1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) { 1006 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1007 // Remove the debug location from the node as the node is about to be used 1008 // in a location which may differ from the original debug location. This 1009 // is relevant to Constant and ConstantFP nodes because they can appear 1010 // as constant expressions inside PHI nodes. 1011 N->setDebugLoc(DebugLoc()); 1012 } 1013 return N; 1014 } 1015 1016 // Otherwise create a new SDValue and remember it. 1017 SDValue Val = getValueImpl(V); 1018 NodeMap[V] = Val; 1019 resolveDanglingDebugInfo(V, Val); 1020 return Val; 1021 } 1022 1023 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1024 /// Create an SDValue for the given value. 1025 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1027 1028 if (const Constant *C = dyn_cast<Constant>(V)) { 1029 EVT VT = TLI.getValueType(V->getType(), true); 1030 1031 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1032 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1033 1034 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1035 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1036 1037 if (isa<ConstantPointerNull>(C)) { 1038 unsigned AS = V->getType()->getPointerAddressSpace(); 1039 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1146 } 1147 1148 // If this is an instruction which fast-isel has deferred, select it now. 1149 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1150 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1151 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1152 SDValue Chain = DAG.getEntryNode(); 1153 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1154 } 1155 1156 llvm_unreachable("Can't get register for value!"); 1157 } 1158 1159 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1161 SDValue Chain = getControlRoot(); 1162 SmallVector<ISD::OutputArg, 8> Outs; 1163 SmallVector<SDValue, 8> OutVals; 1164 1165 if (!FuncInfo.CanLowerReturn) { 1166 unsigned DemoteReg = FuncInfo.DemoteRegister; 1167 const Function *F = I.getParent()->getParent(); 1168 1169 // Emit a store of the return value through the virtual register. 1170 // Leave Outs empty so that LowerReturn won't try to load return 1171 // registers the usual way. 1172 SmallVector<EVT, 1> PtrValueVTs; 1173 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1174 PtrValueVTs); 1175 1176 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1177 SDValue RetOp = getValue(I.getOperand(0)); 1178 1179 SmallVector<EVT, 4> ValueVTs; 1180 SmallVector<uint64_t, 4> Offsets; 1181 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1182 unsigned NumValues = ValueVTs.size(); 1183 1184 SmallVector<SDValue, 4> Chains(NumValues); 1185 for (unsigned i = 0; i != NumValues; ++i) { 1186 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1187 RetPtr.getValueType(), RetPtr, 1188 DAG.getIntPtrConstant(Offsets[i], 1189 getCurSDLoc())); 1190 Chains[i] = 1191 DAG.getStore(Chain, getCurSDLoc(), 1192 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1193 // FIXME: better loc info would be nice. 1194 Add, MachinePointerInfo(), false, false, 0); 1195 } 1196 1197 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1198 MVT::Other, Chains); 1199 } else if (I.getNumOperands() != 0) { 1200 SmallVector<EVT, 4> ValueVTs; 1201 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1202 unsigned NumValues = ValueVTs.size(); 1203 if (NumValues) { 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 const Function *F = I.getParent()->getParent(); 1207 1208 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1209 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1210 Attribute::SExt)) 1211 ExtendKind = ISD::SIGN_EXTEND; 1212 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1213 Attribute::ZExt)) 1214 ExtendKind = ISD::ZERO_EXTEND; 1215 1216 LLVMContext &Context = F->getContext(); 1217 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1218 Attribute::InReg); 1219 1220 for (unsigned j = 0; j != NumValues; ++j) { 1221 EVT VT = ValueVTs[j]; 1222 1223 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1224 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1225 1226 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1227 MVT PartVT = TLI.getRegisterType(Context, VT); 1228 SmallVector<SDValue, 4> Parts(NumParts); 1229 getCopyToParts(DAG, getCurSDLoc(), 1230 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1231 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1232 1233 // 'inreg' on function refers to return value 1234 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1235 if (RetInReg) 1236 Flags.setInReg(); 1237 1238 // Propagate extension type if any 1239 if (ExtendKind == ISD::SIGN_EXTEND) 1240 Flags.setSExt(); 1241 else if (ExtendKind == ISD::ZERO_EXTEND) 1242 Flags.setZExt(); 1243 1244 for (unsigned i = 0; i < NumParts; ++i) { 1245 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1246 VT, /*isfixed=*/true, 0, 0)); 1247 OutVals.push_back(Parts[i]); 1248 } 1249 } 1250 } 1251 } 1252 1253 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1254 CallingConv::ID CallConv = 1255 DAG.getMachineFunction().getFunction()->getCallingConv(); 1256 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1257 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1258 1259 // Verify that the target's LowerReturn behaved as expected. 1260 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1261 "LowerReturn didn't return a valid chain!"); 1262 1263 // Update the DAG with the new chain value resulting from return lowering. 1264 DAG.setRoot(Chain); 1265 } 1266 1267 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1268 /// created for it, emit nodes to copy the value into the virtual 1269 /// registers. 1270 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1271 // Skip empty types 1272 if (V->getType()->isEmptyTy()) 1273 return; 1274 1275 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1276 if (VMI != FuncInfo.ValueMap.end()) { 1277 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1278 CopyValueToVirtualRegister(V, VMI->second); 1279 } 1280 } 1281 1282 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1283 /// the current basic block, add it to ValueMap now so that we'll get a 1284 /// CopyTo/FromReg. 1285 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1286 // No need to export constants. 1287 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1288 1289 // Already exported? 1290 if (FuncInfo.isExportedInst(V)) return; 1291 1292 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1293 CopyValueToVirtualRegister(V, Reg); 1294 } 1295 1296 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1297 const BasicBlock *FromBB) { 1298 // The operands of the setcc have to be in this block. We don't know 1299 // how to export them from some other block. 1300 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1301 // Can export from current BB. 1302 if (VI->getParent() == FromBB) 1303 return true; 1304 1305 // Is already exported, noop. 1306 return FuncInfo.isExportedInst(V); 1307 } 1308 1309 // If this is an argument, we can export it if the BB is the entry block or 1310 // if it is already exported. 1311 if (isa<Argument>(V)) { 1312 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1313 return true; 1314 1315 // Otherwise, can only export this if it is already exported. 1316 return FuncInfo.isExportedInst(V); 1317 } 1318 1319 // Otherwise, constants can always be exported. 1320 return true; 1321 } 1322 1323 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1324 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1325 const MachineBasicBlock *Dst) const { 1326 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1327 if (!BPI) 1328 return 0; 1329 const BasicBlock *SrcBB = Src->getBasicBlock(); 1330 const BasicBlock *DstBB = Dst->getBasicBlock(); 1331 return BPI->getEdgeWeight(SrcBB, DstBB); 1332 } 1333 1334 void SelectionDAGBuilder:: 1335 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1336 uint32_t Weight /* = 0 */) { 1337 if (!Weight) 1338 Weight = getEdgeWeight(Src, Dst); 1339 Src->addSuccessor(Dst, Weight); 1340 } 1341 1342 1343 static bool InBlock(const Value *V, const BasicBlock *BB) { 1344 if (const Instruction *I = dyn_cast<Instruction>(V)) 1345 return I->getParent() == BB; 1346 return true; 1347 } 1348 1349 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1350 /// This function emits a branch and is used at the leaves of an OR or an 1351 /// AND operator tree. 1352 /// 1353 void 1354 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1355 MachineBasicBlock *TBB, 1356 MachineBasicBlock *FBB, 1357 MachineBasicBlock *CurBB, 1358 MachineBasicBlock *SwitchBB, 1359 uint32_t TWeight, 1360 uint32_t FWeight) { 1361 const BasicBlock *BB = CurBB->getBasicBlock(); 1362 1363 // If the leaf of the tree is a comparison, merge the condition into 1364 // the caseblock. 1365 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1366 // The operands of the cmp have to be in this block. We don't know 1367 // how to export them from some other block. If this is the first block 1368 // of the sequence, no exporting is needed. 1369 if (CurBB == SwitchBB || 1370 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1371 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1372 ISD::CondCode Condition; 1373 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1374 Condition = getICmpCondCode(IC->getPredicate()); 1375 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1376 Condition = getFCmpCondCode(FC->getPredicate()); 1377 if (TM.Options.NoNaNsFPMath) 1378 Condition = getFCmpCodeWithoutNaN(Condition); 1379 } else { 1380 (void)Condition; // silence warning. 1381 llvm_unreachable("Unknown compare instruction"); 1382 } 1383 1384 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1385 TBB, FBB, CurBB, TWeight, FWeight); 1386 SwitchCases.push_back(CB); 1387 return; 1388 } 1389 } 1390 1391 // Create a CaseBlock record representing this branch. 1392 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1393 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1394 SwitchCases.push_back(CB); 1395 } 1396 1397 /// Scale down both weights to fit into uint32_t. 1398 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1399 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1400 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1401 NewTrue = NewTrue / Scale; 1402 NewFalse = NewFalse / Scale; 1403 } 1404 1405 /// FindMergedConditions - If Cond is an expression like 1406 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1407 MachineBasicBlock *TBB, 1408 MachineBasicBlock *FBB, 1409 MachineBasicBlock *CurBB, 1410 MachineBasicBlock *SwitchBB, 1411 unsigned Opc, uint32_t TWeight, 1412 uint32_t FWeight) { 1413 // If this node is not part of the or/and tree, emit it as a branch. 1414 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1415 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1416 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1417 BOp->getParent() != CurBB->getBasicBlock() || 1418 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1419 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1420 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1421 TWeight, FWeight); 1422 return; 1423 } 1424 1425 // Create TmpBB after CurBB. 1426 MachineFunction::iterator BBI = CurBB; 1427 MachineFunction &MF = DAG.getMachineFunction(); 1428 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1429 CurBB->getParent()->insert(++BBI, TmpBB); 1430 1431 if (Opc == Instruction::Or) { 1432 // Codegen X | Y as: 1433 // BB1: 1434 // jmp_if_X TBB 1435 // jmp TmpBB 1436 // TmpBB: 1437 // jmp_if_Y TBB 1438 // jmp FBB 1439 // 1440 1441 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1442 // The requirement is that 1443 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1444 // = TrueProb for orignal BB. 1445 // Assuming the orignal weights are A and B, one choice is to set BB1's 1446 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1447 // assumes that 1448 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1449 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1450 // TmpBB, but the math is more complicated. 1451 1452 uint64_t NewTrueWeight = TWeight; 1453 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1454 ScaleWeights(NewTrueWeight, NewFalseWeight); 1455 // Emit the LHS condition. 1456 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1457 NewTrueWeight, NewFalseWeight); 1458 1459 NewTrueWeight = TWeight; 1460 NewFalseWeight = 2 * (uint64_t)FWeight; 1461 ScaleWeights(NewTrueWeight, NewFalseWeight); 1462 // Emit the RHS condition into TmpBB. 1463 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1464 NewTrueWeight, NewFalseWeight); 1465 } else { 1466 assert(Opc == Instruction::And && "Unknown merge op!"); 1467 // Codegen X & Y as: 1468 // BB1: 1469 // jmp_if_X TmpBB 1470 // jmp FBB 1471 // TmpBB: 1472 // jmp_if_Y TBB 1473 // jmp FBB 1474 // 1475 // This requires creation of TmpBB after CurBB. 1476 1477 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1478 // The requirement is that 1479 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1480 // = FalseProb for orignal BB. 1481 // Assuming the orignal weights are A and B, one choice is to set BB1's 1482 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1483 // assumes that 1484 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1485 1486 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1487 uint64_t NewFalseWeight = FWeight; 1488 ScaleWeights(NewTrueWeight, NewFalseWeight); 1489 // Emit the LHS condition. 1490 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1491 NewTrueWeight, NewFalseWeight); 1492 1493 NewTrueWeight = 2 * (uint64_t)TWeight; 1494 NewFalseWeight = FWeight; 1495 ScaleWeights(NewTrueWeight, NewFalseWeight); 1496 // Emit the RHS condition into TmpBB. 1497 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1498 NewTrueWeight, NewFalseWeight); 1499 } 1500 } 1501 1502 /// If the set of cases should be emitted as a series of branches, return true. 1503 /// If we should emit this as a bunch of and/or'd together conditions, return 1504 /// false. 1505 bool 1506 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1507 if (Cases.size() != 2) return true; 1508 1509 // If this is two comparisons of the same values or'd or and'd together, they 1510 // will get folded into a single comparison, so don't emit two blocks. 1511 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1512 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1513 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1514 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1515 return false; 1516 } 1517 1518 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1519 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1520 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1521 Cases[0].CC == Cases[1].CC && 1522 isa<Constant>(Cases[0].CmpRHS) && 1523 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1524 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1525 return false; 1526 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1527 return false; 1528 } 1529 1530 return true; 1531 } 1532 1533 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1534 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1535 1536 // Update machine-CFG edges. 1537 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1538 1539 if (I.isUnconditional()) { 1540 // Update machine-CFG edges. 1541 BrMBB->addSuccessor(Succ0MBB); 1542 1543 // If this is not a fall-through branch or optimizations are switched off, 1544 // emit the branch. 1545 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1546 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1547 MVT::Other, getControlRoot(), 1548 DAG.getBasicBlock(Succ0MBB))); 1549 1550 return; 1551 } 1552 1553 // If this condition is one of the special cases we handle, do special stuff 1554 // now. 1555 const Value *CondVal = I.getCondition(); 1556 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1557 1558 // If this is a series of conditions that are or'd or and'd together, emit 1559 // this as a sequence of branches instead of setcc's with and/or operations. 1560 // As long as jumps are not expensive, this should improve performance. 1561 // For example, instead of something like: 1562 // cmp A, B 1563 // C = seteq 1564 // cmp D, E 1565 // F = setle 1566 // or C, F 1567 // jnz foo 1568 // Emit: 1569 // cmp A, B 1570 // je foo 1571 // cmp D, E 1572 // jle foo 1573 // 1574 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1575 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1576 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1577 BOp->getOpcode() == Instruction::Or)) { 1578 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1579 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1580 getEdgeWeight(BrMBB, Succ1MBB)); 1581 // If the compares in later blocks need to use values not currently 1582 // exported from this block, export them now. This block should always 1583 // be the first entry. 1584 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1585 1586 // Allow some cases to be rejected. 1587 if (ShouldEmitAsBranches(SwitchCases)) { 1588 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1589 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1590 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1591 } 1592 1593 // Emit the branch for this block. 1594 visitSwitchCase(SwitchCases[0], BrMBB); 1595 SwitchCases.erase(SwitchCases.begin()); 1596 return; 1597 } 1598 1599 // Okay, we decided not to do this, remove any inserted MBB's and clear 1600 // SwitchCases. 1601 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1602 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1603 1604 SwitchCases.clear(); 1605 } 1606 } 1607 1608 // Create a CaseBlock record representing this branch. 1609 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1610 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1611 1612 // Use visitSwitchCase to actually insert the fast branch sequence for this 1613 // cond branch. 1614 visitSwitchCase(CB, BrMBB); 1615 } 1616 1617 /// visitSwitchCase - Emits the necessary code to represent a single node in 1618 /// the binary search tree resulting from lowering a switch instruction. 1619 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1620 MachineBasicBlock *SwitchBB) { 1621 SDValue Cond; 1622 SDValue CondLHS = getValue(CB.CmpLHS); 1623 SDLoc dl = getCurSDLoc(); 1624 1625 // Build the setcc now. 1626 if (!CB.CmpMHS) { 1627 // Fold "(X == true)" to X and "(X == false)" to !X to 1628 // handle common cases produced by branch lowering. 1629 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1630 CB.CC == ISD::SETEQ) 1631 Cond = CondLHS; 1632 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1633 CB.CC == ISD::SETEQ) { 1634 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1635 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1636 } else 1637 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1638 } else { 1639 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1640 1641 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1642 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1643 1644 SDValue CmpOp = getValue(CB.CmpMHS); 1645 EVT VT = CmpOp.getValueType(); 1646 1647 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1648 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1649 ISD::SETLE); 1650 } else { 1651 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1652 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1653 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1654 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1655 } 1656 } 1657 1658 // Update successor info 1659 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1660 // TrueBB and FalseBB are always different unless the incoming IR is 1661 // degenerate. This only happens when running llc on weird IR. 1662 if (CB.TrueBB != CB.FalseBB) 1663 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1664 1665 // If the lhs block is the next block, invert the condition so that we can 1666 // fall through to the lhs instead of the rhs block. 1667 if (CB.TrueBB == NextBlock(SwitchBB)) { 1668 std::swap(CB.TrueBB, CB.FalseBB); 1669 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1670 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1671 } 1672 1673 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1674 MVT::Other, getControlRoot(), Cond, 1675 DAG.getBasicBlock(CB.TrueBB)); 1676 1677 // Insert the false branch. Do this even if it's a fall through branch, 1678 // this makes it easier to do DAG optimizations which require inverting 1679 // the branch condition. 1680 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1681 DAG.getBasicBlock(CB.FalseBB)); 1682 1683 DAG.setRoot(BrCond); 1684 } 1685 1686 /// visitJumpTable - Emit JumpTable node in the current MBB 1687 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1688 // Emit the code for the jump table 1689 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1690 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1691 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1692 JT.Reg, PTy); 1693 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1694 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1695 MVT::Other, Index.getValue(1), 1696 Table, Index); 1697 DAG.setRoot(BrJumpTable); 1698 } 1699 1700 /// visitJumpTableHeader - This function emits necessary code to produce index 1701 /// in the JumpTable from switch case. 1702 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1703 JumpTableHeader &JTH, 1704 MachineBasicBlock *SwitchBB) { 1705 SDLoc dl = getCurSDLoc(); 1706 1707 // Subtract the lowest switch case value from the value being switched on and 1708 // conditional branch to default mbb if the result is greater than the 1709 // difference between smallest and largest cases. 1710 SDValue SwitchOp = getValue(JTH.SValue); 1711 EVT VT = SwitchOp.getValueType(); 1712 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1713 DAG.getConstant(JTH.First, dl, VT)); 1714 1715 // The SDNode we just created, which holds the value being switched on minus 1716 // the smallest case value, needs to be copied to a virtual register so it 1717 // can be used as an index into the jump table in a subsequent basic block. 1718 // This value may be smaller or larger than the target's pointer type, and 1719 // therefore require extension or truncating. 1720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1721 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1722 1723 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1724 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1725 JumpTableReg, SwitchOp); 1726 JT.Reg = JumpTableReg; 1727 1728 // Emit the range check for the jump table, and branch to the default block 1729 // for the switch statement if the value being switched on exceeds the largest 1730 // case in the switch. 1731 SDValue CMP = 1732 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1733 Sub.getValueType()), 1734 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1735 ISD::SETUGT); 1736 1737 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1738 MVT::Other, CopyTo, CMP, 1739 DAG.getBasicBlock(JT.Default)); 1740 1741 // Avoid emitting unnecessary branches to the next block. 1742 if (JT.MBB != NextBlock(SwitchBB)) 1743 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1744 DAG.getBasicBlock(JT.MBB)); 1745 1746 DAG.setRoot(BrCond); 1747 } 1748 1749 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1750 /// tail spliced into a stack protector check success bb. 1751 /// 1752 /// For a high level explanation of how this fits into the stack protector 1753 /// generation see the comment on the declaration of class 1754 /// StackProtectorDescriptor. 1755 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1756 MachineBasicBlock *ParentBB) { 1757 1758 // First create the loads to the guard/stack slot for the comparison. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 EVT PtrTy = TLI.getPointerTy(); 1761 1762 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1763 int FI = MFI->getStackProtectorIndex(); 1764 1765 const Value *IRGuard = SPD.getGuard(); 1766 SDValue GuardPtr = getValue(IRGuard); 1767 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1768 1769 unsigned Align = 1770 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1771 1772 SDValue Guard; 1773 SDLoc dl = getCurSDLoc(); 1774 1775 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1776 // guard value from the virtual register holding the value. Otherwise, emit a 1777 // volatile load to retrieve the stack guard value. 1778 unsigned GuardReg = SPD.getGuardReg(); 1779 1780 if (GuardReg && TLI.useLoadStackGuardNode()) 1781 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1782 PtrTy); 1783 else 1784 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1785 GuardPtr, MachinePointerInfo(IRGuard, 0), 1786 true, false, false, Align); 1787 1788 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1789 StackSlotPtr, 1790 MachinePointerInfo::getFixedStack(FI), 1791 true, false, false, Align); 1792 1793 // Perform the comparison via a subtract/getsetcc. 1794 EVT VT = Guard.getValueType(); 1795 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1796 1797 SDValue Cmp = 1798 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1799 Sub.getValueType()), 1800 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1801 1802 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1803 // branch to failure MBB. 1804 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1805 MVT::Other, StackSlot.getOperand(0), 1806 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1807 // Otherwise branch to success MBB. 1808 SDValue Br = DAG.getNode(ISD::BR, dl, 1809 MVT::Other, BrCond, 1810 DAG.getBasicBlock(SPD.getSuccessMBB())); 1811 1812 DAG.setRoot(Br); 1813 } 1814 1815 /// Codegen the failure basic block for a stack protector check. 1816 /// 1817 /// A failure stack protector machine basic block consists simply of a call to 1818 /// __stack_chk_fail(). 1819 /// 1820 /// For a high level explanation of how this fits into the stack protector 1821 /// generation see the comment on the declaration of class 1822 /// StackProtectorDescriptor. 1823 void 1824 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1826 SDValue Chain = 1827 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1828 nullptr, 0, false, getCurSDLoc(), false, false).second; 1829 DAG.setRoot(Chain); 1830 } 1831 1832 /// visitBitTestHeader - This function emits necessary code to produce value 1833 /// suitable for "bit tests" 1834 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1835 MachineBasicBlock *SwitchBB) { 1836 SDLoc dl = getCurSDLoc(); 1837 1838 // Subtract the minimum value 1839 SDValue SwitchOp = getValue(B.SValue); 1840 EVT VT = SwitchOp.getValueType(); 1841 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1842 DAG.getConstant(B.First, dl, VT)); 1843 1844 // Check range 1845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1846 SDValue RangeCmp = 1847 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1848 Sub.getValueType()), 1849 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1850 1851 // Determine the type of the test operands. 1852 bool UsePtrType = false; 1853 if (!TLI.isTypeLegal(VT)) 1854 UsePtrType = true; 1855 else { 1856 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1857 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1858 // Switch table case range are encoded into series of masks. 1859 // Just use pointer type, it's guaranteed to fit. 1860 UsePtrType = true; 1861 break; 1862 } 1863 } 1864 if (UsePtrType) { 1865 VT = TLI.getPointerTy(); 1866 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1867 } 1868 1869 B.RegVT = VT.getSimpleVT(); 1870 B.Reg = FuncInfo.CreateReg(B.RegVT); 1871 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1872 1873 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1874 1875 addSuccessorWithWeight(SwitchBB, B.Default); 1876 addSuccessorWithWeight(SwitchBB, MBB); 1877 1878 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1879 MVT::Other, CopyTo, RangeCmp, 1880 DAG.getBasicBlock(B.Default)); 1881 1882 // Avoid emitting unnecessary branches to the next block. 1883 if (MBB != NextBlock(SwitchBB)) 1884 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1885 DAG.getBasicBlock(MBB)); 1886 1887 DAG.setRoot(BrRange); 1888 } 1889 1890 /// visitBitTestCase - this function produces one "bit test" 1891 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1892 MachineBasicBlock* NextMBB, 1893 uint32_t BranchWeightToNext, 1894 unsigned Reg, 1895 BitTestCase &B, 1896 MachineBasicBlock *SwitchBB) { 1897 SDLoc dl = getCurSDLoc(); 1898 MVT VT = BB.RegVT; 1899 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1900 SDValue Cmp; 1901 unsigned PopCount = countPopulation(B.Mask); 1902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1903 if (PopCount == 1) { 1904 // Testing for a single bit; just compare the shift count with what it 1905 // would need to be to shift a 1 bit in that position. 1906 Cmp = DAG.getSetCC( 1907 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1908 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1909 } else if (PopCount == BB.Range) { 1910 // There is only one zero bit in the range, test for it directly. 1911 Cmp = DAG.getSetCC( 1912 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1913 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1914 } else { 1915 // Make desired shift 1916 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1917 DAG.getConstant(1, dl, VT), ShiftOp); 1918 1919 // Emit bit tests and jumps 1920 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1921 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1922 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1923 DAG.getConstant(0, dl, VT), ISD::SETNE); 1924 } 1925 1926 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1927 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1928 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1929 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1930 1931 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1932 MVT::Other, getControlRoot(), 1933 Cmp, DAG.getBasicBlock(B.TargetBB)); 1934 1935 // Avoid emitting unnecessary branches to the next block. 1936 if (NextMBB != NextBlock(SwitchBB)) 1937 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1938 DAG.getBasicBlock(NextMBB)); 1939 1940 DAG.setRoot(BrAnd); 1941 } 1942 1943 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1944 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1945 1946 // Retrieve successors. 1947 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1948 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1949 1950 const Value *Callee(I.getCalledValue()); 1951 const Function *Fn = dyn_cast<Function>(Callee); 1952 if (isa<InlineAsm>(Callee)) 1953 visitInlineAsm(&I); 1954 else if (Fn && Fn->isIntrinsic()) { 1955 switch (Fn->getIntrinsicID()) { 1956 default: 1957 llvm_unreachable("Cannot invoke this intrinsic"); 1958 case Intrinsic::donothing: 1959 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1960 break; 1961 case Intrinsic::experimental_patchpoint_void: 1962 case Intrinsic::experimental_patchpoint_i64: 1963 visitPatchpoint(&I, LandingPad); 1964 break; 1965 case Intrinsic::experimental_gc_statepoint: 1966 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1967 break; 1968 } 1969 } else 1970 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1971 1972 // If the value of the invoke is used outside of its defining block, make it 1973 // available as a virtual register. 1974 // We already took care of the exported value for the statepoint instruction 1975 // during call to the LowerStatepoint. 1976 if (!isStatepoint(I)) { 1977 CopyToExportRegsIfNeeded(&I); 1978 } 1979 1980 // Update successor info 1981 addSuccessorWithWeight(InvokeMBB, Return); 1982 addSuccessorWithWeight(InvokeMBB, LandingPad); 1983 1984 // Drop into normal successor. 