1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // prevent DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach, and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (TLI.isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 168 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 169 TLI.getPointerTy())); 170 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 171 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 172 } 173 } else if (PartVT.isFloatingPoint()) { 174 // FP split into multiple FP parts (for ppcf128) 175 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 176 "Unexpected split"); 177 SDValue Lo, Hi; 178 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 179 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 180 if (TLI.hasBigEndianPartOrdering(ValueVT)) 181 std::swap(Lo, Hi); 182 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 183 } else { 184 // FP split into integer parts (soft fp) 185 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 186 !PartVT.isVector() && "Unexpected split"); 187 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 188 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 189 } 190 } 191 192 // There is now one part, held in Val. Correct it to match ValueVT. 193 EVT PartEVT = Val.getValueType(); 194 195 if (PartEVT == ValueVT) 196 return Val; 197 198 if (PartEVT.isInteger() && ValueVT.isInteger()) { 199 if (ValueVT.bitsLT(PartEVT)) { 200 // For a truncate, see if we have any information to 201 // indicate whether the truncated bits will always be 202 // zero or sign-extension. 203 if (AssertOp != ISD::DELETED_NODE) 204 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 205 DAG.getValueType(ValueVT)); 206 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 207 } 208 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 212 // FP_ROUND's are always exact here. 213 if (ValueVT.bitsLT(Val.getValueType())) 214 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 215 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 216 217 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 218 } 219 220 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 221 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 222 223 llvm_unreachable("Unknown mismatch!"); 224 } 225 226 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 227 const Twine &ErrMsg) { 228 const Instruction *I = dyn_cast_or_null<Instruction>(V); 229 if (!V) 230 return Ctx.emitError(ErrMsg); 231 232 const char *AsmError = ", possible invalid constraint for vector type"; 233 if (const CallInst *CI = dyn_cast<CallInst>(I)) 234 if (isa<InlineAsm>(CI->getCalledValue())) 235 return Ctx.emitError(I, ErrMsg + AsmError); 236 237 return Ctx.emitError(I, ErrMsg); 238 } 239 240 /// getCopyFromPartsVector - Create a value that contains the specified legal 241 /// parts combined into the value they represent. If the parts combine to a 242 /// type larger then ValueVT then AssertOp can be used to specify whether the 243 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 244 /// ValueVT (ISD::AssertSext). 245 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 246 const SDValue *Parts, unsigned NumParts, 247 MVT PartVT, EVT ValueVT, const Value *V) { 248 assert(ValueVT.isVector() && "Not a vector value"); 249 assert(NumParts > 0 && "No parts to assemble!"); 250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 251 SDValue Val = Parts[0]; 252 253 // Handle a multi-element vector. 254 if (NumParts > 1) { 255 EVT IntermediateVT; 256 MVT RegisterVT; 257 unsigned NumIntermediates; 258 unsigned NumRegs = 259 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 260 NumIntermediates, RegisterVT); 261 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 262 NumParts = NumRegs; // Silence a compiler warning. 263 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 264 assert(RegisterVT == Parts[0].getSimpleValueType() && 265 "Part type doesn't match part!"); 266 267 // Assemble the parts into intermediate operands. 268 SmallVector<SDValue, 8> Ops(NumIntermediates); 269 if (NumIntermediates == NumParts) { 270 // If the register was not expanded, truncate or copy the value, 271 // as appropriate. 272 for (unsigned i = 0; i != NumParts; ++i) 273 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 274 PartVT, IntermediateVT, V); 275 } else if (NumParts > 0) { 276 // If the intermediate type was expanded, build the intermediate 277 // operands from the parts. 278 assert(NumParts % NumIntermediates == 0 && 279 "Must expand into a divisible number of parts!"); 280 unsigned Factor = NumParts / NumIntermediates; 281 for (unsigned i = 0; i != NumIntermediates; ++i) 282 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 283 PartVT, IntermediateVT, V); 284 } 285 286 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 287 // intermediate operands. 288 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 289 : ISD::BUILD_VECTOR, 290 DL, ValueVT, Ops); 291 } 292 293 // There is now one part, held in Val. Correct it to match ValueVT. 294 EVT PartEVT = Val.getValueType(); 295 296 if (PartEVT == ValueVT) 297 return Val; 298 299 if (PartEVT.isVector()) { 300 // If the element type of the source/dest vectors are the same, but the 301 // parts vector has more elements than the value vector, then we have a 302 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 303 // elements we want. 304 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 305 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 306 "Cannot narrow, it would be a lossy transformation"); 307 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 308 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 309 } 310 311 // Vector/Vector bitcast. 312 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 313 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 314 315 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 316 "Cannot handle this kind of promotion"); 317 // Promoted vector extract 318 bool Smaller = ValueVT.bitsLE(PartEVT); 319 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 320 DL, ValueVT, Val); 321 322 } 323 324 // Trivial bitcast if the types are the same size and the destination 325 // vector type is legal. 326 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 327 TLI.isTypeLegal(ValueVT)) 328 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 329 330 // Handle cases such as i8 -> <1 x i1> 331 if (ValueVT.getVectorNumElements() != 1) { 332 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 333 "non-trivial scalar-to-vector conversion"); 334 return DAG.getUNDEF(ValueVT); 335 } 336 337 if (ValueVT.getVectorNumElements() == 1 && 338 ValueVT.getVectorElementType() != PartEVT) { 339 bool Smaller = ValueVT.bitsLE(PartEVT); 340 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 341 DL, ValueVT.getScalarType(), Val); 342 } 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (TLI.isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (TLI.isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 500 ElementVT, Val, DAG.getConstant(i, DL, 501 TLI.getVectorIdxTy()))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 bool Smaller = PartEVT.bitsLE(ValueVT); 520 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 521 DL, PartVT, Val); 522 } else{ 523 // Vector -> scalar conversion. 524 assert(ValueVT.getVectorNumElements() == 1 && 525 "Only trivial vector-to-scalar conversions should get here!"); 526 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 527 PartVT, Val, 528 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 529 530 bool Smaller = ValueVT.bitsLE(PartVT); 531 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 532 DL, PartVT, Val); 533 } 534 535 Parts[0] = Val; 536 return; 537 } 538 539 // Handle a multi-element vector. 540 EVT IntermediateVT; 541 MVT RegisterVT; 542 unsigned NumIntermediates; 543 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 544 IntermediateVT, 545 NumIntermediates, RegisterVT); 546 unsigned NumElements = ValueVT.getVectorNumElements(); 547 548 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 549 NumParts = NumRegs; // Silence a compiler warning. 550 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 551 552 // Split the vector into intermediate operands. 553 SmallVector<SDValue, 8> Ops(NumIntermediates); 554 for (unsigned i = 0; i != NumIntermediates; ++i) { 555 if (IntermediateVT.isVector()) 556 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 559 TLI.getVectorIdxTy())); 560 else 561 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 562 IntermediateVT, Val, 563 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 564 } 565 566 // Split the intermediate operands into legal parts. 567 if (NumParts == NumIntermediates) { 568 // If the register was not expanded, promote or copy the value, 569 // as appropriate. 570 for (unsigned i = 0; i != NumParts; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 572 } else if (NumParts > 0) { 573 // If the intermediate type was expanded, split each the value into 574 // legal parts. 575 assert(NumIntermediates != 0 && "division by zero"); 576 assert(NumParts % NumIntermediates == 0 && 577 "Must expand into a divisible number of parts!"); 578 unsigned Factor = NumParts / NumIntermediates; 579 for (unsigned i = 0; i != NumIntermediates; ++i) 580 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 581 } 582 } 583 584 RegsForValue::RegsForValue() {} 585 586 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 587 EVT valuevt) 588 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 589 590 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 591 unsigned Reg, Type *Ty) { 592 ComputeValueVTs(tli, Ty, ValueVTs); 593 594 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 595 EVT ValueVT = ValueVTs[Value]; 596 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 597 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 598 for (unsigned i = 0; i != NumRegs; ++i) 599 Regs.push_back(Reg + i); 600 RegVTs.push_back(RegisterVT); 601 Reg += NumRegs; 602 } 603 } 604 605 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 606 /// this value and returns the result as a ValueVT value. This uses 607 /// Chain/Flag as the input and updates them for the output Chain/Flag. 608 /// If the Flag pointer is NULL, no flag is used. 609 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 610 FunctionLoweringInfo &FuncInfo, 611 SDLoc dl, 612 SDValue &Chain, SDValue *Flag, 613 const Value *V) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 MVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (!Flag) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 Parts[i] = P; 641 642 // If the source register was virtual and if we know something about it, 643 // add an assert node. 644 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 645 !RegisterVT.isInteger() || RegisterVT.isVector()) 646 continue; 647 648 const FunctionLoweringInfo::LiveOutInfo *LOI = 649 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 650 if (!LOI) 651 continue; 652 653 unsigned RegSize = RegisterVT.getSizeInBits(); 654 unsigned NumSignBits = LOI->NumSignBits; 655 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 656 657 if (NumZeroBits == RegSize) { 658 // The current value is a zero. 659 // Explicitly express that as it would be easier for 660 // optimizations to kick in. 661 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 662 continue; 663 } 664 665 // FIXME: We capture more information than the dag can represent. For 666 // now, just use the tightest assertzext/assertsext possible. 667 bool isSExt = true; 668 EVT FromVT(MVT::Other); 669 if (NumSignBits == RegSize) 670 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 671 else if (NumZeroBits >= RegSize-1) 672 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 673 else if (NumSignBits > RegSize-8) 674 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 675 else if (NumZeroBits >= RegSize-8) 676 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 677 else if (NumSignBits > RegSize-16) 678 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 679 else if (NumZeroBits >= RegSize-16) 680 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 681 else if (NumSignBits > RegSize-32) 682 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 683 else if (NumZeroBits >= RegSize-32) 684 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 685 else 686 continue; 687 688 // Add an assertion node. 689 assert(FromVT != MVT::Other); 690 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 691 RegisterVT, P, DAG.getValueType(FromVT)); 692 } 693 694 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 695 NumRegs, RegisterVT, ValueVT, V); 696 Part += NumRegs; 697 Parts.clear(); 698 } 699 700 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 701 } 702 703 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 704 /// specified value into the registers specified by this object. This uses 705 /// Chain/Flag as the input and updates them for the output Chain/Flag. 706 /// If the Flag pointer is NULL, no flag is used. 707 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 708 SDValue &Chain, SDValue *Flag, const Value *V, 709 ISD::NodeType PreferredExtendType) const { 710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 711 ISD::NodeType ExtendKind = PreferredExtendType; 712 713 // Get the list of the values's legal parts. 714 unsigned NumRegs = Regs.size(); 715 SmallVector<SDValue, 8> Parts(NumRegs); 716 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 717 EVT ValueVT = ValueVTs[Value]; 718 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 719 MVT RegisterVT = RegVTs[Value]; 720 721 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 722 ExtendKind = ISD::ZERO_EXTEND; 723 724 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 725 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 726 Part += NumParts; 727 } 728 729 // Copy the parts into the registers. 730 SmallVector<SDValue, 8> Chains(NumRegs); 731 for (unsigned i = 0; i != NumRegs; ++i) { 732 SDValue Part; 733 if (!Flag) { 734 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 735 } else { 736 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 737 *Flag = Part.getValue(1); 738 } 739 740 Chains[i] = Part.getValue(0); 741 } 742 743 if (NumRegs == 1 || Flag) 744 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 745 // flagged to it. That is the CopyToReg nodes and the user are considered 746 // a single scheduling unit. If we create a TokenFactor and return it as 747 // chain, then the TokenFactor is both a predecessor (operand) of the 748 // user as well as a successor (the TF operands are flagged to the user). 749 // c1, f1 = CopyToReg 750 // c2, f2 = CopyToReg 751 // c3 = TokenFactor c1, c2 752 // ... 753 // = op c3, ..., f2 754 Chain = Chains[NumRegs-1]; 755 else 756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 757 } 758 759 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 760 /// operand list. This adds the code marker and includes the number of 761 /// values added into it. 762 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 763 unsigned MatchingIdx, SDLoc dl, 764 SelectionDAG &DAG, 765 std::vector<SDValue> &Ops) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 769 if (HasMatching) 770 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 771 else if (!Regs.empty() && 772 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 773 // Put the register class of the virtual registers in the flag word. That 774 // way, later passes can recompute register class constraints for inline 775 // assembly as well as normal instructions. 776 // Don't do this for tied operands that can use the regclass information 777 // from the def. 778 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 779 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 780 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 781 } 782 783 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 784 Ops.push_back(Res); 785 786 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 787 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 788 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 789 MVT RegisterVT = RegVTs[Value]; 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 792 unsigned TheReg = Regs[Reg++]; 793 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 794 795 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 796 // If we clobbered the stack pointer, MFI should know about it. 797 assert(DAG.getMachineFunction().getFrameInfo()-> 798 hasInlineAsmWithSPAdjust()); 799 } 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 805 const TargetLibraryInfo *li) { 806 AA = &aa; 807 GFI = gfi; 808 LibInfo = li; 809 DL = DAG.getTarget().getDataLayout(); 810 Context = DAG.getContext(); 811 LPadToCallSiteMap.clear(); 812 } 813 814 /// clear - Clear out the current SelectionDAG and the associated 815 /// state and prepare this SelectionDAGBuilder object to be used 816 /// for a new block. This doesn't clear out information about 817 /// additional blocks that are needed to complete switch lowering 818 /// or PHI node updating; that information is cleared out as it is 819 /// consumed. 820 void SelectionDAGBuilder::clear() { 821 NodeMap.clear(); 822 UnusedArgNodeMap.clear(); 823 PendingLoads.clear(); 824 PendingExports.clear(); 825 CurInst = nullptr; 826 HasTailCall = false; 827 SDNodeOrder = LowestSDNodeOrder; 828 StatepointLowering.clear(); 829 } 830 831 /// clearDanglingDebugInfo - Clear the dangling debug information 832 /// map. This function is separated from the clear so that debug 833 /// information that is dangling in a basic block can be properly 834 /// resolved in a different basic block. This allows the 835 /// SelectionDAG to resolve dangling debug information attached 836 /// to PHI nodes. 837 void SelectionDAGBuilder::clearDanglingDebugInfo() { 838 DanglingDebugInfoMap.clear(); 839 } 840 841 /// getRoot - Return the current virtual root of the Selection DAG, 842 /// flushing any PendingLoad items. This must be done before emitting 843 /// a store or any other node that may need to be ordered after any 844 /// prior load instructions. 845 /// 846 SDValue SelectionDAGBuilder::getRoot() { 847 if (PendingLoads.empty()) 848 return DAG.getRoot(); 849 850 if (PendingLoads.size() == 1) { 851 SDValue Root = PendingLoads[0]; 852 DAG.setRoot(Root); 853 PendingLoads.clear(); 854 return Root; 855 } 856 857 // Otherwise, we have to make a token factor node. 858 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 859 PendingLoads); 860 PendingLoads.clear(); 861 DAG.setRoot(Root); 862 return Root; 863 } 864 865 /// getControlRoot - Similar to getRoot, but instead of flushing all the 866 /// PendingLoad items, flush all the PendingExports items. It is necessary 867 /// to do this before emitting a terminator instruction. 868 /// 869 SDValue SelectionDAGBuilder::getControlRoot() { 870 SDValue Root = DAG.getRoot(); 871 872 if (PendingExports.empty()) 873 return Root; 874 875 // Turn all of the CopyToReg chains into one factored node. 876 if (Root.getOpcode() != ISD::EntryToken) { 877 unsigned i = 0, e = PendingExports.size(); 878 for (; i != e; ++i) { 879 assert(PendingExports[i].getNode()->getNumOperands() > 1); 880 if (PendingExports[i].getNode()->getOperand(0) == Root) 881 break; // Don't add the root if we already indirectly depend on it. 882 } 883 884 if (i == e) 885 PendingExports.push_back(Root); 886 } 887 888 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 889 PendingExports); 890 PendingExports.clear(); 891 DAG.setRoot(Root); 892 return Root; 893 } 894 895 void SelectionDAGBuilder::visit(const Instruction &I) { 896 // Set up outgoing PHI node register values before emitting the terminator. 897 if (isa<TerminatorInst>(&I)) 898 HandlePHINodesInSuccessorBlocks(I.getParent()); 899 900 ++SDNodeOrder; 901 902 CurInst = &I; 903 904 visit(I.getOpcode(), I); 905 906 if (!isa<TerminatorInst>(&I) && !HasTailCall) 907 CopyToExportRegsIfNeeded(&I); 908 909 CurInst = nullptr; 910 } 911 912 void SelectionDAGBuilder::visitPHI(const PHINode &) { 913 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 914 } 915 916 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 917 // Note: this doesn't use InstVisitor, because it has to work with 918 // ConstantExpr's in addition to instructions. 919 switch (Opcode) { 920 default: llvm_unreachable("Unknown instruction type encountered!"); 921 // Build the switch statement using the Instruction.def file. 922 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 923 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 924 #include "llvm/IR/Instruction.def" 925 } 926 } 927 928 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 929 // generate the debug data structures now that we've seen its definition. 930 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 931 SDValue Val) { 932 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 933 if (DDI.getDI()) { 934 const DbgValueInst *DI = DDI.getDI(); 935 DebugLoc dl = DDI.getdl(); 936 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 937 DILocalVariable *Variable = DI->getVariable(); 938 DIExpression *Expr = DI->getExpression(); 939 assert(Variable->isValidLocationForIntrinsic(dl) && 940 "Expected inlined-at fields to agree"); 941 uint64_t Offset = DI->getOffset(); 942 // A dbg.value for an alloca is always indirect. 943 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 944 SDDbgValue *SDV; 945 if (Val.getNode()) { 946 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 947 Val)) { 948 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 949 IsIndirect, Offset, dl, DbgSDNodeOrder); 950 DAG.AddDbgValue(SDV, Val.getNode(), false); 951 } 952 } else 953 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 954 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 955 } 956 } 957 958 /// getCopyFromRegs - If there was virtual register allocated for the value V 959 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 960 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 961 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 962 SDValue Result; 963 964 if (It != FuncInfo.ValueMap.end()) { 965 unsigned InReg = It->second; 966 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 967 Ty); 968 SDValue Chain = DAG.getEntryNode(); 969 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 970 resolveDanglingDebugInfo(V, Result); 971 } 972 973 return Result; 974 } 975 976 /// getValue - Return an SDValue for the given Value. 977 SDValue SelectionDAGBuilder::getValue(const Value *V) { 978 // If we already have an SDValue for this value, use it. It's important 979 // to do this first, so that we don't create a CopyFromReg if we already 980 // have a regular SDValue. 981 SDValue &N = NodeMap[V]; 982 if (N.getNode()) return N; 983 984 // If there's a virtual register allocated and initialized for this 985 // value, use it. 986 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 987 if (copyFromReg.getNode()) { 988 return copyFromReg; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 // Return true if SDValue exists for the given Value 999 bool SelectionDAGBuilder::findValue(const Value *V) const { 1000 return (NodeMap.find(V) != NodeMap.end()) || 1001 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1002 } 1003 1004 /// getNonRegisterValue - Return an SDValue for the given Value, but 1005 /// don't look in FuncInfo.ValueMap for a virtual register. 1006 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1007 // If we already have an SDValue for this value, use it. 1008 SDValue &N = NodeMap[V]; 1009 if (N.getNode()) { 1010 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1011 // Remove the debug location from the node as the node is about to be used 1012 // in a location which may differ from the original debug location. This 1013 // is relevant to Constant and ConstantFP nodes because they can appear 1014 // as constant expressions inside PHI nodes. 1015 N->setDebugLoc(DebugLoc()); 1016 } 1017 return N; 1018 } 1019 1020 // Otherwise create a new SDValue and remember it. 1021 SDValue Val = getValueImpl(V); 1022 NodeMap[V] = Val; 1023 resolveDanglingDebugInfo(V, Val); 1024 return Val; 1025 } 1026 1027 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1028 /// Create an SDValue for the given value. 1029 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1031 1032 if (const Constant *C = dyn_cast<Constant>(V)) { 1033 EVT VT = TLI.getValueType(V->getType(), true); 1034 1035 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1036 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1037 1038 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1039 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1040 1041 if (isa<ConstantPointerNull>(C)) { 1042 unsigned AS = V->getType()->getPointerAddressSpace(); 1043 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1044 } 1045 1046 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1047 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1048 1049 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1050 return DAG.getUNDEF(VT); 1051 1052 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1053 visit(CE->getOpcode(), *CE); 1054 SDValue N1 = NodeMap[V]; 1055 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1056 return N1; 1057 } 1058 1059 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1060 SmallVector<SDValue, 4> Constants; 1061 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1062 OI != OE; ++OI) { 1063 SDNode *Val = getValue(*OI).getNode(); 1064 // If the operand is an empty aggregate, there are no values. 1065 if (!Val) continue; 1066 // Add each leaf value from the operand to the Constants list 1067 // to form a flattened list of all the values. 1068 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1069 Constants.push_back(SDValue(Val, i)); 1070 } 1071 1072 return DAG.getMergeValues(Constants, getCurSDLoc()); 1073 } 1074 1075 if (const ConstantDataSequential *CDS = 1076 dyn_cast<ConstantDataSequential>(C)) { 1077 SmallVector<SDValue, 4> Ops; 1078 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1079 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Ops.push_back(SDValue(Val, i)); 1084 } 1085 1086 if (isa<ArrayType>(CDS->getType())) 1087 return DAG.getMergeValues(Ops, getCurSDLoc()); 1088 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1089 VT, Ops); 1090 } 1091 1092 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1093 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1094 "Unknown struct or array constant!"); 1095 1096 SmallVector<EVT, 4> ValueVTs; 1097 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1098 unsigned NumElts = ValueVTs.size(); 1099 if (NumElts == 0) 1100 return SDValue(); // empty struct 1101 SmallVector<SDValue, 4> Constants(NumElts); 1102 for (unsigned i = 0; i != NumElts; ++i) { 1103 EVT EltVT = ValueVTs[i]; 1104 if (isa<UndefValue>(C)) 1105 Constants[i] = DAG.getUNDEF(EltVT); 1106 else if (EltVT.isFloatingPoint()) 1107 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1108 else 1109 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1110 } 1111 1112 return DAG.getMergeValues(Constants, getCurSDLoc()); 1113 } 1114 1115 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1116 return DAG.getBlockAddress(BA, VT); 1117 1118 VectorType *VecTy = cast<VectorType>(V->getType()); 1119 unsigned NumElements = VecTy->getNumElements(); 1120 1121 // Now that we know the number and type of the elements, get that number of 1122 // elements into the Ops array based on what kind of constant it is. 1123 SmallVector<SDValue, 16> Ops; 1124 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1125 for (unsigned i = 0; i != NumElements; ++i) 1126 Ops.push_back(getValue(CV->getOperand(i))); 1127 } else { 1128 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1129 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1130 1131 SDValue Op; 1132 if (EltVT.isFloatingPoint()) 1133 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1134 else 1135 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1136 Ops.assign(NumElements, Op); 1137 } 1138 1139 // Create a BUILD_VECTOR node. 1140 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1141 } 1142 1143 // If this is a static alloca, generate it as the frameindex instead of 1144 // computation. 1145 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1146 DenseMap<const AllocaInst*, int>::iterator SI = 1147 FuncInfo.StaticAllocaMap.find(AI); 1148 if (SI != FuncInfo.StaticAllocaMap.end()) 1149 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1150 } 1151 1152 // If this is an instruction which fast-isel has deferred, select it now. 1153 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1154 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1155 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1156 SDValue Chain = DAG.getEntryNode(); 1157 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1158 } 1159 1160 llvm_unreachable("Can't get register for value!"); 1161 } 1162 1163 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1165 SDValue Chain = getControlRoot(); 1166 SmallVector<ISD::OutputArg, 8> Outs; 1167 SmallVector<SDValue, 8> OutVals; 1168 1169 if (!FuncInfo.CanLowerReturn) { 1170 unsigned DemoteReg = FuncInfo.DemoteRegister; 1171 const Function *F = I.getParent()->getParent(); 1172 1173 // Emit a store of the return value through the virtual register. 1174 // Leave Outs empty so that LowerReturn won't try to load return 1175 // registers the usual way. 1176 SmallVector<EVT, 1> PtrValueVTs; 1177 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1178 PtrValueVTs); 1179 1180 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1181 SDValue RetOp = getValue(I.getOperand(0)); 1182 1183 SmallVector<EVT, 4> ValueVTs; 1184 SmallVector<uint64_t, 4> Offsets; 1185 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1186 unsigned NumValues = ValueVTs.size(); 1187 1188 SmallVector<SDValue, 4> Chains(NumValues); 1189 for (unsigned i = 0; i != NumValues; ++i) { 1190 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1191 RetPtr.getValueType(), RetPtr, 1192 DAG.getIntPtrConstant(Offsets[i], 1193 getCurSDLoc())); 1194 Chains[i] = 1195 DAG.getStore(Chain, getCurSDLoc(), 1196 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1197 // FIXME: better loc info would be nice. 1198 Add, MachinePointerInfo(), false, false, 0); 1199 } 1200 1201 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1202 MVT::Other, Chains); 1203 } else if (I.getNumOperands() != 0) { 1204 SmallVector<EVT, 4> ValueVTs; 1205 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1206 unsigned NumValues = ValueVTs.size(); 1207 if (NumValues) { 1208 SDValue RetOp = getValue(I.getOperand(0)); 1209 1210 const Function *F = I.getParent()->getParent(); 1211 1212 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1213 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1214 Attribute::SExt)) 1215 ExtendKind = ISD::SIGN_EXTEND; 1216 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1217 Attribute::ZExt)) 1218 ExtendKind = ISD::ZERO_EXTEND; 1219 1220 LLVMContext &Context = F->getContext(); 1221 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1222 Attribute::InReg); 1223 1224 for (unsigned j = 0; j != NumValues; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1228 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1229 1230 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1231 MVT PartVT = TLI.getRegisterType(Context, VT); 1232 SmallVector<SDValue, 4> Parts(NumParts); 1233 getCopyToParts(DAG, getCurSDLoc(), 1234 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1235 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1236 1237 // 'inreg' on function refers to return value 1238 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1239 if (RetInReg) 1240 Flags.setInReg(); 1241 1242 // Propagate extension type if any 1243 if (ExtendKind == ISD::SIGN_EXTEND) 1244 Flags.setSExt(); 1245 else if (ExtendKind == ISD::ZERO_EXTEND) 1246 Flags.setZExt(); 1247 1248 for (unsigned i = 0; i < NumParts; ++i) { 1249 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1250 VT, /*isfixed=*/true, 0, 0)); 1251 OutVals.push_back(Parts[i]); 1252 } 1253 } 1254 } 1255 } 1256 1257 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1258 CallingConv::ID CallConv = 1259 DAG.getMachineFunction().getFunction()->getCallingConv(); 1260 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1261 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1262 1263 // Verify that the target's LowerReturn behaved as expected. 1264 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1265 "LowerReturn didn't return a valid chain!"); 1266 1267 // Update the DAG with the new chain value resulting from return lowering. 1268 DAG.setRoot(Chain); 1269 } 1270 1271 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1272 /// created for it, emit nodes to copy the value into the virtual 1273 /// registers. 1274 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1275 // Skip empty types 1276 if (V->getType()->isEmptyTy()) 1277 return; 1278 1279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1280 if (VMI != FuncInfo.ValueMap.end()) { 1281 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1282 CopyValueToVirtualRegister(V, VMI->second); 1283 } 1284 } 1285 1286 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1287 /// the current basic block, add it to ValueMap now so that we'll get a 1288 /// CopyTo/FromReg. 1289 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1290 // No need to export constants. 1291 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1292 1293 // Already exported? 1294 if (FuncInfo.isExportedInst(V)) return; 1295 1296 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1297 CopyValueToVirtualRegister(V, Reg); 1298 } 1299 1300 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1301 const BasicBlock *FromBB) { 1302 // The operands of the setcc have to be in this block. We don't know 1303 // how to export them from some other block. 1304 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1305 // Can export from current BB. 1306 if (VI->getParent() == FromBB) 1307 return true; 1308 1309 // Is already exported, noop. 1310 return FuncInfo.isExportedInst(V); 1311 } 1312 1313 // If this is an argument, we can export it if the BB is the entry block or 1314 // if it is already exported. 1315 if (isa<Argument>(V)) { 1316 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1317 return true; 1318 1319 // Otherwise, can only export this if it is already exported. 1320 return FuncInfo.isExportedInst(V); 1321 } 1322 1323 // Otherwise, constants can always be exported. 1324 return true; 1325 } 1326 1327 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1328 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1329 const MachineBasicBlock *Dst) const { 1330 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1331 if (!BPI) 1332 return 0; 1333 const BasicBlock *SrcBB = Src->getBasicBlock(); 1334 const BasicBlock *DstBB = Dst->getBasicBlock(); 1335 return BPI->getEdgeWeight(SrcBB, DstBB); 1336 } 1337 1338 void SelectionDAGBuilder:: 1339 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1340 uint32_t Weight /* = 0 */) { 1341 if (!Weight) 1342 Weight = getEdgeWeight(Src, Dst); 1343 Src->addSuccessor(Dst, Weight); 1344 } 1345 1346 1347 static bool InBlock(const Value *V, const BasicBlock *BB) { 1348 if (const Instruction *I = dyn_cast<Instruction>(V)) 1349 return I->getParent() == BB; 1350 return true; 1351 } 1352 1353 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1354 /// This function emits a branch and is used at the leaves of an OR or an 1355 /// AND operator tree. 1356 /// 1357 void 1358 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1359 MachineBasicBlock *TBB, 1360 MachineBasicBlock *FBB, 1361 MachineBasicBlock *CurBB, 1362 MachineBasicBlock *SwitchBB, 1363 uint32_t TWeight, 1364 uint32_t FWeight) { 1365 const BasicBlock *BB = CurBB->getBasicBlock(); 1366 1367 // If the leaf of the tree is a comparison, merge the condition into 1368 // the caseblock. 