hasGC() && 6500 "only valid in functions with gc specified, enforced by Verifier"); 6501 assert(GFI && "implied by previous"); 6502 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6503 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6504 6505 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6506 GFI->addStackRoot(FI->getIndex(), TypeMap); 6507 return; 6508 } 6509 case Intrinsic::gcread: 6510 case Intrinsic::gcwrite: 6511 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6512 case Intrinsic::flt_rounds: 6513 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6514 return; 6515 6516 case Intrinsic::expect: 6517 // Just replace __builtin_expect(exp, c) with EXP. 6518 setValue(&I, getValue(I.getArgOperand(0))); 6519 return; 6520 6521 case Intrinsic::debugtrap: 6522 case Intrinsic::trap: { 6523 StringRef TrapFuncName = 6524 I.getAttributes() 6525 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6526 .getValueAsString(); 6527 if (TrapFuncName.empty()) { 6528 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6529 ISD::TRAP : ISD::DEBUGTRAP; 6530 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6531 return; 6532 } 6533 TargetLowering::ArgListTy Args; 6534 6535 TargetLowering::CallLoweringInfo CLI(DAG); 6536 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6537 CallingConv::C, I.getType(), 6538 DAG.getExternalSymbol(TrapFuncName.data(), 6539 TLI.getPointerTy(DAG.getDataLayout())), 6540 std::move(Args)); 6541 6542 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6543 DAG.setRoot(Result.second); 6544 return; 6545 } 6546 6547 case Intrinsic::uadd_with_overflow: 6548 case Intrinsic::sadd_with_overflow: 6549 case Intrinsic::usub_with_overflow: 6550 case Intrinsic::ssub_with_overflow: 6551 case Intrinsic::umul_with_overflow: 6552 case Intrinsic::smul_with_overflow: { 6553 ISD::NodeType Op; 6554 switch (Intrinsic) { 6555 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6556 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6557 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6558 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6559 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6560 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6561 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6562 } 6563 SDValue Op1 = getValue(I.getArgOperand(0)); 6564 SDValue Op2 = getValue(I.getArgOperand(1)); 6565 6566 EVT ResultVT = Op1.getValueType(); 6567 EVT OverflowVT = MVT::i1; 6568 if (ResultVT.isVector()) 6569 OverflowVT = EVT::getVectorVT( 6570 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6571 6572 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6573 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6574 return; 6575 } 6576 case Intrinsic::prefetch: { 6577 SDValue Ops[5]; 6578 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6579 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6580 Ops[0] = DAG.getRoot(); 6581 Ops[1] = getValue(I.getArgOperand(0)); 6582 Ops[2] = getValue(I.getArgOperand(1)); 6583 Ops[3] = getValue(I.getArgOperand(2)); 6584 Ops[4] = getValue(I.getArgOperand(3)); 6585 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6586 DAG.getVTList(MVT::Other), Ops, 6587 EVT::getIntegerVT(*Context, 8), 6588 MachinePointerInfo(I.getArgOperand(0)), 6589 0, /* align */ 6590 Flags); 6591 6592 // Chain the prefetch in parallell with any pending loads, to stay out of 6593 // the way of later optimizations. 6594 PendingLoads.push_back(Result); 6595 Result = getRoot(); 6596 DAG.setRoot(Result); 6597 return; 6598 } 6599 case Intrinsic::lifetime_start: 6600 case Intrinsic::lifetime_end: { 6601 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6602 // Stack coloring is not enabled in O0, discard region information. 6603 if (TM.getOptLevel() == CodeGenOpt::None) 6604 return; 6605 6606 const int64_t ObjectSize = 6607 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6608 Value *const ObjectPtr = I.getArgOperand(1); 6609 SmallVector<const Value *, 4> Allocas; 6610 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6611 6612 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6613 E = Allocas.end(); Object != E; ++Object) { 6614 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6615 6616 // Could not find an Alloca. 6617 if (!LifetimeObject) 6618 continue; 6619 6620 // First check that the Alloca is static, otherwise it won't have a 6621 // valid frame index. 6622 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6623 if (SI == FuncInfo.StaticAllocaMap.end()) 6624 return; 6625 6626 const int FrameIndex = SI->second; 6627 int64_t Offset; 6628 if (GetPointerBaseWithConstantOffset( 6629 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6630 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6631 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6632 Offset); 6633 DAG.setRoot(Res); 6634 } 6635 return; 6636 } 6637 case Intrinsic::invariant_start: 6638 // Discard region information. 6639 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6640 return; 6641 case Intrinsic::invariant_end: 6642 // Discard region information. 6643 return; 6644 case Intrinsic::clear_cache: 6645 /// FunctionName may be null. 6646 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6647 lowerCallToExternalSymbol(I, FunctionName); 6648 return; 6649 case Intrinsic::donothing: 6650 // ignore 6651 return; 6652 case Intrinsic::experimental_stackmap: 6653 visitStackmap(I); 6654 return; 6655 case Intrinsic::experimental_patchpoint_void: 6656 case Intrinsic::experimental_patchpoint_i64: 6657 visitPatchpoint(&I); 6658 return; 6659 case Intrinsic::experimental_gc_statepoint: 6660 LowerStatepoint(ImmutableStatepoint(&I)); 6661 return; 6662 case Intrinsic::experimental_gc_result: 6663 visitGCResult(cast<GCResultInst>(I)); 6664 return; 6665 case Intrinsic::experimental_gc_relocate: 6666 visitGCRelocate(cast<GCRelocateInst>(I)); 6667 return; 6668 case Intrinsic::instrprof_increment: 6669 llvm_unreachable("instrprof failed to lower an increment"); 6670 case Intrinsic::instrprof_value_profile: 6671 llvm_unreachable("instrprof failed to lower a value profiling call"); 6672 case Intrinsic::localescape: { 6673 MachineFunction &MF = DAG.getMachineFunction(); 6674 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6675 6676 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6677 // is the same on all targets. 6678 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6679 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6680 if (isa<ConstantPointerNull>(Arg)) 6681 continue; // Skip null pointers. They represent a hole in index space. 6682 AllocaInst *Slot = cast<AllocaInst>(Arg); 6683 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6684 "can only escape static allocas"); 6685 int FI = FuncInfo.StaticAllocaMap[Slot]; 6686 MCSymbol *FrameAllocSym = 6687 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6688 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6689 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6690 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6691 .addSym(FrameAllocSym) 6692 .addFrameIndex(FI); 6693 } 6694 6695 return; 6696 } 6697 6698 case Intrinsic::localrecover: { 6699 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6700 MachineFunction &MF = DAG.getMachineFunction(); 6701 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6702 6703 // Get the symbol that defines the frame offset. 6704 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6705 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6706 unsigned IdxVal = 6707 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6708 MCSymbol *FrameAllocSym = 6709 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6710 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6711 6712 // Create a MCSymbol for the label to avoid any target lowering 6713 // that would make this PC relative. 6714 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6715 SDValue OffsetVal = 6716 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6717 6718 // Add the offset to the FP. 6719 Value *FP = I.getArgOperand(1); 6720 SDValue FPVal = getValue(FP); 6721 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6722 setValue(&I, Add); 6723 6724 return; 6725 } 6726 6727 case Intrinsic::eh_exceptionpointer: 6728 case Intrinsic::eh_exceptioncode: { 6729 // Get the exception pointer vreg, copy from it, and resize it to fit. 6730 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6731 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6732 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6733 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6734 SDValue N = 6735 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6736 if (Intrinsic == Intrinsic::eh_exceptioncode) 6737 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6738 setValue(&I, N); 6739 return; 6740 } 6741 case Intrinsic::xray_customevent: { 6742 // Here we want to make sure that the intrinsic behaves as if it has a 6743 // specific calling convention, and only for x86_64. 6744 // FIXME: Support other platforms later. 6745 const auto &Triple = DAG.getTarget().getTargetTriple(); 6746 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6747 return; 6748 6749 SDLoc DL = getCurSDLoc(); 6750 SmallVector<SDValue, 8> Ops; 6751 6752 // We want to say that we always want the arguments in registers. 6753 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6754 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6755 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6756 SDValue Chain = getRoot(); 6757 Ops.push_back(LogEntryVal); 6758 Ops.push_back(StrSizeVal); 6759 Ops.push_back(Chain); 6760 6761 // We need to enforce the calling convention for the callsite, so that 6762 // argument ordering is enforced correctly, and that register allocation can 6763 // see that some registers may be assumed clobbered and have to preserve 6764 // them across calls to the intrinsic. 6765 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6766 DL, NodeTys, Ops); 6767 SDValue patchableNode = SDValue(MN, 0); 6768 DAG.setRoot(patchableNode); 6769 setValue(&I, patchableNode); 6770 return; 6771 } 6772 case Intrinsic::xray_typedevent: { 6773 // Here we want to make sure that the intrinsic behaves as if it has a 6774 // specific calling convention, and only for x86_64. 6775 // FIXME: Support other platforms later. 6776 const auto &Triple = DAG.getTarget().getTargetTriple(); 6777 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6778 return; 6779 6780 SDLoc DL = getCurSDLoc(); 6781 SmallVector<SDValue, 8> Ops; 6782 6783 // We want to say that we always want the arguments in registers. 6784 // It's unclear to me how manipulating the selection DAG here forces callers 6785 // to provide arguments in registers instead of on the stack. 6786 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6787 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6788 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6789 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6790 SDValue Chain = getRoot(); 6791 Ops.push_back(LogTypeId); 6792 Ops.push_back(LogEntryVal); 6793 Ops.push_back(StrSizeVal); 6794 Ops.push_back(Chain); 6795 6796 // We need to enforce the calling convention for the callsite, so that 6797 // argument ordering is enforced correctly, and that register allocation can 6798 // see that some registers may be assumed clobbered and have to preserve 6799 // them across calls to the intrinsic. 6800 MachineSDNode *MN = DAG.getMachineNode( 6801 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6802 SDValue patchableNode = SDValue(MN, 0); 6803 DAG.setRoot(patchableNode); 6804 setValue(&I, patchableNode); 6805 return; 6806 } 6807 case Intrinsic::experimental_deoptimize: 6808 LowerDeoptimizeCall(&I); 6809 return; 6810 6811 case Intrinsic::experimental_vector_reduce_v2_fadd: 6812 case Intrinsic::experimental_vector_reduce_v2_fmul: 6813 case Intrinsic::experimental_vector_reduce_add: 6814 case Intrinsic::experimental_vector_reduce_mul: 6815 case Intrinsic::experimental_vector_reduce_and: 6816 case Intrinsic::experimental_vector_reduce_or: 6817 case Intrinsic::experimental_vector_reduce_xor: 6818 case Intrinsic::experimental_vector_reduce_smax: 6819 case Intrinsic::experimental_vector_reduce_smin: 6820 case Intrinsic::experimental_vector_reduce_umax: 6821 case Intrinsic::experimental_vector_reduce_umin: 6822 case Intrinsic::experimental_vector_reduce_fmax: 6823 case Intrinsic::experimental_vector_reduce_fmin: 6824 visitVectorReduce(I, Intrinsic); 6825 return; 6826 6827 case Intrinsic::icall_branch_funnel: { 6828 SmallVector<SDValue, 16> Ops; 6829 Ops.push_back(getValue(I.getArgOperand(0))); 6830 6831 int64_t Offset; 6832 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6833 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6834 if (!Base) 6835 report_fatal_error( 6836 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6837 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6838 6839 struct BranchFunnelTarget { 6840 int64_t Offset; 6841 SDValue Target; 6842 }; 6843 SmallVector<BranchFunnelTarget, 8> Targets; 6844 6845 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6846 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6847 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6848 if (ElemBase != Base) 6849 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6850 "to the same GlobalValue"); 6851 6852 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6853 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6854 if (!GA) 6855 report_fatal_error( 6856 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6857 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6858 GA->getGlobal(), getCurSDLoc(), 6859 Val.getValueType(), GA->getOffset())}); 6860 } 6861 llvm::sort(Targets, 6862 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6863 return T1.Offset < T2.Offset; 6864 }); 6865 6866 for (auto &T : Targets) { 6867 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6868 Ops.push_back(T.Target); 6869 } 6870 6871 Ops.push_back(DAG.getRoot()); // Chain 6872 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6873 getCurSDLoc(), MVT::Other, Ops), 6874 0); 6875 DAG.setRoot(N); 6876 setValue(&I, N); 6877 HasTailCall = true; 6878 return; 6879 } 6880 6881 case Intrinsic::wasm_landingpad_index: 6882 // Information this intrinsic contained has been transferred to 6883 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6884 // delete it now. 6885 return; 6886 6887 case Intrinsic::aarch64_settag: 6888 case Intrinsic::aarch64_settag_zero: { 6889 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6890 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6891 SDValue Val = TSI.EmitTargetCodeForSetTag( 6892 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6893 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6894 ZeroMemory); 6895 DAG.setRoot(Val); 6896 setValue(&I, Val); 6897 return; 6898 } 6899 case Intrinsic::ptrmask: { 6900 SDValue Ptr = getValue(I.getOperand(0)); 6901 SDValue Const = getValue(I.getOperand(1)); 6902 6903 EVT DestVT = 6904 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6905 6906 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6907 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6908 return; 6909 } 6910 } 6911 } 6912 6913 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6914 const ConstrainedFPIntrinsic &FPI) { 6915 SDLoc sdl = getCurSDLoc(); 6916 unsigned Opcode; 6917 switch (FPI.getIntrinsicID()) { 6918 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6919 case Intrinsic::experimental_constrained_fadd: 6920 Opcode = ISD::STRICT_FADD; 6921 break; 6922 case Intrinsic::experimental_constrained_fsub: 6923 Opcode = ISD::STRICT_FSUB; 6924 break; 6925 case Intrinsic::experimental_constrained_fmul: 6926 Opcode = ISD::STRICT_FMUL; 6927 break; 6928 case Intrinsic::experimental_constrained_fdiv: 6929 Opcode = ISD::STRICT_FDIV; 6930 break; 6931 case Intrinsic::experimental_constrained_frem: 6932 Opcode = ISD::STRICT_FREM; 6933 break; 6934 case Intrinsic::experimental_constrained_fma: 6935 Opcode = ISD::STRICT_FMA; 6936 break; 6937 case Intrinsic::experimental_constrained_fptosi: 6938 Opcode = ISD::STRICT_FP_TO_SINT; 6939 break; 6940 case Intrinsic::experimental_constrained_fptoui: 6941 Opcode = ISD::STRICT_FP_TO_UINT; 6942 break; 6943 case Intrinsic::experimental_constrained_fptrunc: 6944 Opcode = ISD::STRICT_FP_ROUND; 6945 break; 6946 case Intrinsic::experimental_constrained_fpext: 6947 Opcode = ISD::STRICT_FP_EXTEND; 6948 break; 6949 case Intrinsic::experimental_constrained_sqrt: 6950 Opcode = ISD::STRICT_FSQRT; 6951 break; 6952 case Intrinsic::experimental_constrained_pow: 6953 Opcode = ISD::STRICT_FPOW; 6954 break; 6955 case Intrinsic::experimental_constrained_powi: 6956 Opcode = ISD::STRICT_FPOWI; 6957 break; 6958 case Intrinsic::experimental_constrained_sin: 6959 Opcode = ISD::STRICT_FSIN; 6960 break; 6961 case Intrinsic::experimental_constrained_cos: 6962 Opcode = ISD::STRICT_FCOS; 6963 break; 6964 case Intrinsic::experimental_constrained_exp: 6965 Opcode = ISD::STRICT_FEXP; 6966 break; 6967 case Intrinsic::experimental_constrained_exp2: 6968 Opcode = ISD::STRICT_FEXP2; 6969 break; 6970 case Intrinsic::experimental_constrained_log: 6971 Opcode = ISD::STRICT_FLOG; 6972 break; 6973 case Intrinsic::experimental_constrained_log10: 6974 Opcode = ISD::STRICT_FLOG10; 6975 break; 6976 case Intrinsic::experimental_constrained_log2: 6977 Opcode = ISD::STRICT_FLOG2; 6978 break; 6979 case Intrinsic::experimental_constrained_rint: 6980 Opcode = ISD::STRICT_FRINT; 6981 break; 6982 case Intrinsic::experimental_constrained_nearbyint: 6983 Opcode = ISD::STRICT_FNEARBYINT; 6984 break; 6985 case Intrinsic::experimental_constrained_maxnum: 6986 Opcode = ISD::STRICT_FMAXNUM; 6987 break; 6988 case Intrinsic::experimental_constrained_minnum: 6989 Opcode = ISD::STRICT_FMINNUM; 6990 break; 6991 case Intrinsic::experimental_constrained_ceil: 6992 Opcode = ISD::STRICT_FCEIL; 6993 break; 6994 case Intrinsic::experimental_constrained_floor: 6995 Opcode = ISD::STRICT_FFLOOR; 6996 break; 6997 case Intrinsic::experimental_constrained_round: 6998 Opcode = ISD::STRICT_FROUND; 6999 break; 7000 case Intrinsic::experimental_constrained_trunc: 7001 Opcode = ISD::STRICT_FTRUNC; 7002 break; 7003 } 7004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7005 SDValue Chain = getRoot(); 7006 SmallVector<EVT, 4> ValueVTs; 7007 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7008 ValueVTs.push_back(MVT::Other); // Out chain 7009 7010 SDVTList VTs = DAG.getVTList(ValueVTs); 7011 SDValue Result; 7012 if (Opcode == ISD::STRICT_FP_ROUND) 7013 Result = DAG.getNode(Opcode, sdl, VTs, 7014 { Chain, getValue(FPI.getArgOperand(0)), 7015 DAG.getTargetConstant(0, sdl, 7016 TLI.getPointerTy(DAG.getDataLayout())) }); 7017 else if (FPI.isUnaryOp()) 7018 Result = DAG.getNode(Opcode, sdl, VTs, 7019 { Chain, getValue(FPI.getArgOperand(0)) }); 7020 else if (FPI.isTernaryOp()) 7021 Result = DAG.getNode(Opcode, sdl, VTs, 7022 { Chain, getValue(FPI.getArgOperand(0)), 7023 getValue(FPI.getArgOperand(1)), 7024 getValue(FPI.getArgOperand(2)) }); 7025 else 7026 Result = DAG.getNode(Opcode, sdl, VTs, 7027 { Chain, getValue(FPI.getArgOperand(0)), 7028 getValue(FPI.getArgOperand(1)) }); 7029 7030 if (FPI.getExceptionBehavior() != 7031 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 7032 SDNodeFlags Flags; 7033 Flags.setFPExcept(true); 7034 Result->setFlags(Flags); 7035 } 7036 7037 assert(Result.getNode()->getNumValues() == 2); 7038 SDValue OutChain = Result.getValue(1); 7039 DAG.setRoot(OutChain); 7040 SDValue FPResult = Result.getValue(0); 7041 setValue(&FPI, FPResult); 7042 } 7043 7044 std::pair<SDValue, SDValue> 7045 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7046 const BasicBlock *EHPadBB) { 7047 MachineFunction &MF = DAG.getMachineFunction(); 7048 MachineModuleInfo &MMI = MF.getMMI(); 7049 MCSymbol *BeginLabel = nullptr; 7050 7051 if (EHPadBB) { 7052 // Insert a label before the invoke call to mark the try range. This can be 7053 // used to detect deletion of the invoke via the MachineModuleInfo. 