1985 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1986 MVT::Other, getControlRoot(), 1987 DAG.getBasicBlock(Return))); 1988 } 1989 1990 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1991 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1992 } 1993 1994 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1995 assert(FuncInfo.MBB->isLandingPad() && 1996 "Call to landingpad not in landing pad!"); 1997 1998 MachineBasicBlock *MBB = FuncInfo.MBB; 1999 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2000 AddLandingPadInfo(LP, MMI, MBB); 2001 2002 // If there aren't registers to copy the values into (e.g., during SjLj 2003 // exceptions), then don't bother to create these DAG nodes. 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 if (TLI.getExceptionPointerRegister() == 0 && 2006 TLI.getExceptionSelectorRegister() == 0) 2007 return; 2008 2009 SmallVector<EVT, 2> ValueVTs; 2010 SDLoc dl = getCurSDLoc(); 2011 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2012 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2013 2014 // Get the two live-in registers as SDValues. The physregs have already been 2015 // copied into virtual registers. 2016 SDValue Ops[2]; 2017 if (FuncInfo.ExceptionPointerVirtReg) { 2018 Ops[0] = DAG.getZExtOrTrunc( 2019 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2020 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2021 dl, ValueVTs[0]); 2022 } else { 2023 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2024 } 2025 Ops[1] = DAG.getZExtOrTrunc( 2026 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2027 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2028 dl, ValueVTs[1]); 2029 2030 // Merge into one. 2031 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2032 DAG.getVTList(ValueVTs), Ops); 2033 setValue(&LP, Res); 2034 } 2035 2036 unsigned 2037 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2038 MachineBasicBlock *LPadBB) { 2039 SDValue Chain = getControlRoot(); 2040 SDLoc dl = getCurSDLoc(); 2041 2042 // Get the typeid that we will dispatch on later. 2043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2044 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2045 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2046 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2047 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2048 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2049 2050 // Branch to the main landing pad block. 2051 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2052 ClauseMBB->addSuccessor(LPadBB); 2053 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2054 DAG.getBasicBlock(LPadBB))); 2055 return VReg; 2056 } 2057 2058 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2059 #ifndef NDEBUG 2060 for (const CaseCluster &CC : Clusters) 2061 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2062 #endif 2063 2064 std::sort(Clusters.begin(), Clusters.end(), 2065 [](const CaseCluster &a, const CaseCluster &b) { 2066 return a.Low->getValue().slt(b.Low->getValue()); 2067 }); 2068 2069 // Merge adjacent clusters with the same destination. 2070 const unsigned N = Clusters.size(); 2071 unsigned DstIndex = 0; 2072 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2073 CaseCluster &CC = Clusters[SrcIndex]; 2074 const ConstantInt *CaseVal = CC.Low; 2075 MachineBasicBlock *Succ = CC.MBB; 2076 2077 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2078 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2079 // If this case has the same successor and is a neighbour, merge it into 2080 // the previous cluster. 2081 Clusters[DstIndex - 1].High = CaseVal; 2082 Clusters[DstIndex - 1].Weight += CC.Weight; 2083 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2084 } else { 2085 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2086 sizeof(Clusters[SrcIndex])); 2087 } 2088 } 2089 Clusters.resize(DstIndex); 2090 } 2091 2092 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2093 MachineBasicBlock *Last) { 2094 // Update JTCases. 2095 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2096 if (JTCases[i].first.HeaderBB == First) 2097 JTCases[i].first.HeaderBB = Last; 2098 2099 // Update BitTestCases. 2100 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2101 if (BitTestCases[i].Parent == First) 2102 BitTestCases[i].Parent = Last; 2103 } 2104 2105 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2106 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2107 2108 // Update machine-CFG edges with unique successors. 2109 SmallSet<BasicBlock*, 32> Done; 2110 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2111 BasicBlock *BB = I.getSuccessor(i); 2112 bool Inserted = Done.insert(BB).second; 2113 if (!Inserted) 2114 continue; 2115 2116 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2117 addSuccessorWithWeight(IndirectBrMBB, Succ); 2118 } 2119 2120 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2121 MVT::Other, getControlRoot(), 2122 getValue(I.getAddress()))); 2123 } 2124 2125 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2126 if (DAG.getTarget().Options.TrapUnreachable) 2127 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2128 } 2129 2130 void SelectionDAGBuilder::visitFSub(const User &I) { 2131 // -0.0 - X --> fneg 2132 Type *Ty = I.getType(); 2133 if (isa<Constant>(I.getOperand(0)) && 2134 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2135 SDValue Op2 = getValue(I.getOperand(1)); 2136 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2137 Op2.getValueType(), Op2)); 2138 return; 2139 } 2140 2141 visitBinary(I, ISD::FSUB); 2142 } 2143 2144 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2145 SDValue Op1 = getValue(I.getOperand(0)); 2146 SDValue Op2 = getValue(I.getOperand(1)); 2147 2148 bool nuw = false; 2149 bool nsw = false; 2150 bool exact = false; 2151 if (const OverflowingBinaryOperator *OFBinOp = 2152 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2153 nuw = OFBinOp->hasNoUnsignedWrap(); 2154 nsw = OFBinOp->hasNoSignedWrap(); 2155 } 2156 if (const PossiblyExactOperator *ExactOp = 2157 dyn_cast<const PossiblyExactOperator>(&I)) 2158 exact = ExactOp->isExact(); 2159 2160 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2161 Op1, Op2, nuw, nsw, exact); 2162 setValue(&I, BinNodeValue); 2163 } 2164 2165 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2166 SDValue Op1 = getValue(I.getOperand(0)); 2167 SDValue Op2 = getValue(I.getOperand(1)); 2168 2169 EVT ShiftTy = 2170 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2171 2172 // Coerce the shift amount to the right type if we can. 2173 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2174 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2175 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2176 SDLoc DL = getCurSDLoc(); 2177 2178 // If the operand is smaller than the shift count type, promote it. 2179 if (ShiftSize > Op2Size) 2180 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2181 2182 // If the operand is larger than the shift count type but the shift 2183 // count type has enough bits to represent any shift value, truncate 2184 // it now. This is a common case and it exposes the truncate to 2185 // optimization early. 2186 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2187 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2188 // Otherwise we'll need to temporarily settle for some other convenient 2189 // type. Type legalization will make adjustments once the shiftee is split. 2190 else 2191 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2192 } 2193 2194 bool nuw = false; 2195 bool nsw = false; 2196 bool exact = false; 2197 2198 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2199 2200 if (const OverflowingBinaryOperator *OFBinOp = 2201 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2202 nuw = OFBinOp->hasNoUnsignedWrap(); 2203 nsw = OFBinOp->hasNoSignedWrap(); 2204 } 2205 if (const PossiblyExactOperator *ExactOp = 2206 dyn_cast<const PossiblyExactOperator>(&I)) 2207 exact = ExactOp->isExact(); 2208 } 2209 2210 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2211 nuw, nsw, exact); 2212 setValue(&I, Res); 2213 } 2214 2215 void SelectionDAGBuilder::visitSDiv(const User &I) { 2216 SDValue Op1 = getValue(I.getOperand(0)); 2217 SDValue Op2 = getValue(I.getOperand(1)); 2218 2219 // Turn exact SDivs into multiplications. 2220 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2221 // exact bit. 2222 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2223 !isa<ConstantSDNode>(Op1) && 2224 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2225 setValue(&I, DAG.getTargetLoweringInfo() 2226 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2227 else 2228 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2229 Op1, Op2)); 2230 } 2231 2232 void SelectionDAGBuilder::visitICmp(const User &I) { 2233 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2234 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2235 predicate = IC->getPredicate(); 2236 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2237 predicate = ICmpInst::Predicate(IC->getPredicate()); 2238 SDValue Op1 = getValue(I.getOperand(0)); 2239 SDValue Op2 = getValue(I.getOperand(1)); 2240 ISD::CondCode Opcode = getICmpCondCode(predicate); 2241 2242 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2244 } 2245 2246 void SelectionDAGBuilder::visitFCmp(const User &I) { 2247 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2248 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2249 predicate = FC->getPredicate(); 2250 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2251 predicate = FCmpInst::Predicate(FC->getPredicate()); 2252 SDValue Op1 = getValue(I.getOperand(0)); 2253 SDValue Op2 = getValue(I.getOperand(1)); 2254 ISD::CondCode Condition = getFCmpCondCode(predicate); 2255 if (TM.Options.NoNaNsFPMath) 2256 Condition = getFCmpCodeWithoutNaN(Condition); 2257 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2258 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2259 } 2260 2261 void SelectionDAGBuilder::visitSelect(const User &I) { 2262 SmallVector<EVT, 4> ValueVTs; 2263 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2264 unsigned NumValues = ValueVTs.size(); 2265 if (NumValues == 0) return; 2266 2267 SmallVector<SDValue, 4> Values(NumValues); 2268 SDValue Cond = getValue(I.getOperand(0)); 2269 SDValue LHSVal = getValue(I.getOperand(1)); 2270 SDValue RHSVal = getValue(I.getOperand(2)); 2271 auto BaseOps = {Cond}; 2272 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2273 ISD::VSELECT : ISD::SELECT; 2274 2275 // Min/max matching is only viable if all output VTs are the same. 2276 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2277 Value *LHS, *RHS; 2278 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2279 ISD::NodeType Opc = ISD::DELETED_NODE; 2280 switch (SPF) { 2281 case SPF_UMAX: Opc = ISD::UMAX; break; 2282 case SPF_UMIN: Opc = ISD::UMIN; break; 2283 case SPF_SMAX: Opc = ISD::SMAX; break; 2284 case SPF_SMIN: Opc = ISD::SMIN; break; 2285 default: break; 2286 } 2287 2288 EVT VT = ValueVTs[0]; 2289 LLVMContext &Ctx = *DAG.getContext(); 2290 auto &TLI = DAG.getTargetLoweringInfo(); 2291 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2292 VT = TLI.getTypeToTransformTo(Ctx, VT); 2293 2294 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2295 // If the underlying comparison instruction is used by any other instruction, 2296 // the consumed instructions won't be destroyed, so it is not profitable 2297 // to convert to a min/max. 2298 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2299 OpCode = Opc; 2300 LHSVal = getValue(LHS); 2301 RHSVal = getValue(RHS); 2302 BaseOps = {}; 2303 } 2304 } 2305 2306 for (unsigned i = 0; i != NumValues; ++i) { 2307 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2308 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2309 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2310 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2311 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2312 Ops); 2313 } 2314 2315 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2316 DAG.getVTList(ValueVTs), Values)); 2317 } 2318 2319 void SelectionDAGBuilder::visitTrunc(const User &I) { 2320 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2321 SDValue N = getValue(I.getOperand(0)); 2322 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2323 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2324 } 2325 2326 void SelectionDAGBuilder::visitZExt(const User &I) { 2327 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2328 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2329 SDValue N = getValue(I.getOperand(0)); 2330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2331 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2332 } 2333 2334 void SelectionDAGBuilder::visitSExt(const User &I) { 2335 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2336 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2337 SDValue N = getValue(I.getOperand(0)); 2338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2339 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2340 } 2341 2342 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2343 // FPTrunc is never a no-op cast, no need to check 2344 SDValue N = getValue(I.getOperand(0)); 2345 SDLoc dl = getCurSDLoc(); 2346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2347 EVT DestVT = TLI.getValueType(I.getType()); 2348 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2349 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2350 } 2351 2352 void SelectionDAGBuilder::visitFPExt(const User &I) { 2353 // FPExt is never a no-op cast, no need to check 2354 SDValue N = getValue(I.getOperand(0)); 2355 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2356 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2357 } 2358 2359 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2360 // FPToUI is never a no-op cast, no need to check 2361 SDValue N = getValue(I.getOperand(0)); 2362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2363 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2364 } 2365 2366 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2367 // FPToSI is never a no-op cast, no need to check 2368 SDValue N = getValue(I.getOperand(0)); 2369 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2370 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2371 } 2372 2373 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2374 // UIToFP is never a no-op cast, no need to check 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2377 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2378 } 2379 2380 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2381 // SIToFP is never a no-op cast, no need to check 2382 SDValue N = getValue(I.getOperand(0)); 2383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2384 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2388 // What to do depends on the size of the integer and the size of the pointer. 2389 // We can either truncate, zero extend, or no-op, accordingly. 2390 SDValue N = getValue(I.getOperand(0)); 2391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2392 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2393 } 2394 2395 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2396 // What to do depends on the size of the integer and the size of the pointer. 2397 // We can either truncate, zero extend, or no-op, accordingly. 2398 SDValue N = getValue(I.getOperand(0)); 2399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2400 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2401 } 2402 2403 void SelectionDAGBuilder::visitBitCast(const User &I) { 2404 SDValue N = getValue(I.getOperand(0)); 2405 SDLoc dl = getCurSDLoc(); 2406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2407 2408 // BitCast assures us that source and destination are the same size so this is 2409 // either a BITCAST or a no-op. 2410 if (DestVT != N.getValueType()) 2411 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2412 DestVT, N)); // convert types. 2413 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2414 // might fold any kind of constant expression to an integer constant and that 2415 // is not what we are looking for. Only regcognize a bitcast of a genuine 2416 // constant integer as an opaque constant. 2417 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2418 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2419 /*isOpaque*/true)); 2420 else 2421 setValue(&I, N); // noop cast. 2422 } 2423 2424 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2426 const Value *SV = I.getOperand(0); 2427 SDValue N = getValue(SV); 2428 EVT DestVT = TLI.getValueType(I.getType()); 2429 2430 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2431 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2432 2433 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2434 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2435 2436 setValue(&I, N); 2437 } 2438 2439 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2441 SDValue InVec = getValue(I.getOperand(0)); 2442 SDValue InVal = getValue(I.getOperand(1)); 2443 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2444 getCurSDLoc(), TLI.getVectorIdxTy()); 2445 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2446 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2447 } 2448 2449 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2451 SDValue InVec = getValue(I.getOperand(0)); 2452 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2453 getCurSDLoc(), TLI.getVectorIdxTy()); 2454 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2455 TLI.getValueType(I.getType()), InVec, InIdx)); 2456 } 2457 2458 // Utility for visitShuffleVector - Return true if every element in Mask, 2459 // beginning from position Pos and ending in Pos+Size, falls within the 2460 // specified sequential range [L, L+Pos). or is undef. 2461 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2462 unsigned Pos, unsigned Size, int Low) { 2463 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2464 if (Mask[i] >= 0 && Mask[i] != Low) 2465 return false; 2466 return true; 2467 } 2468 2469 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2470 SDValue Src1 = getValue(I.getOperand(0)); 2471 SDValue Src2 = getValue(I.getOperand(1)); 2472 2473 SmallVector<int, 8> Mask; 2474 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2475 unsigned MaskNumElts = Mask.size(); 2476 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT VT = TLI.getValueType(I.getType()); 2479 EVT SrcVT = Src1.getValueType(); 2480 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2481 2482 if (SrcNumElts == MaskNumElts) { 2483 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2484 &Mask[0])); 2485 return; 2486 } 2487 2488 // Normalize the shuffle vector since mask and vector length don't match. 2489 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2490 // Mask is longer than the source vectors and is a multiple of the source 2491 // vectors. We can use concatenate vector to make the mask and vectors 2492 // lengths match. 2493 if (SrcNumElts*2 == MaskNumElts) { 2494 // First check for Src1 in low and Src2 in high 2495 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2496 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2497 // The shuffle is concatenating two vectors together. 2498 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2499 VT, Src1, Src2)); 2500 return; 2501 } 2502 // Then check for Src2 in low and Src1 in high 2503 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2504 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2505 // The shuffle is concatenating two vectors together. 2506 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2507 VT, Src2, Src1)); 2508 return; 2509 } 2510 } 2511 2512 // Pad both vectors with undefs to make them the same length as the mask. 2513 unsigned NumConcat = MaskNumElts / SrcNumElts; 2514 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2515 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2516 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2517 2518 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2519 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2520 MOps1[0] = Src1; 2521 MOps2[0] = Src2; 2522 2523 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2524 getCurSDLoc(), VT, MOps1); 2525 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2526 getCurSDLoc(), VT, MOps2); 2527 2528 // Readjust mask for new input vector length. 2529 SmallVector<int, 8> MappedOps; 2530 for (unsigned i = 0; i != MaskNumElts; ++i) { 2531 int Idx = Mask[i]; 2532 if (Idx >= (int)SrcNumElts) 2533 Idx -= SrcNumElts - MaskNumElts; 2534 MappedOps.push_back(Idx); 2535 } 2536 2537 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2538 &MappedOps[0])); 2539 return; 2540 } 2541 2542 if (SrcNumElts > MaskNumElts) { 2543 // Analyze the access pattern of the vector to see if we can extract 2544 // two subvectors and do the shuffle. The analysis is done by calculating 2545 // the range of elements the mask access on both vectors. 2546 int MinRange[2] = { static_cast<int>(SrcNumElts), 2547 static_cast<int>(SrcNumElts)}; 2548 int MaxRange[2] = {-1, -1}; 2549 2550 for (unsigned i = 0; i != MaskNumElts; ++i) { 2551 int Idx = Mask[i]; 2552 unsigned Input = 0; 2553 if (Idx < 0) 2554 continue; 2555 2556 if (Idx >= (int)SrcNumElts) { 2557 Input = 1; 2558 Idx -= SrcNumElts; 2559 } 2560 if (Idx > MaxRange[Input]) 2561 MaxRange[Input] = Idx; 2562 if (Idx < MinRange[Input]) 2563 MinRange[Input] = Idx; 2564 } 2565 2566 // Check if the access is smaller than the vector size and can we find 2567 // a reasonable extract index. 2568 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2569 // Extract. 2570 int StartIdx[2]; // StartIdx to extract from 2571 for (unsigned Input = 0; Input < 2; ++Input) { 2572 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2573 RangeUse[Input] = 0; // Unused 2574 StartIdx[Input] = 0; 2575 continue; 2576 } 2577 2578 // Find a good start index that is a multiple of the mask length. Then 2579 // see if the rest of the elements are in range. 2580 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2581 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2582 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2583 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2584 } 2585 2586 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2587 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2588 return; 2589 } 2590 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2591 // Extract appropriate subvector and generate a vector shuffle 2592 for (unsigned Input = 0; Input < 2; ++Input) { 2593 SDValue &Src = Input == 0 ? Src1 : Src2; 2594 if (RangeUse[Input] == 0) 2595 Src = DAG.getUNDEF(VT); 2596 else { 2597 SDLoc dl = getCurSDLoc(); 2598 Src = DAG.getNode( 2599 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2600 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2601 } 2602 } 2603 2604 // Calculate new mask. 2605 SmallVector<int, 8> MappedOps; 2606 for (unsigned i = 0; i != MaskNumElts; ++i) { 2607 int Idx = Mask[i]; 2608 if (Idx >= 0) { 2609 if (Idx < (int)SrcNumElts) 2610 Idx -= StartIdx[0]; 2611 else 2612 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2613 } 2614 MappedOps.push_back(Idx); 2615 } 2616 2617 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2618 &MappedOps[0])); 2619 return; 2620 } 2621 } 2622 2623 // We can't use either concat vectors or extract subvectors so fall back to 2624 // replacing the shuffle with extract and build vector. 2625 // to insert and build vector. 2626 EVT EltVT = VT.getVectorElementType(); 2627 EVT IdxVT = TLI.getVectorIdxTy(); 2628 SDLoc dl = getCurSDLoc(); 2629 SmallVector<SDValue,8> Ops; 2630 for (unsigned i = 0; i != MaskNumElts; ++i) { 2631 int Idx = Mask[i]; 2632 SDValue Res; 2633 2634 if (Idx < 0) { 2635 Res = DAG.getUNDEF(EltVT); 2636 } else { 2637 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2638 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2639 2640 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2641 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2642 } 2643 2644 Ops.push_back(Res); 2645 } 2646 2647 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2648 } 2649 2650 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2651 const Value *Op0 = I.getOperand(0); 2652 const Value *Op1 = I.getOperand(1); 2653 Type *AggTy = I.getType(); 2654 Type *ValTy = Op1->getType(); 2655 bool IntoUndef = isa<UndefValue>(Op0); 2656 bool FromUndef = isa<UndefValue>(Op1); 2657 2658 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2659 2660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2661 SmallVector<EVT, 4> AggValueVTs; 2662 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2663 SmallVector<EVT, 4> ValValueVTs; 2664 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2665 2666 unsigned NumAggValues = AggValueVTs.size(); 2667 unsigned NumValValues = ValValueVTs.size(); 2668 SmallVector<SDValue, 4> Values(NumAggValues); 2669 2670 // Ignore an insertvalue that produces an empty object 2671 if (!NumAggValues) { 2672 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2673 return; 2674 } 2675 2676 SDValue Agg = getValue(Op0); 2677 unsigned i = 0; 2678 // Copy the beginning value(s) from the original aggregate. 2679 for (; i != LinearIndex; ++i) 2680 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2681 SDValue(Agg.getNode(), Agg.getResNo() + i); 2682 // Copy values from the inserted value(s). 2683 if (NumValValues) { 2684 SDValue Val = getValue(Op1); 2685 for (; i != LinearIndex + NumValValues; ++i) 2686 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2687 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2688 } 2689 // Copy remaining value(s) from the original aggregate. 2690 for (; i != NumAggValues; ++i) 2691 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2692 SDValue(Agg.getNode(), Agg.getResNo() + i); 2693 2694 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2695 DAG.getVTList(AggValueVTs), Values)); 2696 } 2697 2698 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2699 const Value *Op0 = I.getOperand(0); 2700 Type *AggTy = Op0->getType(); 2701 Type *ValTy = I.getType(); 2702 bool OutOfUndef = isa<UndefValue>(Op0); 2703 2704 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2705 2706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2707 SmallVector<EVT, 4> ValValueVTs; 2708 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2709 2710 unsigned NumValValues = ValValueVTs.size(); 2711 2712 // Ignore a extractvalue that produces an empty object 2713 if (!NumValValues) { 2714 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2715 return; 2716 } 2717 2718 SmallVector<SDValue, 4> Values(NumValValues); 2719 2720 SDValue Agg = getValue(Op0); 2721 // Copy out the selected value(s). 2722 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2723 Values[i - LinearIndex] = 2724 OutOfUndef ? 2725 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2726 SDValue(Agg.getNode(), Agg.getResNo() + i); 2727 2728 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2729 DAG.getVTList(ValValueVTs), Values)); 2730 } 2731 2732 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2733 Value *Op0 = I.getOperand(0); 2734 // Note that the pointer operand may be a vector of pointers. Take the scalar 2735 // element which holds a pointer. 2736 Type *Ty = Op0->getType()->getScalarType(); 2737 unsigned AS = Ty->getPointerAddressSpace(); 2738 SDValue N = getValue(Op0); 2739 SDLoc dl = getCurSDLoc(); 2740 2741 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2742 OI != E; ++OI) { 2743 const Value *Idx = *OI; 2744 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2745 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2746 if (Field) { 2747 // N = N + Offset 2748 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2749 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2750 DAG.getConstant(Offset, dl, N.getValueType())); 2751 } 2752 2753 Ty = StTy->getElementType(Field); 2754 } else { 2755 Ty = cast<SequentialType>(Ty)->getElementType(); 2756 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2757 unsigned PtrSize = PtrTy.getSizeInBits(); 2758 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2759 2760 // If this is a constant subscript, handle it quickly. 2761 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2762 if (CI->isZero()) 2763 continue; 2764 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2765 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2766 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2767 continue; 2768 } 2769 2770 // N = N + Idx * ElementSize; 2771 SDValue IdxN = getValue(Idx); 2772 2773 // If the index is smaller or larger than intptr_t, truncate or extend 2774 // it. 2775 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2776 2777 // If this is a multiply by a power of two, turn it into a shl 2778 // immediately. This is a very common case. 2779 if (ElementSize != 1) { 2780 if (ElementSize.isPowerOf2()) { 2781 unsigned Amt = ElementSize.logBase2(); 2782 IdxN = DAG.getNode(ISD::SHL, dl, 2783 N.getValueType(), IdxN, 2784 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2785 } else { 2786 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2787 IdxN = DAG.getNode(ISD::MUL, dl, 2788 N.getValueType(), IdxN, Scale); 2789 } 2790 } 2791 2792 N = DAG.getNode(ISD::ADD, dl, 2793 N.getValueType(), N, IdxN); 2794 } 2795 } 2796 2797 setValue(&I, N); 2798 } 2799 2800 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2801 // If this is a fixed sized alloca in the entry block of the function, 2802 // allocate it statically on the stack. 2803 if (FuncInfo.StaticAllocaMap.count(&I)) 2804 return; // getValue will auto-populate this. 2805 2806 SDLoc dl = getCurSDLoc(); 2807 Type *Ty = I.getAllocatedType(); 2808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2809 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2810 unsigned Align = 2811 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2812 I.getAlignment()); 2813 2814 SDValue AllocSize = getValue(I.getArraySize()); 2815 2816 EVT IntPtr = TLI.getPointerTy(); 2817 if (AllocSize.getValueType() != IntPtr) 2818 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2819 2820 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2821 AllocSize, 2822 DAG.getConstant(TySize, dl, IntPtr)); 2823 2824 // Handle alignment. If the requested alignment is less than or equal to 2825 // the stack alignment, ignore it. If the size is greater than or equal to 2826 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2827 unsigned StackAlign = 2828 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2829 if (Align <= StackAlign) 2830 Align = 0; 2831 2832 // Round the size of the allocation up to the stack alignment size 2833 // by add SA-1 to the size. 2834 AllocSize = DAG.getNode(ISD::ADD, dl, 2835 AllocSize.getValueType(), AllocSize, 2836 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2837 2838 // Mask out the low bits for alignment purposes. 2839 AllocSize = DAG.getNode(ISD::AND, dl, 2840 AllocSize.getValueType(), AllocSize, 2841 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2842 dl)); 2843 2844 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2845 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2846 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2847 setValue(&I, DSA); 2848 DAG.setRoot(DSA.getValue(1)); 2849 2850 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2851 } 2852 2853 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2854 if (I.isAtomic()) 2855 return visitAtomicLoad(I); 2856 2857 const Value *SV = I.getOperand(0); 2858 SDValue Ptr = getValue(SV); 2859 2860 Type *Ty = I.getType(); 2861 2862 bool isVolatile = I.isVolatile(); 2863 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2864 2865 // The IR notion of invariant_load only guarantees that all *non-faulting* 2866 // invariant loads result in the same value. The MI notion of invariant load 2867 // guarantees that the load can be legally moved to any location within its 2868 // containing function. The MI notion of invariant_load is stronger than the 2869 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2870 // with a guarantee that the location being loaded from is dereferenceable 2871 // throughout the function's lifetime. 