1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 namespace { 74 /// RegsForValue - This struct represents the registers (physical or virtual) 75 /// that a particular set of values is assigned, and the type information 76 /// about the value. The most common situation is to represent one value at a 77 /// time, but struct or array values are handled element-wise as multiple 78 /// values. The splitting of aggregates is performed recursively, so that we 79 /// never have aggregate-typed registers. The values at this point do not 80 /// necessarily have legal types, so each value may require one or more 81 /// registers of some legal type. 82 /// 83 struct RegsForValue { 84 /// TLI - The TargetLowering object. 85 /// 86 const TargetLowering *TLI; 87 88 /// ValueVTs - The value types of the values, which may not be legal, and 89 /// may need be promoted or synthesized from one or more registers. 90 /// 91 SmallVector<EVT, 4> ValueVTs; 92 93 /// RegVTs - The value types of the registers. This is the same size as 94 /// ValueVTs and it records, for each value, what the type of the assigned 95 /// register or registers are. (Individual values are never synthesized 96 /// from more than one type of register.) 97 /// 98 /// With virtual registers, the contents of RegVTs is redundant with TLI's 99 /// getRegisterType member function, however when with physical registers 100 /// it is necessary to have a separate record of the types. 101 /// 102 SmallVector<EVT, 4> RegVTs; 103 104 /// Regs - This list holds the registers assigned to the values. 105 /// Each legal or promoted value requires one register, and each 106 /// expanded value requires multiple registers. 107 /// 108 SmallVector<unsigned, 4> Regs; 109 110 RegsForValue() : TLI(0) {} 111 112 RegsForValue(const TargetLowering &tli, 113 const SmallVector<unsigned, 4> ®s, 114 EVT regvt, EVT valuevt) 115 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 116 RegsForValue(const TargetLowering &tli, 117 const SmallVector<unsigned, 4> ®s, 118 const SmallVector<EVT, 4> ®vts, 119 const SmallVector<EVT, 4> &valuevts) 120 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 121 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 122 unsigned Reg, const Type *Ty) : TLI(&tli) { 123 ComputeValueVTs(tli, Ty, ValueVTs); 124 125 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 126 EVT ValueVT = ValueVTs[Value]; 127 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 128 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 129 for (unsigned i = 0; i != NumRegs; ++i) 130 Regs.push_back(Reg + i); 131 RegVTs.push_back(RegisterVT); 132 Reg += NumRegs; 133 } 134 } 135 136 /// areValueTypesLegal - Return true if types of all the values are legal. 137 bool areValueTypesLegal() { 138 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 139 EVT RegisterVT = RegVTs[Value]; 140 if (!TLI->isTypeLegal(RegisterVT)) 141 return false; 142 } 143 return true; 144 } 145 146 147 /// append - Add the specified values to this one. 148 void append(const RegsForValue &RHS) { 149 TLI = RHS.TLI; 150 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 151 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 152 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 153 } 154 155 156 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 157 /// this value and returns the result as a ValueVTs value. This uses 158 /// Chain/Flag as the input and updates them for the output Chain/Flag. 159 /// If the Flag pointer is NULL, no flag is used. 160 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 161 SDValue &Chain, SDValue *Flag) const; 162 163 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 164 /// specified value into the registers specified by this object. This uses 165 /// Chain/Flag as the input and updates them for the output Chain/Flag. 166 /// If the Flag pointer is NULL, no flag is used. 167 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 168 SDValue &Chain, SDValue *Flag) const; 169 170 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 171 /// operand list. This adds the code marker, matching input operand index 172 /// (if applicable), and includes the number of values added into it. 173 void AddInlineAsmOperands(unsigned Kind, 174 bool HasMatching, unsigned MatchingIdx, 175 SelectionDAG &DAG, 176 std::vector<SDValue> &Ops) const; 177 }; 178 } 179 180 /// getCopyFromParts - Create a value that contains the specified legal parts 181 /// combined into the value they represent. If the parts combine to a type 182 /// larger then ValueVT then AssertOp can be used to specify whether the extra 183 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 184 /// (ISD::AssertSext). 185 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 186 const SDValue *Parts, 187 unsigned NumParts, EVT PartVT, EVT ValueVT, 188 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 189 assert(NumParts > 0 && "No parts to assemble!"); 190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 191 SDValue Val = Parts[0]; 192 193 if (NumParts > 1) { 194 // Assemble the value from multiple parts. 195 if (!ValueVT.isVector() && ValueVT.isInteger()) { 196 unsigned PartBits = PartVT.getSizeInBits(); 197 unsigned ValueBits = ValueVT.getSizeInBits(); 198 199 // Assemble the power of 2 part. 200 unsigned RoundParts = NumParts & (NumParts - 1) ? 201 1 << Log2_32(NumParts) : NumParts; 202 unsigned RoundBits = PartBits * RoundParts; 203 EVT RoundVT = RoundBits == ValueBits ? 204 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 205 SDValue Lo, Hi; 206 207 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 208 209 if (RoundParts > 2) { 210 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 211 PartVT, HalfVT); 212 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 213 RoundParts / 2, PartVT, HalfVT); 214 } else { 215 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 216 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 217 } 218 219 if (TLI.isBigEndian()) 220 std::swap(Lo, Hi); 221 222 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 223 224 if (RoundParts < NumParts) { 225 // Assemble the trailing non-power-of-2 part. 226 unsigned OddParts = NumParts - RoundParts; 227 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 228 Hi = getCopyFromParts(DAG, dl, 229 Parts + RoundParts, OddParts, PartVT, OddVT); 230 231 // Combine the round and odd parts. 232 Lo = Val; 233 if (TLI.isBigEndian()) 234 std::swap(Lo, Hi); 235 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 236 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 237 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 238 DAG.getConstant(Lo.getValueType().getSizeInBits(), 239 TLI.getPointerTy())); 240 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 241 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 242 } 243 } else if (ValueVT.isVector()) { 244 // Handle a multi-element vector. 245 EVT IntermediateVT, RegisterVT; 246 unsigned NumIntermediates; 247 unsigned NumRegs = 248 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 249 NumIntermediates, RegisterVT); 250 assert(NumRegs == NumParts 251 && "Part count doesn't match vector breakdown!"); 252 NumParts = NumRegs; // Silence a compiler warning. 253 assert(RegisterVT == PartVT 254 && "Part type doesn't match vector breakdown!"); 255 assert(RegisterVT == Parts[0].getValueType() && 256 "Part type doesn't match part!"); 257 258 // Assemble the parts into intermediate operands. 259 SmallVector<SDValue, 8> Ops(NumIntermediates); 260 if (NumIntermediates == NumParts) { 261 // If the register was not expanded, truncate or copy the value, 262 // as appropriate. 263 for (unsigned i = 0; i != NumParts; ++i) 264 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 265 PartVT, IntermediateVT); 266 } else if (NumParts > 0) { 267 // If the intermediate type was expanded, build the intermediate 268 // operands from the parts. 269 assert(NumParts % NumIntermediates == 0 && 270 "Must expand into a divisible number of parts!"); 271 unsigned Factor = NumParts / NumIntermediates; 272 for (unsigned i = 0; i != NumIntermediates; ++i) 273 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 274 PartVT, IntermediateVT); 275 } 276 277 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 278 // intermediate operands. 279 Val = DAG.getNode(IntermediateVT.isVector() ? 280 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 281 ValueVT, &Ops[0], NumIntermediates); 282 } else if (PartVT.isFloatingPoint()) { 283 // FP split into multiple FP parts (for ppcf128) 284 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 285 "Unexpected split"); 286 SDValue Lo, Hi; 287 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 288 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 289 if (TLI.isBigEndian()) 290 std::swap(Lo, Hi); 291 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 292 } else { 293 // FP split into integer parts (soft fp) 294 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 295 !PartVT.isVector() && "Unexpected split"); 296 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 297 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 298 } 299 } 300 301 // There is now one part, held in Val. Correct it to match ValueVT. 302 PartVT = Val.getValueType(); 303 304 if (PartVT == ValueVT) 305 return Val; 306 307 if (PartVT.isVector()) { 308 assert(ValueVT.isVector() && "Unknown vector conversion!"); 309 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 310 } 311 312 if (ValueVT.isVector()) { 313 assert(ValueVT.getVectorElementType() == PartVT && 314 ValueVT.getVectorNumElements() == 1 && 315 "Only trivial scalar-to-vector conversions should get here!"); 316 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 317 } 318 319 if (PartVT.isInteger() && 320 ValueVT.isInteger()) { 321 if (ValueVT.bitsLT(PartVT)) { 322 // For a truncate, see if we have any information to 323 // indicate whether the truncated bits will always be 324 // zero or sign-extension. 325 if (AssertOp != ISD::DELETED_NODE) 326 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 327 DAG.getValueType(ValueVT)); 328 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 329 } else { 330 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 331 } 332 } 333 334 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 335 if (ValueVT.bitsLT(Val.getValueType())) { 336 // FP_ROUND's are always exact here. 337 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 338 DAG.getIntPtrConstant(1)); 339 } 340 341 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 342 } 343 344 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 345 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 346 347 llvm_unreachable("Unknown mismatch!"); 348 return SDValue(); 349 } 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 EVT PartVT, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 359 EVT PtrVT = TLI.getPointerTy(); 360 EVT ValueVT = Val.getValueType(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (!NumParts) 366 return; 367 368 if (!ValueVT.isVector()) { 369 if (PartVT == ValueVT) { 370 assert(NumParts == 1 && "No-op copy with multiple parts!"); 371 Parts[0] = Val; 372 return; 373 } 374 375 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 376 // If the parts cover more bits than the value has, promote the value. 377 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 378 assert(NumParts == 1 && "Do not know what to promote to!"); 379 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 380 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 383 } else { 384 llvm_unreachable("Unknown mismatch!"); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartVT != ValueVT); 389 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 if (PartVT.isInteger() && ValueVT.isInteger()) { 393 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 394 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 395 } else { 396 llvm_unreachable("Unknown mismatch!"); 397 } 398 } 399 400 // The value may have changed - recompute ValueVT. 401 ValueVT = Val.getValueType(); 402 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 403 "Failed to tile the value with PartVT!"); 404 405 if (NumParts == 1) { 406 assert(PartVT == ValueVT && "Type conversion failed!"); 407 Parts[0] = Val; 408 return; 409 } 410 411 // Expand the value into multiple parts. 412 if (NumParts & (NumParts - 1)) { 413 // The number of parts is not a power of 2. Split off and copy the tail. 414 assert(PartVT.isInteger() && ValueVT.isInteger() && 415 "Do not know what to expand to!"); 416 unsigned RoundParts = 1 << Log2_32(NumParts); 417 unsigned RoundBits = RoundParts * PartBits; 418 unsigned OddParts = NumParts - RoundParts; 419 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 420 DAG.getConstant(RoundBits, 421 TLI.getPointerTy())); 422 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 423 OddParts, PartVT); 424 425 if (TLI.isBigEndian()) 426 // The odd parts were reversed by getCopyToParts - unreverse them. 427 std::reverse(Parts + RoundParts, Parts + NumParts); 428 429 NumParts = RoundParts; 430 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 431 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 432 } 433 434 // The number of parts is a power of 2. Repeatedly bisect the value using 435 // EXTRACT_ELEMENT. 436 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 437 EVT::getIntegerVT(*DAG.getContext(), 438 ValueVT.getSizeInBits()), 439 Val); 440 441 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 442 for (unsigned i = 0; i < NumParts; i += StepSize) { 443 unsigned ThisBits = StepSize * PartBits / 2; 444 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 445 SDValue &Part0 = Parts[i]; 446 SDValue &Part1 = Parts[i+StepSize/2]; 447 448 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 449 ThisVT, Part0, 450 DAG.getConstant(1, PtrVT)); 451 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 452 ThisVT, Part0, 453 DAG.getConstant(0, PtrVT)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 457 PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 459 PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 467 return; 468 } 469 470 // Vector ValueVT. 471 if (NumParts == 1) { 472 if (PartVT != ValueVT) { 473 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 474 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 475 } else { 476 assert(ValueVT.getVectorElementType() == PartVT && 477 ValueVT.getVectorNumElements() == 1 && 478 "Only trivial vector-to-scalar conversions should get here!"); 479 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 480 PartVT, Val, 481 DAG.getConstant(0, PtrVT)); 482 } 483 } 484 485 Parts[0] = Val; 486 return; 487 } 488 489 // Handle a multi-element vector. 490 EVT IntermediateVT, RegisterVT; 491 unsigned NumIntermediates; 492 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 493 IntermediateVT, NumIntermediates, RegisterVT); 494 unsigned NumElements = ValueVT.getVectorNumElements(); 495 496 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 497 NumParts = NumRegs; // Silence a compiler warning. 498 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 499 500 // Split the vector into intermediate operands. 501 SmallVector<SDValue, 8> Ops(NumIntermediates); 502 for (unsigned i = 0; i != NumIntermediates; ++i) { 503 if (IntermediateVT.isVector()) 504 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 505 IntermediateVT, Val, 506 DAG.getConstant(i * (NumElements / NumIntermediates), 507 PtrVT)); 508 else 509 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 510 IntermediateVT, Val, 511 DAG.getConstant(i, PtrVT)); 512 } 513 514 // Split the intermediate operands into legal parts. 515 if (NumParts == NumIntermediates) { 516 // If the register was not expanded, promote or copy the value, 517 // as appropriate. 518 for (unsigned i = 0; i != NumParts; ++i) 519 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 520 } else if (NumParts > 0) { 521 // If the intermediate type was expanded, split each the value into 522 // legal parts. 523 assert(NumParts % NumIntermediates == 0 && 524 "Must expand into a divisible number of parts!"); 525 unsigned Factor = NumParts / NumIntermediates; 526 for (unsigned i = 0; i != NumIntermediates; ++i) 527 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 528 } 529 } 530 531 532 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 533 AA = &aa; 534 GFI = gfi; 535 TD = DAG.getTarget().getTargetData(); 536 } 537 538 /// clear - Clear out the current SelectionDAG and the associated 539 /// state and prepare this SelectionDAGBuilder object to be used 540 /// for a new block. This doesn't clear out information about 541 /// additional blocks that are needed to complete switch lowering 542 /// or PHI node updating; that information is cleared out as it is 543 /// consumed. 544 void SelectionDAGBuilder::clear() { 545 NodeMap.clear(); 546 PendingLoads.clear(); 547 PendingExports.clear(); 548 DAG.clear(); 549 CurDebugLoc = DebugLoc(); 550 HasTailCall = false; 551 } 552 553 /// getRoot - Return the current virtual root of the Selection DAG, 554 /// flushing any PendingLoad items. This must be done before emitting 555 /// a store or any other node that may need to be ordered after any 556 /// prior load instructions. 557 /// 558 SDValue SelectionDAGBuilder::getRoot() { 559 if (PendingLoads.empty()) 560 return DAG.getRoot(); 561 562 if (PendingLoads.size() == 1) { 563 SDValue Root = PendingLoads[0]; 564 DAG.setRoot(Root); 565 PendingLoads.clear(); 566 return Root; 567 } 568 569 // Otherwise, we have to make a token factor node. 570 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 571 &PendingLoads[0], PendingLoads.size()); 572 PendingLoads.clear(); 573 DAG.setRoot(Root); 574 return Root; 575 } 576 577 /// getControlRoot - Similar to getRoot, but instead of flushing all the 578 /// PendingLoad items, flush all the PendingExports items. It is necessary 579 /// to do this before emitting a terminator instruction. 580 /// 581 SDValue SelectionDAGBuilder::getControlRoot() { 582 SDValue Root = DAG.getRoot(); 583 584 if (PendingExports.empty()) 585 return Root; 586 587 // Turn all of the CopyToReg chains into one factored node. 588 if (Root.getOpcode() != ISD::EntryToken) { 589 unsigned i = 0, e = PendingExports.size(); 590 for (; i != e; ++i) { 591 assert(PendingExports[i].getNode()->getNumOperands() > 1); 592 if (PendingExports[i].getNode()->getOperand(0) == Root) 593 break; // Don't add the root if we already indirectly depend on it. 594 } 595 596 if (i == e) 597 PendingExports.push_back(Root); 598 } 599 600 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 601 &PendingExports[0], 602 PendingExports.size()); 603 PendingExports.clear(); 604 DAG.setRoot(Root); 605 return Root; 606 } 607 608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 609 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 610 DAG.AssignOrdering(Node, SDNodeOrder); 611 612 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 613 AssignOrderingToNode(Node->getOperand(I).getNode()); 614 } 615 616 void SelectionDAGBuilder::visit(const Instruction &I) { 617 // Set up outgoing PHI node register values before emitting the terminator. 618 if (isa<TerminatorInst>(&I)) 619 HandlePHINodesInSuccessorBlocks(I.getParent()); 620 621 CurDebugLoc = I.getDebugLoc(); 622 623 visit(I.getOpcode(), I); 624 625 if (!isa<TerminatorInst>(&I) && !HasTailCall) 626 CopyToExportRegsIfNeeded(&I); 627 628 CurDebugLoc = DebugLoc(); 629 } 630 631 void SelectionDAGBuilder::visitPHI(const PHINode &) { 632 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 633 } 634 635 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 636 // Note: this doesn't use InstVisitor, because it has to work with 637 // ConstantExpr's in addition to instructions. 638 switch (Opcode) { 639 default: llvm_unreachable("Unknown instruction type encountered!"); 640 // Build the switch statement using the Instruction.def file. 641 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 642 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 643 #include "llvm/Instruction.def" 644 } 645 646 // Assign the ordering to the freshly created DAG nodes. 647 if (NodeMap.count(&I)) { 648 ++SDNodeOrder; 649 AssignOrderingToNode(getValue(&I).getNode()); 650 } 651 } 652 653 SDValue SelectionDAGBuilder::getValue(const Value *V) { 654 SDValue &N = NodeMap[V]; 655 if (N.getNode()) return N; 656 657 if (const Constant *C = dyn_cast<Constant>(V)) { 658 EVT VT = TLI.getValueType(V->getType(), true); 659 660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 661 return N = DAG.getConstant(*CI, VT); 662 663 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 664 return N = DAG.getGlobalAddress(GV, VT); 665 666 if (isa<ConstantPointerNull>(C)) 667 return N = DAG.getConstant(0, TLI.getPointerTy()); 668 669 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 670 return N = DAG.getConstantFP(*CFP, VT); 671 672 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 673 return N = DAG.getUNDEF(VT); 674 675 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 676 visit(CE->getOpcode(), *CE); 677 SDValue N1 = NodeMap[V]; 678 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 679 return N1; 680 } 681 682 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 683 SmallVector<SDValue, 4> Constants; 684 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 685 OI != OE; ++OI) { 686 SDNode *Val = getValue(*OI).getNode(); 687 // If the operand is an empty aggregate, there are no values. 688 if (!Val) continue; 689 // Add each leaf value from the operand to the Constants list 690 // to form a flattened list of all the values. 691 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 692 Constants.push_back(SDValue(Val, i)); 693 } 694 695 return DAG.getMergeValues(&Constants[0], Constants.size(), 696 getCurDebugLoc()); 697 } 698 699 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 700 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 701 "Unknown struct or array constant!"); 702 703 SmallVector<EVT, 4> ValueVTs; 704 ComputeValueVTs(TLI, C->getType(), ValueVTs); 705 unsigned NumElts = ValueVTs.size(); 706 if (NumElts == 0) 707 return SDValue(); // empty struct 708 SmallVector<SDValue, 4> Constants(NumElts); 709 for (unsigned i = 0; i != NumElts; ++i) { 710 EVT EltVT = ValueVTs[i]; 711 if (isa<UndefValue>(C)) 712 Constants[i] = DAG.getUNDEF(EltVT); 713 else if (EltVT.isFloatingPoint()) 714 Constants[i] = DAG.getConstantFP(0, EltVT); 715 else 716 Constants[i] = DAG.getConstant(0, EltVT); 717 } 718 719 return DAG.getMergeValues(&Constants[0], NumElts, 720 getCurDebugLoc()); 721 } 722 723 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 724 return DAG.getBlockAddress(BA, VT); 725 726 const VectorType *VecTy = cast<VectorType>(V->getType()); 727 unsigned NumElements = VecTy->getNumElements(); 728 729 // Now that we know the number and type of the elements, get that number of 730 // elements into the Ops array based on what kind of constant it is. 731 SmallVector<SDValue, 16> Ops; 732 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 733 for (unsigned i = 0; i != NumElements; ++i) 734 Ops.push_back(getValue(CP->getOperand(i))); 735 } else { 736 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 737 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 738 739 SDValue Op; 740 if (EltVT.isFloatingPoint()) 741 Op = DAG.getConstantFP(0, EltVT); 742 else 743 Op = DAG.getConstant(0, EltVT); 744 Ops.assign(NumElements, Op); 745 } 746 747 // Create a BUILD_VECTOR node. 748 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 749 VT, &Ops[0], Ops.size()); 750 } 751 752 // If this is a static alloca, generate it as the frameindex instead of 753 // computation. 754 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 755 DenseMap<const AllocaInst*, int>::iterator SI = 756 FuncInfo.StaticAllocaMap.find(AI); 757 if (SI != FuncInfo.StaticAllocaMap.end()) 758 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 759 } 760 761 unsigned InReg = FuncInfo.ValueMap[V]; 762 assert(InReg && "Value not in map!"); 763 764 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 765 SDValue Chain = DAG.getEntryNode(); 766 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 767 } 768 769 /// Get the EVTs and ArgFlags collections that represent the legalized return 770 /// type of the given function. This does not require a DAG or a return value, 771 /// and is suitable for use before any DAGs for the function are constructed. 772 static void getReturnInfo(const Type* ReturnType, 773 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 774 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 775 const TargetLowering &TLI, 776 SmallVectorImpl<uint64_t> *Offsets = 0) { 777 SmallVector<EVT, 4> ValueVTs; 778 ComputeValueVTs(TLI, ReturnType, ValueVTs); 779 unsigned NumValues = ValueVTs.size(); 780 if (NumValues == 0) return; 781 unsigned Offset = 0; 782 783 for (unsigned j = 0, f = NumValues; j != f; ++j) { 784 EVT VT = ValueVTs[j]; 785 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 786 787 if (attr & Attribute::SExt) 788 ExtendKind = ISD::SIGN_EXTEND; 789 else if (attr & Attribute::ZExt) 790 ExtendKind = ISD::ZERO_EXTEND; 791 792 // FIXME: C calling convention requires the return type to be promoted to 793 // at least 32-bit. But this is not necessary for non-C calling 794 // conventions. The frontend should mark functions whose return values 795 // require promoting with signext or zeroext attributes. 