1369 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1370 // The operands of the cmp have to be in this block. We don't know 1371 // how to export them from some other block. If this is the first block 1372 // of the sequence, no exporting is needed. 1373 if (CurBB == SwitchBB || 1374 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1375 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1376 ISD::CondCode Condition; 1377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1378 Condition = getICmpCondCode(IC->getPredicate()); 1379 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } else { 1384 (void)Condition; // silence warning. 1385 llvm_unreachable("Unknown compare instruction"); 1386 } 1387 1388 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1389 TBB, FBB, CurBB, TWeight, FWeight); 1390 SwitchCases.push_back(CB); 1391 return; 1392 } 1393 } 1394 1395 // Create a CaseBlock record representing this branch. 1396 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1397 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1398 SwitchCases.push_back(CB); 1399 } 1400 1401 /// Scale down both weights to fit into uint32_t. 1402 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1403 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1404 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1405 NewTrue = NewTrue / Scale; 1406 NewFalse = NewFalse / Scale; 1407 } 1408 1409 /// FindMergedConditions - If Cond is an expression like 1410 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1411 MachineBasicBlock *TBB, 1412 MachineBasicBlock *FBB, 1413 MachineBasicBlock *CurBB, 1414 MachineBasicBlock *SwitchBB, 1415 unsigned Opc, uint32_t TWeight, 1416 uint32_t FWeight) { 1417 // If this node is not part of the or/and tree, emit it as a branch. 1418 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1419 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1420 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1421 BOp->getParent() != CurBB->getBasicBlock() || 1422 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1423 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1424 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1425 TWeight, FWeight); 1426 return; 1427 } 1428 1429 // Create TmpBB after CurBB. 1430 MachineFunction::iterator BBI = CurBB; 1431 MachineFunction &MF = DAG.getMachineFunction(); 1432 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1433 CurBB->getParent()->insert(++BBI, TmpBB); 1434 1435 if (Opc == Instruction::Or) { 1436 // Codegen X | Y as: 1437 // BB1: 1438 // jmp_if_X TBB 1439 // jmp TmpBB 1440 // TmpBB: 1441 // jmp_if_Y TBB 1442 // jmp FBB 1443 // 1444 1445 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1446 // The requirement is that 1447 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1448 // = TrueProb for orignal BB. 1449 // Assuming the orignal weights are A and B, one choice is to set BB1's 1450 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1451 // assumes that 1452 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1453 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1454 // TmpBB, but the math is more complicated. 1455 1456 uint64_t NewTrueWeight = TWeight; 1457 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1458 ScaleWeights(NewTrueWeight, NewFalseWeight); 1459 // Emit the LHS condition. 1460 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1461 NewTrueWeight, NewFalseWeight); 1462 1463 NewTrueWeight = TWeight; 1464 NewFalseWeight = 2 * (uint64_t)FWeight; 1465 ScaleWeights(NewTrueWeight, NewFalseWeight); 1466 // Emit the RHS condition into TmpBB. 1467 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1468 NewTrueWeight, NewFalseWeight); 1469 } else { 1470 assert(Opc == Instruction::And && "Unknown merge op!"); 1471 // Codegen X & Y as: 1472 // BB1: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1482 // The requirement is that 1483 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1484 // = FalseProb for orignal BB. 1485 // Assuming the orignal weights are A and B, one choice is to set BB1's 1486 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1487 // assumes that 1488 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1489 1490 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1491 uint64_t NewFalseWeight = FWeight; 1492 ScaleWeights(NewTrueWeight, NewFalseWeight); 1493 // Emit the LHS condition. 1494 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1495 NewTrueWeight, NewFalseWeight); 1496 1497 NewTrueWeight = 2 * (uint64_t)TWeight; 1498 NewFalseWeight = FWeight; 1499 ScaleWeights(NewTrueWeight, NewFalseWeight); 1500 // Emit the RHS condition into TmpBB. 1501 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1502 NewTrueWeight, NewFalseWeight); 1503 } 1504 } 1505 1506 /// If the set of cases should be emitted as a series of branches, return true. 1507 /// If we should emit this as a bunch of and/or'd together conditions, return 1508 /// false. 1509 bool 1510 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1511 if (Cases.size() != 2) return true; 1512 1513 // If this is two comparisons of the same values or'd or and'd together, they 1514 // will get folded into a single comparison, so don't emit two blocks. 1515 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1516 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1517 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1518 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1519 return false; 1520 } 1521 1522 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1523 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1524 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1525 Cases[0].CC == Cases[1].CC && 1526 isa<Constant>(Cases[0].CmpRHS) && 1527 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1528 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1529 return false; 1530 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1538 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1539 1540 // Update machine-CFG edges. 1541 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1542 1543 if (I.isUnconditional()) { 1544 // Update machine-CFG edges. 1545 BrMBB->addSuccessor(Succ0MBB); 1546 1547 // If this is not a fall-through branch or optimizations are switched off, 1548 // emit the branch. 1549 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1550 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1551 MVT::Other, getControlRoot(), 1552 DAG.getBasicBlock(Succ0MBB))); 1553 1554 return; 1555 } 1556 1557 // If this condition is one of the special cases we handle, do special stuff 1558 // now. 1559 const Value *CondVal = I.getCondition(); 1560 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1561 1562 // If this is a series of conditions that are or'd or and'd together, emit 1563 // this as a sequence of branches instead of setcc's with and/or operations. 1564 // As long as jumps are not expensive, this should improve performance. 1565 // For example, instead of something like: 1566 // cmp A, B 1567 // C = seteq 1568 // cmp D, E 1569 // F = setle 1570 // or C, F 1571 // jnz foo 1572 // Emit: 1573 // cmp A, B 1574 // je foo 1575 // cmp D, E 1576 // jle foo 1577 // 1578 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1579 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1580 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1581 BOp->getOpcode() == Instruction::Or)) { 1582 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1583 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1584 getEdgeWeight(BrMBB, Succ1MBB)); 1585 // If the compares in later blocks need to use values not currently 1586 // exported from this block, export them now. This block should always 1587 // be the first entry. 1588 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1589 1590 // Allow some cases to be rejected. 1591 if (ShouldEmitAsBranches(SwitchCases)) { 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1593 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1594 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1595 } 1596 1597 // Emit the branch for this block. 1598 visitSwitchCase(SwitchCases[0], BrMBB); 1599 SwitchCases.erase(SwitchCases.begin()); 1600 return; 1601 } 1602 1603 // Okay, we decided not to do this, remove any inserted MBB's and clear 1604 // SwitchCases. 1605 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1606 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1607 1608 SwitchCases.clear(); 1609 } 1610 } 1611 1612 // Create a CaseBlock record representing this branch. 1613 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1614 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1615 1616 // Use visitSwitchCase to actually insert the fast branch sequence for this 1617 // cond branch. 1618 visitSwitchCase(CB, BrMBB); 1619 } 1620 1621 /// visitSwitchCase - Emits the necessary code to represent a single node in 1622 /// the binary search tree resulting from lowering a switch instruction. 1623 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1624 MachineBasicBlock *SwitchBB) { 1625 SDValue Cond; 1626 SDValue CondLHS = getValue(CB.CmpLHS); 1627 SDLoc dl = getCurSDLoc(); 1628 1629 // Build the setcc now. 1630 if (!CB.CmpMHS) { 1631 // Fold "(X == true)" to X and "(X == false)" to !X to 1632 // handle common cases produced by branch lowering. 1633 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1634 CB.CC == ISD::SETEQ) 1635 Cond = CondLHS; 1636 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1637 CB.CC == ISD::SETEQ) { 1638 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1639 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1640 } else 1641 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1642 } else { 1643 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1644 1645 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1646 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1647 1648 SDValue CmpOp = getValue(CB.CmpMHS); 1649 EVT VT = CmpOp.getValueType(); 1650 1651 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1652 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1653 ISD::SETLE); 1654 } else { 1655 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1656 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1657 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1658 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1659 } 1660 } 1661 1662 // Update successor info 1663 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1664 // TrueBB and FalseBB are always different unless the incoming IR is 1665 // degenerate. This only happens when running llc on weird IR. 1666 if (CB.TrueBB != CB.FalseBB) 1667 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1668 1669 // If the lhs block is the next block, invert the condition so that we can 1670 // fall through to the lhs instead of the rhs block. 1671 if (CB.TrueBB == NextBlock(SwitchBB)) { 1672 std::swap(CB.TrueBB, CB.FalseBB); 1673 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1674 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1675 } 1676 1677 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1678 MVT::Other, getControlRoot(), Cond, 1679 DAG.getBasicBlock(CB.TrueBB)); 1680 1681 // Insert the false branch. Do this even if it's a fall through branch, 1682 // this makes it easier to do DAG optimizations which require inverting 1683 // the branch condition. 1684 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1685 DAG.getBasicBlock(CB.FalseBB)); 1686 1687 DAG.setRoot(BrCond); 1688 } 1689 1690 /// visitJumpTable - Emit JumpTable node in the current MBB 1691 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1692 // Emit the code for the jump table 1693 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1694 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1695 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1696 JT.Reg, PTy); 1697 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1698 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1699 MVT::Other, Index.getValue(1), 1700 Table, Index); 1701 DAG.setRoot(BrJumpTable); 1702 } 1703 1704 /// visitJumpTableHeader - This function emits necessary code to produce index 1705 /// in the JumpTable from switch case. 1706 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1707 JumpTableHeader &JTH, 1708 MachineBasicBlock *SwitchBB) { 1709 SDLoc dl = getCurSDLoc(); 1710 1711 // Subtract the lowest switch case value from the value being switched on and 1712 // conditional branch to default mbb if the result is greater than the 1713 // difference between smallest and largest cases. 1714 SDValue SwitchOp = getValue(JTH.SValue); 1715 EVT VT = SwitchOp.getValueType(); 1716 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1717 DAG.getConstant(JTH.First, dl, VT)); 1718 1719 // The SDNode we just created, which holds the value being switched on minus 1720 // the smallest case value, needs to be copied to a virtual register so it 1721 // can be used as an index into the jump table in a subsequent basic block. 1722 // This value may be smaller or larger than the target's pointer type, and 1723 // therefore require extension or truncating. 1724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1725 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1726 1727 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1728 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1729 JumpTableReg, SwitchOp); 1730 JT.Reg = JumpTableReg; 1731 1732 // Emit the range check for the jump table, and branch to the default block 1733 // for the switch statement if the value being switched on exceeds the largest 1734 // case in the switch. 1735 SDValue CMP = 1736 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1737 Sub.getValueType()), 1738 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1739 ISD::SETUGT); 1740 1741 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1742 MVT::Other, CopyTo, CMP, 1743 DAG.getBasicBlock(JT.Default)); 1744 1745 // Avoid emitting unnecessary branches to the next block. 1746 if (JT.MBB != NextBlock(SwitchBB)) 1747 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1748 DAG.getBasicBlock(JT.MBB)); 1749 1750 DAG.setRoot(BrCond); 1751 } 1752 1753 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1754 /// tail spliced into a stack protector check success bb. 1755 /// 1756 /// For a high level explanation of how this fits into the stack protector 1757 /// generation see the comment on the declaration of class 1758 /// StackProtectorDescriptor. 1759 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1760 MachineBasicBlock *ParentBB) { 1761 1762 // First create the loads to the guard/stack slot for the comparison. 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 EVT PtrTy = TLI.getPointerTy(); 1765 1766 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1767 int FI = MFI->getStackProtectorIndex(); 1768 1769 const Value *IRGuard = SPD.getGuard(); 1770 SDValue GuardPtr = getValue(IRGuard); 1771 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1772 1773 unsigned Align = 1774 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1775 1776 SDValue Guard; 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1780 // guard value from the virtual register holding the value. Otherwise, emit a 1781 // volatile load to retrieve the stack guard value. 1782 unsigned GuardReg = SPD.getGuardReg(); 1783 1784 if (GuardReg && TLI.useLoadStackGuardNode()) 1785 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1786 PtrTy); 1787 else 1788 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1789 GuardPtr, MachinePointerInfo(IRGuard, 0), 1790 true, false, false, Align); 1791 1792 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1793 StackSlotPtr, 1794 MachinePointerInfo::getFixedStack(FI), 1795 true, false, false, Align); 1796 1797 // Perform the comparison via a subtract/getsetcc. 1798 EVT VT = Guard.getValueType(); 1799 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1800 1801 SDValue Cmp = 1802 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1803 Sub.getValueType()), 1804 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1805 1806 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1807 // branch to failure MBB. 1808 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1809 MVT::Other, StackSlot.getOperand(0), 1810 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1811 // Otherwise branch to success MBB. 1812 SDValue Br = DAG.getNode(ISD::BR, dl, 1813 MVT::Other, BrCond, 1814 DAG.getBasicBlock(SPD.getSuccessMBB())); 1815 1816 DAG.setRoot(Br); 1817 } 1818 1819 /// Codegen the failure basic block for a stack protector check. 1820 /// 1821 /// A failure stack protector machine basic block consists simply of a call to 1822 /// __stack_chk_fail(). 1823 /// 1824 /// For a high level explanation of how this fits into the stack protector 1825 /// generation see the comment on the declaration of class 1826 /// StackProtectorDescriptor. 1827 void 1828 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1830 SDValue Chain = 1831 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1832 nullptr, 0, false, getCurSDLoc(), false, false).second; 1833 DAG.setRoot(Chain); 1834 } 1835 1836 /// visitBitTestHeader - This function emits necessary code to produce value 1837 /// suitable for "bit tests" 1838 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1839 MachineBasicBlock *SwitchBB) { 1840 SDLoc dl = getCurSDLoc(); 1841 1842 // Subtract the minimum value 1843 SDValue SwitchOp = getValue(B.SValue); 1844 EVT VT = SwitchOp.getValueType(); 1845 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1846 DAG.getConstant(B.First, dl, VT)); 1847 1848 // Check range 1849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1850 SDValue RangeCmp = 1851 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1854 1855 // Determine the type of the test operands. 1856 bool UsePtrType = false; 1857 if (!TLI.isTypeLegal(VT)) 1858 UsePtrType = true; 1859 else { 1860 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1861 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1862 // Switch table case range are encoded into series of masks. 1863 // Just use pointer type, it's guaranteed to fit. 1864 UsePtrType = true; 1865 break; 1866 } 1867 } 1868 if (UsePtrType) { 1869 VT = TLI.getPointerTy(); 1870 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1871 } 1872 1873 B.RegVT = VT.getSimpleVT(); 1874 B.Reg = FuncInfo.CreateReg(B.RegVT); 1875 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1876 1877 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1878 1879 addSuccessorWithWeight(SwitchBB, B.Default); 1880 addSuccessorWithWeight(SwitchBB, MBB); 1881 1882 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1883 MVT::Other, CopyTo, RangeCmp, 1884 DAG.getBasicBlock(B.Default)); 1885 1886 // Avoid emitting unnecessary branches to the next block. 1887 if (MBB != NextBlock(SwitchBB)) 1888 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1889 DAG.getBasicBlock(MBB)); 1890 1891 DAG.setRoot(BrRange); 1892 } 1893 1894 /// visitBitTestCase - this function produces one "bit test" 1895 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1896 MachineBasicBlock* NextMBB, 1897 uint32_t BranchWeightToNext, 1898 unsigned Reg, 1899 BitTestCase &B, 1900 MachineBasicBlock *SwitchBB) { 1901 SDLoc dl = getCurSDLoc(); 1902 MVT VT = BB.RegVT; 1903 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1904 SDValue Cmp; 1905 unsigned PopCount = countPopulation(B.Mask); 1906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1907 if (PopCount == 1) { 1908 // Testing for a single bit; just compare the shift count with what it 1909 // would need to be to shift a 1 bit in that position. 1910 Cmp = DAG.getSetCC( 1911 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1912 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1913 } else if (PopCount == BB.Range) { 1914 // There is only one zero bit in the range, test for it directly. 1915 Cmp = DAG.getSetCC( 1916 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1917 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1918 } else { 1919 // Make desired shift 1920 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1921 DAG.getConstant(1, dl, VT), ShiftOp); 1922 1923 // Emit bit tests and jumps 1924 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1925 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1926 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1927 DAG.getConstant(0, dl, VT), ISD::SETNE); 1928 } 1929 1930 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1931 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1932 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1933 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1934 1935 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1936 MVT::Other, getControlRoot(), 1937 Cmp, DAG.getBasicBlock(B.TargetBB)); 1938 1939 // Avoid emitting unnecessary branches to the next block. 1940 if (NextMBB != NextBlock(SwitchBB)) 1941 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1942 DAG.getBasicBlock(NextMBB)); 1943 1944 DAG.setRoot(BrAnd); 1945 } 1946 1947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1948 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1949 1950 // Retrieve successors. 1951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1952 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1953 1954 const Value *Callee(I.getCalledValue()); 1955 const Function *Fn = dyn_cast<Function>(Callee); 1956 if (isa<InlineAsm>(Callee)) 1957 visitInlineAsm(&I); 1958 else if (Fn && Fn->isIntrinsic()) { 1959 switch (Fn->getIntrinsicID()) { 1960 default: 1961 llvm_unreachable("Cannot invoke this intrinsic"); 1962 case Intrinsic::donothing: 1963 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1964 break; 1965 case Intrinsic::experimental_patchpoint_void: 1966 case Intrinsic::experimental_patchpoint_i64: 1967 visitPatchpoint(&I, LandingPad); 1968 break; 1969 case Intrinsic::experimental_gc_statepoint: 1970 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1971 break; 1972 } 1973 } else 1974 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1975 1976 // If the value of the invoke is used outside of its defining block, make it 1977 // available as a virtual register. 1978 // We already took care of the exported value for the statepoint instruction 1979 // during call to the LowerStatepoint. 1980 if (!isStatepoint(I)) { 1981 CopyToExportRegsIfNeeded(&I); 1982 } 1983 1984 // Update successor info 1985 addSuccessorWithWeight(InvokeMBB, Return); 1986 addSuccessorWithWeight(InvokeMBB, LandingPad); 1987 1988 // Drop into normal successor. 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1990 MVT::Other, getControlRoot(), 1991 DAG.getBasicBlock(Return))); 1992 } 1993 1994 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1996 } 1997 1998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1999 assert(FuncInfo.MBB->isLandingPad() && 2000 "Call to landingpad not in landing pad!"); 2001 2002 MachineBasicBlock *MBB = FuncInfo.MBB; 2003 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2004 AddLandingPadInfo(LP, MMI, MBB); 2005 2006 // If there aren't registers to copy the values into (e.g., during SjLj 2007 // exceptions), then don't bother to create these DAG nodes. 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 if (TLI.getExceptionPointerRegister() == 0 && 2010 TLI.getExceptionSelectorRegister() == 0) 2011 return; 2012 2013 SmallVector<EVT, 2> ValueVTs; 2014 SDLoc dl = getCurSDLoc(); 2015 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2016 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2017 2018 // Get the two live-in registers as SDValues. The physregs have already been 2019 // copied into virtual registers. 2020 SDValue Ops[2]; 2021 if (FuncInfo.ExceptionPointerVirtReg) { 2022 Ops[0] = DAG.getZExtOrTrunc( 2023 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2024 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2025 dl, ValueVTs[0]); 2026 } else { 2027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2028 } 2029 Ops[1] = DAG.getZExtOrTrunc( 2030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2031 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2032 dl, ValueVTs[1]); 2033 2034 // Merge into one. 2035 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2036 DAG.getVTList(ValueVTs), Ops); 2037 setValue(&LP, Res); 2038 } 2039 2040 unsigned 2041 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2042 MachineBasicBlock *LPadBB) { 2043 SDValue Chain = getControlRoot(); 2044 SDLoc dl = getCurSDLoc(); 2045 2046 // Get the typeid that we will dispatch on later. 2047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2048 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2049 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2050 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2051 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2052 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2053 2054 // Branch to the main landing pad block. 2055 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2056 ClauseMBB->addSuccessor(LPadBB); 2057 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2058 DAG.getBasicBlock(LPadBB))); 2059 return VReg; 2060 } 2061 2062 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2063 #ifndef NDEBUG 2064 for (const CaseCluster &CC : Clusters) 2065 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2066 #endif 2067 2068 std::sort(Clusters.begin(), Clusters.end(), 2069 [](const CaseCluster &a, const CaseCluster &b) { 2070 return a.Low->getValue().slt(b.Low->getValue()); 2071 }); 2072 2073 // Merge adjacent clusters with the same destination. 2074 const unsigned N = Clusters.size(); 2075 unsigned DstIndex = 0; 2076 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2077 CaseCluster &CC = Clusters[SrcIndex]; 2078 const ConstantInt *CaseVal = CC.Low; 2079 MachineBasicBlock *Succ = CC.MBB; 2080 2081 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2082 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2083 // If this case has the same successor and is a neighbour, merge it into 2084 // the previous cluster. 2085 Clusters[DstIndex - 1].High = CaseVal; 2086 Clusters[DstIndex - 1].Weight += CC.Weight; 2087 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2088 } else { 2089 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2090 sizeof(Clusters[SrcIndex])); 2091 } 2092 } 2093 Clusters.resize(DstIndex); 2094 } 2095 2096 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2097 MachineBasicBlock *Last) { 2098 // Update JTCases. 2099 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2100 if (JTCases[i].first.HeaderBB == First) 2101 JTCases[i].first.HeaderBB = Last; 2102 2103 // Update BitTestCases. 2104 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2105 if (BitTestCases[i].Parent == First) 2106 BitTestCases[i].Parent = Last; 2107 } 2108 2109 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2110 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2111 2112 // Update machine-CFG edges with unique successors. 2113 SmallSet<BasicBlock*, 32> Done; 2114 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2115 BasicBlock *BB = I.getSuccessor(i); 2116 bool Inserted = Done.insert(BB).second; 2117 if (!Inserted) 2118 continue; 2119 2120 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2121 addSuccessorWithWeight(IndirectBrMBB, Succ); 2122 } 2123 2124 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2125 MVT::Other, getControlRoot(), 2126 getValue(I.getAddress()))); 2127 } 2128 2129 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2130 if (DAG.getTarget().Options.TrapUnreachable) 2131 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2132 } 2133 2134 void SelectionDAGBuilder::visitFSub(const User &I) { 2135 // -0.0 - X --> fneg 2136 Type *Ty = I.getType(); 2137 if (isa<Constant>(I.getOperand(0)) && 2138 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2139 SDValue Op2 = getValue(I.getOperand(1)); 2140 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2141 Op2.getValueType(), Op2)); 2142 return; 2143 } 2144 2145 visitBinary(I, ISD::FSUB); 2146 } 2147 2148 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2149 SDValue Op1 = getValue(I.getOperand(0)); 2150 SDValue Op2 = getValue(I.getOperand(1)); 2151 2152 bool nuw = false; 2153 bool nsw = false; 2154 bool exact = false; 2155 FastMathFlags FMF; 2156 2157 if (const OverflowingBinaryOperator *OFBinOp = 2158 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2159 nuw = OFBinOp->hasNoUnsignedWrap(); 2160 nsw = OFBinOp->hasNoSignedWrap(); 2161 } 2162 if (const PossiblyExactOperator *ExactOp = 2163 dyn_cast<const PossiblyExactOperator>(&I)) 2164 exact = ExactOp->isExact(); 2165 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2166 FMF = FPOp->getFastMathFlags(); 2167 2168 SDNodeFlags Flags; 2169 Flags.setExact(exact); 2170 Flags.setNoSignedWrap(nsw); 2171 Flags.setNoUnsignedWrap(nuw); 2172 if (EnableFMFInDAG) { 2173 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2174 Flags.setNoInfs(FMF.noInfs()); 2175 Flags.setNoNaNs(FMF.noNaNs()); 2176 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2177 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2178 } 2179 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2180 Op1, Op2, &Flags); 2181 setValue(&I, BinNodeValue); 2182 } 2183 2184 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2185 SDValue Op1 = getValue(I.getOperand(0)); 2186 SDValue Op2 = getValue(I.getOperand(1)); 2187 2188 EVT ShiftTy = 2189 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2190 2191 // Coerce the shift amount to the right type if we can. 2192 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2193 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2194 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2195 SDLoc DL = getCurSDLoc(); 2196 2197 // If the operand is smaller than the shift count type, promote it. 2198 if (ShiftSize > Op2Size) 2199 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2200 2201 // If the operand is larger than the shift count type but the shift 2202 // count type has enough bits to represent any shift value, truncate 2203 // it now. This is a common case and it exposes the truncate to 2204 // optimization early. 2205 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2206 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2207 // Otherwise we'll need to temporarily settle for some other convenient 2208 // type. Type legalization will make adjustments once the shiftee is split. 2209 else 2210 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2211 } 2212 2213 bool nuw = false; 2214 bool nsw = false; 2215 bool exact = false; 2216 2217 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2218 2219 if (const OverflowingBinaryOperator *OFBinOp = 2220 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2221 nuw = OFBinOp->hasNoUnsignedWrap(); 2222 nsw = OFBinOp->hasNoSignedWrap(); 2223 } 2224 if (const PossiblyExactOperator *ExactOp = 2225 dyn_cast<const PossiblyExactOperator>(&I)) 2226 exact = ExactOp->isExact(); 2227 } 2228 SDNodeFlags Flags; 2229 Flags.setExact(exact); 2230 Flags.setNoSignedWrap(nsw); 2231 Flags.setNoUnsignedWrap(nuw); 2232 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2233 &Flags); 2234 setValue(&I, Res); 2235 } 2236 2237 void SelectionDAGBuilder::visitSDiv(const User &I) { 2238 SDValue Op1 = getValue(I.getOperand(0)); 2239 SDValue Op2 = getValue(I.getOperand(1)); 2240 2241 // Turn exact SDivs into multiplications. 2242 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2243 // exact bit. 2244 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2245 !isa<ConstantSDNode>(Op1) && 2246 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2247 setValue(&I, DAG.getTargetLoweringInfo() 2248 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2249 else 2250 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2251 Op1, Op2)); 2252 } 2253 2254 void SelectionDAGBuilder::visitICmp(const User &I) { 2255 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2256 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2257 predicate = IC->getPredicate(); 2258 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2259 predicate = ICmpInst::Predicate(IC->getPredicate()); 2260 SDValue Op1 = getValue(I.getOperand(0)); 2261 SDValue Op2 = getValue(I.getOperand(1)); 2262 ISD::CondCode Opcode = getICmpCondCode(predicate); 2263 2264 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2265 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2266 } 2267 2268 void SelectionDAGBuilder::visitFCmp(const User &I) { 2269 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2270 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2271 predicate = FC->getPredicate(); 2272 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2273 predicate = FCmpInst::Predicate(FC->getPredicate()); 2274 SDValue Op1 = getValue(I.getOperand(0)); 2275 SDValue Op2 = getValue(I.getOperand(1)); 2276 ISD::CondCode Condition = getFCmpCondCode(predicate); 2277 if (TM.Options.NoNaNsFPMath) 2278 Condition = getFCmpCodeWithoutNaN(Condition); 2279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2286 unsigned NumValues = ValueVTs.size(); 2287 if (NumValues == 0) return; 2288 2289 SmallVector<SDValue, 4> Values(NumValues); 2290 SDValue Cond = getValue(I.getOperand(0)); 2291 SDValue LHSVal = getValue(I.getOperand(1)); 2292 SDValue RHSVal = getValue(I.getOperand(2)); 2293 auto BaseOps = {Cond}; 2294 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2295 ISD::VSELECT : ISD::SELECT; 2296 2297 // Min/max matching is only viable if all output VTs are the same. 2298 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2299 Value *LHS, *RHS; 2300 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2301 ISD::NodeType Opc = ISD::DELETED_NODE; 2302 switch (SPF) { 2303 case SPF_UMAX: Opc = ISD::UMAX; break; 2304 case SPF_UMIN: Opc = ISD::UMIN; break; 2305 case SPF_SMAX: Opc = ISD::SMAX; break; 2306 case SPF_SMIN: Opc = ISD::SMIN; break; 2307 default: break; 2308 } 2309 2310 EVT VT = ValueVTs[0]; 2311 LLVMContext &Ctx = *DAG.getContext(); 2312 auto &TLI = DAG.getTargetLoweringInfo(); 2313 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2314 VT = TLI.getTypeToTransformTo(Ctx, VT); 2315 2316 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2317 // If the underlying comparison instruction is used by any other instruction, 2318 // the consumed instructions won't be destroyed, so it is not profitable 2319 // to convert to a min/max. 2320 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2321 OpCode = Opc; 2322 LHSVal = getValue(LHS); 2323 RHSVal = getValue(RHS); 2324 BaseOps = {}; 2325 } 2326 } 2327 2328 for (unsigned i = 0; i != NumValues; ++i) { 2329 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2330 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2331 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2332 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2333 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2334 Ops); 2335 } 2336 2337 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2338 DAG.getVTList(ValueVTs), Values)); 2339 } 2340 2341 void SelectionDAGBuilder::visitTrunc(const User &I) { 2342 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2343 SDValue N = getValue(I.getOperand(0)); 2344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2345 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2346 } 2347 2348 void SelectionDAGBuilder::visitZExt(const User &I) { 2349 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2350 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2351 SDValue N = getValue(I.getOperand(0)); 2352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2353 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2354 } 2355 2356 void SelectionDAGBuilder::visitSExt(const User &I) { 2357 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2358 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2359 SDValue N = getValue(I.getOperand(0)); 2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2361 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2362 } 2363 2364 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2365 // FPTrunc is never a no-op cast, no need to check 2366 SDValue N = getValue(I.getOperand(0)); 2367 SDLoc dl = getCurSDLoc(); 2368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2369 EVT DestVT = TLI.getValueType(I.getType()); 2370 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2371 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2372 } 2373 2374 void SelectionDAGBuilder::visitFPExt(const User &I) { 2375 // FPExt is never a no-op cast, no need to check 2376 SDValue N = getValue(I.getOperand(0)); 2377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2378 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2379 } 2380 2381 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2382 // FPToUI is never a no-op cast, no need to check 2383 SDValue N = getValue(I.getOperand(0)); 2384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2385 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2389 // FPToSI is never a no-op cast, no need to check 2390 SDValue N = getValue(I.getOperand(0)); 2391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2392 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2396 // UIToFP is never a no-op cast, no need to check 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2399 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2400 } 2401 2402 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2403 // SIToFP is never a no-op cast, no need to check 2404 SDValue N = getValue(I.getOperand(0)); 2405 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2406 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2407 } 2408 2409 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2410 // What to do depends on the size of the integer and the size of the pointer. 