2872 2873 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2874 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2875 unsigned Alignment = I.getAlignment(); 2876 2877 AAMDNodes AAInfo; 2878 I.getAAMetadata(AAInfo); 2879 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2880 2881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2882 SmallVector<EVT, 4> ValueVTs; 2883 SmallVector<uint64_t, 4> Offsets; 2884 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2885 unsigned NumValues = ValueVTs.size(); 2886 if (NumValues == 0) 2887 return; 2888 2889 SDValue Root; 2890 bool ConstantMemory = false; 2891 if (isVolatile || NumValues > MaxParallelChains) 2892 // Serialize volatile loads with other side effects. 2893 Root = getRoot(); 2894 else if (AA->pointsToConstantMemory( 2895 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2896 // Do not serialize (non-volatile) loads of constant memory with anything. 2897 Root = DAG.getEntryNode(); 2898 ConstantMemory = true; 2899 } else { 2900 // Do not serialize non-volatile loads against each other. 2901 Root = DAG.getRoot(); 2902 } 2903 2904 SDLoc dl = getCurSDLoc(); 2905 2906 if (isVolatile) 2907 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2908 2909 SmallVector<SDValue, 4> Values(NumValues); 2910 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2911 NumValues)); 2912 EVT PtrVT = Ptr.getValueType(); 2913 unsigned ChainI = 0; 2914 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2915 // Serializing loads here may result in excessive register pressure, and 2916 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2917 // could recover a bit by hoisting nodes upward in the chain by recognizing 2918 // they are side-effect free or do not alias. The optimizer should really 2919 // avoid this case by converting large object/array copies to llvm.memcpy 2920 // (MaxParallelChains should always remain as failsafe). 2921 if (ChainI == MaxParallelChains) { 2922 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2923 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2924 makeArrayRef(Chains.data(), ChainI)); 2925 Root = Chain; 2926 ChainI = 0; 2927 } 2928 SDValue A = DAG.getNode(ISD::ADD, dl, 2929 PtrVT, Ptr, 2930 DAG.getConstant(Offsets[i], dl, PtrVT)); 2931 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2932 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2933 isNonTemporal, isInvariant, Alignment, AAInfo, 2934 Ranges); 2935 2936 Values[i] = L; 2937 Chains[ChainI] = L.getValue(1); 2938 } 2939 2940 if (!ConstantMemory) { 2941 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2942 makeArrayRef(Chains.data(), ChainI)); 2943 if (isVolatile) 2944 DAG.setRoot(Chain); 2945 else 2946 PendingLoads.push_back(Chain); 2947 } 2948 2949 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2950 DAG.getVTList(ValueVTs), Values)); 2951 } 2952 2953 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2954 if (I.isAtomic()) 2955 return visitAtomicStore(I); 2956 2957 const Value *SrcV = I.getOperand(0); 2958 const Value *PtrV = I.getOperand(1); 2959 2960 SmallVector<EVT, 4> ValueVTs; 2961 SmallVector<uint64_t, 4> Offsets; 2962 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2963 ValueVTs, &Offsets); 2964 unsigned NumValues = ValueVTs.size(); 2965 if (NumValues == 0) 2966 return; 2967 2968 // Get the lowered operands. Note that we do this after 2969 // checking if NumResults is zero, because with zero results 2970 // the operands won't have values in the map. 2971 SDValue Src = getValue(SrcV); 2972 SDValue Ptr = getValue(PtrV); 2973 2974 SDValue Root = getRoot(); 2975 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2976 NumValues)); 2977 EVT PtrVT = Ptr.getValueType(); 2978 bool isVolatile = I.isVolatile(); 2979 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2980 unsigned Alignment = I.getAlignment(); 2981 SDLoc dl = getCurSDLoc(); 2982 2983 AAMDNodes AAInfo; 2984 I.getAAMetadata(AAInfo); 2985 2986 unsigned ChainI = 0; 2987 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2988 // See visitLoad comments. 2989 if (ChainI == MaxParallelChains) { 2990 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2991 makeArrayRef(Chains.data(), ChainI)); 2992 Root = Chain; 2993 ChainI = 0; 2994 } 2995 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2996 DAG.getConstant(Offsets[i], dl, PtrVT)); 2997 SDValue St = DAG.getStore(Root, dl, 2998 SDValue(Src.getNode(), Src.getResNo() + i), 2999 Add, MachinePointerInfo(PtrV, Offsets[i]), 3000 isVolatile, isNonTemporal, Alignment, AAInfo); 3001 Chains[ChainI] = St; 3002 } 3003 3004 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3005 makeArrayRef(Chains.data(), ChainI)); 3006 DAG.setRoot(StoreNode); 3007 } 3008 3009 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3010 SDLoc sdl = getCurSDLoc(); 3011 3012 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3013 Value *PtrOperand = I.getArgOperand(1); 3014 SDValue Ptr = getValue(PtrOperand); 3015 SDValue Src0 = getValue(I.getArgOperand(0)); 3016 SDValue Mask = getValue(I.getArgOperand(3)); 3017 EVT VT = Src0.getValueType(); 3018 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3019 if (!Alignment) 3020 Alignment = DAG.getEVTAlignment(VT); 3021 3022 AAMDNodes AAInfo; 3023 I.getAAMetadata(AAInfo); 3024 3025 MachineMemOperand *MMO = 3026 DAG.getMachineFunction(). 3027 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3028 MachineMemOperand::MOStore, VT.getStoreSize(), 3029 Alignment, AAInfo); 3030 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3031 MMO, false); 3032 DAG.setRoot(StoreNode); 3033 setValue(&I, StoreNode); 3034 } 3035 3036 // Gather/scatter receive a vector of pointers. 3037 // This vector of pointers may be represented as a base pointer + vector of 3038 // indices, it depends on GEP and instruction preceeding GEP 3039 // that calculates indices 3040 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3041 SelectionDAGBuilder* SDB) { 3042 3043 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3044 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3045 if (!Gep || Gep->getNumOperands() > 2) 3046 return false; 3047 ShuffleVectorInst *ShuffleInst = 3048 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3049 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3050 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3051 Instruction::InsertElement) 3052 return false; 3053 3054 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3055 3056 SelectionDAG& DAG = SDB->DAG; 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 // Check is the Ptr is inside current basic block 3059 // If not, look for the shuffle instruction 3060 if (SDB->findValue(Ptr)) 3061 Base = SDB->getValue(Ptr); 3062 else if (SDB->findValue(ShuffleInst)) { 3063 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3064 SDLoc sdl = ShuffleNode; 3065 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3066 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3067 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3068 SDB->setValue(Ptr, Base); 3069 } 3070 else 3071 return false; 3072 3073 Value *IndexVal = Gep->getOperand(1); 3074 if (SDB->findValue(IndexVal)) { 3075 Index = SDB->getValue(IndexVal); 3076 3077 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3078 IndexVal = Sext->getOperand(0); 3079 if (SDB->findValue(IndexVal)) 3080 Index = SDB->getValue(IndexVal); 3081 } 3082 return true; 3083 } 3084 return false; 3085 } 3086 3087 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3088 SDLoc sdl = getCurSDLoc(); 3089 3090 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3091 Value *Ptr = I.getArgOperand(1); 3092 SDValue Src0 = getValue(I.getArgOperand(0)); 3093 SDValue Mask = getValue(I.getArgOperand(3)); 3094 EVT VT = Src0.getValueType(); 3095 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3096 if (!Alignment) 3097 Alignment = DAG.getEVTAlignment(VT); 3098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3099 3100 AAMDNodes AAInfo; 3101 I.getAAMetadata(AAInfo); 3102 3103 SDValue Base; 3104 SDValue Index; 3105 Value *BasePtr = Ptr; 3106 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3107 3108 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3109 MachineMemOperand *MMO = DAG.getMachineFunction(). 3110 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3111 MachineMemOperand::MOStore, VT.getStoreSize(), 3112 Alignment, AAInfo); 3113 if (!UniformBase) { 3114 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3115 Index = getValue(Ptr); 3116 } 3117 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3118 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3119 Ops, MMO); 3120 DAG.setRoot(Scatter); 3121 setValue(&I, Scatter); 3122 } 3123 3124 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3125 SDLoc sdl = getCurSDLoc(); 3126 3127 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3128 Value *PtrOperand = I.getArgOperand(0); 3129 SDValue Ptr = getValue(PtrOperand); 3130 SDValue Src0 = getValue(I.getArgOperand(3)); 3131 SDValue Mask = getValue(I.getArgOperand(2)); 3132 3133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3134 EVT VT = TLI.getValueType(I.getType()); 3135 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3136 if (!Alignment) 3137 Alignment = DAG.getEVTAlignment(VT); 3138 3139 AAMDNodes AAInfo; 3140 I.getAAMetadata(AAInfo); 3141 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3142 3143 SDValue InChain = DAG.getRoot(); 3144 if (AA->pointsToConstantMemory( 3145 AliasAnalysis::Location(PtrOperand, 3146 AA->getTypeStoreSize(I.getType()), 3147 AAInfo))) { 3148 // Do not serialize (non-volatile) loads of constant memory with anything. 3149 InChain = DAG.getEntryNode(); 3150 } 3151 3152 MachineMemOperand *MMO = 3153 DAG.getMachineFunction(). 3154 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3155 MachineMemOperand::MOLoad, VT.getStoreSize(), 3156 Alignment, AAInfo, Ranges); 3157 3158 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3159 ISD::NON_EXTLOAD); 3160 SDValue OutChain = Load.getValue(1); 3161 DAG.setRoot(OutChain); 3162 setValue(&I, Load); 3163 } 3164 3165 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3166 SDLoc sdl = getCurSDLoc(); 3167 3168 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3169 Value *Ptr = I.getArgOperand(0); 3170 SDValue Src0 = getValue(I.getArgOperand(3)); 3171 SDValue Mask = getValue(I.getArgOperand(2)); 3172 3173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3174 EVT VT = TLI.getValueType(I.getType()); 3175 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3176 if (!Alignment) 3177 Alignment = DAG.getEVTAlignment(VT); 3178 3179 AAMDNodes AAInfo; 3180 I.getAAMetadata(AAInfo); 3181 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3182 3183 SDValue Root = DAG.getRoot(); 3184 SDValue Base; 3185 SDValue Index; 3186 Value *BasePtr = Ptr; 3187 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3188 bool ConstantMemory = false; 3189 if (UniformBase && AA->pointsToConstantMemory( 3190 AliasAnalysis::Location(BasePtr, 3191 AA->getTypeStoreSize(I.getType()), 3192 AAInfo))) { 3193 // Do not serialize (non-volatile) loads of constant memory with anything. 3194 Root = DAG.getEntryNode(); 3195 ConstantMemory = true; 3196 } 3197 3198 MachineMemOperand *MMO = 3199 DAG.getMachineFunction(). 3200 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3201 MachineMemOperand::MOLoad, VT.getStoreSize(), 3202 Alignment, AAInfo, Ranges); 3203 3204 if (!UniformBase) { 3205 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3206 Index = getValue(Ptr); 3207 } 3208 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3209 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3210 Ops, MMO); 3211 3212 SDValue OutChain = Gather.getValue(1); 3213 if (!ConstantMemory) 3214 PendingLoads.push_back(OutChain); 3215 setValue(&I, Gather); 3216 } 3217 3218 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3219 SDLoc dl = getCurSDLoc(); 3220 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3221 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3222 SynchronizationScope Scope = I.getSynchScope(); 3223 3224 SDValue InChain = getRoot(); 3225 3226 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3227 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3228 SDValue L = DAG.getAtomicCmpSwap( 3229 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3230 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3231 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3232 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3233 3234 SDValue OutChain = L.getValue(2); 3235 3236 setValue(&I, L); 3237 DAG.setRoot(OutChain); 3238 } 3239 3240 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3241 SDLoc dl = getCurSDLoc(); 3242 ISD::NodeType NT; 3243 switch (I.getOperation()) { 3244 default: llvm_unreachable("Unknown atomicrmw operation"); 3245 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3246 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3247 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3248 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3249 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3250 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3251 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3252 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3253 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3254 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3255 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3256 } 3257 AtomicOrdering Order = I.getOrdering(); 3258 SynchronizationScope Scope = I.getSynchScope(); 3259 3260 SDValue InChain = getRoot(); 3261 3262 SDValue L = 3263 DAG.getAtomic(NT, dl, 3264 getValue(I.getValOperand()).getSimpleValueType(), 3265 InChain, 3266 getValue(I.getPointerOperand()), 3267 getValue(I.getValOperand()), 3268 I.getPointerOperand(), 3269 /* Alignment=*/ 0, Order, Scope); 3270 3271 SDValue OutChain = L.getValue(1); 3272 3273 setValue(&I, L); 3274 DAG.setRoot(OutChain); 3275 } 3276 3277 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3278 SDLoc dl = getCurSDLoc(); 3279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3280 SDValue Ops[3]; 3281 Ops[0] = getRoot(); 3282 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3283 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3284 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3285 } 3286 3287 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3288 SDLoc dl = getCurSDLoc(); 3289 AtomicOrdering Order = I.getOrdering(); 3290 SynchronizationScope Scope = I.getSynchScope(); 3291 3292 SDValue InChain = getRoot(); 3293 3294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3295 EVT VT = TLI.getValueType(I.getType()); 3296 3297 if (I.getAlignment() < VT.getSizeInBits() / 8) 3298 report_fatal_error("Cannot generate unaligned atomic load"); 3299 3300 MachineMemOperand *MMO = 3301 DAG.getMachineFunction(). 3302 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3303 MachineMemOperand::MOVolatile | 3304 MachineMemOperand::MOLoad, 3305 VT.getStoreSize(), 3306 I.getAlignment() ? I.getAlignment() : 3307 DAG.getEVTAlignment(VT)); 3308 3309 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3310 SDValue L = 3311 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3312 getValue(I.getPointerOperand()), MMO, 3313 Order, Scope); 3314 3315 SDValue OutChain = L.getValue(1); 3316 3317 setValue(&I, L); 3318 DAG.setRoot(OutChain); 3319 } 3320 3321 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3322 SDLoc dl = getCurSDLoc(); 3323 3324 AtomicOrdering Order = I.getOrdering(); 3325 SynchronizationScope Scope = I.getSynchScope(); 3326 3327 SDValue InChain = getRoot(); 3328 3329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3330 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3331 3332 if (I.getAlignment() < VT.getSizeInBits() / 8) 3333 report_fatal_error("Cannot generate unaligned atomic store"); 3334 3335 SDValue OutChain = 3336 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3337 InChain, 3338 getValue(I.getPointerOperand()), 3339 getValue(I.getValueOperand()), 3340 I.getPointerOperand(), I.getAlignment(), 3341 Order, Scope); 3342 3343 DAG.setRoot(OutChain); 3344 } 3345 3346 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3347 /// node. 3348 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3349 unsigned Intrinsic) { 3350 bool HasChain = !I.doesNotAccessMemory(); 3351 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3352 3353 // Build the operand list. 3354 SmallVector<SDValue, 8> Ops; 3355 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3356 if (OnlyLoad) { 3357 // We don't need to serialize loads against other loads. 3358 Ops.push_back(DAG.getRoot()); 3359 } else { 3360 Ops.push_back(getRoot()); 3361 } 3362 } 3363 3364 // Info is set by getTgtMemInstrinsic 3365 TargetLowering::IntrinsicInfo Info; 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3368 3369 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3370 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3371 Info.opc == ISD::INTRINSIC_W_CHAIN) 3372 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3373 TLI.getPointerTy())); 3374 3375 // Add all operands of the call to the operand list. 3376 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3377 SDValue Op = getValue(I.getArgOperand(i)); 3378 Ops.push_back(Op); 3379 } 3380 3381 SmallVector<EVT, 4> ValueVTs; 3382 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3383 3384 if (HasChain) 3385 ValueVTs.push_back(MVT::Other); 3386 3387 SDVTList VTs = DAG.getVTList(ValueVTs); 3388 3389 // Create the node. 3390 SDValue Result; 3391 if (IsTgtIntrinsic) { 3392 // This is target intrinsic that touches memory 3393 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3394 VTs, Ops, Info.memVT, 3395 MachinePointerInfo(Info.ptrVal, Info.offset), 3396 Info.align, Info.vol, 3397 Info.readMem, Info.writeMem, Info.size); 3398 } else if (!HasChain) { 3399 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3400 } else if (!I.getType()->isVoidTy()) { 3401 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3402 } else { 3403 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3404 } 3405 3406 if (HasChain) { 3407 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3408 if (OnlyLoad) 3409 PendingLoads.push_back(Chain); 3410 else 3411 DAG.setRoot(Chain); 3412 } 3413 3414 if (!I.getType()->isVoidTy()) { 3415 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3416 EVT VT = TLI.getValueType(PTy); 3417 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3418 } 3419 3420 setValue(&I, Result); 3421 } 3422 } 3423 3424 /// GetSignificand - Get the significand and build it into a floating-point 3425 /// number with exponent of 1: 3426 /// 3427 /// Op = (Op & 0x007fffff) | 0x3f800000; 3428 /// 3429 /// where Op is the hexadecimal representation of floating point value. 3430 static SDValue 3431 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3432 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3433 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3434 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3435 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3436 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3437 } 3438 3439 /// GetExponent - Get the exponent: 3440 /// 3441 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3442 /// 3443 /// where Op is the hexadecimal representation of floating point value. 3444 static SDValue 3445 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3446 SDLoc dl) { 3447 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3448 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3449 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3450 DAG.getConstant(23, dl, TLI.getPointerTy())); 3451 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3452 DAG.getConstant(127, dl, MVT::i32)); 3453 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3454 } 3455 3456 /// getF32Constant - Get 32-bit floating point constant. 3457 static SDValue 3458 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3459 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3460 MVT::f32); 3461 } 3462 3463 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3464 SelectionDAG &DAG) { 3465 // IntegerPartOfX = ((int32_t)(t0); 3466 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3467 3468 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3469 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3470 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3471 3472 // IntegerPartOfX <<= 23; 3473 IntegerPartOfX = DAG.getNode( 3474 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3475 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3476 3477 SDValue TwoToFractionalPartOfX; 3478 if (LimitFloatPrecision <= 6) { 3479 // For floating-point precision of 6: 3480 // 3481 // TwoToFractionalPartOfX = 3482 // 0.997535578f + 3483 // (0.735607626f + 0.252464424f * x) * x; 3484 // 3485 // error 0.0144103317, which is 6 bits 3486 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3487 getF32Constant(DAG, 0x3e814304, dl)); 3488 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3489 getF32Constant(DAG, 0x3f3c50c8, dl)); 3490 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3491 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3492 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3493 } else if (LimitFloatPrecision <= 12) { 3494 // For floating-point precision of 12: 3495 // 3496 // TwoToFractionalPartOfX = 3497 // 0.999892986f + 3498 // (0.696457318f + 3499 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3500 // 3501 // error 0.000107046256, which is 13 to 14 bits 3502 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3503 getF32Constant(DAG, 0x3da235e3, dl)); 3504 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3505 getF32Constant(DAG, 0x3e65b8f3, dl)); 3506 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3507 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3508 getF32Constant(DAG, 0x3f324b07, dl)); 3509 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3510 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3511 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3512 } else { // LimitFloatPrecision <= 18 3513 // For floating-point precision of 18: 3514 // 3515 // TwoToFractionalPartOfX = 3516 // 0.999999982f + 3517 // (0.693148872f + 3518 // (0.240227044f + 3519 // (0.554906021e-1f + 3520 // (0.961591928e-2f + 3521 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3522 // error 2.47208000*10^(-7), which is better than 18 bits 3523 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3524 getF32Constant(DAG, 0x3924b03e, dl)); 3525 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3526 getF32Constant(DAG, 0x3ab24b87, dl)); 3527 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3528 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3529 getF32Constant(DAG, 0x3c1d8c17, dl)); 3530 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3531 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3532 getF32Constant(DAG, 0x3d634a1d, dl)); 3533 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3534 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3535 getF32Constant(DAG, 0x3e75fe14, dl)); 3536 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3537 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3538 getF32Constant(DAG, 0x3f317234, dl)); 3539 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3540 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3541 getF32Constant(DAG, 0x3f800000, dl)); 3542 } 3543 3544 // Add the exponent into the result in integer domain. 3545 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3546 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3547 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3548 } 3549 3550 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3551 /// limited-precision mode. 3552 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3553 const TargetLowering &TLI) { 3554 if (Op.getValueType() == MVT::f32 && 3555 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3556 3557 // Put the exponent in the right bit position for later addition to the 3558 // final result: 3559 // 3560 // #define LOG2OFe 1.4426950f 3561 // t0 = Op * LOG2OFe 3562 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3563 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3564 return getLimitedPrecisionExp2(t0, dl, DAG); 3565 } 3566 3567 // No special expansion. 3568 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3569 } 3570 3571 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3572 /// limited-precision mode. 3573 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3574 const TargetLowering &TLI) { 3575 if (Op.getValueType() == MVT::f32 && 3576 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3577 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3578 3579 // Scale the exponent by log(2) [0.69314718f]. 3580 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3581 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3582 getF32Constant(DAG, 0x3f317218, dl)); 3583 3584 // Get the significand and build it into a floating-point number with 3585 // exponent of 1. 3586 SDValue X = GetSignificand(DAG, Op1, dl); 3587 3588 SDValue LogOfMantissa; 3589 if (LimitFloatPrecision <= 6) { 3590 // For floating-point precision of 6: 3591 // 3592 // LogofMantissa = 3593 // -1.1609546f + 3594 // (1.4034025f - 0.23903021f * x) * x; 3595 // 3596 // error 0.0034276066, which is better than 8 bits 3597 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3598 getF32Constant(DAG, 0xbe74c456, dl)); 3599 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3600 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3601 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3602 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3603 getF32Constant(DAG, 0x3f949a29, dl)); 3604 } else if (LimitFloatPrecision <= 12) { 3605 // For floating-point precision of 12: 3606 // 3607 // LogOfMantissa = 3608 // -1.7417939f + 3609 // (2.8212026f + 3610 // (-1.4699568f + 3611 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3612 // 3613 // error 0.000061011436, which is 14 bits 3614 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3615 getF32Constant(DAG, 0xbd67b6d6, dl)); 3616 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3617 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3618 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3619 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3620 getF32Constant(DAG, 0x3fbc278b, dl)); 3621 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3622 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3623 getF32Constant(DAG, 0x40348e95, dl)); 3624 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3625 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3626 getF32Constant(DAG, 0x3fdef31a, dl)); 3627 } else { // LimitFloatPrecision <= 18 3628 // For floating-point precision of 18: 3629 // 3630 // LogOfMantissa = 3631 // -2.1072184f + 3632 // (4.2372794f + 3633 // (-3.7029485f + 3634 // (2.2781945f + 3635 // (-0.87823314f + 3636 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3637 // 3638 // error 0.0000023660568, which is better than 18 bits 3639 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3640 getF32Constant(DAG, 0xbc91e5ac, dl)); 3641 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3642 getF32Constant(DAG, 0x3e4350aa, dl)); 3643 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3644 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3645 getF32Constant(DAG, 0x3f60d3e3, dl)); 3646 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3647 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3648 getF32Constant(DAG, 0x4011cdf0, dl)); 3649 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3650 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3651 getF32Constant(DAG, 0x406cfd1c, dl)); 3652 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3653 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3654 getF32Constant(DAG, 0x408797cb, dl)); 3655 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3656 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3657 getF32Constant(DAG, 0x4006dcab, dl)); 3658 } 3659 3660 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3661 } 3662 3663 // No special expansion. 3664 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3665 } 3666 3667 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3668 /// limited-precision mode. 3669 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3670 const TargetLowering &TLI) { 3671 if (Op.getValueType() == MVT::f32 && 3672 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3673 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3674 3675 // Get the exponent. 3676 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3677 3678 // Get the significand and build it into a floating-point number with 3679 // exponent of 1. 3680 SDValue X = GetSignificand(DAG, Op1, dl); 3681 3682 // Different possible minimax approximations of significand in 3683 // floating-point for various degrees of accuracy over [1,2]. 3684 SDValue Log2ofMantissa; 3685 if (LimitFloatPrecision <= 6) { 3686 // For floating-point precision of 6: 3687 // 3688 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3689 // 3690 // error 0.0049451742, which is more than 7 bits 3691 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3692 getF32Constant(DAG, 0xbeb08fe0, dl)); 3693 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3694 getF32Constant(DAG, 0x40019463, dl)); 3695 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3696 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3697 getF32Constant(DAG, 0x3fd6633d, dl)); 3698 } else if (LimitFloatPrecision <= 12) { 3699 // For floating-point precision of 12: 3700 // 3701 // Log2ofMantissa = 3702 // -2.51285454f + 3703 // (4.07009056f + 3704 // (-2.12067489f + 3705 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3706 // 3707 // error 0.0000876136000, which is better than 13 bits 3708 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3709 getF32Constant(DAG, 0xbda7262e, dl)); 3710 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3711 getF32Constant(DAG, 0x3f25280b, dl)); 3712 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3713 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3714 getF32Constant(DAG, 0x4007b923, dl)); 3715 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3716 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3717 getF32Constant(DAG, 0x40823e2f, dl)); 3718 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3719 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3720 getF32Constant(DAG, 0x4020d29c, dl)); 3721 } else { // LimitFloatPrecision <= 18 3722 // For floating-point precision of 18: 3723 // 3724 // Log2ofMantissa = 3725 // -3.0400495f + 3726 // (6.1129976f + 3727 // (-5.3420409f + 3728 // (3.2865683f + 3729 // (-1.2669343f + 3730 // (0.27515199f - 3731 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3732 // 3733 // error 0.0000018516, which is better than 18 bits 3734 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3735 getF32Constant(DAG, 0xbcd2769e, dl)); 3736 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3737 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3738 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3739 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3740 getF32Constant(DAG, 0x3fa22ae7, dl)); 3741 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3742 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3743 getF32Constant(DAG, 0x40525723, dl)); 3744 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3745 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3746 getF32Constant(DAG, 0x40aaf200, dl)); 3747 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3748 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3749 getF32Constant(DAG, 0x40c39dad, dl)); 3750 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3751 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3752 getF32Constant(DAG, 0x4042902c, dl)); 3753 } 3754 3755 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3756 } 3757 3758 // No special expansion. 