7054 BeginLabel = MMI.getContext().createTempSymbol(); 7055 7056 // For SjLj, keep track of which landing pads go with which invokes 7057 // so as to maintain the ordering of pads in the LSDA. 7058 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7059 if (CallSiteIndex) { 7060 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7061 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7062 7063 // Now that the call site is handled, stop tracking it. 7064 MMI.setCurrentCallSite(0); 7065 } 7066 7067 // Both PendingLoads and PendingExports must be flushed here; 7068 // this call might not return. 7069 (void)getRoot(); 7070 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7071 7072 CLI.setChain(getRoot()); 7073 } 7074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7075 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7076 7077 assert((CLI.IsTailCall || Result.second.getNode()) && 7078 "Non-null chain expected with non-tail call!"); 7079 assert((Result.second.getNode() || !Result.first.getNode()) && 7080 "Null value expected with tail call!"); 7081 7082 if (!Result.second.getNode()) { 7083 // As a special case, a null chain means that a tail call has been emitted 7084 // and the DAG root is already updated. 7085 HasTailCall = true; 7086 7087 // Since there's no actual continuation from this block, nothing can be 7088 // relying on us setting vregs for them. 7089 PendingExports.clear(); 7090 } else { 7091 DAG.setRoot(Result.second); 7092 } 7093 7094 if (EHPadBB) { 7095 // Insert a label at the end of the invoke call to mark the try range. This 7096 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7097 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7098 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7099 7100 // Inform MachineModuleInfo of range. 7101 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7102 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7103 // actually use outlined funclets and their LSDA info style. 7104 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7105 assert(CLI.CS); 7106 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7107 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7108 BeginLabel, EndLabel); 7109 } else if (!isScopedEHPersonality(Pers)) { 7110 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7111 } 7112 } 7113 7114 return Result; 7115 } 7116 7117 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7118 bool isTailCall, 7119 const BasicBlock *EHPadBB) { 7120 auto &DL = DAG.getDataLayout(); 7121 FunctionType *FTy = CS.getFunctionType(); 7122 Type *RetTy = CS.getType(); 7123 7124 TargetLowering::ArgListTy Args; 7125 Args.reserve(CS.arg_size()); 7126 7127 const Value *SwiftErrorVal = nullptr; 7128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7129 7130 // We can't tail call inside a function with a swifterror argument. Lowering 7131 // does not support this yet. It would have to move into the swifterror 7132 // register before the call. 7133 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7134 if (TLI.supportSwiftError() && 7135 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7136 isTailCall = false; 7137 7138 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7139 i != e; ++i) { 7140 TargetLowering::ArgListEntry Entry; 7141 const Value *V = *i; 7142 7143 // Skip empty types 7144 if (V->getType()->isEmptyTy()) 7145 continue; 7146 7147 SDValue ArgNode = getValue(V); 7148 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7149 7150 Entry.setAttributes(&CS, i - CS.arg_begin()); 7151 7152 // Use swifterror virtual register as input to the call. 7153 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7154 SwiftErrorVal = V; 7155 // We find the virtual register for the actual swifterror argument. 7156 // Instead of using the Value, we use the virtual register instead. 7157 Entry.Node = DAG.getRegister( 7158 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7159 EVT(TLI.getPointerTy(DL))); 7160 } 7161 7162 Args.push_back(Entry); 7163 7164 // If we have an explicit sret argument that is an Instruction, (i.e., it 7165 // might point to function-local memory), we can't meaningfully tail-call. 7166 if (Entry.IsSRet && isa<Instruction>(V)) 7167 isTailCall = false; 7168 } 7169 7170 // Check if target-independent constraints permit a tail call here. 7171 // Target-dependent constraints are checked within TLI->LowerCallTo. 7172 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7173 isTailCall = false; 7174 7175 // Disable tail calls if there is an swifterror argument. Targets have not 7176 // been updated to support tail calls. 7177 if (TLI.supportSwiftError() && SwiftErrorVal) 7178 isTailCall = false; 7179 7180 TargetLowering::CallLoweringInfo CLI(DAG); 7181 CLI.setDebugLoc(getCurSDLoc()) 7182 .setChain(getRoot()) 7183 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7184 .setTailCall(isTailCall) 7185 .setConvergent(CS.isConvergent()); 7186 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7187 7188 if (Result.first.getNode()) { 7189 const Instruction *Inst = CS.getInstruction(); 7190 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7191 setValue(Inst, Result.first); 7192 } 7193 7194 // The last element of CLI.InVals has the SDValue for swifterror return. 7195 // Here we copy it to a virtual register and update SwiftErrorMap for 7196 // book-keeping. 7197 if (SwiftErrorVal && TLI.supportSwiftError()) { 7198 // Get the last element of InVals. 7199 SDValue Src = CLI.InVals.back(); 7200 Register VReg = SwiftError.getOrCreateVRegDefAt( 7201 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7202 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7203 DAG.setRoot(CopyNode); 7204 } 7205 } 7206 7207 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7208 SelectionDAGBuilder &Builder) { 7209 // Check to see if this load can be trivially constant folded, e.g. if the 7210 // input is from a string literal. 7211 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7212 // Cast pointer to the type we really want to load. 7213 Type *LoadTy = 7214 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7215 if (LoadVT.isVector()) 7216 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7217 7218 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7219 PointerType::getUnqual(LoadTy)); 7220 7221 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7222 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7223 return Builder.getValue(LoadCst); 7224 } 7225 7226 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7227 // still constant memory, the input chain can be the entry node. 7228 SDValue Root; 7229 bool ConstantMemory = false; 7230 7231 // Do not serialize (non-volatile) loads of constant memory with anything. 7232 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7233 Root = Builder.DAG.getEntryNode(); 7234 ConstantMemory = true; 7235 } else { 7236 // Do not serialize non-volatile loads against each other. 7237 Root = Builder.DAG.getRoot(); 7238 } 7239 7240 SDValue Ptr = Builder.getValue(PtrVal); 7241 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7242 Ptr, MachinePointerInfo(PtrVal), 7243 /* Alignment = */ 1); 7244 7245 if (!ConstantMemory) 7246 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7247 return LoadVal; 7248 } 7249 7250 /// Record the value for an instruction that produces an integer result, 7251 /// converting the type where necessary. 7252 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7253 SDValue Value, 7254 bool IsSigned) { 7255 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7256 I.getType(), true); 7257 if (IsSigned) 7258 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7259 else 7260 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7261 setValue(&I, Value); 7262 } 7263 7264 /// See if we can lower a memcmp call into an optimized form. If so, return 7265 /// true and lower it. Otherwise return false, and it will be lowered like a 7266 /// normal call. 7267 /// The caller already checked that \p I calls the appropriate LibFunc with a 7268 /// correct prototype. 7269 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7270 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7271 const Value *Size = I.getArgOperand(2); 7272 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7273 if (CSize && CSize->getZExtValue() == 0) { 7274 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7275 I.getType(), true); 7276 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7277 return true; 7278 } 7279 7280 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7281 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7282 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7283 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7284 if (Res.first.getNode()) { 7285 processIntegerCallValue(I, Res.first, true); 7286 PendingLoads.push_back(Res.second); 7287 return true; 7288 } 7289 7290 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7291 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7292 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7293 return false; 7294 7295 // If the target has a fast compare for the given size, it will return a 7296 // preferred load type for that size. Require that the load VT is legal and 7297 // that the target supports unaligned loads of that type. Otherwise, return 7298 // INVALID. 7299 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7301 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7302 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7303 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7304 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7305 // TODO: Check alignment of src and dest ptrs. 7306 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7307 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7308 if (!TLI.isTypeLegal(LVT) || 7309 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7310 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7311 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7312 } 7313 7314 return LVT; 7315 }; 7316 7317 // This turns into unaligned loads. We only do this if the target natively 7318 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7319 // we'll only produce a small number of byte loads. 7320 MVT LoadVT; 7321 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7322 switch (NumBitsToCompare) { 7323 default: 7324 return false; 7325 case 16: 7326 LoadVT = MVT::i16; 7327 break; 7328 case 32: 7329 LoadVT = MVT::i32; 7330 break; 7331 case 64: 7332 case 128: 7333 case 256: 7334 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7335 break; 7336 } 7337 7338 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7339 return false; 7340 7341 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7342 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7343 7344 // Bitcast to a wide integer type if the loads are vectors. 7345 if (LoadVT.isVector()) { 7346 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7347 LoadL = DAG.getBitcast(CmpVT, LoadL); 7348 LoadR = DAG.getBitcast(CmpVT, LoadR); 7349 } 7350 7351 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7352 processIntegerCallValue(I, Cmp, false); 7353 return true; 7354 } 7355 7356 /// See if we can lower a memchr call into an optimized form. If so, return 7357 /// true and lower it. Otherwise return false, and it will be lowered like a 7358 /// normal call. 7359 /// The caller already checked that \p I calls the appropriate LibFunc with a 7360 /// correct prototype. 7361 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7362 const Value *Src = I.getArgOperand(0); 7363 const Value *Char = I.getArgOperand(1); 7364 const Value *Length = I.getArgOperand(2); 7365 7366 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7367 std::pair<SDValue, SDValue> Res = 7368 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7369 getValue(Src), getValue(Char), getValue(Length), 7370 MachinePointerInfo(Src)); 7371 if (Res.first.getNode()) { 7372 setValue(&I, Res.first); 7373 PendingLoads.push_back(Res.second); 7374 return true; 7375 } 7376 7377 return false; 7378 } 7379 7380 /// See if we can lower a mempcpy call into an optimized form. If so, return 7381 /// true and lower it. Otherwise return false, and it will be lowered like a 7382 /// normal call. 7383 /// The caller already checked that \p I calls the appropriate LibFunc with a 7384 /// correct prototype. 7385 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7386 SDValue Dst = getValue(I.getArgOperand(0)); 7387 SDValue Src = getValue(I.getArgOperand(1)); 7388 SDValue Size = getValue(I.getArgOperand(2)); 7389 7390 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7391 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7392 unsigned Align = std::min(DstAlign, SrcAlign); 7393 if (Align == 0) // Alignment of one or both could not be inferred. 7394 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7395 7396 bool isVol = false; 7397 SDLoc sdl = getCurSDLoc(); 7398 7399 // In the mempcpy context we need to pass in a false value for isTailCall 7400 // because the return pointer needs to be adjusted by the size of 7401 // the copied memory. 7402 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7403 false, /*isTailCall=*/false, 7404 MachinePointerInfo(I.getArgOperand(0)), 7405 MachinePointerInfo(I.getArgOperand(1))); 7406 assert(MC.getNode() != nullptr && 7407 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7408 DAG.setRoot(MC); 7409 7410 // Check if Size needs to be truncated or extended. 7411 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7412 7413 // Adjust return pointer to point just past the last dst byte. 7414 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7415 Dst, Size); 7416 setValue(&I, DstPlusSize); 7417 return true; 7418 } 7419 7420 /// See if we can lower a strcpy call into an optimized form. If so, return 7421 /// true and lower it, otherwise return false and it will be lowered like a 7422 /// normal call. 7423 /// The caller already checked that \p I calls the appropriate LibFunc with a 7424 /// correct prototype. 7425 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7426 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7427 7428 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7429 std::pair<SDValue, SDValue> Res = 7430 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7431 getValue(Arg0), getValue(Arg1), 7432 MachinePointerInfo(Arg0), 7433 MachinePointerInfo(Arg1), isStpcpy); 7434 if (Res.first.getNode()) { 7435 setValue(&I, Res.first); 7436 DAG.setRoot(Res.second); 7437 return true; 7438 } 7439 7440 return false; 7441 } 7442 7443 /// See if we can lower a strcmp call into an optimized form. If so, return 7444 /// true and lower it, otherwise return false and it will be lowered like a 7445 /// normal call. 7446 /// The caller already checked that \p I calls the appropriate LibFunc with a 7447 /// correct prototype. 7448 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7449 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7450 7451 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7452 std::pair<SDValue, SDValue> Res = 7453 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7454 getValue(Arg0), getValue(Arg1), 7455 MachinePointerInfo(Arg0), 7456 MachinePointerInfo(Arg1)); 7457 if (Res.first.getNode()) { 7458 processIntegerCallValue(I, Res.first, true); 7459 PendingLoads.push_back(Res.second); 7460 return true; 7461 } 7462 7463 return false; 7464 } 7465 7466 /// See if we can lower a strlen call into an optimized form. If so, return 7467 /// true and lower it, otherwise return false and it will be lowered like a 7468 /// normal call. 7469 /// The caller already checked that \p I calls the appropriate LibFunc with a 7470 /// correct prototype. 7471 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7472 const Value *Arg0 = I.getArgOperand(0); 7473 7474 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7475 std::pair<SDValue, SDValue> Res = 7476 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7477 getValue(Arg0), MachinePointerInfo(Arg0)); 7478 if (Res.first.getNode()) { 7479 processIntegerCallValue(I, Res.first, false); 7480 PendingLoads.push_back(Res.second); 7481 return true; 7482 } 7483 7484 return false; 7485 } 7486 7487 /// See if we can lower a strnlen call into an optimized form. If so, return 7488 /// true and lower it, otherwise return false and it will be lowered like a 7489 /// normal call. 7490 /// The caller already checked that \p I calls the appropriate LibFunc with a 7491 /// correct prototype. 7492 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7493 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7494 7495 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7496 std::pair<SDValue, SDValue> Res = 7497 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7498 getValue(Arg0), getValue(Arg1), 7499 MachinePointerInfo(Arg0)); 7500 if (Res.first.getNode()) { 7501 processIntegerCallValue(I, Res.first, false); 7502 PendingLoads.push_back(Res.second); 7503 return true; 7504 } 7505 7506 return false; 7507 } 7508 7509 /// See if we can lower a unary floating-point operation into an SDNode with 7510 /// the specified Opcode. If so, return true and lower it, otherwise return 7511 /// false and it will be lowered like a normal call. 7512 /// The caller already checked that \p I calls the appropriate LibFunc with a 7513 /// correct prototype. 7514 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7515 unsigned Opcode) { 7516 // We already checked this call's prototype; verify it doesn't modify errno. 7517 if (!I.onlyReadsMemory()) 7518 return false; 7519 7520 SDValue Tmp = getValue(I.getArgOperand(0)); 7521 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7522 return true; 7523 } 7524 7525 /// See if we can lower a binary floating-point operation into an SDNode with 7526 /// the specified Opcode. If so, return true and lower it. Otherwise return 7527 /// false, and it will be lowered like a normal call. 7528 /// The caller already checked that \p I calls the appropriate LibFunc with a 7529 /// correct prototype. 