2411 // We can either truncate, zero extend, or no-op, accordingly. 2412 SDValue N = getValue(I.getOperand(0)); 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2414 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2415 } 2416 2417 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2418 // What to do depends on the size of the integer and the size of the pointer. 2419 // We can either truncate, zero extend, or no-op, accordingly. 2420 SDValue N = getValue(I.getOperand(0)); 2421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2422 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2423 } 2424 2425 void SelectionDAGBuilder::visitBitCast(const User &I) { 2426 SDValue N = getValue(I.getOperand(0)); 2427 SDLoc dl = getCurSDLoc(); 2428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2429 2430 // BitCast assures us that source and destination are the same size so this is 2431 // either a BITCAST or a no-op. 2432 if (DestVT != N.getValueType()) 2433 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2434 DestVT, N)); // convert types. 2435 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2436 // might fold any kind of constant expression to an integer constant and that 2437 // is not what we are looking for. Only regcognize a bitcast of a genuine 2438 // constant integer as an opaque constant. 2439 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2440 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2441 /*isOpaque*/true)); 2442 else 2443 setValue(&I, N); // noop cast. 2444 } 2445 2446 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2448 const Value *SV = I.getOperand(0); 2449 SDValue N = getValue(SV); 2450 EVT DestVT = TLI.getValueType(I.getType()); 2451 2452 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2453 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2454 2455 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2456 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2457 2458 setValue(&I, N); 2459 } 2460 2461 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2463 SDValue InVec = getValue(I.getOperand(0)); 2464 SDValue InVal = getValue(I.getOperand(1)); 2465 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2466 getCurSDLoc(), TLI.getVectorIdxTy()); 2467 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2468 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2469 } 2470 2471 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2473 SDValue InVec = getValue(I.getOperand(0)); 2474 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2475 getCurSDLoc(), TLI.getVectorIdxTy()); 2476 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2477 TLI.getValueType(I.getType()), InVec, InIdx)); 2478 } 2479 2480 // Utility for visitShuffleVector - Return true if every element in Mask, 2481 // beginning from position Pos and ending in Pos+Size, falls within the 2482 // specified sequential range [L, L+Pos). or is undef. 2483 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2484 unsigned Pos, unsigned Size, int Low) { 2485 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2486 if (Mask[i] >= 0 && Mask[i] != Low) 2487 return false; 2488 return true; 2489 } 2490 2491 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2492 SDValue Src1 = getValue(I.getOperand(0)); 2493 SDValue Src2 = getValue(I.getOperand(1)); 2494 2495 SmallVector<int, 8> Mask; 2496 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2497 unsigned MaskNumElts = Mask.size(); 2498 2499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2500 EVT VT = TLI.getValueType(I.getType()); 2501 EVT SrcVT = Src1.getValueType(); 2502 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2503 2504 if (SrcNumElts == MaskNumElts) { 2505 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2506 &Mask[0])); 2507 return; 2508 } 2509 2510 // Normalize the shuffle vector since mask and vector length don't match. 2511 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2512 // Mask is longer than the source vectors and is a multiple of the source 2513 // vectors. We can use concatenate vector to make the mask and vectors 2514 // lengths match. 2515 if (SrcNumElts*2 == MaskNumElts) { 2516 // First check for Src1 in low and Src2 in high 2517 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2518 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2519 // The shuffle is concatenating two vectors together. 2520 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2521 VT, Src1, Src2)); 2522 return; 2523 } 2524 // Then check for Src2 in low and Src1 in high 2525 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2526 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2527 // The shuffle is concatenating two vectors together. 2528 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2529 VT, Src2, Src1)); 2530 return; 2531 } 2532 } 2533 2534 // Pad both vectors with undefs to make them the same length as the mask. 2535 unsigned NumConcat = MaskNumElts / SrcNumElts; 2536 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2537 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2538 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2539 2540 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2541 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2542 MOps1[0] = Src1; 2543 MOps2[0] = Src2; 2544 2545 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2546 getCurSDLoc(), VT, MOps1); 2547 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2548 getCurSDLoc(), VT, MOps2); 2549 2550 // Readjust mask for new input vector length. 2551 SmallVector<int, 8> MappedOps; 2552 for (unsigned i = 0; i != MaskNumElts; ++i) { 2553 int Idx = Mask[i]; 2554 if (Idx >= (int)SrcNumElts) 2555 Idx -= SrcNumElts - MaskNumElts; 2556 MappedOps.push_back(Idx); 2557 } 2558 2559 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2560 &MappedOps[0])); 2561 return; 2562 } 2563 2564 if (SrcNumElts > MaskNumElts) { 2565 // Analyze the access pattern of the vector to see if we can extract 2566 // two subvectors and do the shuffle. The analysis is done by calculating 2567 // the range of elements the mask access on both vectors. 2568 int MinRange[2] = { static_cast<int>(SrcNumElts), 2569 static_cast<int>(SrcNumElts)}; 2570 int MaxRange[2] = {-1, -1}; 2571 2572 for (unsigned i = 0; i != MaskNumElts; ++i) { 2573 int Idx = Mask[i]; 2574 unsigned Input = 0; 2575 if (Idx < 0) 2576 continue; 2577 2578 if (Idx >= (int)SrcNumElts) { 2579 Input = 1; 2580 Idx -= SrcNumElts; 2581 } 2582 if (Idx > MaxRange[Input]) 2583 MaxRange[Input] = Idx; 2584 if (Idx < MinRange[Input]) 2585 MinRange[Input] = Idx; 2586 } 2587 2588 // Check if the access is smaller than the vector size and can we find 2589 // a reasonable extract index. 2590 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2591 // Extract. 2592 int StartIdx[2]; // StartIdx to extract from 2593 for (unsigned Input = 0; Input < 2; ++Input) { 2594 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2595 RangeUse[Input] = 0; // Unused 2596 StartIdx[Input] = 0; 2597 continue; 2598 } 2599 2600 // Find a good start index that is a multiple of the mask length. Then 2601 // see if the rest of the elements are in range. 2602 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2603 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2604 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2605 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2606 } 2607 2608 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2609 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2610 return; 2611 } 2612 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2613 // Extract appropriate subvector and generate a vector shuffle 2614 for (unsigned Input = 0; Input < 2; ++Input) { 2615 SDValue &Src = Input == 0 ? Src1 : Src2; 2616 if (RangeUse[Input] == 0) 2617 Src = DAG.getUNDEF(VT); 2618 else { 2619 SDLoc dl = getCurSDLoc(); 2620 Src = DAG.getNode( 2621 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2622 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2623 } 2624 } 2625 2626 // Calculate new mask. 2627 SmallVector<int, 8> MappedOps; 2628 for (unsigned i = 0; i != MaskNumElts; ++i) { 2629 int Idx = Mask[i]; 2630 if (Idx >= 0) { 2631 if (Idx < (int)SrcNumElts) 2632 Idx -= StartIdx[0]; 2633 else 2634 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2635 } 2636 MappedOps.push_back(Idx); 2637 } 2638 2639 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2640 &MappedOps[0])); 2641 return; 2642 } 2643 } 2644 2645 // We can't use either concat vectors or extract subvectors so fall back to 2646 // replacing the shuffle with extract and build vector. 2647 // to insert and build vector. 2648 EVT EltVT = VT.getVectorElementType(); 2649 EVT IdxVT = TLI.getVectorIdxTy(); 2650 SDLoc dl = getCurSDLoc(); 2651 SmallVector<SDValue,8> Ops; 2652 for (unsigned i = 0; i != MaskNumElts; ++i) { 2653 int Idx = Mask[i]; 2654 SDValue Res; 2655 2656 if (Idx < 0) { 2657 Res = DAG.getUNDEF(EltVT); 2658 } else { 2659 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2660 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2661 2662 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2663 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2664 } 2665 2666 Ops.push_back(Res); 2667 } 2668 2669 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2670 } 2671 2672 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2673 const Value *Op0 = I.getOperand(0); 2674 const Value *Op1 = I.getOperand(1); 2675 Type *AggTy = I.getType(); 2676 Type *ValTy = Op1->getType(); 2677 bool IntoUndef = isa<UndefValue>(Op0); 2678 bool FromUndef = isa<UndefValue>(Op1); 2679 2680 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2681 2682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2683 SmallVector<EVT, 4> AggValueVTs; 2684 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2685 SmallVector<EVT, 4> ValValueVTs; 2686 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2687 2688 unsigned NumAggValues = AggValueVTs.size(); 2689 unsigned NumValValues = ValValueVTs.size(); 2690 SmallVector<SDValue, 4> Values(NumAggValues); 2691 2692 // Ignore an insertvalue that produces an empty object 2693 if (!NumAggValues) { 2694 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2695 return; 2696 } 2697 2698 SDValue Agg = getValue(Op0); 2699 unsigned i = 0; 2700 // Copy the beginning value(s) from the original aggregate. 2701 for (; i != LinearIndex; ++i) 2702 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2703 SDValue(Agg.getNode(), Agg.getResNo() + i); 2704 // Copy values from the inserted value(s). 2705 if (NumValValues) { 2706 SDValue Val = getValue(Op1); 2707 for (; i != LinearIndex + NumValValues; ++i) 2708 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2709 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2710 } 2711 // Copy remaining value(s) from the original aggregate. 2712 for (; i != NumAggValues; ++i) 2713 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2714 SDValue(Agg.getNode(), Agg.getResNo() + i); 2715 2716 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2717 DAG.getVTList(AggValueVTs), Values)); 2718 } 2719 2720 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2721 const Value *Op0 = I.getOperand(0); 2722 Type *AggTy = Op0->getType(); 2723 Type *ValTy = I.getType(); 2724 bool OutOfUndef = isa<UndefValue>(Op0); 2725 2726 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2727 2728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2729 SmallVector<EVT, 4> ValValueVTs; 2730 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2731 2732 unsigned NumValValues = ValValueVTs.size(); 2733 2734 // Ignore a extractvalue that produces an empty object 2735 if (!NumValValues) { 2736 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2737 return; 2738 } 2739 2740 SmallVector<SDValue, 4> Values(NumValValues); 2741 2742 SDValue Agg = getValue(Op0); 2743 // Copy out the selected value(s). 2744 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2745 Values[i - LinearIndex] = 2746 OutOfUndef ? 2747 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2748 SDValue(Agg.getNode(), Agg.getResNo() + i); 2749 2750 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2751 DAG.getVTList(ValValueVTs), Values)); 2752 } 2753 2754 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2755 Value *Op0 = I.getOperand(0); 2756 // Note that the pointer operand may be a vector of pointers. Take the scalar 2757 // element which holds a pointer. 2758 Type *Ty = Op0->getType()->getScalarType(); 2759 unsigned AS = Ty->getPointerAddressSpace(); 2760 SDValue N = getValue(Op0); 2761 SDLoc dl = getCurSDLoc(); 2762 2763 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2764 OI != E; ++OI) { 2765 const Value *Idx = *OI; 2766 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2767 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2768 if (Field) { 2769 // N = N + Offset 2770 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2771 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2772 DAG.getConstant(Offset, dl, N.getValueType())); 2773 } 2774 2775 Ty = StTy->getElementType(Field); 2776 } else { 2777 Ty = cast<SequentialType>(Ty)->getElementType(); 2778 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2779 unsigned PtrSize = PtrTy.getSizeInBits(); 2780 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2781 2782 // If this is a constant subscript, handle it quickly. 2783 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2784 if (CI->isZero()) 2785 continue; 2786 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2787 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2788 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2789 continue; 2790 } 2791 2792 // N = N + Idx * ElementSize; 2793 SDValue IdxN = getValue(Idx); 2794 2795 // If the index is smaller or larger than intptr_t, truncate or extend 2796 // it. 2797 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2798 2799 // If this is a multiply by a power of two, turn it into a shl 2800 // immediately. This is a very common case. 2801 if (ElementSize != 1) { 2802 if (ElementSize.isPowerOf2()) { 2803 unsigned Amt = ElementSize.logBase2(); 2804 IdxN = DAG.getNode(ISD::SHL, dl, 2805 N.getValueType(), IdxN, 2806 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2807 } else { 2808 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2809 IdxN = DAG.getNode(ISD::MUL, dl, 2810 N.getValueType(), IdxN, Scale); 2811 } 2812 } 2813 2814 N = DAG.getNode(ISD::ADD, dl, 2815 N.getValueType(), N, IdxN); 2816 } 2817 } 2818 2819 setValue(&I, N); 2820 } 2821 2822 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2823 // If this is a fixed sized alloca in the entry block of the function, 2824 // allocate it statically on the stack. 2825 if (FuncInfo.StaticAllocaMap.count(&I)) 2826 return; // getValue will auto-populate this. 2827 2828 SDLoc dl = getCurSDLoc(); 2829 Type *Ty = I.getAllocatedType(); 2830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2831 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2832 unsigned Align = 2833 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2834 I.getAlignment()); 2835 2836 SDValue AllocSize = getValue(I.getArraySize()); 2837 2838 EVT IntPtr = TLI.getPointerTy(); 2839 if (AllocSize.getValueType() != IntPtr) 2840 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2841 2842 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2843 AllocSize, 2844 DAG.getConstant(TySize, dl, IntPtr)); 2845 2846 // Handle alignment. If the requested alignment is less than or equal to 2847 // the stack alignment, ignore it. If the size is greater than or equal to 2848 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2849 unsigned StackAlign = 2850 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2851 if (Align <= StackAlign) 2852 Align = 0; 2853 2854 // Round the size of the allocation up to the stack alignment size 2855 // by add SA-1 to the size. 2856 AllocSize = DAG.getNode(ISD::ADD, dl, 2857 AllocSize.getValueType(), AllocSize, 2858 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2859 2860 // Mask out the low bits for alignment purposes. 2861 AllocSize = DAG.getNode(ISD::AND, dl, 2862 AllocSize.getValueType(), AllocSize, 2863 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2864 dl)); 2865 2866 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2867 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2868 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2869 setValue(&I, DSA); 2870 DAG.setRoot(DSA.getValue(1)); 2871 2872 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2873 } 2874 2875 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2876 if (I.isAtomic()) 2877 return visitAtomicLoad(I); 2878 2879 const Value *SV = I.getOperand(0); 2880 SDValue Ptr = getValue(SV); 2881 2882 Type *Ty = I.getType(); 2883 2884 bool isVolatile = I.isVolatile(); 2885 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2886 2887 // The IR notion of invariant_load only guarantees that all *non-faulting* 2888 // invariant loads result in the same value. The MI notion of invariant load 2889 // guarantees that the load can be legally moved to any location within its 2890 // containing function. The MI notion of invariant_load is stronger than the 2891 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2892 // with a guarantee that the location being loaded from is dereferenceable 2893 // throughout the function's lifetime. 2894 2895 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2896 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2897 unsigned Alignment = I.getAlignment(); 2898 2899 AAMDNodes AAInfo; 2900 I.getAAMetadata(AAInfo); 2901 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2902 2903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2904 SmallVector<EVT, 4> ValueVTs; 2905 SmallVector<uint64_t, 4> Offsets; 2906 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2907 unsigned NumValues = ValueVTs.size(); 2908 if (NumValues == 0) 2909 return; 2910 2911 SDValue Root; 2912 bool ConstantMemory = false; 2913 if (isVolatile || NumValues > MaxParallelChains) 2914 // Serialize volatile loads with other side effects. 2915 Root = getRoot(); 2916 else if (AA->pointsToConstantMemory( 2917 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2918 // Do not serialize (non-volatile) loads of constant memory with anything. 2919 Root = DAG.getEntryNode(); 2920 ConstantMemory = true; 2921 } else { 2922 // Do not serialize non-volatile loads against each other. 2923 Root = DAG.getRoot(); 2924 } 2925 2926 SDLoc dl = getCurSDLoc(); 2927 2928 if (isVolatile) 2929 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2930 2931 SmallVector<SDValue, 4> Values(NumValues); 2932 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2933 NumValues)); 2934 EVT PtrVT = Ptr.getValueType(); 2935 unsigned ChainI = 0; 2936 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2937 // Serializing loads here may result in excessive register pressure, and 2938 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2939 // could recover a bit by hoisting nodes upward in the chain by recognizing 2940 // they are side-effect free or do not alias. The optimizer should really 2941 // avoid this case by converting large object/array copies to llvm.memcpy 2942 // (MaxParallelChains should always remain as failsafe). 2943 if (ChainI == MaxParallelChains) { 2944 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2945 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2946 makeArrayRef(Chains.data(), ChainI)); 2947 Root = Chain; 2948 ChainI = 0; 2949 } 2950 SDValue A = DAG.getNode(ISD::ADD, dl, 2951 PtrVT, Ptr, 2952 DAG.getConstant(Offsets[i], dl, PtrVT)); 2953 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2954 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2955 isNonTemporal, isInvariant, Alignment, AAInfo, 2956 Ranges); 2957 2958 Values[i] = L; 2959 Chains[ChainI] = L.getValue(1); 2960 } 2961 2962 if (!ConstantMemory) { 2963 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2964 makeArrayRef(Chains.data(), ChainI)); 2965 if (isVolatile) 2966 DAG.setRoot(Chain); 2967 else 2968 PendingLoads.push_back(Chain); 2969 } 2970 2971 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2972 DAG.getVTList(ValueVTs), Values)); 2973 } 2974 2975 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2976 if (I.isAtomic()) 2977 return visitAtomicStore(I); 2978 2979 const Value *SrcV = I.getOperand(0); 2980 const Value *PtrV = I.getOperand(1); 2981 2982 SmallVector<EVT, 4> ValueVTs; 2983 SmallVector<uint64_t, 4> Offsets; 2984 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2985 ValueVTs, &Offsets); 2986 unsigned NumValues = ValueVTs.size(); 2987 if (NumValues == 0) 2988 return; 2989 2990 // Get the lowered operands. Note that we do this after 2991 // checking if NumResults is zero, because with zero results 2992 // the operands won't have values in the map. 2993 SDValue Src = getValue(SrcV); 2994 SDValue Ptr = getValue(PtrV); 2995 2996 SDValue Root = getRoot(); 2997 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2998 NumValues)); 2999 EVT PtrVT = Ptr.getValueType(); 3000 bool isVolatile = I.isVolatile(); 3001 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3002 unsigned Alignment = I.getAlignment(); 3003 SDLoc dl = getCurSDLoc(); 3004 3005 AAMDNodes AAInfo; 3006 I.getAAMetadata(AAInfo); 3007 3008 unsigned ChainI = 0; 3009 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3010 // See visitLoad comments. 3011 if (ChainI == MaxParallelChains) { 3012 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3013 makeArrayRef(Chains.data(), ChainI)); 3014 Root = Chain; 3015 ChainI = 0; 3016 } 3017 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3018 DAG.getConstant(Offsets[i], dl, PtrVT)); 3019 SDValue St = DAG.getStore(Root, dl, 3020 SDValue(Src.getNode(), Src.getResNo() + i), 3021 Add, MachinePointerInfo(PtrV, Offsets[i]), 3022 isVolatile, isNonTemporal, Alignment, AAInfo); 3023 Chains[ChainI] = St; 3024 } 3025 3026 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3027 makeArrayRef(Chains.data(), ChainI)); 3028 DAG.setRoot(StoreNode); 3029 } 3030 3031 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3032 SDLoc sdl = getCurSDLoc(); 3033 3034 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3035 Value *PtrOperand = I.getArgOperand(1); 3036 SDValue Ptr = getValue(PtrOperand); 3037 SDValue Src0 = getValue(I.getArgOperand(0)); 3038 SDValue Mask = getValue(I.getArgOperand(3)); 3039 EVT VT = Src0.getValueType(); 3040 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3041 if (!Alignment) 3042 Alignment = DAG.getEVTAlignment(VT); 3043 3044 AAMDNodes AAInfo; 3045 I.getAAMetadata(AAInfo); 3046 3047 MachineMemOperand *MMO = 3048 DAG.getMachineFunction(). 3049 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3050 MachineMemOperand::MOStore, VT.getStoreSize(), 3051 Alignment, AAInfo); 3052 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3053 MMO, false); 3054 DAG.setRoot(StoreNode); 3055 setValue(&I, StoreNode); 3056 } 3057 3058 // Gather/scatter receive a vector of pointers. 3059 // This vector of pointers may be represented as a base pointer + vector of 3060 // indices, it depends on GEP and instruction preceeding GEP 3061 // that calculates indices 3062 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3063 SelectionDAGBuilder* SDB) { 3064 3065 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3066 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3067 if (!Gep || Gep->getNumOperands() > 2) 3068 return false; 3069 ShuffleVectorInst *ShuffleInst = 3070 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3071 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3072 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3073 Instruction::InsertElement) 3074 return false; 3075 3076 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3077 3078 SelectionDAG& DAG = SDB->DAG; 3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3080 // Check is the Ptr is inside current basic block 3081 // If not, look for the shuffle instruction 3082 if (SDB->findValue(Ptr)) 3083 Base = SDB->getValue(Ptr); 3084 else if (SDB->findValue(ShuffleInst)) { 3085 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3086 SDLoc sdl = ShuffleNode; 3087 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3088 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3089 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3090 SDB->setValue(Ptr, Base); 3091 } 3092 else 3093 return false; 3094 3095 Value *IndexVal = Gep->getOperand(1); 3096 if (SDB->findValue(IndexVal)) { 3097 Index = SDB->getValue(IndexVal); 3098 3099 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3100 IndexVal = Sext->getOperand(0); 3101 if (SDB->findValue(IndexVal)) 3102 Index = SDB->getValue(IndexVal); 3103 } 3104 return true; 3105 } 3106 return false; 3107 } 3108 3109 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3110 SDLoc sdl = getCurSDLoc(); 3111 3112 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3113 Value *Ptr = I.getArgOperand(1); 3114 SDValue Src0 = getValue(I.getArgOperand(0)); 3115 SDValue Mask = getValue(I.getArgOperand(3)); 3116 EVT VT = Src0.getValueType(); 3117 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3118 if (!Alignment) 3119 Alignment = DAG.getEVTAlignment(VT); 3120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3121 3122 AAMDNodes AAInfo; 3123 I.getAAMetadata(AAInfo); 3124 3125 SDValue Base; 3126 SDValue Index; 3127 Value *BasePtr = Ptr; 3128 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3129 3130 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3131 MachineMemOperand *MMO = DAG.getMachineFunction(). 3132 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3133 MachineMemOperand::MOStore, VT.getStoreSize(), 3134 Alignment, AAInfo); 3135 if (!UniformBase) { 3136 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3137 Index = getValue(Ptr); 3138 } 3139 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3140 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3141 Ops, MMO); 3142 DAG.setRoot(Scatter); 3143 setValue(&I, Scatter); 3144 } 3145 3146 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3147 SDLoc sdl = getCurSDLoc(); 3148 3149 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3150 Value *PtrOperand = I.getArgOperand(0); 3151 SDValue Ptr = getValue(PtrOperand); 3152 SDValue Src0 = getValue(I.getArgOperand(3)); 3153 SDValue Mask = getValue(I.getArgOperand(2)); 3154 3155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3156 EVT VT = TLI.getValueType(I.getType()); 3157 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3158 if (!Alignment) 3159 Alignment = DAG.getEVTAlignment(VT); 3160 3161 AAMDNodes AAInfo; 3162 I.getAAMetadata(AAInfo); 3163 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3164 3165 SDValue InChain = DAG.getRoot(); 3166 if (AA->pointsToConstantMemory( 3167 AliasAnalysis::Location(PtrOperand, 3168 AA->getTypeStoreSize(I.getType()), 3169 AAInfo))) { 3170 // Do not serialize (non-volatile) loads of constant memory with anything. 3171 InChain = DAG.getEntryNode(); 3172 } 3173 3174 MachineMemOperand *MMO = 3175 DAG.getMachineFunction(). 3176 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3177 MachineMemOperand::MOLoad, VT.getStoreSize(), 3178 Alignment, AAInfo, Ranges); 3179 3180 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3181 ISD::NON_EXTLOAD); 3182 SDValue OutChain = Load.getValue(1); 3183 DAG.setRoot(OutChain); 3184 setValue(&I, Load); 3185 } 3186 3187 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3188 SDLoc sdl = getCurSDLoc(); 3189 3190 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3191 Value *Ptr = I.getArgOperand(0); 3192 SDValue Src0 = getValue(I.getArgOperand(3)); 3193 SDValue Mask = getValue(I.getArgOperand(2)); 3194 3195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3196 EVT VT = TLI.getValueType(I.getType()); 3197 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3198 if (!Alignment) 3199 Alignment = DAG.getEVTAlignment(VT); 3200 3201 AAMDNodes AAInfo; 3202 I.getAAMetadata(AAInfo); 3203 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3204 3205 SDValue Root = DAG.getRoot(); 3206 SDValue Base; 3207 SDValue Index; 3208 Value *BasePtr = Ptr; 3209 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3210 bool ConstantMemory = false; 3211 if (UniformBase && AA->pointsToConstantMemory( 3212 AliasAnalysis::Location(BasePtr, 3213 AA->getTypeStoreSize(I.getType()), 3214 AAInfo))) { 3215 // Do not serialize (non-volatile) loads of constant memory with anything. 3216 Root = DAG.getEntryNode(); 3217 ConstantMemory = true; 3218 } 3219 3220 MachineMemOperand *MMO = 3221 DAG.getMachineFunction(). 3222 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3223 MachineMemOperand::MOLoad, VT.getStoreSize(), 3224 Alignment, AAInfo, Ranges); 3225 3226 if (!UniformBase) { 3227 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3228 Index = getValue(Ptr); 3229 } 3230 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3231 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3232 Ops, MMO); 3233 3234 SDValue OutChain = Gather.getValue(1); 3235 if (!ConstantMemory) 3236 PendingLoads.push_back(OutChain); 3237 setValue(&I, Gather); 3238 } 3239 3240 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3241 SDLoc dl = getCurSDLoc(); 3242 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3243 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3244 SynchronizationScope Scope = I.getSynchScope(); 3245 3246 SDValue InChain = getRoot(); 3247 3248 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3249 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3250 SDValue L = DAG.getAtomicCmpSwap( 3251 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3252 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3253 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3254 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3255 3256 SDValue OutChain = L.getValue(2); 3257 3258 setValue(&I, L); 3259 DAG.setRoot(OutChain); 3260 } 3261 3262 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3263 SDLoc dl = getCurSDLoc(); 3264 ISD::NodeType NT; 3265 switch (I.getOperation()) { 3266 default: llvm_unreachable("Unknown atomicrmw operation"); 3267 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3268 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3269 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3270 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3271 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3272 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3273 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3274 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3275 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3276 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3277 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3278 } 3279 AtomicOrdering Order = I.getOrdering(); 3280 SynchronizationScope Scope = I.getSynchScope(); 3281 3282 SDValue InChain = getRoot(); 3283 3284 SDValue L = 3285 DAG.getAtomic(NT, dl, 3286 getValue(I.getValOperand()).getSimpleValueType(), 3287 InChain, 3288 getValue(I.getPointerOperand()), 3289 getValue(I.getValOperand()), 3290 I.getPointerOperand(), 3291 /* Alignment=*/ 0, Order, Scope); 3292 3293 SDValue OutChain = L.getValue(1); 3294 3295 setValue(&I, L); 3296 DAG.setRoot(OutChain); 3297 } 3298 3299 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3300 SDLoc dl = getCurSDLoc(); 3301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3302 SDValue Ops[3]; 3303 Ops[0] = getRoot(); 3304 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3305 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3306 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3307 } 3308 3309 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3310 SDLoc dl = getCurSDLoc(); 3311 AtomicOrdering Order = I.getOrdering(); 3312 SynchronizationScope Scope = I.getSynchScope(); 3313 3314 SDValue InChain = getRoot(); 3315 3316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3317 EVT VT = TLI.getValueType(I.getType()); 3318 3319 if (I.getAlignment() < VT.getSizeInBits() / 8) 3320 report_fatal_error("Cannot generate unaligned atomic load"); 3321 3322 MachineMemOperand *MMO = 3323 DAG.getMachineFunction(). 