3759 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3760 } 3761 3762 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3763 /// limited-precision mode. 3764 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3765 const TargetLowering &TLI) { 3766 if (Op.getValueType() == MVT::f32 && 3767 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3768 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3769 3770 // Scale the exponent by log10(2) [0.30102999f]. 3771 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3772 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3773 getF32Constant(DAG, 0x3e9a209a, dl)); 3774 3775 // Get the significand and build it into a floating-point number with 3776 // exponent of 1. 3777 SDValue X = GetSignificand(DAG, Op1, dl); 3778 3779 SDValue Log10ofMantissa; 3780 if (LimitFloatPrecision <= 6) { 3781 // For floating-point precision of 6: 3782 // 3783 // Log10ofMantissa = 3784 // -0.50419619f + 3785 // (0.60948995f - 0.10380950f * x) * x; 3786 // 3787 // error 0.0014886165, which is 6 bits 3788 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3789 getF32Constant(DAG, 0xbdd49a13, dl)); 3790 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3791 getF32Constant(DAG, 0x3f1c0789, dl)); 3792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3793 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3794 getF32Constant(DAG, 0x3f011300, dl)); 3795 } else if (LimitFloatPrecision <= 12) { 3796 // For floating-point precision of 12: 3797 // 3798 // Log10ofMantissa = 3799 // -0.64831180f + 3800 // (0.91751397f + 3801 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3802 // 3803 // error 0.00019228036, which is better than 12 bits 3804 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3805 getF32Constant(DAG, 0x3d431f31, dl)); 3806 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3807 getF32Constant(DAG, 0x3ea21fb2, dl)); 3808 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3809 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3810 getF32Constant(DAG, 0x3f6ae232, dl)); 3811 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3812 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3813 getF32Constant(DAG, 0x3f25f7c3, dl)); 3814 } else { // LimitFloatPrecision <= 18 3815 // For floating-point precision of 18: 3816 // 3817 // Log10ofMantissa = 3818 // -0.84299375f + 3819 // (1.5327582f + 3820 // (-1.0688956f + 3821 // (0.49102474f + 3822 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3823 // 3824 // error 0.0000037995730, which is better than 18 bits 3825 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3826 getF32Constant(DAG, 0x3c5d51ce, dl)); 3827 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3828 getF32Constant(DAG, 0x3e00685a, dl)); 3829 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3830 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3831 getF32Constant(DAG, 0x3efb6798, dl)); 3832 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3833 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3834 getF32Constant(DAG, 0x3f88d192, dl)); 3835 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3836 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3837 getF32Constant(DAG, 0x3fc4316c, dl)); 3838 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3839 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3840 getF32Constant(DAG, 0x3f57ce70, dl)); 3841 } 3842 3843 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3844 } 3845 3846 // No special expansion. 3847 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3848 } 3849 3850 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3851 /// limited-precision mode. 3852 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3853 const TargetLowering &TLI) { 3854 if (Op.getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3856 return getLimitedPrecisionExp2(Op, dl, DAG); 3857 3858 // No special expansion. 3859 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3860 } 3861 3862 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3863 /// limited-precision mode with x == 10.0f. 3864 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3865 SelectionDAG &DAG, const TargetLowering &TLI) { 3866 bool IsExp10 = false; 3867 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3869 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3870 APFloat Ten(10.0f); 3871 IsExp10 = LHSC->isExactlyValue(Ten); 3872 } 3873 } 3874 3875 if (IsExp10) { 3876 // Put the exponent in the right bit position for later addition to the 3877 // final result: 3878 // 3879 // #define LOG2OF10 3.3219281f 3880 // t0 = Op * LOG2OF10; 3881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3882 getF32Constant(DAG, 0x40549a78, dl)); 3883 return getLimitedPrecisionExp2(t0, dl, DAG); 3884 } 3885 3886 // No special expansion. 3887 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3888 } 3889 3890 3891 /// ExpandPowI - Expand a llvm.powi intrinsic. 3892 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3893 SelectionDAG &DAG) { 3894 // If RHS is a constant, we can expand this out to a multiplication tree, 3895 // otherwise we end up lowering to a call to __powidf2 (for example). When 3896 // optimizing for size, we only want to do this if the expansion would produce 3897 // a small number of multiplies, otherwise we do the full expansion. 3898 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3899 // Get the exponent as a positive value. 3900 unsigned Val = RHSC->getSExtValue(); 3901 if ((int)Val < 0) Val = -Val; 3902 3903 // powi(x, 0) -> 1.0 3904 if (Val == 0) 3905 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3906 3907 const Function *F = DAG.getMachineFunction().getFunction(); 3908 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3909 // If optimizing for size, don't insert too many multiplies. This 3910 // inserts up to 5 multiplies. 3911 countPopulation(Val) + Log2_32(Val) < 7) { 3912 // We use the simple binary decomposition method to generate the multiply 3913 // sequence. There are more optimal ways to do this (for example, 3914 // powi(x,15) generates one more multiply than it should), but this has 3915 // the benefit of being both really simple and much better than a libcall. 3916 SDValue Res; // Logically starts equal to 1.0 3917 SDValue CurSquare = LHS; 3918 while (Val) { 3919 if (Val & 1) { 3920 if (Res.getNode()) 3921 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3922 else 3923 Res = CurSquare; // 1.0*CurSquare. 3924 } 3925 3926 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3927 CurSquare, CurSquare); 3928 Val >>= 1; 3929 } 3930 3931 // If the original was negative, invert the result, producing 1/(x*x*x). 3932 if (RHSC->getSExtValue() < 0) 3933 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3934 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3935 return Res; 3936 } 3937 } 3938 3939 // Otherwise, expand to a libcall. 3940 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3941 } 3942 3943 // getTruncatedArgReg - Find underlying register used for an truncated 3944 // argument. 3945 static unsigned getTruncatedArgReg(const SDValue &N) { 3946 if (N.getOpcode() != ISD::TRUNCATE) 3947 return 0; 3948 3949 const SDValue &Ext = N.getOperand(0); 3950 if (Ext.getOpcode() == ISD::AssertZext || 3951 Ext.getOpcode() == ISD::AssertSext) { 3952 const SDValue &CFR = Ext.getOperand(0); 3953 if (CFR.getOpcode() == ISD::CopyFromReg) 3954 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3955 if (CFR.getOpcode() == ISD::TRUNCATE) 3956 return getTruncatedArgReg(CFR); 3957 } 3958 return 0; 3959 } 3960 3961 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3962 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3963 /// At the end of instruction selection, they will be inserted to the entry BB. 3964 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3965 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3966 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3967 const Argument *Arg = dyn_cast<Argument>(V); 3968 if (!Arg) 3969 return false; 3970 3971 MachineFunction &MF = DAG.getMachineFunction(); 3972 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3973 3974 // Ignore inlined function arguments here. 3975 // 3976 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3977 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3978 return false; 3979 3980 Optional<MachineOperand> Op; 3981 // Some arguments' frame index is recorded during argument lowering. 3982 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3983 Op = MachineOperand::CreateFI(FI); 3984 3985 if (!Op && N.getNode()) { 3986 unsigned Reg; 3987 if (N.getOpcode() == ISD::CopyFromReg) 3988 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3989 else 3990 Reg = getTruncatedArgReg(N); 3991 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3992 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3993 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3994 if (PR) 3995 Reg = PR; 3996 } 3997 if (Reg) 3998 Op = MachineOperand::CreateReg(Reg, false); 3999 } 4000 4001 if (!Op) { 4002 // Check if ValueMap has reg number. 4003 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4004 if (VMI != FuncInfo.ValueMap.end()) 4005 Op = MachineOperand::CreateReg(VMI->second, false); 4006 } 4007 4008 if (!Op && N.getNode()) 4009 // Check if frame index is available. 4010 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4011 if (FrameIndexSDNode *FINode = 4012 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4013 Op = MachineOperand::CreateFI(FINode->getIndex()); 4014 4015 if (!Op) 4016 return false; 4017 4018 assert(Variable->isValidLocationForIntrinsic(DL) && 4019 "Expected inlined-at fields to agree"); 4020 if (Op->isReg()) 4021 FuncInfo.ArgDbgValues.push_back( 4022 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4023 Op->getReg(), Offset, Variable, Expr)); 4024 else 4025 FuncInfo.ArgDbgValues.push_back( 4026 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4027 .addOperand(*Op) 4028 .addImm(Offset) 4029 .addMetadata(Variable) 4030 .addMetadata(Expr)); 4031 4032 return true; 4033 } 4034 4035 // VisualStudio defines setjmp as _setjmp 4036 #if defined(_MSC_VER) && defined(setjmp) && \ 4037 !defined(setjmp_undefined_for_msvc) 4038 # pragma push_macro("setjmp") 4039 # undef setjmp 4040 # define setjmp_undefined_for_msvc 4041 #endif 4042 4043 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4044 /// we want to emit this as a call to a named external function, return the name 4045 /// otherwise lower it and return null. 4046 const char * 4047 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4049 SDLoc sdl = getCurSDLoc(); 4050 DebugLoc dl = getCurDebugLoc(); 4051 SDValue Res; 4052 4053 switch (Intrinsic) { 4054 default: 4055 // By default, turn this into a target intrinsic node. 4056 visitTargetIntrinsic(I, Intrinsic); 4057 return nullptr; 4058 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4059 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4060 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4061 case Intrinsic::returnaddress: 4062 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4063 getValue(I.getArgOperand(0)))); 4064 return nullptr; 4065 case Intrinsic::frameaddress: 4066 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4067 getValue(I.getArgOperand(0)))); 4068 return nullptr; 4069 case Intrinsic::read_register: { 4070 Value *Reg = I.getArgOperand(0); 4071 SDValue Chain = getRoot(); 4072 SDValue RegName = 4073 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4074 EVT VT = TLI.getValueType(I.getType()); 4075 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4076 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4077 setValue(&I, Res); 4078 DAG.setRoot(Res.getValue(1)); 4079 return nullptr; 4080 } 4081 case Intrinsic::write_register: { 4082 Value *Reg = I.getArgOperand(0); 4083 Value *RegValue = I.getArgOperand(1); 4084 SDValue Chain = getRoot(); 4085 SDValue RegName = 4086 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4087 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4088 RegName, getValue(RegValue))); 4089 return nullptr; 4090 } 4091 case Intrinsic::setjmp: 4092 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4093 case Intrinsic::longjmp: 4094 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4095 case Intrinsic::memcpy: { 4096 // FIXME: this definition of "user defined address space" is x86-specific 4097 // Assert for address < 256 since we support only user defined address 4098 // spaces. 4099 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4100 < 256 && 4101 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4102 < 256 && 4103 "Unknown address space"); 4104 SDValue Op1 = getValue(I.getArgOperand(0)); 4105 SDValue Op2 = getValue(I.getArgOperand(1)); 4106 SDValue Op3 = getValue(I.getArgOperand(2)); 4107 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4108 if (!Align) 4109 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4110 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4111 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4112 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4113 false, isTC, 4114 MachinePointerInfo(I.getArgOperand(0)), 4115 MachinePointerInfo(I.getArgOperand(1))); 4116 updateDAGForMaybeTailCall(MC); 4117 return nullptr; 4118 } 4119 case Intrinsic::memset: { 4120 // FIXME: this definition of "user defined address space" is x86-specific 4121 // Assert for address < 256 since we support only user defined address 4122 // spaces. 4123 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4124 < 256 && 4125 "Unknown address space"); 4126 SDValue Op1 = getValue(I.getArgOperand(0)); 4127 SDValue Op2 = getValue(I.getArgOperand(1)); 4128 SDValue Op3 = getValue(I.getArgOperand(2)); 4129 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4130 if (!Align) 4131 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4132 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4133 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4134 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4135 isTC, MachinePointerInfo(I.getArgOperand(0))); 4136 updateDAGForMaybeTailCall(MS); 4137 return nullptr; 4138 } 4139 case Intrinsic::memmove: { 4140 // FIXME: this definition of "user defined address space" is x86-specific 4141 // Assert for address < 256 since we support only user defined address 4142 // spaces. 4143 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4144 < 256 && 4145 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4146 < 256 && 4147 "Unknown address space"); 4148 SDValue Op1 = getValue(I.getArgOperand(0)); 4149 SDValue Op2 = getValue(I.getArgOperand(1)); 4150 SDValue Op3 = getValue(I.getArgOperand(2)); 4151 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4152 if (!Align) 4153 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4154 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4155 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4156 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4157 isTC, MachinePointerInfo(I.getArgOperand(0)), 4158 MachinePointerInfo(I.getArgOperand(1))); 4159 updateDAGForMaybeTailCall(MM); 4160 return nullptr; 4161 } 4162 case Intrinsic::dbg_declare: { 4163 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4164 DILocalVariable *Variable = DI.getVariable(); 4165 DIExpression *Expression = DI.getExpression(); 4166 const Value *Address = DI.getAddress(); 4167 assert(Variable && "Missing variable"); 4168 if (!Address) { 4169 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4170 return nullptr; 4171 } 4172 4173 // Check if address has undef value. 4174 if (isa<UndefValue>(Address) || 4175 (Address->use_empty() && !isa<Argument>(Address))) { 4176 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4177 return nullptr; 4178 } 4179 4180 SDValue &N = NodeMap[Address]; 4181 if (!N.getNode() && isa<Argument>(Address)) 4182 // Check unused arguments map. 4183 N = UnusedArgNodeMap[Address]; 4184 SDDbgValue *SDV; 4185 if (N.getNode()) { 4186 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4187 Address = BCI->getOperand(0); 4188 // Parameters are handled specially. 4189 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4190 isa<Argument>(Address); 4191 4192 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4193 4194 if (isParameter && !AI) { 4195 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4196 if (FINode) 4197 // Byval parameter. We have a frame index at this point. 4198 SDV = DAG.getFrameIndexDbgValue( 4199 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4200 else { 4201 // Address is an argument, so try to emit its dbg value using 4202 // virtual register info from the FuncInfo.ValueMap. 4203 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4204 N); 4205 return nullptr; 4206 } 4207 } else if (AI) 4208 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4209 true, 0, dl, SDNodeOrder); 4210 else { 4211 // Can't do anything with other non-AI cases yet. 4212 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4213 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4214 DEBUG(Address->dump()); 4215 return nullptr; 4216 } 4217 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4218 } else { 4219 // If Address is an argument then try to emit its dbg value using 4220 // virtual register info from the FuncInfo.ValueMap. 4221 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4222 N)) { 4223 // If variable is pinned by a alloca in dominating bb then 4224 // use StaticAllocaMap. 4225 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4226 if (AI->getParent() != DI.getParent()) { 4227 DenseMap<const AllocaInst*, int>::iterator SI = 4228 FuncInfo.StaticAllocaMap.find(AI); 4229 if (SI != FuncInfo.StaticAllocaMap.end()) { 4230 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4231 0, dl, SDNodeOrder); 4232 DAG.AddDbgValue(SDV, nullptr, false); 4233 return nullptr; 4234 } 4235 } 4236 } 4237 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4238 } 4239 } 4240 return nullptr; 4241 } 4242 case Intrinsic::dbg_value: { 4243 const DbgValueInst &DI = cast<DbgValueInst>(I); 4244 assert(DI.getVariable() && "Missing variable"); 4245 4246 DILocalVariable *Variable = DI.getVariable(); 4247 DIExpression *Expression = DI.getExpression(); 4248 uint64_t Offset = DI.getOffset(); 4249 const Value *V = DI.getValue(); 4250 if (!V) 4251 return nullptr; 4252 4253 SDDbgValue *SDV; 4254 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4255 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4256 SDNodeOrder); 4257 DAG.AddDbgValue(SDV, nullptr, false); 4258 } else { 4259 // Do not use getValue() in here; we don't want to generate code at 4260 // this point if it hasn't been done yet. 4261 SDValue N = NodeMap[V]; 4262 if (!N.getNode() && isa<Argument>(V)) 4263 // Check unused arguments map. 4264 N = UnusedArgNodeMap[V]; 4265 if (N.getNode()) { 4266 // A dbg.value for an alloca is always indirect. 4267 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4268 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4269 IsIndirect, N)) { 4270 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4271 IsIndirect, Offset, dl, SDNodeOrder); 4272 DAG.AddDbgValue(SDV, N.getNode(), false); 4273 } 4274 } else if (!V->use_empty() ) { 4275 // Do not call getValue(V) yet, as we don't want to generate code. 4276 // Remember it for later. 4277 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4278 DanglingDebugInfoMap[V] = DDI; 4279 } else { 4280 // We may expand this to cover more cases. One case where we have no 4281 // data available is an unreferenced parameter. 4282 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4283 } 4284 } 4285 4286 // Build a debug info table entry. 4287 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4288 V = BCI->getOperand(0); 4289 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4290 // Don't handle byval struct arguments or VLAs, for example. 4291 if (!AI) { 4292 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4293 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4294 return nullptr; 4295 } 4296 DenseMap<const AllocaInst*, int>::iterator SI = 4297 FuncInfo.StaticAllocaMap.find(AI); 4298 if (SI == FuncInfo.StaticAllocaMap.end()) 4299 return nullptr; // VLAs. 4300 return nullptr; 4301 } 4302 4303 case Intrinsic::eh_typeid_for: { 4304 // Find the type id for the given typeinfo. 4305 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4306 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4307 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4308 setValue(&I, Res); 4309 return nullptr; 4310 } 4311 4312 case Intrinsic::eh_return_i32: 4313 case Intrinsic::eh_return_i64: 4314 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4315 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4316 MVT::Other, 4317 getControlRoot(), 4318 getValue(I.getArgOperand(0)), 4319 getValue(I.getArgOperand(1)))); 4320 return nullptr; 4321 case Intrinsic::eh_unwind_init: 4322 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4323 return nullptr; 4324 case Intrinsic::eh_dwarf_cfa: { 4325 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4326 TLI.getPointerTy()); 4327 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4328 CfaArg.getValueType(), 4329 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4330 CfaArg.getValueType()), 4331 CfaArg); 4332 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4333 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4334 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4335 FA, Offset)); 4336 return nullptr; 4337 } 4338 case Intrinsic::eh_sjlj_callsite: { 4339 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4340 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4341 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4342 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4343 4344 MMI.setCurrentCallSite(CI->getZExtValue()); 4345 return nullptr; 4346 } 4347 case Intrinsic::eh_sjlj_functioncontext: { 4348 // Get and store the index of the function context. 4349 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4350 AllocaInst *FnCtx = 4351 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4352 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4353 MFI->setFunctionContextIndex(FI); 4354 return nullptr; 4355 } 4356 case Intrinsic::eh_sjlj_setjmp: { 4357 SDValue Ops[2]; 4358 Ops[0] = getRoot(); 4359 Ops[1] = getValue(I.getArgOperand(0)); 4360 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4361 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4362 setValue(&I, Op.getValue(0)); 4363 DAG.setRoot(Op.getValue(1)); 4364 return nullptr; 4365 } 4366 case Intrinsic::eh_sjlj_longjmp: { 4367 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4368 getRoot(), getValue(I.getArgOperand(0)))); 4369 return nullptr; 4370 } 4371 4372 case Intrinsic::masked_gather: 4373 visitMaskedGather(I); 4374 return nullptr; 4375 case Intrinsic::masked_load: 4376 visitMaskedLoad(I); 4377 return nullptr; 4378 case Intrinsic::masked_scatter: 4379 visitMaskedScatter(I); 4380 return nullptr; 4381 case Intrinsic::masked_store: 4382 visitMaskedStore(I); 4383 return nullptr; 4384 case Intrinsic::x86_mmx_pslli_w: 4385 case Intrinsic::x86_mmx_pslli_d: 4386 case Intrinsic::x86_mmx_pslli_q: 4387 case Intrinsic::x86_mmx_psrli_w: 4388 case Intrinsic::x86_mmx_psrli_d: 4389 case Intrinsic::x86_mmx_psrli_q: 4390 case Intrinsic::x86_mmx_psrai_w: 4391 case Intrinsic::x86_mmx_psrai_d: { 4392 SDValue ShAmt = getValue(I.getArgOperand(1)); 4393 if (isa<ConstantSDNode>(ShAmt)) { 4394 visitTargetIntrinsic(I, Intrinsic); 4395 return nullptr; 4396 } 4397 unsigned NewIntrinsic = 0; 4398 EVT ShAmtVT = MVT::v2i32; 4399 switch (Intrinsic) { 4400 case Intrinsic::x86_mmx_pslli_w: 4401 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4402 break; 4403 case Intrinsic::x86_mmx_pslli_d: 4404 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4405 break; 4406 case Intrinsic::x86_mmx_pslli_q: 4407 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4408 break; 4409 case Intrinsic::x86_mmx_psrli_w: 4410 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4411 break; 4412 case Intrinsic::x86_mmx_psrli_d: 4413 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4414 break; 4415 case Intrinsic::x86_mmx_psrli_q: 4416 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4417 break; 4418 case Intrinsic::x86_mmx_psrai_w: 4419 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4420 break; 4421 case Intrinsic::x86_mmx_psrai_d: 4422 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4423 break; 4424 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4425 } 4426 4427 // The vector shift intrinsics with scalars uses 32b shift amounts but 4428 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4429 // to be zero. 4430 // We must do this early because v2i32 is not a legal type. 4431 SDValue ShOps[2]; 4432 ShOps[0] = ShAmt; 4433 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4434 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4435 EVT DestVT = TLI.getValueType(I.getType()); 4436 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4437 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4438 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4439 getValue(I.getArgOperand(0)), ShAmt); 4440 setValue(&I, Res); 4441 return nullptr; 4442 } 4443 case Intrinsic::convertff: 4444 case Intrinsic::convertfsi: 4445 case Intrinsic::convertfui: 4446 case Intrinsic::convertsif: 4447 case Intrinsic::convertuif: 4448 case Intrinsic::convertss: 4449 case Intrinsic::convertsu: 4450 case Intrinsic::convertus: 4451 case Intrinsic::convertuu: { 4452 ISD::CvtCode Code = ISD::CVT_INVALID; 4453 switch (Intrinsic) { 4454 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4455 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4456 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4457 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4458 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4459 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4460 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4461 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4462 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4463 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4464 } 4465 EVT DestVT = TLI.getValueType(I.getType()); 4466 const Value *Op1 = I.getArgOperand(0); 4467 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4468 DAG.getValueType(DestVT), 4469 DAG.getValueType(getValue(Op1).getValueType()), 4470 getValue(I.getArgOperand(1)), 4471 getValue(I.getArgOperand(2)), 4472 Code); 4473 setValue(&I, Res); 4474 return nullptr; 4475 } 4476 case Intrinsic::powi: 4477 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4478 getValue(I.getArgOperand(1)), DAG)); 4479 return nullptr; 4480 case Intrinsic::log: 4481 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4482 return nullptr; 4483 case Intrinsic::log2: 4484 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4485 return nullptr; 4486 case Intrinsic::log10: 4487 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4488 return nullptr; 4489 case Intrinsic::exp: 4490 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4491 return nullptr; 4492 case Intrinsic::exp2: 4493 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4494 return nullptr; 4495 case Intrinsic::pow: 4496 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4497 getValue(I.getArgOperand(1)), DAG, TLI)); 4498 return nullptr; 4499 case Intrinsic::sqrt: 4500 case Intrinsic::fabs: 4501 case Intrinsic::sin: 4502 case Intrinsic::cos: 4503 case Intrinsic::floor: 4504 case Intrinsic::ceil: 4505 case Intrinsic::trunc: 4506 case Intrinsic::rint: 4507 case Intrinsic::nearbyint: 4508 case Intrinsic::round: { 4509 unsigned Opcode; 4510 switch (Intrinsic) { 4511 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4512 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4513 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4514 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4515 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4516 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4517 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4518 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4519 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4520 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4521 case Intrinsic::round: Opcode = ISD::FROUND; break; 4522 } 4523 4524 setValue(&I, DAG.getNode(Opcode, sdl, 4525 getValue(I.getArgOperand(0)).getValueType(), 4526 getValue(I.getArgOperand(0)))); 4527 return nullptr; 4528 } 4529 case Intrinsic::minnum: 4530 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4531 getValue(I.getArgOperand(0)).getValueType(), 4532 getValue(I.getArgOperand(0)), 4533 getValue(I.getArgOperand(1)))); 4534 return nullptr; 4535 case Intrinsic::maxnum: 4536 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4537 getValue(I.getArgOperand(0)).getValueType(), 4538 getValue(I.getArgOperand(0)), 4539 getValue(I.getArgOperand(1)))); 4540 return nullptr; 4541 case Intrinsic::copysign: 4542 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4543 getValue(I.getArgOperand(0)).getValueType(), 4544 getValue(I.getArgOperand(0)), 4545 getValue(I.getArgOperand(1)))); 4546 return nullptr; 4547 case Intrinsic::fma: 4548 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4549 getValue(I.getArgOperand(0)).getValueType(), 4550 getValue(I.getArgOperand(0)), 4551 getValue(I.getArgOperand(1)), 4552 getValue(I.getArgOperand(2)))); 4553 return nullptr; 4554 case Intrinsic::fmuladd: { 4555 EVT VT = TLI.getValueType(I.getType()); 4556 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4557 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4558 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4559 getValue(I.getArgOperand(0)).getValueType(), 4560 getValue(I.getArgOperand(0)), 4561 getValue(I.getArgOperand(1)), 4562 getValue(I.getArgOperand(2)))); 4563 } else { 4564 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4565 getValue(I.getArgOperand(0)).getValueType(), 4566 getValue(I.getArgOperand(0)), 4567 getValue(I.getArgOperand(1))); 4568 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4569 getValue(I.getArgOperand(0)).getValueType(), 4570 Mul, 4571 getValue(I.getArgOperand(2))); 4572 setValue(&I, Add); 4573 } 4574 return nullptr; 4575 } 4576 case Intrinsic::convert_to_fp16: 4577 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4578 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4579 getValue(I.getArgOperand(0)), 4580 DAG.getTargetConstant(0, sdl, 4581 MVT::i32)))); 4582 return nullptr; 4583 case Intrinsic::convert_from_fp16: 4584 setValue(&I, 4585 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4586 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4587 getValue(I.getArgOperand(0))))); 4588 return nullptr; 4589 case Intrinsic::pcmarker: { 4590 SDValue Tmp = getValue(I.getArgOperand(0)); 4591 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4592 return nullptr; 4593 } 4594 case Intrinsic::readcyclecounter: { 4595 SDValue Op = getRoot(); 4596 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4597 DAG.getVTList(MVT::i64, MVT::Other), Op); 4598 setValue(&I, Res); 4599 DAG.setRoot(Res.getValue(1)); 4600 return nullptr; 4601 } 4602 case Intrinsic::bswap: 4603 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4604 getValue(I.getArgOperand(0)).getValueType(), 4605 getValue(I.getArgOperand(0)))); 4606 return nullptr; 4607 case Intrinsic::cttz: { 4608 SDValue Arg = getValue(I.getArgOperand(0)); 4609 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4610 EVT Ty = Arg.getValueType(); 4611 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4612 sdl, Ty, Arg)); 4613 return nullptr; 4614 } 4615 case Intrinsic::ctlz: { 4616 SDValue Arg = getValue(I.getArgOperand(0)); 4617 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4618 EVT Ty = Arg.getValueType(); 4619 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4620 sdl, Ty, Arg)); 4621 return nullptr; 4622 } 4623 case Intrinsic::ctpop: { 4624 SDValue Arg = getValue(I.getArgOperand(0)); 4625 EVT Ty = Arg.getValueType(); 4626 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4627 return nullptr; 4628 } 4629 case Intrinsic::stacksave: { 4630 SDValue Op = getRoot(); 4631 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4632 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4633 setValue(&I, Res); 4634 DAG.setRoot(Res.getValue(1)); 4635 return nullptr; 4636 } 4637 case Intrinsic::stackrestore: { 4638 Res = getValue(I.getArgOperand(0)); 4639 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4640 return nullptr; 4641 } 4642 case Intrinsic::stackprotector: { 4643 // Emit code into the DAG to store the stack guard onto the stack. 