796 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 797 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 798 if (VT.bitsLT(MinVT)) 799 VT = MinVT; 800 } 801 802 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 803 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 804 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 805 PartVT.getTypeForEVT(ReturnType->getContext())); 806 807 // 'inreg' on function refers to return value 808 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 809 if (attr & Attribute::InReg) 810 Flags.setInReg(); 811 812 // Propagate extension type if any 813 if (attr & Attribute::SExt) 814 Flags.setSExt(); 815 else if (attr & Attribute::ZExt) 816 Flags.setZExt(); 817 818 for (unsigned i = 0; i < NumParts; ++i) { 819 OutVTs.push_back(PartVT); 820 OutFlags.push_back(Flags); 821 if (Offsets) 822 { 823 Offsets->push_back(Offset); 824 Offset += PartSize; 825 } 826 } 827 } 828 } 829 830 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 831 SDValue Chain = getControlRoot(); 832 SmallVector<ISD::OutputArg, 8> Outs; 833 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 834 835 if (!FLI.CanLowerReturn) { 836 unsigned DemoteReg = FLI.DemoteRegister; 837 const Function *F = I.getParent()->getParent(); 838 839 // Emit a store of the return value through the virtual register. 840 // Leave Outs empty so that LowerReturn won't try to load return 841 // registers the usual way. 842 SmallVector<EVT, 1> PtrValueVTs; 843 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 844 PtrValueVTs); 845 846 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 847 SDValue RetOp = getValue(I.getOperand(0)); 848 849 SmallVector<EVT, 4> ValueVTs; 850 SmallVector<uint64_t, 4> Offsets; 851 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 852 unsigned NumValues = ValueVTs.size(); 853 854 SmallVector<SDValue, 4> Chains(NumValues); 855 EVT PtrVT = PtrValueVTs[0]; 856 for (unsigned i = 0; i != NumValues; ++i) { 857 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 858 DAG.getConstant(Offsets[i], PtrVT)); 859 Chains[i] = 860 DAG.getStore(Chain, getCurDebugLoc(), 861 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 862 Add, NULL, Offsets[i], false, false, 0); 863 } 864 865 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 866 MVT::Other, &Chains[0], NumValues); 867 } else if (I.getNumOperands() != 0) { 868 SmallVector<EVT, 4> ValueVTs; 869 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 870 unsigned NumValues = ValueVTs.size(); 871 if (NumValues) { 872 SDValue RetOp = getValue(I.getOperand(0)); 873 for (unsigned j = 0, f = NumValues; j != f; ++j) { 874 EVT VT = ValueVTs[j]; 875 876 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 877 878 const Function *F = I.getParent()->getParent(); 879 if (F->paramHasAttr(0, Attribute::SExt)) 880 ExtendKind = ISD::SIGN_EXTEND; 881 else if (F->paramHasAttr(0, Attribute::ZExt)) 882 ExtendKind = ISD::ZERO_EXTEND; 883 884 // FIXME: C calling convention requires the return type to be promoted 885 // to at least 32-bit. But this is not necessary for non-C calling 886 // conventions. The frontend should mark functions whose return values 887 // require promoting with signext or zeroext attributes. 888 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 889 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 890 if (VT.bitsLT(MinVT)) 891 VT = MinVT; 892 } 893 894 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 895 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 896 SmallVector<SDValue, 4> Parts(NumParts); 897 getCopyToParts(DAG, getCurDebugLoc(), 898 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 899 &Parts[0], NumParts, PartVT, ExtendKind); 900 901 // 'inreg' on function refers to return value 902 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 903 if (F->paramHasAttr(0, Attribute::InReg)) 904 Flags.setInReg(); 905 906 // Propagate extension type if any 907 if (F->paramHasAttr(0, Attribute::SExt)) 908 Flags.setSExt(); 909 else if (F->paramHasAttr(0, Attribute::ZExt)) 910 Flags.setZExt(); 911 912 for (unsigned i = 0; i < NumParts; ++i) 913 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 914 } 915 } 916 } 917 918 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 919 CallingConv::ID CallConv = 920 DAG.getMachineFunction().getFunction()->getCallingConv(); 921 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 922 Outs, getCurDebugLoc(), DAG); 923 924 // Verify that the target's LowerReturn behaved as expected. 925 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 926 "LowerReturn didn't return a valid chain!"); 927 928 // Update the DAG with the new chain value resulting from return lowering. 929 DAG.setRoot(Chain); 930 } 931 932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 933 /// created for it, emit nodes to copy the value into the virtual 934 /// registers. 935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 937 if (VMI != FuncInfo.ValueMap.end()) { 938 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 939 CopyValueToVirtualRegister(V, VMI->second); 940 } 941 } 942 943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 944 /// the current basic block, add it to ValueMap now so that we'll get a 945 /// CopyTo/FromReg. 946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 947 // No need to export constants. 948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 949 950 // Already exported? 951 if (FuncInfo.isExportedInst(V)) return; 952 953 unsigned Reg = FuncInfo.InitializeRegForValue(V); 954 CopyValueToVirtualRegister(V, Reg); 955 } 956 957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 958 const BasicBlock *FromBB) { 959 // The operands of the setcc have to be in this block. We don't know 960 // how to export them from some other block. 961 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 962 // Can export from current BB. 963 if (VI->getParent() == FromBB) 964 return true; 965 966 // Is already exported, noop. 967 return FuncInfo.isExportedInst(V); 968 } 969 970 // If this is an argument, we can export it if the BB is the entry block or 971 // if it is already exported. 972 if (isa<Argument>(V)) { 973 if (FromBB == &FromBB->getParent()->getEntryBlock()) 974 return true; 975 976 // Otherwise, can only export this if it is already exported. 977 return FuncInfo.isExportedInst(V); 978 } 979 980 // Otherwise, constants can always be exported. 981 return true; 982 } 983 984 static bool InBlock(const Value *V, const BasicBlock *BB) { 985 if (const Instruction *I = dyn_cast<Instruction>(V)) 986 return I->getParent() == BB; 987 return true; 988 } 989 990 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 991 /// This function emits a branch and is used at the leaves of an OR or an 992 /// AND operator tree. 993 /// 994 void 995 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 996 MachineBasicBlock *TBB, 997 MachineBasicBlock *FBB, 998 MachineBasicBlock *CurBB, 999 MachineBasicBlock *SwitchBB) { 1000 const BasicBlock *BB = CurBB->getBasicBlock(); 1001 1002 // If the leaf of the tree is a comparison, merge the condition into 1003 // the caseblock. 1004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1005 // The operands of the cmp have to be in this block. We don't know 1006 // how to export them from some other block. If this is the first block 1007 // of the sequence, no exporting is needed. 1008 if (CurBB == SwitchBB || 1009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1011 ISD::CondCode Condition; 1012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1013 Condition = getICmpCondCode(IC->getPredicate()); 1014 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1015 Condition = getFCmpCondCode(FC->getPredicate()); 1016 } else { 1017 Condition = ISD::SETEQ; // silence warning. 1018 llvm_unreachable("Unknown compare instruction"); 1019 } 1020 1021 CaseBlock CB(Condition, BOp->getOperand(0), 1022 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1023 SwitchCases.push_back(CB); 1024 return; 1025 } 1026 } 1027 1028 // Create a CaseBlock record representing this branch. 1029 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1030 NULL, TBB, FBB, CurBB); 1031 SwitchCases.push_back(CB); 1032 } 1033 1034 /// FindMergedConditions - If Cond is an expression like 1035 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1036 MachineBasicBlock *TBB, 1037 MachineBasicBlock *FBB, 1038 MachineBasicBlock *CurBB, 1039 MachineBasicBlock *SwitchBB, 1040 unsigned Opc) { 1041 // If this node is not part of the or/and tree, emit it as a branch. 1042 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1043 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1044 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1045 BOp->getParent() != CurBB->getBasicBlock() || 1046 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1047 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1048 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1049 return; 1050 } 1051 1052 // Create TmpBB after CurBB. 1053 MachineFunction::iterator BBI = CurBB; 1054 MachineFunction &MF = DAG.getMachineFunction(); 1055 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1056 CurBB->getParent()->insert(++BBI, TmpBB); 1057 1058 if (Opc == Instruction::Or) { 1059 // Codegen X | Y as: 1060 // jmp_if_X TBB 1061 // jmp TmpBB 1062 // TmpBB: 1063 // jmp_if_Y TBB 1064 // jmp FBB 1065 // 1066 1067 // Emit the LHS condition. 1068 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1069 1070 // Emit the RHS condition into TmpBB. 1071 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1072 } else { 1073 assert(Opc == Instruction::And && "Unknown merge op!"); 1074 // Codegen X & Y as: 1075 // jmp_if_X TmpBB 1076 // jmp FBB 1077 // TmpBB: 1078 // jmp_if_Y TBB 1079 // jmp FBB 1080 // 1081 // This requires creation of TmpBB after CurBB. 1082 1083 // Emit the LHS condition. 1084 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1085 1086 // Emit the RHS condition into TmpBB. 1087 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1088 } 1089 } 1090 1091 /// If the set of cases should be emitted as a series of branches, return true. 1092 /// If we should emit this as a bunch of and/or'd together conditions, return 1093 /// false. 1094 bool 1095 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1096 if (Cases.size() != 2) return true; 1097 1098 // If this is two comparisons of the same values or'd or and'd together, they 1099 // will get folded into a single comparison, so don't emit two blocks. 1100 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1101 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1102 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1103 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1104 return false; 1105 } 1106 1107 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1108 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1109 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1110 Cases[0].CC == Cases[1].CC && 1111 isa<Constant>(Cases[0].CmpRHS) && 1112 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1113 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1114 return false; 1115 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1116 return false; 1117 } 1118 1119 return true; 1120 } 1121 1122 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1123 MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()]; 1124 1125 // Update machine-CFG edges. 1126 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1127 1128 // Figure out which block is immediately after the current one. 1129 MachineBasicBlock *NextBlock = 0; 1130 MachineFunction::iterator BBI = BrMBB; 1131 if (++BBI != FuncInfo.MF->end()) 1132 NextBlock = BBI; 1133 1134 if (I.isUnconditional()) { 1135 // Update machine-CFG edges. 1136 BrMBB->addSuccessor(Succ0MBB); 1137 1138 // If this is not a fall-through branch, emit the branch. 1139 if (Succ0MBB != NextBlock) 1140 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1141 MVT::Other, getControlRoot(), 1142 DAG.getBasicBlock(Succ0MBB))); 1143 1144 return; 1145 } 1146 1147 // If this condition is one of the special cases we handle, do special stuff 1148 // now. 1149 const Value *CondVal = I.getCondition(); 1150 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1151 1152 // If this is a series of conditions that are or'd or and'd together, emit 1153 // this as a sequence of branches instead of setcc's with and/or operations. 1154 // For example, instead of something like: 1155 // cmp A, B 1156 // C = seteq 1157 // cmp D, E 1158 // F = setle 1159 // or C, F 1160 // jnz foo 1161 // Emit: 1162 // cmp A, B 1163 // je foo 1164 // cmp D, E 1165 // jle foo 1166 // 1167 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1168 if (BOp->hasOneUse() && 1169 (BOp->getOpcode() == Instruction::And || 1170 BOp->getOpcode() == Instruction::Or)) { 1171 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1172 BOp->getOpcode()); 1173 // If the compares in later blocks need to use values not currently 1174 // exported from this block, export them now. This block should always 1175 // be the first entry. 1176 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1177 1178 // Allow some cases to be rejected. 1179 if (ShouldEmitAsBranches(SwitchCases)) { 1180 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1181 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1182 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1183 } 1184 1185 // Emit the branch for this block. 1186 visitSwitchCase(SwitchCases[0], BrMBB); 1187 SwitchCases.erase(SwitchCases.begin()); 1188 return; 1189 } 1190 1191 // Okay, we decided not to do this, remove any inserted MBB's and clear 1192 // SwitchCases. 1193 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1194 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1195 1196 SwitchCases.clear(); 1197 } 1198 } 1199 1200 // Create a CaseBlock record representing this branch. 1201 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1202 NULL, Succ0MBB, Succ1MBB, BrMBB); 1203 1204 // Use visitSwitchCase to actually insert the fast branch sequence for this 1205 // cond branch. 1206 visitSwitchCase(CB, BrMBB); 1207 } 1208 1209 /// visitSwitchCase - Emits the necessary code to represent a single node in 1210 /// the binary search tree resulting from lowering a switch instruction. 1211 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1212 MachineBasicBlock *SwitchBB) { 1213 SDValue Cond; 1214 SDValue CondLHS = getValue(CB.CmpLHS); 1215 DebugLoc dl = getCurDebugLoc(); 1216 1217 // Build the setcc now. 1218 if (CB.CmpMHS == NULL) { 1219 // Fold "(X == true)" to X and "(X == false)" to !X to 1220 // handle common cases produced by branch lowering. 1221 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1222 CB.CC == ISD::SETEQ) 1223 Cond = CondLHS; 1224 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1225 CB.CC == ISD::SETEQ) { 1226 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1227 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1228 } else 1229 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1230 } else { 1231 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1232 1233 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1234 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1235 1236 SDValue CmpOp = getValue(CB.CmpMHS); 1237 EVT VT = CmpOp.getValueType(); 1238 1239 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1240 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1241 ISD::SETLE); 1242 } else { 1243 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1244 VT, CmpOp, DAG.getConstant(Low, VT)); 1245 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1246 DAG.getConstant(High-Low, VT), ISD::SETULE); 1247 } 1248 } 1249 1250 // Update successor info 1251 SwitchBB->addSuccessor(CB.TrueBB); 1252 SwitchBB->addSuccessor(CB.FalseBB); 1253 1254 // Set NextBlock to be the MBB immediately after the current one, if any. 1255 // This is used to avoid emitting unnecessary branches to the next block. 1256 MachineBasicBlock *NextBlock = 0; 1257 MachineFunction::iterator BBI = SwitchBB; 1258 if (++BBI != FuncInfo.MF->end()) 1259 NextBlock = BBI; 1260 1261 // If the lhs block is the next block, invert the condition so that we can 1262 // fall through to the lhs instead of the rhs block. 1263 if (CB.TrueBB == NextBlock) { 1264 std::swap(CB.TrueBB, CB.FalseBB); 1265 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1266 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1267 } 1268 1269 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1270 MVT::Other, getControlRoot(), Cond, 1271 DAG.getBasicBlock(CB.TrueBB)); 1272 1273 // If the branch was constant folded, fix up the CFG. 1274 if (BrCond.getOpcode() == ISD::BR) { 1275 SwitchBB->removeSuccessor(CB.FalseBB); 1276 } else { 1277 // Otherwise, go ahead and insert the false branch. 1278 if (BrCond == getControlRoot()) 1279 SwitchBB->removeSuccessor(CB.TrueBB); 1280 1281 if (CB.FalseBB != NextBlock) 1282 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1283 DAG.getBasicBlock(CB.FalseBB)); 1284 } 1285 1286 DAG.setRoot(BrCond); 1287 } 1288 1289 /// visitJumpTable - Emit JumpTable node in the current MBB 1290 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1291 // Emit the code for the jump table 1292 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1293 EVT PTy = TLI.getPointerTy(); 1294 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1295 JT.Reg, PTy); 1296 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1297 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1298 MVT::Other, Index.getValue(1), 1299 Table, Index); 1300 DAG.setRoot(BrJumpTable); 1301 } 1302 1303 /// visitJumpTableHeader - This function emits necessary code to produce index 1304 /// in the JumpTable from switch case. 1305 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1306 JumpTableHeader &JTH, 1307 MachineBasicBlock *SwitchBB) { 1308 // Subtract the lowest switch case value from the value being switched on and 1309 // conditional branch to default mbb if the result is greater than the 1310 // difference between smallest and largest cases. 1311 SDValue SwitchOp = getValue(JTH.SValue); 1312 EVT VT = SwitchOp.getValueType(); 1313 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1314 DAG.getConstant(JTH.First, VT)); 1315 1316 // The SDNode we just created, which holds the value being switched on minus 1317 // the smallest case value, needs to be copied to a virtual register so it 1318 // can be used as an index into the jump table in a subsequent basic block. 1319 // This value may be smaller or larger than the target's pointer type, and 1320 // therefore require extension or truncating. 1321 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1322 1323 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1324 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1325 JumpTableReg, SwitchOp); 1326 JT.Reg = JumpTableReg; 1327 1328 // Emit the range check for the jump table, and branch to the default block 1329 // for the switch statement if the value being switched on exceeds the largest 1330 // case in the switch. 1331 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1332 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1333 DAG.getConstant(JTH.Last-JTH.First,VT), 1334 ISD::SETUGT); 1335 1336 // Set NextBlock to be the MBB immediately after the current one, if any. 1337 // This is used to avoid emitting unnecessary branches to the next block. 1338 MachineBasicBlock *NextBlock = 0; 1339 MachineFunction::iterator BBI = SwitchBB; 1340 1341 if (++BBI != FuncInfo.MF->end()) 1342 NextBlock = BBI; 1343 1344 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1345 MVT::Other, CopyTo, CMP, 1346 DAG.getBasicBlock(JT.Default)); 1347 1348 if (JT.MBB != NextBlock) 1349 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1350 DAG.getBasicBlock(JT.MBB)); 1351 1352 DAG.setRoot(BrCond); 1353 } 1354 1355 /// visitBitTestHeader - This function emits necessary code to produce value 1356 /// suitable for "bit tests" 1357 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1358 MachineBasicBlock *SwitchBB) { 1359 // Subtract the minimum value 1360 SDValue SwitchOp = getValue(B.SValue); 1361 EVT VT = SwitchOp.getValueType(); 1362 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1363 DAG.getConstant(B.First, VT)); 1364 1365 // Check range 1366 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1367 TLI.getSetCCResultType(Sub.getValueType()), 1368 Sub, DAG.getConstant(B.Range, VT), 1369 ISD::SETUGT); 1370 1371 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1372 TLI.getPointerTy()); 1373 1374 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1375 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1376 B.Reg, ShiftOp); 1377 1378 // Set NextBlock to be the MBB immediately after the current one, if any. 1379 // This is used to avoid emitting unnecessary branches to the next block. 1380 MachineBasicBlock *NextBlock = 0; 1381 MachineFunction::iterator BBI = SwitchBB; 1382 if (++BBI != FuncInfo.MF->end()) 1383 NextBlock = BBI; 1384 1385 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1386 1387 SwitchBB->addSuccessor(B.Default); 1388 SwitchBB->addSuccessor(MBB); 1389 1390 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1391 MVT::Other, CopyTo, RangeCmp, 1392 DAG.getBasicBlock(B.Default)); 1393 1394 if (MBB != NextBlock) 1395 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1396 DAG.getBasicBlock(MBB)); 1397 1398 DAG.setRoot(BrRange); 1399 } 1400 1401 /// visitBitTestCase - this function produces one "bit test" 1402 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1403 unsigned Reg, 1404 BitTestCase &B, 1405 MachineBasicBlock *SwitchBB) { 1406 // Make desired shift 1407 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1408 TLI.getPointerTy()); 1409 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1410 TLI.getPointerTy(), 1411 DAG.getConstant(1, TLI.getPointerTy()), 1412 ShiftOp); 1413 1414 // Emit bit tests and jumps 1415 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1416 TLI.getPointerTy(), SwitchVal, 1417 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1418 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1419 TLI.getSetCCResultType(AndOp.getValueType()), 1420 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1421 ISD::SETNE); 1422 1423 SwitchBB->addSuccessor(B.TargetBB); 1424 SwitchBB->addSuccessor(NextMBB); 1425 1426 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1427 MVT::Other, getControlRoot(), 1428 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1429 1430 // Set NextBlock to be the MBB immediately after the current one, if any. 1431 // This is used to avoid emitting unnecessary branches to the next block. 1432 MachineBasicBlock *NextBlock = 0; 1433 MachineFunction::iterator BBI = SwitchBB; 1434 if (++BBI != FuncInfo.MF->end()) 1435 NextBlock = BBI; 1436 1437 if (NextMBB != NextBlock) 1438 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1439 DAG.getBasicBlock(NextMBB)); 1440 1441 DAG.setRoot(BrAnd); 1442 } 1443 1444 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1445 MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()]; 1446 1447 // Retrieve successors. 1448 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1449 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1450 1451 const Value *Callee(I.getCalledValue()); 1452 if (isa<InlineAsm>(Callee)) 1453 visitInlineAsm(&I); 1454 else 1455 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1456 1457 // If the value of the invoke is used outside of its defining block, make it 1458 // available as a virtual register. 1459 CopyToExportRegsIfNeeded(&I); 1460 1461 // Update successor info 1462 InvokeMBB->addSuccessor(Return); 1463 InvokeMBB->addSuccessor(LandingPad); 1464 1465 // Drop into normal successor. 1466 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1467 MVT::Other, getControlRoot(), 1468 DAG.getBasicBlock(Return))); 1469 } 1470 1471 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1472 } 1473 1474 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1475 /// small case ranges). 1476 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1477 CaseRecVector& WorkList, 1478 const Value* SV, 1479 MachineBasicBlock *Default, 1480 MachineBasicBlock *SwitchBB) { 1481 Case& BackCase = *(CR.Range.second-1); 1482 1483 // Size is the number of Cases represented by this range. 1484 size_t Size = CR.Range.second - CR.Range.first; 1485 if (Size > 3) 1486 return false; 1487 1488 // Get the MachineFunction which holds the current MBB. This is used when 1489 // inserting any additional MBBs necessary to represent the switch. 1490 MachineFunction *CurMF = FuncInfo.MF; 1491 1492 // Figure out which block is immediately after the current one. 1493 MachineBasicBlock *NextBlock = 0; 1494 MachineFunction::iterator BBI = CR.CaseBB; 1495 1496 if (++BBI != FuncInfo.MF->end()) 1497 NextBlock = BBI; 1498 1499 // TODO: If any two of the cases has the same destination, and if one value 1500 // is the same as the other, but has one bit unset that the other has set, 1501 // use bit manipulation to do two compares at once. For example: 1502 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1503 1504 // Rearrange the case blocks so that the last one falls through if possible. 1505 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1506 // The last case block won't fall through into 'NextBlock' if we emit the 1507 // branches in this order. See if rearranging a case value would help. 1508 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1509 if (I->BB == NextBlock) { 1510 std::swap(*I, BackCase); 1511 break; 1512 } 1513 } 1514 } 1515 1516 // Create a CaseBlock record representing a conditional branch to 1517 // the Case's target mbb if the value being switched on SV is equal 1518 // to C. 1519 MachineBasicBlock *CurBlock = CR.CaseBB; 1520 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1521 MachineBasicBlock *FallThrough; 1522 if (I != E-1) { 1523 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1524 CurMF->insert(BBI, FallThrough); 1525 1526 // Put SV in a virtual register to make it available from the new blocks. 