3324 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3325 MachineMemOperand::MOVolatile | 3326 MachineMemOperand::MOLoad, 3327 VT.getStoreSize(), 3328 I.getAlignment() ? I.getAlignment() : 3329 DAG.getEVTAlignment(VT)); 3330 3331 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3332 SDValue L = 3333 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3334 getValue(I.getPointerOperand()), MMO, 3335 Order, Scope); 3336 3337 SDValue OutChain = L.getValue(1); 3338 3339 setValue(&I, L); 3340 DAG.setRoot(OutChain); 3341 } 3342 3343 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3344 SDLoc dl = getCurSDLoc(); 3345 3346 AtomicOrdering Order = I.getOrdering(); 3347 SynchronizationScope Scope = I.getSynchScope(); 3348 3349 SDValue InChain = getRoot(); 3350 3351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3352 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3353 3354 if (I.getAlignment() < VT.getSizeInBits() / 8) 3355 report_fatal_error("Cannot generate unaligned atomic store"); 3356 3357 SDValue OutChain = 3358 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3359 InChain, 3360 getValue(I.getPointerOperand()), 3361 getValue(I.getValueOperand()), 3362 I.getPointerOperand(), I.getAlignment(), 3363 Order, Scope); 3364 3365 DAG.setRoot(OutChain); 3366 } 3367 3368 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3369 /// node. 3370 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3371 unsigned Intrinsic) { 3372 bool HasChain = !I.doesNotAccessMemory(); 3373 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3374 3375 // Build the operand list. 3376 SmallVector<SDValue, 8> Ops; 3377 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3378 if (OnlyLoad) { 3379 // We don't need to serialize loads against other loads. 3380 Ops.push_back(DAG.getRoot()); 3381 } else { 3382 Ops.push_back(getRoot()); 3383 } 3384 } 3385 3386 // Info is set by getTgtMemInstrinsic 3387 TargetLowering::IntrinsicInfo Info; 3388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3389 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3390 3391 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3392 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3393 Info.opc == ISD::INTRINSIC_W_CHAIN) 3394 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3395 TLI.getPointerTy())); 3396 3397 // Add all operands of the call to the operand list. 3398 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3399 SDValue Op = getValue(I.getArgOperand(i)); 3400 Ops.push_back(Op); 3401 } 3402 3403 SmallVector<EVT, 4> ValueVTs; 3404 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3405 3406 if (HasChain) 3407 ValueVTs.push_back(MVT::Other); 3408 3409 SDVTList VTs = DAG.getVTList(ValueVTs); 3410 3411 // Create the node. 3412 SDValue Result; 3413 if (IsTgtIntrinsic) { 3414 // This is target intrinsic that touches memory 3415 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3416 VTs, Ops, Info.memVT, 3417 MachinePointerInfo(Info.ptrVal, Info.offset), 3418 Info.align, Info.vol, 3419 Info.readMem, Info.writeMem, Info.size); 3420 } else if (!HasChain) { 3421 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3422 } else if (!I.getType()->isVoidTy()) { 3423 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3424 } else { 3425 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3426 } 3427 3428 if (HasChain) { 3429 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3430 if (OnlyLoad) 3431 PendingLoads.push_back(Chain); 3432 else 3433 DAG.setRoot(Chain); 3434 } 3435 3436 if (!I.getType()->isVoidTy()) { 3437 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3438 EVT VT = TLI.getValueType(PTy); 3439 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3440 } 3441 3442 setValue(&I, Result); 3443 } 3444 } 3445 3446 /// GetSignificand - Get the significand and build it into a floating-point 3447 /// number with exponent of 1: 3448 /// 3449 /// Op = (Op & 0x007fffff) | 0x3f800000; 3450 /// 3451 /// where Op is the hexadecimal representation of floating point value. 3452 static SDValue 3453 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3454 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3455 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3456 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3457 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3458 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3459 } 3460 3461 /// GetExponent - Get the exponent: 3462 /// 3463 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3464 /// 3465 /// where Op is the hexadecimal representation of floating point value. 3466 static SDValue 3467 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3468 SDLoc dl) { 3469 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3470 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3471 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3472 DAG.getConstant(23, dl, TLI.getPointerTy())); 3473 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3474 DAG.getConstant(127, dl, MVT::i32)); 3475 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3476 } 3477 3478 /// getF32Constant - Get 32-bit floating point constant. 3479 static SDValue 3480 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3481 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3482 MVT::f32); 3483 } 3484 3485 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3486 SelectionDAG &DAG) { 3487 // IntegerPartOfX = ((int32_t)(t0); 3488 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3489 3490 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3491 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3492 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3493 3494 // IntegerPartOfX <<= 23; 3495 IntegerPartOfX = DAG.getNode( 3496 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3497 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3498 3499 SDValue TwoToFractionalPartOfX; 3500 if (LimitFloatPrecision <= 6) { 3501 // For floating-point precision of 6: 3502 // 3503 // TwoToFractionalPartOfX = 3504 // 0.997535578f + 3505 // (0.735607626f + 0.252464424f * x) * x; 3506 // 3507 // error 0.0144103317, which is 6 bits 3508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3509 getF32Constant(DAG, 0x3e814304, dl)); 3510 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3511 getF32Constant(DAG, 0x3f3c50c8, dl)); 3512 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3513 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3514 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3515 } else if (LimitFloatPrecision <= 12) { 3516 // For floating-point precision of 12: 3517 // 3518 // TwoToFractionalPartOfX = 3519 // 0.999892986f + 3520 // (0.696457318f + 3521 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3522 // 3523 // error 0.000107046256, which is 13 to 14 bits 3524 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3525 getF32Constant(DAG, 0x3da235e3, dl)); 3526 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3527 getF32Constant(DAG, 0x3e65b8f3, dl)); 3528 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3529 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3530 getF32Constant(DAG, 0x3f324b07, dl)); 3531 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3532 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3533 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3534 } else { // LimitFloatPrecision <= 18 3535 // For floating-point precision of 18: 3536 // 3537 // TwoToFractionalPartOfX = 3538 // 0.999999982f + 3539 // (0.693148872f + 3540 // (0.240227044f + 3541 // (0.554906021e-1f + 3542 // (0.961591928e-2f + 3543 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3544 // error 2.47208000*10^(-7), which is better than 18 bits 3545 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3546 getF32Constant(DAG, 0x3924b03e, dl)); 3547 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3548 getF32Constant(DAG, 0x3ab24b87, dl)); 3549 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3550 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3551 getF32Constant(DAG, 0x3c1d8c17, dl)); 3552 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3553 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3554 getF32Constant(DAG, 0x3d634a1d, dl)); 3555 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3556 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3557 getF32Constant(DAG, 0x3e75fe14, dl)); 3558 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3559 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3560 getF32Constant(DAG, 0x3f317234, dl)); 3561 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3562 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3563 getF32Constant(DAG, 0x3f800000, dl)); 3564 } 3565 3566 // Add the exponent into the result in integer domain. 3567 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3568 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3569 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3570 } 3571 3572 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3573 /// limited-precision mode. 3574 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3575 const TargetLowering &TLI) { 3576 if (Op.getValueType() == MVT::f32 && 3577 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3578 3579 // Put the exponent in the right bit position for later addition to the 3580 // final result: 3581 // 3582 // #define LOG2OFe 1.4426950f 3583 // t0 = Op * LOG2OFe 3584 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3585 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3586 return getLimitedPrecisionExp2(t0, dl, DAG); 3587 } 3588 3589 // No special expansion. 3590 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3591 } 3592 3593 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3594 /// limited-precision mode. 3595 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3596 const TargetLowering &TLI) { 3597 if (Op.getValueType() == MVT::f32 && 3598 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3599 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3600 3601 // Scale the exponent by log(2) [0.69314718f]. 3602 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3603 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3604 getF32Constant(DAG, 0x3f317218, dl)); 3605 3606 // Get the significand and build it into a floating-point number with 3607 // exponent of 1. 3608 SDValue X = GetSignificand(DAG, Op1, dl); 3609 3610 SDValue LogOfMantissa; 3611 if (LimitFloatPrecision <= 6) { 3612 // For floating-point precision of 6: 3613 // 3614 // LogofMantissa = 3615 // -1.1609546f + 3616 // (1.4034025f - 0.23903021f * x) * x; 3617 // 3618 // error 0.0034276066, which is better than 8 bits 3619 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3620 getF32Constant(DAG, 0xbe74c456, dl)); 3621 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3622 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3623 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3624 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3625 getF32Constant(DAG, 0x3f949a29, dl)); 3626 } else if (LimitFloatPrecision <= 12) { 3627 // For floating-point precision of 12: 3628 // 3629 // LogOfMantissa = 3630 // -1.7417939f + 3631 // (2.8212026f + 3632 // (-1.4699568f + 3633 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3634 // 3635 // error 0.000061011436, which is 14 bits 3636 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3637 getF32Constant(DAG, 0xbd67b6d6, dl)); 3638 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3639 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3640 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3641 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3642 getF32Constant(DAG, 0x3fbc278b, dl)); 3643 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3644 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3645 getF32Constant(DAG, 0x40348e95, dl)); 3646 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3647 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3648 getF32Constant(DAG, 0x3fdef31a, dl)); 3649 } else { // LimitFloatPrecision <= 18 3650 // For floating-point precision of 18: 3651 // 3652 // LogOfMantissa = 3653 // -2.1072184f + 3654 // (4.2372794f + 3655 // (-3.7029485f + 3656 // (2.2781945f + 3657 // (-0.87823314f + 3658 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3659 // 3660 // error 0.0000023660568, which is better than 18 bits 3661 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3662 getF32Constant(DAG, 0xbc91e5ac, dl)); 3663 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3664 getF32Constant(DAG, 0x3e4350aa, dl)); 3665 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3666 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3667 getF32Constant(DAG, 0x3f60d3e3, dl)); 3668 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3669 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3670 getF32Constant(DAG, 0x4011cdf0, dl)); 3671 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3672 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3673 getF32Constant(DAG, 0x406cfd1c, dl)); 3674 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3675 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3676 getF32Constant(DAG, 0x408797cb, dl)); 3677 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3678 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3679 getF32Constant(DAG, 0x4006dcab, dl)); 3680 } 3681 3682 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3683 } 3684 3685 // No special expansion. 3686 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3687 } 3688 3689 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3690 /// limited-precision mode. 3691 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3692 const TargetLowering &TLI) { 3693 if (Op.getValueType() == MVT::f32 && 3694 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3695 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3696 3697 // Get the exponent. 3698 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3699 3700 // Get the significand and build it into a floating-point number with 3701 // exponent of 1. 3702 SDValue X = GetSignificand(DAG, Op1, dl); 3703 3704 // Different possible minimax approximations of significand in 3705 // floating-point for various degrees of accuracy over [1,2]. 3706 SDValue Log2ofMantissa; 3707 if (LimitFloatPrecision <= 6) { 3708 // For floating-point precision of 6: 3709 // 3710 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3711 // 3712 // error 0.0049451742, which is more than 7 bits 3713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3714 getF32Constant(DAG, 0xbeb08fe0, dl)); 3715 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3716 getF32Constant(DAG, 0x40019463, dl)); 3717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3718 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3719 getF32Constant(DAG, 0x3fd6633d, dl)); 3720 } else if (LimitFloatPrecision <= 12) { 3721 // For floating-point precision of 12: 3722 // 3723 // Log2ofMantissa = 3724 // -2.51285454f + 3725 // (4.07009056f + 3726 // (-2.12067489f + 3727 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3728 // 3729 // error 0.0000876136000, which is better than 13 bits 3730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3731 getF32Constant(DAG, 0xbda7262e, dl)); 3732 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3733 getF32Constant(DAG, 0x3f25280b, dl)); 3734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3735 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3736 getF32Constant(DAG, 0x4007b923, dl)); 3737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3738 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3739 getF32Constant(DAG, 0x40823e2f, dl)); 3740 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3741 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3742 getF32Constant(DAG, 0x4020d29c, dl)); 3743 } else { // LimitFloatPrecision <= 18 3744 // For floating-point precision of 18: 3745 // 3746 // Log2ofMantissa = 3747 // -3.0400495f + 3748 // (6.1129976f + 3749 // (-5.3420409f + 3750 // (3.2865683f + 3751 // (-1.2669343f + 3752 // (0.27515199f - 3753 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3754 // 3755 // error 0.0000018516, which is better than 18 bits 3756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3757 getF32Constant(DAG, 0xbcd2769e, dl)); 3758 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3759 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3761 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3762 getF32Constant(DAG, 0x3fa22ae7, dl)); 3763 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3764 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3765 getF32Constant(DAG, 0x40525723, dl)); 3766 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3767 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3768 getF32Constant(DAG, 0x40aaf200, dl)); 3769 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3770 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3771 getF32Constant(DAG, 0x40c39dad, dl)); 3772 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3773 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3774 getF32Constant(DAG, 0x4042902c, dl)); 3775 } 3776 3777 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3778 } 3779 3780 // No special expansion. 3781 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3782 } 3783 3784 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3785 /// limited-precision mode. 3786 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3787 const TargetLowering &TLI) { 3788 if (Op.getValueType() == MVT::f32 && 3789 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3790 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3791 3792 // Scale the exponent by log10(2) [0.30102999f]. 3793 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3794 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3795 getF32Constant(DAG, 0x3e9a209a, dl)); 3796 3797 // Get the significand and build it into a floating-point number with 3798 // exponent of 1. 3799 SDValue X = GetSignificand(DAG, Op1, dl); 3800 3801 SDValue Log10ofMantissa; 3802 if (LimitFloatPrecision <= 6) { 3803 // For floating-point precision of 6: 3804 // 3805 // Log10ofMantissa = 3806 // -0.50419619f + 3807 // (0.60948995f - 0.10380950f * x) * x; 3808 // 3809 // error 0.0014886165, which is 6 bits 3810 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3811 getF32Constant(DAG, 0xbdd49a13, dl)); 3812 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3813 getF32Constant(DAG, 0x3f1c0789, dl)); 3814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3815 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3816 getF32Constant(DAG, 0x3f011300, dl)); 3817 } else if (LimitFloatPrecision <= 12) { 3818 // For floating-point precision of 12: 3819 // 3820 // Log10ofMantissa = 3821 // -0.64831180f + 3822 // (0.91751397f + 3823 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3824 // 3825 // error 0.00019228036, which is better than 12 bits 3826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3827 getF32Constant(DAG, 0x3d431f31, dl)); 3828 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3829 getF32Constant(DAG, 0x3ea21fb2, dl)); 3830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3831 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3832 getF32Constant(DAG, 0x3f6ae232, dl)); 3833 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3834 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3835 getF32Constant(DAG, 0x3f25f7c3, dl)); 3836 } else { // LimitFloatPrecision <= 18 3837 // For floating-point precision of 18: 3838 // 3839 // Log10ofMantissa = 3840 // -0.84299375f + 3841 // (1.5327582f + 3842 // (-1.0688956f + 3843 // (0.49102474f + 3844 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3845 // 3846 // error 0.0000037995730, which is better than 18 bits 3847 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3848 getF32Constant(DAG, 0x3c5d51ce, dl)); 3849 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3850 getF32Constant(DAG, 0x3e00685a, dl)); 3851 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3852 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3853 getF32Constant(DAG, 0x3efb6798, dl)); 3854 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3855 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3856 getF32Constant(DAG, 0x3f88d192, dl)); 3857 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3858 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3859 getF32Constant(DAG, 0x3fc4316c, dl)); 3860 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3861 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3862 getF32Constant(DAG, 0x3f57ce70, dl)); 3863 } 3864 3865 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3866 } 3867 3868 // No special expansion. 3869 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3870 } 3871 3872 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3873 /// limited-precision mode. 3874 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3875 const TargetLowering &TLI) { 3876 if (Op.getValueType() == MVT::f32 && 3877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3878 return getLimitedPrecisionExp2(Op, dl, DAG); 3879 3880 // No special expansion. 3881 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3882 } 3883 3884 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3885 /// limited-precision mode with x == 10.0f. 3886 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3887 SelectionDAG &DAG, const TargetLowering &TLI) { 3888 bool IsExp10 = false; 3889 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3891 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3892 APFloat Ten(10.0f); 3893 IsExp10 = LHSC->isExactlyValue(Ten); 3894 } 3895 } 3896 3897 if (IsExp10) { 3898 // Put the exponent in the right bit position for later addition to the 3899 // final result: 3900 // 3901 // #define LOG2OF10 3.3219281f 3902 // t0 = Op * LOG2OF10; 3903 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3904 getF32Constant(DAG, 0x40549a78, dl)); 3905 return getLimitedPrecisionExp2(t0, dl, DAG); 3906 } 3907 3908 // No special expansion. 3909 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3910 } 3911 3912 3913 /// ExpandPowI - Expand a llvm.powi intrinsic. 3914 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3915 SelectionDAG &DAG) { 3916 // If RHS is a constant, we can expand this out to a multiplication tree, 3917 // otherwise we end up lowering to a call to __powidf2 (for example). When 3918 // optimizing for size, we only want to do this if the expansion would produce 3919 // a small number of multiplies, otherwise we do the full expansion. 3920 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3921 // Get the exponent as a positive value. 3922 unsigned Val = RHSC->getSExtValue(); 3923 if ((int)Val < 0) Val = -Val; 3924 3925 // powi(x, 0) -> 1.0 3926 if (Val == 0) 3927 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3928 3929 const Function *F = DAG.getMachineFunction().getFunction(); 3930 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3931 // If optimizing for size, don't insert too many multiplies. This 3932 // inserts up to 5 multiplies. 3933 countPopulation(Val) + Log2_32(Val) < 7) { 3934 // We use the simple binary decomposition method to generate the multiply 3935 // sequence. There are more optimal ways to do this (for example, 3936 // powi(x,15) generates one more multiply than it should), but this has 3937 // the benefit of being both really simple and much better than a libcall. 3938 SDValue Res; // Logically starts equal to 1.0 3939 SDValue CurSquare = LHS; 3940 while (Val) { 3941 if (Val & 1) { 3942 if (Res.getNode()) 3943 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3944 else 3945 Res = CurSquare; // 1.0*CurSquare. 3946 } 3947 3948 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3949 CurSquare, CurSquare); 3950 Val >>= 1; 3951 } 3952 3953 // If the original was negative, invert the result, producing 1/(x*x*x). 3954 if (RHSC->getSExtValue() < 0) 3955 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3956 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3957 return Res; 3958 } 3959 } 3960 3961 // Otherwise, expand to a libcall. 3962 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3963 } 3964 3965 // getTruncatedArgReg - Find underlying register used for an truncated 3966 // argument. 3967 static unsigned getTruncatedArgReg(const SDValue &N) { 3968 if (N.getOpcode() != ISD::TRUNCATE) 3969 return 0; 3970 3971 const SDValue &Ext = N.getOperand(0); 3972 if (Ext.getOpcode() == ISD::AssertZext || 3973 Ext.getOpcode() == ISD::AssertSext) { 3974 const SDValue &CFR = Ext.getOperand(0); 3975 if (CFR.getOpcode() == ISD::CopyFromReg) 3976 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3977 if (CFR.getOpcode() == ISD::TRUNCATE) 3978 return getTruncatedArgReg(CFR); 3979 } 3980 return 0; 3981 } 3982 3983 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3984 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3985 /// At the end of instruction selection, they will be inserted to the entry BB. 3986 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3987 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3988 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3989 const Argument *Arg = dyn_cast<Argument>(V); 3990 if (!Arg) 3991 return false; 3992 3993 MachineFunction &MF = DAG.getMachineFunction(); 3994 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3995 3996 // Ignore inlined function arguments here. 3997 // 3998 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3999 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4000 return false; 4001 4002 Optional<MachineOperand> Op; 4003 // Some arguments' frame index is recorded during argument lowering. 4004 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4005 Op = MachineOperand::CreateFI(FI); 4006 4007 if (!Op && N.getNode()) { 4008 unsigned Reg; 4009 if (N.getOpcode() == ISD::CopyFromReg) 4010 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4011 else 4012 Reg = getTruncatedArgReg(N); 4013 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4014 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4015 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4016 if (PR) 4017 Reg = PR; 4018 } 4019 if (Reg) 4020 Op = MachineOperand::CreateReg(Reg, false); 4021 } 4022 4023 if (!Op) { 4024 // Check if ValueMap has reg number. 4025 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4026 if (VMI != FuncInfo.ValueMap.end()) 4027 Op = MachineOperand::CreateReg(VMI->second, false); 4028 } 4029 4030 if (!Op && N.getNode()) 4031 // Check if frame index is available. 4032 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4033 if (FrameIndexSDNode *FINode = 4034 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4035 Op = MachineOperand::CreateFI(FINode->getIndex()); 4036 4037 if (!Op) 4038 return false; 4039 4040 assert(Variable->isValidLocationForIntrinsic(DL) && 4041 "Expected inlined-at fields to agree"); 4042 if (Op->isReg()) 4043 FuncInfo.ArgDbgValues.push_back( 4044 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4045 Op->getReg(), Offset, Variable, Expr)); 4046 else 4047 FuncInfo.ArgDbgValues.push_back( 4048 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4049 .addOperand(*Op) 4050 .addImm(Offset) 4051 .addMetadata(Variable) 4052 .addMetadata(Expr)); 4053 4054 return true; 4055 } 4056 4057 // VisualStudio defines setjmp as _setjmp 4058 #if defined(_MSC_VER) && defined(setjmp) && \ 4059 !defined(setjmp_undefined_for_msvc) 4060 # pragma push_macro("setjmp") 4061 # undef setjmp 4062 # define setjmp_undefined_for_msvc 4063 #endif 4064 4065 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4066 /// we want to emit this as a call to a named external function, return the name 4067 /// otherwise lower it and return null. 4068 const char * 4069 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4071 SDLoc sdl = getCurSDLoc(); 4072 DebugLoc dl = getCurDebugLoc(); 4073 SDValue Res; 4074 4075 switch (Intrinsic) { 4076 default: 4077 // By default, turn this into a target intrinsic node. 4078 visitTargetIntrinsic(I, Intrinsic); 4079 return nullptr; 4080 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4081 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4082 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4083 case Intrinsic::returnaddress: 4084 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4085 getValue(I.getArgOperand(0)))); 4086 return nullptr; 4087 case Intrinsic::frameaddress: 4088 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4089 getValue(I.getArgOperand(0)))); 4090 return nullptr; 4091 case Intrinsic::read_register: { 4092 Value *Reg = I.getArgOperand(0); 4093 SDValue Chain = getRoot(); 4094 SDValue RegName = 4095 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4096 EVT VT = TLI.getValueType(I.getType()); 4097 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4098 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4099 setValue(&I, Res); 4100 DAG.setRoot(Res.getValue(1)); 4101 return nullptr; 4102 } 4103 case Intrinsic::write_register: { 4104 Value *Reg = I.getArgOperand(0); 4105 Value *RegValue = I.getArgOperand(1); 4106 SDValue Chain = getRoot(); 4107 SDValue RegName = 4108 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4109 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4110 RegName, getValue(RegValue))); 4111 return nullptr; 4112 } 4113 case Intrinsic::setjmp: 4114 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4115 case Intrinsic::longjmp: 4116 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4117 case Intrinsic::memcpy: { 4118 // FIXME: this definition of "user defined address space" is x86-specific 4119 // Assert for address < 256 since we support only user defined address 4120 // spaces. 4121 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4122 < 256 && 4123 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4124 < 256 && 4125 "Unknown address space"); 4126 SDValue Op1 = getValue(I.getArgOperand(0)); 4127 SDValue Op2 = getValue(I.getArgOperand(1)); 4128 SDValue Op3 = getValue(I.getArgOperand(2)); 4129 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4130 if (!Align) 4131 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4132 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4133 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4134 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4135 false, isTC, 4136 MachinePointerInfo(I.getArgOperand(0)), 4137 MachinePointerInfo(I.getArgOperand(1))); 4138 updateDAGForMaybeTailCall(MC); 4139 return nullptr; 4140 } 4141 case Intrinsic::memset: { 4142 // FIXME: this definition of "user defined address space" is x86-specific 4143 // Assert for address < 256 since we support only user defined address 4144 // spaces. 4145 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4146 < 256 && 4147 "Unknown address space"); 4148 SDValue Op1 = getValue(I.getArgOperand(0)); 4149 SDValue Op2 = getValue(I.getArgOperand(1)); 4150 SDValue Op3 = getValue(I.getArgOperand(2)); 4151 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4152 if (!Align) 4153 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4154 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4155 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4156 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4157 isTC, MachinePointerInfo(I.getArgOperand(0))); 4158 updateDAGForMaybeTailCall(MS); 4159 return nullptr; 4160 } 4161 case Intrinsic::memmove: { 4162 // FIXME: this definition of "user defined address space" is x86-specific 4163 // Assert for address < 256 since we support only user defined address 4164 // spaces. 4165 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4166 < 256 && 4167 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4168 < 256 && 4169 "Unknown address space"); 4170 SDValue Op1 = getValue(I.getArgOperand(0)); 4171 SDValue Op2 = getValue(I.getArgOperand(1)); 4172 SDValue Op3 = getValue(I.getArgOperand(2)); 4173 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4174 if (!Align) 4175 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4176 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4177 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4178 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4179 isTC, MachinePointerInfo(I.getArgOperand(0)), 4180 MachinePointerInfo(I.getArgOperand(1))); 4181 updateDAGForMaybeTailCall(MM); 4182 return nullptr; 4183 } 4184 case Intrinsic::dbg_declare: { 4185 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4186 DILocalVariable *Variable = DI.getVariable(); 4187 DIExpression *Expression = DI.getExpression(); 4188 const Value *Address = DI.getAddress(); 4189 assert(Variable && "Missing variable"); 4190 if (!Address) { 4191 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4192 return nullptr; 4193 } 4194 4195 // Check if address has undef value. 4196 if (isa<UndefValue>(Address) || 4197 (Address->use_empty() && !isa<Argument>(Address))) { 4198 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4199 return nullptr; 4200 } 4201 4202 SDValue &N = NodeMap[Address]; 4203 if (!N.getNode() && isa<Argument>(Address)) 4204 // Check unused arguments map. 4205 N = UnusedArgNodeMap[Address]; 4206 SDDbgValue *SDV; 4207 if (N.getNode()) { 4208 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4209 Address = BCI->getOperand(0); 4210 // Parameters are handled specially. 4211 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4212 isa<Argument>(Address); 4213 4214 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4215 4216 if (isParameter && !AI) { 4217 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4218 if (FINode) 4219 // Byval parameter. We have a frame index at this point. 4220 SDV = DAG.getFrameIndexDbgValue( 4221 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4222 else { 4223 // Address is an argument, so try to emit its dbg value using 4224 // virtual register info from the FuncInfo.ValueMap. 4225 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4226 N); 4227 return nullptr; 4228 } 4229 } else if (AI) 4230 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4231 true, 0, dl, SDNodeOrder); 4232 else { 4233 // Can't do anything with other non-AI cases yet. 4234 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4235 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4236 DEBUG(Address->dump()); 4237 return nullptr; 4238 } 4239 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4240 } else { 4241 // If Address is an argument then try to emit its dbg value using 4242 // virtual register info from the FuncInfo.ValueMap. 4243 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4244 N)) { 4245 // If variable is pinned by a alloca in dominating bb then 4246 // use StaticAllocaMap. 4247 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4248 if (AI->getParent() != DI.getParent()) { 4249 DenseMap<const AllocaInst*, int>::iterator SI = 4250 FuncInfo.StaticAllocaMap.find(AI); 4251 if (SI != FuncInfo.StaticAllocaMap.end()) { 4252 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4253 0, dl, SDNodeOrder); 4254 DAG.AddDbgValue(SDV, nullptr, false); 4255 return nullptr; 4256 } 4257 } 4258 } 4259 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4260 } 4261 } 4262 return nullptr; 4263 } 4264 case Intrinsic::dbg_value: { 4265 const DbgValueInst &DI = cast<DbgValueInst>(I); 4266 assert(DI.getVariable() && "Missing variable"); 4267 4268 DILocalVariable *Variable = DI.getVariable(); 4269 DIExpression *Expression = DI.getExpression(); 4270 uint64_t Offset = DI.getOffset(); 4271 const Value *V = DI.getValue(); 4272 if (!V) 4273 return nullptr; 4274 4275 SDDbgValue *SDV; 4276 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4277 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4278 SDNodeOrder); 4279 DAG.AddDbgValue(SDV, nullptr, false); 4280 } else { 4281 // Do not use getValue() in here; we don't want to generate code at 4282 // this point if it hasn't been done yet. 4283 SDValue N = NodeMap[V]; 4284 if (!N.getNode() && isa<Argument>(V)) 4285 // Check unused arguments map. 4286 N = UnusedArgNodeMap[V]; 4287 if (N.getNode()) { 4288 // A dbg.value for an alloca is always indirect. 