4644 MachineFunction &MF = DAG.getMachineFunction(); 4645 MachineFrameInfo *MFI = MF.getFrameInfo(); 4646 EVT PtrTy = TLI.getPointerTy(); 4647 SDValue Src, Chain = getRoot(); 4648 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4649 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4650 4651 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4652 // global variable __stack_chk_guard. 4653 if (!GV) 4654 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4655 if (BC->getOpcode() == Instruction::BitCast) 4656 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4657 4658 if (GV && TLI.useLoadStackGuardNode()) { 4659 // Emit a LOAD_STACK_GUARD node. 4660 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4661 sdl, PtrTy, Chain); 4662 MachinePointerInfo MPInfo(GV); 4663 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4664 unsigned Flags = MachineMemOperand::MOLoad | 4665 MachineMemOperand::MOInvariant; 4666 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4667 PtrTy.getSizeInBits() / 8, 4668 DAG.getEVTAlignment(PtrTy)); 4669 Node->setMemRefs(MemRefs, MemRefs + 1); 4670 4671 // Copy the guard value to a virtual register so that it can be 4672 // retrieved in the epilogue. 4673 Src = SDValue(Node, 0); 4674 const TargetRegisterClass *RC = 4675 TLI.getRegClassFor(Src.getSimpleValueType()); 4676 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4677 4678 SPDescriptor.setGuardReg(Reg); 4679 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4680 } else { 4681 Src = getValue(I.getArgOperand(0)); // The guard's value. 4682 } 4683 4684 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4685 4686 int FI = FuncInfo.StaticAllocaMap[Slot]; 4687 MFI->setStackProtectorIndex(FI); 4688 4689 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4690 4691 // Store the stack protector onto the stack. 4692 Res = DAG.getStore(Chain, sdl, Src, FIN, 4693 MachinePointerInfo::getFixedStack(FI), 4694 true, false, 0); 4695 setValue(&I, Res); 4696 DAG.setRoot(Res); 4697 return nullptr; 4698 } 4699 case Intrinsic::objectsize: { 4700 // If we don't know by now, we're never going to know. 4701 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4702 4703 assert(CI && "Non-constant type in __builtin_object_size?"); 4704 4705 SDValue Arg = getValue(I.getCalledValue()); 4706 EVT Ty = Arg.getValueType(); 4707 4708 if (CI->isZero()) 4709 Res = DAG.getConstant(-1ULL, sdl, Ty); 4710 else 4711 Res = DAG.getConstant(0, sdl, Ty); 4712 4713 setValue(&I, Res); 4714 return nullptr; 4715 } 4716 case Intrinsic::annotation: 4717 case Intrinsic::ptr_annotation: 4718 // Drop the intrinsic, but forward the value 4719 setValue(&I, getValue(I.getOperand(0))); 4720 return nullptr; 4721 case Intrinsic::assume: 4722 case Intrinsic::var_annotation: 4723 // Discard annotate attributes and assumptions 4724 return nullptr; 4725 4726 case Intrinsic::init_trampoline: { 4727 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4728 4729 SDValue Ops[6]; 4730 Ops[0] = getRoot(); 4731 Ops[1] = getValue(I.getArgOperand(0)); 4732 Ops[2] = getValue(I.getArgOperand(1)); 4733 Ops[3] = getValue(I.getArgOperand(2)); 4734 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4735 Ops[5] = DAG.getSrcValue(F); 4736 4737 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4738 4739 DAG.setRoot(Res); 4740 return nullptr; 4741 } 4742 case Intrinsic::adjust_trampoline: { 4743 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4744 TLI.getPointerTy(), 4745 getValue(I.getArgOperand(0)))); 4746 return nullptr; 4747 } 4748 case Intrinsic::gcroot: 4749 if (GFI) { 4750 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4751 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4752 4753 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4754 GFI->addStackRoot(FI->getIndex(), TypeMap); 4755 } 4756 return nullptr; 4757 case Intrinsic::gcread: 4758 case Intrinsic::gcwrite: 4759 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4760 case Intrinsic::flt_rounds: 4761 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4762 return nullptr; 4763 4764 case Intrinsic::expect: { 4765 // Just replace __builtin_expect(exp, c) with EXP. 4766 setValue(&I, getValue(I.getArgOperand(0))); 4767 return nullptr; 4768 } 4769 4770 case Intrinsic::debugtrap: 4771 case Intrinsic::trap: { 4772 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4773 if (TrapFuncName.empty()) { 4774 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4775 ISD::TRAP : ISD::DEBUGTRAP; 4776 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4777 return nullptr; 4778 } 4779 TargetLowering::ArgListTy Args; 4780 4781 TargetLowering::CallLoweringInfo CLI(DAG); 4782 CLI.setDebugLoc(sdl).setChain(getRoot()) 4783 .setCallee(CallingConv::C, I.getType(), 4784 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4785 std::move(Args), 0); 4786 4787 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4788 DAG.setRoot(Result.second); 4789 return nullptr; 4790 } 4791 4792 case Intrinsic::uadd_with_overflow: 4793 case Intrinsic::sadd_with_overflow: 4794 case Intrinsic::usub_with_overflow: 4795 case Intrinsic::ssub_with_overflow: 4796 case Intrinsic::umul_with_overflow: 4797 case Intrinsic::smul_with_overflow: { 4798 ISD::NodeType Op; 4799 switch (Intrinsic) { 4800 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4801 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4802 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4803 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4804 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4805 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4806 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4807 } 4808 SDValue Op1 = getValue(I.getArgOperand(0)); 4809 SDValue Op2 = getValue(I.getArgOperand(1)); 4810 4811 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4812 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4813 return nullptr; 4814 } 4815 case Intrinsic::prefetch: { 4816 SDValue Ops[5]; 4817 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4818 Ops[0] = getRoot(); 4819 Ops[1] = getValue(I.getArgOperand(0)); 4820 Ops[2] = getValue(I.getArgOperand(1)); 4821 Ops[3] = getValue(I.getArgOperand(2)); 4822 Ops[4] = getValue(I.getArgOperand(3)); 4823 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4824 DAG.getVTList(MVT::Other), Ops, 4825 EVT::getIntegerVT(*Context, 8), 4826 MachinePointerInfo(I.getArgOperand(0)), 4827 0, /* align */ 4828 false, /* volatile */ 4829 rw==0, /* read */ 4830 rw==1)); /* write */ 4831 return nullptr; 4832 } 4833 case Intrinsic::lifetime_start: 4834 case Intrinsic::lifetime_end: { 4835 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4836 // Stack coloring is not enabled in O0, discard region information. 4837 if (TM.getOptLevel() == CodeGenOpt::None) 4838 return nullptr; 4839 4840 SmallVector<Value *, 4> Allocas; 4841 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4842 4843 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4844 E = Allocas.end(); Object != E; ++Object) { 4845 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4846 4847 // Could not find an Alloca. 4848 if (!LifetimeObject) 4849 continue; 4850 4851 // First check that the Alloca is static, otherwise it won't have a 4852 // valid frame index. 4853 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4854 if (SI == FuncInfo.StaticAllocaMap.end()) 4855 return nullptr; 4856 4857 int FI = SI->second; 4858 4859 SDValue Ops[2]; 4860 Ops[0] = getRoot(); 4861 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4862 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4863 4864 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4865 DAG.setRoot(Res); 4866 } 4867 return nullptr; 4868 } 4869 case Intrinsic::invariant_start: 4870 // Discard region information. 4871 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4872 return nullptr; 4873 case Intrinsic::invariant_end: 4874 // Discard region information. 4875 return nullptr; 4876 case Intrinsic::stackprotectorcheck: { 4877 // Do not actually emit anything for this basic block. Instead we initialize 4878 // the stack protector descriptor and export the guard variable so we can 4879 // access it in FinishBasicBlock. 4880 const BasicBlock *BB = I.getParent(); 4881 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4882 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4883 4884 // Flush our exports since we are going to process a terminator. 4885 (void)getControlRoot(); 4886 return nullptr; 4887 } 4888 case Intrinsic::clear_cache: 4889 return TLI.getClearCacheBuiltinName(); 4890 case Intrinsic::eh_actions: 4891 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4892 return nullptr; 4893 case Intrinsic::donothing: 4894 // ignore 4895 return nullptr; 4896 case Intrinsic::experimental_stackmap: { 4897 visitStackmap(I); 4898 return nullptr; 4899 } 4900 case Intrinsic::experimental_patchpoint_void: 4901 case Intrinsic::experimental_patchpoint_i64: { 4902 visitPatchpoint(&I); 4903 return nullptr; 4904 } 4905 case Intrinsic::experimental_gc_statepoint: { 4906 visitStatepoint(I); 4907 return nullptr; 4908 } 4909 case Intrinsic::experimental_gc_result_int: 4910 case Intrinsic::experimental_gc_result_float: 4911 case Intrinsic::experimental_gc_result_ptr: 4912 case Intrinsic::experimental_gc_result: { 4913 visitGCResult(I); 4914 return nullptr; 4915 } 4916 case Intrinsic::experimental_gc_relocate: { 4917 visitGCRelocate(I); 4918 return nullptr; 4919 } 4920 case Intrinsic::instrprof_increment: 4921 llvm_unreachable("instrprof failed to lower an increment"); 4922 4923 case Intrinsic::frameescape: { 4924 MachineFunction &MF = DAG.getMachineFunction(); 4925 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4926 4927 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4928 // is the same on all targets. 4929 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4930 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4931 if (isa<ConstantPointerNull>(Arg)) 4932 continue; // Skip null pointers. They represent a hole in index space. 4933 AllocaInst *Slot = cast<AllocaInst>(Arg); 4934 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4935 "can only escape static allocas"); 4936 int FI = FuncInfo.StaticAllocaMap[Slot]; 4937 MCSymbol *FrameAllocSym = 4938 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4939 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4941 TII->get(TargetOpcode::FRAME_ALLOC)) 4942 .addSym(FrameAllocSym) 4943 .addFrameIndex(FI); 4944 } 4945 4946 return nullptr; 4947 } 4948 4949 case Intrinsic::framerecover: { 4950 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4951 MachineFunction &MF = DAG.getMachineFunction(); 4952 MVT PtrVT = TLI.getPointerTy(0); 4953 4954 // Get the symbol that defines the frame offset. 4955 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4956 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4957 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4958 MCSymbol *FrameAllocSym = 4959 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4960 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4961 4962 // Create a TargetExternalSymbol for the label to avoid any target lowering 4963 // that would make this PC relative. 4964 StringRef Name = FrameAllocSym->getName(); 4965 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4966 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4967 SDValue OffsetVal = 4968 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4969 4970 // Add the offset to the FP. 4971 Value *FP = I.getArgOperand(1); 4972 SDValue FPVal = getValue(FP); 4973 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4974 setValue(&I, Add); 4975 4976 return nullptr; 4977 } 4978 case Intrinsic::eh_begincatch: 4979 case Intrinsic::eh_endcatch: 4980 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4981 case Intrinsic::eh_exceptioncode: { 4982 unsigned Reg = TLI.getExceptionPointerRegister(); 4983 assert(Reg && "cannot get exception code on this platform"); 4984 MVT PtrVT = TLI.getPointerTy(); 4985 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4986 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 4987 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4988 SDValue N = 4989 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4990 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4991 setValue(&I, N); 4992 return nullptr; 4993 } 4994 } 4995 } 4996 4997 std::pair<SDValue, SDValue> 4998 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4999 MachineBasicBlock *LandingPad) { 5000 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5001 MCSymbol *BeginLabel = nullptr; 5002 5003 if (LandingPad) { 5004 // Insert a label before the invoke call to mark the try range. This can be 5005 // used to detect deletion of the invoke via the MachineModuleInfo. 5006 BeginLabel = MMI.getContext().createTempSymbol(); 5007 5008 // For SjLj, keep track of which landing pads go with which invokes 5009 // so as to maintain the ordering of pads in the LSDA. 5010 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5011 if (CallSiteIndex) { 5012 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5013 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5014 5015 // Now that the call site is handled, stop tracking it. 5016 MMI.setCurrentCallSite(0); 5017 } 5018 5019 // Both PendingLoads and PendingExports must be flushed here; 5020 // this call might not return. 5021 (void)getRoot(); 5022 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5023 5024 CLI.setChain(getRoot()); 5025 } 5026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5027 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5028 5029 assert((CLI.IsTailCall || Result.second.getNode()) && 5030 "Non-null chain expected with non-tail call!"); 5031 assert((Result.second.getNode() || !Result.first.getNode()) && 5032 "Null value expected with tail call!"); 5033 5034 if (!Result.second.getNode()) { 5035 // As a special case, a null chain means that a tail call has been emitted 5036 // and the DAG root is already updated. 5037 HasTailCall = true; 5038 5039 // Since there's no actual continuation from this block, nothing can be 5040 // relying on us setting vregs for them. 5041 PendingExports.clear(); 5042 } else { 5043 DAG.setRoot(Result.second); 5044 } 5045 5046 if (LandingPad) { 5047 // Insert a label at the end of the invoke call to mark the try range. This 5048 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5049 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5050 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5051 5052 // Inform MachineModuleInfo of range. 5053 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5054 } 5055 5056 return Result; 5057 } 5058 5059 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5060 bool isTailCall, 5061 MachineBasicBlock *LandingPad) { 5062 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5063 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5064 Type *RetTy = FTy->getReturnType(); 5065 5066 TargetLowering::ArgListTy Args; 5067 TargetLowering::ArgListEntry Entry; 5068 Args.reserve(CS.arg_size()); 5069 5070 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5071 i != e; ++i) { 5072 const Value *V = *i; 5073 5074 // Skip empty types 5075 if (V->getType()->isEmptyTy()) 5076 continue; 5077 5078 SDValue ArgNode = getValue(V); 5079 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5080 5081 // Skip the first return-type Attribute to get to params. 5082 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5083 Args.push_back(Entry); 5084 5085 // If we have an explicit sret argument that is an Instruction, (i.e., it 5086 // might point to function-local memory), we can't meaningfully tail-call. 5087 if (Entry.isSRet && isa<Instruction>(V)) 5088 isTailCall = false; 5089 } 5090 5091 // Check if target-independent constraints permit a tail call here. 5092 // Target-dependent constraints are checked within TLI->LowerCallTo. 5093 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5094 isTailCall = false; 5095 5096 TargetLowering::CallLoweringInfo CLI(DAG); 5097 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5098 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5099 .setTailCall(isTailCall); 5100 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5101 5102 if (Result.first.getNode()) 5103 setValue(CS.getInstruction(), Result.first); 5104 } 5105 5106 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5107 /// value is equal or not-equal to zero. 5108 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5109 for (const User *U : V->users()) { 5110 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5111 if (IC->isEquality()) 5112 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5113 if (C->isNullValue()) 5114 continue; 5115 // Unknown instruction. 5116 return false; 5117 } 5118 return true; 5119 } 5120 5121 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5122 Type *LoadTy, 5123 SelectionDAGBuilder &Builder) { 5124 5125 // Check to see if this load can be trivially constant folded, e.g. if the 5126 // input is from a string literal. 5127 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5128 // Cast pointer to the type we really want to load. 5129 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5130 PointerType::getUnqual(LoadTy)); 5131 5132 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5133 const_cast<Constant *>(LoadInput), *Builder.DL)) 5134 return Builder.getValue(LoadCst); 5135 } 5136 5137 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5138 // still constant memory, the input chain can be the entry node. 5139 SDValue Root; 5140 bool ConstantMemory = false; 5141 5142 // Do not serialize (non-volatile) loads of constant memory with anything. 5143 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5144 Root = Builder.DAG.getEntryNode(); 5145 ConstantMemory = true; 5146 } else { 5147 // Do not serialize non-volatile loads against each other. 5148 Root = Builder.DAG.getRoot(); 5149 } 5150 5151 SDValue Ptr = Builder.getValue(PtrVal); 5152 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5153 Ptr, MachinePointerInfo(PtrVal), 5154 false /*volatile*/, 5155 false /*nontemporal*/, 5156 false /*isinvariant*/, 1 /* align=1 */); 5157 5158 if (!ConstantMemory) 5159 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5160 return LoadVal; 5161 } 5162 5163 /// processIntegerCallValue - Record the value for an instruction that 5164 /// produces an integer result, converting the type where necessary. 5165 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5166 SDValue Value, 5167 bool IsSigned) { 5168 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5169 if (IsSigned) 5170 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5171 else 5172 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5173 setValue(&I, Value); 5174 } 5175 5176 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5177 /// If so, return true and lower it, otherwise return false and it will be 5178 /// lowered like a normal call. 5179 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5180 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5181 if (I.getNumArgOperands() != 3) 5182 return false; 5183 5184 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5185 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5186 !I.getArgOperand(2)->getType()->isIntegerTy() || 5187 !I.getType()->isIntegerTy()) 5188 return false; 5189 5190 const Value *Size = I.getArgOperand(2); 5191 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5192 if (CSize && CSize->getZExtValue() == 0) { 5193 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5194 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5195 return true; 5196 } 5197 5198 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5199 std::pair<SDValue, SDValue> Res = 5200 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5201 getValue(LHS), getValue(RHS), getValue(Size), 5202 MachinePointerInfo(LHS), 5203 MachinePointerInfo(RHS)); 5204 if (Res.first.getNode()) { 5205 processIntegerCallValue(I, Res.first, true); 5206 PendingLoads.push_back(Res.second); 5207 return true; 5208 } 5209 5210 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5211 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5212 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5213 bool ActuallyDoIt = true; 5214 MVT LoadVT; 5215 Type *LoadTy; 5216 switch (CSize->getZExtValue()) { 5217 default: 5218 LoadVT = MVT::Other; 5219 LoadTy = nullptr; 5220 ActuallyDoIt = false; 5221 break; 5222 case 2: 5223 LoadVT = MVT::i16; 5224 LoadTy = Type::getInt16Ty(CSize->getContext()); 5225 break; 5226 case 4: 5227 LoadVT = MVT::i32; 5228 LoadTy = Type::getInt32Ty(CSize->getContext()); 5229 break; 5230 case 8: 5231 LoadVT = MVT::i64; 5232 LoadTy = Type::getInt64Ty(CSize->getContext()); 5233 break; 5234 /* 5235 case 16: 5236 LoadVT = MVT::v4i32; 5237 LoadTy = Type::getInt32Ty(CSize->getContext()); 5238 LoadTy = VectorType::get(LoadTy, 4); 5239 break; 5240 */ 5241 } 5242 5243 // This turns into unaligned loads. We only do this if the target natively 5244 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5245 // we'll only produce a small number of byte loads. 5246 5247 // Require that we can find a legal MVT, and only do this if the target 5248 // supports unaligned loads of that type. Expanding into byte loads would 5249 // bloat the code. 5250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5251 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5252 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5253 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5254 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5255 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5256 // TODO: Check alignment of src and dest ptrs. 5257 if (!TLI.isTypeLegal(LoadVT) || 5258 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5259 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5260 ActuallyDoIt = false; 5261 } 5262 5263 if (ActuallyDoIt) { 5264 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5265 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5266 5267 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5268 ISD::SETNE); 5269 processIntegerCallValue(I, Res, false); 5270 return true; 5271 } 5272 } 5273 5274 5275 return false; 5276 } 5277 5278 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5279 /// form. If so, return true and lower it, otherwise return false and it 5280 /// will be lowered like a normal call. 5281 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5282 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5283 if (I.getNumArgOperands() != 3) 5284 return false; 5285 5286 const Value *Src = I.getArgOperand(0); 5287 const Value *Char = I.getArgOperand(1); 5288 const Value *Length = I.getArgOperand(2); 5289 if (!Src->getType()->isPointerTy() || 5290 !Char->getType()->isIntegerTy() || 5291 !Length->getType()->isIntegerTy() || 5292 !I.getType()->isPointerTy()) 5293 return false; 5294 5295 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5296 std::pair<SDValue, SDValue> Res = 5297 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5298 getValue(Src), getValue(Char), getValue(Length), 5299 MachinePointerInfo(Src)); 5300 if (Res.first.getNode()) { 5301 setValue(&I, Res.first); 5302 PendingLoads.push_back(Res.second); 5303 return true; 5304 } 5305 5306 return false; 5307 } 5308 5309 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5310 /// optimized form. If so, return true and lower it, otherwise return false 5311 /// and it will be lowered like a normal call. 5312 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5313 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5314 if (I.getNumArgOperands() != 2) 5315 return false; 5316 5317 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5318 if (!Arg0->getType()->isPointerTy() || 5319 !Arg1->getType()->isPointerTy() || 5320 !I.getType()->isPointerTy()) 5321 return false; 5322 5323 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5324 std::pair<SDValue, SDValue> Res = 5325 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5326 getValue(Arg0), getValue(Arg1), 5327 MachinePointerInfo(Arg0), 5328 MachinePointerInfo(Arg1), isStpcpy); 5329 if (Res.first.getNode()) { 5330 setValue(&I, Res.first); 5331 DAG.setRoot(Res.second); 5332 return true; 5333 } 5334 5335 return false; 5336 } 5337 5338 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5339 /// If so, return true and lower it, otherwise return false and it will be 5340 /// lowered like a normal call. 5341 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5342 // Verify that the prototype makes sense. int strcmp(void*,void*) 5343 if (I.getNumArgOperands() != 2) 5344 return false; 5345 5346 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5347 if (!Arg0->getType()->isPointerTy() || 5348 !Arg1->getType()->isPointerTy() || 5349 !I.getType()->isIntegerTy()) 5350 return false; 5351 5352 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5353 std::pair<SDValue, SDValue> Res = 5354 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5355 getValue(Arg0), getValue(Arg1), 5356 MachinePointerInfo(Arg0), 5357 MachinePointerInfo(Arg1)); 5358 if (Res.first.getNode()) { 5359 processIntegerCallValue(I, Res.first, true); 5360 PendingLoads.push_back(Res.second); 5361 return true; 5362 } 5363 5364 return false; 5365 } 5366 5367 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5368 /// form. If so, return true and lower it, otherwise return false and it 5369 /// will be lowered like a normal call. 5370 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5371 // Verify that the prototype makes sense. size_t strlen(char *) 5372 if (I.getNumArgOperands() != 1) 5373 return false; 5374 5375 const Value *Arg0 = I.getArgOperand(0); 5376 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5377 return false; 5378 5379 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5380 std::pair<SDValue, SDValue> Res = 5381 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5382 getValue(Arg0), MachinePointerInfo(Arg0)); 5383 if (Res.first.getNode()) { 5384 processIntegerCallValue(I, Res.first, false); 5385 PendingLoads.push_back(Res.second); 5386 return true; 5387 } 5388 5389 return false; 5390 } 5391 5392 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5393 /// form. If so, return true and lower it, otherwise return false and it 5394 /// will be lowered like a normal call. 5395 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5396 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5397 if (I.getNumArgOperands() != 2) 5398 return false; 5399 5400 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5401 if (!Arg0->getType()->isPointerTy() || 5402 !Arg1->getType()->isIntegerTy() || 5403 !I.getType()->isIntegerTy()) 5404 return false; 5405 5406 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5407 std::pair<SDValue, SDValue> Res = 5408 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5409 getValue(Arg0), getValue(Arg1), 5410 MachinePointerInfo(Arg0)); 5411 if (Res.first.getNode()) { 5412 processIntegerCallValue(I, Res.first, false); 5413 PendingLoads.push_back(Res.second); 5414 return true; 5415 } 5416 5417 return false; 5418 } 5419 5420 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5421 /// operation (as expected), translate it to an SDNode with the specified opcode 5422 /// and return true. 5423 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5424 unsigned Opcode) { 5425 // Sanity check that it really is a unary floating-point call. 5426 if (I.getNumArgOperands() != 1 || 5427 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5428 I.getType() != I.getArgOperand(0)->getType() || 5429 !I.onlyReadsMemory()) 5430 return false; 5431 5432 SDValue Tmp = getValue(I.getArgOperand(0)); 5433 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5434 return true; 5435 } 5436 5437 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5438 /// operation (as expected), translate it to an SDNode with the specified opcode 5439 /// and return true. 5440 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5441 unsigned Opcode) { 5442 // Sanity check that it really is a binary floating-point call. 5443 if (I.getNumArgOperands() != 2 || 5444 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5445 I.getType() != I.getArgOperand(0)->getType() || 5446 I.getType() != I.getArgOperand(1)->getType() || 5447 !I.onlyReadsMemory()) 5448 return false; 5449 5450 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5451 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5452 EVT VT = Tmp0.getValueType(); 5453 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5454 return true; 5455 } 5456 5457 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5458 // Handle inline assembly differently. 5459 if (isa<InlineAsm>(I.getCalledValue())) { 5460 visitInlineAsm(&I); 5461 return; 5462 } 5463 5464 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5465 ComputeUsesVAFloatArgument(I, &MMI); 5466 5467 const char *RenameFn = nullptr; 5468 if (Function *F = I.getCalledFunction()) { 5469 if (F->isDeclaration()) { 5470 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5471 if (unsigned IID = II->getIntrinsicID(F)) { 5472 RenameFn = visitIntrinsicCall(I, IID); 5473 if (!RenameFn) 5474 return; 5475 } 5476 } 5477 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5478 RenameFn = visitIntrinsicCall(I, IID); 5479 if (!RenameFn) 5480 return; 5481 } 5482 } 5483 5484 // Check for well-known libc/libm calls. If the function is internal, it 5485 // can't be a library call. 5486 LibFunc::Func Func; 5487 if (!F->hasLocalLinkage() && F->hasName() && 5488 LibInfo->getLibFunc(F->getName(), Func) && 5489 LibInfo->hasOptimizedCodeGen(Func)) { 5490 switch (Func) { 5491 default: break; 5492 case LibFunc::copysign: 5493 case LibFunc::copysignf: 5494 case LibFunc::copysignl: 5495 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5496 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5497 I.getType() == I.getArgOperand(0)->getType() && 5498 I.getType() == I.getArgOperand(1)->getType() && 5499 I.onlyReadsMemory()) { 5500 SDValue LHS = getValue(I.getArgOperand(0)); 5501 SDValue RHS = getValue(I.getArgOperand(1)); 5502 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5503 LHS.getValueType(), LHS, RHS)); 5504 return; 5505 } 5506 break; 5507 case LibFunc::fabs: 5508 case LibFunc::fabsf: 5509 case LibFunc::fabsl: 5510 if (visitUnaryFloatCall(I, ISD::FABS)) 5511 return; 5512 break; 5513 case LibFunc::fmin: 5514 case LibFunc::fminf: 5515 case LibFunc::fminl: 5516 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5517 return; 5518 break; 5519 case LibFunc::fmax: 5520 case LibFunc::fmaxf: 5521 case LibFunc::fmaxl: 5522 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5523 return; 5524 break; 5525 case LibFunc::sin: 5526 case LibFunc::sinf: 5527 case LibFunc::sinl: 5528 if (visitUnaryFloatCall(I, ISD::FSIN)) 5529 return; 5530 break; 5531 case LibFunc::cos: 5532 case LibFunc::cosf: 5533 case LibFunc::cosl: 5534 if (visitUnaryFloatCall(I, ISD::FCOS)) 5535 return; 5536 break; 5537 case LibFunc::sqrt: 5538 case LibFunc::sqrtf: 5539 case LibFunc::sqrtl: 5540 case LibFunc::sqrt_finite: 5541 case LibFunc::sqrtf_finite: 5542 case LibFunc::sqrtl_finite: 5543 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5544 return; 5545 break; 5546 case LibFunc::floor: 5547 case LibFunc::floorf: 5548 case LibFunc::floorl: 5549 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5550 return; 5551 break; 5552 case LibFunc::nearbyint: 5553 case LibFunc::nearbyintf: 5554 case LibFunc::nearbyintl: 5555 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5556 return; 5557 break; 5558 case LibFunc::ceil: 5559 case LibFunc::ceilf: 5560 case LibFunc::ceill: 5561 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5562 return; 5563 break; 5564 case LibFunc::rint: 5565 case LibFunc::rintf: 5566 case LibFunc::rintl: 5567 if (visitUnaryFloatCall(I, ISD::FRINT)) 5568 return; 5569 break; 5570 case LibFunc::round: 5571 case LibFunc::roundf: 5572 case LibFunc::roundl: 5573 if (visitUnaryFloatCall(I, ISD::FROUND)) 5574 return; 5575 break; 5576 case LibFunc::trunc: 5577 case LibFunc::truncf: 5578 case LibFunc::truncl: 5579 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5580 return; 5581 break; 5582 case LibFunc::log2: 5583 case LibFunc::log2f: 5584 case LibFunc::log2l: 5585 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5586 return; 5587 break; 5588 case LibFunc::exp2: 5589 case LibFunc::exp2f: 5590 case LibFunc::exp2l: 5591 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5592 return; 5593 break; 5594 case LibFunc::memcmp: 5595 if (visitMemCmpCall(I)) 5596 return; 5597 break; 5598 case LibFunc::memchr: 5599 if (visitMemChrCall(I)) 5600 return; 5601 break; 5602 case LibFunc::strcpy: 5603 if (visitStrCpyCall(I, false)) 5604 return; 5605 break; 5606 case LibFunc::stpcpy: 5607 if (visitStrCpyCall(I, true)) 5608 return; 5609 break; 5610 case LibFunc::strcmp: 5611 if (visitStrCmpCall(I)) 5612 return; 5613 break; 5614 case LibFunc::strlen: 5615 if (visitStrLenCall(I)) 5616 return; 5617 break; 5618 case LibFunc::strnlen: 5619 if (visitStrNLenCall(I)) 5620 return; 5621 break; 5622 } 5623 } 5624 } 5625 5626 SDValue Callee; 5627 if (!RenameFn) 5628 Callee = getValue(I.getCalledValue()); 5629 else 5630 Callee = DAG.getExternalSymbol(RenameFn, 5631 DAG.getTargetLoweringInfo().getPointerTy()); 5632 5633 // Check if we can potentially perform a tail call. More detailed checking is 5634 // be done within LowerCallTo, after more information about the call is known. 