1527 ExportFromCurrentBlock(SV); 1528 } else { 1529 // If the last case doesn't match, go to the default block. 1530 FallThrough = Default; 1531 } 1532 1533 const Value *RHS, *LHS, *MHS; 1534 ISD::CondCode CC; 1535 if (I->High == I->Low) { 1536 // This is just small small case range :) containing exactly 1 case 1537 CC = ISD::SETEQ; 1538 LHS = SV; RHS = I->High; MHS = NULL; 1539 } else { 1540 CC = ISD::SETLE; 1541 LHS = I->Low; MHS = SV; RHS = I->High; 1542 } 1543 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1544 1545 // If emitting the first comparison, just call visitSwitchCase to emit the 1546 // code into the current block. Otherwise, push the CaseBlock onto the 1547 // vector to be later processed by SDISel, and insert the node's MBB 1548 // before the next MBB. 1549 if (CurBlock == SwitchBB) 1550 visitSwitchCase(CB, SwitchBB); 1551 else 1552 SwitchCases.push_back(CB); 1553 1554 CurBlock = FallThrough; 1555 } 1556 1557 return true; 1558 } 1559 1560 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1561 return !DisableJumpTables && 1562 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1563 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1564 } 1565 1566 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1567 APInt LastExt(Last), FirstExt(First); 1568 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1569 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1570 return (LastExt - FirstExt + 1ULL); 1571 } 1572 1573 /// handleJTSwitchCase - Emit jumptable for current switch case range 1574 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1575 CaseRecVector& WorkList, 1576 const Value* SV, 1577 MachineBasicBlock* Default, 1578 MachineBasicBlock *SwitchBB) { 1579 Case& FrontCase = *CR.Range.first; 1580 Case& BackCase = *(CR.Range.second-1); 1581 1582 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1583 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1584 1585 APInt TSize(First.getBitWidth(), 0); 1586 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1587 I!=E; ++I) 1588 TSize += I->size(); 1589 1590 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1591 return false; 1592 1593 APInt Range = ComputeRange(First, Last); 1594 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1595 if (Density < 0.4) 1596 return false; 1597 1598 DEBUG(dbgs() << "Lowering jump table\n" 1599 << "First entry: " << First << ". Last entry: " << Last << '\n' 1600 << "Range: " << Range 1601 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1602 1603 // Get the MachineFunction which holds the current MBB. This is used when 1604 // inserting any additional MBBs necessary to represent the switch. 1605 MachineFunction *CurMF = FuncInfo.MF; 1606 1607 // Figure out which block is immediately after the current one. 1608 MachineFunction::iterator BBI = CR.CaseBB; 1609 ++BBI; 1610 1611 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1612 1613 // Create a new basic block to hold the code for loading the address 1614 // of the jump table, and jumping to it. Update successor information; 1615 // we will either branch to the default case for the switch, or the jump 1616 // table. 1617 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1618 CurMF->insert(BBI, JumpTableBB); 1619 CR.CaseBB->addSuccessor(Default); 1620 CR.CaseBB->addSuccessor(JumpTableBB); 1621 1622 // Build a vector of destination BBs, corresponding to each target 1623 // of the jump table. If the value of the jump table slot corresponds to 1624 // a case statement, push the case's BB onto the vector, otherwise, push 1625 // the default BB. 1626 std::vector<MachineBasicBlock*> DestBBs; 1627 APInt TEI = First; 1628 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1629 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1630 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1631 1632 if (Low.sle(TEI) && TEI.sle(High)) { 1633 DestBBs.push_back(I->BB); 1634 if (TEI==High) 1635 ++I; 1636 } else { 1637 DestBBs.push_back(Default); 1638 } 1639 } 1640 1641 // Update successor info. Add one edge to each unique successor. 1642 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1643 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1644 E = DestBBs.end(); I != E; ++I) { 1645 if (!SuccsHandled[(*I)->getNumber()]) { 1646 SuccsHandled[(*I)->getNumber()] = true; 1647 JumpTableBB->addSuccessor(*I); 1648 } 1649 } 1650 1651 // Create a jump table index for this jump table. 1652 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1653 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1654 ->createJumpTableIndex(DestBBs); 1655 1656 // Set the jump table information so that we can codegen it as a second 1657 // MachineBasicBlock 1658 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1659 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1660 if (CR.CaseBB == SwitchBB) 1661 visitJumpTableHeader(JT, JTH, SwitchBB); 1662 1663 JTCases.push_back(JumpTableBlock(JTH, JT)); 1664 1665 return true; 1666 } 1667 1668 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1669 /// 2 subtrees. 1670 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1671 CaseRecVector& WorkList, 1672 const Value* SV, 1673 MachineBasicBlock *Default, 1674 MachineBasicBlock *SwitchBB) { 1675 // Get the MachineFunction which holds the current MBB. This is used when 1676 // inserting any additional MBBs necessary to represent the switch. 1677 MachineFunction *CurMF = FuncInfo.MF; 1678 1679 // Figure out which block is immediately after the current one. 1680 MachineFunction::iterator BBI = CR.CaseBB; 1681 ++BBI; 1682 1683 Case& FrontCase = *CR.Range.first; 1684 Case& BackCase = *(CR.Range.second-1); 1685 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1686 1687 // Size is the number of Cases represented by this range. 1688 unsigned Size = CR.Range.second - CR.Range.first; 1689 1690 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1691 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1692 double FMetric = 0; 1693 CaseItr Pivot = CR.Range.first + Size/2; 1694 1695 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1696 // (heuristically) allow us to emit JumpTable's later. 1697 APInt TSize(First.getBitWidth(), 0); 1698 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1699 I!=E; ++I) 1700 TSize += I->size(); 1701 1702 APInt LSize = FrontCase.size(); 1703 APInt RSize = TSize-LSize; 1704 DEBUG(dbgs() << "Selecting best pivot: \n" 1705 << "First: " << First << ", Last: " << Last <<'\n' 1706 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1707 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1708 J!=E; ++I, ++J) { 1709 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1710 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1711 APInt Range = ComputeRange(LEnd, RBegin); 1712 assert((Range - 2ULL).isNonNegative() && 1713 "Invalid case distance"); 1714 double LDensity = (double)LSize.roundToDouble() / 1715 (LEnd - First + 1ULL).roundToDouble(); 1716 double RDensity = (double)RSize.roundToDouble() / 1717 (Last - RBegin + 1ULL).roundToDouble(); 1718 double Metric = Range.logBase2()*(LDensity+RDensity); 1719 // Should always split in some non-trivial place 1720 DEBUG(dbgs() <<"=>Step\n" 1721 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1722 << "LDensity: " << LDensity 1723 << ", RDensity: " << RDensity << '\n' 1724 << "Metric: " << Metric << '\n'); 1725 if (FMetric < Metric) { 1726 Pivot = J; 1727 FMetric = Metric; 1728 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1729 } 1730 1731 LSize += J->size(); 1732 RSize -= J->size(); 1733 } 1734 if (areJTsAllowed(TLI)) { 1735 // If our case is dense we *really* should handle it earlier! 1736 assert((FMetric > 0) && "Should handle dense range earlier!"); 1737 } else { 1738 Pivot = CR.Range.first + Size/2; 1739 } 1740 1741 CaseRange LHSR(CR.Range.first, Pivot); 1742 CaseRange RHSR(Pivot, CR.Range.second); 1743 Constant *C = Pivot->Low; 1744 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1745 1746 // We know that we branch to the LHS if the Value being switched on is 1747 // less than the Pivot value, C. We use this to optimize our binary 1748 // tree a bit, by recognizing that if SV is greater than or equal to the 1749 // LHS's Case Value, and that Case Value is exactly one less than the 1750 // Pivot's Value, then we can branch directly to the LHS's Target, 1751 // rather than creating a leaf node for it. 1752 if ((LHSR.second - LHSR.first) == 1 && 1753 LHSR.first->High == CR.GE && 1754 cast<ConstantInt>(C)->getValue() == 1755 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1756 TrueBB = LHSR.first->BB; 1757 } else { 1758 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1759 CurMF->insert(BBI, TrueBB); 1760 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1761 1762 // Put SV in a virtual register to make it available from the new blocks. 1763 ExportFromCurrentBlock(SV); 1764 } 1765 1766 // Similar to the optimization above, if the Value being switched on is 1767 // known to be less than the Constant CR.LT, and the current Case Value 1768 // is CR.LT - 1, then we can branch directly to the target block for 1769 // the current Case Value, rather than emitting a RHS leaf node for it. 1770 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1771 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1772 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1773 FalseBB = RHSR.first->BB; 1774 } else { 1775 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1776 CurMF->insert(BBI, FalseBB); 1777 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1778 1779 // Put SV in a virtual register to make it available from the new blocks. 1780 ExportFromCurrentBlock(SV); 1781 } 1782 1783 // Create a CaseBlock record representing a conditional branch to 1784 // the LHS node if the value being switched on SV is less than C. 1785 // Otherwise, branch to LHS. 1786 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1787 1788 if (CR.CaseBB == SwitchBB) 1789 visitSwitchCase(CB, SwitchBB); 1790 else 1791 SwitchCases.push_back(CB); 1792 1793 return true; 1794 } 1795 1796 /// handleBitTestsSwitchCase - if current case range has few destination and 1797 /// range span less, than machine word bitwidth, encode case range into series 1798 /// of masks and emit bit tests with these masks. 1799 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1800 CaseRecVector& WorkList, 1801 const Value* SV, 1802 MachineBasicBlock* Default, 1803 MachineBasicBlock *SwitchBB){ 1804 EVT PTy = TLI.getPointerTy(); 1805 unsigned IntPtrBits = PTy.getSizeInBits(); 1806 1807 Case& FrontCase = *CR.Range.first; 1808 Case& BackCase = *(CR.Range.second-1); 1809 1810 // Get the MachineFunction which holds the current MBB. This is used when 1811 // inserting any additional MBBs necessary to represent the switch. 1812 MachineFunction *CurMF = FuncInfo.MF; 1813 1814 // If target does not have legal shift left, do not emit bit tests at all. 1815 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1816 return false; 1817 1818 size_t numCmps = 0; 1819 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1820 I!=E; ++I) { 1821 // Single case counts one, case range - two. 1822 numCmps += (I->Low == I->High ? 1 : 2); 1823 } 1824 1825 // Count unique destinations 1826 SmallSet<MachineBasicBlock*, 4> Dests; 1827 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1828 Dests.insert(I->BB); 1829 if (Dests.size() > 3) 1830 // Don't bother the code below, if there are too much unique destinations 1831 return false; 1832 } 1833 DEBUG(dbgs() << "Total number of unique destinations: " 1834 << Dests.size() << '\n' 1835 << "Total number of comparisons: " << numCmps << '\n'); 1836 1837 // Compute span of values. 1838 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1839 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1840 APInt cmpRange = maxValue - minValue; 1841 1842 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1843 << "Low bound: " << minValue << '\n' 1844 << "High bound: " << maxValue << '\n'); 1845 1846 if (cmpRange.uge(IntPtrBits) || 1847 (!(Dests.size() == 1 && numCmps >= 3) && 1848 !(Dests.size() == 2 && numCmps >= 5) && 1849 !(Dests.size() >= 3 && numCmps >= 6))) 1850 return false; 1851 1852 DEBUG(dbgs() << "Emitting bit tests\n"); 1853 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1854 1855 // Optimize the case where all the case values fit in a 1856 // word without having to subtract minValue. In this case, 1857 // we can optimize away the subtraction. 1858 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 1859 cmpRange = maxValue; 1860 } else { 1861 lowBound = minValue; 1862 } 1863 1864 CaseBitsVector CasesBits; 1865 unsigned i, count = 0; 1866 1867 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1868 MachineBasicBlock* Dest = I->BB; 1869 for (i = 0; i < count; ++i) 1870 if (Dest == CasesBits[i].BB) 1871 break; 1872 1873 if (i == count) { 1874 assert((count < 3) && "Too much destinations to test!"); 1875 CasesBits.push_back(CaseBits(0, Dest, 0)); 1876 count++; 1877 } 1878 1879 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1880 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1881 1882 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1883 uint64_t hi = (highValue - lowBound).getZExtValue(); 1884 1885 for (uint64_t j = lo; j <= hi; j++) { 1886 CasesBits[i].Mask |= 1ULL << j; 1887 CasesBits[i].Bits++; 1888 } 1889 1890 } 1891 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1892 1893 BitTestInfo BTC; 1894 1895 // Figure out which block is immediately after the current one. 1896 MachineFunction::iterator BBI = CR.CaseBB; 1897 ++BBI; 1898 1899 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1900 1901 DEBUG(dbgs() << "Cases:\n"); 1902 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1903 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1904 << ", Bits: " << CasesBits[i].Bits 1905 << ", BB: " << CasesBits[i].BB << '\n'); 1906 1907 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1908 CurMF->insert(BBI, CaseBB); 1909 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1910 CaseBB, 1911 CasesBits[i].BB)); 1912 1913 // Put SV in a virtual register to make it available from the new blocks. 1914 ExportFromCurrentBlock(SV); 1915 } 1916 1917 BitTestBlock BTB(lowBound, cmpRange, SV, 1918 -1U, (CR.CaseBB == SwitchBB), 1919 CR.CaseBB, Default, BTC); 1920 1921 if (CR.CaseBB == SwitchBB) 1922 visitBitTestHeader(BTB, SwitchBB); 1923 1924 BitTestCases.push_back(BTB); 1925 1926 return true; 1927 } 1928 1929 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1930 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1931 const SwitchInst& SI) { 1932 size_t numCmps = 0; 1933 1934 // Start with "simple" cases 1935 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1936 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1937 Cases.push_back(Case(SI.getSuccessorValue(i), 1938 SI.getSuccessorValue(i), 1939 SMBB)); 1940 } 1941 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1942 1943 // Merge case into clusters 1944 if (Cases.size() >= 2) 1945 // Must recompute end() each iteration because it may be 1946 // invalidated by erase if we hold on to it 1947 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1948 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1949 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1950 MachineBasicBlock* nextBB = J->BB; 1951 MachineBasicBlock* currentBB = I->BB; 1952 1953 // If the two neighboring cases go to the same destination, merge them 1954 // into a single case. 1955 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1956 I->High = J->High; 1957 J = Cases.erase(J); 1958 } else { 1959 I = J++; 1960 } 1961 } 1962 1963 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1964 if (I->Low != I->High) 1965 // A range counts double, since it requires two compares. 1966 ++numCmps; 1967 } 1968 1969 return numCmps; 1970 } 1971 1972 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 1973 MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()]; 1974 1975 // Figure out which block is immediately after the current one. 1976 MachineBasicBlock *NextBlock = 0; 1977 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1978 1979 // If there is only the default destination, branch to it if it is not the 1980 // next basic block. Otherwise, just fall through. 1981 if (SI.getNumOperands() == 2) { 1982 // Update machine-CFG edges. 1983 1984 // If this is not a fall-through branch, emit the branch. 1985 SwitchMBB->addSuccessor(Default); 1986 if (Default != NextBlock) 1987 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1988 MVT::Other, getControlRoot(), 1989 DAG.getBasicBlock(Default))); 1990 1991 return; 1992 } 1993 1994 // If there are any non-default case statements, create a vector of Cases 1995 // representing each one, and sort the vector so that we can efficiently 1996 // create a binary search tree from them. 1997 CaseVector Cases; 1998 size_t numCmps = Clusterify(Cases, SI); 1999 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2000 << ". Total compares: " << numCmps << '\n'); 2001 numCmps = 0; 2002 2003 // Get the Value to be switched on and default basic blocks, which will be 2004 // inserted into CaseBlock records, representing basic blocks in the binary 2005 // search tree. 2006 const Value *SV = SI.getOperand(0); 2007 2008 // Push the initial CaseRec onto the worklist 2009 CaseRecVector WorkList; 2010 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2011 CaseRange(Cases.begin(),Cases.end()))); 2012 2013 while (!WorkList.empty()) { 2014 // Grab a record representing a case range to process off the worklist 2015 CaseRec CR = WorkList.back(); 2016 WorkList.pop_back(); 2017 2018 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2019 continue; 2020 2021 // If the range has few cases (two or less) emit a series of specific 2022 // tests. 2023 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2024 continue; 2025 2026 // If the switch has more than 5 blocks, and at least 40% dense, and the 2027 // target supports indirect branches, then emit a jump table rather than 2028 // lowering the switch to a binary tree of conditional branches. 2029 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2030 continue; 2031 2032 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2033 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2034 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2035 } 2036 } 2037 2038 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2039 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()]; 2040 2041 // Update machine-CFG edges with unique successors. 2042 SmallVector<BasicBlock*, 32> succs; 2043 succs.reserve(I.getNumSuccessors()); 2044 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2045 succs.push_back(I.getSuccessor(i)); 2046 array_pod_sort(succs.begin(), succs.end()); 2047 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2048 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2049 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2050 2051 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2052 MVT::Other, getControlRoot(), 2053 getValue(I.getAddress()))); 2054 } 2055 2056 void SelectionDAGBuilder::visitFSub(const User &I) { 2057 // -0.0 - X --> fneg 2058 const Type *Ty = I.getType(); 2059 if (Ty->isVectorTy()) { 2060 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2061 const VectorType *DestTy = cast<VectorType>(I.getType()); 2062 const Type *ElTy = DestTy->getElementType(); 2063 unsigned VL = DestTy->getNumElements(); 2064 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2065 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2066 if (CV == CNZ) { 2067 SDValue Op2 = getValue(I.getOperand(1)); 2068 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2069 Op2.getValueType(), Op2)); 2070 return; 2071 } 2072 } 2073 } 2074 2075 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2076 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2077 SDValue Op2 = getValue(I.getOperand(1)); 2078 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2079 Op2.getValueType(), Op2)); 2080 return; 2081 } 2082 2083 visitBinary(I, ISD::FSUB); 2084 } 2085 2086 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2087 SDValue Op1 = getValue(I.getOperand(0)); 2088 SDValue Op2 = getValue(I.getOperand(1)); 2089 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2090 Op1.getValueType(), Op1, Op2)); 2091 } 2092 2093 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2094 SDValue Op1 = getValue(I.getOperand(0)); 2095 SDValue Op2 = getValue(I.getOperand(1)); 2096 if (!I.getType()->isVectorTy() && 2097 Op2.getValueType() != TLI.getShiftAmountTy()) { 2098 // If the operand is smaller than the shift count type, promote it. 2099 EVT PTy = TLI.getPointerTy(); 2100 EVT STy = TLI.getShiftAmountTy(); 2101 if (STy.bitsGT(Op2.getValueType())) 2102 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2103 TLI.getShiftAmountTy(), Op2); 2104 // If the operand is larger than the shift count type but the shift 2105 // count type has enough bits to represent any shift value, truncate 2106 // it now. This is a common case and it exposes the truncate to 2107 // optimization early. 2108 else if (STy.getSizeInBits() >= 2109 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2110 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2111 TLI.getShiftAmountTy(), Op2); 2112 // Otherwise we'll need to temporarily settle for some other 2113 // convenient type; type legalization will make adjustments as 2114 // needed. 2115 else if (PTy.bitsLT(Op2.getValueType())) 2116 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2117 TLI.getPointerTy(), Op2); 2118 else if (PTy.bitsGT(Op2.getValueType())) 2119 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2120 TLI.getPointerTy(), Op2); 2121 } 2122 2123 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2124 Op1.getValueType(), Op1, Op2)); 2125 } 2126 2127 void SelectionDAGBuilder::visitICmp(const User &I) { 2128 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2129 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2130 predicate = IC->getPredicate(); 2131 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2132 predicate = ICmpInst::Predicate(IC->getPredicate()); 2133 SDValue Op1 = getValue(I.getOperand(0)); 2134 SDValue Op2 = getValue(I.getOperand(1)); 2135 ISD::CondCode Opcode = getICmpCondCode(predicate); 2136 2137 EVT DestVT = TLI.getValueType(I.getType()); 2138 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2139 } 2140 2141 void SelectionDAGBuilder::visitFCmp(const User &I) { 2142 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2143 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2144 predicate = FC->getPredicate(); 2145 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2146 predicate = FCmpInst::Predicate(FC->getPredicate()); 2147 SDValue Op1 = getValue(I.getOperand(0)); 2148 SDValue Op2 = getValue(I.getOperand(1)); 2149 ISD::CondCode Condition = getFCmpCondCode(predicate); 2150 EVT DestVT = TLI.getValueType(I.getType()); 2151 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2152 } 2153 2154 void SelectionDAGBuilder::visitSelect(const User &I) { 2155 SmallVector<EVT, 4> ValueVTs; 2156 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2157 unsigned NumValues = ValueVTs.size(); 2158 if (NumValues == 0) return; 2159 2160 SmallVector<SDValue, 4> Values(NumValues); 2161 SDValue Cond = getValue(I.getOperand(0)); 2162 SDValue TrueVal = getValue(I.getOperand(1)); 2163 SDValue FalseVal = getValue(I.getOperand(2)); 2164 2165 for (unsigned i = 0; i != NumValues; ++i) 2166 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2167 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2168 Cond, 2169 SDValue(TrueVal.getNode(), 2170 TrueVal.getResNo() + i), 2171 SDValue(FalseVal.getNode(), 2172 FalseVal.getResNo() + i)); 2173 2174 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2175 DAG.getVTList(&ValueVTs[0], NumValues), 2176 &Values[0], NumValues)); 2177 } 2178 2179 void SelectionDAGBuilder::visitTrunc(const User &I) { 2180 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2181 SDValue N = getValue(I.getOperand(0)); 2182 EVT DestVT = TLI.getValueType(I.getType()); 2183 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2184 } 2185 2186 void SelectionDAGBuilder::visitZExt(const User &I) { 2187 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2188 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2189 SDValue N = getValue(I.getOperand(0)); 2190 EVT DestVT = TLI.getValueType(I.getType()); 2191 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2192 } 2193 2194 void SelectionDAGBuilder::visitSExt(const User &I) { 2195 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2196 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2197 SDValue N = getValue(I.getOperand(0)); 2198 EVT DestVT = TLI.getValueType(I.getType()); 2199 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2200 } 2201 2202 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2203 // FPTrunc is never a no-op cast, no need to check 2204 SDValue N = getValue(I.getOperand(0)); 2205 EVT DestVT = TLI.getValueType(I.getType()); 2206 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2207 DestVT, N, DAG.getIntPtrConstant(0))); 2208 } 2209 2210 void SelectionDAGBuilder::visitFPExt(const User &I){ 2211 // FPTrunc is never a no-op cast, no need to check 2212 SDValue N = getValue(I.getOperand(0)); 2213 EVT DestVT = TLI.getValueType(I.getType()); 2214 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2215 } 2216 2217 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2218 // FPToUI is never a no-op cast, no need to check 2219 SDValue N = getValue(I.getOperand(0)); 2220 EVT DestVT = TLI.getValueType(I.getType()); 2221 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2222 } 2223 2224 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2225 // FPToSI is never a no-op cast, no need to check 2226 SDValue N = getValue(I.getOperand(0)); 2227 EVT DestVT = TLI.getValueType(I.getType()); 2228 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2229 } 2230 2231 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2232 // UIToFP is never a no-op cast, no need to check 2233 SDValue N = getValue(I.getOperand(0)); 2234 EVT DestVT = TLI.getValueType(I.getType()); 2235 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2236 } 2237 2238 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2239 // SIToFP is never a no-op cast, no need to check 2240 SDValue N = getValue(I.getOperand(0)); 2241 EVT DestVT = TLI.getValueType(I.getType()); 2242 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2243 } 2244 2245 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2246 // What to do depends on the size of the integer and the size of the pointer. 