4289 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4290 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4291 IsIndirect, N)) { 4292 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4293 IsIndirect, Offset, dl, SDNodeOrder); 4294 DAG.AddDbgValue(SDV, N.getNode(), false); 4295 } 4296 } else if (!V->use_empty() ) { 4297 // Do not call getValue(V) yet, as we don't want to generate code. 4298 // Remember it for later. 4299 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4300 DanglingDebugInfoMap[V] = DDI; 4301 } else { 4302 // We may expand this to cover more cases. One case where we have no 4303 // data available is an unreferenced parameter. 4304 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4305 } 4306 } 4307 4308 // Build a debug info table entry. 4309 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4310 V = BCI->getOperand(0); 4311 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4312 // Don't handle byval struct arguments or VLAs, for example. 4313 if (!AI) { 4314 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4315 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4316 return nullptr; 4317 } 4318 DenseMap<const AllocaInst*, int>::iterator SI = 4319 FuncInfo.StaticAllocaMap.find(AI); 4320 if (SI == FuncInfo.StaticAllocaMap.end()) 4321 return nullptr; // VLAs. 4322 return nullptr; 4323 } 4324 4325 case Intrinsic::eh_typeid_for: { 4326 // Find the type id for the given typeinfo. 4327 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4328 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4329 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4330 setValue(&I, Res); 4331 return nullptr; 4332 } 4333 4334 case Intrinsic::eh_return_i32: 4335 case Intrinsic::eh_return_i64: 4336 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4337 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4338 MVT::Other, 4339 getControlRoot(), 4340 getValue(I.getArgOperand(0)), 4341 getValue(I.getArgOperand(1)))); 4342 return nullptr; 4343 case Intrinsic::eh_unwind_init: 4344 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4345 return nullptr; 4346 case Intrinsic::eh_dwarf_cfa: { 4347 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4348 TLI.getPointerTy()); 4349 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4350 CfaArg.getValueType(), 4351 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4352 CfaArg.getValueType()), 4353 CfaArg); 4354 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4355 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4356 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4357 FA, Offset)); 4358 return nullptr; 4359 } 4360 case Intrinsic::eh_sjlj_callsite: { 4361 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4362 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4363 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4364 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4365 4366 MMI.setCurrentCallSite(CI->getZExtValue()); 4367 return nullptr; 4368 } 4369 case Intrinsic::eh_sjlj_functioncontext: { 4370 // Get and store the index of the function context. 4371 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4372 AllocaInst *FnCtx = 4373 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4374 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4375 MFI->setFunctionContextIndex(FI); 4376 return nullptr; 4377 } 4378 case Intrinsic::eh_sjlj_setjmp: { 4379 SDValue Ops[2]; 4380 Ops[0] = getRoot(); 4381 Ops[1] = getValue(I.getArgOperand(0)); 4382 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4383 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4384 setValue(&I, Op.getValue(0)); 4385 DAG.setRoot(Op.getValue(1)); 4386 return nullptr; 4387 } 4388 case Intrinsic::eh_sjlj_longjmp: { 4389 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4390 getRoot(), getValue(I.getArgOperand(0)))); 4391 return nullptr; 4392 } 4393 4394 case Intrinsic::masked_gather: 4395 visitMaskedGather(I); 4396 return nullptr; 4397 case Intrinsic::masked_load: 4398 visitMaskedLoad(I); 4399 return nullptr; 4400 case Intrinsic::masked_scatter: 4401 visitMaskedScatter(I); 4402 return nullptr; 4403 case Intrinsic::masked_store: 4404 visitMaskedStore(I); 4405 return nullptr; 4406 case Intrinsic::x86_mmx_pslli_w: 4407 case Intrinsic::x86_mmx_pslli_d: 4408 case Intrinsic::x86_mmx_pslli_q: 4409 case Intrinsic::x86_mmx_psrli_w: 4410 case Intrinsic::x86_mmx_psrli_d: 4411 case Intrinsic::x86_mmx_psrli_q: 4412 case Intrinsic::x86_mmx_psrai_w: 4413 case Intrinsic::x86_mmx_psrai_d: { 4414 SDValue ShAmt = getValue(I.getArgOperand(1)); 4415 if (isa<ConstantSDNode>(ShAmt)) { 4416 visitTargetIntrinsic(I, Intrinsic); 4417 return nullptr; 4418 } 4419 unsigned NewIntrinsic = 0; 4420 EVT ShAmtVT = MVT::v2i32; 4421 switch (Intrinsic) { 4422 case Intrinsic::x86_mmx_pslli_w: 4423 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4424 break; 4425 case Intrinsic::x86_mmx_pslli_d: 4426 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4427 break; 4428 case Intrinsic::x86_mmx_pslli_q: 4429 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4430 break; 4431 case Intrinsic::x86_mmx_psrli_w: 4432 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4433 break; 4434 case Intrinsic::x86_mmx_psrli_d: 4435 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4436 break; 4437 case Intrinsic::x86_mmx_psrli_q: 4438 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4439 break; 4440 case Intrinsic::x86_mmx_psrai_w: 4441 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4442 break; 4443 case Intrinsic::x86_mmx_psrai_d: 4444 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4445 break; 4446 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4447 } 4448 4449 // The vector shift intrinsics with scalars uses 32b shift amounts but 4450 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4451 // to be zero. 4452 // We must do this early because v2i32 is not a legal type. 4453 SDValue ShOps[2]; 4454 ShOps[0] = ShAmt; 4455 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4456 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4457 EVT DestVT = TLI.getValueType(I.getType()); 4458 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4459 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4460 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4461 getValue(I.getArgOperand(0)), ShAmt); 4462 setValue(&I, Res); 4463 return nullptr; 4464 } 4465 case Intrinsic::convertff: 4466 case Intrinsic::convertfsi: 4467 case Intrinsic::convertfui: 4468 case Intrinsic::convertsif: 4469 case Intrinsic::convertuif: 4470 case Intrinsic::convertss: 4471 case Intrinsic::convertsu: 4472 case Intrinsic::convertus: 4473 case Intrinsic::convertuu: { 4474 ISD::CvtCode Code = ISD::CVT_INVALID; 4475 switch (Intrinsic) { 4476 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4477 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4478 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4479 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4480 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4481 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4482 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4483 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4484 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4485 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4486 } 4487 EVT DestVT = TLI.getValueType(I.getType()); 4488 const Value *Op1 = I.getArgOperand(0); 4489 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4490 DAG.getValueType(DestVT), 4491 DAG.getValueType(getValue(Op1).getValueType()), 4492 getValue(I.getArgOperand(1)), 4493 getValue(I.getArgOperand(2)), 4494 Code); 4495 setValue(&I, Res); 4496 return nullptr; 4497 } 4498 case Intrinsic::powi: 4499 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4500 getValue(I.getArgOperand(1)), DAG)); 4501 return nullptr; 4502 case Intrinsic::log: 4503 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4504 return nullptr; 4505 case Intrinsic::log2: 4506 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4507 return nullptr; 4508 case Intrinsic::log10: 4509 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4510 return nullptr; 4511 case Intrinsic::exp: 4512 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4513 return nullptr; 4514 case Intrinsic::exp2: 4515 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4516 return nullptr; 4517 case Intrinsic::pow: 4518 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4519 getValue(I.getArgOperand(1)), DAG, TLI)); 4520 return nullptr; 4521 case Intrinsic::sqrt: 4522 case Intrinsic::fabs: 4523 case Intrinsic::sin: 4524 case Intrinsic::cos: 4525 case Intrinsic::floor: 4526 case Intrinsic::ceil: 4527 case Intrinsic::trunc: 4528 case Intrinsic::rint: 4529 case Intrinsic::nearbyint: 4530 case Intrinsic::round: { 4531 unsigned Opcode; 4532 switch (Intrinsic) { 4533 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4534 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4535 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4536 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4537 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4538 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4539 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4540 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4541 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4542 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4543 case Intrinsic::round: Opcode = ISD::FROUND; break; 4544 } 4545 4546 setValue(&I, DAG.getNode(Opcode, sdl, 4547 getValue(I.getArgOperand(0)).getValueType(), 4548 getValue(I.getArgOperand(0)))); 4549 return nullptr; 4550 } 4551 case Intrinsic::minnum: 4552 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4553 getValue(I.getArgOperand(0)).getValueType(), 4554 getValue(I.getArgOperand(0)), 4555 getValue(I.getArgOperand(1)))); 4556 return nullptr; 4557 case Intrinsic::maxnum: 4558 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4559 getValue(I.getArgOperand(0)).getValueType(), 4560 getValue(I.getArgOperand(0)), 4561 getValue(I.getArgOperand(1)))); 4562 return nullptr; 4563 case Intrinsic::copysign: 4564 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4565 getValue(I.getArgOperand(0)).getValueType(), 4566 getValue(I.getArgOperand(0)), 4567 getValue(I.getArgOperand(1)))); 4568 return nullptr; 4569 case Intrinsic::fma: 4570 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4571 getValue(I.getArgOperand(0)).getValueType(), 4572 getValue(I.getArgOperand(0)), 4573 getValue(I.getArgOperand(1)), 4574 getValue(I.getArgOperand(2)))); 4575 return nullptr; 4576 case Intrinsic::fmuladd: { 4577 EVT VT = TLI.getValueType(I.getType()); 4578 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4579 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4580 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 getValue(I.getArgOperand(0)), 4583 getValue(I.getArgOperand(1)), 4584 getValue(I.getArgOperand(2)))); 4585 } else { 4586 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4587 getValue(I.getArgOperand(0)).getValueType(), 4588 getValue(I.getArgOperand(0)), 4589 getValue(I.getArgOperand(1))); 4590 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4591 getValue(I.getArgOperand(0)).getValueType(), 4592 Mul, 4593 getValue(I.getArgOperand(2))); 4594 setValue(&I, Add); 4595 } 4596 return nullptr; 4597 } 4598 case Intrinsic::convert_to_fp16: 4599 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4600 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4601 getValue(I.getArgOperand(0)), 4602 DAG.getTargetConstant(0, sdl, 4603 MVT::i32)))); 4604 return nullptr; 4605 case Intrinsic::convert_from_fp16: 4606 setValue(&I, 4607 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4608 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4609 getValue(I.getArgOperand(0))))); 4610 return nullptr; 4611 case Intrinsic::pcmarker: { 4612 SDValue Tmp = getValue(I.getArgOperand(0)); 4613 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4614 return nullptr; 4615 } 4616 case Intrinsic::readcyclecounter: { 4617 SDValue Op = getRoot(); 4618 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4619 DAG.getVTList(MVT::i64, MVT::Other), Op); 4620 setValue(&I, Res); 4621 DAG.setRoot(Res.getValue(1)); 4622 return nullptr; 4623 } 4624 case Intrinsic::bswap: 4625 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4626 getValue(I.getArgOperand(0)).getValueType(), 4627 getValue(I.getArgOperand(0)))); 4628 return nullptr; 4629 case Intrinsic::cttz: { 4630 SDValue Arg = getValue(I.getArgOperand(0)); 4631 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4632 EVT Ty = Arg.getValueType(); 4633 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4634 sdl, Ty, Arg)); 4635 return nullptr; 4636 } 4637 case Intrinsic::ctlz: { 4638 SDValue Arg = getValue(I.getArgOperand(0)); 4639 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4640 EVT Ty = Arg.getValueType(); 4641 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4642 sdl, Ty, Arg)); 4643 return nullptr; 4644 } 4645 case Intrinsic::ctpop: { 4646 SDValue Arg = getValue(I.getArgOperand(0)); 4647 EVT Ty = Arg.getValueType(); 4648 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4649 return nullptr; 4650 } 4651 case Intrinsic::stacksave: { 4652 SDValue Op = getRoot(); 4653 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4654 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4655 setValue(&I, Res); 4656 DAG.setRoot(Res.getValue(1)); 4657 return nullptr; 4658 } 4659 case Intrinsic::stackrestore: { 4660 Res = getValue(I.getArgOperand(0)); 4661 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4662 return nullptr; 4663 } 4664 case Intrinsic::stackprotector: { 4665 // Emit code into the DAG to store the stack guard onto the stack. 4666 MachineFunction &MF = DAG.getMachineFunction(); 4667 MachineFrameInfo *MFI = MF.getFrameInfo(); 4668 EVT PtrTy = TLI.getPointerTy(); 4669 SDValue Src, Chain = getRoot(); 4670 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4671 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4672 4673 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4674 // global variable __stack_chk_guard. 4675 if (!GV) 4676 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4677 if (BC->getOpcode() == Instruction::BitCast) 4678 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4679 4680 if (GV && TLI.useLoadStackGuardNode()) { 4681 // Emit a LOAD_STACK_GUARD node. 4682 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4683 sdl, PtrTy, Chain); 4684 MachinePointerInfo MPInfo(GV); 4685 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4686 unsigned Flags = MachineMemOperand::MOLoad | 4687 MachineMemOperand::MOInvariant; 4688 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4689 PtrTy.getSizeInBits() / 8, 4690 DAG.getEVTAlignment(PtrTy)); 4691 Node->setMemRefs(MemRefs, MemRefs + 1); 4692 4693 // Copy the guard value to a virtual register so that it can be 4694 // retrieved in the epilogue. 4695 Src = SDValue(Node, 0); 4696 const TargetRegisterClass *RC = 4697 TLI.getRegClassFor(Src.getSimpleValueType()); 4698 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4699 4700 SPDescriptor.setGuardReg(Reg); 4701 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4702 } else { 4703 Src = getValue(I.getArgOperand(0)); // The guard's value. 4704 } 4705 4706 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4707 4708 int FI = FuncInfo.StaticAllocaMap[Slot]; 4709 MFI->setStackProtectorIndex(FI); 4710 4711 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4712 4713 // Store the stack protector onto the stack. 4714 Res = DAG.getStore(Chain, sdl, Src, FIN, 4715 MachinePointerInfo::getFixedStack(FI), 4716 true, false, 0); 4717 setValue(&I, Res); 4718 DAG.setRoot(Res); 4719 return nullptr; 4720 } 4721 case Intrinsic::objectsize: { 4722 // If we don't know by now, we're never going to know. 4723 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4724 4725 assert(CI && "Non-constant type in __builtin_object_size?"); 4726 4727 SDValue Arg = getValue(I.getCalledValue()); 4728 EVT Ty = Arg.getValueType(); 4729 4730 if (CI->isZero()) 4731 Res = DAG.getConstant(-1ULL, sdl, Ty); 4732 else 4733 Res = DAG.getConstant(0, sdl, Ty); 4734 4735 setValue(&I, Res); 4736 return nullptr; 4737 } 4738 case Intrinsic::annotation: 4739 case Intrinsic::ptr_annotation: 4740 // Drop the intrinsic, but forward the value 4741 setValue(&I, getValue(I.getOperand(0))); 4742 return nullptr; 4743 case Intrinsic::assume: 4744 case Intrinsic::var_annotation: 4745 // Discard annotate attributes and assumptions 4746 return nullptr; 4747 4748 case Intrinsic::init_trampoline: { 4749 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4750 4751 SDValue Ops[6]; 4752 Ops[0] = getRoot(); 4753 Ops[1] = getValue(I.getArgOperand(0)); 4754 Ops[2] = getValue(I.getArgOperand(1)); 4755 Ops[3] = getValue(I.getArgOperand(2)); 4756 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4757 Ops[5] = DAG.getSrcValue(F); 4758 4759 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4760 4761 DAG.setRoot(Res); 4762 return nullptr; 4763 } 4764 case Intrinsic::adjust_trampoline: { 4765 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4766 TLI.getPointerTy(), 4767 getValue(I.getArgOperand(0)))); 4768 return nullptr; 4769 } 4770 case Intrinsic::gcroot: 4771 if (GFI) { 4772 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4773 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4774 4775 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4776 GFI->addStackRoot(FI->getIndex(), TypeMap); 4777 } 4778 return nullptr; 4779 case Intrinsic::gcread: 4780 case Intrinsic::gcwrite: 4781 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4782 case Intrinsic::flt_rounds: 4783 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4784 return nullptr; 4785 4786 case Intrinsic::expect: { 4787 // Just replace __builtin_expect(exp, c) with EXP. 4788 setValue(&I, getValue(I.getArgOperand(0))); 4789 return nullptr; 4790 } 4791 4792 case Intrinsic::debugtrap: 4793 case Intrinsic::trap: { 4794 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4795 if (TrapFuncName.empty()) { 4796 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4797 ISD::TRAP : ISD::DEBUGTRAP; 4798 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4799 return nullptr; 4800 } 4801 TargetLowering::ArgListTy Args; 4802 4803 TargetLowering::CallLoweringInfo CLI(DAG); 4804 CLI.setDebugLoc(sdl).setChain(getRoot()) 4805 .setCallee(CallingConv::C, I.getType(), 4806 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4807 std::move(Args), 0); 4808 4809 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4810 DAG.setRoot(Result.second); 4811 return nullptr; 4812 } 4813 4814 case Intrinsic::uadd_with_overflow: 4815 case Intrinsic::sadd_with_overflow: 4816 case Intrinsic::usub_with_overflow: 4817 case Intrinsic::ssub_with_overflow: 4818 case Intrinsic::umul_with_overflow: 4819 case Intrinsic::smul_with_overflow: { 4820 ISD::NodeType Op; 4821 switch (Intrinsic) { 4822 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4823 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4824 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4825 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4826 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4827 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4828 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4829 } 4830 SDValue Op1 = getValue(I.getArgOperand(0)); 4831 SDValue Op2 = getValue(I.getArgOperand(1)); 4832 4833 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4834 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4835 return nullptr; 4836 } 4837 case Intrinsic::prefetch: { 4838 SDValue Ops[5]; 4839 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4840 Ops[0] = getRoot(); 4841 Ops[1] = getValue(I.getArgOperand(0)); 4842 Ops[2] = getValue(I.getArgOperand(1)); 4843 Ops[3] = getValue(I.getArgOperand(2)); 4844 Ops[4] = getValue(I.getArgOperand(3)); 4845 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4846 DAG.getVTList(MVT::Other), Ops, 4847 EVT::getIntegerVT(*Context, 8), 4848 MachinePointerInfo(I.getArgOperand(0)), 4849 0, /* align */ 4850 false, /* volatile */ 4851 rw==0, /* read */ 4852 rw==1)); /* write */ 4853 return nullptr; 4854 } 4855 case Intrinsic::lifetime_start: 4856 case Intrinsic::lifetime_end: { 4857 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4858 // Stack coloring is not enabled in O0, discard region information. 4859 if (TM.getOptLevel() == CodeGenOpt::None) 4860 return nullptr; 4861 4862 SmallVector<Value *, 4> Allocas; 4863 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4864 4865 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4866 E = Allocas.end(); Object != E; ++Object) { 4867 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4868 4869 // Could not find an Alloca. 4870 if (!LifetimeObject) 4871 continue; 4872 4873 // First check that the Alloca is static, otherwise it won't have a 4874 // valid frame index. 4875 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4876 if (SI == FuncInfo.StaticAllocaMap.end()) 4877 return nullptr; 4878 4879 int FI = SI->second; 4880 4881 SDValue Ops[2]; 4882 Ops[0] = getRoot(); 4883 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4884 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4885 4886 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4887 DAG.setRoot(Res); 4888 } 4889 return nullptr; 4890 } 4891 case Intrinsic::invariant_start: 4892 // Discard region information. 4893 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4894 return nullptr; 4895 case Intrinsic::invariant_end: 4896 // Discard region information. 4897 return nullptr; 4898 case Intrinsic::stackprotectorcheck: { 4899 // Do not actually emit anything for this basic block. Instead we initialize 4900 // the stack protector descriptor and export the guard variable so we can 4901 // access it in FinishBasicBlock. 4902 const BasicBlock *BB = I.getParent(); 4903 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4904 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4905 4906 // Flush our exports since we are going to process a terminator. 4907 (void)getControlRoot(); 4908 return nullptr; 4909 } 4910 case Intrinsic::clear_cache: 4911 return TLI.getClearCacheBuiltinName(); 4912 case Intrinsic::eh_actions: 4913 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4914 return nullptr; 4915 case Intrinsic::donothing: 4916 // ignore 4917 return nullptr; 4918 case Intrinsic::experimental_stackmap: { 4919 visitStackmap(I); 4920 return nullptr; 4921 } 4922 case Intrinsic::experimental_patchpoint_void: 4923 case Intrinsic::experimental_patchpoint_i64: { 4924 visitPatchpoint(&I); 4925 return nullptr; 4926 } 4927 case Intrinsic::experimental_gc_statepoint: { 4928 visitStatepoint(I); 4929 return nullptr; 4930 } 4931 case Intrinsic::experimental_gc_result_int: 4932 case Intrinsic::experimental_gc_result_float: 4933 case Intrinsic::experimental_gc_result_ptr: 4934 case Intrinsic::experimental_gc_result: { 4935 visitGCResult(I); 4936 return nullptr; 4937 } 4938 case Intrinsic::experimental_gc_relocate: { 4939 visitGCRelocate(I); 4940 return nullptr; 4941 } 4942 case Intrinsic::instrprof_increment: 4943 llvm_unreachable("instrprof failed to lower an increment"); 4944 4945 case Intrinsic::frameescape: { 4946 MachineFunction &MF = DAG.getMachineFunction(); 4947 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4948 4949 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4950 // is the same on all targets. 4951 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4952 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4953 if (isa<ConstantPointerNull>(Arg)) 4954 continue; // Skip null pointers. They represent a hole in index space. 4955 AllocaInst *Slot = cast<AllocaInst>(Arg); 4956 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4957 "can only escape static allocas"); 4958 int FI = FuncInfo.StaticAllocaMap[Slot]; 4959 MCSymbol *FrameAllocSym = 4960 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4961 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4963 TII->get(TargetOpcode::FRAME_ALLOC)) 4964 .addSym(FrameAllocSym) 4965 .addFrameIndex(FI); 4966 } 4967 4968 return nullptr; 4969 } 4970 4971 case Intrinsic::framerecover: { 4972 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4973 MachineFunction &MF = DAG.getMachineFunction(); 4974 MVT PtrVT = TLI.getPointerTy(0); 4975 4976 // Get the symbol that defines the frame offset. 4977 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4978 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4979 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4980 MCSymbol *FrameAllocSym = 4981 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4982 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4983 4984 // Create a TargetExternalSymbol for the label to avoid any target lowering 4985 // that would make this PC relative. 4986 StringRef Name = FrameAllocSym->getName(); 4987 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4988 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4989 SDValue OffsetVal = 4990 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4991 4992 // Add the offset to the FP. 4993 Value *FP = I.getArgOperand(1); 4994 SDValue FPVal = getValue(FP); 4995 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4996 setValue(&I, Add); 4997 4998 return nullptr; 4999 } 5000 case Intrinsic::eh_begincatch: 5001 case Intrinsic::eh_endcatch: 5002 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5003 case Intrinsic::eh_exceptioncode: { 5004 unsigned Reg = TLI.getExceptionPointerRegister(); 5005 assert(Reg && "cannot get exception code on this platform"); 5006 MVT PtrVT = TLI.getPointerTy(); 5007 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5008 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5009 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5010 SDValue N = 5011 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5012 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5013 setValue(&I, N); 5014 return nullptr; 5015 } 5016 } 5017 } 5018 5019 std::pair<SDValue, SDValue> 5020 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5021 MachineBasicBlock *LandingPad) { 5022 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5023 MCSymbol *BeginLabel = nullptr; 5024 5025 if (LandingPad) { 5026 // Insert a label before the invoke call to mark the try range. This can be 5027 // used to detect deletion of the invoke via the MachineModuleInfo. 5028 BeginLabel = MMI.getContext().createTempSymbol(); 5029 5030 // For SjLj, keep track of which landing pads go with which invokes 5031 // so as to maintain the ordering of pads in the LSDA. 5032 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5033 if (CallSiteIndex) { 5034 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5035 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5036 5037 // Now that the call site is handled, stop tracking it. 5038 MMI.setCurrentCallSite(0); 5039 } 5040 5041 // Both PendingLoads and PendingExports must be flushed here; 5042 // this call might not return. 5043 (void)getRoot(); 5044 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5045 5046 CLI.setChain(getRoot()); 5047 } 5048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5049 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5050 5051 assert((CLI.IsTailCall || Result.second.getNode()) && 5052 "Non-null chain expected with non-tail call!"); 5053 assert((Result.second.getNode() || !Result.first.getNode()) && 5054 "Null value expected with tail call!"); 5055 5056 if (!Result.second.getNode()) { 5057 // As a special case, a null chain means that a tail call has been emitted 5058 // and the DAG root is already updated. 5059 HasTailCall = true; 5060 5061 // Since there's no actual continuation from this block, nothing can be 5062 // relying on us setting vregs for them. 5063 PendingExports.clear(); 5064 } else { 5065 DAG.setRoot(Result.second); 5066 } 5067 5068 if (LandingPad) { 5069 // Insert a label at the end of the invoke call to mark the try range. This 5070 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5071 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5072 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5073 5074 // Inform MachineModuleInfo of range. 5075 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5076 } 5077 5078 return Result; 5079 } 5080 5081 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5082 bool isTailCall, 5083 MachineBasicBlock *LandingPad) { 5084 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5085 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5086 Type *RetTy = FTy->getReturnType(); 5087 5088 TargetLowering::ArgListTy Args; 5089 TargetLowering::ArgListEntry Entry; 5090 Args.reserve(CS.arg_size()); 5091 5092 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5093 i != e; ++i) { 5094 const Value *V = *i; 5095 5096 // Skip empty types 5097 if (V->getType()->isEmptyTy()) 5098 continue; 5099 5100 SDValue ArgNode = getValue(V); 5101 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5102 5103 // Skip the first return-type Attribute to get to params. 5104 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5105 Args.push_back(Entry); 5106 5107 // If we have an explicit sret argument that is an Instruction, (i.e., it 5108 // might point to function-local memory), we can't meaningfully tail-call. 5109 if (Entry.isSRet && isa<Instruction>(V)) 5110 isTailCall = false; 5111 } 5112 5113 // Check if target-independent constraints permit a tail call here. 5114 // Target-dependent constraints are checked within TLI->LowerCallTo. 5115 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5116 isTailCall = false; 5117 5118 TargetLowering::CallLoweringInfo CLI(DAG); 5119 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5120 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5121 .setTailCall(isTailCall); 5122 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5123 5124 if (Result.first.getNode()) 5125 setValue(CS.getInstruction(), Result.first); 5126 } 5127 5128 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5129 /// value is equal or not-equal to zero. 5130 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5131 for (const User *U : V->users()) { 5132 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5133 if (IC->isEquality()) 5134 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5135 if (C->isNullValue()) 5136 continue; 5137 // Unknown instruction. 5138 return false; 5139 } 5140 return true; 5141 } 5142 5143 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5144 Type *LoadTy, 5145 SelectionDAGBuilder &Builder) { 5146 5147 // Check to see if this load can be trivially constant folded, e.g. if the 5148 // input is from a string literal. 5149 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5150 // Cast pointer to the type we really want to load. 5151 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5152 PointerType::getUnqual(LoadTy)); 5153 5154 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5155 const_cast<Constant *>(LoadInput), *Builder.DL)) 5156 return Builder.getValue(LoadCst); 5157 } 5158 5159 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5160 // still constant memory, the input chain can be the entry node. 5161 SDValue Root; 5162 bool ConstantMemory = false; 5163 5164 // Do not serialize (non-volatile) loads of constant memory with anything. 5165 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5166 Root = Builder.DAG.getEntryNode(); 5167 ConstantMemory = true; 5168 } else { 5169 // Do not serialize non-volatile loads against each other. 5170 Root = Builder.DAG.getRoot(); 5171 } 5172 5173 SDValue Ptr = Builder.getValue(PtrVal); 5174 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5175 Ptr, MachinePointerInfo(PtrVal), 5176 false /*volatile*/, 5177 false /*nontemporal*/, 5178 false /*isinvariant*/, 1 /* align=1 */); 5179 5180 if (!ConstantMemory) 5181 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5182 return LoadVal; 5183 } 5184 5185 /// processIntegerCallValue - Record the value for an instruction that 5186 /// produces an integer result, converting the type where necessary. 5187 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5188 SDValue Value, 5189 bool IsSigned) { 5190 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5191 if (IsSigned) 5192 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5193 else 5194 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5195 setValue(&I, Value); 5196 } 5197 5198 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5199 /// If so, return true and lower it, otherwise return false and it will be 5200 /// lowered like a normal call. 5201 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5202 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5203 if (I.getNumArgOperands() != 3) 5204 return false; 5205 5206 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5207 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5208 !I.getArgOperand(2)->getType()->isIntegerTy() || 5209 !I.getType()->isIntegerTy()) 5210 return false; 5211 5212 const Value *Size = I.getArgOperand(2); 5213 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5214 if (CSize && CSize->getZExtValue() == 0) { 5215 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5216 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5217 return true; 5218 } 5219 5220 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5221 std::pair<SDValue, SDValue> Res = 5222 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5223 getValue(LHS), getValue(RHS), getValue(Size), 5224 MachinePointerInfo(LHS), 5225 MachinePointerInfo(RHS)); 5226 if (Res.first.getNode()) { 5227 processIntegerCallValue(I, Res.first, true); 5228 PendingLoads.push_back(Res.second); 5229 return true; 5230 } 5231 5232 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5233 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5234 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5235 bool ActuallyDoIt = true; 5236 MVT LoadVT; 5237 Type *LoadTy; 5238 switch (CSize->getZExtValue()) { 5239 default: 5240 LoadVT = MVT::Other; 5241 LoadTy = nullptr; 5242 ActuallyDoIt = false; 5243 break; 5244 case 2: 5245 LoadVT = MVT::i16; 5246 LoadTy = Type::getInt16Ty(CSize->getContext()); 5247 break; 5248 case 4: 5249 LoadVT = MVT::i32; 5250 LoadTy = Type::getInt32Ty(CSize->getContext()); 5251 break; 5252 case 8: 5253 LoadVT = MVT::i64; 5254 LoadTy = Type::getInt64Ty(CSize->getContext()); 5255 break; 5256 /* 5257 case 16: 5258 LoadVT = MVT::v4i32; 5259 LoadTy = Type::getInt32Ty(CSize->getContext()); 5260 LoadTy = VectorType::get(LoadTy, 4); 5261 break; 5262 */ 5263 } 5264 5265 // This turns into unaligned loads. We only do this if the target natively 5266 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5267 // we'll only produce a small number of byte loads. 