5635 LowerCallTo(&I, Callee, I.isTailCall()); 5636 } 5637 5638 namespace { 5639 5640 /// AsmOperandInfo - This contains information for each constraint that we are 5641 /// lowering. 5642 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5643 public: 5644 /// CallOperand - If this is the result output operand or a clobber 5645 /// this is null, otherwise it is the incoming operand to the CallInst. 5646 /// This gets modified as the asm is processed. 5647 SDValue CallOperand; 5648 5649 /// AssignedRegs - If this is a register or register class operand, this 5650 /// contains the set of register corresponding to the operand. 5651 RegsForValue AssignedRegs; 5652 5653 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5654 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5655 } 5656 5657 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5658 /// corresponds to. If there is no Value* for this operand, it returns 5659 /// MVT::Other. 5660 EVT getCallOperandValEVT(LLVMContext &Context, 5661 const TargetLowering &TLI, 5662 const DataLayout *DL) const { 5663 if (!CallOperandVal) return MVT::Other; 5664 5665 if (isa<BasicBlock>(CallOperandVal)) 5666 return TLI.getPointerTy(); 5667 5668 llvm::Type *OpTy = CallOperandVal->getType(); 5669 5670 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5671 // If this is an indirect operand, the operand is a pointer to the 5672 // accessed type. 5673 if (isIndirect) { 5674 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5675 if (!PtrTy) 5676 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5677 OpTy = PtrTy->getElementType(); 5678 } 5679 5680 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5681 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5682 if (STy->getNumElements() == 1) 5683 OpTy = STy->getElementType(0); 5684 5685 // If OpTy is not a single value, it may be a struct/union that we 5686 // can tile with integers. 5687 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5688 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5689 switch (BitSize) { 5690 default: break; 5691 case 1: 5692 case 8: 5693 case 16: 5694 case 32: 5695 case 64: 5696 case 128: 5697 OpTy = IntegerType::get(Context, BitSize); 5698 break; 5699 } 5700 } 5701 5702 return TLI.getValueType(OpTy, true); 5703 } 5704 }; 5705 5706 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5707 5708 } // end anonymous namespace 5709 5710 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5711 /// specified operand. We prefer to assign virtual registers, to allow the 5712 /// register allocator to handle the assignment process. However, if the asm 5713 /// uses features that we can't model on machineinstrs, we have SDISel do the 5714 /// allocation. This produces generally horrible, but correct, code. 5715 /// 5716 /// OpInfo describes the operand. 5717 /// 5718 static void GetRegistersForValue(SelectionDAG &DAG, 5719 const TargetLowering &TLI, 5720 SDLoc DL, 5721 SDISelAsmOperandInfo &OpInfo) { 5722 LLVMContext &Context = *DAG.getContext(); 5723 5724 MachineFunction &MF = DAG.getMachineFunction(); 5725 SmallVector<unsigned, 4> Regs; 5726 5727 // If this is a constraint for a single physreg, or a constraint for a 5728 // register class, find it. 5729 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5730 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5731 OpInfo.ConstraintCode, 5732 OpInfo.ConstraintVT); 5733 5734 unsigned NumRegs = 1; 5735 if (OpInfo.ConstraintVT != MVT::Other) { 5736 // If this is a FP input in an integer register (or visa versa) insert a bit 5737 // cast of the input value. More generally, handle any case where the input 5738 // value disagrees with the register class we plan to stick this in. 5739 if (OpInfo.Type == InlineAsm::isInput && 5740 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5741 // Try to convert to the first EVT that the reg class contains. If the 5742 // types are identical size, use a bitcast to convert (e.g. two differing 5743 // vector types). 5744 MVT RegVT = *PhysReg.second->vt_begin(); 5745 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5746 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5747 RegVT, OpInfo.CallOperand); 5748 OpInfo.ConstraintVT = RegVT; 5749 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5750 // If the input is a FP value and we want it in FP registers, do a 5751 // bitcast to the corresponding integer type. This turns an f64 value 5752 // into i64, which can be passed with two i32 values on a 32-bit 5753 // machine. 5754 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5755 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5756 RegVT, OpInfo.CallOperand); 5757 OpInfo.ConstraintVT = RegVT; 5758 } 5759 } 5760 5761 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5762 } 5763 5764 MVT RegVT; 5765 EVT ValueVT = OpInfo.ConstraintVT; 5766 5767 // If this is a constraint for a specific physical register, like {r17}, 5768 // assign it now. 5769 if (unsigned AssignedReg = PhysReg.first) { 5770 const TargetRegisterClass *RC = PhysReg.second; 5771 if (OpInfo.ConstraintVT == MVT::Other) 5772 ValueVT = *RC->vt_begin(); 5773 5774 // Get the actual register value type. This is important, because the user 5775 // may have asked for (e.g.) the AX register in i32 type. We need to 5776 // remember that AX is actually i16 to get the right extension. 5777 RegVT = *RC->vt_begin(); 5778 5779 // This is a explicit reference to a physical register. 5780 Regs.push_back(AssignedReg); 5781 5782 // If this is an expanded reference, add the rest of the regs to Regs. 5783 if (NumRegs != 1) { 5784 TargetRegisterClass::iterator I = RC->begin(); 5785 for (; *I != AssignedReg; ++I) 5786 assert(I != RC->end() && "Didn't find reg!"); 5787 5788 // Already added the first reg. 5789 --NumRegs; ++I; 5790 for (; NumRegs; --NumRegs, ++I) { 5791 assert(I != RC->end() && "Ran out of registers to allocate!"); 5792 Regs.push_back(*I); 5793 } 5794 } 5795 5796 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5797 return; 5798 } 5799 5800 // Otherwise, if this was a reference to an LLVM register class, create vregs 5801 // for this reference. 5802 if (const TargetRegisterClass *RC = PhysReg.second) { 5803 RegVT = *RC->vt_begin(); 5804 if (OpInfo.ConstraintVT == MVT::Other) 5805 ValueVT = RegVT; 5806 5807 // Create the appropriate number of virtual registers. 5808 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5809 for (; NumRegs; --NumRegs) 5810 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5811 5812 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5813 return; 5814 } 5815 5816 // Otherwise, we couldn't allocate enough registers for this. 5817 } 5818 5819 /// visitInlineAsm - Handle a call to an InlineAsm object. 5820 /// 5821 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5822 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5823 5824 /// ConstraintOperands - Information about all of the constraints. 5825 SDISelAsmOperandInfoVector ConstraintOperands; 5826 5827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5828 TargetLowering::AsmOperandInfoVector TargetConstraints = 5829 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5830 5831 bool hasMemory = false; 5832 5833 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5834 unsigned ResNo = 0; // ResNo - The result number of the next output. 5835 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5836 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5837 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5838 5839 MVT OpVT = MVT::Other; 5840 5841 // Compute the value type for each operand. 5842 switch (OpInfo.Type) { 5843 case InlineAsm::isOutput: 5844 // Indirect outputs just consume an argument. 5845 if (OpInfo.isIndirect) { 5846 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5847 break; 5848 } 5849 5850 // The return value of the call is this value. As such, there is no 5851 // corresponding argument. 5852 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5853 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5854 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5855 } else { 5856 assert(ResNo == 0 && "Asm only has one result!"); 5857 OpVT = TLI.getSimpleValueType(CS.getType()); 5858 } 5859 ++ResNo; 5860 break; 5861 case InlineAsm::isInput: 5862 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5863 break; 5864 case InlineAsm::isClobber: 5865 // Nothing to do. 5866 break; 5867 } 5868 5869 // If this is an input or an indirect output, process the call argument. 5870 // BasicBlocks are labels, currently appearing only in asm's. 5871 if (OpInfo.CallOperandVal) { 5872 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5873 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5874 } else { 5875 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5876 } 5877 5878 OpVT = 5879 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5880 } 5881 5882 OpInfo.ConstraintVT = OpVT; 5883 5884 // Indirect operand accesses access memory. 5885 if (OpInfo.isIndirect) 5886 hasMemory = true; 5887 else { 5888 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5889 TargetLowering::ConstraintType 5890 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5891 if (CType == TargetLowering::C_Memory) { 5892 hasMemory = true; 5893 break; 5894 } 5895 } 5896 } 5897 } 5898 5899 SDValue Chain, Flag; 5900 5901 // We won't need to flush pending loads if this asm doesn't touch 5902 // memory and is nonvolatile. 5903 if (hasMemory || IA->hasSideEffects()) 5904 Chain = getRoot(); 5905 else 5906 Chain = DAG.getRoot(); 5907 5908 // Second pass over the constraints: compute which constraint option to use 5909 // and assign registers to constraints that want a specific physreg. 5910 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5911 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5912 5913 // If this is an output operand with a matching input operand, look up the 5914 // matching input. If their types mismatch, e.g. one is an integer, the 5915 // other is floating point, or their sizes are different, flag it as an 5916 // error. 5917 if (OpInfo.hasMatchingInput()) { 5918 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5919 5920 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5921 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5922 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5923 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5924 OpInfo.ConstraintVT); 5925 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5926 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5927 Input.ConstraintVT); 5928 if ((OpInfo.ConstraintVT.isInteger() != 5929 Input.ConstraintVT.isInteger()) || 5930 (MatchRC.second != InputRC.second)) { 5931 report_fatal_error("Unsupported asm: input constraint" 5932 " with a matching output constraint of" 5933 " incompatible type!"); 5934 } 5935 Input.ConstraintVT = OpInfo.ConstraintVT; 5936 } 5937 } 5938 5939 // Compute the constraint code and ConstraintType to use. 5940 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5941 5942 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5943 OpInfo.Type == InlineAsm::isClobber) 5944 continue; 5945 5946 // If this is a memory input, and if the operand is not indirect, do what we 5947 // need to to provide an address for the memory input. 5948 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5949 !OpInfo.isIndirect) { 5950 assert((OpInfo.isMultipleAlternative || 5951 (OpInfo.Type == InlineAsm::isInput)) && 5952 "Can only indirectify direct input operands!"); 5953 5954 // Memory operands really want the address of the value. If we don't have 5955 // an indirect input, put it in the constpool if we can, otherwise spill 5956 // it to a stack slot. 5957 // TODO: This isn't quite right. We need to handle these according to 5958 // the addressing mode that the constraint wants. Also, this may take 5959 // an additional register for the computation and we don't want that 5960 // either. 5961 5962 // If the operand is a float, integer, or vector constant, spill to a 5963 // constant pool entry to get its address. 5964 const Value *OpVal = OpInfo.CallOperandVal; 5965 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5966 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5967 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5968 TLI.getPointerTy()); 5969 } else { 5970 // Otherwise, create a stack slot and emit a store to it before the 5971 // asm. 5972 Type *Ty = OpVal->getType(); 5973 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5974 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5975 MachineFunction &MF = DAG.getMachineFunction(); 5976 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5977 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5978 Chain = DAG.getStore(Chain, getCurSDLoc(), 5979 OpInfo.CallOperand, StackSlot, 5980 MachinePointerInfo::getFixedStack(SSFI), 5981 false, false, 0); 5982 OpInfo.CallOperand = StackSlot; 5983 } 5984 5985 // There is no longer a Value* corresponding to this operand. 5986 OpInfo.CallOperandVal = nullptr; 5987 5988 // It is now an indirect operand. 5989 OpInfo.isIndirect = true; 5990 } 5991 5992 // If this constraint is for a specific register, allocate it before 5993 // anything else. 5994 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5995 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5996 } 5997 5998 // Second pass - Loop over all of the operands, assigning virtual or physregs 5999 // to register class operands. 6000 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6001 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6002 6003 // C_Register operands have already been allocated, Other/Memory don't need 6004 // to be. 6005 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6006 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6007 } 6008 6009 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6010 std::vector<SDValue> AsmNodeOperands; 6011 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6012 AsmNodeOperands.push_back( 6013 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6014 TLI.getPointerTy())); 6015 6016 // If we have a !srcloc metadata node associated with it, we want to attach 6017 // this to the ultimately generated inline asm machineinstr. To do this, we 6018 // pass in the third operand as this (potentially null) inline asm MDNode. 6019 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6020 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6021 6022 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6023 // bits as operand 3. 6024 unsigned ExtraInfo = 0; 6025 if (IA->hasSideEffects()) 6026 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6027 if (IA->isAlignStack()) 6028 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6029 // Set the asm dialect. 6030 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6031 6032 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6033 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6034 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6035 6036 // Compute the constraint code and ConstraintType to use. 6037 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6038 6039 // Ideally, we would only check against memory constraints. However, the 6040 // meaning of an other constraint can be target-specific and we can't easily 6041 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6042 // for other constriants as well. 6043 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6044 OpInfo.ConstraintType == TargetLowering::C_Other) { 6045 if (OpInfo.Type == InlineAsm::isInput) 6046 ExtraInfo |= InlineAsm::Extra_MayLoad; 6047 else if (OpInfo.Type == InlineAsm::isOutput) 6048 ExtraInfo |= InlineAsm::Extra_MayStore; 6049 else if (OpInfo.Type == InlineAsm::isClobber) 6050 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6051 } 6052 } 6053 6054 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6055 TLI.getPointerTy())); 6056 6057 // Loop over all of the inputs, copying the operand values into the 6058 // appropriate registers and processing the output regs. 6059 RegsForValue RetValRegs; 6060 6061 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6062 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6063 6064 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6065 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6066 6067 switch (OpInfo.Type) { 6068 case InlineAsm::isOutput: { 6069 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6070 OpInfo.ConstraintType != TargetLowering::C_Register) { 6071 // Memory output, or 'other' output (e.g. 'X' constraint). 6072 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6073 6074 unsigned ConstraintID = 6075 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6076 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6077 "Failed to convert memory constraint code to constraint id."); 6078 6079 // Add information to the INLINEASM node to know about this output. 6080 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6081 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6082 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6083 MVT::i32)); 6084 AsmNodeOperands.push_back(OpInfo.CallOperand); 6085 break; 6086 } 6087 6088 // Otherwise, this is a register or register class output. 6089 6090 // Copy the output from the appropriate register. Find a register that 6091 // we can use. 6092 if (OpInfo.AssignedRegs.Regs.empty()) { 6093 LLVMContext &Ctx = *DAG.getContext(); 6094 Ctx.emitError(CS.getInstruction(), 6095 "couldn't allocate output register for constraint '" + 6096 Twine(OpInfo.ConstraintCode) + "'"); 6097 return; 6098 } 6099 6100 // If this is an indirect operand, store through the pointer after the 6101 // asm. 6102 if (OpInfo.isIndirect) { 6103 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6104 OpInfo.CallOperandVal)); 6105 } else { 6106 // This is the result value of the call. 6107 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6108 // Concatenate this output onto the outputs list. 6109 RetValRegs.append(OpInfo.AssignedRegs); 6110 } 6111 6112 // Add information to the INLINEASM node to know that this register is 6113 // set. 6114 OpInfo.AssignedRegs 6115 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6116 ? InlineAsm::Kind_RegDefEarlyClobber 6117 : InlineAsm::Kind_RegDef, 6118 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6119 break; 6120 } 6121 case InlineAsm::isInput: { 6122 SDValue InOperandVal = OpInfo.CallOperand; 6123 6124 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6125 // If this is required to match an output register we have already set, 6126 // just use its register. 6127 unsigned OperandNo = OpInfo.getMatchedOperand(); 6128 6129 // Scan until we find the definition we already emitted of this operand. 6130 // When we find it, create a RegsForValue operand. 6131 unsigned CurOp = InlineAsm::Op_FirstOperand; 6132 for (; OperandNo; --OperandNo) { 6133 // Advance to the next operand. 6134 unsigned OpFlag = 6135 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6136 assert((InlineAsm::isRegDefKind(OpFlag) || 6137 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6138 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6139 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6140 } 6141 6142 unsigned OpFlag = 6143 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6144 if (InlineAsm::isRegDefKind(OpFlag) || 6145 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6146 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6147 if (OpInfo.isIndirect) { 6148 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6149 LLVMContext &Ctx = *DAG.getContext(); 6150 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6151 " don't know how to handle tied " 6152 "indirect register inputs"); 6153 return; 6154 } 6155 6156 RegsForValue MatchedRegs; 6157 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6158 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6159 MatchedRegs.RegVTs.push_back(RegVT); 6160 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6161 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6162 i != e; ++i) { 6163 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6164 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6165 else { 6166 LLVMContext &Ctx = *DAG.getContext(); 6167 Ctx.emitError(CS.getInstruction(), 6168 "inline asm error: This value" 6169 " type register class is not natively supported!"); 6170 return; 6171 } 6172 } 6173 SDLoc dl = getCurSDLoc(); 6174 // Use the produced MatchedRegs object to 6175 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6176 Chain, &Flag, CS.getInstruction()); 6177 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6178 true, OpInfo.getMatchedOperand(), dl, 6179 DAG, AsmNodeOperands); 6180 break; 6181 } 6182 6183 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6184 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6185 "Unexpected number of operands"); 6186 // Add information to the INLINEASM node to know about this input. 6187 // See InlineAsm.h isUseOperandTiedToDef. 6188 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6189 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6190 OpInfo.getMatchedOperand()); 6191 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6192 TLI.getPointerTy())); 6193 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6194 break; 6195 } 6196 6197 // Treat indirect 'X' constraint as memory. 6198 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6199 OpInfo.isIndirect) 6200 OpInfo.ConstraintType = TargetLowering::C_Memory; 6201 6202 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6203 std::vector<SDValue> Ops; 6204 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6205 Ops, DAG); 6206 if (Ops.empty()) { 6207 LLVMContext &Ctx = *DAG.getContext(); 6208 Ctx.emitError(CS.getInstruction(), 6209 "invalid operand for inline asm constraint '" + 6210 Twine(OpInfo.ConstraintCode) + "'"); 6211 return; 6212 } 6213 6214 // Add information to the INLINEASM node to know about this input. 6215 unsigned ResOpType = 6216 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6217 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6218 getCurSDLoc(), 6219 TLI.getPointerTy())); 6220 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6221 break; 6222 } 6223 6224 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6225 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6226 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6227 "Memory operands expect pointer values"); 6228 6229 unsigned ConstraintID = 6230 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6231 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6232 "Failed to convert memory constraint code to constraint id."); 6233 6234 // Add information to the INLINEASM node to know about this input. 6235 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6236 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6237 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6238 getCurSDLoc(), 6239 MVT::i32)); 6240 AsmNodeOperands.push_back(InOperandVal); 6241 break; 6242 } 6243 6244 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6245 OpInfo.ConstraintType == TargetLowering::C_Register) && 6246 "Unknown constraint type!"); 6247 6248 // TODO: Support this. 6249 if (OpInfo.isIndirect) { 6250 LLVMContext &Ctx = *DAG.getContext(); 6251 Ctx.emitError(CS.getInstruction(), 6252 "Don't know how to handle indirect register inputs yet " 6253 "for constraint '" + 6254 Twine(OpInfo.ConstraintCode) + "'"); 6255 return; 6256 } 6257 6258 // Copy the input into the appropriate registers. 6259 if (OpInfo.AssignedRegs.Regs.empty()) { 6260 LLVMContext &Ctx = *DAG.getContext(); 6261 Ctx.emitError(CS.getInstruction(), 6262 "couldn't allocate input reg for constraint '" + 6263 Twine(OpInfo.ConstraintCode) + "'"); 6264 return; 6265 } 6266 6267 SDLoc dl = getCurSDLoc(); 6268 6269 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6270 Chain, &Flag, CS.getInstruction()); 6271 6272 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6273 dl, DAG, AsmNodeOperands); 6274 break; 6275 } 6276 case InlineAsm::isClobber: { 6277 // Add the clobbered value to the operand list, so that the register 6278 // allocator is aware that the physreg got clobbered. 6279 if (!OpInfo.AssignedRegs.Regs.empty()) 6280 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6281 false, 0, getCurSDLoc(), DAG, 6282 AsmNodeOperands); 6283 break; 6284 } 6285 } 6286 } 6287 6288 // Finish up input operands. Set the input chain and add the flag last. 6289 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6290 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6291 6292 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6293 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6294 Flag = Chain.getValue(1); 6295 6296 // If this asm returns a register value, copy the result from that register 6297 // and set it as the value of the call. 6298 if (!RetValRegs.Regs.empty()) { 6299 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6300 Chain, &Flag, CS.getInstruction()); 6301 6302 // FIXME: Why don't we do this for inline asms with MRVs? 6303 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6304 EVT ResultType = TLI.getValueType(CS.getType()); 6305 6306 // If any of the results of the inline asm is a vector, it may have the 6307 // wrong width/num elts. This can happen for register classes that can 6308 // contain multiple different value types. The preg or vreg allocated may 6309 // not have the same VT as was expected. Convert it to the right type 6310 // with bit_convert. 6311 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6312 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6313 ResultType, Val); 6314 6315 } else if (ResultType != Val.getValueType() && 6316 ResultType.isInteger() && Val.getValueType().isInteger()) { 6317 // If a result value was tied to an input value, the computed result may 6318 // have a wider width than the expected result. Extract the relevant 6319 // portion. 6320 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6321 } 6322 6323 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6324 } 6325 6326 setValue(CS.getInstruction(), Val); 6327 // Don't need to use this as a chain in this case. 6328 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6329 return; 6330 } 6331 6332 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6333 6334 // Process indirect outputs, first output all of the flagged copies out of 6335 // physregs. 6336 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6337 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6338 const Value *Ptr = IndirectStoresToEmit[i].second; 6339 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6340 Chain, &Flag, IA); 6341 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6342 } 6343 6344 // Emit the non-flagged stores from the physregs. 6345 SmallVector<SDValue, 8> OutChains; 6346 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6347 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6348 StoresToEmit[i].first, 6349 getValue(StoresToEmit[i].second), 6350 MachinePointerInfo(StoresToEmit[i].second), 6351 false, false, 0); 6352 OutChains.push_back(Val); 6353 } 6354 6355 if (!OutChains.empty()) 6356 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6357 6358 DAG.setRoot(Chain); 6359 } 6360 6361 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6362 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6363 MVT::Other, getRoot(), 6364 getValue(I.getArgOperand(0)), 6365 DAG.getSrcValue(I.getArgOperand(0)))); 6366 } 6367 6368 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6370 const DataLayout &DL = *TLI.getDataLayout(); 6371 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6372 getRoot(), getValue(I.getOperand(0)), 6373 DAG.getSrcValue(I.getOperand(0)), 6374 DL.getABITypeAlignment(I.getType())); 6375 setValue(&I, V); 6376 DAG.setRoot(V.getValue(1)); 6377 } 6378 6379 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6380 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6381 MVT::Other, getRoot(), 6382 getValue(I.getArgOperand(0)), 6383 DAG.getSrcValue(I.getArgOperand(0)))); 6384 } 6385 6386 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6387 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6388 MVT::Other, getRoot(), 6389 getValue(I.getArgOperand(0)), 6390 getValue(I.getArgOperand(1)), 6391 DAG.getSrcValue(I.getArgOperand(0)), 6392 DAG.getSrcValue(I.getArgOperand(1)))); 6393 } 6394 6395 /// \brief Lower an argument list according to the target calling convention. 6396 /// 6397 /// \return A tuple of <return-value, token-chain> 6398 /// 6399 /// This is a helper for lowering intrinsics that follow a target calling 6400 /// convention or require stack pointer adjustment. Only a subset of the 6401 /// intrinsic's operands need to participate in the calling convention. 6402 std::pair<SDValue, SDValue> 6403 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6404 unsigned NumArgs, SDValue Callee, 6405 Type *ReturnTy, 6406 MachineBasicBlock *LandingPad, 6407 bool IsPatchPoint) { 6408 TargetLowering::ArgListTy Args; 6409 Args.reserve(NumArgs); 6410 6411 // Populate the argument list. 6412 // Attributes for args start at offset 1, after the return attribute. 6413 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6414 ArgI != ArgE; ++ArgI) { 6415 const Value *V = CS->getOperand(ArgI); 6416 6417 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6418 6419 TargetLowering::ArgListEntry Entry; 6420 Entry.Node = getValue(V); 6421 Entry.Ty = V->getType(); 6422 Entry.setAttributes(&CS, AttrI); 6423 Args.push_back(Entry); 6424 } 6425 6426 TargetLowering::CallLoweringInfo CLI(DAG); 6427 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6428 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6429 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6430 6431 return lowerInvokable(CLI, LandingPad); 6432 } 6433 6434 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6435 /// or patchpoint target node's operand list. 6436 /// 6437 /// Constants are converted to TargetConstants purely as an optimization to 6438 /// avoid constant materialization and register allocation. 