2247 // We can either truncate, zero extend, or no-op, accordingly. 2248 SDValue N = getValue(I.getOperand(0)); 2249 EVT SrcVT = N.getValueType(); 2250 EVT DestVT = TLI.getValueType(I.getType()); 2251 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2252 } 2253 2254 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2255 // What to do depends on the size of the integer and the size of the pointer. 2256 // We can either truncate, zero extend, or no-op, accordingly. 2257 SDValue N = getValue(I.getOperand(0)); 2258 EVT SrcVT = N.getValueType(); 2259 EVT DestVT = TLI.getValueType(I.getType()); 2260 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2261 } 2262 2263 void SelectionDAGBuilder::visitBitCast(const User &I) { 2264 SDValue N = getValue(I.getOperand(0)); 2265 EVT DestVT = TLI.getValueType(I.getType()); 2266 2267 // BitCast assures us that source and destination are the same size so this is 2268 // either a BIT_CONVERT or a no-op. 2269 if (DestVT != N.getValueType()) 2270 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2271 DestVT, N)); // convert types. 2272 else 2273 setValue(&I, N); // noop cast. 2274 } 2275 2276 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2277 SDValue InVec = getValue(I.getOperand(0)); 2278 SDValue InVal = getValue(I.getOperand(1)); 2279 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2280 TLI.getPointerTy(), 2281 getValue(I.getOperand(2))); 2282 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2283 TLI.getValueType(I.getType()), 2284 InVec, InVal, InIdx)); 2285 } 2286 2287 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2288 SDValue InVec = getValue(I.getOperand(0)); 2289 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2290 TLI.getPointerTy(), 2291 getValue(I.getOperand(1))); 2292 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2293 TLI.getValueType(I.getType()), InVec, InIdx)); 2294 } 2295 2296 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2297 // from SIndx and increasing to the element length (undefs are allowed). 2298 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2299 unsigned MaskNumElts = Mask.size(); 2300 for (unsigned i = 0; i != MaskNumElts; ++i) 2301 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2302 return false; 2303 return true; 2304 } 2305 2306 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2307 SmallVector<int, 8> Mask; 2308 SDValue Src1 = getValue(I.getOperand(0)); 2309 SDValue Src2 = getValue(I.getOperand(1)); 2310 2311 // Convert the ConstantVector mask operand into an array of ints, with -1 2312 // representing undef values. 2313 SmallVector<Constant*, 8> MaskElts; 2314 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2315 unsigned MaskNumElts = MaskElts.size(); 2316 for (unsigned i = 0; i != MaskNumElts; ++i) { 2317 if (isa<UndefValue>(MaskElts[i])) 2318 Mask.push_back(-1); 2319 else 2320 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2321 } 2322 2323 EVT VT = TLI.getValueType(I.getType()); 2324 EVT SrcVT = Src1.getValueType(); 2325 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2326 2327 if (SrcNumElts == MaskNumElts) { 2328 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2329 &Mask[0])); 2330 return; 2331 } 2332 2333 // Normalize the shuffle vector since mask and vector length don't match. 2334 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2335 // Mask is longer than the source vectors and is a multiple of the source 2336 // vectors. We can use concatenate vector to make the mask and vectors 2337 // lengths match. 2338 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2339 // The shuffle is concatenating two vectors together. 2340 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2341 VT, Src1, Src2)); 2342 return; 2343 } 2344 2345 // Pad both vectors with undefs to make them the same length as the mask. 2346 unsigned NumConcat = MaskNumElts / SrcNumElts; 2347 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2348 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2349 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2350 2351 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2352 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2353 MOps1[0] = Src1; 2354 MOps2[0] = Src2; 2355 2356 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2357 getCurDebugLoc(), VT, 2358 &MOps1[0], NumConcat); 2359 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2360 getCurDebugLoc(), VT, 2361 &MOps2[0], NumConcat); 2362 2363 // Readjust mask for new input vector length. 2364 SmallVector<int, 8> MappedOps; 2365 for (unsigned i = 0; i != MaskNumElts; ++i) { 2366 int Idx = Mask[i]; 2367 if (Idx < (int)SrcNumElts) 2368 MappedOps.push_back(Idx); 2369 else 2370 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2371 } 2372 2373 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2374 &MappedOps[0])); 2375 return; 2376 } 2377 2378 if (SrcNumElts > MaskNumElts) { 2379 // Analyze the access pattern of the vector to see if we can extract 2380 // two subvectors and do the shuffle. The analysis is done by calculating 2381 // the range of elements the mask access on both vectors. 2382 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2383 int MaxRange[2] = {-1, -1}; 2384 2385 for (unsigned i = 0; i != MaskNumElts; ++i) { 2386 int Idx = Mask[i]; 2387 int Input = 0; 2388 if (Idx < 0) 2389 continue; 2390 2391 if (Idx >= (int)SrcNumElts) { 2392 Input = 1; 2393 Idx -= SrcNumElts; 2394 } 2395 if (Idx > MaxRange[Input]) 2396 MaxRange[Input] = Idx; 2397 if (Idx < MinRange[Input]) 2398 MinRange[Input] = Idx; 2399 } 2400 2401 // Check if the access is smaller than the vector size and can we find 2402 // a reasonable extract index. 2403 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2404 // Extract. 2405 int StartIdx[2]; // StartIdx to extract from 2406 for (int Input=0; Input < 2; ++Input) { 2407 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2408 RangeUse[Input] = 0; // Unused 2409 StartIdx[Input] = 0; 2410 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2411 // Fits within range but we should see if we can find a good 2412 // start index that is a multiple of the mask length. 2413 if (MaxRange[Input] < (int)MaskNumElts) { 2414 RangeUse[Input] = 1; // Extract from beginning of the vector 2415 StartIdx[Input] = 0; 2416 } else { 2417 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2418 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2419 StartIdx[Input] + MaskNumElts < SrcNumElts) 2420 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2421 } 2422 } 2423 } 2424 2425 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2426 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2427 return; 2428 } 2429 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2430 // Extract appropriate subvector and generate a vector shuffle 2431 for (int Input=0; Input < 2; ++Input) { 2432 SDValue &Src = Input == 0 ? Src1 : Src2; 2433 if (RangeUse[Input] == 0) 2434 Src = DAG.getUNDEF(VT); 2435 else 2436 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2437 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2438 } 2439 2440 // Calculate new mask. 2441 SmallVector<int, 8> MappedOps; 2442 for (unsigned i = 0; i != MaskNumElts; ++i) { 2443 int Idx = Mask[i]; 2444 if (Idx < 0) 2445 MappedOps.push_back(Idx); 2446 else if (Idx < (int)SrcNumElts) 2447 MappedOps.push_back(Idx - StartIdx[0]); 2448 else 2449 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2450 } 2451 2452 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2453 &MappedOps[0])); 2454 return; 2455 } 2456 } 2457 2458 // We can't use either concat vectors or extract subvectors so fall back to 2459 // replacing the shuffle with extract and build vector. 2460 // to insert and build vector. 2461 EVT EltVT = VT.getVectorElementType(); 2462 EVT PtrVT = TLI.getPointerTy(); 2463 SmallVector<SDValue,8> Ops; 2464 for (unsigned i = 0; i != MaskNumElts; ++i) { 2465 if (Mask[i] < 0) { 2466 Ops.push_back(DAG.getUNDEF(EltVT)); 2467 } else { 2468 int Idx = Mask[i]; 2469 SDValue Res; 2470 2471 if (Idx < (int)SrcNumElts) 2472 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2473 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2474 else 2475 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2476 EltVT, Src2, 2477 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2478 2479 Ops.push_back(Res); 2480 } 2481 } 2482 2483 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2484 VT, &Ops[0], Ops.size())); 2485 } 2486 2487 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2488 const Value *Op0 = I.getOperand(0); 2489 const Value *Op1 = I.getOperand(1); 2490 const Type *AggTy = I.getType(); 2491 const Type *ValTy = Op1->getType(); 2492 bool IntoUndef = isa<UndefValue>(Op0); 2493 bool FromUndef = isa<UndefValue>(Op1); 2494 2495 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2496 I.idx_begin(), I.idx_end()); 2497 2498 SmallVector<EVT, 4> AggValueVTs; 2499 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2500 SmallVector<EVT, 4> ValValueVTs; 2501 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2502 2503 unsigned NumAggValues = AggValueVTs.size(); 2504 unsigned NumValValues = ValValueVTs.size(); 2505 SmallVector<SDValue, 4> Values(NumAggValues); 2506 2507 SDValue Agg = getValue(Op0); 2508 SDValue Val = getValue(Op1); 2509 unsigned i = 0; 2510 // Copy the beginning value(s) from the original aggregate. 2511 for (; i != LinearIndex; ++i) 2512 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2513 SDValue(Agg.getNode(), Agg.getResNo() + i); 2514 // Copy values from the inserted value(s). 2515 for (; i != LinearIndex + NumValValues; ++i) 2516 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2517 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2518 // Copy remaining value(s) from the original aggregate. 2519 for (; i != NumAggValues; ++i) 2520 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2521 SDValue(Agg.getNode(), Agg.getResNo() + i); 2522 2523 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2524 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2525 &Values[0], NumAggValues)); 2526 } 2527 2528 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2529 const Value *Op0 = I.getOperand(0); 2530 const Type *AggTy = Op0->getType(); 2531 const Type *ValTy = I.getType(); 2532 bool OutOfUndef = isa<UndefValue>(Op0); 2533 2534 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2535 I.idx_begin(), I.idx_end()); 2536 2537 SmallVector<EVT, 4> ValValueVTs; 2538 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2539 2540 unsigned NumValValues = ValValueVTs.size(); 2541 SmallVector<SDValue, 4> Values(NumValValues); 2542 2543 SDValue Agg = getValue(Op0); 2544 // Copy out the selected value(s). 2545 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2546 Values[i - LinearIndex] = 2547 OutOfUndef ? 2548 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2549 SDValue(Agg.getNode(), Agg.getResNo() + i); 2550 2551 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2552 DAG.getVTList(&ValValueVTs[0], NumValValues), 2553 &Values[0], NumValValues)); 2554 } 2555 2556 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2557 SDValue N = getValue(I.getOperand(0)); 2558 const Type *Ty = I.getOperand(0)->getType(); 2559 2560 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2561 OI != E; ++OI) { 2562 const Value *Idx = *OI; 2563 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2564 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2565 if (Field) { 2566 // N = N + Offset 2567 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2568 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2569 DAG.getIntPtrConstant(Offset)); 2570 } 2571 2572 Ty = StTy->getElementType(Field); 2573 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2574 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2575 2576 // Offset canonically 0 for unions, but type changes 2577 Ty = UnTy->getElementType(Field); 2578 } else { 2579 Ty = cast<SequentialType>(Ty)->getElementType(); 2580 2581 // If this is a constant subscript, handle it quickly. 2582 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2583 if (CI->getZExtValue() == 0) continue; 2584 uint64_t Offs = 2585 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2586 SDValue OffsVal; 2587 EVT PTy = TLI.getPointerTy(); 2588 unsigned PtrBits = PTy.getSizeInBits(); 2589 if (PtrBits < 64) 2590 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2591 TLI.getPointerTy(), 2592 DAG.getConstant(Offs, MVT::i64)); 2593 else 2594 OffsVal = DAG.getIntPtrConstant(Offs); 2595 2596 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2597 OffsVal); 2598 continue; 2599 } 2600 2601 // N = N + Idx * ElementSize; 2602 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2603 TD->getTypeAllocSize(Ty)); 2604 SDValue IdxN = getValue(Idx); 2605 2606 // If the index is smaller or larger than intptr_t, truncate or extend 2607 // it. 2608 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2609 2610 // If this is a multiply by a power of two, turn it into a shl 2611 // immediately. This is a very common case. 2612 if (ElementSize != 1) { 2613 if (ElementSize.isPowerOf2()) { 2614 unsigned Amt = ElementSize.logBase2(); 2615 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2616 N.getValueType(), IdxN, 2617 DAG.getConstant(Amt, TLI.getPointerTy())); 2618 } else { 2619 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2620 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2621 N.getValueType(), IdxN, Scale); 2622 } 2623 } 2624 2625 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2626 N.getValueType(), N, IdxN); 2627 } 2628 } 2629 2630 setValue(&I, N); 2631 } 2632 2633 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2634 // If this is a fixed sized alloca in the entry block of the function, 2635 // allocate it statically on the stack. 2636 if (FuncInfo.StaticAllocaMap.count(&I)) 2637 return; // getValue will auto-populate this. 2638 2639 const Type *Ty = I.getAllocatedType(); 2640 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2641 unsigned Align = 2642 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2643 I.getAlignment()); 2644 2645 SDValue AllocSize = getValue(I.getArraySize()); 2646 2647 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2648 AllocSize, 2649 DAG.getConstant(TySize, AllocSize.getValueType())); 2650 2651 EVT IntPtr = TLI.getPointerTy(); 2652 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2653 2654 // Handle alignment. If the requested alignment is less than or equal to 2655 // the stack alignment, ignore it. If the size is greater than or equal to 2656 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2657 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2658 if (Align <= StackAlign) 2659 Align = 0; 2660 2661 // Round the size of the allocation up to the stack alignment size 2662 // by add SA-1 to the size. 2663 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2664 AllocSize.getValueType(), AllocSize, 2665 DAG.getIntPtrConstant(StackAlign-1)); 2666 2667 // Mask out the low bits for alignment purposes. 2668 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2669 AllocSize.getValueType(), AllocSize, 2670 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2671 2672 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2673 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2674 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2675 VTs, Ops, 3); 2676 setValue(&I, DSA); 2677 DAG.setRoot(DSA.getValue(1)); 2678 2679 // Inform the Frame Information that we have just allocated a variable-sized 2680 // object. 2681 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2682 } 2683 2684 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2685 const Value *SV = I.getOperand(0); 2686 SDValue Ptr = getValue(SV); 2687 2688 const Type *Ty = I.getType(); 2689 2690 bool isVolatile = I.isVolatile(); 2691 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2692 unsigned Alignment = I.getAlignment(); 2693 2694 SmallVector<EVT, 4> ValueVTs; 2695 SmallVector<uint64_t, 4> Offsets; 2696 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2697 unsigned NumValues = ValueVTs.size(); 2698 if (NumValues == 0) 2699 return; 2700 2701 SDValue Root; 2702 bool ConstantMemory = false; 2703 if (I.isVolatile()) 2704 // Serialize volatile loads with other side effects. 2705 Root = getRoot(); 2706 else if (AA->pointsToConstantMemory(SV)) { 2707 // Do not serialize (non-volatile) loads of constant memory with anything. 2708 Root = DAG.getEntryNode(); 2709 ConstantMemory = true; 2710 } else { 2711 // Do not serialize non-volatile loads against each other. 2712 Root = DAG.getRoot(); 2713 } 2714 2715 SmallVector<SDValue, 4> Values(NumValues); 2716 SmallVector<SDValue, 4> Chains(NumValues); 2717 EVT PtrVT = Ptr.getValueType(); 2718 for (unsigned i = 0; i != NumValues; ++i) { 2719 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2720 PtrVT, Ptr, 2721 DAG.getConstant(Offsets[i], PtrVT)); 2722 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2723 A, SV, Offsets[i], isVolatile, 2724 isNonTemporal, Alignment); 2725 2726 Values[i] = L; 2727 Chains[i] = L.getValue(1); 2728 } 2729 2730 if (!ConstantMemory) { 2731 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2732 MVT::Other, &Chains[0], NumValues); 2733 if (isVolatile) 2734 DAG.setRoot(Chain); 2735 else 2736 PendingLoads.push_back(Chain); 2737 } 2738 2739 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2740 DAG.getVTList(&ValueVTs[0], NumValues), 2741 &Values[0], NumValues)); 2742 } 2743 2744 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2745 const Value *SrcV = I.getOperand(0); 2746 const Value *PtrV = I.getOperand(1); 2747 2748 SmallVector<EVT, 4> ValueVTs; 2749 SmallVector<uint64_t, 4> Offsets; 2750 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2751 unsigned NumValues = ValueVTs.size(); 2752 if (NumValues == 0) 2753 return; 2754 2755 // Get the lowered operands. Note that we do this after 2756 // checking if NumResults is zero, because with zero results 2757 // the operands won't have values in the map. 2758 SDValue Src = getValue(SrcV); 2759 SDValue Ptr = getValue(PtrV); 2760 2761 SDValue Root = getRoot(); 2762 SmallVector<SDValue, 4> Chains(NumValues); 2763 EVT PtrVT = Ptr.getValueType(); 2764 bool isVolatile = I.isVolatile(); 2765 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2766 unsigned Alignment = I.getAlignment(); 2767 2768 for (unsigned i = 0; i != NumValues; ++i) { 2769 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2770 DAG.getConstant(Offsets[i], PtrVT)); 2771 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2772 SDValue(Src.getNode(), Src.getResNo() + i), 2773 Add, PtrV, Offsets[i], isVolatile, 2774 isNonTemporal, Alignment); 2775 } 2776 2777 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2778 MVT::Other, &Chains[0], NumValues)); 2779 } 2780 2781 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2782 /// node. 2783 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2784 unsigned Intrinsic) { 2785 bool HasChain = !I.doesNotAccessMemory(); 2786 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2787 2788 // Build the operand list. 2789 SmallVector<SDValue, 8> Ops; 2790 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2791 if (OnlyLoad) { 2792 // We don't need to serialize loads against other loads. 2793 Ops.push_back(DAG.getRoot()); 2794 } else { 2795 Ops.push_back(getRoot()); 2796 } 2797 } 2798 2799 // Info is set by getTgtMemInstrinsic 2800 TargetLowering::IntrinsicInfo Info; 2801 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2802 2803 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2804 if (!IsTgtIntrinsic) 2805 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2806 2807 // Add all operands of the call to the operand list. 2808 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2809 SDValue Op = getValue(I.getOperand(i)); 2810 assert(TLI.isTypeLegal(Op.getValueType()) && 2811 "Intrinsic uses a non-legal type?"); 2812 Ops.push_back(Op); 2813 } 2814 2815 SmallVector<EVT, 4> ValueVTs; 2816 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2817 #ifndef NDEBUG 2818 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2819 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2820 "Intrinsic uses a non-legal type?"); 2821 } 2822 #endif // NDEBUG 2823 2824 if (HasChain) 2825 ValueVTs.push_back(MVT::Other); 2826 2827 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2828 2829 // Create the node. 2830 SDValue Result; 2831 if (IsTgtIntrinsic) { 2832 // This is target intrinsic that touches memory 2833 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2834 VTs, &Ops[0], Ops.size(), 2835 Info.memVT, Info.ptrVal, Info.offset, 2836 Info.align, Info.vol, 2837 Info.readMem, Info.writeMem); 2838 } else if (!HasChain) { 2839 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2840 VTs, &Ops[0], Ops.size()); 2841 } else if (!I.getType()->isVoidTy()) { 2842 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2843 VTs, &Ops[0], Ops.size()); 2844 } else { 2845 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2846 VTs, &Ops[0], Ops.size()); 2847 } 2848 2849 if (HasChain) { 2850 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2851 if (OnlyLoad) 2852 PendingLoads.push_back(Chain); 2853 else 2854 DAG.setRoot(Chain); 2855 } 2856 2857 if (!I.getType()->isVoidTy()) { 2858 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2859 EVT VT = TLI.getValueType(PTy); 2860 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2861 } 2862 2863 setValue(&I, Result); 2864 } 2865 } 2866 2867 /// GetSignificand - Get the significand and build it into a floating-point 2868 /// number with exponent of 1: 2869 /// 2870 /// Op = (Op & 0x007fffff) | 0x3f800000; 2871 /// 2872 /// where Op is the hexidecimal representation of floating point value. 2873 static SDValue 2874 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2875 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2876 DAG.getConstant(0x007fffff, MVT::i32)); 2877 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2878 DAG.getConstant(0x3f800000, MVT::i32)); 2879 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2880 } 2881 2882 /// GetExponent - Get the exponent: 2883 /// 2884 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2885 /// 2886 /// where Op is the hexidecimal representation of floating point value. 2887 static SDValue 2888 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2889 DebugLoc dl) { 2890 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2891 DAG.getConstant(0x7f800000, MVT::i32)); 2892 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2893 DAG.getConstant(23, TLI.getPointerTy())); 2894 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2895 DAG.getConstant(127, MVT::i32)); 2896 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2897 } 2898 2899 /// getF32Constant - Get 32-bit floating point constant. 2900 static SDValue 2901 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2902 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2903 } 2904 2905 /// Inlined utility function to implement binary input atomic intrinsics for 2906 /// visitIntrinsicCall: I is a call instruction 2907 /// Op is the associated NodeType for I 2908 const char * 2909 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 2910 ISD::NodeType Op) { 2911 SDValue Root = getRoot(); 2912 SDValue L = 2913 DAG.getAtomic(Op, getCurDebugLoc(), 2914 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2915 Root, 2916 getValue(I.getOperand(1)), 2917 getValue(I.getOperand(2)), 2918 I.getOperand(1)); 2919 setValue(&I, L); 2920 DAG.setRoot(L.getValue(1)); 2921 return 0; 2922 } 2923 2924 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2925 const char * 2926 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 2927 SDValue Op1 = getValue(I.getOperand(1)); 2928 SDValue Op2 = getValue(I.getOperand(2)); 2929 2930 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2931 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2932 return 0; 2933 } 2934 2935 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2936 /// limited-precision mode. 2937 void 2938 SelectionDAGBuilder::visitExp(const CallInst &I) { 2939 SDValue result; 2940 DebugLoc dl = getCurDebugLoc(); 2941 2942 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2943 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2944 SDValue Op = getValue(I.getOperand(1)); 2945 2946 // Put the exponent in the right bit position for later addition to the 2947 // final result: 2948 // 2949 // #define LOG2OFe 1.4426950f 2950 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2951 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2952 getF32Constant(DAG, 0x3fb8aa3b)); 2953 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2954 2955 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2956 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2957 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2958 2959 // IntegerPartOfX <<= 23; 2960 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2961 DAG.getConstant(23, TLI.getPointerTy())); 2962 2963 if (LimitFloatPrecision <= 6) { 2964 // For floating-point precision of 6: 2965 // 2966 // TwoToFractionalPartOfX = 2967 // 0.997535578f + 2968 // (0.735607626f + 0.252464424f * x) * x; 2969 // 2970 // error 0.0144103317, which is 6 bits 2971 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2972 getF32Constant(DAG, 0x3e814304)); 2973 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2974 getF32Constant(DAG, 0x3f3c50c8)); 2975 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2976 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2977 getF32Constant(DAG, 0x3f7f5e7e)); 2978 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2979 2980 // Add the exponent into the result in integer domain. 