7530 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7531 unsigned Opcode) { 7532 // We already checked this call's prototype; verify it doesn't modify errno. 7533 if (!I.onlyReadsMemory()) 7534 return false; 7535 7536 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7537 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7538 EVT VT = Tmp0.getValueType(); 7539 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7540 return true; 7541 } 7542 7543 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7544 // Handle inline assembly differently. 7545 if (isa<InlineAsm>(I.getCalledValue())) { 7546 visitInlineAsm(&I); 7547 return; 7548 } 7549 7550 if (Function *F = I.getCalledFunction()) { 7551 if (F->isDeclaration()) { 7552 // Is this an LLVM intrinsic or a target-specific intrinsic? 7553 unsigned IID = F->getIntrinsicID(); 7554 if (!IID) 7555 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7556 IID = II->getIntrinsicID(F); 7557 7558 if (IID) { 7559 visitIntrinsicCall(I, IID); 7560 return; 7561 } 7562 } 7563 7564 // Check for well-known libc/libm calls. If the function is internal, it 7565 // can't be a library call. Don't do the check if marked as nobuiltin for 7566 // some reason or the call site requires strict floating point semantics. 7567 LibFunc Func; 7568 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7569 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7570 LibInfo->hasOptimizedCodeGen(Func)) { 7571 switch (Func) { 7572 default: break; 7573 case LibFunc_copysign: 7574 case LibFunc_copysignf: 7575 case LibFunc_copysignl: 7576 // We already checked this call's prototype; verify it doesn't modify 7577 // errno. 7578 if (I.onlyReadsMemory()) { 7579 SDValue LHS = getValue(I.getArgOperand(0)); 7580 SDValue RHS = getValue(I.getArgOperand(1)); 7581 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7582 LHS.getValueType(), LHS, RHS)); 7583 return; 7584 } 7585 break; 7586 case LibFunc_fabs: 7587 case LibFunc_fabsf: 7588 case LibFunc_fabsl: 7589 if (visitUnaryFloatCall(I, ISD::FABS)) 7590 return; 7591 break; 7592 case LibFunc_fmin: 7593 case LibFunc_fminf: 7594 case LibFunc_fminl: 7595 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7596 return; 7597 break; 7598 case LibFunc_fmax: 7599 case LibFunc_fmaxf: 7600 case LibFunc_fmaxl: 7601 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7602 return; 7603 break; 7604 case LibFunc_sin: 7605 case LibFunc_sinf: 7606 case LibFunc_sinl: 7607 if (visitUnaryFloatCall(I, ISD::FSIN)) 7608 return; 7609 break; 7610 case LibFunc_cos: 7611 case LibFunc_cosf: 7612 case LibFunc_cosl: 7613 if (visitUnaryFloatCall(I, ISD::FCOS)) 7614 return; 7615 break; 7616 case LibFunc_sqrt: 7617 case LibFunc_sqrtf: 7618 case LibFunc_sqrtl: 7619 case LibFunc_sqrt_finite: 7620 case LibFunc_sqrtf_finite: 7621 case LibFunc_sqrtl_finite: 7622 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7623 return; 7624 break; 7625 case LibFunc_floor: 7626 case LibFunc_floorf: 7627 case LibFunc_floorl: 7628 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7629 return; 7630 break; 7631 case LibFunc_nearbyint: 7632 case LibFunc_nearbyintf: 7633 case LibFunc_nearbyintl: 7634 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7635 return; 7636 break; 7637 case LibFunc_ceil: 7638 case LibFunc_ceilf: 7639 case LibFunc_ceill: 7640 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7641 return; 7642 break; 7643 case LibFunc_rint: 7644 case LibFunc_rintf: 7645 case LibFunc_rintl: 7646 if (visitUnaryFloatCall(I, ISD::FRINT)) 7647 return; 7648 break; 7649 case LibFunc_round: 7650 case LibFunc_roundf: 7651 case LibFunc_roundl: 7652 if (visitUnaryFloatCall(I, ISD::FROUND)) 7653 return; 7654 break; 7655 case LibFunc_trunc: 7656 case LibFunc_truncf: 7657 case LibFunc_truncl: 7658 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7659 return; 7660 break; 7661 case LibFunc_log2: 7662 case LibFunc_log2f: 7663 case LibFunc_log2l: 7664 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7665 return; 7666 break; 7667 case LibFunc_exp2: 7668 case LibFunc_exp2f: 7669 case LibFunc_exp2l: 7670 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7671 return; 7672 break; 7673 case LibFunc_memcmp: 7674 if (visitMemCmpCall(I)) 7675 return; 7676 break; 7677 case LibFunc_mempcpy: 7678 if (visitMemPCpyCall(I)) 7679 return; 7680 break; 7681 case LibFunc_memchr: 7682 if (visitMemChrCall(I)) 7683 return; 7684 break; 7685 case LibFunc_strcpy: 7686 if (visitStrCpyCall(I, false)) 7687 return; 7688 break; 7689 case LibFunc_stpcpy: 7690 if (visitStrCpyCall(I, true)) 7691 return; 7692 break; 7693 case LibFunc_strcmp: 7694 if (visitStrCmpCall(I)) 7695 return; 7696 break; 7697 case LibFunc_strlen: 7698 if (visitStrLenCall(I)) 7699 return; 7700 break; 7701 case LibFunc_strnlen: 7702 if (visitStrNLenCall(I)) 7703 return; 7704 break; 7705 } 7706 } 7707 } 7708 7709 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7710 // have to do anything here to lower funclet bundles. 7711 assert(!I.hasOperandBundlesOtherThan( 7712 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7713 "Cannot lower calls with arbitrary operand bundles!"); 7714 7715 SDValue Callee = getValue(I.getCalledValue()); 7716 7717 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7718 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7719 else 7720 // Check if we can potentially perform a tail call. More detailed checking 7721 // is be done within LowerCallTo, after more information about the call is 7722 // known. 7723 LowerCallTo(&I, Callee, I.isTailCall()); 7724 } 7725 7726 namespace { 7727 7728 /// AsmOperandInfo - This contains information for each constraint that we are 7729 /// lowering. 7730 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7731 public: 7732 /// CallOperand - If this is the result output operand or a clobber 7733 /// this is null, otherwise it is the incoming operand to the CallInst. 7734 /// This gets modified as the asm is processed. 7735 SDValue CallOperand; 7736 7737 /// AssignedRegs - If this is a register or register class operand, this 7738 /// contains the set of register corresponding to the operand. 7739 RegsForValue AssignedRegs; 7740 7741 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7742 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7743 } 7744 7745 /// Whether or not this operand accesses memory 7746 bool hasMemory(const TargetLowering &TLI) const { 7747 // Indirect operand accesses access memory. 7748 if (isIndirect) 7749 return true; 7750 7751 for (const auto &Code : Codes) 7752 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7753 return true; 7754 7755 return false; 7756 } 7757 7758 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7759 /// corresponds to. If there is no Value* for this operand, it returns 7760 /// MVT::Other. 7761 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7762 const DataLayout &DL) const { 7763 if (!CallOperandVal) return MVT::Other; 7764 7765 if (isa<BasicBlock>(CallOperandVal)) 7766 return TLI.getPointerTy(DL); 7767 7768 llvm::Type *OpTy = CallOperandVal->getType(); 7769 7770 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7771 // If this is an indirect operand, the operand is a pointer to the 7772 // accessed type. 7773 if (isIndirect) { 7774 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7775 if (!PtrTy) 7776 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7777 OpTy = PtrTy->getElementType(); 7778 } 7779 7780 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7781 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7782 if (STy->getNumElements() == 1) 7783 OpTy = STy->getElementType(0); 7784 7785 // If OpTy is not a single value, it may be a struct/union that we 7786 // can tile with integers. 7787 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7788 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7789 switch (BitSize) { 7790 default: break; 7791 case 1: 7792 case 8: 7793 case 16: 7794 case 32: 7795 case 64: 7796 case 128: 7797 OpTy = IntegerType::get(Context, BitSize); 7798 break; 7799 } 7800 } 7801 7802 return TLI.getValueType(DL, OpTy, true); 7803 } 7804 }; 7805 7806 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7807 7808 } // end anonymous namespace 7809 7810 /// Make sure that the output operand \p OpInfo and its corresponding input 7811 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7812 /// out). 7813 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7814 SDISelAsmOperandInfo &MatchingOpInfo, 7815 SelectionDAG &DAG) { 7816 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7817 return; 7818 7819 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7820 const auto &TLI = DAG.getTargetLoweringInfo(); 7821 7822 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7823 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7824 OpInfo.ConstraintVT); 7825 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7826 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7827 MatchingOpInfo.ConstraintVT); 7828 if ((OpInfo.ConstraintVT.isInteger() != 7829 MatchingOpInfo.ConstraintVT.isInteger()) || 7830 (MatchRC.second != InputRC.second)) { 7831 // FIXME: error out in a more elegant fashion 7832 report_fatal_error("Unsupported asm: input constraint" 7833 " with a matching output constraint of" 7834 " incompatible type!"); 7835 } 7836 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7837 } 7838 7839 /// Get a direct memory input to behave well as an indirect operand. 7840 /// This may introduce stores, hence the need for a \p Chain. 7841 /// \return The (possibly updated) chain. 7842 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7843 SDISelAsmOperandInfo &OpInfo, 7844 SelectionDAG &DAG) { 7845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7846 7847 // If we don't have an indirect input, put it in the constpool if we can, 7848 // otherwise spill it to a stack slot. 7849 // TODO: This isn't quite right. We need to handle these according to 7850 // the addressing mode that the constraint wants. Also, this may take 7851 // an additional register for the computation and we don't want that 7852 // either. 7853 7854 // If the operand is a float, integer, or vector constant, spill to a 7855 // constant pool entry to get its address. 7856 const Value *OpVal = OpInfo.CallOperandVal; 7857 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7858 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7859 OpInfo.CallOperand = DAG.getConstantPool( 7860 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7861 return Chain; 7862 } 7863 7864 // Otherwise, create a stack slot and emit a store to it before the asm. 7865 Type *Ty = OpVal->getType(); 7866 auto &DL = DAG.getDataLayout(); 7867 uint64_t TySize = DL.getTypeAllocSize(Ty); 7868 unsigned Align = DL.getPrefTypeAlignment(Ty); 7869 MachineFunction &MF = DAG.getMachineFunction(); 7870 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7871 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7872 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7873 MachinePointerInfo::getFixedStack(MF, SSFI), 7874 TLI.getMemValueType(DL, Ty)); 7875 OpInfo.CallOperand = StackSlot; 7876 7877 return Chain; 7878 } 7879 7880 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7881 /// specified operand. We prefer to assign virtual registers, to allow the 7882 /// register allocator to handle the assignment process. However, if the asm 7883 /// uses features that we can't model on machineinstrs, we have SDISel do the 7884 /// allocation. This produces generally horrible, but correct, code. 7885 /// 7886 /// OpInfo describes the operand 7887 /// RefOpInfo describes the matching operand if any, the operand otherwise 7888 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7889 SDISelAsmOperandInfo &OpInfo, 7890 SDISelAsmOperandInfo &RefOpInfo) { 7891 LLVMContext &Context = *DAG.getContext(); 7892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7893 7894 MachineFunction &MF = DAG.getMachineFunction(); 7895 SmallVector<unsigned, 4> Regs; 7896 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7897 7898 // No work to do for memory operations. 7899 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7900 return; 7901 7902 // If this is a constraint for a single physreg, or a constraint for a 7903 // register class, find it. 7904 unsigned AssignedReg; 7905 const TargetRegisterClass *RC; 7906 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7907 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7908 // RC is unset only on failure. Return immediately. 7909 if (!RC) 7910 return; 7911 7912 // Get the actual register value type. This is important, because the user 7913 // may have asked for (e.g.) the AX register in i32 type. We need to 7914 // remember that AX is actually i16 to get the right extension. 7915 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7916 7917 if (OpInfo.ConstraintVT != MVT::Other) { 7918 // If this is an FP operand in an integer register (or visa versa), or more 7919 // generally if the operand value disagrees with the register class we plan 7920 // to stick it in, fix the operand type. 7921 // 7922 // If this is an input value, the bitcast to the new type is done now. 7923 // Bitcast for output value is done at the end of visitInlineAsm(). 7924 if ((OpInfo.Type == InlineAsm::isOutput || 7925 OpInfo.Type == InlineAsm::isInput) && 7926 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7927 // Try to convert to the first EVT that the reg class contains. If the 7928 // types are identical size, use a bitcast to convert (e.g. two differing 7929 // vector types). Note: output bitcast is done at the end of 7930 // visitInlineAsm(). 7931 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7932 // Exclude indirect inputs while they are unsupported because the code 7933 // to perform the load is missing and thus OpInfo.CallOperand still 7934 // refers to the input address rather than the pointed-to value. 7935 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7936 OpInfo.CallOperand = 7937 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7938 OpInfo.ConstraintVT = RegVT; 7939 // If the operand is an FP value and we want it in integer registers, 7940 // use the corresponding integer type. This turns an f64 value into 7941 // i64, which can be passed with two i32 values on a 32-bit machine. 7942 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7943 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7944 if (OpInfo.Type == InlineAsm::isInput) 7945 OpInfo.CallOperand = 7946 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7947 OpInfo.ConstraintVT = VT; 7948 } 7949 } 7950 } 7951 7952 // No need to allocate a matching input constraint since the constraint it's 7953 // matching to has already been allocated. 7954 if (OpInfo.isMatchingInputConstraint()) 7955 return; 7956 7957 EVT ValueVT = OpInfo.ConstraintVT; 7958 if (OpInfo.ConstraintVT == MVT::Other) 7959 ValueVT = RegVT; 7960 7961 // Initialize NumRegs. 7962 unsigned NumRegs = 1; 7963 if (OpInfo.ConstraintVT != MVT::Other) 7964 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7965 7966 // If this is a constraint for a specific physical register, like {r17}, 7967 // assign it now. 7968 7969 // If this associated to a specific register, initialize iterator to correct 7970 // place. If virtual, make sure we have enough registers 7971 7972 // Initialize iterator if necessary 7973 TargetRegisterClass::iterator I = RC->begin(); 7974 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7975 7976 // Do not check for single registers. 7977 if (AssignedReg) { 7978 for (; *I != AssignedReg; ++I) 7979 assert(I != RC->end() && "AssignedReg should be member of RC"); 7980 } 7981 7982 for (; NumRegs; --NumRegs, ++I) { 7983 assert(I != RC->end() && "Ran out of registers to allocate!"); 7984 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7985 Regs.push_back(R); 7986 } 7987 7988 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7989 } 7990 7991 static unsigned 7992 findMatchingInlineAsmOperand(unsigned OperandNo, 7993 const std::vector<SDValue> &AsmNodeOperands) { 7994 // Scan until we find the definition we already emitted of this operand. 7995 unsigned CurOp = InlineAsm::Op_FirstOperand; 7996 for (; OperandNo; --OperandNo) { 7997 // Advance to the next operand. 7998 unsigned OpFlag = 7999 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8000 assert((InlineAsm::isRegDefKind(OpFlag) || 8001 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8002 InlineAsm::isMemKind(OpFlag)) && 8003 "Skipped past definitions?"); 8004 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8005 } 8006 return CurOp; 8007 } 8008 8009 namespace { 8010 8011 class ExtraFlags { 8012 unsigned Flags = 0; 8013 8014 public: 8015 explicit ExtraFlags(ImmutableCallSite CS) { 8016 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8017 if (IA->hasSideEffects()) 8018 Flags |= InlineAsm::Extra_HasSideEffects; 8019 if (IA->isAlignStack()) 8020 Flags |= InlineAsm::Extra_IsAlignStack; 8021 if (CS.isConvergent()) 8022 Flags |= InlineAsm::Extra_IsConvergent; 8023 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8024 } 8025 8026 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8027 // Ideally, we would only check against memory constraints. However, the 8028 // meaning of an Other constraint can be target-specific and we can't easily 8029 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8030 // for Other constraints as well. 8031 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8032 OpInfo.ConstraintType == TargetLowering::C_Other) { 8033 if (OpInfo.Type == InlineAsm::isInput) 8034 Flags |= InlineAsm::Extra_MayLoad; 8035 else if (OpInfo.Type == InlineAsm::isOutput) 8036 Flags |= InlineAsm::Extra_MayStore; 8037 else if (OpInfo.Type == InlineAsm::isClobber) 8038 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8039 } 8040 } 8041 8042 unsigned get() const { return Flags; } 8043 }; 8044 8045 } // end anonymous namespace 8046 8047 /// visitInlineAsm - Handle a call to an InlineAsm object. 8048 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8049 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8050 8051 /// ConstraintOperands - Information about all of the constraints. 8052 SDISelAsmOperandInfoVector ConstraintOperands; 8053 8054 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8055 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8056 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8057 8058 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8059 // AsmDialect, MayLoad, MayStore). 8060 bool HasSideEffect = IA->hasSideEffects(); 8061 ExtraFlags ExtraInfo(CS); 8062 8063 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8064 unsigned ResNo = 0; // ResNo - The result number of the next output. 8065 for (auto &T : TargetConstraints) { 8066 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8067 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8068 8069 // Compute the value type for each operand. 