5268 5269 // Require that we can find a legal MVT, and only do this if the target 5270 // supports unaligned loads of that type. Expanding into byte loads would 5271 // bloat the code. 5272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5273 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5274 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5275 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5276 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5277 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5278 // TODO: Check alignment of src and dest ptrs. 5279 if (!TLI.isTypeLegal(LoadVT) || 5280 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5281 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5282 ActuallyDoIt = false; 5283 } 5284 5285 if (ActuallyDoIt) { 5286 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5287 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5288 5289 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5290 ISD::SETNE); 5291 processIntegerCallValue(I, Res, false); 5292 return true; 5293 } 5294 } 5295 5296 5297 return false; 5298 } 5299 5300 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5301 /// form. If so, return true and lower it, otherwise return false and it 5302 /// will be lowered like a normal call. 5303 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5304 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5305 if (I.getNumArgOperands() != 3) 5306 return false; 5307 5308 const Value *Src = I.getArgOperand(0); 5309 const Value *Char = I.getArgOperand(1); 5310 const Value *Length = I.getArgOperand(2); 5311 if (!Src->getType()->isPointerTy() || 5312 !Char->getType()->isIntegerTy() || 5313 !Length->getType()->isIntegerTy() || 5314 !I.getType()->isPointerTy()) 5315 return false; 5316 5317 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5318 std::pair<SDValue, SDValue> Res = 5319 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5320 getValue(Src), getValue(Char), getValue(Length), 5321 MachinePointerInfo(Src)); 5322 if (Res.first.getNode()) { 5323 setValue(&I, Res.first); 5324 PendingLoads.push_back(Res.second); 5325 return true; 5326 } 5327 5328 return false; 5329 } 5330 5331 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5332 /// optimized form. If so, return true and lower it, otherwise return false 5333 /// and it will be lowered like a normal call. 5334 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5335 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5336 if (I.getNumArgOperands() != 2) 5337 return false; 5338 5339 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5340 if (!Arg0->getType()->isPointerTy() || 5341 !Arg1->getType()->isPointerTy() || 5342 !I.getType()->isPointerTy()) 5343 return false; 5344 5345 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5346 std::pair<SDValue, SDValue> Res = 5347 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5348 getValue(Arg0), getValue(Arg1), 5349 MachinePointerInfo(Arg0), 5350 MachinePointerInfo(Arg1), isStpcpy); 5351 if (Res.first.getNode()) { 5352 setValue(&I, Res.first); 5353 DAG.setRoot(Res.second); 5354 return true; 5355 } 5356 5357 return false; 5358 } 5359 5360 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5361 /// If so, return true and lower it, otherwise return false and it will be 5362 /// lowered like a normal call. 5363 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5364 // Verify that the prototype makes sense. int strcmp(void*,void*) 5365 if (I.getNumArgOperands() != 2) 5366 return false; 5367 5368 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5369 if (!Arg0->getType()->isPointerTy() || 5370 !Arg1->getType()->isPointerTy() || 5371 !I.getType()->isIntegerTy()) 5372 return false; 5373 5374 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5375 std::pair<SDValue, SDValue> Res = 5376 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5377 getValue(Arg0), getValue(Arg1), 5378 MachinePointerInfo(Arg0), 5379 MachinePointerInfo(Arg1)); 5380 if (Res.first.getNode()) { 5381 processIntegerCallValue(I, Res.first, true); 5382 PendingLoads.push_back(Res.second); 5383 return true; 5384 } 5385 5386 return false; 5387 } 5388 5389 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5390 /// form. If so, return true and lower it, otherwise return false and it 5391 /// will be lowered like a normal call. 5392 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5393 // Verify that the prototype makes sense. size_t strlen(char *) 5394 if (I.getNumArgOperands() != 1) 5395 return false; 5396 5397 const Value *Arg0 = I.getArgOperand(0); 5398 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5399 return false; 5400 5401 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5402 std::pair<SDValue, SDValue> Res = 5403 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5404 getValue(Arg0), MachinePointerInfo(Arg0)); 5405 if (Res.first.getNode()) { 5406 processIntegerCallValue(I, Res.first, false); 5407 PendingLoads.push_back(Res.second); 5408 return true; 5409 } 5410 5411 return false; 5412 } 5413 5414 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5415 /// form. If so, return true and lower it, otherwise return false and it 5416 /// will be lowered like a normal call. 5417 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5418 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5419 if (I.getNumArgOperands() != 2) 5420 return false; 5421 5422 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5423 if (!Arg0->getType()->isPointerTy() || 5424 !Arg1->getType()->isIntegerTy() || 5425 !I.getType()->isIntegerTy()) 5426 return false; 5427 5428 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5429 std::pair<SDValue, SDValue> Res = 5430 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5431 getValue(Arg0), getValue(Arg1), 5432 MachinePointerInfo(Arg0)); 5433 if (Res.first.getNode()) { 5434 processIntegerCallValue(I, Res.first, false); 5435 PendingLoads.push_back(Res.second); 5436 return true; 5437 } 5438 5439 return false; 5440 } 5441 5442 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5443 /// operation (as expected), translate it to an SDNode with the specified opcode 5444 /// and return true. 5445 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5446 unsigned Opcode) { 5447 // Sanity check that it really is a unary floating-point call. 5448 if (I.getNumArgOperands() != 1 || 5449 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5450 I.getType() != I.getArgOperand(0)->getType() || 5451 !I.onlyReadsMemory()) 5452 return false; 5453 5454 SDValue Tmp = getValue(I.getArgOperand(0)); 5455 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5456 return true; 5457 } 5458 5459 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5460 /// operation (as expected), translate it to an SDNode with the specified opcode 5461 /// and return true. 5462 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5463 unsigned Opcode) { 5464 // Sanity check that it really is a binary floating-point call. 5465 if (I.getNumArgOperands() != 2 || 5466 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5467 I.getType() != I.getArgOperand(0)->getType() || 5468 I.getType() != I.getArgOperand(1)->getType() || 5469 !I.onlyReadsMemory()) 5470 return false; 5471 5472 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5473 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5474 EVT VT = Tmp0.getValueType(); 5475 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5476 return true; 5477 } 5478 5479 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5480 // Handle inline assembly differently. 5481 if (isa<InlineAsm>(I.getCalledValue())) { 5482 visitInlineAsm(&I); 5483 return; 5484 } 5485 5486 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5487 ComputeUsesVAFloatArgument(I, &MMI); 5488 5489 const char *RenameFn = nullptr; 5490 if (Function *F = I.getCalledFunction()) { 5491 if (F->isDeclaration()) { 5492 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5493 if (unsigned IID = II->getIntrinsicID(F)) { 5494 RenameFn = visitIntrinsicCall(I, IID); 5495 if (!RenameFn) 5496 return; 5497 } 5498 } 5499 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5500 RenameFn = visitIntrinsicCall(I, IID); 5501 if (!RenameFn) 5502 return; 5503 } 5504 } 5505 5506 // Check for well-known libc/libm calls. If the function is internal, it 5507 // can't be a library call. 5508 LibFunc::Func Func; 5509 if (!F->hasLocalLinkage() && F->hasName() && 5510 LibInfo->getLibFunc(F->getName(), Func) && 5511 LibInfo->hasOptimizedCodeGen(Func)) { 5512 switch (Func) { 5513 default: break; 5514 case LibFunc::copysign: 5515 case LibFunc::copysignf: 5516 case LibFunc::copysignl: 5517 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5518 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5519 I.getType() == I.getArgOperand(0)->getType() && 5520 I.getType() == I.getArgOperand(1)->getType() && 5521 I.onlyReadsMemory()) { 5522 SDValue LHS = getValue(I.getArgOperand(0)); 5523 SDValue RHS = getValue(I.getArgOperand(1)); 5524 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5525 LHS.getValueType(), LHS, RHS)); 5526 return; 5527 } 5528 break; 5529 case LibFunc::fabs: 5530 case LibFunc::fabsf: 5531 case LibFunc::fabsl: 5532 if (visitUnaryFloatCall(I, ISD::FABS)) 5533 return; 5534 break; 5535 case LibFunc::fmin: 5536 case LibFunc::fminf: 5537 case LibFunc::fminl: 5538 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5539 return; 5540 break; 5541 case LibFunc::fmax: 5542 case LibFunc::fmaxf: 5543 case LibFunc::fmaxl: 5544 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5545 return; 5546 break; 5547 case LibFunc::sin: 5548 case LibFunc::sinf: 5549 case LibFunc::sinl: 5550 if (visitUnaryFloatCall(I, ISD::FSIN)) 5551 return; 5552 break; 5553 case LibFunc::cos: 5554 case LibFunc::cosf: 5555 case LibFunc::cosl: 5556 if (visitUnaryFloatCall(I, ISD::FCOS)) 5557 return; 5558 break; 5559 case LibFunc::sqrt: 5560 case LibFunc::sqrtf: 5561 case LibFunc::sqrtl: 5562 case LibFunc::sqrt_finite: 5563 case LibFunc::sqrtf_finite: 5564 case LibFunc::sqrtl_finite: 5565 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5566 return; 5567 break; 5568 case LibFunc::floor: 5569 case LibFunc::floorf: 5570 case LibFunc::floorl: 5571 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5572 return; 5573 break; 5574 case LibFunc::nearbyint: 5575 case LibFunc::nearbyintf: 5576 case LibFunc::nearbyintl: 5577 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5578 return; 5579 break; 5580 case LibFunc::ceil: 5581 case LibFunc::ceilf: 5582 case LibFunc::ceill: 5583 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5584 return; 5585 break; 5586 case LibFunc::rint: 5587 case LibFunc::rintf: 5588 case LibFunc::rintl: 5589 if (visitUnaryFloatCall(I, ISD::FRINT)) 5590 return; 5591 break; 5592 case LibFunc::round: 5593 case LibFunc::roundf: 5594 case LibFunc::roundl: 5595 if (visitUnaryFloatCall(I, ISD::FROUND)) 5596 return; 5597 break; 5598 case LibFunc::trunc: 5599 case LibFunc::truncf: 5600 case LibFunc::truncl: 5601 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5602 return; 5603 break; 5604 case LibFunc::log2: 5605 case LibFunc::log2f: 5606 case LibFunc::log2l: 5607 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5608 return; 5609 break; 5610 case LibFunc::exp2: 5611 case LibFunc::exp2f: 5612 case LibFunc::exp2l: 5613 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5614 return; 5615 break; 5616 case LibFunc::memcmp: 5617 if (visitMemCmpCall(I)) 5618 return; 5619 break; 5620 case LibFunc::memchr: 5621 if (visitMemChrCall(I)) 5622 return; 5623 break; 5624 case LibFunc::strcpy: 5625 if (visitStrCpyCall(I, false)) 5626 return; 5627 break; 5628 case LibFunc::stpcpy: 5629 if (visitStrCpyCall(I, true)) 5630 return; 5631 break; 5632 case LibFunc::strcmp: 5633 if (visitStrCmpCall(I)) 5634 return; 5635 break; 5636 case LibFunc::strlen: 5637 if (visitStrLenCall(I)) 5638 return; 5639 break; 5640 case LibFunc::strnlen: 5641 if (visitStrNLenCall(I)) 5642 return; 5643 break; 5644 } 5645 } 5646 } 5647 5648 SDValue Callee; 5649 if (!RenameFn) 5650 Callee = getValue(I.getCalledValue()); 5651 else 5652 Callee = DAG.getExternalSymbol(RenameFn, 5653 DAG.getTargetLoweringInfo().getPointerTy()); 5654 5655 // Check if we can potentially perform a tail call. More detailed checking is 5656 // be done within LowerCallTo, after more information about the call is known. 5657 LowerCallTo(&I, Callee, I.isTailCall()); 5658 } 5659 5660 namespace { 5661 5662 /// AsmOperandInfo - This contains information for each constraint that we are 5663 /// lowering. 5664 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5665 public: 5666 /// CallOperand - If this is the result output operand or a clobber 5667 /// this is null, otherwise it is the incoming operand to the CallInst. 5668 /// This gets modified as the asm is processed. 5669 SDValue CallOperand; 5670 5671 /// AssignedRegs - If this is a register or register class operand, this 5672 /// contains the set of register corresponding to the operand. 5673 RegsForValue AssignedRegs; 5674 5675 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5676 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5677 } 5678 5679 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5680 /// corresponds to. If there is no Value* for this operand, it returns 5681 /// MVT::Other. 5682 EVT getCallOperandValEVT(LLVMContext &Context, 5683 const TargetLowering &TLI, 5684 const DataLayout *DL) const { 5685 if (!CallOperandVal) return MVT::Other; 5686 5687 if (isa<BasicBlock>(CallOperandVal)) 5688 return TLI.getPointerTy(); 5689 5690 llvm::Type *OpTy = CallOperandVal->getType(); 5691 5692 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5693 // If this is an indirect operand, the operand is a pointer to the 5694 // accessed type. 5695 if (isIndirect) { 5696 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5697 if (!PtrTy) 5698 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5699 OpTy = PtrTy->getElementType(); 5700 } 5701 5702 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5703 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5704 if (STy->getNumElements() == 1) 5705 OpTy = STy->getElementType(0); 5706 5707 // If OpTy is not a single value, it may be a struct/union that we 5708 // can tile with integers. 5709 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5710 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5711 switch (BitSize) { 5712 default: break; 5713 case 1: 5714 case 8: 5715 case 16: 5716 case 32: 5717 case 64: 5718 case 128: 5719 OpTy = IntegerType::get(Context, BitSize); 5720 break; 5721 } 5722 } 5723 5724 return TLI.getValueType(OpTy, true); 5725 } 5726 }; 5727 5728 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5729 5730 } // end anonymous namespace 5731 5732 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5733 /// specified operand. We prefer to assign virtual registers, to allow the 5734 /// register allocator to handle the assignment process. However, if the asm 5735 /// uses features that we can't model on machineinstrs, we have SDISel do the 5736 /// allocation. This produces generally horrible, but correct, code. 5737 /// 5738 /// OpInfo describes the operand. 5739 /// 5740 static void GetRegistersForValue(SelectionDAG &DAG, 5741 const TargetLowering &TLI, 5742 SDLoc DL, 5743 SDISelAsmOperandInfo &OpInfo) { 5744 LLVMContext &Context = *DAG.getContext(); 5745 5746 MachineFunction &MF = DAG.getMachineFunction(); 5747 SmallVector<unsigned, 4> Regs; 5748 5749 // If this is a constraint for a single physreg, or a constraint for a 5750 // register class, find it. 5751 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5752 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5753 OpInfo.ConstraintCode, 5754 OpInfo.ConstraintVT); 5755 5756 unsigned NumRegs = 1; 5757 if (OpInfo.ConstraintVT != MVT::Other) { 5758 // If this is a FP input in an integer register (or visa versa) insert a bit 5759 // cast of the input value. More generally, handle any case where the input 5760 // value disagrees with the register class we plan to stick this in. 5761 if (OpInfo.Type == InlineAsm::isInput && 5762 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5763 // Try to convert to the first EVT that the reg class contains. If the 5764 // types are identical size, use a bitcast to convert (e.g. two differing 5765 // vector types). 5766 MVT RegVT = *PhysReg.second->vt_begin(); 5767 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5768 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5769 RegVT, OpInfo.CallOperand); 5770 OpInfo.ConstraintVT = RegVT; 5771 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5772 // If the input is a FP value and we want it in FP registers, do a 5773 // bitcast to the corresponding integer type. This turns an f64 value 5774 // into i64, which can be passed with two i32 values on a 32-bit 5775 // machine. 5776 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5777 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5778 RegVT, OpInfo.CallOperand); 5779 OpInfo.ConstraintVT = RegVT; 5780 } 5781 } 5782 5783 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5784 } 5785 5786 MVT RegVT; 5787 EVT ValueVT = OpInfo.ConstraintVT; 5788 5789 // If this is a constraint for a specific physical register, like {r17}, 5790 // assign it now. 5791 if (unsigned AssignedReg = PhysReg.first) { 5792 const TargetRegisterClass *RC = PhysReg.second; 5793 if (OpInfo.ConstraintVT == MVT::Other) 5794 ValueVT = *RC->vt_begin(); 5795 5796 // Get the actual register value type. This is important, because the user 5797 // may have asked for (e.g.) the AX register in i32 type. We need to 5798 // remember that AX is actually i16 to get the right extension. 5799 RegVT = *RC->vt_begin(); 5800 5801 // This is a explicit reference to a physical register. 5802 Regs.push_back(AssignedReg); 5803 5804 // If this is an expanded reference, add the rest of the regs to Regs. 5805 if (NumRegs != 1) { 5806 TargetRegisterClass::iterator I = RC->begin(); 5807 for (; *I != AssignedReg; ++I) 5808 assert(I != RC->end() && "Didn't find reg!"); 5809 5810 // Already added the first reg. 5811 --NumRegs; ++I; 5812 for (; NumRegs; --NumRegs, ++I) { 5813 assert(I != RC->end() && "Ran out of registers to allocate!"); 5814 Regs.push_back(*I); 5815 } 5816 } 5817 5818 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5819 return; 5820 } 5821 5822 // Otherwise, if this was a reference to an LLVM register class, create vregs 5823 // for this reference. 5824 if (const TargetRegisterClass *RC = PhysReg.second) { 5825 RegVT = *RC->vt_begin(); 5826 if (OpInfo.ConstraintVT == MVT::Other) 5827 ValueVT = RegVT; 5828 5829 // Create the appropriate number of virtual registers. 5830 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5831 for (; NumRegs; --NumRegs) 5832 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5833 5834 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5835 return; 5836 } 5837 5838 // Otherwise, we couldn't allocate enough registers for this. 5839 } 5840 5841 /// visitInlineAsm - Handle a call to an InlineAsm object. 5842 /// 5843 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5844 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5845 5846 /// ConstraintOperands - Information about all of the constraints. 5847 SDISelAsmOperandInfoVector ConstraintOperands; 5848 5849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5850 TargetLowering::AsmOperandInfoVector TargetConstraints = 5851 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5852 5853 bool hasMemory = false; 5854 5855 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5856 unsigned ResNo = 0; // ResNo - The result number of the next output. 5857 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5858 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5859 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5860 5861 MVT OpVT = MVT::Other; 5862 5863 // Compute the value type for each operand. 5864 switch (OpInfo.Type) { 5865 case InlineAsm::isOutput: 5866 // Indirect outputs just consume an argument. 5867 if (OpInfo.isIndirect) { 5868 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5869 break; 5870 } 5871 5872 // The return value of the call is this value. As such, there is no 5873 // corresponding argument. 5874 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5875 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5876 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5877 } else { 5878 assert(ResNo == 0 && "Asm only has one result!"); 5879 OpVT = TLI.getSimpleValueType(CS.getType()); 5880 } 5881 ++ResNo; 5882 break; 5883 case InlineAsm::isInput: 5884 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5885 break; 5886 case InlineAsm::isClobber: 5887 // Nothing to do. 5888 break; 5889 } 5890 5891 // If this is an input or an indirect output, process the call argument. 5892 // BasicBlocks are labels, currently appearing only in asm's. 5893 if (OpInfo.CallOperandVal) { 5894 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5895 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5896 } else { 5897 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5898 } 5899 5900 OpVT = 5901 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5902 } 5903 5904 OpInfo.ConstraintVT = OpVT; 5905 5906 // Indirect operand accesses access memory. 5907 if (OpInfo.isIndirect) 5908 hasMemory = true; 5909 else { 5910 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5911 TargetLowering::ConstraintType 5912 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5913 if (CType == TargetLowering::C_Memory) { 5914 hasMemory = true; 5915 break; 5916 } 5917 } 5918 } 5919 } 5920 5921 SDValue Chain, Flag; 5922 5923 // We won't need to flush pending loads if this asm doesn't touch 5924 // memory and is nonvolatile. 5925 if (hasMemory || IA->hasSideEffects()) 5926 Chain = getRoot(); 5927 else 5928 Chain = DAG.getRoot(); 5929 5930 // Second pass over the constraints: compute which constraint option to use 5931 // and assign registers to constraints that want a specific physreg. 5932 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5933 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5934 5935 // If this is an output operand with a matching input operand, look up the 5936 // matching input. If their types mismatch, e.g. one is an integer, the 5937 // other is floating point, or their sizes are different, flag it as an 5938 // error. 5939 if (OpInfo.hasMatchingInput()) { 5940 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5941 5942 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5943 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5944 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5945 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5946 OpInfo.ConstraintVT); 5947 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5948 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5949 Input.ConstraintVT); 5950 if ((OpInfo.ConstraintVT.isInteger() != 5951 Input.ConstraintVT.isInteger()) || 5952 (MatchRC.second != InputRC.second)) { 5953 report_fatal_error("Unsupported asm: input constraint" 5954 " with a matching output constraint of" 5955 " incompatible type!"); 5956 } 5957 Input.ConstraintVT = OpInfo.ConstraintVT; 5958 } 5959 } 5960 5961 // Compute the constraint code and ConstraintType to use. 5962 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5963 5964 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5965 OpInfo.Type == InlineAsm::isClobber) 5966 continue; 5967 5968 // If this is a memory input, and if the operand is not indirect, do what we 5969 // need to to provide an address for the memory input. 5970 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5971 !OpInfo.isIndirect) { 5972 assert((OpInfo.isMultipleAlternative || 5973 (OpInfo.Type == InlineAsm::isInput)) && 5974 "Can only indirectify direct input operands!"); 5975 5976 // Memory operands really want the address of the value. If we don't have 5977 // an indirect input, put it in the constpool if we can, otherwise spill 5978 // it to a stack slot. 5979 // TODO: This isn't quite right. We need to handle these according to 5980 // the addressing mode that the constraint wants. Also, this may take 5981 // an additional register for the computation and we don't want that 5982 // either. 5983 5984 // If the operand is a float, integer, or vector constant, spill to a 5985 // constant pool entry to get its address. 5986 const Value *OpVal = OpInfo.CallOperandVal; 5987 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5988 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5989 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5990 TLI.getPointerTy()); 5991 } else { 5992 // Otherwise, create a stack slot and emit a store to it before the 5993 // asm. 5994 Type *Ty = OpVal->getType(); 5995 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5996 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5997 MachineFunction &MF = DAG.getMachineFunction(); 5998 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5999 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6000 Chain = DAG.getStore(Chain, getCurSDLoc(), 6001 OpInfo.CallOperand, StackSlot, 6002 MachinePointerInfo::getFixedStack(SSFI), 6003 false, false, 0); 6004 OpInfo.CallOperand = StackSlot; 6005 } 6006 6007 // There is no longer a Value* corresponding to this operand. 6008 OpInfo.CallOperandVal = nullptr; 6009 6010 // It is now an indirect operand. 6011 OpInfo.isIndirect = true; 6012 } 6013 6014 // If this constraint is for a specific register, allocate it before 6015 // anything else. 6016 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6017 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6018 } 6019 6020 // Second pass - Loop over all of the operands, assigning virtual or physregs 6021 // to register class operands. 6022 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6023 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6024 6025 // C_Register operands have already been allocated, Other/Memory don't need 6026 // to be. 6027 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6028 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6029 } 6030 6031 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6032 std::vector<SDValue> AsmNodeOperands; 6033 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6034 AsmNodeOperands.push_back( 6035 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6036 TLI.getPointerTy())); 6037 6038 // If we have a !srcloc metadata node associated with it, we want to attach 6039 // this to the ultimately generated inline asm machineinstr. To do this, we 6040 // pass in the third operand as this (potentially null) inline asm MDNode. 6041 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6042 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6043 6044 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6045 // bits as operand 3. 6046 unsigned ExtraInfo = 0; 6047 if (IA->hasSideEffects()) 6048 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6049 if (IA->isAlignStack()) 6050 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6051 // Set the asm dialect. 6052 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6053 6054 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6055 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6056 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6057 6058 // Compute the constraint code and ConstraintType to use. 6059 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6060 6061 // Ideally, we would only check against memory constraints. However, the 6062 // meaning of an other constraint can be target-specific and we can't easily 6063 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6064 // for other constriants as well. 6065 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6066 OpInfo.ConstraintType == TargetLowering::C_Other) { 6067 if (OpInfo.Type == InlineAsm::isInput) 6068 ExtraInfo |= InlineAsm::Extra_MayLoad; 6069 else if (OpInfo.Type == InlineAsm::isOutput) 6070 ExtraInfo |= InlineAsm::Extra_MayStore; 6071 else if (OpInfo.Type == InlineAsm::isClobber) 6072 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6073 } 6074 } 6075 6076 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6077 TLI.getPointerTy())); 6078 6079 // Loop over all of the inputs, copying the operand values into the 6080 // appropriate registers and processing the output regs. 6081 RegsForValue RetValRegs; 6082 6083 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6084 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6085 6086 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6087 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6088 6089 switch (OpInfo.Type) { 6090 case InlineAsm::isOutput: { 6091 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6092 OpInfo.ConstraintType != TargetLowering::C_Register) { 6093 // Memory output, or 'other' output (e.g. 'X' constraint). 6094 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6095 6096 unsigned ConstraintID = 6097 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6098 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6099 "Failed to convert memory constraint code to constraint id."); 6100 6101 // Add information to the INLINEASM node to know about this output. 6102 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6103 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6104 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6105 MVT::i32)); 6106 AsmNodeOperands.push_back(OpInfo.CallOperand); 6107 break; 6108 } 6109 6110 // Otherwise, this is a register or register class output. 6111 6112 // Copy the output from the appropriate register. Find a register that 6113 // we can use. 6114 if (OpInfo.AssignedRegs.Regs.empty()) { 6115 LLVMContext &Ctx = *DAG.getContext(); 6116 Ctx.emitError(CS.getInstruction(), 6117 "couldn't allocate output register for constraint '" + 6118 Twine(OpInfo.ConstraintCode) + "'"); 6119 return; 6120 } 6121 6122 // If this is an indirect operand, store through the pointer after the 6123 // asm. 6124 if (OpInfo.isIndirect) { 6125 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6126 OpInfo.CallOperandVal)); 6127 } else { 6128 // This is the result value of the call. 6129 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6130 // Concatenate this output onto the outputs list. 6131 RetValRegs.append(OpInfo.AssignedRegs); 6132 } 6133 6134 // Add information to the INLINEASM node to know that this register is 6135 // set. 6136 OpInfo.AssignedRegs 6137 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6138 ? InlineAsm::Kind_RegDefEarlyClobber 6139 : InlineAsm::Kind_RegDef, 6140 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6141 break; 6142 } 6143 case InlineAsm::isInput: { 6144 SDValue InOperandVal = OpInfo.CallOperand; 6145 6146 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6147 // If this is required to match an output register we have already set, 6148 // just use its register. 6149 unsigned OperandNo = OpInfo.getMatchedOperand(); 6150 6151 // Scan until we find the definition we already emitted of this operand. 6152 // When we find it, create a RegsForValue operand. 6153 unsigned CurOp = InlineAsm::Op_FirstOperand; 6154 for (; OperandNo; --OperandNo) { 6155 // Advance to the next operand. 6156 unsigned OpFlag = 6157 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6158 assert((InlineAsm::isRegDefKind(OpFlag) || 6159 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6160 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6161 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6162 } 6163 6164 unsigned OpFlag = 6165 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6166 if (InlineAsm::isRegDefKind(OpFlag) || 6167 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6168 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6169 if (OpInfo.isIndirect) { 6170 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6171 LLVMContext &Ctx = *DAG.getContext(); 6172 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6173 " don't know how to handle tied " 6174 "indirect register inputs"); 6175 return; 6176 } 6177 6178 RegsForValue MatchedRegs; 6179 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6180 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6181 MatchedRegs.RegVTs.push_back(RegVT); 6182 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6183 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6184 i != e; ++i) { 6185 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6186 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6187 else { 6188 LLVMContext &Ctx = *DAG.getContext(); 6189 Ctx.emitError(CS.getInstruction(), 6190 "inline asm error: This value" 6191 " type register class is not natively supported!"); 6192 return; 6193 } 6194 } 6195 SDLoc dl = getCurSDLoc(); 6196 // Use the produced MatchedRegs object to 6197 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6198 Chain, &Flag, CS.getInstruction()); 6199 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6200 true, OpInfo.getMatchedOperand(), dl, 6201 DAG, AsmNodeOperands); 6202 break; 6203 } 6204 6205 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6206 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6207 "Unexpected number of operands"); 6208 // Add information to the INLINEASM node to know about this input. 6209 // See InlineAsm.h isUseOperandTiedToDef. 6210 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6211 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6212 OpInfo.getMatchedOperand()); 6213 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6214 TLI.getPointerTy())); 6215 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6216 break; 6217 } 6218 6219 // Treat indirect 'X' constraint as memory. 6220 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6221 OpInfo.isIndirect) 6222 OpInfo.ConstraintType = TargetLowering::C_Memory; 6223 6224 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6225 std::vector<SDValue> Ops; 6226 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6227 Ops, DAG); 6228 if (Ops.empty()) { 6229 LLVMContext &Ctx = *DAG.getContext(); 6230 Ctx.emitError(CS.getInstruction(), 6231 "invalid operand for inline asm constraint '" + 6232 Twine(OpInfo.ConstraintCode) + "'"); 6233 return; 6234 } 6235 6236 // Add information to the INLINEASM node to know about this input. 6237 unsigned ResOpType = 6238 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6239 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6240 getCurSDLoc(), 6241 TLI.getPointerTy())); 6242 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6243 break; 6244 } 6245 6246 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6247 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6248 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6249 "Memory operands expect pointer values"); 6250 6251 unsigned ConstraintID = 6252 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6253 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6254 "Failed to convert memory constraint code to constraint id."); 6255 6256 // Add information to the INLINEASM node to know about this input. 