6439 /// 6440 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6441 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6442 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6443 /// address materialization and register allocation, but may also be required 6444 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6445 /// alloca in the entry block, then the runtime may assume that the alloca's 6446 /// StackMap location can be read immediately after compilation and that the 6447 /// location is valid at any point during execution (this is similar to the 6448 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6449 /// only available in a register, then the runtime would need to trap when 6450 /// execution reaches the StackMap in order to read the alloca's location. 6451 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6452 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6453 SelectionDAGBuilder &Builder) { 6454 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6455 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6456 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6457 Ops.push_back( 6458 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6459 Ops.push_back( 6460 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6461 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6462 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6463 Ops.push_back( 6464 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6465 } else 6466 Ops.push_back(OpVal); 6467 } 6468 } 6469 6470 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6471 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6472 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6473 // [live variables...]) 6474 6475 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6476 6477 SDValue Chain, InFlag, Callee, NullPtr; 6478 SmallVector<SDValue, 32> Ops; 6479 6480 SDLoc DL = getCurSDLoc(); 6481 Callee = getValue(CI.getCalledValue()); 6482 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6483 6484 // The stackmap intrinsic only records the live variables (the arguemnts 6485 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6486 // intrinsic, this won't be lowered to a function call. This means we don't 6487 // have to worry about calling conventions and target specific lowering code. 6488 // Instead we perform the call lowering right here. 6489 // 6490 // chain, flag = CALLSEQ_START(chain, 0) 6491 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6492 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6493 // 6494 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6495 InFlag = Chain.getValue(1); 6496 6497 // Add the <id> and <numBytes> constants. 6498 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6499 Ops.push_back(DAG.getTargetConstant( 6500 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6501 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6502 Ops.push_back(DAG.getTargetConstant( 6503 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6504 MVT::i32)); 6505 6506 // Push live variables for the stack map. 6507 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6508 6509 // We are not pushing any register mask info here on the operands list, 6510 // because the stackmap doesn't clobber anything. 6511 6512 // Push the chain and the glue flag. 6513 Ops.push_back(Chain); 6514 Ops.push_back(InFlag); 6515 6516 // Create the STACKMAP node. 6517 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6518 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6519 Chain = SDValue(SM, 0); 6520 InFlag = Chain.getValue(1); 6521 6522 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6523 6524 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6525 6526 // Set the root to the target-lowered call chain. 6527 DAG.setRoot(Chain); 6528 6529 // Inform the Frame Information that we have a stackmap in this function. 6530 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6531 } 6532 6533 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6534 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6535 MachineBasicBlock *LandingPad) { 6536 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6537 // i32 <numBytes>, 6538 // i8* <target>, 6539 // i32 <numArgs>, 6540 // [Args...], 6541 // [live variables...]) 6542 6543 CallingConv::ID CC = CS.getCallingConv(); 6544 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6545 bool HasDef = !CS->getType()->isVoidTy(); 6546 SDLoc dl = getCurSDLoc(); 6547 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6548 6549 // Handle immediate and symbolic callees. 6550 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6551 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6552 /*isTarget=*/true); 6553 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6554 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6555 SDLoc(SymbolicCallee), 6556 SymbolicCallee->getValueType(0)); 6557 6558 // Get the real number of arguments participating in the call <numArgs> 6559 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6560 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6561 6562 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6563 // Intrinsics include all meta-operands up to but not including CC. 6564 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6565 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6566 "Not enough arguments provided to the patchpoint intrinsic"); 6567 6568 // For AnyRegCC the arguments are lowered later on manually. 6569 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6570 Type *ReturnTy = 6571 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6572 std::pair<SDValue, SDValue> Result = 6573 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6574 LandingPad, true); 6575 6576 SDNode *CallEnd = Result.second.getNode(); 6577 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6578 CallEnd = CallEnd->getOperand(0).getNode(); 6579 6580 /// Get a call instruction from the call sequence chain. 6581 /// Tail calls are not allowed. 6582 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6583 "Expected a callseq node."); 6584 SDNode *Call = CallEnd->getOperand(0).getNode(); 6585 bool HasGlue = Call->getGluedNode(); 6586 6587 // Replace the target specific call node with the patchable intrinsic. 6588 SmallVector<SDValue, 8> Ops; 6589 6590 // Add the <id> and <numBytes> constants. 6591 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6592 Ops.push_back(DAG.getTargetConstant( 6593 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6594 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6595 Ops.push_back(DAG.getTargetConstant( 6596 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6597 MVT::i32)); 6598 6599 // Add the callee. 6600 Ops.push_back(Callee); 6601 6602 // Adjust <numArgs> to account for any arguments that have been passed on the 6603 // stack instead. 6604 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6605 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6606 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6607 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6608 6609 // Add the calling convention 6610 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6611 6612 // Add the arguments we omitted previously. The register allocator should 6613 // place these in any free register. 6614 if (IsAnyRegCC) 6615 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6616 Ops.push_back(getValue(CS.getArgument(i))); 6617 6618 // Push the arguments from the call instruction up to the register mask. 6619 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6620 Ops.append(Call->op_begin() + 2, e); 6621 6622 // Push live variables for the stack map. 6623 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6624 6625 // Push the register mask info. 6626 if (HasGlue) 6627 Ops.push_back(*(Call->op_end()-2)); 6628 else 6629 Ops.push_back(*(Call->op_end()-1)); 6630 6631 // Push the chain (this is originally the first operand of the call, but 6632 // becomes now the last or second to last operand). 6633 Ops.push_back(*(Call->op_begin())); 6634 6635 // Push the glue flag (last operand). 6636 if (HasGlue) 6637 Ops.push_back(*(Call->op_end()-1)); 6638 6639 SDVTList NodeTys; 6640 if (IsAnyRegCC && HasDef) { 6641 // Create the return types based on the intrinsic definition 6642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6643 SmallVector<EVT, 3> ValueVTs; 6644 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6645 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6646 6647 // There is always a chain and a glue type at the end 6648 ValueVTs.push_back(MVT::Other); 6649 ValueVTs.push_back(MVT::Glue); 6650 NodeTys = DAG.getVTList(ValueVTs); 6651 } else 6652 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6653 6654 // Replace the target specific call node with a PATCHPOINT node. 6655 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6656 dl, NodeTys, Ops); 6657 6658 // Update the NodeMap. 6659 if (HasDef) { 6660 if (IsAnyRegCC) 6661 setValue(CS.getInstruction(), SDValue(MN, 0)); 6662 else 6663 setValue(CS.getInstruction(), Result.first); 6664 } 6665 6666 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6667 // call sequence. Furthermore the location of the chain and glue can change 6668 // when the AnyReg calling convention is used and the intrinsic returns a 6669 // value. 6670 if (IsAnyRegCC && HasDef) { 6671 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6672 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6673 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6674 } else 6675 DAG.ReplaceAllUsesWith(Call, MN); 6676 DAG.DeleteNode(Call); 6677 6678 // Inform the Frame Information that we have a patchpoint in this function. 6679 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6680 } 6681 6682 /// Returns an AttributeSet representing the attributes applied to the return 6683 /// value of the given call. 6684 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6685 SmallVector<Attribute::AttrKind, 2> Attrs; 6686 if (CLI.RetSExt) 6687 Attrs.push_back(Attribute::SExt); 6688 if (CLI.RetZExt) 6689 Attrs.push_back(Attribute::ZExt); 6690 if (CLI.IsInReg) 6691 Attrs.push_back(Attribute::InReg); 6692 6693 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6694 Attrs); 6695 } 6696 6697 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6698 /// implementation, which just calls LowerCall. 6699 /// FIXME: When all targets are 6700 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6701 std::pair<SDValue, SDValue> 6702 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6703 // Handle the incoming return values from the call. 6704 CLI.Ins.clear(); 6705 Type *OrigRetTy = CLI.RetTy; 6706 SmallVector<EVT, 4> RetTys; 6707 SmallVector<uint64_t, 4> Offsets; 6708 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6709 6710 SmallVector<ISD::OutputArg, 4> Outs; 6711 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6712 6713 bool CanLowerReturn = 6714 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6715 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6716 6717 SDValue DemoteStackSlot; 6718 int DemoteStackIdx = -100; 6719 if (!CanLowerReturn) { 6720 // FIXME: equivalent assert? 6721 // assert(!CS.hasInAllocaArgument() && 6722 // "sret demotion is incompatible with inalloca"); 6723 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6724 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6725 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6726 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6727 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6728 6729 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6730 ArgListEntry Entry; 6731 Entry.Node = DemoteStackSlot; 6732 Entry.Ty = StackSlotPtrType; 6733 Entry.isSExt = false; 6734 Entry.isZExt = false; 6735 Entry.isInReg = false; 6736 Entry.isSRet = true; 6737 Entry.isNest = false; 6738 Entry.isByVal = false; 6739 Entry.isReturned = false; 6740 Entry.Alignment = Align; 6741 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6742 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6743 6744 // sret demotion isn't compatible with tail-calls, since the sret argument 6745 // points into the callers stack frame. 6746 CLI.IsTailCall = false; 6747 } else { 6748 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6749 EVT VT = RetTys[I]; 6750 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6751 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6752 for (unsigned i = 0; i != NumRegs; ++i) { 6753 ISD::InputArg MyFlags; 6754 MyFlags.VT = RegisterVT; 6755 MyFlags.ArgVT = VT; 6756 MyFlags.Used = CLI.IsReturnValueUsed; 6757 if (CLI.RetSExt) 6758 MyFlags.Flags.setSExt(); 6759 if (CLI.RetZExt) 6760 MyFlags.Flags.setZExt(); 6761 if (CLI.IsInReg) 6762 MyFlags.Flags.setInReg(); 6763 CLI.Ins.push_back(MyFlags); 6764 } 6765 } 6766 } 6767 6768 // Handle all of the outgoing arguments. 6769 CLI.Outs.clear(); 6770 CLI.OutVals.clear(); 6771 ArgListTy &Args = CLI.getArgs(); 6772 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6773 SmallVector<EVT, 4> ValueVTs; 6774 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6775 Type *FinalType = Args[i].Ty; 6776 if (Args[i].isByVal) 6777 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6778 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6779 FinalType, CLI.CallConv, CLI.IsVarArg); 6780 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6781 ++Value) { 6782 EVT VT = ValueVTs[Value]; 6783 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6784 SDValue Op = SDValue(Args[i].Node.getNode(), 6785 Args[i].Node.getResNo() + Value); 6786 ISD::ArgFlagsTy Flags; 6787 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6788 6789 if (Args[i].isZExt) 6790 Flags.setZExt(); 6791 if (Args[i].isSExt) 6792 Flags.setSExt(); 6793 if (Args[i].isInReg) 6794 Flags.setInReg(); 6795 if (Args[i].isSRet) 6796 Flags.setSRet(); 6797 if (Args[i].isByVal) 6798 Flags.setByVal(); 6799 if (Args[i].isInAlloca) { 6800 Flags.setInAlloca(); 6801 // Set the byval flag for CCAssignFn callbacks that don't know about 6802 // inalloca. This way we can know how many bytes we should've allocated 6803 // and how many bytes a callee cleanup function will pop. If we port 6804 // inalloca to more targets, we'll have to add custom inalloca handling 6805 // in the various CC lowering callbacks. 6806 Flags.setByVal(); 6807 } 6808 if (Args[i].isByVal || Args[i].isInAlloca) { 6809 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6810 Type *ElementTy = Ty->getElementType(); 6811 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6812 // For ByVal, alignment should come from FE. BE will guess if this 6813 // info is not there but there are cases it cannot get right. 6814 unsigned FrameAlign; 6815 if (Args[i].Alignment) 6816 FrameAlign = Args[i].Alignment; 6817 else 6818 FrameAlign = getByValTypeAlignment(ElementTy); 6819 Flags.setByValAlign(FrameAlign); 6820 } 6821 if (Args[i].isNest) 6822 Flags.setNest(); 6823 if (NeedsRegBlock) 6824 Flags.setInConsecutiveRegs(); 6825 Flags.setOrigAlign(OriginalAlignment); 6826 6827 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6828 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6829 SmallVector<SDValue, 4> Parts(NumParts); 6830 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6831 6832 if (Args[i].isSExt) 6833 ExtendKind = ISD::SIGN_EXTEND; 6834 else if (Args[i].isZExt) 6835 ExtendKind = ISD::ZERO_EXTEND; 6836 6837 // Conservatively only handle 'returned' on non-vectors for now 6838 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6839 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6840 "unexpected use of 'returned'"); 6841 // Before passing 'returned' to the target lowering code, ensure that 6842 // either the register MVT and the actual EVT are the same size or that 6843 // the return value and argument are extended in the same way; in these 6844 // cases it's safe to pass the argument register value unchanged as the 6845 // return register value (although it's at the target's option whether 6846 // to do so) 6847 // TODO: allow code generation to take advantage of partially preserved 6848 // registers rather than clobbering the entire register when the 6849 // parameter extension method is not compatible with the return 6850 // extension method 6851 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6852 (ExtendKind != ISD::ANY_EXTEND && 6853 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6854 Flags.setReturned(); 6855 } 6856 6857 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6858 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6859 6860 for (unsigned j = 0; j != NumParts; ++j) { 6861 // if it isn't first piece, alignment must be 1 6862 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6863 i < CLI.NumFixedArgs, 6864 i, j*Parts[j].getValueType().getStoreSize()); 6865 if (NumParts > 1 && j == 0) 6866 MyFlags.Flags.setSplit(); 6867 else if (j != 0) 6868 MyFlags.Flags.setOrigAlign(1); 6869 6870 CLI.Outs.push_back(MyFlags); 6871 CLI.OutVals.push_back(Parts[j]); 6872 } 6873 6874 if (NeedsRegBlock && Value == NumValues - 1) 6875 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6876 } 6877 } 6878 6879 SmallVector<SDValue, 4> InVals; 6880 CLI.Chain = LowerCall(CLI, InVals); 6881 6882 // Verify that the target's LowerCall behaved as expected. 6883 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6884 "LowerCall didn't return a valid chain!"); 6885 assert((!CLI.IsTailCall || InVals.empty()) && 6886 "LowerCall emitted a return value for a tail call!"); 6887 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6888 "LowerCall didn't emit the correct number of values!"); 6889 6890 // For a tail call, the return value is merely live-out and there aren't 6891 // any nodes in the DAG representing it. Return a special value to 6892 // indicate that a tail call has been emitted and no more Instructions 6893 // should be processed in the current block. 6894 if (CLI.IsTailCall) { 6895 CLI.DAG.setRoot(CLI.Chain); 6896 return std::make_pair(SDValue(), SDValue()); 6897 } 6898 6899 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6900 assert(InVals[i].getNode() && 6901 "LowerCall emitted a null value!"); 6902 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6903 "LowerCall emitted a value with the wrong type!"); 6904 }); 6905 6906 SmallVector<SDValue, 4> ReturnValues; 6907 if (!CanLowerReturn) { 6908 // The instruction result is the result of loading from the 6909 // hidden sret parameter. 6910 SmallVector<EVT, 1> PVTs; 6911 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6912 6913 ComputeValueVTs(*this, PtrRetTy, PVTs); 6914 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6915 EVT PtrVT = PVTs[0]; 6916 6917 unsigned NumValues = RetTys.size(); 6918 ReturnValues.resize(NumValues); 6919 SmallVector<SDValue, 4> Chains(NumValues); 6920 6921 for (unsigned i = 0; i < NumValues; ++i) { 6922 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6923 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6924 PtrVT)); 6925 SDValue L = CLI.DAG.getLoad( 6926 RetTys[i], CLI.DL, CLI.Chain, Add, 6927 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6928 false, false, 1); 6929 ReturnValues[i] = L; 6930 Chains[i] = L.getValue(1); 6931 } 6932 6933 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6934 } else { 6935 // Collect the legal value parts into potentially illegal values 6936 // that correspond to the original function's return values. 6937 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6938 if (CLI.RetSExt) 6939 AssertOp = ISD::AssertSext; 6940 else if (CLI.RetZExt) 6941 AssertOp = ISD::AssertZext; 6942 unsigned CurReg = 0; 6943 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6944 EVT VT = RetTys[I]; 6945 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6946 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6947 6948 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6949 NumRegs, RegisterVT, VT, nullptr, 6950 AssertOp)); 6951 CurReg += NumRegs; 6952 } 6953 6954 // For a function returning void, there is no return value. We can't create 6955 // such a node, so we just return a null return value in that case. In 6956 // that case, nothing will actually look at the value. 6957 if (ReturnValues.empty()) 6958 return std::make_pair(SDValue(), CLI.Chain); 6959 } 6960 6961 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6962 CLI.DAG.getVTList(RetTys), ReturnValues); 6963 return std::make_pair(Res, CLI.Chain); 6964 } 6965 6966 void TargetLowering::LowerOperationWrapper(SDNode *N, 6967 SmallVectorImpl<SDValue> &Results, 6968 SelectionDAG &DAG) const { 6969 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6970 if (Res.getNode()) 6971 Results.push_back(Res); 6972 } 6973 6974 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6975 llvm_unreachable("LowerOperation not implemented for this target!"); 6976 } 6977 6978 void 6979 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6980 SDValue Op = getNonRegisterValue(V); 6981 assert((Op.getOpcode() != ISD::CopyFromReg || 6982 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6983 "Copy from a reg to the same reg!"); 6984 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6985 6986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6987 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6988 SDValue Chain = DAG.getEntryNode(); 6989 6990 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6991 FuncInfo.PreferredExtendType.end()) 6992 ? ISD::ANY_EXTEND 6993 : FuncInfo.PreferredExtendType[V]; 6994 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6995 PendingExports.push_back(Chain); 6996 } 6997 6998 #include "llvm/CodeGen/SelectionDAGISel.h" 6999 7000 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7001 /// entry block, return true. This includes arguments used by switches, since 7002 /// the switch may expand into multiple basic blocks. 7003 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7004 // With FastISel active, we may be splitting blocks, so force creation 7005 // of virtual registers for all non-dead arguments. 7006 if (FastISel) 7007 return A->use_empty(); 7008 7009 const BasicBlock *Entry = A->getParent()->begin(); 7010 for (const User *U : A->users()) 7011 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7012 return false; // Use not in entry block. 7013 7014 return true; 7015 } 7016 7017 void SelectionDAGISel::LowerArguments(const Function &F) { 7018 SelectionDAG &DAG = SDB->DAG; 7019 SDLoc dl = SDB->getCurSDLoc(); 7020 const DataLayout *DL = TLI->getDataLayout(); 7021 SmallVector<ISD::InputArg, 16> Ins; 7022 7023 if (!FuncInfo->CanLowerReturn) { 7024 // Put in an sret pointer parameter before all the other parameters. 7025 SmallVector<EVT, 1> ValueVTs; 7026 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7027 7028 // NOTE: Assuming that a pointer will never break down to more than one VT 7029 // or one register. 7030 ISD::ArgFlagsTy Flags; 7031 Flags.setSRet(); 7032 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7033 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7034 ISD::InputArg::NoArgIndex, 0); 7035 Ins.push_back(RetArg); 7036 } 7037 7038 // Set up the incoming argument description vector. 7039 unsigned Idx = 1; 7040 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7041 I != E; ++I, ++Idx) { 7042 SmallVector<EVT, 4> ValueVTs; 7043 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7044 bool isArgValueUsed = !I->use_empty(); 7045 unsigned PartBase = 0; 7046 Type *FinalType = I->getType(); 7047 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7048 FinalType = cast<PointerType>(FinalType)->getElementType(); 7049 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7050 FinalType, F.getCallingConv(), F.isVarArg()); 7051 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7052 Value != NumValues; ++Value) { 7053 EVT VT = ValueVTs[Value]; 7054 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7055 ISD::ArgFlagsTy Flags; 7056 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7057 7058 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7059 Flags.setZExt(); 7060 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7061 Flags.setSExt(); 7062 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7063 Flags.setInReg(); 7064 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7065 Flags.setSRet(); 7066 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7067 Flags.setByVal(); 7068 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7069 Flags.setInAlloca(); 7070 // Set the byval flag for CCAssignFn callbacks that don't know about 7071 // inalloca. This way we can know how many bytes we should've allocated 7072 // and how many bytes a callee cleanup function will pop. If we port 7073 // inalloca to more targets, we'll have to add custom inalloca handling 7074 // in the various CC lowering callbacks. 7075 Flags.setByVal(); 7076 } 7077 if (Flags.isByVal() || Flags.isInAlloca()) { 7078 PointerType *Ty = cast<PointerType>(I->getType()); 7079 Type *ElementTy = Ty->getElementType(); 7080 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7081 // For ByVal, alignment should be passed from FE. BE will guess if 7082 // this info is not there but there are cases it cannot get right. 7083 unsigned FrameAlign; 7084 if (F.getParamAlignment(Idx)) 7085 FrameAlign = F.getParamAlignment(Idx); 7086 else 7087 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7088 Flags.setByValAlign(FrameAlign); 7089 } 7090 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7091 Flags.setNest(); 7092 if (NeedsRegBlock) 7093 Flags.setInConsecutiveRegs(); 7094 Flags.setOrigAlign(OriginalAlignment); 7095 7096 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7097 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7098 for (unsigned i = 0; i != NumRegs; ++i) { 7099 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7100 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7101 if (NumRegs > 1 && i == 0) 7102 MyFlags.Flags.setSplit(); 7103 // if it isn't first piece, alignment must be 1 7104 else if (i > 0) 7105 MyFlags.Flags.setOrigAlign(1); 7106 Ins.push_back(MyFlags); 7107 } 7108 if (NeedsRegBlock && Value == NumValues - 1) 7109 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7110 PartBase += VT.getStoreSize(); 7111 } 7112 } 7113 7114 // Call the target to set up the argument values. 7115 SmallVector<SDValue, 8> InVals; 7116 SDValue NewRoot = TLI->LowerFormalArguments( 7117 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7118 7119 // Verify that the target's LowerFormalArguments behaved as expected. 7120 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7121 "LowerFormalArguments didn't return a valid chain!"); 7122 assert(InVals.size() == Ins.size() && 7123 "LowerFormalArguments didn't emit the correct number of values!"); 7124 DEBUG({ 7125 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7126 assert(InVals[i].getNode() && 7127 "LowerFormalArguments emitted a null value!"); 7128 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7129 "LowerFormalArguments emitted a value with the wrong type!"); 7130 } 7131 }); 7132 7133 // Update the DAG with the new chain value resulting from argument lowering. 7134 DAG.setRoot(NewRoot); 7135 7136 // Set up the argument values. 7137 unsigned i = 0; 7138 Idx = 1; 7139 if (!FuncInfo->CanLowerReturn) { 7140 // Create a virtual register for the sret pointer, and put in a copy 7141 // from the sret argument into it. 7142 SmallVector<EVT, 1> ValueVTs; 7143 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7144 MVT VT = ValueVTs[0].getSimpleVT(); 7145 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7146 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7147 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7148 RegVT, VT, nullptr, AssertOp); 7149 7150 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7151 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7152 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7153 FuncInfo->DemoteRegister = SRetReg; 7154 NewRoot = 7155 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7156 DAG.setRoot(NewRoot); 7157 7158 // i indexes lowered arguments. Bump it past the hidden sret argument. 7159 // Idx indexes LLVM arguments. Don't touch it. 7160 ++i; 7161 } 7162 7163 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7164 ++I, ++Idx) { 7165 SmallVector<SDValue, 4> ArgValues; 7166 SmallVector<EVT, 4> ValueVTs; 7167 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7168 unsigned NumValues = ValueVTs.size(); 7169 7170 // If this argument is unused then remember its value. It is used to generate 7171 // debugging information. 7172 if (I->use_empty() && NumValues) { 7173 SDB->setUnusedArgValue(I, InVals[i]); 7174 7175 // Also remember any frame index for use in FastISel. 7176 if (FrameIndexSDNode *FI = 7177 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7178 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7179 } 7180 7181 for (unsigned Val = 0; Val != NumValues; ++Val) { 7182 EVT VT = ValueVTs[Val]; 7183 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7184 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7185 7186 if (!I->use_empty()) { 7187 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7188 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7189 AssertOp = ISD::AssertSext; 7190 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7191 AssertOp = ISD::AssertZext; 7192 7193 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7194 NumParts, PartVT, VT, 7195 nullptr, AssertOp)); 7196 } 7197 7198 i += NumParts; 7199 } 7200 7201 // We don't need to do anything else for unused arguments. 7202 if (ArgValues.empty()) 7203 continue; 7204 7205 // Note down frame index. 7206 if (FrameIndexSDNode *FI = 7207 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7208 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7209 7210 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7211 SDB->getCurSDLoc()); 7212 7213 SDB->setValue(I, Res); 7214 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7215 if (LoadSDNode *LNode = 7216 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7217 if (FrameIndexSDNode *FI = 7218 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7219 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7220 } 7221 7222 // If this argument is live outside of the entry block, insert a copy from 7223 // wherever we got it to the vreg that other BB's will reference it as. 7224 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7225 // If we can, though, try to skip creating an unnecessary vreg. 7226 // FIXME: This isn't very clean... it would be nice to make this more 7227 // general. It's also subtly incompatible with the hacks FastISel 7228 // uses with vregs. 7229 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7230 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7231 FuncInfo->ValueMap[I] = Reg; 7232 continue; 7233 } 7234 } 7235 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7236 FuncInfo->InitializeRegForValue(I); 7237 SDB->CopyToExportRegsIfNeeded(I); 7238 } 7239 } 7240 7241 assert(i == InVals.size() && "Argument register count mismatch!"); 7242 7243 // Finally, if the target has anything special to do, allow it to do so. 7244 EmitFunctionEntryCode(); 7245 } 7246 7247 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7248 /// ensure constants are generated when needed. Remember the virtual registers 7249 /// that need to be added to the Machine PHI nodes as input. We cannot just 7250 /// directly add them, because expansion might result in multiple MBB's for one 7251 /// BB. As such, the start of the BB might correspond to a different MBB than 7252 /// the end. 7253 /// 7254 void 7255 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7256 const TerminatorInst *TI = LLVMBB->getTerminator(); 7257 7258 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7259 7260 // Check PHI nodes in successors that expect a value to be available from this 7261 // block. 