8070 if (OpInfo.Type == InlineAsm::isInput || 8071 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8072 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8073 8074 // Process the call argument. BasicBlocks are labels, currently appearing 8075 // only in asm's. 8076 const Instruction *I = CS.getInstruction(); 8077 if (isa<CallBrInst>(I) && 8078 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8079 cast<CallBrInst>(I)->getNumIndirectDests())) { 8080 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8081 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8082 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8083 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8084 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8085 } else { 8086 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8087 } 8088 8089 OpInfo.ConstraintVT = 8090 OpInfo 8091 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8092 .getSimpleVT(); 8093 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8094 // The return value of the call is this value. As such, there is no 8095 // corresponding argument. 8096 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8097 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8098 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8099 DAG.getDataLayout(), STy->getElementType(ResNo)); 8100 } else { 8101 assert(ResNo == 0 && "Asm only has one result!"); 8102 OpInfo.ConstraintVT = 8103 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8104 } 8105 ++ResNo; 8106 } else { 8107 OpInfo.ConstraintVT = MVT::Other; 8108 } 8109 8110 if (!HasSideEffect) 8111 HasSideEffect = OpInfo.hasMemory(TLI); 8112 8113 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8114 // FIXME: Could we compute this on OpInfo rather than T? 8115 8116 // Compute the constraint code and ConstraintType to use. 8117 TLI.ComputeConstraintToUse(T, SDValue()); 8118 8119 if (T.ConstraintType == TargetLowering::C_Immediate && 8120 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8121 // We've delayed emitting a diagnostic like the "n" constraint because 8122 // inlining could cause an integer showing up. 8123 return emitInlineAsmError( 8124 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8125 "integer constant expression"); 8126 8127 ExtraInfo.update(T); 8128 } 8129 8130 8131 // We won't need to flush pending loads if this asm doesn't touch 8132 // memory and is nonvolatile. 8133 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8134 8135 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8136 if (IsCallBr) { 8137 // If this is a callbr we need to flush pending exports since inlineasm_br 8138 // is a terminator. We need to do this before nodes are glued to 8139 // the inlineasm_br node. 8140 Chain = getControlRoot(); 8141 } 8142 8143 // Second pass over the constraints: compute which constraint option to use. 8144 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8145 // If this is an output operand with a matching input operand, look up the 8146 // matching input. If their types mismatch, e.g. one is an integer, the 8147 // other is floating point, or their sizes are different, flag it as an 8148 // error. 8149 if (OpInfo.hasMatchingInput()) { 8150 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8151 patchMatchingInput(OpInfo, Input, DAG); 8152 } 8153 8154 // Compute the constraint code and ConstraintType to use. 8155 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8156 8157 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8158 OpInfo.Type == InlineAsm::isClobber) 8159 continue; 8160 8161 // If this is a memory input, and if the operand is not indirect, do what we 8162 // need to provide an address for the memory input. 8163 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8164 !OpInfo.isIndirect) { 8165 assert((OpInfo.isMultipleAlternative || 8166 (OpInfo.Type == InlineAsm::isInput)) && 8167 "Can only indirectify direct input operands!"); 8168 8169 // Memory operands really want the address of the value. 8170 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8171 8172 // There is no longer a Value* corresponding to this operand. 8173 OpInfo.CallOperandVal = nullptr; 8174 8175 // It is now an indirect operand. 8176 OpInfo.isIndirect = true; 8177 } 8178 8179 } 8180 8181 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8182 std::vector<SDValue> AsmNodeOperands; 8183 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8184 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8185 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8186 8187 // If we have a !srcloc metadata node associated with it, we want to attach 8188 // this to the ultimately generated inline asm machineinstr. To do this, we 8189 // pass in the third operand as this (potentially null) inline asm MDNode. 8190 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8191 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8192 8193 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8194 // bits as operand 3. 8195 AsmNodeOperands.push_back(DAG.getTargetConstant( 8196 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8197 8198 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8199 // this, assign virtual and physical registers for inputs and otput. 8200 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8201 // Assign Registers. 8202 SDISelAsmOperandInfo &RefOpInfo = 8203 OpInfo.isMatchingInputConstraint() 8204 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8205 : OpInfo; 8206 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8207 8208 switch (OpInfo.Type) { 8209 case InlineAsm::isOutput: 8210 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8211 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8212 OpInfo.ConstraintType == TargetLowering::C_Other) && 8213 OpInfo.isIndirect)) { 8214 unsigned ConstraintID = 8215 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8216 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8217 "Failed to convert memory constraint code to constraint id."); 8218 8219 // Add information to the INLINEASM node to know about this output. 8220 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8221 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8222 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8223 MVT::i32)); 8224 AsmNodeOperands.push_back(OpInfo.CallOperand); 8225 break; 8226 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8227 OpInfo.ConstraintType == TargetLowering::C_Other) && 8228 !OpInfo.isIndirect) || 8229 OpInfo.ConstraintType == TargetLowering::C_Register || 8230 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8231 // Otherwise, this outputs to a register (directly for C_Register / 8232 // C_RegisterClass, and a target-defined fashion for 8233 // C_Immediate/C_Other). Find a register that we can use. 8234 if (OpInfo.AssignedRegs.Regs.empty()) { 8235 emitInlineAsmError( 8236 CS, "couldn't allocate output register for constraint '" + 8237 Twine(OpInfo.ConstraintCode) + "'"); 8238 return; 8239 } 8240 8241 // Add information to the INLINEASM node to know that this register is 8242 // set. 8243 OpInfo.AssignedRegs.AddInlineAsmOperands( 8244 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8245 : InlineAsm::Kind_RegDef, 8246 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8247 } 8248 break; 8249 8250 case InlineAsm::isInput: { 8251 SDValue InOperandVal = OpInfo.CallOperand; 8252 8253 if (OpInfo.isMatchingInputConstraint()) { 8254 // If this is required to match an output register we have already set, 8255 // just use its register. 8256 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8257 AsmNodeOperands); 8258 unsigned OpFlag = 8259 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8260 if (InlineAsm::isRegDefKind(OpFlag) || 8261 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8262 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8263 if (OpInfo.isIndirect) { 8264 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8265 emitInlineAsmError(CS, "inline asm not supported yet:" 8266 " don't know how to handle tied " 8267 "indirect register inputs"); 8268 return; 8269 } 8270 8271 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8272 SmallVector<unsigned, 4> Regs; 8273 8274 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8275 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8276 MachineRegisterInfo &RegInfo = 8277 DAG.getMachineFunction().getRegInfo(); 8278 for (unsigned i = 0; i != NumRegs; ++i) 8279 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8280 } else { 8281 emitInlineAsmError(CS, "inline asm error: This value type register " 8282 "class is not natively supported!"); 8283 return; 8284 } 8285 8286 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8287 8288 SDLoc dl = getCurSDLoc(); 8289 // Use the produced MatchedRegs object to 8290 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8291 CS.getInstruction()); 8292 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8293 true, OpInfo.getMatchedOperand(), dl, 8294 DAG, AsmNodeOperands); 8295 break; 8296 } 8297 8298 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8299 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8300 "Unexpected number of operands"); 8301 // Add information to the INLINEASM node to know about this input. 8302 // See InlineAsm.h isUseOperandTiedToDef. 8303 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8304 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8305 OpInfo.getMatchedOperand()); 8306 AsmNodeOperands.push_back(DAG.getTargetConstant( 8307 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8308 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8309 break; 8310 } 8311 8312 // Treat indirect 'X' constraint as memory. 8313 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8314 OpInfo.ConstraintType == TargetLowering::C_Other) && 8315 OpInfo.isIndirect) 8316 OpInfo.ConstraintType = TargetLowering::C_Memory; 8317 8318 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8319 OpInfo.ConstraintType == TargetLowering::C_Other) { 8320 std::vector<SDValue> Ops; 8321 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8322 Ops, DAG); 8323 if (Ops.empty()) { 8324 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8325 if (isa<ConstantSDNode>(InOperandVal)) { 8326 emitInlineAsmError(CS, "value out of range for constraint '" + 8327 Twine(OpInfo.ConstraintCode) + "'"); 8328 return; 8329 } 8330 8331 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8332 Twine(OpInfo.ConstraintCode) + "'"); 8333 return; 8334 } 8335 8336 // Add information to the INLINEASM node to know about this input. 8337 unsigned ResOpType = 8338 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8339 AsmNodeOperands.push_back(DAG.getTargetConstant( 8340 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8341 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8342 break; 8343 } 8344 8345 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8346 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8347 assert(InOperandVal.getValueType() == 8348 TLI.getPointerTy(DAG.getDataLayout()) && 8349 "Memory operands expect pointer values"); 8350 8351 unsigned ConstraintID = 8352 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8353 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8354 "Failed to convert memory constraint code to constraint id."); 8355 8356 // Add information to the INLINEASM node to know about this input. 8357 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8358 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8359 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8360 getCurSDLoc(), 8361 MVT::i32)); 8362 AsmNodeOperands.push_back(InOperandVal); 8363 break; 8364 } 8365 8366 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8367 OpInfo.ConstraintType == TargetLowering::C_Register || 8368 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8369 "Unknown constraint type!"); 8370 8371 // TODO: Support this. 8372 if (OpInfo.isIndirect) { 8373 emitInlineAsmError( 8374 CS, "Don't know how to handle indirect register inputs yet " 8375 "for constraint '" + 8376 Twine(OpInfo.ConstraintCode) + "'"); 8377 return; 8378 } 8379 8380 // Copy the input into the appropriate registers. 8381 if (OpInfo.AssignedRegs.Regs.empty()) { 8382 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8383 Twine(OpInfo.ConstraintCode) + "'"); 8384 return; 8385 } 8386 8387 SDLoc dl = getCurSDLoc(); 8388 8389 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8390 Chain, &Flag, CS.getInstruction()); 8391 8392 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8393 dl, DAG, AsmNodeOperands); 8394 break; 8395 } 8396 case InlineAsm::isClobber: 8397 // Add the clobbered value to the operand list, so that the register 8398 // allocator is aware that the physreg got clobbered. 8399 if (!OpInfo.AssignedRegs.Regs.empty()) 8400 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8401 false, 0, getCurSDLoc(), DAG, 8402 AsmNodeOperands); 8403 break; 8404 } 8405 } 8406 8407 // Finish up input operands. Set the input chain and add the flag last. 8408 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8409 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8410 8411 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8412 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8413 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8414 Flag = Chain.getValue(1); 8415 8416 // Do additional work to generate outputs. 8417 8418 SmallVector<EVT, 1> ResultVTs; 8419 SmallVector<SDValue, 1> ResultValues; 8420 SmallVector<SDValue, 8> OutChains; 8421 8422 llvm::Type *CSResultType = CS.getType(); 8423 ArrayRef<Type *> ResultTypes; 8424 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8425 ResultTypes = StructResult->elements(); 8426 else if (!CSResultType->isVoidTy()) 8427 ResultTypes = makeArrayRef(CSResultType); 8428 8429 auto CurResultType = ResultTypes.begin(); 8430 auto handleRegAssign = [&](SDValue V) { 8431 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8432 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8433 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8434 ++CurResultType; 8435 // If the type of the inline asm call site return value is different but has 8436 // same size as the type of the asm output bitcast it. One example of this 8437 // is for vectors with different width / number of elements. This can 8438 // happen for register classes that can contain multiple different value 8439 // types. The preg or vreg allocated may not have the same VT as was 8440 // expected. 8441 // 8442 // This can also happen for a return value that disagrees with the register 8443 // class it is put in, eg. a double in a general-purpose register on a 8444 // 32-bit machine. 8445 if (ResultVT != V.getValueType() && 8446 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8447 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8448 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8449 V.getValueType().isInteger()) { 8450 // If a result value was tied to an input value, the computed result 8451 // may have a wider width than the expected result. Extract the 8452 // relevant portion. 8453 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8454 } 8455 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8456 ResultVTs.push_back(ResultVT); 8457 ResultValues.push_back(V); 8458 }; 8459 8460 // Deal with output operands. 8461 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8462 if (OpInfo.Type == InlineAsm::isOutput) { 8463 SDValue Val; 8464 // Skip trivial output operands. 8465 if (OpInfo.AssignedRegs.Regs.empty()) 8466 continue; 8467 8468 switch (OpInfo.ConstraintType) { 8469 case TargetLowering::C_Register: 8470 case TargetLowering::C_RegisterClass: 8471 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8472 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8473 break; 8474 case TargetLowering::C_Immediate: 8475 case TargetLowering::C_Other: 8476 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8477 OpInfo, DAG); 8478 break; 8479 case TargetLowering::C_Memory: 8480 break; // Already handled. 8481 case TargetLowering::C_Unknown: 8482 assert(false && "Unexpected unknown constraint"); 8483 } 8484 8485 // Indirect output manifest as stores. Record output chains. 8486 if (OpInfo.isIndirect) { 8487 const Value *Ptr = OpInfo.CallOperandVal; 8488 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8489 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8490 MachinePointerInfo(Ptr)); 8491 OutChains.push_back(Store); 8492 } else { 8493 // generate CopyFromRegs to associated registers. 8494 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8495 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8496 for (const SDValue &V : Val->op_values()) 8497 handleRegAssign(V); 8498 } else 8499 handleRegAssign(Val); 8500 } 8501 } 8502 } 8503 8504 // Set results. 8505 if (!ResultValues.empty()) { 8506 assert(CurResultType == ResultTypes.end() && 8507 "Mismatch in number of ResultTypes"); 8508 assert(ResultValues.size() == ResultTypes.size() && 8509 "Mismatch in number of output operands in asm result"); 8510 8511 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8512 DAG.getVTList(ResultVTs), ResultValues); 8513 setValue(CS.getInstruction(), V); 8514 } 8515 8516 // Collect store chains. 8517 if (!OutChains.empty()) 8518 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8519 8520 // Only Update Root if inline assembly has a memory effect. 