6257 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6258 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6259 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6260 getCurSDLoc(), 6261 MVT::i32)); 6262 AsmNodeOperands.push_back(InOperandVal); 6263 break; 6264 } 6265 6266 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6267 OpInfo.ConstraintType == TargetLowering::C_Register) && 6268 "Unknown constraint type!"); 6269 6270 // TODO: Support this. 6271 if (OpInfo.isIndirect) { 6272 LLVMContext &Ctx = *DAG.getContext(); 6273 Ctx.emitError(CS.getInstruction(), 6274 "Don't know how to handle indirect register inputs yet " 6275 "for constraint '" + 6276 Twine(OpInfo.ConstraintCode) + "'"); 6277 return; 6278 } 6279 6280 // Copy the input into the appropriate registers. 6281 if (OpInfo.AssignedRegs.Regs.empty()) { 6282 LLVMContext &Ctx = *DAG.getContext(); 6283 Ctx.emitError(CS.getInstruction(), 6284 "couldn't allocate input reg for constraint '" + 6285 Twine(OpInfo.ConstraintCode) + "'"); 6286 return; 6287 } 6288 6289 SDLoc dl = getCurSDLoc(); 6290 6291 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6292 Chain, &Flag, CS.getInstruction()); 6293 6294 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6295 dl, DAG, AsmNodeOperands); 6296 break; 6297 } 6298 case InlineAsm::isClobber: { 6299 // Add the clobbered value to the operand list, so that the register 6300 // allocator is aware that the physreg got clobbered. 6301 if (!OpInfo.AssignedRegs.Regs.empty()) 6302 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6303 false, 0, getCurSDLoc(), DAG, 6304 AsmNodeOperands); 6305 break; 6306 } 6307 } 6308 } 6309 6310 // Finish up input operands. Set the input chain and add the flag last. 6311 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6312 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6313 6314 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6315 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6316 Flag = Chain.getValue(1); 6317 6318 // If this asm returns a register value, copy the result from that register 6319 // and set it as the value of the call. 6320 if (!RetValRegs.Regs.empty()) { 6321 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6322 Chain, &Flag, CS.getInstruction()); 6323 6324 // FIXME: Why don't we do this for inline asms with MRVs? 6325 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6326 EVT ResultType = TLI.getValueType(CS.getType()); 6327 6328 // If any of the results of the inline asm is a vector, it may have the 6329 // wrong width/num elts. This can happen for register classes that can 6330 // contain multiple different value types. The preg or vreg allocated may 6331 // not have the same VT as was expected. Convert it to the right type 6332 // with bit_convert. 6333 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6334 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6335 ResultType, Val); 6336 6337 } else if (ResultType != Val.getValueType() && 6338 ResultType.isInteger() && Val.getValueType().isInteger()) { 6339 // If a result value was tied to an input value, the computed result may 6340 // have a wider width than the expected result. Extract the relevant 6341 // portion. 6342 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6343 } 6344 6345 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6346 } 6347 6348 setValue(CS.getInstruction(), Val); 6349 // Don't need to use this as a chain in this case. 6350 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6351 return; 6352 } 6353 6354 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6355 6356 // Process indirect outputs, first output all of the flagged copies out of 6357 // physregs. 6358 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6359 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6360 const Value *Ptr = IndirectStoresToEmit[i].second; 6361 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6362 Chain, &Flag, IA); 6363 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6364 } 6365 6366 // Emit the non-flagged stores from the physregs. 6367 SmallVector<SDValue, 8> OutChains; 6368 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6369 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6370 StoresToEmit[i].first, 6371 getValue(StoresToEmit[i].second), 6372 MachinePointerInfo(StoresToEmit[i].second), 6373 false, false, 0); 6374 OutChains.push_back(Val); 6375 } 6376 6377 if (!OutChains.empty()) 6378 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6379 6380 DAG.setRoot(Chain); 6381 } 6382 6383 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6384 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6385 MVT::Other, getRoot(), 6386 getValue(I.getArgOperand(0)), 6387 DAG.getSrcValue(I.getArgOperand(0)))); 6388 } 6389 6390 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6392 const DataLayout &DL = *TLI.getDataLayout(); 6393 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6394 getRoot(), getValue(I.getOperand(0)), 6395 DAG.getSrcValue(I.getOperand(0)), 6396 DL.getABITypeAlignment(I.getType())); 6397 setValue(&I, V); 6398 DAG.setRoot(V.getValue(1)); 6399 } 6400 6401 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6402 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6403 MVT::Other, getRoot(), 6404 getValue(I.getArgOperand(0)), 6405 DAG.getSrcValue(I.getArgOperand(0)))); 6406 } 6407 6408 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6409 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6410 MVT::Other, getRoot(), 6411 getValue(I.getArgOperand(0)), 6412 getValue(I.getArgOperand(1)), 6413 DAG.getSrcValue(I.getArgOperand(0)), 6414 DAG.getSrcValue(I.getArgOperand(1)))); 6415 } 6416 6417 /// \brief Lower an argument list according to the target calling convention. 6418 /// 6419 /// \return A tuple of <return-value, token-chain> 6420 /// 6421 /// This is a helper for lowering intrinsics that follow a target calling 6422 /// convention or require stack pointer adjustment. Only a subset of the 6423 /// intrinsic's operands need to participate in the calling convention. 6424 std::pair<SDValue, SDValue> 6425 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6426 unsigned NumArgs, SDValue Callee, 6427 Type *ReturnTy, 6428 MachineBasicBlock *LandingPad, 6429 bool IsPatchPoint) { 6430 TargetLowering::ArgListTy Args; 6431 Args.reserve(NumArgs); 6432 6433 // Populate the argument list. 6434 // Attributes for args start at offset 1, after the return attribute. 6435 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6436 ArgI != ArgE; ++ArgI) { 6437 const Value *V = CS->getOperand(ArgI); 6438 6439 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6440 6441 TargetLowering::ArgListEntry Entry; 6442 Entry.Node = getValue(V); 6443 Entry.Ty = V->getType(); 6444 Entry.setAttributes(&CS, AttrI); 6445 Args.push_back(Entry); 6446 } 6447 6448 TargetLowering::CallLoweringInfo CLI(DAG); 6449 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6450 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6451 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6452 6453 return lowerInvokable(CLI, LandingPad); 6454 } 6455 6456 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6457 /// or patchpoint target node's operand list. 6458 /// 6459 /// Constants are converted to TargetConstants purely as an optimization to 6460 /// avoid constant materialization and register allocation. 6461 /// 6462 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6463 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6464 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6465 /// address materialization and register allocation, but may also be required 6466 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6467 /// alloca in the entry block, then the runtime may assume that the alloca's 6468 /// StackMap location can be read immediately after compilation and that the 6469 /// location is valid at any point during execution (this is similar to the 6470 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6471 /// only available in a register, then the runtime would need to trap when 6472 /// execution reaches the StackMap in order to read the alloca's location. 6473 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6474 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6475 SelectionDAGBuilder &Builder) { 6476 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6477 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6478 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6479 Ops.push_back( 6480 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6481 Ops.push_back( 6482 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6483 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6484 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6485 Ops.push_back( 6486 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6487 } else 6488 Ops.push_back(OpVal); 6489 } 6490 } 6491 6492 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6493 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6494 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6495 // [live variables...]) 6496 6497 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6498 6499 SDValue Chain, InFlag, Callee, NullPtr; 6500 SmallVector<SDValue, 32> Ops; 6501 6502 SDLoc DL = getCurSDLoc(); 6503 Callee = getValue(CI.getCalledValue()); 6504 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6505 6506 // The stackmap intrinsic only records the live variables (the arguemnts 6507 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6508 // intrinsic, this won't be lowered to a function call. This means we don't 6509 // have to worry about calling conventions and target specific lowering code. 6510 // Instead we perform the call lowering right here. 6511 // 6512 // chain, flag = CALLSEQ_START(chain, 0) 6513 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6514 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6515 // 6516 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6517 InFlag = Chain.getValue(1); 6518 6519 // Add the <id> and <numBytes> constants. 6520 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6521 Ops.push_back(DAG.getTargetConstant( 6522 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6523 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6524 Ops.push_back(DAG.getTargetConstant( 6525 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6526 MVT::i32)); 6527 6528 // Push live variables for the stack map. 6529 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6530 6531 // We are not pushing any register mask info here on the operands list, 6532 // because the stackmap doesn't clobber anything. 6533 6534 // Push the chain and the glue flag. 6535 Ops.push_back(Chain); 6536 Ops.push_back(InFlag); 6537 6538 // Create the STACKMAP node. 6539 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6540 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6541 Chain = SDValue(SM, 0); 6542 InFlag = Chain.getValue(1); 6543 6544 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6545 6546 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6547 6548 // Set the root to the target-lowered call chain. 6549 DAG.setRoot(Chain); 6550 6551 // Inform the Frame Information that we have a stackmap in this function. 6552 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6553 } 6554 6555 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6556 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6557 MachineBasicBlock *LandingPad) { 6558 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6559 // i32 <numBytes>, 6560 // i8* <target>, 6561 // i32 <numArgs>, 6562 // [Args...], 6563 // [live variables...]) 6564 6565 CallingConv::ID CC = CS.getCallingConv(); 6566 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6567 bool HasDef = !CS->getType()->isVoidTy(); 6568 SDLoc dl = getCurSDLoc(); 6569 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6570 6571 // Handle immediate and symbolic callees. 6572 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6573 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6574 /*isTarget=*/true); 6575 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6576 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6577 SDLoc(SymbolicCallee), 6578 SymbolicCallee->getValueType(0)); 6579 6580 // Get the real number of arguments participating in the call <numArgs> 6581 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6582 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6583 6584 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6585 // Intrinsics include all meta-operands up to but not including CC. 6586 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6587 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6588 "Not enough arguments provided to the patchpoint intrinsic"); 6589 6590 // For AnyRegCC the arguments are lowered later on manually. 6591 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6592 Type *ReturnTy = 6593 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6594 std::pair<SDValue, SDValue> Result = 6595 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6596 LandingPad, true); 6597 6598 SDNode *CallEnd = Result.second.getNode(); 6599 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6600 CallEnd = CallEnd->getOperand(0).getNode(); 6601 6602 /// Get a call instruction from the call sequence chain. 6603 /// Tail calls are not allowed. 6604 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6605 "Expected a callseq node."); 6606 SDNode *Call = CallEnd->getOperand(0).getNode(); 6607 bool HasGlue = Call->getGluedNode(); 6608 6609 // Replace the target specific call node with the patchable intrinsic. 6610 SmallVector<SDValue, 8> Ops; 6611 6612 // Add the <id> and <numBytes> constants. 6613 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6614 Ops.push_back(DAG.getTargetConstant( 6615 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6616 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6617 Ops.push_back(DAG.getTargetConstant( 6618 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6619 MVT::i32)); 6620 6621 // Add the callee. 6622 Ops.push_back(Callee); 6623 6624 // Adjust <numArgs> to account for any arguments that have been passed on the 6625 // stack instead. 6626 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6627 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6628 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6629 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6630 6631 // Add the calling convention 6632 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6633 6634 // Add the arguments we omitted previously. The register allocator should 6635 // place these in any free register. 6636 if (IsAnyRegCC) 6637 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6638 Ops.push_back(getValue(CS.getArgument(i))); 6639 6640 // Push the arguments from the call instruction up to the register mask. 6641 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6642 Ops.append(Call->op_begin() + 2, e); 6643 6644 // Push live variables for the stack map. 6645 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6646 6647 // Push the register mask info. 6648 if (HasGlue) 6649 Ops.push_back(*(Call->op_end()-2)); 6650 else 6651 Ops.push_back(*(Call->op_end()-1)); 6652 6653 // Push the chain (this is originally the first operand of the call, but 6654 // becomes now the last or second to last operand). 6655 Ops.push_back(*(Call->op_begin())); 6656 6657 // Push the glue flag (last operand). 6658 if (HasGlue) 6659 Ops.push_back(*(Call->op_end()-1)); 6660 6661 SDVTList NodeTys; 6662 if (IsAnyRegCC && HasDef) { 6663 // Create the return types based on the intrinsic definition 6664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6665 SmallVector<EVT, 3> ValueVTs; 6666 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6667 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6668 6669 // There is always a chain and a glue type at the end 6670 ValueVTs.push_back(MVT::Other); 6671 ValueVTs.push_back(MVT::Glue); 6672 NodeTys = DAG.getVTList(ValueVTs); 6673 } else 6674 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6675 6676 // Replace the target specific call node with a PATCHPOINT node. 6677 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6678 dl, NodeTys, Ops); 6679 6680 // Update the NodeMap. 6681 if (HasDef) { 6682 if (IsAnyRegCC) 6683 setValue(CS.getInstruction(), SDValue(MN, 0)); 6684 else 6685 setValue(CS.getInstruction(), Result.first); 6686 } 6687 6688 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6689 // call sequence. Furthermore the location of the chain and glue can change 6690 // when the AnyReg calling convention is used and the intrinsic returns a 6691 // value. 6692 if (IsAnyRegCC && HasDef) { 6693 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6694 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6695 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6696 } else 6697 DAG.ReplaceAllUsesWith(Call, MN); 6698 DAG.DeleteNode(Call); 6699 6700 // Inform the Frame Information that we have a patchpoint in this function. 6701 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6702 } 6703 6704 /// Returns an AttributeSet representing the attributes applied to the return 6705 /// value of the given call. 6706 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6707 SmallVector<Attribute::AttrKind, 2> Attrs; 6708 if (CLI.RetSExt) 6709 Attrs.push_back(Attribute::SExt); 6710 if (CLI.RetZExt) 6711 Attrs.push_back(Attribute::ZExt); 6712 if (CLI.IsInReg) 6713 Attrs.push_back(Attribute::InReg); 6714 6715 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6716 Attrs); 6717 } 6718 6719 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6720 /// implementation, which just calls LowerCall. 6721 /// FIXME: When all targets are 6722 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6723 std::pair<SDValue, SDValue> 6724 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6725 // Handle the incoming return values from the call. 6726 CLI.Ins.clear(); 6727 Type *OrigRetTy = CLI.RetTy; 6728 SmallVector<EVT, 4> RetTys; 6729 SmallVector<uint64_t, 4> Offsets; 6730 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6731 6732 SmallVector<ISD::OutputArg, 4> Outs; 6733 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6734 6735 bool CanLowerReturn = 6736 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6737 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6738 6739 SDValue DemoteStackSlot; 6740 int DemoteStackIdx = -100; 6741 if (!CanLowerReturn) { 6742 // FIXME: equivalent assert? 6743 // assert(!CS.hasInAllocaArgument() && 6744 // "sret demotion is incompatible with inalloca"); 6745 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6746 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6747 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6748 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6749 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6750 6751 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6752 ArgListEntry Entry; 6753 Entry.Node = DemoteStackSlot; 6754 Entry.Ty = StackSlotPtrType; 6755 Entry.isSExt = false; 6756 Entry.isZExt = false; 6757 Entry.isInReg = false; 6758 Entry.isSRet = true; 6759 Entry.isNest = false; 6760 Entry.isByVal = false; 6761 Entry.isReturned = false; 6762 Entry.Alignment = Align; 6763 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6764 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6765 6766 // sret demotion isn't compatible with tail-calls, since the sret argument 6767 // points into the callers stack frame. 6768 CLI.IsTailCall = false; 6769 } else { 6770 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6771 EVT VT = RetTys[I]; 6772 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6773 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6774 for (unsigned i = 0; i != NumRegs; ++i) { 6775 ISD::InputArg MyFlags; 6776 MyFlags.VT = RegisterVT; 6777 MyFlags.ArgVT = VT; 6778 MyFlags.Used = CLI.IsReturnValueUsed; 6779 if (CLI.RetSExt) 6780 MyFlags.Flags.setSExt(); 6781 if (CLI.RetZExt) 6782 MyFlags.Flags.setZExt(); 6783 if (CLI.IsInReg) 6784 MyFlags.Flags.setInReg(); 6785 CLI.Ins.push_back(MyFlags); 6786 } 6787 } 6788 } 6789 6790 // Handle all of the outgoing arguments. 6791 CLI.Outs.clear(); 6792 CLI.OutVals.clear(); 6793 ArgListTy &Args = CLI.getArgs(); 6794 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6795 SmallVector<EVT, 4> ValueVTs; 6796 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6797 Type *FinalType = Args[i].Ty; 6798 if (Args[i].isByVal) 6799 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6800 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6801 FinalType, CLI.CallConv, CLI.IsVarArg); 6802 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6803 ++Value) { 6804 EVT VT = ValueVTs[Value]; 6805 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6806 SDValue Op = SDValue(Args[i].Node.getNode(), 6807 Args[i].Node.getResNo() + Value); 6808 ISD::ArgFlagsTy Flags; 6809 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6810 6811 if (Args[i].isZExt) 6812 Flags.setZExt(); 6813 if (Args[i].isSExt) 6814 Flags.setSExt(); 6815 if (Args[i].isInReg) 6816 Flags.setInReg(); 6817 if (Args[i].isSRet) 6818 Flags.setSRet(); 6819 if (Args[i].isByVal) 6820 Flags.setByVal(); 6821 if (Args[i].isInAlloca) { 6822 Flags.setInAlloca(); 6823 // Set the byval flag for CCAssignFn callbacks that don't know about 6824 // inalloca. This way we can know how many bytes we should've allocated 6825 // and how many bytes a callee cleanup function will pop. If we port 6826 // inalloca to more targets, we'll have to add custom inalloca handling 6827 // in the various CC lowering callbacks. 6828 Flags.setByVal(); 6829 } 6830 if (Args[i].isByVal || Args[i].isInAlloca) { 6831 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6832 Type *ElementTy = Ty->getElementType(); 6833 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6834 // For ByVal, alignment should come from FE. BE will guess if this 6835 // info is not there but there are cases it cannot get right. 6836 unsigned FrameAlign; 6837 if (Args[i].Alignment) 6838 FrameAlign = Args[i].Alignment; 6839 else 6840 FrameAlign = getByValTypeAlignment(ElementTy); 6841 Flags.setByValAlign(FrameAlign); 6842 } 6843 if (Args[i].isNest) 6844 Flags.setNest(); 6845 if (NeedsRegBlock) 6846 Flags.setInConsecutiveRegs(); 6847 Flags.setOrigAlign(OriginalAlignment); 6848 6849 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6850 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6851 SmallVector<SDValue, 4> Parts(NumParts); 6852 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6853 6854 if (Args[i].isSExt) 6855 ExtendKind = ISD::SIGN_EXTEND; 6856 else if (Args[i].isZExt) 6857 ExtendKind = ISD::ZERO_EXTEND; 6858 6859 // Conservatively only handle 'returned' on non-vectors for now 6860 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6861 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6862 "unexpected use of 'returned'"); 6863 // Before passing 'returned' to the target lowering code, ensure that 6864 // either the register MVT and the actual EVT are the same size or that 6865 // the return value and argument are extended in the same way; in these 6866 // cases it's safe to pass the argument register value unchanged as the 6867 // return register value (although it's at the target's option whether 6868 // to do so) 6869 // TODO: allow code generation to take advantage of partially preserved 6870 // registers rather than clobbering the entire register when the 6871 // parameter extension method is not compatible with the return 6872 // extension method 6873 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6874 (ExtendKind != ISD::ANY_EXTEND && 6875 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6876 Flags.setReturned(); 6877 } 6878 6879 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6880 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6881 6882 for (unsigned j = 0; j != NumParts; ++j) { 6883 // if it isn't first piece, alignment must be 1 6884 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6885 i < CLI.NumFixedArgs, 6886 i, j*Parts[j].getValueType().getStoreSize()); 6887 if (NumParts > 1 && j == 0) 6888 MyFlags.Flags.setSplit(); 6889 else if (j != 0) 6890 MyFlags.Flags.setOrigAlign(1); 6891 6892 CLI.Outs.push_back(MyFlags); 6893 CLI.OutVals.push_back(Parts[j]); 6894 } 6895 6896 if (NeedsRegBlock && Value == NumValues - 1) 6897 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6898 } 6899 } 6900 6901 SmallVector<SDValue, 4> InVals; 6902 CLI.Chain = LowerCall(CLI, InVals); 6903 6904 // Verify that the target's LowerCall behaved as expected. 6905 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6906 "LowerCall didn't return a valid chain!"); 6907 assert((!CLI.IsTailCall || InVals.empty()) && 6908 "LowerCall emitted a return value for a tail call!"); 6909 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6910 "LowerCall didn't emit the correct number of values!"); 6911 6912 // For a tail call, the return value is merely live-out and there aren't 6913 // any nodes in the DAG representing it. Return a special value to 6914 // indicate that a tail call has been emitted and no more Instructions 6915 // should be processed in the current block. 6916 if (CLI.IsTailCall) { 6917 CLI.DAG.setRoot(CLI.Chain); 6918 return std::make_pair(SDValue(), SDValue()); 6919 } 6920 6921 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6922 assert(InVals[i].getNode() && 6923 "LowerCall emitted a null value!"); 6924 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6925 "LowerCall emitted a value with the wrong type!"); 6926 }); 6927 6928 SmallVector<SDValue, 4> ReturnValues; 6929 if (!CanLowerReturn) { 6930 // The instruction result is the result of loading from the 6931 // hidden sret parameter. 6932 SmallVector<EVT, 1> PVTs; 6933 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6934 6935 ComputeValueVTs(*this, PtrRetTy, PVTs); 6936 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6937 EVT PtrVT = PVTs[0]; 6938 6939 unsigned NumValues = RetTys.size(); 6940 ReturnValues.resize(NumValues); 6941 SmallVector<SDValue, 4> Chains(NumValues); 6942 6943 for (unsigned i = 0; i < NumValues; ++i) { 6944 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6945 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6946 PtrVT)); 6947 SDValue L = CLI.DAG.getLoad( 6948 RetTys[i], CLI.DL, CLI.Chain, Add, 6949 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6950 false, false, 1); 6951 ReturnValues[i] = L; 6952 Chains[i] = L.getValue(1); 6953 } 6954 6955 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6956 } else { 6957 // Collect the legal value parts into potentially illegal values 6958 // that correspond to the original function's return values. 6959 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6960 if (CLI.RetSExt) 6961 AssertOp = ISD::AssertSext; 6962 else if (CLI.RetZExt) 6963 AssertOp = ISD::AssertZext; 6964 unsigned CurReg = 0; 6965 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6966 EVT VT = RetTys[I]; 6967 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6968 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6969 6970 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6971 NumRegs, RegisterVT, VT, nullptr, 6972 AssertOp)); 6973 CurReg += NumRegs; 6974 } 6975 6976 // For a function returning void, there is no return value. We can't create 6977 // such a node, so we just return a null return value in that case. In 6978 // that case, nothing will actually look at the value. 6979 if (ReturnValues.empty()) 6980 return std::make_pair(SDValue(), CLI.Chain); 6981 } 6982 6983 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6984 CLI.DAG.getVTList(RetTys), ReturnValues); 6985 return std::make_pair(Res, CLI.Chain); 6986 } 6987 6988 void TargetLowering::LowerOperationWrapper(SDNode *N, 6989 SmallVectorImpl<SDValue> &Results, 6990 SelectionDAG &DAG) const { 6991 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6992 if (Res.getNode()) 6993 Results.push_back(Res); 6994 } 6995 6996 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6997 llvm_unreachable("LowerOperation not implemented for this target!"); 6998 } 6999 7000 void 7001 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7002 SDValue Op = getNonRegisterValue(V); 7003 assert((Op.getOpcode() != ISD::CopyFromReg || 7004 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7005 "Copy from a reg to the same reg!"); 7006 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7007 7008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7009 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7010 SDValue Chain = DAG.getEntryNode(); 7011 7012 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7013 FuncInfo.PreferredExtendType.end()) 7014 ? ISD::ANY_EXTEND 7015 : FuncInfo.PreferredExtendType[V]; 7016 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7017 PendingExports.push_back(Chain); 7018 } 7019 7020 #include "llvm/CodeGen/SelectionDAGISel.h" 7021 7022 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7023 /// entry block, return true. This includes arguments used by switches, since 7024 /// the switch may expand into multiple basic blocks. 7025 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7026 // With FastISel active, we may be splitting blocks, so force creation 7027 // of virtual registers for all non-dead arguments. 7028 if (FastISel) 7029 return A->use_empty(); 7030 7031 const BasicBlock *Entry = A->getParent()->begin(); 7032 for (const User *U : A->users()) 7033 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7034 return false; // Use not in entry block. 7035 7036 return true; 7037 } 7038 7039 void SelectionDAGISel::LowerArguments(const Function &F) { 7040 SelectionDAG &DAG = SDB->DAG; 7041 SDLoc dl = SDB->getCurSDLoc(); 7042 const DataLayout *DL = TLI->getDataLayout(); 7043 SmallVector<ISD::InputArg, 16> Ins; 7044 7045 if (!FuncInfo->CanLowerReturn) { 7046 // Put in an sret pointer parameter before all the other parameters. 7047 SmallVector<EVT, 1> ValueVTs; 7048 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7049 7050 // NOTE: Assuming that a pointer will never break down to more than one VT 7051 // or one register. 7052 ISD::ArgFlagsTy Flags; 7053 Flags.setSRet(); 7054 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7055 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7056 ISD::InputArg::NoArgIndex, 0); 7057 Ins.push_back(RetArg); 7058 } 7059 7060 // Set up the incoming argument description vector. 7061 unsigned Idx = 1; 7062 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7063 I != E; ++I, ++Idx) { 7064 SmallVector<EVT, 4> ValueVTs; 7065 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7066 bool isArgValueUsed = !I->use_empty(); 7067 unsigned PartBase = 0; 7068 Type *FinalType = I->getType(); 7069 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7070 FinalType = cast<PointerType>(FinalType)->getElementType(); 7071 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7072 FinalType, F.getCallingConv(), F.isVarArg()); 7073 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7074 Value != NumValues; ++Value) { 7075 EVT VT = ValueVTs[Value]; 7076 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7077 ISD::ArgFlagsTy Flags; 7078 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7079 7080 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7081 Flags.setZExt(); 7082 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7083 Flags.setSExt(); 7084 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7085 Flags.setInReg(); 7086 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7087 Flags.setSRet(); 7088 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7089 Flags.setByVal(); 7090 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7091 Flags.setInAlloca(); 7092 // Set the byval flag for CCAssignFn callbacks that don't know about 7093 // inalloca. This way we can know how many bytes we should've allocated 7094 // and how many bytes a callee cleanup function will pop. If we port 7095 // inalloca to more targets, we'll have to add custom inalloca handling 7096 // in the various CC lowering callbacks. 7097 Flags.setByVal(); 7098 } 7099 if (Flags.isByVal() || Flags.isInAlloca()) { 7100 PointerType *Ty = cast<PointerType>(I->getType()); 7101 Type *ElementTy = Ty->getElementType(); 7102 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7103 // For ByVal, alignment should be passed from FE. BE will guess if 7104 // this info is not there but there are cases it cannot get right. 7105 unsigned FrameAlign; 7106 if (F.getParamAlignment(Idx)) 7107 FrameAlign = F.getParamAlignment(Idx); 7108 else 7109 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7110 Flags.setByValAlign(FrameAlign); 7111 } 7112 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7113 Flags.setNest(); 7114 if (NeedsRegBlock) 7115 Flags.setInConsecutiveRegs(); 7116 Flags.setOrigAlign(OriginalAlignment); 7117 7118 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7119 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7120 for (unsigned i = 0; i != NumRegs; ++i) { 7121 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7122 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7123 if (NumRegs > 1 && i == 0) 7124 MyFlags.Flags.setSplit(); 7125 // if it isn't first piece, alignment must be 1 7126 else if (i > 0) 7127 MyFlags.Flags.setOrigAlign(1); 7128 Ins.push_back(MyFlags); 7129 } 7130 if (NeedsRegBlock && Value == NumValues - 1) 7131 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7132 PartBase += VT.getStoreSize(); 7133 } 7134 } 7135 7136 // Call the target to set up the argument values. 7137 SmallVector<SDValue, 8> InVals; 7138 SDValue NewRoot = TLI->LowerFormalArguments( 7139 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7140 7141 // Verify that the target's LowerFormalArguments behaved as expected. 7142 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7143 "LowerFormalArguments didn't return a valid chain!"); 7144 assert(InVals.size() == Ins.size() && 7145 "LowerFormalArguments didn't emit the correct number of values!"); 7146 DEBUG({ 7147 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7148 assert(InVals[i].getNode() && 7149 "LowerFormalArguments emitted a null value!"); 7150 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7151 "LowerFormalArguments emitted a value with the wrong type!"); 7152 } 7153 }); 7154 7155 // Update the DAG with the new chain value resulting from argument lowering. 7156 DAG.setRoot(NewRoot); 7157 7158 // Set up the argument values. 7159 unsigned i = 0; 7160 Idx = 1; 7161 if (!FuncInfo->CanLowerReturn) { 7162 // Create a virtual register for the sret pointer, and put in a copy 7163 // from the sret argument into it. 7164 SmallVector<EVT, 1> ValueVTs; 7165 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7166 MVT VT = ValueVTs[0].getSimpleVT(); 7167 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7168 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7169 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7170 RegVT, VT, nullptr, AssertOp); 7171 7172 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7173 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7174 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7175 FuncInfo->DemoteRegister = SRetReg; 7176 NewRoot = 7177 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7178 DAG.setRoot(NewRoot); 7179 7180 // i indexes lowered arguments. Bump it past the hidden sret argument. 7181 // Idx indexes LLVM arguments. Don't touch it. 7182 ++i; 7183 } 7184 7185 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7186 ++I, ++Idx) { 7187 SmallVector<SDValue, 4> ArgValues; 7188 SmallVector<EVT, 4> ValueVTs; 7189 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7190 unsigned NumValues = ValueVTs.size(); 7191 7192 // If this argument is unused then remember its value. It is used to generate 7193 // debugging information. 