2981 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2982 TwoToFracPartOfX, IntegerPartOfX); 2983 2984 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2985 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2986 // For floating-point precision of 12: 2987 // 2988 // TwoToFractionalPartOfX = 2989 // 0.999892986f + 2990 // (0.696457318f + 2991 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2992 // 2993 // 0.000107046256 error, which is 13 to 14 bits 2994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2995 getF32Constant(DAG, 0x3da235e3)); 2996 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2997 getF32Constant(DAG, 0x3e65b8f3)); 2998 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2999 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3000 getF32Constant(DAG, 0x3f324b07)); 3001 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3002 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3003 getF32Constant(DAG, 0x3f7ff8fd)); 3004 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3005 3006 // Add the exponent into the result in integer domain. 3007 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3008 TwoToFracPartOfX, IntegerPartOfX); 3009 3010 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3011 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3012 // For floating-point precision of 18: 3013 // 3014 // TwoToFractionalPartOfX = 3015 // 0.999999982f + 3016 // (0.693148872f + 3017 // (0.240227044f + 3018 // (0.554906021e-1f + 3019 // (0.961591928e-2f + 3020 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3021 // 3022 // error 2.47208000*10^(-7), which is better than 18 bits 3023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3024 getF32Constant(DAG, 0x3924b03e)); 3025 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3026 getF32Constant(DAG, 0x3ab24b87)); 3027 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3028 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3029 getF32Constant(DAG, 0x3c1d8c17)); 3030 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3031 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3032 getF32Constant(DAG, 0x3d634a1d)); 3033 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3034 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3035 getF32Constant(DAG, 0x3e75fe14)); 3036 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3037 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3038 getF32Constant(DAG, 0x3f317234)); 3039 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3040 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3041 getF32Constant(DAG, 0x3f800000)); 3042 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3043 MVT::i32, t13); 3044 3045 // Add the exponent into the result in integer domain. 3046 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3047 TwoToFracPartOfX, IntegerPartOfX); 3048 3049 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3050 } 3051 } else { 3052 // No special expansion. 3053 result = DAG.getNode(ISD::FEXP, dl, 3054 getValue(I.getOperand(1)).getValueType(), 3055 getValue(I.getOperand(1))); 3056 } 3057 3058 setValue(&I, result); 3059 } 3060 3061 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3062 /// limited-precision mode. 3063 void 3064 SelectionDAGBuilder::visitLog(const CallInst &I) { 3065 SDValue result; 3066 DebugLoc dl = getCurDebugLoc(); 3067 3068 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3070 SDValue Op = getValue(I.getOperand(1)); 3071 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3072 3073 // Scale the exponent by log(2) [0.69314718f]. 3074 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3075 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3076 getF32Constant(DAG, 0x3f317218)); 3077 3078 // Get the significand and build it into a floating-point number with 3079 // exponent of 1. 3080 SDValue X = GetSignificand(DAG, Op1, dl); 3081 3082 if (LimitFloatPrecision <= 6) { 3083 // For floating-point precision of 6: 3084 // 3085 // LogofMantissa = 3086 // -1.1609546f + 3087 // (1.4034025f - 0.23903021f * x) * x; 3088 // 3089 // error 0.0034276066, which is better than 8 bits 3090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3091 getF32Constant(DAG, 0xbe74c456)); 3092 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3093 getF32Constant(DAG, 0x3fb3a2b1)); 3094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3095 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3096 getF32Constant(DAG, 0x3f949a29)); 3097 3098 result = DAG.getNode(ISD::FADD, dl, 3099 MVT::f32, LogOfExponent, LogOfMantissa); 3100 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3101 // For floating-point precision of 12: 3102 // 3103 // LogOfMantissa = 3104 // -1.7417939f + 3105 // (2.8212026f + 3106 // (-1.4699568f + 3107 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3108 // 3109 // error 0.000061011436, which is 14 bits 3110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3111 getF32Constant(DAG, 0xbd67b6d6)); 3112 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3113 getF32Constant(DAG, 0x3ee4f4b8)); 3114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3115 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3116 getF32Constant(DAG, 0x3fbc278b)); 3117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3118 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3119 getF32Constant(DAG, 0x40348e95)); 3120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3121 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3122 getF32Constant(DAG, 0x3fdef31a)); 3123 3124 result = DAG.getNode(ISD::FADD, dl, 3125 MVT::f32, LogOfExponent, LogOfMantissa); 3126 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3127 // For floating-point precision of 18: 3128 // 3129 // LogOfMantissa = 3130 // -2.1072184f + 3131 // (4.2372794f + 3132 // (-3.7029485f + 3133 // (2.2781945f + 3134 // (-0.87823314f + 3135 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3136 // 3137 // error 0.0000023660568, which is better than 18 bits 3138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3139 getF32Constant(DAG, 0xbc91e5ac)); 3140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3141 getF32Constant(DAG, 0x3e4350aa)); 3142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3143 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3144 getF32Constant(DAG, 0x3f60d3e3)); 3145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3147 getF32Constant(DAG, 0x4011cdf0)); 3148 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3149 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3150 getF32Constant(DAG, 0x406cfd1c)); 3151 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3152 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3153 getF32Constant(DAG, 0x408797cb)); 3154 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3155 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3156 getF32Constant(DAG, 0x4006dcab)); 3157 3158 result = DAG.getNode(ISD::FADD, dl, 3159 MVT::f32, LogOfExponent, LogOfMantissa); 3160 } 3161 } else { 3162 // No special expansion. 3163 result = DAG.getNode(ISD::FLOG, dl, 3164 getValue(I.getOperand(1)).getValueType(), 3165 getValue(I.getOperand(1))); 3166 } 3167 3168 setValue(&I, result); 3169 } 3170 3171 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3172 /// limited-precision mode. 3173 void 3174 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3175 SDValue result; 3176 DebugLoc dl = getCurDebugLoc(); 3177 3178 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3180 SDValue Op = getValue(I.getOperand(1)); 3181 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3182 3183 // Get the exponent. 3184 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3185 3186 // Get the significand and build it into a floating-point number with 3187 // exponent of 1. 3188 SDValue X = GetSignificand(DAG, Op1, dl); 3189 3190 // Different possible minimax approximations of significand in 3191 // floating-point for various degrees of accuracy over [1,2]. 3192 if (LimitFloatPrecision <= 6) { 3193 // For floating-point precision of 6: 3194 // 3195 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3196 // 3197 // error 0.0049451742, which is more than 7 bits 3198 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3199 getF32Constant(DAG, 0xbeb08fe0)); 3200 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3201 getF32Constant(DAG, 0x40019463)); 3202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3203 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3204 getF32Constant(DAG, 0x3fd6633d)); 3205 3206 result = DAG.getNode(ISD::FADD, dl, 3207 MVT::f32, LogOfExponent, Log2ofMantissa); 3208 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3209 // For floating-point precision of 12: 3210 // 3211 // Log2ofMantissa = 3212 // -2.51285454f + 3213 // (4.07009056f + 3214 // (-2.12067489f + 3215 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3216 // 3217 // error 0.0000876136000, which is better than 13 bits 3218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3219 getF32Constant(DAG, 0xbda7262e)); 3220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3221 getF32Constant(DAG, 0x3f25280b)); 3222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3223 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3224 getF32Constant(DAG, 0x4007b923)); 3225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3226 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3227 getF32Constant(DAG, 0x40823e2f)); 3228 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3229 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3230 getF32Constant(DAG, 0x4020d29c)); 3231 3232 result = DAG.getNode(ISD::FADD, dl, 3233 MVT::f32, LogOfExponent, Log2ofMantissa); 3234 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3235 // For floating-point precision of 18: 3236 // 3237 // Log2ofMantissa = 3238 // -3.0400495f + 3239 // (6.1129976f + 3240 // (-5.3420409f + 3241 // (3.2865683f + 3242 // (-1.2669343f + 3243 // (0.27515199f - 3244 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3245 // 3246 // error 0.0000018516, which is better than 18 bits 3247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3248 getF32Constant(DAG, 0xbcd2769e)); 3249 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3250 getF32Constant(DAG, 0x3e8ce0b9)); 3251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3252 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3253 getF32Constant(DAG, 0x3fa22ae7)); 3254 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3255 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3256 getF32Constant(DAG, 0x40525723)); 3257 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3258 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3259 getF32Constant(DAG, 0x40aaf200)); 3260 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3261 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3262 getF32Constant(DAG, 0x40c39dad)); 3263 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3264 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3265 getF32Constant(DAG, 0x4042902c)); 3266 3267 result = DAG.getNode(ISD::FADD, dl, 3268 MVT::f32, LogOfExponent, Log2ofMantissa); 3269 } 3270 } else { 3271 // No special expansion. 3272 result = DAG.getNode(ISD::FLOG2, dl, 3273 getValue(I.getOperand(1)).getValueType(), 3274 getValue(I.getOperand(1))); 3275 } 3276 3277 setValue(&I, result); 3278 } 3279 3280 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3281 /// limited-precision mode. 3282 void 3283 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3284 SDValue result; 3285 DebugLoc dl = getCurDebugLoc(); 3286 3287 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3288 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3289 SDValue Op = getValue(I.getOperand(1)); 3290 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3291 3292 // Scale the exponent by log10(2) [0.30102999f]. 3293 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3294 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3295 getF32Constant(DAG, 0x3e9a209a)); 3296 3297 // Get the significand and build it into a floating-point number with 3298 // exponent of 1. 3299 SDValue X = GetSignificand(DAG, Op1, dl); 3300 3301 if (LimitFloatPrecision <= 6) { 3302 // For floating-point precision of 6: 3303 // 3304 // Log10ofMantissa = 3305 // -0.50419619f + 3306 // (0.60948995f - 0.10380950f * x) * x; 3307 // 3308 // error 0.0014886165, which is 6 bits 3309 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3310 getF32Constant(DAG, 0xbdd49a13)); 3311 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3312 getF32Constant(DAG, 0x3f1c0789)); 3313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3314 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3315 getF32Constant(DAG, 0x3f011300)); 3316 3317 result = DAG.getNode(ISD::FADD, dl, 3318 MVT::f32, LogOfExponent, Log10ofMantissa); 3319 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3320 // For floating-point precision of 12: 3321 // 3322 // Log10ofMantissa = 3323 // -0.64831180f + 3324 // (0.91751397f + 3325 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3326 // 3327 // error 0.00019228036, which is better than 12 bits 3328 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3329 getF32Constant(DAG, 0x3d431f31)); 3330 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3331 getF32Constant(DAG, 0x3ea21fb2)); 3332 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3333 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3334 getF32Constant(DAG, 0x3f6ae232)); 3335 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3336 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3337 getF32Constant(DAG, 0x3f25f7c3)); 3338 3339 result = DAG.getNode(ISD::FADD, dl, 3340 MVT::f32, LogOfExponent, Log10ofMantissa); 3341 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3342 // For floating-point precision of 18: 3343 // 3344 // Log10ofMantissa = 3345 // -0.84299375f + 3346 // (1.5327582f + 3347 // (-1.0688956f + 3348 // (0.49102474f + 3349 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3350 // 3351 // error 0.0000037995730, which is better than 18 bits 3352 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3353 getF32Constant(DAG, 0x3c5d51ce)); 3354 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3355 getF32Constant(DAG, 0x3e00685a)); 3356 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3357 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3358 getF32Constant(DAG, 0x3efb6798)); 3359 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3360 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3361 getF32Constant(DAG, 0x3f88d192)); 3362 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3363 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3364 getF32Constant(DAG, 0x3fc4316c)); 3365 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3366 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3367 getF32Constant(DAG, 0x3f57ce70)); 3368 3369 result = DAG.getNode(ISD::FADD, dl, 3370 MVT::f32, LogOfExponent, Log10ofMantissa); 3371 } 3372 } else { 3373 // No special expansion. 3374 result = DAG.getNode(ISD::FLOG10, dl, 3375 getValue(I.getOperand(1)).getValueType(), 3376 getValue(I.getOperand(1))); 3377 } 3378 3379 setValue(&I, result); 3380 } 3381 3382 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3383 /// limited-precision mode. 3384 void 3385 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3386 SDValue result; 3387 DebugLoc dl = getCurDebugLoc(); 3388 3389 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3390 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3391 SDValue Op = getValue(I.getOperand(1)); 3392 3393 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3394 3395 // FractionalPartOfX = x - (float)IntegerPartOfX; 3396 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3397 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3398 3399 // IntegerPartOfX <<= 23; 3400 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3401 DAG.getConstant(23, TLI.getPointerTy())); 3402 3403 if (LimitFloatPrecision <= 6) { 3404 // For floating-point precision of 6: 3405 // 3406 // TwoToFractionalPartOfX = 3407 // 0.997535578f + 3408 // (0.735607626f + 0.252464424f * x) * x; 3409 // 3410 // error 0.0144103317, which is 6 bits 3411 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3412 getF32Constant(DAG, 0x3e814304)); 3413 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3414 getF32Constant(DAG, 0x3f3c50c8)); 3415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3416 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3417 getF32Constant(DAG, 0x3f7f5e7e)); 3418 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3419 SDValue TwoToFractionalPartOfX = 3420 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3421 3422 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3423 MVT::f32, TwoToFractionalPartOfX); 3424 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3425 // For floating-point precision of 12: 3426 // 3427 // TwoToFractionalPartOfX = 3428 // 0.999892986f + 3429 // (0.696457318f + 3430 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3431 // 3432 // error 0.000107046256, which is 13 to 14 bits 3433 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3434 getF32Constant(DAG, 0x3da235e3)); 3435 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3436 getF32Constant(DAG, 0x3e65b8f3)); 3437 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3438 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3439 getF32Constant(DAG, 0x3f324b07)); 3440 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3441 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3442 getF32Constant(DAG, 0x3f7ff8fd)); 3443 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3444 SDValue TwoToFractionalPartOfX = 3445 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3446 3447 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3448 MVT::f32, TwoToFractionalPartOfX); 3449 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3450 // For floating-point precision of 18: 3451 // 3452 // TwoToFractionalPartOfX = 3453 // 0.999999982f + 3454 // (0.693148872f + 3455 // (0.240227044f + 3456 // (0.554906021e-1f + 3457 // (0.961591928e-2f + 3458 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3459 // error 2.47208000*10^(-7), which is better than 18 bits 3460 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3461 getF32Constant(DAG, 0x3924b03e)); 3462 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3463 getF32Constant(DAG, 0x3ab24b87)); 3464 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3465 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3466 getF32Constant(DAG, 0x3c1d8c17)); 3467 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3468 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3469 getF32Constant(DAG, 0x3d634a1d)); 3470 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3471 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3472 getF32Constant(DAG, 0x3e75fe14)); 3473 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3474 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3475 getF32Constant(DAG, 0x3f317234)); 3476 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3477 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3478 getF32Constant(DAG, 0x3f800000)); 3479 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3480 SDValue TwoToFractionalPartOfX = 3481 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3482 3483 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3484 MVT::f32, TwoToFractionalPartOfX); 3485 } 3486 } else { 3487 // No special expansion. 3488 result = DAG.getNode(ISD::FEXP2, dl, 3489 getValue(I.getOperand(1)).getValueType(), 3490 getValue(I.getOperand(1))); 3491 } 3492 3493 setValue(&I, result); 3494 } 3495 3496 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3497 /// limited-precision mode with x == 10.0f. 3498 void 3499 SelectionDAGBuilder::visitPow(const CallInst &I) { 3500 SDValue result; 3501 const Value *Val = I.getOperand(1); 3502 DebugLoc dl = getCurDebugLoc(); 3503 bool IsExp10 = false; 3504 3505 if (getValue(Val).getValueType() == MVT::f32 && 3506 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3507 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3508 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3509 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3510 APFloat Ten(10.0f); 3511 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3512 } 3513 } 3514 } 3515 3516 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3517 SDValue Op = getValue(I.getOperand(2)); 3518 3519 // Put the exponent in the right bit position for later addition to the 3520 // final result: 3521 // 3522 // #define LOG2OF10 3.3219281f 3523 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3524 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3525 getF32Constant(DAG, 0x40549a78)); 3526 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3527 3528 // FractionalPartOfX = x - (float)IntegerPartOfX; 3529 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3530 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3531 3532 // IntegerPartOfX <<= 23; 3533 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3534 DAG.getConstant(23, TLI.getPointerTy())); 3535 3536 if (LimitFloatPrecision <= 6) { 3537 // For floating-point precision of 6: 3538 // 3539 // twoToFractionalPartOfX = 3540 // 0.997535578f + 3541 // (0.735607626f + 0.252464424f * x) * x; 3542 // 3543 // error 0.0144103317, which is 6 bits 3544 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3545 getF32Constant(DAG, 0x3e814304)); 3546 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3547 getF32Constant(DAG, 0x3f3c50c8)); 3548 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3549 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3550 getF32Constant(DAG, 0x3f7f5e7e)); 3551 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3552 SDValue TwoToFractionalPartOfX = 3553 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3554 3555 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3556 MVT::f32, TwoToFractionalPartOfX); 3557 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3558 // For floating-point precision of 12: 3559 // 3560 // TwoToFractionalPartOfX = 3561 // 0.999892986f + 3562 // (0.696457318f + 3563 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3564 // 3565 // error 0.000107046256, which is 13 to 14 bits 3566 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3567 getF32Constant(DAG, 0x3da235e3)); 3568 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3569 getF32Constant(DAG, 0x3e65b8f3)); 3570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3572 getF32Constant(DAG, 0x3f324b07)); 3573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3574 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3575 getF32Constant(DAG, 0x3f7ff8fd)); 3576 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3577 SDValue TwoToFractionalPartOfX = 3578 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3579 3580 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3581 MVT::f32, TwoToFractionalPartOfX); 3582 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3583 // For floating-point precision of 18: 3584 // 3585 // TwoToFractionalPartOfX = 3586 // 0.999999982f + 3587 // (0.693148872f + 3588 // (0.240227044f + 3589 // (0.554906021e-1f + 3590 // (0.961591928e-2f + 3591 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3592 // error 2.47208000*10^(-7), which is better than 18 bits 3593 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3594 getF32Constant(DAG, 0x3924b03e)); 3595 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3596 getF32Constant(DAG, 0x3ab24b87)); 3597 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3598 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3599 getF32Constant(DAG, 0x3c1d8c17)); 3600 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3601 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3602 getF32Constant(DAG, 0x3d634a1d)); 3603 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3604 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3605 getF32Constant(DAG, 0x3e75fe14)); 3606 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3607 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3608 getF32Constant(DAG, 0x3f317234)); 3609 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3610 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3611 getF32Constant(DAG, 0x3f800000)); 3612 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3613 SDValue TwoToFractionalPartOfX = 3614 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3615 3616 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3617 MVT::f32, TwoToFractionalPartOfX); 3618 } 3619 } else { 3620 // No special expansion. 