8521 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8522 DAG.setRoot(Chain); 8523 } 8524 8525 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8526 const Twine &Message) { 8527 LLVMContext &Ctx = *DAG.getContext(); 8528 Ctx.emitError(CS.getInstruction(), Message); 8529 8530 // Make sure we leave the DAG in a valid state 8531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8532 SmallVector<EVT, 1> ValueVTs; 8533 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8534 8535 if (ValueVTs.empty()) 8536 return; 8537 8538 SmallVector<SDValue, 1> Ops; 8539 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8540 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8541 8542 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8543 } 8544 8545 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8546 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8547 MVT::Other, getRoot(), 8548 getValue(I.getArgOperand(0)), 8549 DAG.getSrcValue(I.getArgOperand(0)))); 8550 } 8551 8552 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8554 const DataLayout &DL = DAG.getDataLayout(); 8555 SDValue V = DAG.getVAArg( 8556 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8557 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8558 DL.getABITypeAlignment(I.getType())); 8559 DAG.setRoot(V.getValue(1)); 8560 8561 if (I.getType()->isPointerTy()) 8562 V = DAG.getPtrExtOrTrunc( 8563 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8564 setValue(&I, V); 8565 } 8566 8567 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8568 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8569 MVT::Other, getRoot(), 8570 getValue(I.getArgOperand(0)), 8571 DAG.getSrcValue(I.getArgOperand(0)))); 8572 } 8573 8574 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8575 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8576 MVT::Other, getRoot(), 8577 getValue(I.getArgOperand(0)), 8578 getValue(I.getArgOperand(1)), 8579 DAG.getSrcValue(I.getArgOperand(0)), 8580 DAG.getSrcValue(I.getArgOperand(1)))); 8581 } 8582 8583 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8584 const Instruction &I, 8585 SDValue Op) { 8586 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8587 if (!Range) 8588 return Op; 8589 8590 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8591 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8592 return Op; 8593 8594 APInt Lo = CR.getUnsignedMin(); 8595 if (!Lo.isMinValue()) 8596 return Op; 8597 8598 APInt Hi = CR.getUnsignedMax(); 8599 unsigned Bits = std::max(Hi.getActiveBits(), 8600 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8601 8602 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8603 8604 SDLoc SL = getCurSDLoc(); 8605 8606 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8607 DAG.getValueType(SmallVT)); 8608 unsigned NumVals = Op.getNode()->getNumValues(); 8609 if (NumVals == 1) 8610 return ZExt; 8611 8612 SmallVector<SDValue, 4> Ops; 8613 8614 Ops.push_back(ZExt); 8615 for (unsigned I = 1; I != NumVals; ++I) 8616 Ops.push_back(Op.getValue(I)); 8617 8618 return DAG.getMergeValues(Ops, SL); 8619 } 8620 8621 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8622 /// the call being lowered. 8623 /// 8624 /// This is a helper for lowering intrinsics that follow a target calling 8625 /// convention or require stack pointer adjustment. Only a subset of the 8626 /// intrinsic's operands need to participate in the calling convention. 8627 void SelectionDAGBuilder::populateCallLoweringInfo( 8628 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8629 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8630 bool IsPatchPoint) { 8631 TargetLowering::ArgListTy Args; 8632 Args.reserve(NumArgs); 8633 8634 // Populate the argument list. 8635 // Attributes for args start at offset 1, after the return attribute. 8636 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8637 ArgI != ArgE; ++ArgI) { 8638 const Value *V = Call->getOperand(ArgI); 8639 8640 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8641 8642 TargetLowering::ArgListEntry Entry; 8643 Entry.Node = getValue(V); 8644 Entry.Ty = V->getType(); 8645 Entry.setAttributes(Call, ArgI); 8646 Args.push_back(Entry); 8647 } 8648 8649 CLI.setDebugLoc(getCurSDLoc()) 8650 .setChain(getRoot()) 8651 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8652 .setDiscardResult(Call->use_empty()) 8653 .setIsPatchPoint(IsPatchPoint); 8654 } 8655 8656 /// Add a stack map intrinsic call's live variable operands to a stackmap 8657 /// or patchpoint target node's operand list. 8658 /// 8659 /// Constants are converted to TargetConstants purely as an optimization to 8660 /// avoid constant materialization and register allocation. 8661 /// 8662 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8663 /// generate addess computation nodes, and so FinalizeISel can convert the 8664 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8665 /// address materialization and register allocation, but may also be required 8666 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8667 /// alloca in the entry block, then the runtime may assume that the alloca's 8668 /// StackMap location can be read immediately after compilation and that the 8669 /// location is valid at any point during execution (this is similar to the 8670 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8671 /// only available in a register, then the runtime would need to trap when 8672 /// execution reaches the StackMap in order to read the alloca's location. 8673 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8674 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8675 SelectionDAGBuilder &Builder) { 8676 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8677 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8678 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8679 Ops.push_back( 8680 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8681 Ops.push_back( 8682 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8683 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8684 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8685 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8686 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8687 } else 8688 Ops.push_back(OpVal); 8689 } 8690 } 8691 8692 /// Lower llvm.experimental.stackmap directly to its target opcode. 8693 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8694 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8695 // [live variables...]) 8696 8697 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8698 8699 SDValue Chain, InFlag, Callee, NullPtr; 8700 SmallVector<SDValue, 32> Ops; 8701 8702 SDLoc DL = getCurSDLoc(); 8703 Callee = getValue(CI.getCalledValue()); 8704 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8705 8706 // The stackmap intrinsic only records the live variables (the arguemnts 8707 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8708 // intrinsic, this won't be lowered to a function call. This means we don't 8709 // have to worry about calling conventions and target specific lowering code. 8710 // Instead we perform the call lowering right here. 8711 // 8712 // chain, flag = CALLSEQ_START(chain, 0, 0) 8713 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8714 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8715 // 8716 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8717 InFlag = Chain.getValue(1); 8718 8719 // Add the <id> and <numBytes> constants. 8720 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8721 Ops.push_back(DAG.getTargetConstant( 8722 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8723 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8724 Ops.push_back(DAG.getTargetConstant( 8725 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8726 MVT::i32)); 8727 8728 // Push live variables for the stack map. 8729 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8730 8731 // We are not pushing any register mask info here on the operands list, 8732 // because the stackmap doesn't clobber anything. 8733 8734 // Push the chain and the glue flag. 8735 Ops.push_back(Chain); 8736 Ops.push_back(InFlag); 8737 8738 // Create the STACKMAP node. 8739 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8740 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8741 Chain = SDValue(SM, 0); 8742 InFlag = Chain.getValue(1); 8743 8744 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8745 8746 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8747 8748 // Set the root to the target-lowered call chain. 8749 DAG.setRoot(Chain); 8750 8751 // Inform the Frame Information that we have a stackmap in this function. 8752 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8753 } 8754 8755 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8756 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8757 const BasicBlock *EHPadBB) { 8758 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8759 // i32 <numBytes>, 8760 // i8* <target>, 8761 // i32 <numArgs>, 8762 // [Args...], 8763 // [live variables...]) 8764 8765 CallingConv::ID CC = CS.getCallingConv(); 8766 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8767 bool HasDef = !CS->getType()->isVoidTy(); 8768 SDLoc dl = getCurSDLoc(); 8769 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8770 8771 // Handle immediate and symbolic callees. 8772 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8773 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8774 /*isTarget=*/true); 8775 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8776 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8777 SDLoc(SymbolicCallee), 8778 SymbolicCallee->getValueType(0)); 8779 8780 // Get the real number of arguments participating in the call <numArgs> 8781 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8782 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8783 8784 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8785 // Intrinsics include all meta-operands up to but not including CC. 8786 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8787 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8788 "Not enough arguments provided to the patchpoint intrinsic"); 8789 8790 // For AnyRegCC the arguments are lowered later on manually. 8791 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8792 Type *ReturnTy = 8793 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8794 8795 TargetLowering::CallLoweringInfo CLI(DAG); 8796 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8797 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8798 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8799 8800 SDNode *CallEnd = Result.second.getNode(); 8801 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8802 CallEnd = CallEnd->getOperand(0).getNode(); 8803 8804 /// Get a call instruction from the call sequence chain. 8805 /// Tail calls are not allowed. 8806 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8807 "Expected a callseq node."); 8808 SDNode *Call = CallEnd->getOperand(0).getNode(); 8809 bool HasGlue = Call->getGluedNode(); 8810 8811 // Replace the target specific call node with the patchable intrinsic. 8812 SmallVector<SDValue, 8> Ops; 8813 8814 // Add the <id> and <numBytes> constants. 8815 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8816 Ops.push_back(DAG.getTargetConstant( 8817 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8818 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8819 Ops.push_back(DAG.getTargetConstant( 8820 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8821 MVT::i32)); 8822 8823 // Add the callee. 8824 Ops.push_back(Callee); 8825 8826 // Adjust <numArgs> to account for any arguments that have been passed on the 8827 // stack instead. 8828 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8829 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8830 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8831 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8832 8833 // Add the calling convention 8834 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8835 8836 // Add the arguments we omitted previously. The register allocator should 8837 // place these in any free register. 8838 if (IsAnyRegCC) 8839 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8840 Ops.push_back(getValue(CS.getArgument(i))); 8841 8842 // Push the arguments from the call instruction up to the register mask. 8843 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8844 Ops.append(Call->op_begin() + 2, e); 8845 8846 // Push live variables for the stack map. 8847 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8848 8849 // Push the register mask info. 8850 if (HasGlue) 8851 Ops.push_back(*(Call->op_end()-2)); 8852 else 8853 Ops.push_back(*(Call->op_end()-1)); 8854 8855 // Push the chain (this is originally the first operand of the call, but 8856 // becomes now the last or second to last operand). 8857 Ops.push_back(*(Call->op_begin())); 8858 8859 // Push the glue flag (last operand). 8860 if (HasGlue) 8861 Ops.push_back(*(Call->op_end()-1)); 8862 8863 SDVTList NodeTys; 8864 if (IsAnyRegCC && HasDef) { 8865 // Create the return types based on the intrinsic definition 8866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8867 SmallVector<EVT, 3> ValueVTs; 8868 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8869 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8870 8871 // There is always a chain and a glue type at the end 8872 ValueVTs.push_back(MVT::Other); 8873 ValueVTs.push_back(MVT::Glue); 8874 NodeTys = DAG.getVTList(ValueVTs); 8875 } else 8876 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8877 8878 // Replace the target specific call node with a PATCHPOINT node. 8879 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8880 dl, NodeTys, Ops); 8881 8882 // Update the NodeMap. 8883 if (HasDef) { 8884 if (IsAnyRegCC) 8885 setValue(CS.getInstruction(), SDValue(MN, 0)); 8886 else 8887 setValue(CS.getInstruction(), Result.first); 8888 } 8889 8890 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8891 // call sequence. Furthermore the location of the chain and glue can change 8892 // when the AnyReg calling convention is used and the intrinsic returns a 8893 // value. 8894 if (IsAnyRegCC && HasDef) { 8895 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8896 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8897 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8898 } else 8899 DAG.ReplaceAllUsesWith(Call, MN); 8900 DAG.DeleteNode(Call); 8901 8902 // Inform the Frame Information that we have a patchpoint in this function. 8903 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8904 } 8905 8906 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8907 unsigned Intrinsic) { 8908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8909 SDValue Op1 = getValue(I.getArgOperand(0)); 8910 SDValue Op2; 8911 if (I.getNumArgOperands() > 1) 8912 Op2 = getValue(I.getArgOperand(1)); 8913 SDLoc dl = getCurSDLoc(); 8914 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8915 SDValue Res; 8916 FastMathFlags FMF; 8917 if (isa<FPMathOperator>(I)) 8918 FMF = I.getFastMathFlags(); 8919 8920 switch (Intrinsic) { 8921 case Intrinsic::experimental_vector_reduce_v2_fadd: 8922 if (FMF.allowReassoc()) 8923 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8924 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8925 else 8926 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8927 break; 8928 case Intrinsic::experimental_vector_reduce_v2_fmul: 8929 if (FMF.allowReassoc()) 8930 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8931 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8932 else 8933 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8934 break; 8935 case Intrinsic::experimental_vector_reduce_add: 8936 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8937 break; 8938 case Intrinsic::experimental_vector_reduce_mul: 8939 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8940 break; 8941 case Intrinsic::experimental_vector_reduce_and: 8942 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8943 break; 8944 case Intrinsic::experimental_vector_reduce_or: 8945 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8946 break; 8947 case Intrinsic::experimental_vector_reduce_xor: 8948 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8949 break; 8950 case Intrinsic::experimental_vector_reduce_smax: 8951 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8952 break; 8953 case Intrinsic::experimental_vector_reduce_smin: 8954 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8955 break; 8956 case Intrinsic::experimental_vector_reduce_umax: 8957 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8958 break; 8959 case Intrinsic::experimental_vector_reduce_umin: 8960 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8961 break; 8962 case Intrinsic::experimental_vector_reduce_fmax: 8963 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8964 break; 8965 case Intrinsic::experimental_vector_reduce_fmin: 8966 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8967 break; 8968 default: 8969 llvm_unreachable("Unhandled vector reduce intrinsic"); 8970 } 8971 setValue(&I, Res); 8972 } 8973 8974 /// Returns an AttributeList representing the attributes applied to the return 8975 /// value of the given call. 8976 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8977 SmallVector<Attribute::AttrKind, 2> Attrs; 8978 if (CLI.RetSExt) 8979 Attrs.push_back(Attribute::SExt); 8980 if (CLI.RetZExt) 8981 Attrs.push_back(Attribute::ZExt); 8982 if (CLI.IsInReg) 8983 Attrs.push_back(Attribute::InReg); 8984 8985 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8986 Attrs); 8987 } 8988 8989 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8990 /// implementation, which just calls LowerCall. 8991 /// FIXME: When all targets are 8992 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8993 std::pair<SDValue, SDValue> 8994 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8995 // Handle the incoming return values from the call. 8996 CLI.Ins.clear(); 8997 Type *OrigRetTy = CLI.RetTy; 8998 SmallVector<EVT, 4> RetTys; 8999 SmallVector<uint64_t, 4> Offsets; 9000 auto &DL = CLI.DAG.getDataLayout(); 9001 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9002 9003 if (CLI.IsPostTypeLegalization) { 9004 // If we are lowering a libcall after legalization, split the return type. 9005 SmallVector<EVT, 4> OldRetTys; 9006 SmallVector<uint64_t, 4> OldOffsets; 9007 RetTys.swap(OldRetTys); 9008 Offsets.swap(OldOffsets); 9009 9010 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9011 EVT RetVT = OldRetTys[i]; 9012 uint64_t Offset = OldOffsets[i]; 9013 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9014 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9015 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9016 RetTys.append(NumRegs, RegisterVT); 9017 for (unsigned j = 0; j != NumRegs; ++j) 9018 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9019 } 9020 } 9021 9022 SmallVector<ISD::OutputArg, 4> Outs; 9023 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9024 9025 bool CanLowerReturn = 9026 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9027 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9028 9029 SDValue DemoteStackSlot; 9030 int DemoteStackIdx = -100; 9031 if (!CanLowerReturn) { 9032 // FIXME: equivalent assert? 9033 // assert(!CS.hasInAllocaArgument() && 9034 // "sret demotion is incompatible with inalloca"); 9035 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9036 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9037 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9038 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9039 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9040 DL.getAllocaAddrSpace()); 9041 9042 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9043 ArgListEntry Entry; 9044 Entry.Node = DemoteStackSlot; 9045 Entry.Ty = StackSlotPtrType; 9046 Entry.IsSExt = false; 9047 Entry.IsZExt = false; 9048 Entry.IsInReg = false; 9049 Entry.IsSRet = true; 9050 Entry.IsNest = false; 9051 Entry.IsByVal = false; 9052 Entry.IsReturned = false; 9053 Entry.IsSwiftSelf = false; 9054 Entry.IsSwiftError = false; 9055 Entry.Alignment = Align; 9056 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9057 CLI.NumFixedArgs += 1; 9058 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9059 9060 // sret demotion isn't compatible with tail-calls, since the sret argument 9061 // points into the callers stack frame. 