7194 if (I->use_empty() && NumValues) { 7195 SDB->setUnusedArgValue(I, InVals[i]); 7196 7197 // Also remember any frame index for use in FastISel. 7198 if (FrameIndexSDNode *FI = 7199 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7200 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7201 } 7202 7203 for (unsigned Val = 0; Val != NumValues; ++Val) { 7204 EVT VT = ValueVTs[Val]; 7205 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7206 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7207 7208 if (!I->use_empty()) { 7209 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7210 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7211 AssertOp = ISD::AssertSext; 7212 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7213 AssertOp = ISD::AssertZext; 7214 7215 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7216 NumParts, PartVT, VT, 7217 nullptr, AssertOp)); 7218 } 7219 7220 i += NumParts; 7221 } 7222 7223 // We don't need to do anything else for unused arguments. 7224 if (ArgValues.empty()) 7225 continue; 7226 7227 // Note down frame index. 7228 if (FrameIndexSDNode *FI = 7229 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7230 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7231 7232 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7233 SDB->getCurSDLoc()); 7234 7235 SDB->setValue(I, Res); 7236 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7237 if (LoadSDNode *LNode = 7238 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7239 if (FrameIndexSDNode *FI = 7240 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7241 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7242 } 7243 7244 // If this argument is live outside of the entry block, insert a copy from 7245 // wherever we got it to the vreg that other BB's will reference it as. 7246 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7247 // If we can, though, try to skip creating an unnecessary vreg. 7248 // FIXME: This isn't very clean... it would be nice to make this more 7249 // general. It's also subtly incompatible with the hacks FastISel 7250 // uses with vregs. 7251 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7252 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7253 FuncInfo->ValueMap[I] = Reg; 7254 continue; 7255 } 7256 } 7257 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7258 FuncInfo->InitializeRegForValue(I); 7259 SDB->CopyToExportRegsIfNeeded(I); 7260 } 7261 } 7262 7263 assert(i == InVals.size() && "Argument register count mismatch!"); 7264 7265 // Finally, if the target has anything special to do, allow it to do so. 7266 EmitFunctionEntryCode(); 7267 } 7268 7269 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7270 /// ensure constants are generated when needed. Remember the virtual registers 7271 /// that need to be added to the Machine PHI nodes as input. We cannot just 7272 /// directly add them, because expansion might result in multiple MBB's for one 7273 /// BB. As such, the start of the BB might correspond to a different MBB than 7274 /// the end. 7275 /// 7276 void 7277 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7278 const TerminatorInst *TI = LLVMBB->getTerminator(); 7279 7280 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7281 7282 // Check PHI nodes in successors that expect a value to be available from this 7283 // block. 7284 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7285 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7286 if (!isa<PHINode>(SuccBB->begin())) continue; 7287 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7288 7289 // If this terminator has multiple identical successors (common for 7290 // switches), only handle each succ once. 7291 if (!SuccsHandled.insert(SuccMBB).second) 7292 continue; 7293 7294 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7295 7296 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7297 // nodes and Machine PHI nodes, but the incoming operands have not been 7298 // emitted yet. 7299 for (BasicBlock::const_iterator I = SuccBB->begin(); 7300 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7301 // Ignore dead phi's. 7302 if (PN->use_empty()) continue; 7303 7304 // Skip empty types 7305 if (PN->getType()->isEmptyTy()) 7306 continue; 7307 7308 unsigned Reg; 7309 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7310 7311 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7312 unsigned &RegOut = ConstantsOut[C]; 7313 if (RegOut == 0) { 7314 RegOut = FuncInfo.CreateRegs(C->getType()); 7315 CopyValueToVirtualRegister(C, RegOut); 7316 } 7317 Reg = RegOut; 7318 } else { 7319 DenseMap<const Value *, unsigned>::iterator I = 7320 FuncInfo.ValueMap.find(PHIOp); 7321 if (I != FuncInfo.ValueMap.end()) 7322 Reg = I->second; 7323 else { 7324 assert(isa<AllocaInst>(PHIOp) && 7325 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7326 "Didn't codegen value into a register!??"); 7327 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7328 CopyValueToVirtualRegister(PHIOp, Reg); 7329 } 7330 } 7331 7332 // Remember that this register needs to added to the machine PHI node as 7333 // the input for this MBB. 7334 SmallVector<EVT, 4> ValueVTs; 7335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7336 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7337 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7338 EVT VT = ValueVTs[vti]; 7339 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7340 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7341 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7342 Reg += NumRegisters; 7343 } 7344 } 7345 } 7346 7347 ConstantsOut.clear(); 7348 } 7349 7350 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7351 /// is 0. 7352 MachineBasicBlock * 7353 SelectionDAGBuilder::StackProtectorDescriptor:: 7354 AddSuccessorMBB(const BasicBlock *BB, 7355 MachineBasicBlock *ParentMBB, 7356 bool IsLikely, 7357 MachineBasicBlock *SuccMBB) { 7358 // If SuccBB has not been created yet, create it. 7359 if (!SuccMBB) { 7360 MachineFunction *MF = ParentMBB->getParent(); 7361 MachineFunction::iterator BBI = ParentMBB; 7362 SuccMBB = MF->CreateMachineBasicBlock(BB); 7363 MF->insert(++BBI, SuccMBB); 7364 } 7365 // Add it as a successor of ParentMBB. 7366 ParentMBB->addSuccessor( 7367 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7368 return SuccMBB; 7369 } 7370 7371 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7372 MachineFunction::iterator I = MBB; 7373 if (++I == FuncInfo.MF->end()) 7374 return nullptr; 7375 return I; 7376 } 7377 7378 /// During lowering new call nodes can be created (such as memset, etc.). 7379 /// Those will become new roots of the current DAG, but complications arise 7380 /// when they are tail calls. In such cases, the call lowering will update 7381 /// the root, but the builder still needs to know that a tail call has been 7382 /// lowered in order to avoid generating an additional return. 7383 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7384 // If the node is null, we do have a tail call. 7385 if (MaybeTC.getNode() != nullptr) 7386 DAG.setRoot(MaybeTC); 7387 else 7388 HasTailCall = true; 7389 } 7390 7391 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7392 unsigned *TotalCases, unsigned First, 7393 unsigned Last) { 7394 assert(Last >= First); 7395 assert(TotalCases[Last] >= TotalCases[First]); 7396 7397 APInt LowCase = Clusters[First].Low->getValue(); 7398 APInt HighCase = Clusters[Last].High->getValue(); 7399 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7400 7401 // FIXME: A range of consecutive cases has 100% density, but only requires one 7402 // comparison to lower. We should discriminate against such consecutive ranges 7403 // in jump tables. 7404 7405 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7406 uint64_t Range = Diff + 1; 7407 7408 uint64_t NumCases = 7409 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7410 7411 assert(NumCases < UINT64_MAX / 100); 7412 assert(Range >= NumCases); 7413 7414 return NumCases * 100 >= Range * MinJumpTableDensity; 7415 } 7416 7417 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7418 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7419 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7420 } 7421 7422 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7423 unsigned First, unsigned Last, 7424 const SwitchInst *SI, 7425 MachineBasicBlock *DefaultMBB, 7426 CaseCluster &JTCluster) { 7427 assert(First <= Last); 7428 7429 uint32_t Weight = 0; 7430 unsigned NumCmps = 0; 7431 std::vector<MachineBasicBlock*> Table; 7432 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7433 for (unsigned I = First; I <= Last; ++I) { 7434 assert(Clusters[I].Kind == CC_Range); 7435 Weight += Clusters[I].Weight; 7436 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7437 APInt Low = Clusters[I].Low->getValue(); 7438 APInt High = Clusters[I].High->getValue(); 7439 NumCmps += (Low == High) ? 1 : 2; 7440 if (I != First) { 7441 // Fill the gap between this and the previous cluster. 7442 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7443 assert(PreviousHigh.slt(Low)); 7444 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7445 for (uint64_t J = 0; J < Gap; J++) 7446 Table.push_back(DefaultMBB); 7447 } 7448 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7449 for (uint64_t J = 0; J < ClusterSize; ++J) 7450 Table.push_back(Clusters[I].MBB); 7451 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7452 } 7453 7454 unsigned NumDests = JTWeights.size(); 7455 if (isSuitableForBitTests(NumDests, NumCmps, 7456 Clusters[First].Low->getValue(), 7457 Clusters[Last].High->getValue())) { 7458 // Clusters[First..Last] should be lowered as bit tests instead. 7459 return false; 7460 } 7461 7462 // Create the MBB that will load from and jump through the table. 7463 // Note: We create it here, but it's not inserted into the function yet. 7464 MachineFunction *CurMF = FuncInfo.MF; 7465 MachineBasicBlock *JumpTableMBB = 7466 CurMF->CreateMachineBasicBlock(SI->getParent()); 7467 7468 // Add successors. Note: use table order for determinism. 7469 SmallPtrSet<MachineBasicBlock *, 8> Done; 7470 for (MachineBasicBlock *Succ : Table) { 7471 if (Done.count(Succ)) 7472 continue; 7473 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7474 Done.insert(Succ); 7475 } 7476 7477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7478 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7479 ->createJumpTableIndex(Table); 7480 7481 // Set up the jump table info. 7482 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7483 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7484 Clusters[Last].High->getValue(), SI->getCondition(), 7485 nullptr, false); 7486 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7487 7488 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7489 JTCases.size() - 1, Weight); 7490 return true; 7491 } 7492 7493 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7494 const SwitchInst *SI, 7495 MachineBasicBlock *DefaultMBB) { 7496 #ifndef NDEBUG 7497 // Clusters must be non-empty, sorted, and only contain Range clusters. 7498 assert(!Clusters.empty()); 7499 for (CaseCluster &C : Clusters) 7500 assert(C.Kind == CC_Range); 7501 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7502 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7503 #endif 7504 7505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7506 if (!areJTsAllowed(TLI)) 7507 return; 7508 7509 const int64_t N = Clusters.size(); 7510 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7511 7512 // Split Clusters into minimum number of dense partitions. The algorithm uses 7513 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7514 // for the Case Statement'" (1994), but builds the MinPartitions array in 7515 // reverse order to make it easier to reconstruct the partitions in ascending 7516 // order. In the choice between two optimal partitionings, it picks the one 7517 // which yields more jump tables. 7518 7519 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7520 SmallVector<unsigned, 8> MinPartitions(N); 7521 // LastElement[i] is the last element of the partition starting at i. 7522 SmallVector<unsigned, 8> LastElement(N); 7523 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7524 SmallVector<unsigned, 8> NumTables(N); 7525 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7526 SmallVector<unsigned, 8> TotalCases(N); 7527 7528 for (unsigned i = 0; i < N; ++i) { 7529 APInt Hi = Clusters[i].High->getValue(); 7530 APInt Lo = Clusters[i].Low->getValue(); 7531 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7532 if (i != 0) 7533 TotalCases[i] += TotalCases[i - 1]; 7534 } 7535 7536 // Base case: There is only one way to partition Clusters[N-1]. 7537 MinPartitions[N - 1] = 1; 7538 LastElement[N - 1] = N - 1; 7539 assert(MinJumpTableSize > 1); 7540 NumTables[N - 1] = 0; 7541 7542 // Note: loop indexes are signed to avoid underflow. 7543 for (int64_t i = N - 2; i >= 0; i--) { 7544 // Find optimal partitioning of Clusters[i..N-1]. 7545 // Baseline: Put Clusters[i] into a partition on its own. 7546 MinPartitions[i] = MinPartitions[i + 1] + 1; 7547 LastElement[i] = i; 7548 NumTables[i] = NumTables[i + 1]; 7549 7550 // Search for a solution that results in fewer partitions. 7551 for (int64_t j = N - 1; j > i; j--) { 7552 // Try building a partition from Clusters[i..j]. 7553 if (isDense(Clusters, &TotalCases[0], i, j)) { 7554 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7555 bool IsTable = j - i + 1 >= MinJumpTableSize; 7556 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7557 7558 // If this j leads to fewer partitions, or same number of partitions 7559 // with more lookup tables, it is a better partitioning. 7560 if (NumPartitions < MinPartitions[i] || 7561 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7562 MinPartitions[i] = NumPartitions; 7563 LastElement[i] = j; 7564 NumTables[i] = Tables; 7565 } 7566 } 7567 } 7568 } 7569 7570 // Iterate over the partitions, replacing some with jump tables in-place. 7571 unsigned DstIndex = 0; 7572 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7573 Last = LastElement[First]; 7574 assert(Last >= First); 7575 assert(DstIndex <= First); 7576 unsigned NumClusters = Last - First + 1; 7577 7578 CaseCluster JTCluster; 7579 if (NumClusters >= MinJumpTableSize && 7580 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7581 Clusters[DstIndex++] = JTCluster; 7582 } else { 7583 for (unsigned I = First; I <= Last; ++I) 7584 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7585 } 7586 } 7587 Clusters.resize(DstIndex); 7588 } 7589 7590 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7591 // FIXME: Using the pointer type doesn't seem ideal. 7592 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7593 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7594 return Range <= BW; 7595 } 7596 7597 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7598 unsigned NumCmps, 7599 const APInt &Low, 7600 const APInt &High) { 7601 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7602 // range of cases both require only one branch to lower. Just looking at the 7603 // number of clusters and destinations should be enough to decide whether to 7604 // build bit tests. 7605 7606 // To lower a range with bit tests, the range must fit the bitwidth of a 7607 // machine word. 7608 if (!rangeFitsInWord(Low, High)) 7609 return false; 7610 7611 // Decide whether it's profitable to lower this range with bit tests. Each 7612 // destination requires a bit test and branch, and there is an overall range 7613 // check branch. For a small number of clusters, separate comparisons might be 7614 // cheaper, and for many destinations, splitting the range might be better. 7615 return (NumDests == 1 && NumCmps >= 3) || 7616 (NumDests == 2 && NumCmps >= 5) || 7617 (NumDests == 3 && NumCmps >= 6); 7618 } 7619 7620 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7621 unsigned First, unsigned Last, 7622 const SwitchInst *SI, 7623 CaseCluster &BTCluster) { 7624 assert(First <= Last); 7625 if (First == Last) 7626 return false; 7627 7628 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7629 unsigned NumCmps = 0; 7630 for (int64_t I = First; I <= Last; ++I) { 7631 assert(Clusters[I].Kind == CC_Range); 7632 Dests.set(Clusters[I].MBB->getNumber()); 7633 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7634 } 7635 unsigned NumDests = Dests.count(); 7636 7637 APInt Low = Clusters[First].Low->getValue(); 7638 APInt High = Clusters[Last].High->getValue(); 7639 assert(Low.slt(High)); 7640 7641 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7642 return false; 7643 7644 APInt LowBound; 7645 APInt CmpRange; 7646 7647 const int BitWidth = 7648 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7649 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7650 7651 if (Low.isNonNegative() && High.slt(BitWidth)) { 7652 // Optimize the case where all the case values fit in a 7653 // word without having to subtract minValue. In this case, 7654 // we can optimize away the subtraction. 7655 LowBound = APInt::getNullValue(Low.getBitWidth()); 7656 CmpRange = High; 7657 } else { 7658 LowBound = Low; 7659 CmpRange = High - Low; 7660 } 7661 7662 CaseBitsVector CBV; 7663 uint32_t TotalWeight = 0; 7664 for (unsigned i = First; i <= Last; ++i) { 7665 // Find the CaseBits for this destination. 7666 unsigned j; 7667 for (j = 0; j < CBV.size(); ++j) 7668 if (CBV[j].BB == Clusters[i].MBB) 7669 break; 7670 if (j == CBV.size()) 7671 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7672 CaseBits *CB = &CBV[j]; 7673 7674 // Update Mask, Bits and ExtraWeight. 7675 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7676 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7677 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7678 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7679 CB->Bits += Hi - Lo + 1; 7680 CB->ExtraWeight += Clusters[i].Weight; 7681 TotalWeight += Clusters[i].Weight; 7682 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7683 } 7684 7685 BitTestInfo BTI; 7686 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7687 // Sort by weight first, number of bits second. 7688 if (a.ExtraWeight != b.ExtraWeight) 7689 return a.ExtraWeight > b.ExtraWeight; 7690 return a.Bits > b.Bits; 7691 }); 7692 7693 for (auto &CB : CBV) { 7694 MachineBasicBlock *BitTestBB = 7695 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7696 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7697 } 7698 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7699 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7700 nullptr, std::move(BTI)); 7701 7702 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7703 BitTestCases.size() - 1, TotalWeight); 7704 return true; 7705 } 7706 7707 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7708 const SwitchInst *SI) { 7709 // Partition Clusters into as few subsets as possible, where each subset has a 7710 // range that fits in a machine word and has <= 3 unique destinations. 7711 7712 #ifndef NDEBUG 7713 // Clusters must be sorted and contain Range or JumpTable clusters. 7714 assert(!Clusters.empty()); 7715 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7716 for (const CaseCluster &C : Clusters) 7717 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7718 for (unsigned i = 1; i < Clusters.size(); ++i) 7719 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7720 #endif 7721 7722 // If target does not have legal shift left, do not emit bit tests at all. 7723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7724 EVT PTy = TLI.getPointerTy(); 7725 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7726 return; 7727 7728 int BitWidth = PTy.getSizeInBits(); 7729 const int64_t N = Clusters.size(); 7730 7731 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7732 SmallVector<unsigned, 8> MinPartitions(N); 7733 // LastElement[i] is the last element of the partition starting at i. 7734 SmallVector<unsigned, 8> LastElement(N); 7735 7736 // FIXME: This might not be the best algorithm for finding bit test clusters. 7737 7738 // Base case: There is only one way to partition Clusters[N-1]. 7739 MinPartitions[N - 1] = 1; 7740 LastElement[N - 1] = N - 1; 7741 7742 // Note: loop indexes are signed to avoid underflow. 7743 for (int64_t i = N - 2; i >= 0; --i) { 7744 // Find optimal partitioning of Clusters[i..N-1]. 7745 // Baseline: Put Clusters[i] into a partition on its own. 7746 MinPartitions[i] = MinPartitions[i + 1] + 1; 7747 LastElement[i] = i; 7748 7749 // Search for a solution that results in fewer partitions. 7750 // Note: the search is limited by BitWidth, reducing time complexity. 7751 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7752 // Try building a partition from Clusters[i..j]. 7753 7754 // Check the range. 7755 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7756 Clusters[j].High->getValue())) 7757 continue; 7758 7759 // Check nbr of destinations and cluster types. 7760 // FIXME: This works, but doesn't seem very efficient. 7761 bool RangesOnly = true; 7762 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7763 for (int64_t k = i; k <= j; k++) { 7764 if (Clusters[k].Kind != CC_Range) { 7765 RangesOnly = false; 7766 break; 7767 } 7768 Dests.set(Clusters[k].MBB->getNumber()); 7769 } 7770 if (!RangesOnly || Dests.count() > 3) 7771 break; 7772 7773 // Check if it's a better partition. 7774 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7775 if (NumPartitions < MinPartitions[i]) { 7776 // Found a better partition. 7777 MinPartitions[i] = NumPartitions; 7778 LastElement[i] = j; 7779 } 7780 } 7781 } 7782 7783 // Iterate over the partitions, replacing with bit-test clusters in-place. 7784 unsigned DstIndex = 0; 7785 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7786 Last = LastElement[First]; 7787 assert(First <= Last); 7788 assert(DstIndex <= First); 7789 7790 CaseCluster BitTestCluster; 7791 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7792 Clusters[DstIndex++] = BitTestCluster; 7793 } else { 7794 size_t NumClusters = Last - First + 1; 7795 std::memmove(&Clusters[DstIndex], &Clusters[First], 7796 sizeof(Clusters[0]) * NumClusters); 7797 DstIndex += NumClusters; 7798 } 7799 } 7800 Clusters.resize(DstIndex); 7801 } 7802 7803 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7804 MachineBasicBlock *SwitchMBB, 7805 MachineBasicBlock *DefaultMBB) { 7806 MachineFunction *CurMF = FuncInfo.MF; 7807 MachineBasicBlock *NextMBB = nullptr; 7808 MachineFunction::iterator BBI = W.MBB; 7809 if (++BBI != FuncInfo.MF->end()) 7810 NextMBB = BBI; 7811 7812 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7813 7814 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7815 7816 if (Size == 2 && W.MBB == SwitchMBB) { 7817 // If any two of the cases has the same destination, and if one value 7818 // is the same as the other, but has one bit unset that the other has set, 7819 // use bit manipulation to do two compares at once. For example: 7820 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7821 // TODO: This could be extended to merge any 2 cases in switches with 3 7822 // cases. 7823 // TODO: Handle cases where W.CaseBB != SwitchBB. 7824 CaseCluster &Small = *W.FirstCluster; 7825 CaseCluster &Big = *W.LastCluster; 7826 7827 if (Small.Low == Small.High && Big.Low == Big.High && 7828 Small.MBB == Big.MBB) { 7829 const APInt &SmallValue = Small.Low->getValue(); 7830 const APInt &BigValue = Big.Low->getValue(); 7831 7832 // Check that there is only one bit different. 7833 APInt CommonBit = BigValue ^ SmallValue; 7834 if (CommonBit.isPowerOf2()) { 7835 SDValue CondLHS = getValue(Cond); 7836 EVT VT = CondLHS.getValueType(); 7837 SDLoc DL = getCurSDLoc(); 7838 7839 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7840 DAG.getConstant(CommonBit, DL, VT)); 7841 SDValue Cond = DAG.getSetCC( 7842 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7843 ISD::SETEQ); 7844 7845 // Update successor info. 7846 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7847 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7848 addSuccessorWithWeight( 7849 SwitchMBB, DefaultMBB, 7850 // The default destination is the first successor in IR. 7851 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7852 : 0); 7853 7854 // Insert the true branch. 7855 SDValue BrCond = 7856 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7857 DAG.getBasicBlock(Small.MBB)); 7858 // Insert the false branch. 7859 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7860 DAG.getBasicBlock(DefaultMBB)); 7861 7862 DAG.setRoot(BrCond); 7863 return; 7864 } 7865 } 7866 } 7867 7868 if (TM.getOptLevel() != CodeGenOpt::None) { 7869 // Order cases by weight so the most likely case will be checked first. 7870 std::sort(W.FirstCluster, W.LastCluster + 1, 7871 [](const CaseCluster &a, const CaseCluster &b) { 7872 return a.Weight > b.Weight; 7873 }); 7874 7875 // Rearrange the case blocks so that the last one falls through if possible 7876 // without without changing the order of weights. 7877 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7878 --I; 7879 if (I->Weight > W.LastCluster->Weight) 7880 break; 7881 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7882 std::swap(*I, *W.LastCluster); 7883 break; 7884 } 7885 } 7886 } 7887 7888 // Compute total weight. 7889 uint32_t UnhandledWeights = 0; 7890 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7891 UnhandledWeights += I->Weight; 7892 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7893 } 7894 7895 MachineBasicBlock *CurMBB = W.MBB; 7896 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7897 MachineBasicBlock *Fallthrough; 7898 if (I == W.LastCluster) { 7899 // For the last cluster, fall through to the default destination. 7900 Fallthrough = DefaultMBB; 7901 } else { 7902 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7903 CurMF->insert(BBI, Fallthrough); 7904 // Put Cond in a virtual register to make it available from the new blocks. 7905 ExportFromCurrentBlock(Cond); 7906 } 7907 7908 switch (I->Kind) { 7909 case CC_JumpTable: { 7910 // FIXME: Optimize away range check based on pivot comparisons. 7911 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7912 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7913 7914 // The jump block hasn't been inserted yet; insert it here. 7915 MachineBasicBlock *JumpMBB = JT->MBB; 7916 CurMF->insert(BBI, JumpMBB); 7917 addSuccessorWithWeight(CurMBB, Fallthrough); 7918 addSuccessorWithWeight(CurMBB, JumpMBB); 7919 7920 // The jump table header will be inserted in our current block, do the 7921 // range check, and fall through to our fallthrough block. 7922 JTH->HeaderBB = CurMBB; 7923 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7924 7925 // If we're in the right place, emit the jump table header right now. 7926 if (CurMBB == SwitchMBB) { 7927 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7928 JTH->Emitted = true; 7929 } 7930 break; 7931 } 7932 case CC_BitTests: { 7933 // FIXME: Optimize away range check based on pivot comparisons. 7934 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7935 7936 // The bit test blocks haven't been inserted yet; insert them here. 7937 for (BitTestCase &BTC : BTB->Cases) 7938 CurMF->insert(BBI, BTC.ThisBB); 7939 7940 // Fill in fields of the BitTestBlock. 7941 BTB->Parent = CurMBB; 7942 BTB->Default = Fallthrough; 7943 7944 // If we're in the right place, emit the bit test header header right now. 7945 if (CurMBB ==SwitchMBB) { 7946 visitBitTestHeader(*BTB, SwitchMBB); 7947 BTB->Emitted = true; 7948 } 7949 break; 7950 } 7951 case CC_Range: { 7952 const Value *RHS, *LHS, *MHS; 7953 ISD::CondCode CC; 7954 if (I->Low == I->High) { 7955 // Check Cond == I->Low. 7956 CC = ISD::SETEQ; 7957 LHS = Cond; 7958 RHS=I->Low; 7959 MHS = nullptr; 7960 } else { 7961 // Check I->Low <= Cond <= I->High. 7962 CC = ISD::SETLE; 7963 LHS = I->Low; 7964 MHS = Cond; 7965 RHS = I->High; 7966 } 7967 7968 // The false weight is the sum of all unhandled cases. 7969 UnhandledWeights -= I->Weight; 7970 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7971 UnhandledWeights); 7972 7973 if (CurMBB == SwitchMBB) 7974 visitSwitchCase(CB, SwitchMBB); 7975 else 7976 SwitchCases.push_back(CB); 7977 7978 break; 7979 } 7980 } 7981 CurMBB = Fallthrough; 7982 } 7983 } 7984 7985 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7986 const SwitchWorkListItem &W, 7987 Value *Cond, 7988 MachineBasicBlock *SwitchMBB) { 7989 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7990 "Clusters not sorted?"); 7991 7992 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7993 7994 // Balance the tree based on branch weights to create a near-optimal (in terms 7995 // of search time given key frequency) binary search tree. See e.g. Kurt 7996 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7997 CaseClusterIt LastLeft = W.FirstCluster; 7998 CaseClusterIt FirstRight = W.LastCluster; 7999 uint32_t LeftWeight = LastLeft->Weight; 8000 uint32_t RightWeight = FirstRight->Weight; 8001 8002 // Move LastLeft and FirstRight towards each other from opposite directions to 8003 // find a partitioning of the clusters which balances the weight on both 8004 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8005 // taken to ensure 0-weight nodes are distributed evenly. 8006 unsigned I = 0; 8007 while (LastLeft + 1 < FirstRight) { 8008 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8009 LeftWeight += (++LastLeft)->Weight; 8010 else 8011 RightWeight += (--FirstRight)->Weight; 8012 I++; 8013 } 8014 assert(LastLeft + 1 == FirstRight); 8015 assert(LastLeft >= W.FirstCluster); 8016 assert(FirstRight <= W.LastCluster); 8017 8018 // Use the first element on the right as pivot since we will make less-than 8019 // comparisons against it. 8020 CaseClusterIt PivotCluster = FirstRight; 8021 assert(PivotCluster > W.FirstCluster); 8022 assert(PivotCluster <= W.LastCluster); 8023 8024 CaseClusterIt FirstLeft = W.FirstCluster; 8025 CaseClusterIt LastRight = W.LastCluster; 8026 8027 const ConstantInt *Pivot = PivotCluster->Low; 8028 8029 // New blocks will be inserted immediately after the current one. 8030 MachineFunction::iterator BBI = W.MBB; 8031 ++BBI; 8032 8033 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8034 // we can branch to its destination directly if it's squeezed exactly in 8035 // between the known lower bound and Pivot - 1. 8036 MachineBasicBlock *LeftMBB; 8037 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8038 FirstLeft->Low == W.GE && 8039 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8040 LeftMBB = FirstLeft->MBB; 8041 } else { 8042 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8043 FuncInfo.MF->insert(BBI, LeftMBB); 8044 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8045 // Put Cond in a virtual register to make it available from the new blocks. 8046 ExportFromCurrentBlock(Cond); 8047 } 8048 8049 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8050 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8051 // directly if RHS.High equals the current upper bound. 8052 MachineBasicBlock *RightMBB; 8053 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8054 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8055 RightMBB = FirstRight->MBB; 8056 } else { 8057 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8058 FuncInfo.MF->insert(BBI, RightMBB); 8059 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8060 // Put Cond in a virtual register to make it available from the new blocks. 8061 ExportFromCurrentBlock(Cond); 8062 } 8063 8064 // Create the CaseBlock record that will be used to lower the branch. 8065 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8066 LeftWeight, RightWeight); 8067 8068 if (W.MBB == SwitchMBB) 8069 visitSwitchCase(CB, SwitchMBB); 8070 else 8071 SwitchCases.push_back(CB); 8072 } 8073 8074 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8075 // Extract cases from the switch. 8076 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8077 CaseClusterVector Clusters; 8078 Clusters.reserve(SI.getNumCases()); 8079 for (auto I : SI.cases()) { 8080 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8081 const ConstantInt *CaseVal = I.getCaseValue(); 8082 uint32_t Weight = 8083 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8084 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8085 } 8086 8087 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8088 8089 // Cluster adjacent cases with the same destination. We do this at all 8090 // optimization levels because it's cheap to do and will make codegen faster 8091 // if there are many clusters. 8092 sortAndRangeify(Clusters); 8093 8094 if (TM.getOptLevel() != CodeGenOpt::None) { 8095 // Replace an unreachable default with the most popular destination. 8096 // FIXME: Exploit unreachable default more aggressively. 8097 bool UnreachableDefault = 8098 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8099 if (UnreachableDefault && !Clusters.empty()) { 8100 DenseMap<const BasicBlock *, unsigned> Popularity; 8101 unsigned MaxPop = 0; 8102 const BasicBlock *MaxBB = nullptr; 8103 for (auto I : SI.cases()) { 8104 const BasicBlock *BB = I.getCaseSuccessor(); 8105 if (++Popularity[BB] > MaxPop) { 8106 MaxPop = Popularity[BB]; 8107 MaxBB = BB; 8108 } 8109 } 8110 // Set new default. 8111 assert(MaxPop > 0 && MaxBB); 8112 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8113 8114 // Remove cases that were pointing to the destination that is now the 8115 // default. 8116 CaseClusterVector New; 8117 New.reserve(Clusters.size()); 8118 for (CaseCluster &CC : Clusters) { 8119 if (CC.MBB != DefaultMBB) 8120 New.push_back(CC); 8121 } 8122 Clusters = std::move(New); 8123 } 8124 } 8125 8126 // If there is only the default destination, jump there directly. 8127 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8128 if (Clusters.empty()) { 8129 SwitchMBB->addSuccessor(DefaultMBB); 8130 if (DefaultMBB != NextBlock(SwitchMBB)) { 8131 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8132 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8133 } 8134 return; 8135 } 8136 8137 if (TM.getOptLevel() != CodeGenOpt::None) { 8138 findJumpTables(Clusters, &SI, DefaultMBB); 8139 findBitTestClusters(Clusters, &SI); 8140 } 8141 8142 8143 DEBUG({ 8144 dbgs() << "Case clusters: "; 8145 for (const CaseCluster &C : Clusters) { 8146 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8147 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8148 8149 C.Low->getValue().print(dbgs(), true); 8150 if (C.Low != C.High) { 8151 dbgs() << '-'; 8152 C.High->getValue().print(dbgs(), true); 8153 } 8154 dbgs() << ' '; 8155 } 8156 dbgs() << '\n'; 8157 }); 8158 8159 assert(!Clusters.empty()); 8160 SwitchWorkList WorkList; 8161 CaseClusterIt First = Clusters.begin(); 8162 CaseClusterIt Last = Clusters.end() - 1; 8163 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8164 8165 while (!WorkList.empty()) { 8166 SwitchWorkListItem W = WorkList.back(); 8167 WorkList.pop_back(); 8168 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8169 8170 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8171 // For optimized builds, lower large range as a balanced binary tree. 8172 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8173 continue; 8174 } 8175 8176 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8177 } 8178 } 8179