3621 result = DAG.getNode(ISD::FPOW, dl, 3622 getValue(I.getOperand(1)).getValueType(), 3623 getValue(I.getOperand(1)), 3624 getValue(I.getOperand(2))); 3625 } 3626 3627 setValue(&I, result); 3628 } 3629 3630 3631 /// ExpandPowI - Expand a llvm.powi intrinsic. 3632 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3633 SelectionDAG &DAG) { 3634 // If RHS is a constant, we can expand this out to a multiplication tree, 3635 // otherwise we end up lowering to a call to __powidf2 (for example). When 3636 // optimizing for size, we only want to do this if the expansion would produce 3637 // a small number of multiplies, otherwise we do the full expansion. 3638 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3639 // Get the exponent as a positive value. 3640 unsigned Val = RHSC->getSExtValue(); 3641 if ((int)Val < 0) Val = -Val; 3642 3643 // powi(x, 0) -> 1.0 3644 if (Val == 0) 3645 return DAG.getConstantFP(1.0, LHS.getValueType()); 3646 3647 const Function *F = DAG.getMachineFunction().getFunction(); 3648 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3649 // If optimizing for size, don't insert too many multiplies. This 3650 // inserts up to 5 multiplies. 3651 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3652 // We use the simple binary decomposition method to generate the multiply 3653 // sequence. There are more optimal ways to do this (for example, 3654 // powi(x,15) generates one more multiply than it should), but this has 3655 // the benefit of being both really simple and much better than a libcall. 3656 SDValue Res; // Logically starts equal to 1.0 3657 SDValue CurSquare = LHS; 3658 while (Val) { 3659 if (Val & 1) { 3660 if (Res.getNode()) 3661 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3662 else 3663 Res = CurSquare; // 1.0*CurSquare. 3664 } 3665 3666 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3667 CurSquare, CurSquare); 3668 Val >>= 1; 3669 } 3670 3671 // If the original was negative, invert the result, producing 1/(x*x*x). 3672 if (RHSC->getSExtValue() < 0) 3673 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3674 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3675 return Res; 3676 } 3677 } 3678 3679 // Otherwise, expand to a libcall. 3680 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3681 } 3682 3683 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3684 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3685 /// At the end of instruction selection, they will be inserted to the entry BB. 3686 bool 3687 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI, 3688 const Value *V, MDNode *Variable, 3689 uint64_t Offset, SDValue &N) { 3690 if (!isa<Argument>(V)) 3691 return false; 3692 3693 MachineFunction &MF = DAG.getMachineFunction(); 3694 // Ignore inlined function arguments here. 3695 DIVariable DV(Variable); 3696 if (DV.isInlinedFnArgument(MF.getFunction())) 3697 return false; 3698 3699 MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()]; 3700 if (MBB != &MF.front()) 3701 return false; 3702 3703 unsigned Reg = 0; 3704 if (N.getOpcode() == ISD::CopyFromReg) { 3705 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3706 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3707 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3708 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3709 if (PR) 3710 Reg = PR; 3711 } 3712 } 3713 3714 if (!Reg) { 3715 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3716 if (VMI == FuncInfo.ValueMap.end()) 3717 return false; 3718 Reg = VMI->second; 3719 } 3720 3721 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3722 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3723 TII->get(TargetOpcode::DBG_VALUE)) 3724 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3725 FuncInfo.ArgDbgValues.push_back(&*MIB); 3726 return true; 3727 } 3728 3729 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3730 /// we want to emit this as a call to a named external function, return the name 3731 /// otherwise lower it and return null. 3732 const char * 3733 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3734 DebugLoc dl = getCurDebugLoc(); 3735 SDValue Res; 3736 3737 switch (Intrinsic) { 3738 default: 3739 // By default, turn this into a target intrinsic node. 3740 visitTargetIntrinsic(I, Intrinsic); 3741 return 0; 3742 case Intrinsic::vastart: visitVAStart(I); return 0; 3743 case Intrinsic::vaend: visitVAEnd(I); return 0; 3744 case Intrinsic::vacopy: visitVACopy(I); return 0; 3745 case Intrinsic::returnaddress: 3746 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3747 getValue(I.getOperand(1)))); 3748 return 0; 3749 case Intrinsic::frameaddress: 3750 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3751 getValue(I.getOperand(1)))); 3752 return 0; 3753 case Intrinsic::setjmp: 3754 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3755 case Intrinsic::longjmp: 3756 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3757 case Intrinsic::memcpy: { 3758 // Assert for address < 256 since we support only user defined address 3759 // spaces. 3760 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3761 < 256 && 3762 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3763 < 256 && 3764 "Unknown address space"); 3765 SDValue Op1 = getValue(I.getOperand(1)); 3766 SDValue Op2 = getValue(I.getOperand(2)); 3767 SDValue Op3 = getValue(I.getOperand(3)); 3768 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3769 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3770 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3771 I.getOperand(1), 0, I.getOperand(2), 0)); 3772 return 0; 3773 } 3774 case Intrinsic::memset: { 3775 // Assert for address < 256 since we support only user defined address 3776 // spaces. 3777 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3778 < 256 && 3779 "Unknown address space"); 3780 SDValue Op1 = getValue(I.getOperand(1)); 3781 SDValue Op2 = getValue(I.getOperand(2)); 3782 SDValue Op3 = getValue(I.getOperand(3)); 3783 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3784 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3785 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3786 I.getOperand(1), 0)); 3787 return 0; 3788 } 3789 case Intrinsic::memmove: { 3790 // Assert for address < 256 since we support only user defined address 3791 // spaces. 3792 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3793 < 256 && 3794 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3795 < 256 && 3796 "Unknown address space"); 3797 SDValue Op1 = getValue(I.getOperand(1)); 3798 SDValue Op2 = getValue(I.getOperand(2)); 3799 SDValue Op3 = getValue(I.getOperand(3)); 3800 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3801 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3802 3803 // If the source and destination are known to not be aliases, we can 3804 // lower memmove as memcpy. 3805 uint64_t Size = -1ULL; 3806 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3807 Size = C->getZExtValue(); 3808 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3809 AliasAnalysis::NoAlias) { 3810 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3811 false, I.getOperand(1), 0, I.getOperand(2), 0)); 3812 return 0; 3813 } 3814 3815 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3816 I.getOperand(1), 0, I.getOperand(2), 0)); 3817 return 0; 3818 } 3819 case Intrinsic::dbg_declare: { 3820 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3821 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3822 return 0; 3823 3824 MDNode *Variable = DI.getVariable(); 3825 // Parameters are handled specially. 3826 bool isParameter = 3827 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 3828 const Value *Address = DI.getAddress(); 3829 if (!Address) 3830 return 0; 3831 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3832 Address = BCI->getOperand(0); 3833 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3834 if (AI) { 3835 // Don't handle byval arguments or VLAs, for example. 3836 // Non-byval arguments are handled here (they refer to the stack temporary 3837 // alloca at this point). 3838 DenseMap<const AllocaInst*, int>::iterator SI = 3839 FuncInfo.StaticAllocaMap.find(AI); 3840 if (SI == FuncInfo.StaticAllocaMap.end()) 3841 return 0; // VLAs. 3842 int FI = SI->second; 3843 3844 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3845 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3846 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3847 } 3848 3849 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3850 // but do not always have a corresponding SDNode built. The SDNodeOrder 3851 // absolute, but not relative, values are different depending on whether 3852 // debug info exists. 3853 ++SDNodeOrder; 3854 SDValue &N = NodeMap[Address]; 3855 SDDbgValue *SDV; 3856 if (N.getNode()) { 3857 if (isParameter && !AI) { 3858 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 3859 if (FINode) 3860 // Byval parameter. We have a frame index at this point. 3861 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 3862 0, dl, SDNodeOrder); 3863 else 3864 // Can't do anything with other non-AI cases yet. This might be a 3865 // parameter of a callee function that got inlined, for example. 3866 return 0; 3867 } else if (AI) 3868 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 3869 0, dl, SDNodeOrder); 3870 else 3871 // Can't do anything with other non-AI cases yet. 3872 return 0; 3873 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 3874 } else { 3875 // This isn't useful, but it shows what we're missing. 3876 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 3877 0, dl, SDNodeOrder); 3878 DAG.AddDbgValue(SDV, 0, isParameter); 3879 } 3880 return 0; 3881 } 3882 case Intrinsic::dbg_value: { 3883 const DbgValueInst &DI = cast<DbgValueInst>(I); 3884 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3885 return 0; 3886 3887 MDNode *Variable = DI.getVariable(); 3888 uint64_t Offset = DI.getOffset(); 3889 const Value *V = DI.getValue(); 3890 if (!V) 3891 return 0; 3892 3893 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3894 // but do not always have a corresponding SDNode built. The SDNodeOrder 3895 // absolute, but not relative, values are different depending on whether 3896 // debug info exists. 3897 ++SDNodeOrder; 3898 SDDbgValue *SDV; 3899 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3900 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 3901 DAG.AddDbgValue(SDV, 0, false); 3902 } else { 3903 SDValue &N = NodeMap[V]; 3904 if (N.getNode()) { 3905 if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) { 3906 SDV = DAG.getDbgValue(Variable, N.getNode(), 3907 N.getResNo(), Offset, dl, SDNodeOrder); 3908 DAG.AddDbgValue(SDV, N.getNode(), false); 3909 } 3910 } else { 3911 // We may expand this to cover more cases. One case where we have no 3912 // data available is an unreferenced parameter; we need this fallback. 3913 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 3914 Offset, dl, SDNodeOrder); 3915 DAG.AddDbgValue(SDV, 0, false); 3916 } 3917 } 3918 3919 // Build a debug info table entry. 3920 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3921 V = BCI->getOperand(0); 3922 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 3923 // Don't handle byval struct arguments or VLAs, for example. 3924 if (!AI) 3925 return 0; 3926 DenseMap<const AllocaInst*, int>::iterator SI = 3927 FuncInfo.StaticAllocaMap.find(AI); 3928 if (SI == FuncInfo.StaticAllocaMap.end()) 3929 return 0; // VLAs. 3930 int FI = SI->second; 3931 3932 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3933 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3934 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3935 return 0; 3936 } 3937 case Intrinsic::eh_exception: { 3938 // Insert the EXCEPTIONADDR instruction. 3939 assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() && 3940 "Call to eh.exception not in landing pad!"); 3941 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3942 SDValue Ops[1]; 3943 Ops[0] = DAG.getRoot(); 3944 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3945 setValue(&I, Op); 3946 DAG.setRoot(Op.getValue(1)); 3947 return 0; 3948 } 3949 3950 case Intrinsic::eh_selector: { 3951 MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()]; 3952 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3953 if (CallMBB->isLandingPad()) 3954 AddCatchInfo(I, &MMI, CallMBB); 3955 else { 3956 #ifndef NDEBUG 3957 FuncInfo.CatchInfoLost.insert(&I); 3958 #endif 3959 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3960 unsigned Reg = TLI.getExceptionSelectorRegister(); 3961 if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg); 3962 } 3963 3964 // Insert the EHSELECTION instruction. 3965 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3966 SDValue Ops[2]; 3967 Ops[0] = getValue(I.getOperand(1)); 3968 Ops[1] = getRoot(); 3969 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3970 DAG.setRoot(Op.getValue(1)); 3971 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3972 return 0; 3973 } 3974 3975 case Intrinsic::eh_typeid_for: { 3976 // Find the type id for the given typeinfo. 3977 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3978 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 3979 Res = DAG.getConstant(TypeID, MVT::i32); 3980 setValue(&I, Res); 3981 return 0; 3982 } 3983 3984 case Intrinsic::eh_return_i32: 3985 case Intrinsic::eh_return_i64: 3986 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 3987 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3988 MVT::Other, 3989 getControlRoot(), 3990 getValue(I.getOperand(1)), 3991 getValue(I.getOperand(2)))); 3992 return 0; 3993 case Intrinsic::eh_unwind_init: 3994 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 3995 return 0; 3996 case Intrinsic::eh_dwarf_cfa: { 3997 EVT VT = getValue(I.getOperand(1)).getValueType(); 3998 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3999 TLI.getPointerTy()); 4000 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4001 TLI.getPointerTy(), 4002 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4003 TLI.getPointerTy()), 4004 CfaArg); 4005 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4006 TLI.getPointerTy(), 4007 DAG.getConstant(0, TLI.getPointerTy())); 4008 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4009 FA, Offset)); 4010 return 0; 4011 } 4012 case Intrinsic::eh_sjlj_callsite: { 4013 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4014 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 4015 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4016 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4017 4018 MMI.setCurrentCallSite(CI->getZExtValue()); 4019 return 0; 4020 } 4021 4022 case Intrinsic::convertff: 4023 case Intrinsic::convertfsi: 4024 case Intrinsic::convertfui: 4025 case Intrinsic::convertsif: 4026 case Intrinsic::convertuif: 4027 case Intrinsic::convertss: 4028 case Intrinsic::convertsu: 4029 case Intrinsic::convertus: 4030 case Intrinsic::convertuu: { 4031 ISD::CvtCode Code = ISD::CVT_INVALID; 4032 switch (Intrinsic) { 4033 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4034 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4035 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4036 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4037 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4038 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4039 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4040 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4041 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4042 } 4043 EVT DestVT = TLI.getValueType(I.getType()); 4044 const Value *Op1 = I.getOperand(1); 4045 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4046 DAG.getValueType(DestVT), 4047 DAG.getValueType(getValue(Op1).getValueType()), 4048 getValue(I.getOperand(2)), 4049 getValue(I.getOperand(3)), 4050 Code); 4051 setValue(&I, Res); 4052 return 0; 4053 } 4054 case Intrinsic::sqrt: 4055 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4056 getValue(I.getOperand(1)).getValueType(), 4057 getValue(I.getOperand(1)))); 4058 return 0; 4059 case Intrinsic::powi: 4060 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 4061 getValue(I.getOperand(2)), DAG)); 4062 return 0; 4063 case Intrinsic::sin: 4064 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4065 getValue(I.getOperand(1)).getValueType(), 4066 getValue(I.getOperand(1)))); 4067 return 0; 4068 case Intrinsic::cos: 4069 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4070 getValue(I.getOperand(1)).getValueType(), 4071 getValue(I.getOperand(1)))); 4072 return 0; 4073 case Intrinsic::log: 4074 visitLog(I); 4075 return 0; 4076 case Intrinsic::log2: 4077 visitLog2(I); 4078 return 0; 4079 case Intrinsic::log10: 4080 visitLog10(I); 4081 return 0; 4082 case Intrinsic::exp: 4083 visitExp(I); 4084 return 0; 4085 case Intrinsic::exp2: 4086 visitExp2(I); 4087 return 0; 4088 case Intrinsic::pow: 4089 visitPow(I); 4090 return 0; 4091 case Intrinsic::convert_to_fp16: 4092 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4093 MVT::i16, getValue(I.getOperand(1)))); 4094 return 0; 4095 case Intrinsic::convert_from_fp16: 4096 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4097 MVT::f32, getValue(I.getOperand(1)))); 4098 return 0; 4099 case Intrinsic::pcmarker: { 4100 SDValue Tmp = getValue(I.getOperand(1)); 4101 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4102 return 0; 4103 } 4104 case Intrinsic::readcyclecounter: { 4105 SDValue Op = getRoot(); 4106 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4107 DAG.getVTList(MVT::i64, MVT::Other), 4108 &Op, 1); 4109 setValue(&I, Res); 4110 DAG.setRoot(Res.getValue(1)); 4111 return 0; 4112 } 4113 case Intrinsic::bswap: 4114 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4115 getValue(I.getOperand(1)).getValueType(), 4116 getValue(I.getOperand(1)))); 4117 return 0; 4118 case Intrinsic::cttz: { 4119 SDValue Arg = getValue(I.getOperand(1)); 4120 EVT Ty = Arg.getValueType(); 4121 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4122 return 0; 4123 } 4124 case Intrinsic::ctlz: { 4125 SDValue Arg = getValue(I.getOperand(1)); 4126 EVT Ty = Arg.getValueType(); 4127 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4128 return 0; 4129 } 4130 case Intrinsic::ctpop: { 4131 SDValue Arg = getValue(I.getOperand(1)); 4132 EVT Ty = Arg.getValueType(); 4133 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4134 return 0; 4135 } 4136 case Intrinsic::stacksave: { 4137 SDValue Op = getRoot(); 4138 Res = DAG.getNode(ISD::STACKSAVE, dl, 4139 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4140 setValue(&I, Res); 4141 DAG.setRoot(Res.getValue(1)); 4142 return 0; 4143 } 4144 case Intrinsic::stackrestore: { 4145 Res = getValue(I.getOperand(1)); 4146 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4147 return 0; 4148 } 4149 case Intrinsic::stackprotector: { 4150 // Emit code into the DAG to store the stack guard onto the stack. 4151 MachineFunction &MF = DAG.getMachineFunction(); 4152 MachineFrameInfo *MFI = MF.getFrameInfo(); 4153 EVT PtrTy = TLI.getPointerTy(); 4154 4155 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4156 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4157 4158 int FI = FuncInfo.StaticAllocaMap[Slot]; 4159 MFI->setStackProtectorIndex(FI); 4160 4161 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4162 4163 // Store the stack protector onto the stack. 4164 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4165 PseudoSourceValue::getFixedStack(FI), 4166 0, true, false, 0); 4167 setValue(&I, Res); 4168 DAG.setRoot(Res); 4169 return 0; 4170 } 4171 case Intrinsic::objectsize: { 4172 // If we don't know by now, we're never going to know. 4173 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4174 4175 assert(CI && "Non-constant type in __builtin_object_size?"); 4176 4177 SDValue Arg = getValue(I.getOperand(0)); 4178 EVT Ty = Arg.getValueType(); 4179 4180 if (CI->getZExtValue() == 0) 4181 Res = DAG.getConstant(-1ULL, Ty); 4182 else 4183 Res = DAG.getConstant(0, Ty); 4184 4185 setValue(&I, Res); 4186 return 0; 4187 } 4188 case Intrinsic::var_annotation: 4189 // Discard annotate attributes 4190 return 0; 4191 4192 case Intrinsic::init_trampoline: { 4193 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4194 4195 SDValue Ops[6]; 4196 Ops[0] = getRoot(); 4197 Ops[1] = getValue(I.getOperand(1)); 4198 Ops[2] = getValue(I.getOperand(2)); 4199 Ops[3] = getValue(I.getOperand(3)); 4200 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4201 Ops[5] = DAG.getSrcValue(F); 4202 4203 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4204 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4205 Ops, 6); 4206 4207 setValue(&I, Res); 4208 DAG.setRoot(Res.getValue(1)); 4209 return 0; 4210 } 4211 case Intrinsic::gcroot: 4212 if (GFI) { 4213 const Value *Alloca = I.getOperand(1); 4214 const Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4215 4216 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4217 GFI->addStackRoot(FI->getIndex(), TypeMap); 4218 } 4219 return 0; 4220 case Intrinsic::gcread: 4221 case Intrinsic::gcwrite: 4222 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4223 return 0; 4224 case Intrinsic::flt_rounds: 4225 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4226 return 0; 4227 case Intrinsic::trap: 4228 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4229 return 0; 4230 case Intrinsic::uadd_with_overflow: 4231 return implVisitAluOverflow(I, ISD::UADDO); 4232 case Intrinsic::sadd_with_overflow: 4233 return implVisitAluOverflow(I, ISD::SADDO); 4234 case Intrinsic::usub_with_overflow: 4235 return implVisitAluOverflow(I, ISD::USUBO); 4236 case Intrinsic::ssub_with_overflow: 4237 return implVisitAluOverflow(I, ISD::SSUBO); 4238 case Intrinsic::umul_with_overflow: 4239 return implVisitAluOverflow(I, ISD::UMULO); 4240 case Intrinsic::smul_with_overflow: 4241 return implVisitAluOverflow(I, ISD::SMULO); 4242 4243 case Intrinsic::prefetch: { 4244 SDValue Ops[4]; 4245 Ops[0] = getRoot(); 4246 Ops[1] = getValue(I.getOperand(1)); 4247 Ops[2] = getValue(I.getOperand(2)); 4248 Ops[3] = getValue(I.getOperand(3)); 4249 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4250 return 0; 4251 } 4252 4253 case Intrinsic::memory_barrier: { 4254 SDValue Ops[6]; 4255 Ops[0] = getRoot(); 4256 for (int x = 1; x < 6; ++x) 4257 Ops[x] = getValue(I.getOperand(x)); 4258 4259 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4260 return 0; 4261 } 4262 case Intrinsic::atomic_cmp_swap: { 4263 SDValue Root = getRoot(); 4264 SDValue L = 4265 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4266 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4267 Root, 4268 getValue(I.getOperand(1)), 4269 getValue(I.getOperand(2)), 4270 getValue(I.getOperand(3)), 4271 I.getOperand(1)); 4272 setValue(&I, L); 4273 DAG.setRoot(L.getValue(1)); 4274 return 0; 4275 } 4276 case Intrinsic::atomic_load_add: 4277 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4278 case Intrinsic::atomic_load_sub: 4279 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4280 case Intrinsic::atomic_load_or: 4281 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4282 case Intrinsic::atomic_load_xor: 4283 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4284 case Intrinsic::atomic_load_and: 4285 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4286 case Intrinsic::atomic_load_nand: 4287 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4288 case Intrinsic::atomic_load_max: 4289 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4290 case Intrinsic::atomic_load_min: 4291 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4292 case Intrinsic::atomic_load_umin: 4293 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4294 case Intrinsic::atomic_load_umax: 4295 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4296 case Intrinsic::atomic_swap: 4297 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4298 4299 case Intrinsic::invariant_start: 4300 case Intrinsic::lifetime_start: 4301 // Discard region information. 4302 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4303 return 0; 4304 case Intrinsic::invariant_end: 4305 case Intrinsic::lifetime_end: 4306 // Discard region information. 4307 return 0; 4308 } 4309 } 4310 4311 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4312 bool isTailCall, 4313 MachineBasicBlock *LandingPad) { 4314 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4315 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4316 const Type *RetTy = FTy->getReturnType(); 4317 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4318 MCSymbol *BeginLabel = 0; 4319 4320 TargetLowering::ArgListTy Args; 4321 TargetLowering::ArgListEntry Entry; 4322 Args.reserve(CS.arg_size()); 4323 4324 // Check whether the function can return without sret-demotion. 