9062 CLI.IsTailCall = false; 9063 } else { 9064 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9065 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9066 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9067 ISD::ArgFlagsTy Flags; 9068 if (NeedsRegBlock) { 9069 Flags.setInConsecutiveRegs(); 9070 if (I == RetTys.size() - 1) 9071 Flags.setInConsecutiveRegsLast(); 9072 } 9073 EVT VT = RetTys[I]; 9074 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9075 CLI.CallConv, VT); 9076 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9077 CLI.CallConv, VT); 9078 for (unsigned i = 0; i != NumRegs; ++i) { 9079 ISD::InputArg MyFlags; 9080 MyFlags.Flags = Flags; 9081 MyFlags.VT = RegisterVT; 9082 MyFlags.ArgVT = VT; 9083 MyFlags.Used = CLI.IsReturnValueUsed; 9084 if (CLI.RetTy->isPointerTy()) { 9085 MyFlags.Flags.setPointer(); 9086 MyFlags.Flags.setPointerAddrSpace( 9087 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9088 } 9089 if (CLI.RetSExt) 9090 MyFlags.Flags.setSExt(); 9091 if (CLI.RetZExt) 9092 MyFlags.Flags.setZExt(); 9093 if (CLI.IsInReg) 9094 MyFlags.Flags.setInReg(); 9095 CLI.Ins.push_back(MyFlags); 9096 } 9097 } 9098 } 9099 9100 // We push in swifterror return as the last element of CLI.Ins. 9101 ArgListTy &Args = CLI.getArgs(); 9102 if (supportSwiftError()) { 9103 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9104 if (Args[i].IsSwiftError) { 9105 ISD::InputArg MyFlags; 9106 MyFlags.VT = getPointerTy(DL); 9107 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9108 MyFlags.Flags.setSwiftError(); 9109 CLI.Ins.push_back(MyFlags); 9110 } 9111 } 9112 } 9113 9114 // Handle all of the outgoing arguments. 9115 CLI.Outs.clear(); 9116 CLI.OutVals.clear(); 9117 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9118 SmallVector<EVT, 4> ValueVTs; 9119 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9120 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9121 Type *FinalType = Args[i].Ty; 9122 if (Args[i].IsByVal) 9123 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9124 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9125 FinalType, CLI.CallConv, CLI.IsVarArg); 9126 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9127 ++Value) { 9128 EVT VT = ValueVTs[Value]; 9129 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9130 SDValue Op = SDValue(Args[i].Node.getNode(), 9131 Args[i].Node.getResNo() + Value); 9132 ISD::ArgFlagsTy Flags; 9133 9134 // Certain targets (such as MIPS), may have a different ABI alignment 9135 // for a type depending on the context. Give the target a chance to 9136 // specify the alignment it wants. 9137 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9138 9139 if (Args[i].Ty->isPointerTy()) { 9140 Flags.setPointer(); 9141 Flags.setPointerAddrSpace( 9142 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9143 } 9144 if (Args[i].IsZExt) 9145 Flags.setZExt(); 9146 if (Args[i].IsSExt) 9147 Flags.setSExt(); 9148 if (Args[i].IsInReg) { 9149 // If we are using vectorcall calling convention, a structure that is 9150 // passed InReg - is surely an HVA 9151 if (CLI.CallConv == CallingConv::X86_VectorCall && 9152 isa<StructType>(FinalType)) { 9153 // The first value of a structure is marked 9154 if (0 == Value) 9155 Flags.setHvaStart(); 9156 Flags.setHva(); 9157 } 9158 // Set InReg Flag 9159 Flags.setInReg(); 9160 } 9161 if (Args[i].IsSRet) 9162 Flags.setSRet(); 9163 if (Args[i].IsSwiftSelf) 9164 Flags.setSwiftSelf(); 9165 if (Args[i].IsSwiftError) 9166 Flags.setSwiftError(); 9167 if (Args[i].IsByVal) 9168 Flags.setByVal(); 9169 if (Args[i].IsInAlloca) { 9170 Flags.setInAlloca(); 9171 // Set the byval flag for CCAssignFn callbacks that don't know about 9172 // inalloca. This way we can know how many bytes we should've allocated 9173 // and how many bytes a callee cleanup function will pop. If we port 9174 // inalloca to more targets, we'll have to add custom inalloca handling 9175 // in the various CC lowering callbacks. 9176 Flags.setByVal(); 9177 } 9178 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9179 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9180 Type *ElementTy = Ty->getElementType(); 9181 9182 unsigned FrameSize = DL.getTypeAllocSize( 9183 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9184 Flags.setByValSize(FrameSize); 9185 9186 // info is not there but there are cases it cannot get right. 9187 unsigned FrameAlign; 9188 if (Args[i].Alignment) 9189 FrameAlign = Args[i].Alignment; 9190 else 9191 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9192 Flags.setByValAlign(FrameAlign); 9193 } 9194 if (Args[i].IsNest) 9195 Flags.setNest(); 9196 if (NeedsRegBlock) 9197 Flags.setInConsecutiveRegs(); 9198 Flags.setOrigAlign(OriginalAlignment); 9199 9200 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9201 CLI.CallConv, VT); 9202 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9203 CLI.CallConv, VT); 9204 SmallVector<SDValue, 4> Parts(NumParts); 9205 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9206 9207 if (Args[i].IsSExt) 9208 ExtendKind = ISD::SIGN_EXTEND; 9209 else if (Args[i].IsZExt) 9210 ExtendKind = ISD::ZERO_EXTEND; 9211 9212 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9213 // for now. 9214 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9215 CanLowerReturn) { 9216 assert((CLI.RetTy == Args[i].Ty || 9217 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9218 CLI.RetTy->getPointerAddressSpace() == 9219 Args[i].Ty->getPointerAddressSpace())) && 9220 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9221 // Before passing 'returned' to the target lowering code, ensure that 9222 // either the register MVT and the actual EVT are the same size or that 9223 // the return value and argument are extended in the same way; in these 9224 // cases it's safe to pass the argument register value unchanged as the 9225 // return register value (although it's at the target's option whether 9226 // to do so) 9227 // TODO: allow code generation to take advantage of partially preserved 9228 // registers rather than clobbering the entire register when the 9229 // parameter extension method is not compatible with the return 9230 // extension method 9231 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9232 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9233 CLI.RetZExt == Args[i].IsZExt)) 9234 Flags.setReturned(); 9235 } 9236 9237 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9238 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9239 9240 for (unsigned j = 0; j != NumParts; ++j) { 9241 // if it isn't first piece, alignment must be 1 9242 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9243 i < CLI.NumFixedArgs, 9244 i, j*Parts[j].getValueType().getStoreSize()); 9245 if (NumParts > 1 && j == 0) 9246 MyFlags.Flags.setSplit(); 9247 else if (j != 0) { 9248 MyFlags.Flags.setOrigAlign(1); 9249 if (j == NumParts - 1) 9250 MyFlags.Flags.setSplitEnd(); 9251 } 9252 9253 CLI.Outs.push_back(MyFlags); 9254 CLI.OutVals.push_back(Parts[j]); 9255 } 9256 9257 if (NeedsRegBlock && Value == NumValues - 1) 9258 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9259 } 9260 } 9261 9262 SmallVector<SDValue, 4> InVals; 9263 CLI.Chain = LowerCall(CLI, InVals); 9264 9265 // Update CLI.InVals to use outside of this function. 9266 CLI.InVals = InVals; 9267 9268 // Verify that the target's LowerCall behaved as expected. 9269 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9270 "LowerCall didn't return a valid chain!"); 9271 assert((!CLI.IsTailCall || InVals.empty()) && 9272 "LowerCall emitted a return value for a tail call!"); 9273 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9274 "LowerCall didn't emit the correct number of values!"); 9275 9276 // For a tail call, the return value is merely live-out and there aren't 9277 // any nodes in the DAG representing it. Return a special value to 9278 // indicate that a tail call has been emitted and no more Instructions 9279 // should be processed in the current block. 9280 if (CLI.IsTailCall) { 9281 CLI.DAG.setRoot(CLI.Chain); 9282 return std::make_pair(SDValue(), SDValue()); 9283 } 9284 9285 #ifndef NDEBUG 9286 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9287 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9288 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9289 "LowerCall emitted a value with the wrong type!"); 9290 } 9291 #endif 9292 9293 SmallVector<SDValue, 4> ReturnValues; 9294 if (!CanLowerReturn) { 9295 // The instruction result is the result of loading from the 9296 // hidden sret parameter. 9297 SmallVector<EVT, 1> PVTs; 9298 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9299 9300 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9301 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9302 EVT PtrVT = PVTs[0]; 9303 9304 unsigned NumValues = RetTys.size(); 9305 ReturnValues.resize(NumValues); 9306 SmallVector<SDValue, 4> Chains(NumValues); 9307 9308 // An aggregate return value cannot wrap around the address space, so 9309 // offsets to its parts don't wrap either. 9310 SDNodeFlags Flags; 9311 Flags.setNoUnsignedWrap(true); 9312 9313 for (unsigned i = 0; i < NumValues; ++i) { 9314 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9315 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9316 PtrVT), Flags); 9317 SDValue L = CLI.DAG.getLoad( 9318 RetTys[i], CLI.DL, CLI.Chain, Add, 9319 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9320 DemoteStackIdx, Offsets[i]), 9321 /* Alignment = */ 1); 9322 ReturnValues[i] = L; 9323 Chains[i] = L.getValue(1); 9324 } 9325 9326 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9327 } else { 9328 // Collect the legal value parts into potentially illegal values 9329 // that correspond to the original function's return values. 9330 Optional<ISD::NodeType> AssertOp; 9331 if (CLI.RetSExt) 9332 AssertOp = ISD::AssertSext; 9333 else if (CLI.RetZExt) 9334 AssertOp = ISD::AssertZext; 9335 unsigned CurReg = 0; 9336 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9337 EVT VT = RetTys[I]; 9338 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9339 CLI.CallConv, VT); 9340 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9341 CLI.CallConv, VT); 9342 9343 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9344 NumRegs, RegisterVT, VT, nullptr, 9345 CLI.CallConv, AssertOp)); 9346 CurReg += NumRegs; 9347 } 9348 9349 // For a function returning void, there is no return value. We can't create 9350 // such a node, so we just return a null return value in that case. In 9351 // that case, nothing will actually look at the value. 9352 if (ReturnValues.empty()) 9353 return std::make_pair(SDValue(), CLI.Chain); 9354 } 9355 9356 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9357 CLI.DAG.getVTList(RetTys), ReturnValues); 9358 return std::make_pair(Res, CLI.Chain); 9359 } 9360 9361 void TargetLowering::LowerOperationWrapper(SDNode *N, 9362 SmallVectorImpl<SDValue> &Results, 9363 SelectionDAG &DAG) const { 9364 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9365 Results.push_back(Res); 9366 } 9367 9368 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9369 llvm_unreachable("LowerOperation not implemented for this target!"); 9370 } 9371 9372 void 9373 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9374 SDValue Op = getNonRegisterValue(V); 9375 assert((Op.getOpcode() != ISD::CopyFromReg || 9376 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9377 "Copy from a reg to the same reg!"); 9378 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9379 9380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9381 // If this is an InlineAsm we have to match the registers required, not the 9382 // notional registers required by the type. 9383 9384 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9385 None); // This is not an ABI copy. 9386 SDValue Chain = DAG.getEntryNode(); 9387 9388 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9389 FuncInfo.PreferredExtendType.end()) 9390 ? ISD::ANY_EXTEND 9391 : FuncInfo.PreferredExtendType[V]; 9392 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9393 PendingExports.push_back(Chain); 9394 } 9395 9396 #include "llvm/CodeGen/SelectionDAGISel.h" 9397 9398 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9399 /// entry block, return true. This includes arguments used by switches, since 9400 /// the switch may expand into multiple basic blocks. 9401 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9402 // With FastISel active, we may be splitting blocks, so force creation 9403 // of virtual registers for all non-dead arguments. 9404 if (FastISel) 9405 return A->use_empty(); 9406 9407 const BasicBlock &Entry = A->getParent()->front(); 9408 for (const User *U : A->users()) 9409 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9410 return false; // Use not in entry block. 9411 9412 return true; 9413 } 9414 9415 using ArgCopyElisionMapTy = 9416 DenseMap<const Argument *, 9417 std::pair<const AllocaInst *, const StoreInst *>>; 9418 9419 /// Scan the entry block of the function in FuncInfo for arguments that look 9420 /// like copies into a local alloca. Record any copied arguments in 9421 /// ArgCopyElisionCandidates. 9422 static void 9423 findArgumentCopyElisionCandidates(const DataLayout &DL, 9424 FunctionLoweringInfo *FuncInfo, 9425 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9426 // Record the state of every static alloca used in the entry block. Argument 9427 // allocas are all used in the entry block, so we need approximately as many 9428 // entries as we have arguments. 9429 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9430 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9431 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9432 StaticAllocas.reserve(NumArgs * 2); 9433 9434 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9435 if (!V) 9436 return nullptr; 9437 V = V->stripPointerCasts(); 9438 const auto *AI = dyn_cast<AllocaInst>(V); 9439 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9440 return nullptr; 9441 auto Iter = StaticAllocas.insert({AI, Unknown}); 9442 return &Iter.first->second; 9443 }; 9444 9445 // Look for stores of arguments to static allocas. Look through bitcasts and 9446 // GEPs to handle type coercions, as long as the alloca is fully initialized 9447 // by the store. Any non-store use of an alloca escapes it and any subsequent 9448 // unanalyzed store might write it. 9449 // FIXME: Handle structs initialized with multiple stores. 9450 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9451 // Look for stores, and handle non-store uses conservatively. 9452 const auto *SI = dyn_cast<StoreInst>(&I); 9453 if (!SI) { 9454 // We will look through cast uses, so ignore them completely. 9455 if (I.isCast()) 9456 continue; 9457 // Ignore debug info intrinsics, they don't escape or store to allocas. 9458 if (isa<DbgInfoIntrinsic>(I)) 9459 continue; 9460 // This is an unknown instruction. Assume it escapes or writes to all 9461 // static alloca operands. 9462 for (const Use &U : I.operands()) { 9463 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9464 *Info = StaticAllocaInfo::Clobbered; 9465 } 9466 continue; 9467 } 9468 9469 // If the stored value is a static alloca, mark it as escaped. 9470 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9471 *Info = StaticAllocaInfo::Clobbered; 9472 9473 // Check if the destination is a static alloca. 9474 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9475 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9476 if (!Info) 9477 continue; 9478 const AllocaInst *AI = cast<AllocaInst>(Dst); 9479 9480 // Skip allocas that have been initialized or clobbered. 9481 if (*Info != StaticAllocaInfo::Unknown) 9482 continue; 9483 9484 // Check if the stored value is an argument, and that this store fully 9485 // initializes the alloca. Don't elide copies from the same argument twice. 9486 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9487 const auto *Arg = dyn_cast<Argument>(Val); 9488 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9489 Arg->getType()->isEmptyTy() || 9490 DL.getTypeStoreSize(Arg->getType()) != 9491 DL.getTypeAllocSize(AI->getAllocatedType()) || 9492 ArgCopyElisionCandidates.count(Arg)) { 9493 *Info = StaticAllocaInfo::Clobbered; 9494 continue; 9495 } 9496 9497 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9498 << '\n'); 9499 9500 // Mark this alloca and store for argument copy elision. 9501 *Info = StaticAllocaInfo::Elidable; 9502 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9503 9504 // Stop scanning if we've seen all arguments. This will happen early in -O0 9505 // builds, which is useful, because -O0 builds have large entry blocks and 9506 // many allocas. 9507 if (ArgCopyElisionCandidates.size() == NumArgs) 9508 break; 9509 } 9510 } 9511 9512 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9513 /// ArgVal is a load from a suitable fixed stack object. 9514 static void tryToElideArgumentCopy( 9515 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9516 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9517 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9518 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9519 SDValue ArgVal, bool &ArgHasUses) { 9520 // Check if this is a load from a fixed stack object. 9521 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9522 if (!LNode) 9523 return; 9524 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9525 if (!FINode) 9526 return; 9527 9528 // Check that the fixed stack object is the right size and alignment. 9529 // Look at the alignment that the user wrote on the alloca instead of looking 9530 // at the stack object. 9531 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9532 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9533 const AllocaInst *AI = ArgCopyIter->second.first; 9534 int FixedIndex = FINode->getIndex(); 9535 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9536 int OldIndex = AllocaIndex; 9537 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9538 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9539 LLVM_DEBUG( 9540 dbgs() << " argument copy elision failed due to bad fixed stack " 9541 "object size\n"); 9542 return; 9543 } 9544 unsigned RequiredAlignment = AI->getAlignment(); 9545 if (!RequiredAlignment) { 9546 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9547 AI->getAllocatedType()); 9548 } 9549 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9550 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9551 "greater than stack argument alignment (" 9552 << RequiredAlignment << " vs " 9553 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9554 return; 9555 } 9556 9557 // Perform the elision. Delete the old stack object and replace its only use 9558 // in the variable info map. Mark the stack object as mutable. 