7262 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7263 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7264 if (!isa<PHINode>(SuccBB->begin())) continue; 7265 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7266 7267 // If this terminator has multiple identical successors (common for 7268 // switches), only handle each succ once. 7269 if (!SuccsHandled.insert(SuccMBB).second) 7270 continue; 7271 7272 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7273 7274 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7275 // nodes and Machine PHI nodes, but the incoming operands have not been 7276 // emitted yet. 7277 for (BasicBlock::const_iterator I = SuccBB->begin(); 7278 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7279 // Ignore dead phi's. 7280 if (PN->use_empty()) continue; 7281 7282 // Skip empty types 7283 if (PN->getType()->isEmptyTy()) 7284 continue; 7285 7286 unsigned Reg; 7287 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7288 7289 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7290 unsigned &RegOut = ConstantsOut[C]; 7291 if (RegOut == 0) { 7292 RegOut = FuncInfo.CreateRegs(C->getType()); 7293 CopyValueToVirtualRegister(C, RegOut); 7294 } 7295 Reg = RegOut; 7296 } else { 7297 DenseMap<const Value *, unsigned>::iterator I = 7298 FuncInfo.ValueMap.find(PHIOp); 7299 if (I != FuncInfo.ValueMap.end()) 7300 Reg = I->second; 7301 else { 7302 assert(isa<AllocaInst>(PHIOp) && 7303 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7304 "Didn't codegen value into a register!??"); 7305 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7306 CopyValueToVirtualRegister(PHIOp, Reg); 7307 } 7308 } 7309 7310 // Remember that this register needs to added to the machine PHI node as 7311 // the input for this MBB. 7312 SmallVector<EVT, 4> ValueVTs; 7313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7314 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7315 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7316 EVT VT = ValueVTs[vti]; 7317 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7318 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7319 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7320 Reg += NumRegisters; 7321 } 7322 } 7323 } 7324 7325 ConstantsOut.clear(); 7326 } 7327 7328 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7329 /// is 0. 7330 MachineBasicBlock * 7331 SelectionDAGBuilder::StackProtectorDescriptor:: 7332 AddSuccessorMBB(const BasicBlock *BB, 7333 MachineBasicBlock *ParentMBB, 7334 bool IsLikely, 7335 MachineBasicBlock *SuccMBB) { 7336 // If SuccBB has not been created yet, create it. 7337 if (!SuccMBB) { 7338 MachineFunction *MF = ParentMBB->getParent(); 7339 MachineFunction::iterator BBI = ParentMBB; 7340 SuccMBB = MF->CreateMachineBasicBlock(BB); 7341 MF->insert(++BBI, SuccMBB); 7342 } 7343 // Add it as a successor of ParentMBB. 7344 ParentMBB->addSuccessor( 7345 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7346 return SuccMBB; 7347 } 7348 7349 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7350 MachineFunction::iterator I = MBB; 7351 if (++I == FuncInfo.MF->end()) 7352 return nullptr; 7353 return I; 7354 } 7355 7356 /// During lowering new call nodes can be created (such as memset, etc.). 7357 /// Those will become new roots of the current DAG, but complications arise 7358 /// when they are tail calls. In such cases, the call lowering will update 7359 /// the root, but the builder still needs to know that a tail call has been 7360 /// lowered in order to avoid generating an additional return. 7361 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7362 // If the node is null, we do have a tail call. 7363 if (MaybeTC.getNode() != nullptr) 7364 DAG.setRoot(MaybeTC); 7365 else 7366 HasTailCall = true; 7367 } 7368 7369 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7370 unsigned *TotalCases, unsigned First, 7371 unsigned Last) { 7372 assert(Last >= First); 7373 assert(TotalCases[Last] >= TotalCases[First]); 7374 7375 APInt LowCase = Clusters[First].Low->getValue(); 7376 APInt HighCase = Clusters[Last].High->getValue(); 7377 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7378 7379 // FIXME: A range of consecutive cases has 100% density, but only requires one 7380 // comparison to lower. We should discriminate against such consecutive ranges 7381 // in jump tables. 7382 7383 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7384 uint64_t Range = Diff + 1; 7385 7386 uint64_t NumCases = 7387 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7388 7389 assert(NumCases < UINT64_MAX / 100); 7390 assert(Range >= NumCases); 7391 7392 return NumCases * 100 >= Range * MinJumpTableDensity; 7393 } 7394 7395 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7396 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7397 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7398 } 7399 7400 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7401 unsigned First, unsigned Last, 7402 const SwitchInst *SI, 7403 MachineBasicBlock *DefaultMBB, 7404 CaseCluster &JTCluster) { 7405 assert(First <= Last); 7406 7407 uint32_t Weight = 0; 7408 unsigned NumCmps = 0; 7409 std::vector<MachineBasicBlock*> Table; 7410 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7411 for (unsigned I = First; I <= Last; ++I) { 7412 assert(Clusters[I].Kind == CC_Range); 7413 Weight += Clusters[I].Weight; 7414 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7415 APInt Low = Clusters[I].Low->getValue(); 7416 APInt High = Clusters[I].High->getValue(); 7417 NumCmps += (Low == High) ? 1 : 2; 7418 if (I != First) { 7419 // Fill the gap between this and the previous cluster. 7420 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7421 assert(PreviousHigh.slt(Low)); 7422 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7423 for (uint64_t J = 0; J < Gap; J++) 7424 Table.push_back(DefaultMBB); 7425 } 7426 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7427 for (uint64_t J = 0; J < ClusterSize; ++J) 7428 Table.push_back(Clusters[I].MBB); 7429 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7430 } 7431 7432 unsigned NumDests = JTWeights.size(); 7433 if (isSuitableForBitTests(NumDests, NumCmps, 7434 Clusters[First].Low->getValue(), 7435 Clusters[Last].High->getValue())) { 7436 // Clusters[First..Last] should be lowered as bit tests instead. 7437 return false; 7438 } 7439 7440 // Create the MBB that will load from and jump through the table. 7441 // Note: We create it here, but it's not inserted into the function yet. 7442 MachineFunction *CurMF = FuncInfo.MF; 7443 MachineBasicBlock *JumpTableMBB = 7444 CurMF->CreateMachineBasicBlock(SI->getParent()); 7445 7446 // Add successors. Note: use table order for determinism. 7447 SmallPtrSet<MachineBasicBlock *, 8> Done; 7448 for (MachineBasicBlock *Succ : Table) { 7449 if (Done.count(Succ)) 7450 continue; 7451 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7452 Done.insert(Succ); 7453 } 7454 7455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7456 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7457 ->createJumpTableIndex(Table); 7458 7459 // Set up the jump table info. 7460 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7461 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7462 Clusters[Last].High->getValue(), SI->getCondition(), 7463 nullptr, false); 7464 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7465 7466 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7467 JTCases.size() - 1, Weight); 7468 return true; 7469 } 7470 7471 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7472 const SwitchInst *SI, 7473 MachineBasicBlock *DefaultMBB) { 7474 #ifndef NDEBUG 7475 // Clusters must be non-empty, sorted, and only contain Range clusters. 7476 assert(!Clusters.empty()); 7477 for (CaseCluster &C : Clusters) 7478 assert(C.Kind == CC_Range); 7479 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7480 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7481 #endif 7482 7483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7484 if (!areJTsAllowed(TLI)) 7485 return; 7486 7487 const int64_t N = Clusters.size(); 7488 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7489 7490 // Split Clusters into minimum number of dense partitions. The algorithm uses 7491 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7492 // for the Case Statement'" (1994), but builds the MinPartitions array in 7493 // reverse order to make it easier to reconstruct the partitions in ascending 7494 // order. In the choice between two optimal partitionings, it picks the one 7495 // which yields more jump tables. 7496 7497 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7498 SmallVector<unsigned, 8> MinPartitions(N); 7499 // LastElement[i] is the last element of the partition starting at i. 7500 SmallVector<unsigned, 8> LastElement(N); 7501 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7502 SmallVector<unsigned, 8> NumTables(N); 7503 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7504 SmallVector<unsigned, 8> TotalCases(N); 7505 7506 for (unsigned i = 0; i < N; ++i) { 7507 APInt Hi = Clusters[i].High->getValue(); 7508 APInt Lo = Clusters[i].Low->getValue(); 7509 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7510 if (i != 0) 7511 TotalCases[i] += TotalCases[i - 1]; 7512 } 7513 7514 // Base case: There is only one way to partition Clusters[N-1]. 7515 MinPartitions[N - 1] = 1; 7516 LastElement[N - 1] = N - 1; 7517 assert(MinJumpTableSize > 1); 7518 NumTables[N - 1] = 0; 7519 7520 // Note: loop indexes are signed to avoid underflow. 7521 for (int64_t i = N - 2; i >= 0; i--) { 7522 // Find optimal partitioning of Clusters[i..N-1]. 7523 // Baseline: Put Clusters[i] into a partition on its own. 7524 MinPartitions[i] = MinPartitions[i + 1] + 1; 7525 LastElement[i] = i; 7526 NumTables[i] = NumTables[i + 1]; 7527 7528 // Search for a solution that results in fewer partitions. 7529 for (int64_t j = N - 1; j > i; j--) { 7530 // Try building a partition from Clusters[i..j]. 7531 if (isDense(Clusters, &TotalCases[0], i, j)) { 7532 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7533 bool IsTable = j - i + 1 >= MinJumpTableSize; 7534 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7535 7536 // If this j leads to fewer partitions, or same number of partitions 7537 // with more lookup tables, it is a better partitioning. 7538 if (NumPartitions < MinPartitions[i] || 7539 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7540 MinPartitions[i] = NumPartitions; 7541 LastElement[i] = j; 7542 NumTables[i] = Tables; 7543 } 7544 } 7545 } 7546 } 7547 7548 // Iterate over the partitions, replacing some with jump tables in-place. 7549 unsigned DstIndex = 0; 7550 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7551 Last = LastElement[First]; 7552 assert(Last >= First); 7553 assert(DstIndex <= First); 7554 unsigned NumClusters = Last - First + 1; 7555 7556 CaseCluster JTCluster; 7557 if (NumClusters >= MinJumpTableSize && 7558 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7559 Clusters[DstIndex++] = JTCluster; 7560 } else { 7561 for (unsigned I = First; I <= Last; ++I) 7562 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7563 } 7564 } 7565 Clusters.resize(DstIndex); 7566 } 7567 7568 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7569 // FIXME: Using the pointer type doesn't seem ideal. 7570 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7571 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7572 return Range <= BW; 7573 } 7574 7575 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7576 unsigned NumCmps, 7577 const APInt &Low, 7578 const APInt &High) { 7579 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7580 // range of cases both require only one branch to lower. Just looking at the 7581 // number of clusters and destinations should be enough to decide whether to 7582 // build bit tests. 7583 7584 // To lower a range with bit tests, the range must fit the bitwidth of a 7585 // machine word. 7586 if (!rangeFitsInWord(Low, High)) 7587 return false; 7588 7589 // Decide whether it's profitable to lower this range with bit tests. Each 7590 // destination requires a bit test and branch, and there is an overall range 7591 // check branch. For a small number of clusters, separate comparisons might be 7592 // cheaper, and for many destinations, splitting the range might be better. 7593 return (NumDests == 1 && NumCmps >= 3) || 7594 (NumDests == 2 && NumCmps >= 5) || 7595 (NumDests == 3 && NumCmps >= 6); 7596 } 7597 7598 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7599 unsigned First, unsigned Last, 7600 const SwitchInst *SI, 7601 CaseCluster &BTCluster) { 7602 assert(First <= Last); 7603 if (First == Last) 7604 return false; 7605 7606 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7607 unsigned NumCmps = 0; 7608 for (int64_t I = First; I <= Last; ++I) { 7609 assert(Clusters[I].Kind == CC_Range); 7610 Dests.set(Clusters[I].MBB->getNumber()); 7611 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7612 } 7613 unsigned NumDests = Dests.count(); 7614 7615 APInt Low = Clusters[First].Low->getValue(); 7616 APInt High = Clusters[Last].High->getValue(); 7617 assert(Low.slt(High)); 7618 7619 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7620 return false; 7621 7622 APInt LowBound; 7623 APInt CmpRange; 7624 7625 const int BitWidth = 7626 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7627 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7628 7629 if (Low.isNonNegative() && High.slt(BitWidth)) { 7630 // Optimize the case where all the case values fit in a 7631 // word without having to subtract minValue. In this case, 7632 // we can optimize away the subtraction. 7633 LowBound = APInt::getNullValue(Low.getBitWidth()); 7634 CmpRange = High; 7635 } else { 7636 LowBound = Low; 7637 CmpRange = High - Low; 7638 } 7639 7640 CaseBitsVector CBV; 7641 uint32_t TotalWeight = 0; 7642 for (unsigned i = First; i <= Last; ++i) { 7643 // Find the CaseBits for this destination. 7644 unsigned j; 7645 for (j = 0; j < CBV.size(); ++j) 7646 if (CBV[j].BB == Clusters[i].MBB) 7647 break; 7648 if (j == CBV.size()) 7649 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7650 CaseBits *CB = &CBV[j]; 7651 7652 // Update Mask, Bits and ExtraWeight. 7653 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7654 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7655 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7656 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7657 CB->Bits += Hi - Lo + 1; 7658 CB->ExtraWeight += Clusters[i].Weight; 7659 TotalWeight += Clusters[i].Weight; 7660 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7661 } 7662 7663 BitTestInfo BTI; 7664 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7665 // Sort by weight first, number of bits second. 7666 if (a.ExtraWeight != b.ExtraWeight) 7667 return a.ExtraWeight > b.ExtraWeight; 7668 return a.Bits > b.Bits; 7669 }); 7670 7671 for (auto &CB : CBV) { 7672 MachineBasicBlock *BitTestBB = 7673 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7674 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7675 } 7676 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7677 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7678 nullptr, std::move(BTI)); 7679 7680 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7681 BitTestCases.size() - 1, TotalWeight); 7682 return true; 7683 } 7684 7685 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7686 const SwitchInst *SI) { 7687 // Partition Clusters into as few subsets as possible, where each subset has a 7688 // range that fits in a machine word and has <= 3 unique destinations. 7689 7690 #ifndef NDEBUG 7691 // Clusters must be sorted and contain Range or JumpTable clusters. 7692 assert(!Clusters.empty()); 7693 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7694 for (const CaseCluster &C : Clusters) 7695 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7696 for (unsigned i = 1; i < Clusters.size(); ++i) 7697 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7698 #endif 7699 7700 // If target does not have legal shift left, do not emit bit tests at all. 7701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7702 EVT PTy = TLI.getPointerTy(); 7703 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7704 return; 7705 7706 int BitWidth = PTy.getSizeInBits(); 7707 const int64_t N = Clusters.size(); 7708 7709 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7710 SmallVector<unsigned, 8> MinPartitions(N); 7711 // LastElement[i] is the last element of the partition starting at i. 7712 SmallVector<unsigned, 8> LastElement(N); 7713 7714 // FIXME: This might not be the best algorithm for finding bit test clusters. 7715 7716 // Base case: There is only one way to partition Clusters[N-1]. 7717 MinPartitions[N - 1] = 1; 7718 LastElement[N - 1] = N - 1; 7719 7720 // Note: loop indexes are signed to avoid underflow. 7721 for (int64_t i = N - 2; i >= 0; --i) { 7722 // Find optimal partitioning of Clusters[i..N-1]. 7723 // Baseline: Put Clusters[i] into a partition on its own. 7724 MinPartitions[i] = MinPartitions[i + 1] + 1; 7725 LastElement[i] = i; 7726 7727 // Search for a solution that results in fewer partitions. 7728 // Note: the search is limited by BitWidth, reducing time complexity. 7729 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7730 // Try building a partition from Clusters[i..j]. 7731 7732 // Check the range. 7733 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7734 Clusters[j].High->getValue())) 7735 continue; 7736 7737 // Check nbr of destinations and cluster types. 7738 // FIXME: This works, but doesn't seem very efficient. 7739 bool RangesOnly = true; 7740 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7741 for (int64_t k = i; k <= j; k++) { 7742 if (Clusters[k].Kind != CC_Range) { 7743 RangesOnly = false; 7744 break; 7745 } 7746 Dests.set(Clusters[k].MBB->getNumber()); 7747 } 7748 if (!RangesOnly || Dests.count() > 3) 7749 break; 7750 7751 // Check if it's a better partition. 7752 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7753 if (NumPartitions < MinPartitions[i]) { 7754 // Found a better partition. 7755 MinPartitions[i] = NumPartitions; 7756 LastElement[i] = j; 7757 } 7758 } 7759 } 7760 7761 // Iterate over the partitions, replacing with bit-test clusters in-place. 7762 unsigned DstIndex = 0; 7763 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7764 Last = LastElement[First]; 7765 assert(First <= Last); 7766 assert(DstIndex <= First); 7767 7768 CaseCluster BitTestCluster; 7769 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7770 Clusters[DstIndex++] = BitTestCluster; 7771 } else { 7772 size_t NumClusters = Last - First + 1; 7773 std::memmove(&Clusters[DstIndex], &Clusters[First], 7774 sizeof(Clusters[0]) * NumClusters); 7775 DstIndex += NumClusters; 7776 } 7777 } 7778 Clusters.resize(DstIndex); 7779 } 7780 7781 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7782 MachineBasicBlock *SwitchMBB, 7783 MachineBasicBlock *DefaultMBB) { 7784 MachineFunction *CurMF = FuncInfo.MF; 7785 MachineBasicBlock *NextMBB = nullptr; 7786 MachineFunction::iterator BBI = W.MBB; 7787 if (++BBI != FuncInfo.MF->end()) 7788 NextMBB = BBI; 7789 7790 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7791 7792 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7793 7794 if (Size == 2 && W.MBB == SwitchMBB) { 7795 // If any two of the cases has the same destination, and if one value 7796 // is the same as the other, but has one bit unset that the other has set, 7797 // use bit manipulation to do two compares at once. For example: 7798 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7799 // TODO: This could be extended to merge any 2 cases in switches with 3 7800 // cases. 7801 // TODO: Handle cases where W.CaseBB != SwitchBB. 7802 CaseCluster &Small = *W.FirstCluster; 7803 CaseCluster &Big = *W.LastCluster; 7804 7805 if (Small.Low == Small.High && Big.Low == Big.High && 7806 Small.MBB == Big.MBB) { 7807 const APInt &SmallValue = Small.Low->getValue(); 7808 const APInt &BigValue = Big.Low->getValue(); 7809 7810 // Check that there is only one bit different. 7811 APInt CommonBit = BigValue ^ SmallValue; 7812 if (CommonBit.isPowerOf2()) { 7813 SDValue CondLHS = getValue(Cond); 7814 EVT VT = CondLHS.getValueType(); 7815 SDLoc DL = getCurSDLoc(); 7816 7817 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7818 DAG.getConstant(CommonBit, DL, VT)); 7819 SDValue Cond = DAG.getSetCC( 7820 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7821 ISD::SETEQ); 7822 7823 // Update successor info. 7824 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7825 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7826 addSuccessorWithWeight( 7827 SwitchMBB, DefaultMBB, 7828 // The default destination is the first successor in IR. 7829 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7830 : 0); 7831 7832 // Insert the true branch. 7833 SDValue BrCond = 7834 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7835 DAG.getBasicBlock(Small.MBB)); 7836 // Insert the false branch. 7837 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7838 DAG.getBasicBlock(DefaultMBB)); 7839 7840 DAG.setRoot(BrCond); 7841 return; 7842 } 7843 } 7844 } 7845 7846 if (TM.getOptLevel() != CodeGenOpt::None) { 7847 // Order cases by weight so the most likely case will be checked first. 7848 std::sort(W.FirstCluster, W.LastCluster + 1, 7849 [](const CaseCluster &a, const CaseCluster &b) { 7850 return a.Weight > b.Weight; 7851 }); 7852 7853 // Rearrange the case blocks so that the last one falls through if possible 7854 // without without changing the order of weights. 7855 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7856 --I; 7857 if (I->Weight > W.LastCluster->Weight) 7858 break; 7859 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7860 std::swap(*I, *W.LastCluster); 7861 break; 7862 } 7863 } 7864 } 7865 7866 // Compute total weight. 7867 uint32_t UnhandledWeights = 0; 7868 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7869 UnhandledWeights += I->Weight; 7870 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7871 } 7872 7873 MachineBasicBlock *CurMBB = W.MBB; 7874 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7875 MachineBasicBlock *Fallthrough; 7876 if (I == W.LastCluster) { 7877 // For the last cluster, fall through to the default destination. 7878 Fallthrough = DefaultMBB; 7879 } else { 7880 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7881 CurMF->insert(BBI, Fallthrough); 7882 // Put Cond in a virtual register to make it available from the new blocks. 7883 ExportFromCurrentBlock(Cond); 7884 } 7885 7886 switch (I->Kind) { 7887 case CC_JumpTable: { 7888 // FIXME: Optimize away range check based on pivot comparisons. 7889 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7890 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7891 7892 // The jump block hasn't been inserted yet; insert it here. 7893 MachineBasicBlock *JumpMBB = JT->MBB; 7894 CurMF->insert(BBI, JumpMBB); 7895 addSuccessorWithWeight(CurMBB, Fallthrough); 7896 addSuccessorWithWeight(CurMBB, JumpMBB); 7897 7898 // The jump table header will be inserted in our current block, do the 7899 // range check, and fall through to our fallthrough block. 7900 JTH->HeaderBB = CurMBB; 7901 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7902 7903 // If we're in the right place, emit the jump table header right now. 7904 if (CurMBB == SwitchMBB) { 7905 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7906 JTH->Emitted = true; 7907 } 7908 break; 7909 } 7910 case CC_BitTests: { 7911 // FIXME: Optimize away range check based on pivot comparisons. 7912 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7913 7914 // The bit test blocks haven't been inserted yet; insert them here. 7915 for (BitTestCase &BTC : BTB->Cases) 7916 CurMF->insert(BBI, BTC.ThisBB); 7917 7918 // Fill in fields of the BitTestBlock. 7919 BTB->Parent = CurMBB; 7920 BTB->Default = Fallthrough; 7921 7922 // If we're in the right place, emit the bit test header header right now. 7923 if (CurMBB ==SwitchMBB) { 7924 visitBitTestHeader(*BTB, SwitchMBB); 7925 BTB->Emitted = true; 7926 } 7927 break; 7928 } 7929 case CC_Range: { 7930 const Value *RHS, *LHS, *MHS; 7931 ISD::CondCode CC; 7932 if (I->Low == I->High) { 7933 // Check Cond == I->Low. 7934 CC = ISD::SETEQ; 7935 LHS = Cond; 7936 RHS=I->Low; 7937 MHS = nullptr; 7938 } else { 7939 // Check I->Low <= Cond <= I->High. 7940 CC = ISD::SETLE; 7941 LHS = I->Low; 7942 MHS = Cond; 7943 RHS = I->High; 7944 } 7945 7946 // The false weight is the sum of all unhandled cases. 7947 UnhandledWeights -= I->Weight; 7948 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7949 UnhandledWeights); 7950 7951 if (CurMBB == SwitchMBB) 7952 visitSwitchCase(CB, SwitchMBB); 7953 else 7954 SwitchCases.push_back(CB); 7955 7956 break; 7957 } 7958 } 7959 CurMBB = Fallthrough; 7960 } 7961 } 7962 7963 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7964 const SwitchWorkListItem &W, 7965 Value *Cond, 7966 MachineBasicBlock *SwitchMBB) { 7967 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7968 "Clusters not sorted?"); 7969 7970 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7971 7972 // Balance the tree based on branch weights to create a near-optimal (in terms 7973 // of search time given key frequency) binary search tree. See e.g. Kurt 7974 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7975 CaseClusterIt LastLeft = W.FirstCluster; 7976 CaseClusterIt FirstRight = W.LastCluster; 7977 uint32_t LeftWeight = LastLeft->Weight; 7978 uint32_t RightWeight = FirstRight->Weight; 7979 7980 // Move LastLeft and FirstRight towards each other from opposite directions to 7981 // find a partitioning of the clusters which balances the weight on both 7982 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7983 // taken to ensure 0-weight nodes are distributed evenly. 7984 unsigned I = 0; 7985 while (LastLeft + 1 < FirstRight) { 7986 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7987 LeftWeight += (++LastLeft)->Weight; 7988 else 7989 RightWeight += (--FirstRight)->Weight; 7990 I++; 7991 } 7992 assert(LastLeft + 1 == FirstRight); 7993 assert(LastLeft >= W.FirstCluster); 7994 assert(FirstRight <= W.LastCluster); 7995 7996 // Use the first element on the right as pivot since we will make less-than 7997 // comparisons against it. 7998 CaseClusterIt PivotCluster = FirstRight; 7999 assert(PivotCluster > W.FirstCluster); 8000 assert(PivotCluster <= W.LastCluster); 8001 8002 CaseClusterIt FirstLeft = W.FirstCluster; 8003 CaseClusterIt LastRight = W.LastCluster; 8004 8005 const ConstantInt *Pivot = PivotCluster->Low; 8006 8007 // New blocks will be inserted immediately after the current one. 8008 MachineFunction::iterator BBI = W.MBB; 8009 ++BBI; 8010 8011 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8012 // we can branch to its destination directly if it's squeezed exactly in 8013 // between the known lower bound and Pivot - 1. 8014 MachineBasicBlock *LeftMBB; 8015 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8016 FirstLeft->Low == W.GE && 8017 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8018 LeftMBB = FirstLeft->MBB; 8019 } else { 8020 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8021 FuncInfo.MF->insert(BBI, LeftMBB); 8022 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8023 // Put Cond in a virtual register to make it available from the new blocks. 8024 ExportFromCurrentBlock(Cond); 8025 } 8026 8027 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8028 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8029 // directly if RHS.High equals the current upper bound. 8030 MachineBasicBlock *RightMBB; 8031 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8032 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8033 RightMBB = FirstRight->MBB; 8034 } else { 8035 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8036 FuncInfo.MF->insert(BBI, RightMBB); 8037 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8038 // Put Cond in a virtual register to make it available from the new blocks. 8039 ExportFromCurrentBlock(Cond); 8040 } 8041 8042 // Create the CaseBlock record that will be used to lower the branch. 8043 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8044 LeftWeight, RightWeight); 8045 8046 if (W.MBB == SwitchMBB) 8047 visitSwitchCase(CB, SwitchMBB); 8048 else 8049 SwitchCases.push_back(CB); 8050 } 8051 8052 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8053 // Extract cases from the switch. 8054 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8055 CaseClusterVector Clusters; 8056 Clusters.reserve(SI.getNumCases()); 8057 for (auto I : SI.cases()) { 8058 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8059 const ConstantInt *CaseVal = I.getCaseValue(); 8060 uint32_t Weight = 8061 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8062 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8063 } 8064 8065 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8066 8067 // Cluster adjacent cases with the same destination. We do this at all 8068 // optimization levels because it's cheap to do and will make codegen faster 8069 // if there are many clusters. 8070 sortAndRangeify(Clusters); 8071 8072 if (TM.getOptLevel() != CodeGenOpt::None) { 8073 // Replace an unreachable default with the most popular destination. 8074 // FIXME: Exploit unreachable default more aggressively. 8075 bool UnreachableDefault = 8076 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8077 if (UnreachableDefault && !Clusters.empty()) { 8078 DenseMap<const BasicBlock *, unsigned> Popularity; 8079 unsigned MaxPop = 0; 8080 const BasicBlock *MaxBB = nullptr; 8081 for (auto I : SI.cases()) { 8082 const BasicBlock *BB = I.getCaseSuccessor(); 8083 if (++Popularity[BB] > MaxPop) { 8084 MaxPop = Popularity[BB]; 8085 MaxBB = BB; 8086 } 8087 } 8088 // Set new default. 8089 assert(MaxPop > 0 && MaxBB); 8090 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8091 8092 // Remove cases that were pointing to the destination that is now the 8093 // default. 8094 CaseClusterVector New; 8095 New.reserve(Clusters.size()); 8096 for (CaseCluster &CC : Clusters) { 8097 if (CC.MBB != DefaultMBB) 8098 New.push_back(CC); 8099 } 8100 Clusters = std::move(New); 8101 } 8102 } 8103 8104 // If there is only the default destination, jump there directly. 8105 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8106 if (Clusters.empty()) { 8107 SwitchMBB->addSuccessor(DefaultMBB); 8108 if (DefaultMBB != NextBlock(SwitchMBB)) { 8109 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8110 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8111 } 8112 return; 8113 } 8114 8115 if (TM.getOptLevel() != CodeGenOpt::None) { 8116 findJumpTables(Clusters, &SI, DefaultMBB); 8117 findBitTestClusters(Clusters, &SI); 8118 } 8119 8120 8121 DEBUG({ 8122 dbgs() << "Case clusters: "; 8123 for (const CaseCluster &C : Clusters) { 8124 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8125 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8126 8127 C.Low->getValue().print(dbgs(), true); 8128 if (C.Low != C.High) { 8129 dbgs() << '-'; 8130 C.High->getValue().print(dbgs(), true); 8131 } 8132 dbgs() << ' '; 8133 } 8134 dbgs() << '\n'; 8135 }); 8136 8137 assert(!Clusters.empty()); 8138 SwitchWorkList WorkList; 8139 CaseClusterIt First = Clusters.begin(); 8140 CaseClusterIt Last = Clusters.end() - 1; 8141 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8142 8143 while (!WorkList.empty()) { 8144 SwitchWorkListItem W = WorkList.back(); 8145 WorkList.pop_back(); 8146 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8147 8148 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8149 // For optimized builds, lower large range as a balanced binary tree. 8150 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8151 continue; 8152 } 8153 8154 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8155 } 8156 } 8157