4325 SmallVector<EVT, 4> OutVTs; 4326 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4327 SmallVector<uint64_t, 4> Offsets; 4328 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4329 OutVTs, OutsFlags, TLI, &Offsets); 4330 4331 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4332 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4333 4334 SDValue DemoteStackSlot; 4335 4336 if (!CanLowerReturn) { 4337 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4338 FTy->getReturnType()); 4339 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4340 FTy->getReturnType()); 4341 MachineFunction &MF = DAG.getMachineFunction(); 4342 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4343 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4344 4345 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4346 Entry.Node = DemoteStackSlot; 4347 Entry.Ty = StackSlotPtrType; 4348 Entry.isSExt = false; 4349 Entry.isZExt = false; 4350 Entry.isInReg = false; 4351 Entry.isSRet = true; 4352 Entry.isNest = false; 4353 Entry.isByVal = false; 4354 Entry.Alignment = Align; 4355 Args.push_back(Entry); 4356 RetTy = Type::getVoidTy(FTy->getContext()); 4357 } 4358 4359 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4360 i != e; ++i) { 4361 SDValue ArgNode = getValue(*i); 4362 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4363 4364 unsigned attrInd = i - CS.arg_begin() + 1; 4365 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4366 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4367 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4368 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4369 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4370 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4371 Entry.Alignment = CS.getParamAlignment(attrInd); 4372 Args.push_back(Entry); 4373 } 4374 4375 if (LandingPad) { 4376 // Insert a label before the invoke call to mark the try range. This can be 4377 // used to detect deletion of the invoke via the MachineModuleInfo. 4378 BeginLabel = MMI.getContext().CreateTempSymbol(); 4379 4380 // For SjLj, keep track of which landing pads go with which invokes 4381 // so as to maintain the ordering of pads in the LSDA. 4382 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4383 if (CallSiteIndex) { 4384 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4385 // Now that the call site is handled, stop tracking it. 4386 MMI.setCurrentCallSite(0); 4387 } 4388 4389 // Both PendingLoads and PendingExports must be flushed here; 4390 // this call might not return. 4391 (void)getRoot(); 4392 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4393 } 4394 4395 // Check if target-independent constraints permit a tail call here. 4396 // Target-dependent constraints are checked within TLI.LowerCallTo. 4397 if (isTailCall && 4398 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4399 isTailCall = false; 4400 4401 std::pair<SDValue,SDValue> Result = 4402 TLI.LowerCallTo(getRoot(), RetTy, 4403 CS.paramHasAttr(0, Attribute::SExt), 4404 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4405 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4406 CS.getCallingConv(), 4407 isTailCall, 4408 !CS.getInstruction()->use_empty(), 4409 Callee, Args, DAG, getCurDebugLoc()); 4410 assert((isTailCall || Result.second.getNode()) && 4411 "Non-null chain expected with non-tail call!"); 4412 assert((Result.second.getNode() || !Result.first.getNode()) && 4413 "Null value expected with tail call!"); 4414 if (Result.first.getNode()) { 4415 setValue(CS.getInstruction(), Result.first); 4416 } else if (!CanLowerReturn && Result.second.getNode()) { 4417 // The instruction result is the result of loading from the 4418 // hidden sret parameter. 4419 SmallVector<EVT, 1> PVTs; 4420 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4421 4422 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4423 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4424 EVT PtrVT = PVTs[0]; 4425 unsigned NumValues = OutVTs.size(); 4426 SmallVector<SDValue, 4> Values(NumValues); 4427 SmallVector<SDValue, 4> Chains(NumValues); 4428 4429 for (unsigned i = 0; i < NumValues; ++i) { 4430 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4431 DemoteStackSlot, 4432 DAG.getConstant(Offsets[i], PtrVT)); 4433 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4434 Add, NULL, Offsets[i], false, false, 1); 4435 Values[i] = L; 4436 Chains[i] = L.getValue(1); 4437 } 4438 4439 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4440 MVT::Other, &Chains[0], NumValues); 4441 PendingLoads.push_back(Chain); 4442 4443 // Collect the legal value parts into potentially illegal values 4444 // that correspond to the original function's return values. 4445 SmallVector<EVT, 4> RetTys; 4446 RetTy = FTy->getReturnType(); 4447 ComputeValueVTs(TLI, RetTy, RetTys); 4448 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4449 SmallVector<SDValue, 4> ReturnValues; 4450 unsigned CurReg = 0; 4451 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4452 EVT VT = RetTys[I]; 4453 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4454 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4455 4456 SDValue ReturnValue = 4457 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4458 RegisterVT, VT, AssertOp); 4459 ReturnValues.push_back(ReturnValue); 4460 CurReg += NumRegs; 4461 } 4462 4463 setValue(CS.getInstruction(), 4464 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4465 DAG.getVTList(&RetTys[0], RetTys.size()), 4466 &ReturnValues[0], ReturnValues.size())); 4467 4468 } 4469 4470 // As a special case, a null chain means that a tail call has been emitted and 4471 // the DAG root is already updated. 4472 if (Result.second.getNode()) 4473 DAG.setRoot(Result.second); 4474 else 4475 HasTailCall = true; 4476 4477 if (LandingPad) { 4478 // Insert a label at the end of the invoke call to mark the try range. This 4479 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4480 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4481 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4482 4483 // Inform MachineModuleInfo of range. 4484 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4485 } 4486 } 4487 4488 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4489 /// value is equal or not-equal to zero. 4490 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4491 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4492 UI != E; ++UI) { 4493 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4494 if (IC->isEquality()) 4495 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4496 if (C->isNullValue()) 4497 continue; 4498 // Unknown instruction. 4499 return false; 4500 } 4501 return true; 4502 } 4503 4504 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4505 const Type *LoadTy, 4506 SelectionDAGBuilder &Builder) { 4507 4508 // Check to see if this load can be trivially constant folded, e.g. if the 4509 // input is from a string literal. 4510 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4511 // Cast pointer to the type we really want to load. 4512 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4513 PointerType::getUnqual(LoadTy)); 4514 4515 if (const Constant *LoadCst = 4516 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4517 Builder.TD)) 4518 return Builder.getValue(LoadCst); 4519 } 4520 4521 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4522 // still constant memory, the input chain can be the entry node. 4523 SDValue Root; 4524 bool ConstantMemory = false; 4525 4526 // Do not serialize (non-volatile) loads of constant memory with anything. 4527 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4528 Root = Builder.DAG.getEntryNode(); 4529 ConstantMemory = true; 4530 } else { 4531 // Do not serialize non-volatile loads against each other. 4532 Root = Builder.DAG.getRoot(); 4533 } 4534 4535 SDValue Ptr = Builder.getValue(PtrVal); 4536 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4537 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4538 false /*volatile*/, 4539 false /*nontemporal*/, 1 /* align=1 */); 4540 4541 if (!ConstantMemory) 4542 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4543 return LoadVal; 4544 } 4545 4546 4547 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4548 /// If so, return true and lower it, otherwise return false and it will be 4549 /// lowered like a normal call. 4550 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4551 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4552 if (I.getNumOperands() != 4) 4553 return false; 4554 4555 const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4556 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4557 !I.getOperand(3)->getType()->isIntegerTy() || 4558 !I.getType()->isIntegerTy()) 4559 return false; 4560 4561 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4562 4563 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4564 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4565 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4566 bool ActuallyDoIt = true; 4567 MVT LoadVT; 4568 const Type *LoadTy; 4569 switch (Size->getZExtValue()) { 4570 default: 4571 LoadVT = MVT::Other; 4572 LoadTy = 0; 4573 ActuallyDoIt = false; 4574 break; 4575 case 2: 4576 LoadVT = MVT::i16; 4577 LoadTy = Type::getInt16Ty(Size->getContext()); 4578 break; 4579 case 4: 4580 LoadVT = MVT::i32; 4581 LoadTy = Type::getInt32Ty(Size->getContext()); 4582 break; 4583 case 8: 4584 LoadVT = MVT::i64; 4585 LoadTy = Type::getInt64Ty(Size->getContext()); 4586 break; 4587 /* 4588 case 16: 4589 LoadVT = MVT::v4i32; 4590 LoadTy = Type::getInt32Ty(Size->getContext()); 4591 LoadTy = VectorType::get(LoadTy, 4); 4592 break; 4593 */ 4594 } 4595 4596 // This turns into unaligned loads. We only do this if the target natively 4597 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4598 // we'll only produce a small number of byte loads. 4599 4600 // Require that we can find a legal MVT, and only do this if the target 4601 // supports unaligned loads of that type. Expanding into byte loads would 4602 // bloat the code. 4603 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4604 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4605 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4606 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4607 ActuallyDoIt = false; 4608 } 4609 4610 if (ActuallyDoIt) { 4611 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4612 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4613 4614 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4615 ISD::SETNE); 4616 EVT CallVT = TLI.getValueType(I.getType(), true); 4617 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4618 return true; 4619 } 4620 } 4621 4622 4623 return false; 4624 } 4625 4626 4627 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4628 const char *RenameFn = 0; 4629 if (Function *F = I.getCalledFunction()) { 4630 if (F->isDeclaration()) { 4631 const TargetIntrinsicInfo *II = TM.getIntrinsicInfo(); 4632 if (II) { 4633 if (unsigned IID = II->getIntrinsicID(F)) { 4634 RenameFn = visitIntrinsicCall(I, IID); 4635 if (!RenameFn) 4636 return; 4637 } 4638 } 4639 if (unsigned IID = F->getIntrinsicID()) { 4640 RenameFn = visitIntrinsicCall(I, IID); 4641 if (!RenameFn) 4642 return; 4643 } 4644 } 4645 4646 // Check for well-known libc/libm calls. If the function is internal, it 4647 // can't be a library call. 4648 if (!F->hasLocalLinkage() && F->hasName()) { 4649 StringRef Name = F->getName(); 4650 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4651 if (I.getNumOperands() == 3 && // Basic sanity checks. 4652 I.getOperand(1)->getType()->isFloatingPointTy() && 4653 I.getType() == I.getOperand(1)->getType() && 4654 I.getType() == I.getOperand(2)->getType()) { 4655 SDValue LHS = getValue(I.getOperand(1)); 4656 SDValue RHS = getValue(I.getOperand(2)); 4657 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4658 LHS.getValueType(), LHS, RHS)); 4659 return; 4660 } 4661 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4662 if (I.getNumOperands() == 2 && // Basic sanity checks. 4663 I.getOperand(1)->getType()->isFloatingPointTy() && 4664 I.getType() == I.getOperand(1)->getType()) { 4665 SDValue Tmp = getValue(I.getOperand(1)); 4666 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4667 Tmp.getValueType(), Tmp)); 4668 return; 4669 } 4670 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4671 if (I.getNumOperands() == 2 && // Basic sanity checks. 4672 I.getOperand(1)->getType()->isFloatingPointTy() && 4673 I.getType() == I.getOperand(1)->getType() && 4674 I.onlyReadsMemory()) { 4675 SDValue Tmp = getValue(I.getOperand(1)); 4676 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4677 Tmp.getValueType(), Tmp)); 4678 return; 4679 } 4680 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4681 if (I.getNumOperands() == 2 && // Basic sanity checks. 4682 I.getOperand(1)->getType()->isFloatingPointTy() && 4683 I.getType() == I.getOperand(1)->getType() && 4684 I.onlyReadsMemory()) { 4685 SDValue Tmp = getValue(I.getOperand(1)); 4686 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4687 Tmp.getValueType(), Tmp)); 4688 return; 4689 } 4690 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4691 if (I.getNumOperands() == 2 && // Basic sanity checks. 4692 I.getOperand(1)->getType()->isFloatingPointTy() && 4693 I.getType() == I.getOperand(1)->getType() && 4694 I.onlyReadsMemory()) { 4695 SDValue Tmp = getValue(I.getOperand(1)); 4696 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4697 Tmp.getValueType(), Tmp)); 4698 return; 4699 } 4700 } else if (Name == "memcmp") { 4701 if (visitMemCmpCall(I)) 4702 return; 4703 } 4704 } 4705 } else if (isa<InlineAsm>(I.getOperand(0))) { 4706 visitInlineAsm(&I); 4707 return; 4708 } 4709 4710 SDValue Callee; 4711 if (!RenameFn) 4712 Callee = getValue(I.getOperand(0)); 4713 else 4714 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4715 4716 // Check if we can potentially perform a tail call. More detailed checking is 4717 // be done within LowerCallTo, after more information about the call is known. 4718 LowerCallTo(&I, Callee, I.isTailCall()); 4719 } 4720 4721 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4722 /// this value and returns the result as a ValueVT value. This uses 4723 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4724 /// If the Flag pointer is NULL, no flag is used. 4725 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4726 SDValue &Chain, SDValue *Flag) const { 4727 // Assemble the legal parts into the final values. 4728 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4729 SmallVector<SDValue, 8> Parts; 4730 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4731 // Copy the legal parts from the registers. 4732 EVT ValueVT = ValueVTs[Value]; 4733 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4734 EVT RegisterVT = RegVTs[Value]; 4735 4736 Parts.resize(NumRegs); 4737 for (unsigned i = 0; i != NumRegs; ++i) { 4738 SDValue P; 4739 if (Flag == 0) { 4740 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4741 } else { 4742 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4743 *Flag = P.getValue(2); 4744 } 4745 4746 Chain = P.getValue(1); 4747 4748 // If the source register was virtual and if we know something about it, 4749 // add an assert node. 4750 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4751 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4752 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4753 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4754 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4755 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4756 4757 unsigned RegSize = RegisterVT.getSizeInBits(); 4758 unsigned NumSignBits = LOI.NumSignBits; 4759 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4760 4761 // FIXME: We capture more information than the dag can represent. For 4762 // now, just use the tightest assertzext/assertsext possible. 4763 bool isSExt = true; 4764 EVT FromVT(MVT::Other); 4765 if (NumSignBits == RegSize) 4766 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4767 else if (NumZeroBits >= RegSize-1) 4768 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4769 else if (NumSignBits > RegSize-8) 4770 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4771 else if (NumZeroBits >= RegSize-8) 4772 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4773 else if (NumSignBits > RegSize-16) 4774 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4775 else if (NumZeroBits >= RegSize-16) 4776 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4777 else if (NumSignBits > RegSize-32) 4778 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4779 else if (NumZeroBits >= RegSize-32) 4780 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4781 4782 if (FromVT != MVT::Other) 4783 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4784 RegisterVT, P, DAG.getValueType(FromVT)); 4785 } 4786 } 4787 4788 Parts[i] = P; 4789 } 4790 4791 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4792 NumRegs, RegisterVT, ValueVT); 4793 Part += NumRegs; 4794 Parts.clear(); 4795 } 4796 4797 return DAG.getNode(ISD::MERGE_VALUES, dl, 4798 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4799 &Values[0], ValueVTs.size()); 4800 } 4801 4802 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4803 /// specified value into the registers specified by this object. This uses 4804 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4805 /// If the Flag pointer is NULL, no flag is used. 4806 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4807 SDValue &Chain, SDValue *Flag) const { 4808 // Get the list of the values's legal parts. 4809 unsigned NumRegs = Regs.size(); 4810 SmallVector<SDValue, 8> Parts(NumRegs); 4811 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4812 EVT ValueVT = ValueVTs[Value]; 4813 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4814 EVT RegisterVT = RegVTs[Value]; 4815 4816 getCopyToParts(DAG, dl, 4817 Val.getValue(Val.getResNo() + Value), 4818 &Parts[Part], NumParts, RegisterVT); 4819 Part += NumParts; 4820 } 4821 4822 // Copy the parts into the registers. 4823 SmallVector<SDValue, 8> Chains(NumRegs); 4824 for (unsigned i = 0; i != NumRegs; ++i) { 4825 SDValue Part; 4826 if (Flag == 0) { 4827 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4828 } else { 4829 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4830 *Flag = Part.getValue(1); 4831 } 4832 4833 Chains[i] = Part.getValue(0); 4834 } 4835 4836 if (NumRegs == 1 || Flag) 4837 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4838 // flagged to it. That is the CopyToReg nodes and the user are considered 4839 // a single scheduling unit. If we create a TokenFactor and return it as 4840 // chain, then the TokenFactor is both a predecessor (operand) of the 4841 // user as well as a successor (the TF operands are flagged to the user). 4842 // c1, f1 = CopyToReg 4843 // c2, f2 = CopyToReg 4844 // c3 = TokenFactor c1, c2 4845 // ... 4846 // = op c3, ..., f2 4847 Chain = Chains[NumRegs-1]; 4848 else 4849 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4850 } 4851 4852 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4853 /// operand list. This adds the code marker and includes the number of 4854 /// values added into it. 4855 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 4856 unsigned MatchingIdx, 4857 SelectionDAG &DAG, 4858 std::vector<SDValue> &Ops) const { 4859 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 4860 if (HasMatching) 4861 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 4862 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4863 Ops.push_back(Res); 4864 4865 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4866 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4867 EVT RegisterVT = RegVTs[Value]; 4868 for (unsigned i = 0; i != NumRegs; ++i) { 4869 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4870 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4871 } 4872 } 4873 } 4874 4875 /// isAllocatableRegister - If the specified register is safe to allocate, 4876 /// i.e. it isn't a stack pointer or some other special register, return the 4877 /// register class for the register. Otherwise, return null. 4878 static const TargetRegisterClass * 4879 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4880 const TargetLowering &TLI, 4881 const TargetRegisterInfo *TRI) { 4882 EVT FoundVT = MVT::Other; 4883 const TargetRegisterClass *FoundRC = 0; 4884 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4885 E = TRI->regclass_end(); RCI != E; ++RCI) { 4886 EVT ThisVT = MVT::Other; 4887 4888 const TargetRegisterClass *RC = *RCI; 4889 // If none of the value types for this register class are valid, we 4890 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4891 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4892 I != E; ++I) { 4893 if (TLI.isTypeLegal(*I)) { 4894 // If we have already found this register in a different register class, 4895 // choose the one with the largest VT specified. For example, on 4896 // PowerPC, we favor f64 register classes over f32. 4897 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4898 ThisVT = *I; 4899 break; 4900 } 4901 } 4902 } 4903 4904 if (ThisVT == MVT::Other) continue; 4905 4906 // NOTE: This isn't ideal. In particular, this might allocate the 4907 // frame pointer in functions that need it (due to them not being taken 4908 // out of allocation, because a variable sized allocation hasn't been seen 4909 // yet). This is a slight code pessimization, but should still work. 4910 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4911 E = RC->allocation_order_end(MF); I != E; ++I) 4912 if (*I == Reg) { 4913 // We found a matching register class. Keep looking at others in case 4914 // we find one with larger registers that this physreg is also in. 4915 FoundRC = RC; 4916 FoundVT = ThisVT; 4917 break; 4918 } 4919 } 4920 return FoundRC; 4921 } 4922 4923 4924 namespace llvm { 4925 /// AsmOperandInfo - This contains information for each constraint that we are 4926 /// lowering. 4927 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4928 public TargetLowering::AsmOperandInfo { 4929 public: 4930 /// CallOperand - If this is the result output operand or a clobber 4931 /// this is null, otherwise it is the incoming operand to the CallInst. 4932 /// This gets modified as the asm is processed. 4933 SDValue CallOperand; 4934 4935 /// AssignedRegs - If this is a register or register class operand, this 4936 /// contains the set of register corresponding to the operand. 4937 RegsForValue AssignedRegs; 4938 4939 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4940 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4941 } 4942 4943 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4944 /// busy in OutputRegs/InputRegs. 4945 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4946 std::set<unsigned> &OutputRegs, 4947 std::set<unsigned> &InputRegs, 4948 const TargetRegisterInfo &TRI) const { 4949 if (isOutReg) { 4950 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4951 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4952 } 4953 if (isInReg) { 4954 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4955 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4956 } 4957 } 4958 4959 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4960 /// corresponds to. If there is no Value* for this operand, it returns 4961 /// MVT::Other. 4962 EVT getCallOperandValEVT(LLVMContext &Context, 4963 const TargetLowering &TLI, 4964 const TargetData *TD) const { 4965 if (CallOperandVal == 0) return MVT::Other; 4966 4967 if (isa<BasicBlock>(CallOperandVal)) 4968 return TLI.getPointerTy(); 4969 4970 const llvm::Type *OpTy = CallOperandVal->getType(); 4971 4972 // If this is an indirect operand, the operand is a pointer to the 4973 // accessed type. 4974 if (isIndirect) { 4975 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4976 if (!PtrTy) 4977 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4978 OpTy = PtrTy->getElementType(); 4979 } 4980 4981 // If OpTy is not a single value, it may be a struct/union that we 4982 // can tile with integers. 4983 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4984 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4985 switch (BitSize) { 4986 default: break; 4987 case 1: 4988 case 8: 4989 case 16: 4990 case 32: 4991 case 64: 4992 case 128: 4993 OpTy = IntegerType::get(Context, BitSize); 4994 break; 4995 } 4996 } 4997 4998 return TLI.getValueType(OpTy, true); 4999 } 5000 5001 private: 5002 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5003 /// specified set. 5004 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5005 const TargetRegisterInfo &TRI) { 5006 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5007 Regs.insert(Reg); 5008 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5009 for (; *Aliases; ++Aliases) 5010 Regs.insert(*Aliases); 5011 } 5012 }; 5013 } // end llvm namespace. 5014 5015 5016 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5017 /// specified operand. We prefer to assign virtual registers, to allow the 5018 /// register allocator to handle the assignment process. However, if the asm 5019 /// uses features that we can't model on machineinstrs, we have SDISel do the 5020 /// allocation. This produces generally horrible, but correct, code. 5021 /// 5022 /// OpInfo describes the operand. 5023 /// Input and OutputRegs are the set of already allocated physical registers. 5024 /// 5025 void SelectionDAGBuilder:: 5026 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5027 std::set<unsigned> &OutputRegs, 5028 std::set<unsigned> &InputRegs) { 5029 LLVMContext &Context = FuncInfo.Fn->getContext(); 5030 5031 // Compute whether this value requires an input register, an output register, 5032 // or both. 5033 bool isOutReg = false; 5034 bool isInReg = false; 5035 switch (OpInfo.Type) { 5036 case InlineAsm::isOutput: 5037 isOutReg = true; 5038 5039 // If there is an input constraint that matches this, we need to reserve 5040 // the input register so no other inputs allocate to it. 5041 isInReg = OpInfo.hasMatchingInput(); 5042 break; 5043 case InlineAsm::isInput: 5044 isInReg = true; 5045 isOutReg = false; 5046 break; 5047 case InlineAsm::isClobber: 5048 isOutReg = true; 5049 isInReg = true; 5050 break; 5051 } 5052 5053 5054 MachineFunction &MF = DAG.getMachineFunction(); 5055 SmallVector<unsigned, 4> Regs; 5056 5057 // If this is a constraint for a single physreg, or a constraint for a 5058 // register class, find it. 5059 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5060 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5061 OpInfo.ConstraintVT); 5062 5063 unsigned NumRegs = 1; 5064 if (OpInfo.ConstraintVT != MVT::Other) { 5065 // If this is a FP input in an integer register (or visa versa) insert a bit 5066 // cast of the input value. More generally, handle any case where the input 5067 // value disagrees with the register class we plan to stick this in. 5068 if (OpInfo.Type == InlineAsm::isInput && 5069 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5070 // Try to convert to the first EVT that the reg class contains. If the 5071 // types are identical size, use a bitcast to convert (e.g. two differing 5072 // vector types). 