9559 LLVM_DEBUG({ 9560 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9561 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9562 << '\n'; 9563 }); 9564 MFI.RemoveStackObject(OldIndex); 9565 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9566 AllocaIndex = FixedIndex; 9567 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9568 Chains.push_back(ArgVal.getValue(1)); 9569 9570 // Avoid emitting code for the store implementing the copy. 9571 const StoreInst *SI = ArgCopyIter->second.second; 9572 ElidedArgCopyInstrs.insert(SI); 9573 9574 // Check for uses of the argument again so that we can avoid exporting ArgVal 9575 // if it is't used by anything other than the store. 9576 for (const Value *U : Arg.users()) { 9577 if (U != SI) { 9578 ArgHasUses = true; 9579 break; 9580 } 9581 } 9582 } 9583 9584 void SelectionDAGISel::LowerArguments(const Function &F) { 9585 SelectionDAG &DAG = SDB->DAG; 9586 SDLoc dl = SDB->getCurSDLoc(); 9587 const DataLayout &DL = DAG.getDataLayout(); 9588 SmallVector<ISD::InputArg, 16> Ins; 9589 9590 if (!FuncInfo->CanLowerReturn) { 9591 // Put in an sret pointer parameter before all the other parameters. 9592 SmallVector<EVT, 1> ValueVTs; 9593 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9594 F.getReturnType()->getPointerTo( 9595 DAG.getDataLayout().getAllocaAddrSpace()), 9596 ValueVTs); 9597 9598 // NOTE: Assuming that a pointer will never break down to more than one VT 9599 // or one register. 9600 ISD::ArgFlagsTy Flags; 9601 Flags.setSRet(); 9602 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9603 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9604 ISD::InputArg::NoArgIndex, 0); 9605 Ins.push_back(RetArg); 9606 } 9607 9608 // Look for stores of arguments to static allocas. Mark such arguments with a 9609 // flag to ask the target to give us the memory location of that argument if 9610 // available. 9611 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9612 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9613 9614 // Set up the incoming argument description vector. 9615 for (const Argument &Arg : F.args()) { 9616 unsigned ArgNo = Arg.getArgNo(); 9617 SmallVector<EVT, 4> ValueVTs; 9618 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9619 bool isArgValueUsed = !Arg.use_empty(); 9620 unsigned PartBase = 0; 9621 Type *FinalType = Arg.getType(); 9622 if (Arg.hasAttribute(Attribute::ByVal)) 9623 FinalType = Arg.getParamByValType(); 9624 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9625 FinalType, F.getCallingConv(), F.isVarArg()); 9626 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9627 Value != NumValues; ++Value) { 9628 EVT VT = ValueVTs[Value]; 9629 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9630 ISD::ArgFlagsTy Flags; 9631 9632 // Certain targets (such as MIPS), may have a different ABI alignment 9633 // for a type depending on the context. Give the target a chance to 9634 // specify the alignment it wants. 9635 unsigned OriginalAlignment = 9636 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9637 9638 if (Arg.getType()->isPointerTy()) { 9639 Flags.setPointer(); 9640 Flags.setPointerAddrSpace( 9641 cast<PointerType>(Arg.getType())->getAddressSpace()); 9642 } 9643 if (Arg.hasAttribute(Attribute::ZExt)) 9644 Flags.setZExt(); 9645 if (Arg.hasAttribute(Attribute::SExt)) 9646 Flags.setSExt(); 9647 if (Arg.hasAttribute(Attribute::InReg)) { 9648 // If we are using vectorcall calling convention, a structure that is 9649 // passed InReg - is surely an HVA 9650 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9651 isa<StructType>(Arg.getType())) { 9652 // The first value of a structure is marked 9653 if (0 == Value) 9654 Flags.setHvaStart(); 9655 Flags.setHva(); 9656 } 9657 // Set InReg Flag 9658 Flags.setInReg(); 9659 } 9660 if (Arg.hasAttribute(Attribute::StructRet)) 9661 Flags.setSRet(); 9662 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9663 Flags.setSwiftSelf(); 9664 if (Arg.hasAttribute(Attribute::SwiftError)) 9665 Flags.setSwiftError(); 9666 if (Arg.hasAttribute(Attribute::ByVal)) 9667 Flags.setByVal(); 9668 if (Arg.hasAttribute(Attribute::InAlloca)) { 9669 Flags.setInAlloca(); 9670 // Set the byval flag for CCAssignFn callbacks that don't know about 9671 // inalloca. This way we can know how many bytes we should've allocated 9672 // and how many bytes a callee cleanup function will pop. If we port 9673 // inalloca to more targets, we'll have to add custom inalloca handling 9674 // in the various CC lowering callbacks. 9675 Flags.setByVal(); 9676 } 9677 if (F.getCallingConv() == CallingConv::X86_INTR) { 9678 // IA Interrupt passes frame (1st parameter) by value in the stack. 9679 if (ArgNo == 0) 9680 Flags.setByVal(); 9681 } 9682 if (Flags.isByVal() || Flags.isInAlloca()) { 9683 Type *ElementTy = Arg.getParamByValType(); 9684 9685 // For ByVal, size and alignment should be passed from FE. BE will 9686 // guess if this info is not there but there are cases it cannot get 9687 // right. 9688 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9689 Flags.setByValSize(FrameSize); 9690 9691 unsigned FrameAlign; 9692 if (Arg.getParamAlignment()) 9693 FrameAlign = Arg.getParamAlignment(); 9694 else 9695 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9696 Flags.setByValAlign(FrameAlign); 9697 } 9698 if (Arg.hasAttribute(Attribute::Nest)) 9699 Flags.setNest(); 9700 if (NeedsRegBlock) 9701 Flags.setInConsecutiveRegs(); 9702 Flags.setOrigAlign(OriginalAlignment); 9703 if (ArgCopyElisionCandidates.count(&Arg)) 9704 Flags.setCopyElisionCandidate(); 9705 if (Arg.hasAttribute(Attribute::Returned)) 9706 Flags.setReturned(); 9707 9708 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9709 *CurDAG->getContext(), F.getCallingConv(), VT); 9710 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9711 *CurDAG->getContext(), F.getCallingConv(), VT); 9712 for (unsigned i = 0; i != NumRegs; ++i) { 9713 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9714 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9715 if (NumRegs > 1 && i == 0) 9716 MyFlags.Flags.setSplit(); 9717 // if it isn't first piece, alignment must be 1 9718 else if (i > 0) { 9719 MyFlags.Flags.setOrigAlign(1); 9720 if (i == NumRegs - 1) 9721 MyFlags.Flags.setSplitEnd(); 9722 } 9723 Ins.push_back(MyFlags); 9724 } 9725 if (NeedsRegBlock && Value == NumValues - 1) 9726 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9727 PartBase += VT.getStoreSize(); 9728 } 9729 } 9730 9731 // Call the target to set up the argument values. 9732 SmallVector<SDValue, 8> InVals; 9733 SDValue NewRoot = TLI->LowerFormalArguments( 9734 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9735 9736 // Verify that the target's LowerFormalArguments behaved as expected. 9737 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9738 "LowerFormalArguments didn't return a valid chain!"); 9739 assert(InVals.size() == Ins.size() && 9740 "LowerFormalArguments didn't emit the correct number of values!"); 9741 LLVM_DEBUG({ 9742 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9743 assert(InVals[i].getNode() && 9744 "LowerFormalArguments emitted a null value!"); 9745 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9746 "LowerFormalArguments emitted a value with the wrong type!"); 9747 } 9748 }); 9749 9750 // Update the DAG with the new chain value resulting from argument lowering. 9751 DAG.setRoot(NewRoot); 9752 9753 // Set up the argument values. 9754 unsigned i = 0; 9755 if (!FuncInfo->CanLowerReturn) { 9756 // Create a virtual register for the sret pointer, and put in a copy 9757 // from the sret argument into it. 9758 SmallVector<EVT, 1> ValueVTs; 9759 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9760 F.getReturnType()->getPointerTo( 9761 DAG.getDataLayout().getAllocaAddrSpace()), 9762 ValueVTs); 9763 MVT VT = ValueVTs[0].getSimpleVT(); 9764 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9765 Optional<ISD::NodeType> AssertOp = None; 9766 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9767 nullptr, F.getCallingConv(), AssertOp); 9768 9769 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9770 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9771 Register SRetReg = 9772 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9773 FuncInfo->DemoteRegister = SRetReg; 9774 NewRoot = 9775 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9776 DAG.setRoot(NewRoot); 9777 9778 // i indexes lowered arguments. Bump it past the hidden sret argument. 9779 ++i; 9780 } 9781 9782 SmallVector<SDValue, 4> Chains; 9783 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9784 for (const Argument &Arg : F.args()) { 9785 SmallVector<SDValue, 4> ArgValues; 9786 SmallVector<EVT, 4> ValueVTs; 9787 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9788 unsigned NumValues = ValueVTs.size(); 9789 if (NumValues == 0) 9790 continue; 9791 9792 bool ArgHasUses = !Arg.use_empty(); 9793 9794 // Elide the copying store if the target loaded this argument from a 9795 // suitable fixed stack object. 9796 if (Ins[i].Flags.isCopyElisionCandidate()) { 9797 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9798 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9799 InVals[i], ArgHasUses); 9800 } 9801 9802 // If this argument is unused then remember its value. It is used to generate 9803 // debugging information. 9804 bool isSwiftErrorArg = 9805 TLI->supportSwiftError() && 9806 Arg.hasAttribute(Attribute::SwiftError); 9807 if (!ArgHasUses && !isSwiftErrorArg) { 9808 SDB->setUnusedArgValue(&Arg, InVals[i]); 9809 9810 // Also remember any frame index for use in FastISel. 9811 if (FrameIndexSDNode *FI = 9812 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9813 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9814 } 9815 9816 for (unsigned Val = 0; Val != NumValues; ++Val) { 9817 EVT VT = ValueVTs[Val]; 9818 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9819 F.getCallingConv(), VT); 9820 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9821 *CurDAG->getContext(), F.getCallingConv(), VT); 9822 9823 // Even an apparant 'unused' swifterror argument needs to be returned. So 9824 // we do generate a copy for it that can be used on return from the 9825 // function. 9826 if (ArgHasUses || isSwiftErrorArg) { 9827 Optional<ISD::NodeType> AssertOp; 9828 if (Arg.hasAttribute(Attribute::SExt)) 9829 AssertOp = ISD::AssertSext; 9830 else if (Arg.hasAttribute(Attribute::ZExt)) 9831 AssertOp = ISD::AssertZext; 9832 9833 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9834 PartVT, VT, nullptr, 9835 F.getCallingConv(), AssertOp)); 9836 } 9837 9838 i += NumParts; 9839 } 9840 9841 // We don't need to do anything else for unused arguments. 9842 if (ArgValues.empty()) 9843 continue; 9844 9845 // Note down frame index. 9846 if (FrameIndexSDNode *FI = 9847 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9848 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9849 9850 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9851 SDB->getCurSDLoc()); 9852 9853 SDB->setValue(&Arg, Res); 9854 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9855 // We want to associate the argument with the frame index, among 9856 // involved operands, that correspond to the lowest address. The 9857 // getCopyFromParts function, called earlier, is swapping the order of 9858 // the operands to BUILD_PAIR depending on endianness. The result of 9859 // that swapping is that the least significant bits of the argument will 9860 // be in the first operand of the BUILD_PAIR node, and the most 9861 // significant bits will be in the second operand. 9862 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9863 if (LoadSDNode *LNode = 9864 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9865 if (FrameIndexSDNode *FI = 9866 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9867 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9868 } 9869 9870 // Analyses past this point are naive and don't expect an assertion. 9871 if (Res.getOpcode() == ISD::AssertZext) 9872 Res = Res.getOperand(0); 9873 9874 // Update the SwiftErrorVRegDefMap. 9875 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9876 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9877 if (Register::isVirtualRegister(Reg)) 9878 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9879 Reg); 9880 } 9881 9882 // If this argument is live outside of the entry block, insert a copy from 9883 // wherever we got it to the vreg that other BB's will reference it as. 9884 if (Res.getOpcode() == ISD::CopyFromReg) { 9885 // If we can, though, try to skip creating an unnecessary vreg. 9886 // FIXME: This isn't very clean... it would be nice to make this more 9887 // general. 9888 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9889 if (Register::isVirtualRegister(Reg)) { 9890 FuncInfo->ValueMap[&Arg] = Reg; 9891 continue; 9892 } 9893 } 9894 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9895 FuncInfo->InitializeRegForValue(&Arg); 9896 SDB->CopyToExportRegsIfNeeded(&Arg); 9897 } 9898 } 9899 9900 if (!Chains.empty()) { 9901 Chains.push_back(NewRoot); 9902 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9903 } 9904 9905 DAG.setRoot(NewRoot); 9906 9907 assert(i == InVals.size() && "Argument register count mismatch!"); 9908 9909 // If any argument copy elisions occurred and we have debug info, update the 9910 // stale frame indices used in the dbg.declare variable info table. 9911 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9912 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9913 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9914 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9915 if (I != ArgCopyElisionFrameIndexMap.end()) 9916 VI.Slot = I->second; 9917 } 9918 } 9919 9920 // Finally, if the target has anything special to do, allow it to do so. 9921 EmitFunctionEntryCode(); 9922 } 9923 9924 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9925 /// ensure constants are generated when needed. Remember the virtual registers 9926 /// that need to be added to the Machine PHI nodes as input. We cannot just 9927 /// directly add them, because expansion might result in multiple MBB's for one 9928 /// BB. As such, the start of the BB might correspond to a different MBB than 9929 /// the end. 9930 void 9931 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9932 const Instruction *TI = LLVMBB->getTerminator(); 9933 9934 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9935 9936 // Check PHI nodes in successors that expect a value to be available from this 9937 // block. 9938 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9939 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9940 if (!isa<PHINode>(SuccBB->begin())) continue; 9941 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9942 9943 // If this terminator has multiple identical successors (common for 9944 // switches), only handle each succ once. 9945 if (!SuccsHandled.insert(SuccMBB).second) 9946 continue; 9947 9948 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9949 9950 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9951 // nodes and Machine PHI nodes, but the incoming operands have not been 9952 // emitted yet. 9953 for (const PHINode &PN : SuccBB->phis()) { 9954 // Ignore dead phi's. 9955 if (PN.use_empty()) 9956 continue; 9957 9958 // Skip empty types 9959 if (PN.getType()->isEmptyTy()) 9960 continue; 9961 9962 unsigned Reg; 9963 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9964 9965 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9966 unsigned &RegOut = ConstantsOut[C]; 9967 if (RegOut == 0) { 9968 RegOut = FuncInfo.CreateRegs(C); 9969 CopyValueToVirtualRegister(C, RegOut); 9970 } 9971 Reg = RegOut; 9972 } else { 9973 DenseMap<const Value *, unsigned>::iterator I = 9974 FuncInfo.ValueMap.find(PHIOp); 9975 if (I != FuncInfo.ValueMap.end()) 9976 Reg = I->second; 9977 else { 9978 assert(isa<AllocaInst>(PHIOp) && 9979 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9980 "Didn't codegen value into a register!??"); 9981 Reg = FuncInfo.CreateRegs(PHIOp); 9982 CopyValueToVirtualRegister(PHIOp, Reg); 9983 } 9984 } 9985 9986 // Remember that this register needs to added to the machine PHI node as 9987 // the input for this MBB. 9988 SmallVector<EVT, 4> ValueVTs; 9989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9990 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9991 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9992 EVT VT = ValueVTs[vti]; 9993 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9994 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9995 FuncInfo.PHINodesToUpdate.push_back( 9996 std::make_pair(&*MBBI++, Reg + i)); 9997 Reg += NumRegisters; 9998 } 9999 } 10000 } 10001 10002 ConstantsOut.clear(); 10003 } 10004 10005 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10006 /// is 0. 10007 MachineBasicBlock * 10008 SelectionDAGBuilder::StackProtectorDescriptor:: 10009 AddSuccessorMBB(const BasicBlock *BB, 10010 MachineBasicBlock *ParentMBB, 10011 bool IsLikely, 10012 MachineBasicBlock *SuccMBB) { 10013 // If SuccBB has not been created yet, create it. 10014 if (!SuccMBB) { 10015 MachineFunction *MF = ParentMBB->getParent(); 10016 MachineFunction::iterator BBI(ParentMBB); 10017 SuccMBB = MF->CreateMachineBasicBlock(BB); 10018 MF->insert(++BBI, SuccMBB); 10019 } 10020 // Add it as a successor of ParentMBB. 10021 ParentMBB->addSuccessor( 10022 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10023 return SuccMBB; 10024 } 10025 10026 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10027 MachineFunction::iterator I(MBB); 10028 if (++I == FuncInfo.MF->end()) 10029 return nullptr; 10030 return &*I; 10031 } 10032 10033 /// During lowering new call nodes can be created (such as memset, etc.). 10034 /// Those will become new roots of the current DAG, but complications arise 10035 /// when they are tail calls. In such cases, the call lowering will update 10036 /// the root, but the builder still needs to know that a tail call has been 10037 /// lowered in order to avoid generating an additional return. 10038 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10039 // If the node is null, we do have a tail call. 10040 if (MaybeTC.getNode() != nullptr) 10041 DAG.setRoot(MaybeTC); 10042 else 10043 HasTailCall = true; 10044 } 10045 10046 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10047 MachineBasicBlock *SwitchMBB, 10048 MachineBasicBlock *DefaultMBB) { 10049 MachineFunction *CurMF = FuncInfo.MF; 10050 MachineBasicBlock *NextMBB = nullptr; 10051 MachineFunction::iterator BBI(W.MBB); 10052 if (++BBI != FuncInfo.MF->end()) 10053 NextMBB = &*BBI; 10054 10055 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10056 10057 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10058 10059 if (Size == 2 && W.MBB == SwitchMBB) { 10060 // If any two of the cases has the same destination, and if one value 10061 // is the same as the other, but has one bit unset that the other has set, 10062 // use bit manipulation to do two compares at once. For example: 10063 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10064 // TODO: This could be extended to merge any 2 cases in switches with 3 10065 // cases. 10066 // TODO: Handle cases where W.CaseBB != SwitchBB. 10067 CaseCluster &Small = *W.FirstCluster; 10068 CaseCluster &Big = *W.LastCluster; 10069 10070 if (Small.Low == Small.High && Big.Low == Big.High && 10071 Small.MBB == Big.MBB) { 10072 const APInt &SmallValue = Small.Low->getValue(); 10073 const APInt &BigValue = Big.Low->getValue(); 10074 10075 // Check that there is only one bit different. 10076 APInt CommonBit = BigValue ^ SmallValue; 10077 if (CommonBit.isPowerOf2()) { 10078 SDValue CondLHS = getValue(Cond); 10079 EVT VT = CondLHS.getValueType(); 10080 SDLoc DL = getCurSDLoc(); 10081 10082 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10083 DAG.getConstant(CommonBit, DL, VT)); 10084 SDValue Cond = DAG.getSetCC( 10085 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10086 ISD::SETEQ); 10087 10088 // Update successor info. 10089 // Both Small and Big will jump to Small.BB, so we sum up the 10090 // probabilities. 10091 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10092 if (BPI) 10093 addSuccessorWithProb( 10094 SwitchMBB, DefaultMBB, 10095 // The default destination is the first successor in IR. 10096 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10097 else 10098 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10099 10100 // Insert the true branch. 10101 SDValue BrCond = 10102 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10103 DAG.getBasicBlock(Small.MBB)); 10104 // Insert the false branch. 10105 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10106 DAG.getBasicBlock(DefaultMBB)); 10107 10108 DAG.setRoot(BrCond); 10109 return; 10110 } 10111 } 10112 } 10113 10114 if (TM.getOptLevel() != CodeGenOpt::None) { 10115 // Here, we order cases by probability so the most likely case will be 10116 // checked first. However, two clusters can have the same probability in 10117 // which case their relative ordering is non-deterministic. So we use Low 10118 // as a tie-breaker as clusters are guaranteed to never overlap. 10119 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10120 [](const CaseCluster &a, const CaseCluster &b) { 10121 return a.Prob != b.Prob ? 10122 a.Prob > b.Prob : 10123 a.Low->getValue().slt(b.Low->getValue()); 10124 }); 10125 10126 // Rearrange the case blocks so that the last one falls through if possible 10127 // without changing the order of probabilities. 10128 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10129 --I; 10130 if (I->Prob > W.LastCluster->Prob) 10131 break; 10132 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10133 std::swap(*I, *W.LastCluster); 10134 break; 10135 } 10136 } 10137 } 10138 10139 // Compute total probability. 10140 BranchProbability DefaultProb = W.DefaultProb; 10141 BranchProbability UnhandledProbs = DefaultProb; 10142 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10143 UnhandledProbs += I->Prob; 10144 10145 MachineBasicBlock *CurMBB = W.MBB; 10146 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10147 bool FallthroughUnreachable = false; 10148 MachineBasicBlock *Fallthrough; 10149 if (I == W.LastCluster) { 10150 // For the last cluster, fall through to the default destination. 10151 Fallthrough = DefaultMBB; 10152 FallthroughUnreachable = isa<UnreachableInst>( 10153 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10154 } else { 10155 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10156 CurMF->insert(BBI, Fallthrough); 10157 // Put Cond in a virtual register to make it available from the new blocks. 10158 ExportFromCurrentBlock(Cond); 10159 } 10160 UnhandledProbs -= I->Prob; 10161 10162 switch (I->Kind) { 10163 case CC_JumpTable: { 10164 // FIXME: Optimize away range check based on pivot comparisons. 10165 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10166 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10167 10168 // The jump block hasn't been inserted yet; insert it here. 10169 MachineBasicBlock *JumpMBB = JT->MBB; 10170 CurMF->insert(BBI, JumpMBB); 10171 10172 auto JumpProb = I->Prob; 10173 auto FallthroughProb = UnhandledProbs; 10174 10175 // If the default statement is a target of the jump table, we evenly 10176 // distribute the default probability to successors of CurMBB. Also 10177 // update the probability on the edge from JumpMBB to Fallthrough. 10178 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10179 SE = JumpMBB->succ_end(); 10180 SI != SE; ++SI) { 10181 if (*SI == DefaultMBB) { 10182 JumpProb += DefaultProb / 2; 10183 FallthroughProb -= DefaultProb / 2; 10184 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10185 JumpMBB->normalizeSuccProbs(); 10186 break; 10187 } 10188 } 10189 10190 if (FallthroughUnreachable) { 10191 // Skip the range check if the fallthrough block is unreachable. 10192 JTH->OmitRangeCheck = true; 10193 } 10194 10195 if (!JTH->OmitRangeCheck) 10196 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10197 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10198 CurMBB->normalizeSuccProbs(); 10199 10200 // The jump table header will be inserted in our current block, do the 10201 // range check, and fall through to our fallthrough block. 10202 JTH->HeaderBB = CurMBB; 10203 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10204 10205 // If we're in the right place, emit the jump table header right now. 10206 if (CurMBB == SwitchMBB) { 10207 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10208 JTH->Emitted = true; 10209 } 10210 break; 10211 } 10212 case CC_BitTests: { 10213 // FIXME: If Fallthrough is unreachable, skip the range check. 10214 10215 // FIXME: Optimize away range check based on pivot comparisons. 10216 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10217 10218 // The bit test blocks haven't been inserted yet; insert them here. 10219 for (BitTestCase &BTC : BTB->Cases) 10220 CurMF->insert(BBI, BTC.ThisBB); 10221 10222 // Fill in fields of the BitTestBlock. 10223 BTB->Parent = CurMBB; 10224 BTB->Default = Fallthrough; 10225 10226 BTB->DefaultProb = UnhandledProbs; 10227 // If the cases in bit test don't form a contiguous range, we evenly 10228 // distribute the probability on the edge to Fallthrough to two 10229 // successors of CurMBB. 10230 if (!BTB->ContiguousRange) { 10231 BTB->Prob += DefaultProb / 2; 10232 BTB->DefaultProb -= DefaultProb / 2; 10233 } 10234 10235 // If we're in the right place, emit the bit test header right now. 10236 if (CurMBB == SwitchMBB) { 10237 visitBitTestHeader(*BTB, SwitchMBB); 10238 BTB->Emitted = true; 10239 } 10240 break; 10241 } 10242 case CC_Range: { 10243 const Value *RHS, *LHS, *MHS; 10244 ISD::CondCode CC; 10245 if (I->Low == I->High) { 10246 // Check Cond == I->Low. 10247 CC = ISD::SETEQ; 10248 LHS = Cond; 10249 RHS=I->Low; 10250 MHS = nullptr; 10251 } else { 10252 // Check I->Low <= Cond <= I->High. 10253 CC = ISD::SETLE; 10254 LHS = I->Low; 10255 MHS = Cond; 10256 RHS = I->High; 10257 } 10258 10259 // If Fallthrough is unreachable, fold away the comparison. 10260 if (FallthroughUnreachable) 10261 CC = ISD::SETTRUE; 10262 10263 // The false probability is the sum of all unhandled cases. 10264 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10265 getCurSDLoc(), I->Prob, UnhandledProbs); 10266 10267 if (CurMBB == SwitchMBB) 10268 visitSwitchCase(CB, SwitchMBB); 10269 else 10270 SL->SwitchCases.push_back(CB); 10271 10272 break; 10273 } 10274 } 10275 CurMBB = Fallthrough; 10276 } 10277 } 10278 10279 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10280 CaseClusterIt First, 10281 CaseClusterIt Last) { 10282 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10283 if (X.Prob != CC.Prob) 10284 return X.Prob > CC.Prob; 10285 10286 // Ties are broken by comparing the case value. 10287 return X.Low->getValue().slt(CC.Low->getValue()); 10288 }); 10289 } 10290 10291 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10292 const SwitchWorkListItem &W, 10293 Value *Cond, 10294 MachineBasicBlock *SwitchMBB) { 10295 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10296 "Clusters not sorted?"); 10297 10298 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10299 10300 // Balance the tree based on branch probabilities to create a near-optimal (in 10301 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10302 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10303 CaseClusterIt LastLeft = W.FirstCluster; 10304 CaseClusterIt FirstRight = W.LastCluster; 10305 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10306 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10307 10308 // Move LastLeft and FirstRight towards each other from opposite directions to 10309 // find a partitioning of the clusters which balances the probability on both 10310 // sides. If LeftProb and RightProb are equal, alternate which side is 10311 // taken to ensure 0-probability nodes are distributed evenly. 10312 unsigned I = 0; 10313 while (LastLeft + 1 < FirstRight) { 10314 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10315 LeftProb += (++LastLeft)->Prob; 10316 else 10317 RightProb += (--FirstRight)->Prob; 10318 I++; 10319 } 10320 10321 while (true) { 10322 // Our binary search tree differs from a typical BST in that ours can have up 10323 // to three values in each leaf. The pivot selection above doesn't take that 10324 // into account, which means the tree might require more nodes and be less 10325 // efficient. We compensate for this here. 10326 10327 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10328 unsigned NumRight = W.LastCluster - FirstRight + 1; 10329 10330 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10331 // If one side has less than 3 clusters, and the other has more than 3, 10332 // consider taking a cluster from the other side. 10333 10334 if (NumLeft < NumRight) { 10335 // Consider moving the first cluster on the right to the left side. 10336 CaseCluster &CC = *FirstRight; 10337 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10338 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10339 if (LeftSideRank <= RightSideRank) { 10340 // Moving the cluster to the left does not demote it. 10341 ++LastLeft; 10342 ++FirstRight; 10343 continue; 10344 } 10345 } else { 10346 assert(NumRight < NumLeft); 10347 // Consider moving the last element on the left to the right side. 10348 CaseCluster &CC = *LastLeft; 10349 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10350 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10351 if (RightSideRank <= LeftSideRank) { 10352 // Moving the cluster to the right does not demot it. 10353 --LastLeft; 10354 --FirstRight; 10355 continue; 10356 } 10357 } 10358 } 10359 break; 10360 } 10361 10362 assert(LastLeft + 1 == FirstRight); 10363 assert(LastLeft >= W.FirstCluster); 10364 assert(FirstRight <= W.LastCluster); 10365 10366 // Use the first element on the right as pivot since we will make less-than 10367 // comparisons against it. 10368 CaseClusterIt PivotCluster = FirstRight; 10369 assert(PivotCluster > W.FirstCluster); 10370 assert(PivotCluster <= W.LastCluster); 10371 10372 CaseClusterIt FirstLeft = W.FirstCluster; 10373 CaseClusterIt LastRight = W.LastCluster; 10374 10375 const ConstantInt *Pivot = PivotCluster->Low; 10376 10377 // New blocks will be inserted immediately after the current one. 10378 MachineFunction::iterator BBI(W.MBB); 10379 ++BBI; 10380 10381 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10382 // we can branch to its destination directly if it's squeezed exactly in 10383 // between the known lower bound and Pivot - 1. 10384 MachineBasicBlock *LeftMBB; 10385 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10386 FirstLeft->Low == W.GE && 10387 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10388 LeftMBB = FirstLeft->MBB; 10389 } else { 10390 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10391 FuncInfo.MF->insert(BBI, LeftMBB); 10392 WorkList.push_back( 10393 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10394 // Put Cond in a virtual register to make it available from the new blocks. 10395 ExportFromCurrentBlock(Cond); 10396 } 10397 10398 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10399 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10400 // directly if RHS.High equals the current upper bound. 10401 MachineBasicBlock *RightMBB; 10402 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10403 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10404 RightMBB = FirstRight->MBB; 10405 } else { 10406 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10407 FuncInfo.MF->insert(BBI, RightMBB); 10408 WorkList.push_back( 10409 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10410 // Put Cond in a virtual register to make it available from the new blocks. 10411 ExportFromCurrentBlock(Cond); 10412 } 10413 10414 // Create the CaseBlock record that will be used to lower the branch. 10415 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10416 getCurSDLoc(), LeftProb, RightProb); 10417 10418 if (W.MBB == SwitchMBB) 10419 visitSwitchCase(CB, SwitchMBB); 10420 else 10421 SL->SwitchCases.push_back(CB); 10422 } 10423 10424 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10425 // from the swith statement. 10426 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10427 BranchProbability PeeledCaseProb) { 10428 if (PeeledCaseProb == BranchProbability::getOne()) 10429 return BranchProbability::getZero(); 10430 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10431 10432 uint32_t Numerator = CaseProb.getNumerator(); 10433 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10434 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10435 } 10436 10437 // Try to peel the top probability case if it exceeds the threshold. 10438 // Return current MachineBasicBlock for the switch statement if the peeling 10439 // does not occur. 10440 // If the peeling is performed, return the newly created MachineBasicBlock 10441 // for the peeled switch statement. Also update Clusters to remove the peeled 10442 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10443 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10444 const SwitchInst &SI, CaseClusterVector &Clusters, 10445 BranchProbability &PeeledCaseProb) { 10446 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10447 // Don't perform if there is only one cluster or optimizing for size. 10448 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10449 TM.getOptLevel() == CodeGenOpt::None || 10450 SwitchMBB->getParent()->getFunction().hasMinSize()) 10451 return SwitchMBB; 10452 10453 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10454 unsigned PeeledCaseIndex = 0; 10455 bool SwitchPeeled = false; 10456 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10457 CaseCluster &CC = Clusters[Index]; 10458 if (CC.Prob < TopCaseProb) 10459 continue; 10460 TopCaseProb = CC.Prob; 10461 PeeledCaseIndex = Index; 10462 SwitchPeeled = true; 10463 } 10464 if (!SwitchPeeled) 10465 return SwitchMBB; 10466 10467 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10468 << TopCaseProb << "\n"); 10469 10470 // Record the MBB for the peeled switch statement. 10471 MachineFunction::iterator BBI(SwitchMBB); 10472 ++BBI; 10473 MachineBasicBlock *PeeledSwitchMBB = 10474 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10475 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10476 10477 ExportFromCurrentBlock(SI.getCondition()); 10478 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10479 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10480 nullptr, nullptr, TopCaseProb.getCompl()}; 10481 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10482 10483 Clusters.erase(PeeledCaseIt); 10484 for (CaseCluster &CC : Clusters) { 10485 LLVM_DEBUG( 10486 dbgs() << "Scale the probablity for one cluster, before scaling: " 10487 << CC.Prob << "\n"); 10488 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10489 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10490 } 10491 PeeledCaseProb = TopCaseProb; 10492 return PeeledSwitchMBB; 10493 } 10494 10495 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10496 // Extract cases from the switch. 10497 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10498 CaseClusterVector Clusters; 10499 Clusters.reserve(SI.getNumCases()); 10500 for (auto I : SI.cases()) { 10501 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10502 const ConstantInt *CaseVal = I.getCaseValue(); 10503 BranchProbability Prob = 10504 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10505 : BranchProbability(1, SI.getNumCases() + 1); 10506 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10507 } 10508 10509 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10510 10511 // Cluster adjacent cases with the same destination. We do this at all 10512 // optimization levels because it's cheap to do and will make codegen faster 10513 // if there are many clusters. 10514 sortAndRangeify(Clusters); 10515 10516 // The branch probablity of the peeled case. 10517 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10518 MachineBasicBlock *PeeledSwitchMBB = 10519 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10520 10521 // If there is only the default destination, jump there directly. 10522 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10523 if (Clusters.empty()) { 10524 assert(PeeledSwitchMBB == SwitchMBB); 10525 SwitchMBB->addSuccessor(DefaultMBB); 10526 if (DefaultMBB != NextBlock(SwitchMBB)) { 10527 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10528 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10529 } 10530 return; 10531 } 10532 10533 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10534 SL->findBitTestClusters(Clusters, &SI); 10535 10536 LLVM_DEBUG({ 10537 dbgs() << "Case clusters: "; 10538 for (const CaseCluster &C : Clusters) { 10539 if (C.Kind == CC_JumpTable) 10540 dbgs() << "JT:"; 10541 if (C.Kind == CC_BitTests) 10542 dbgs() << "BT:"; 10543 10544 C.Low->getValue().print(dbgs(), true); 10545 if (C.Low != C.High) { 10546 dbgs() << '-'; 10547 C.High->getValue().print(dbgs(), true); 10548 } 10549 dbgs() << ' '; 10550 } 10551 dbgs() << '\n'; 10552 }); 10553 10554 assert(!Clusters.empty()); 10555 SwitchWorkList WorkList; 10556 CaseClusterIt First = Clusters.begin(); 10557 CaseClusterIt Last = Clusters.end() - 1; 10558 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10559 // Scale the branchprobability for DefaultMBB if the peel occurs and 10560 // DefaultMBB is not replaced. 10561 if (PeeledCaseProb != BranchProbability::getZero() && 10562 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10563 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10564 WorkList.push_back( 10565 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10566 10567 while (!WorkList.empty()) { 10568 SwitchWorkListItem W = WorkList.back(); 10569 WorkList.pop_back(); 10570 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10571 10572 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10573 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10574 // For optimized builds, lower large range as a balanced binary tree. 10575 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10576 continue; 10577 } 10578 10579 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10580 } 10581 } 10582