5073 EVT RegVT = *PhysReg.second->vt_begin(); 5074 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5075 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5076 RegVT, OpInfo.CallOperand); 5077 OpInfo.ConstraintVT = RegVT; 5078 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5079 // If the input is a FP value and we want it in FP registers, do a 5080 // bitcast to the corresponding integer type. This turns an f64 value 5081 // into i64, which can be passed with two i32 values on a 32-bit 5082 // machine. 5083 RegVT = EVT::getIntegerVT(Context, 5084 OpInfo.ConstraintVT.getSizeInBits()); 5085 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5086 RegVT, OpInfo.CallOperand); 5087 OpInfo.ConstraintVT = RegVT; 5088 } 5089 } 5090 5091 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5092 } 5093 5094 EVT RegVT; 5095 EVT ValueVT = OpInfo.ConstraintVT; 5096 5097 // If this is a constraint for a specific physical register, like {r17}, 5098 // assign it now. 5099 if (unsigned AssignedReg = PhysReg.first) { 5100 const TargetRegisterClass *RC = PhysReg.second; 5101 if (OpInfo.ConstraintVT == MVT::Other) 5102 ValueVT = *RC->vt_begin(); 5103 5104 // Get the actual register value type. This is important, because the user 5105 // may have asked for (e.g.) the AX register in i32 type. We need to 5106 // remember that AX is actually i16 to get the right extension. 5107 RegVT = *RC->vt_begin(); 5108 5109 // This is a explicit reference to a physical register. 5110 Regs.push_back(AssignedReg); 5111 5112 // If this is an expanded reference, add the rest of the regs to Regs. 5113 if (NumRegs != 1) { 5114 TargetRegisterClass::iterator I = RC->begin(); 5115 for (; *I != AssignedReg; ++I) 5116 assert(I != RC->end() && "Didn't find reg!"); 5117 5118 // Already added the first reg. 5119 --NumRegs; ++I; 5120 for (; NumRegs; --NumRegs, ++I) { 5121 assert(I != RC->end() && "Ran out of registers to allocate!"); 5122 Regs.push_back(*I); 5123 } 5124 } 5125 5126 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5127 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5128 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5129 return; 5130 } 5131 5132 // Otherwise, if this was a reference to an LLVM register class, create vregs 5133 // for this reference. 5134 if (const TargetRegisterClass *RC = PhysReg.second) { 5135 RegVT = *RC->vt_begin(); 5136 if (OpInfo.ConstraintVT == MVT::Other) 5137 ValueVT = RegVT; 5138 5139 // Create the appropriate number of virtual registers. 5140 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5141 for (; NumRegs; --NumRegs) 5142 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5143 5144 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5145 return; 5146 } 5147 5148 // This is a reference to a register class that doesn't directly correspond 5149 // to an LLVM register class. Allocate NumRegs consecutive, available, 5150 // registers from the class. 5151 std::vector<unsigned> RegClassRegs 5152 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5153 OpInfo.ConstraintVT); 5154 5155 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5156 unsigned NumAllocated = 0; 5157 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5158 unsigned Reg = RegClassRegs[i]; 5159 // See if this register is available. 5160 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5161 (isInReg && InputRegs.count(Reg))) { // Already used. 5162 // Make sure we find consecutive registers. 5163 NumAllocated = 0; 5164 continue; 5165 } 5166 5167 // Check to see if this register is allocatable (i.e. don't give out the 5168 // stack pointer). 5169 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5170 if (!RC) { // Couldn't allocate this register. 5171 // Reset NumAllocated to make sure we return consecutive registers. 5172 NumAllocated = 0; 5173 continue; 5174 } 5175 5176 // Okay, this register is good, we can use it. 5177 ++NumAllocated; 5178 5179 // If we allocated enough consecutive registers, succeed. 5180 if (NumAllocated == NumRegs) { 5181 unsigned RegStart = (i-NumAllocated)+1; 5182 unsigned RegEnd = i+1; 5183 // Mark all of the allocated registers used. 5184 for (unsigned i = RegStart; i != RegEnd; ++i) 5185 Regs.push_back(RegClassRegs[i]); 5186 5187 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5188 OpInfo.ConstraintVT); 5189 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5190 return; 5191 } 5192 } 5193 5194 // Otherwise, we couldn't allocate enough registers for this. 5195 } 5196 5197 /// visitInlineAsm - Handle a call to an InlineAsm object. 5198 /// 5199 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5200 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5201 5202 /// ConstraintOperands - Information about all of the constraints. 5203 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5204 5205 std::set<unsigned> OutputRegs, InputRegs; 5206 5207 // Do a prepass over the constraints, canonicalizing them, and building up the 5208 // ConstraintOperands list. 5209 std::vector<InlineAsm::ConstraintInfo> 5210 ConstraintInfos = IA->ParseConstraints(); 5211 5212 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5213 5214 SDValue Chain, Flag; 5215 5216 // We won't need to flush pending loads if this asm doesn't touch 5217 // memory and is nonvolatile. 5218 if (hasMemory || IA->hasSideEffects()) 5219 Chain = getRoot(); 5220 else 5221 Chain = DAG.getRoot(); 5222 5223 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5224 unsigned ResNo = 0; // ResNo - The result number of the next output. 5225 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5226 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5227 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5228 5229 EVT OpVT = MVT::Other; 5230 5231 // Compute the value type for each operand. 5232 switch (OpInfo.Type) { 5233 case InlineAsm::isOutput: 5234 // Indirect outputs just consume an argument. 5235 if (OpInfo.isIndirect) { 5236 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5237 break; 5238 } 5239 5240 // The return value of the call is this value. As such, there is no 5241 // corresponding argument. 5242 assert(!CS.getType()->isVoidTy() && 5243 "Bad inline asm!"); 5244 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5245 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5246 } else { 5247 assert(ResNo == 0 && "Asm only has one result!"); 5248 OpVT = TLI.getValueType(CS.getType()); 5249 } 5250 ++ResNo; 5251 break; 5252 case InlineAsm::isInput: 5253 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5254 break; 5255 case InlineAsm::isClobber: 5256 // Nothing to do. 5257 break; 5258 } 5259 5260 // If this is an input or an indirect output, process the call argument. 5261 // BasicBlocks are labels, currently appearing only in asm's. 5262 if (OpInfo.CallOperandVal) { 5263 // Strip bitcasts, if any. This mostly comes up for functions. 5264 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5265 5266 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5267 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5268 } else { 5269 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5270 } 5271 5272 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5273 } 5274 5275 OpInfo.ConstraintVT = OpVT; 5276 } 5277 5278 // Second pass over the constraints: compute which constraint option to use 5279 // and assign registers to constraints that want a specific physreg. 5280 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5281 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5282 5283 // If this is an output operand with a matching input operand, look up the 5284 // matching input. If their types mismatch, e.g. one is an integer, the 5285 // other is floating point, or their sizes are different, flag it as an 5286 // error. 5287 if (OpInfo.hasMatchingInput()) { 5288 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5289 5290 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5291 if ((OpInfo.ConstraintVT.isInteger() != 5292 Input.ConstraintVT.isInteger()) || 5293 (OpInfo.ConstraintVT.getSizeInBits() != 5294 Input.ConstraintVT.getSizeInBits())) { 5295 report_fatal_error("Unsupported asm: input constraint" 5296 " with a matching output constraint of" 5297 " incompatible type!"); 5298 } 5299 Input.ConstraintVT = OpInfo.ConstraintVT; 5300 } 5301 } 5302 5303 // Compute the constraint code and ConstraintType to use. 5304 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5305 5306 // If this is a memory input, and if the operand is not indirect, do what we 5307 // need to to provide an address for the memory input. 5308 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5309 !OpInfo.isIndirect) { 5310 assert(OpInfo.Type == InlineAsm::isInput && 5311 "Can only indirectify direct input operands!"); 5312 5313 // Memory operands really want the address of the value. If we don't have 5314 // an indirect input, put it in the constpool if we can, otherwise spill 5315 // it to a stack slot. 5316 5317 // If the operand is a float, integer, or vector constant, spill to a 5318 // constant pool entry to get its address. 5319 const Value *OpVal = OpInfo.CallOperandVal; 5320 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5321 isa<ConstantVector>(OpVal)) { 5322 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5323 TLI.getPointerTy()); 5324 } else { 5325 // Otherwise, create a stack slot and emit a store to it before the 5326 // asm. 5327 const Type *Ty = OpVal->getType(); 5328 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5329 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5330 MachineFunction &MF = DAG.getMachineFunction(); 5331 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5332 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5333 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5334 OpInfo.CallOperand, StackSlot, NULL, 0, 5335 false, false, 0); 5336 OpInfo.CallOperand = StackSlot; 5337 } 5338 5339 // There is no longer a Value* corresponding to this operand. 5340 OpInfo.CallOperandVal = 0; 5341 5342 // It is now an indirect operand. 5343 OpInfo.isIndirect = true; 5344 } 5345 5346 // If this constraint is for a specific register, allocate it before 5347 // anything else. 5348 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5349 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5350 } 5351 5352 ConstraintInfos.clear(); 5353 5354 // Second pass - Loop over all of the operands, assigning virtual or physregs 5355 // to register class operands. 5356 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5357 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5358 5359 // C_Register operands have already been allocated, Other/Memory don't need 5360 // to be. 5361 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5362 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5363 } 5364 5365 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5366 std::vector<SDValue> AsmNodeOperands; 5367 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5368 AsmNodeOperands.push_back( 5369 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5370 TLI.getPointerTy())); 5371 5372 // If we have a !srcloc metadata node associated with it, we want to attach 5373 // this to the ultimately generated inline asm machineinstr. To do this, we 5374 // pass in the third operand as this (potentially null) inline asm MDNode. 5375 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5376 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5377 5378 // Loop over all of the inputs, copying the operand values into the 5379 // appropriate registers and processing the output regs. 5380 RegsForValue RetValRegs; 5381 5382 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5383 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5384 5385 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5386 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5387 5388 switch (OpInfo.Type) { 5389 case InlineAsm::isOutput: { 5390 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5391 OpInfo.ConstraintType != TargetLowering::C_Register) { 5392 // Memory output, or 'other' output (e.g. 'X' constraint). 5393 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5394 5395 // Add information to the INLINEASM node to know about this output. 5396 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5397 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5398 TLI.getPointerTy())); 5399 AsmNodeOperands.push_back(OpInfo.CallOperand); 5400 break; 5401 } 5402 5403 // Otherwise, this is a register or register class output. 5404 5405 // Copy the output from the appropriate register. Find a register that 5406 // we can use. 5407 if (OpInfo.AssignedRegs.Regs.empty()) 5408 report_fatal_error("Couldn't allocate output reg for constraint '" + 5409 Twine(OpInfo.ConstraintCode) + "'!"); 5410 5411 // If this is an indirect operand, store through the pointer after the 5412 // asm. 5413 if (OpInfo.isIndirect) { 5414 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5415 OpInfo.CallOperandVal)); 5416 } else { 5417 // This is the result value of the call. 5418 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5419 // Concatenate this output onto the outputs list. 5420 RetValRegs.append(OpInfo.AssignedRegs); 5421 } 5422 5423 // Add information to the INLINEASM node to know that this register is 5424 // set. 5425 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5426 InlineAsm::Kind_RegDefEarlyClobber : 5427 InlineAsm::Kind_RegDef, 5428 false, 5429 0, 5430 DAG, 5431 AsmNodeOperands); 5432 break; 5433 } 5434 case InlineAsm::isInput: { 5435 SDValue InOperandVal = OpInfo.CallOperand; 5436 5437 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5438 // If this is required to match an output register we have already set, 5439 // just use its register. 5440 unsigned OperandNo = OpInfo.getMatchedOperand(); 5441 5442 // Scan until we find the definition we already emitted of this operand. 5443 // When we find it, create a RegsForValue operand. 5444 unsigned CurOp = InlineAsm::Op_FirstOperand; 5445 for (; OperandNo; --OperandNo) { 5446 // Advance to the next operand. 5447 unsigned OpFlag = 5448 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5449 assert((InlineAsm::isRegDefKind(OpFlag) || 5450 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5451 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5452 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5453 } 5454 5455 unsigned OpFlag = 5456 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5457 if (InlineAsm::isRegDefKind(OpFlag) || 5458 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5459 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5460 if (OpInfo.isIndirect) { 5461 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5462 LLVMContext &Ctx = *DAG.getContext(); 5463 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5464 " don't know how to handle tied " 5465 "indirect register inputs"); 5466 } 5467 5468 RegsForValue MatchedRegs; 5469 MatchedRegs.TLI = &TLI; 5470 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5471 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5472 MatchedRegs.RegVTs.push_back(RegVT); 5473 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5474 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5475 i != e; ++i) 5476 MatchedRegs.Regs.push_back 5477 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5478 5479 // Use the produced MatchedRegs object to 5480 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5481 Chain, &Flag); 5482 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5483 true, OpInfo.getMatchedOperand(), 5484 DAG, AsmNodeOperands); 5485 break; 5486 } 5487 5488 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5489 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5490 "Unexpected number of operands"); 5491 // Add information to the INLINEASM node to know about this input. 5492 // See InlineAsm.h isUseOperandTiedToDef. 5493 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5494 OpInfo.getMatchedOperand()); 5495 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5496 TLI.getPointerTy())); 5497 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5498 break; 5499 } 5500 5501 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5502 assert(!OpInfo.isIndirect && 5503 "Don't know how to handle indirect other inputs yet!"); 5504 5505 std::vector<SDValue> Ops; 5506 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5507 hasMemory, Ops, DAG); 5508 if (Ops.empty()) 5509 report_fatal_error("Invalid operand for inline asm constraint '" + 5510 Twine(OpInfo.ConstraintCode) + "'!"); 5511 5512 // Add information to the INLINEASM node to know about this input. 5513 unsigned ResOpType = 5514 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5515 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5516 TLI.getPointerTy())); 5517 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5518 break; 5519 } 5520 5521 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5522 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5523 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5524 "Memory operands expect pointer values"); 5525 5526 // Add information to the INLINEASM node to know about this input. 5527 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5528 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5529 TLI.getPointerTy())); 5530 AsmNodeOperands.push_back(InOperandVal); 5531 break; 5532 } 5533 5534 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5535 OpInfo.ConstraintType == TargetLowering::C_Register) && 5536 "Unknown constraint type!"); 5537 assert(!OpInfo.isIndirect && 5538 "Don't know how to handle indirect register inputs yet!"); 5539 5540 // Copy the input into the appropriate registers. 5541 if (OpInfo.AssignedRegs.Regs.empty() || 5542 !OpInfo.AssignedRegs.areValueTypesLegal()) 5543 report_fatal_error("Couldn't allocate input reg for constraint '" + 5544 Twine(OpInfo.ConstraintCode) + "'!"); 5545 5546 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5547 Chain, &Flag); 5548 5549 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5550 DAG, AsmNodeOperands); 5551 break; 5552 } 5553 case InlineAsm::isClobber: { 5554 // Add the clobbered value to the operand list, so that the register 5555 // allocator is aware that the physreg got clobbered. 5556 if (!OpInfo.AssignedRegs.Regs.empty()) 5557 OpInfo.AssignedRegs.AddInlineAsmOperands( 5558 InlineAsm::Kind_RegDefEarlyClobber, 5559 false, 0, DAG, 5560 AsmNodeOperands); 5561 break; 5562 } 5563 } 5564 } 5565 5566 // Finish up input operands. Set the input chain and add the flag last. 5567 AsmNodeOperands[0] = Chain; 5568 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5569 5570 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5571 DAG.getVTList(MVT::Other, MVT::Flag), 5572 &AsmNodeOperands[0], AsmNodeOperands.size()); 5573 Flag = Chain.getValue(1); 5574 5575 // If this asm returns a register value, copy the result from that register 5576 // and set it as the value of the call. 5577 if (!RetValRegs.Regs.empty()) { 5578 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5579 Chain, &Flag); 5580 5581 // FIXME: Why don't we do this for inline asms with MRVs? 5582 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5583 EVT ResultType = TLI.getValueType(CS.getType()); 5584 5585 // If any of the results of the inline asm is a vector, it may have the 5586 // wrong width/num elts. This can happen for register classes that can 5587 // contain multiple different value types. The preg or vreg allocated may 5588 // not have the same VT as was expected. Convert it to the right type 5589 // with bit_convert. 5590 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5591 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5592 ResultType, Val); 5593 5594 } else if (ResultType != Val.getValueType() && 5595 ResultType.isInteger() && Val.getValueType().isInteger()) { 5596 // If a result value was tied to an input value, the computed result may 5597 // have a wider width than the expected result. Extract the relevant 5598 // portion. 5599 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5600 } 5601 5602 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5603 } 5604 5605 setValue(CS.getInstruction(), Val); 5606 // Don't need to use this as a chain in this case. 5607 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5608 return; 5609 } 5610 5611 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5612 5613 // Process indirect outputs, first output all of the flagged copies out of 5614 // physregs. 5615 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5616 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5617 const Value *Ptr = IndirectStoresToEmit[i].second; 5618 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5619 Chain, &Flag); 5620 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5621 } 5622 5623 // Emit the non-flagged stores from the physregs. 5624 SmallVector<SDValue, 8> OutChains; 5625 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5626 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5627 StoresToEmit[i].first, 5628 getValue(StoresToEmit[i].second), 5629 StoresToEmit[i].second, 0, 5630 false, false, 0); 5631 OutChains.push_back(Val); 5632 } 5633 5634 if (!OutChains.empty()) 5635 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5636 &OutChains[0], OutChains.size()); 5637 5638 DAG.setRoot(Chain); 5639 } 5640 5641 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5642 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5643 MVT::Other, getRoot(), 5644 getValue(I.getOperand(1)), 5645 DAG.getSrcValue(I.getOperand(1)))); 5646 } 5647 5648 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5649 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5650 getRoot(), getValue(I.getOperand(0)), 5651 DAG.getSrcValue(I.getOperand(0))); 5652 setValue(&I, V); 5653 DAG.setRoot(V.getValue(1)); 5654 } 5655 5656 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5657 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5658 MVT::Other, getRoot(), 5659 getValue(I.getOperand(1)), 5660 DAG.getSrcValue(I.getOperand(1)))); 5661 } 5662 5663 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5664 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5665 MVT::Other, getRoot(), 5666 getValue(I.getOperand(1)), 5667 getValue(I.getOperand(2)), 5668 DAG.getSrcValue(I.getOperand(1)), 5669 DAG.getSrcValue(I.getOperand(2)))); 5670 } 5671 5672 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5673 /// implementation, which just calls LowerCall. 5674 /// FIXME: When all targets are 5675 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5676 std::pair<SDValue, SDValue> 5677 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5678 bool RetSExt, bool RetZExt, bool isVarArg, 5679 bool isInreg, unsigned NumFixedArgs, 5680 CallingConv::ID CallConv, bool isTailCall, 5681 bool isReturnValueUsed, 5682 SDValue Callee, 5683 ArgListTy &Args, SelectionDAG &DAG, 5684 DebugLoc dl) const { 5685 // Handle all of the outgoing arguments. 5686 SmallVector<ISD::OutputArg, 32> Outs; 5687 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5688 SmallVector<EVT, 4> ValueVTs; 5689 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5690 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5691 Value != NumValues; ++Value) { 5692 EVT VT = ValueVTs[Value]; 5693 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5694 SDValue Op = SDValue(Args[i].Node.getNode(), 5695 Args[i].Node.getResNo() + Value); 5696 ISD::ArgFlagsTy Flags; 5697 unsigned OriginalAlignment = 5698 getTargetData()->getABITypeAlignment(ArgTy); 5699 5700 if (Args[i].isZExt) 5701 Flags.setZExt(); 5702 if (Args[i].isSExt) 5703 Flags.setSExt(); 5704 if (Args[i].isInReg) 5705 Flags.setInReg(); 5706 if (Args[i].isSRet) 5707 Flags.setSRet(); 5708 if (Args[i].isByVal) { 5709 Flags.setByVal(); 5710 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5711 const Type *ElementTy = Ty->getElementType(); 5712 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5713 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5714 // For ByVal, alignment should come from FE. BE will guess if this 5715 // info is not there but there are cases it cannot get right. 5716 if (Args[i].Alignment) 5717 FrameAlign = Args[i].Alignment; 5718 Flags.setByValAlign(FrameAlign); 5719 Flags.setByValSize(FrameSize); 5720 } 5721 if (Args[i].isNest) 5722 Flags.setNest(); 5723 Flags.setOrigAlign(OriginalAlignment); 5724 5725 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5726 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5727 SmallVector<SDValue, 4> Parts(NumParts); 5728 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5729 5730 if (Args[i].isSExt) 5731 ExtendKind = ISD::SIGN_EXTEND; 5732 else if (Args[i].isZExt) 5733 ExtendKind = ISD::ZERO_EXTEND; 5734 5735 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5736 PartVT, ExtendKind); 5737 5738 for (unsigned j = 0; j != NumParts; ++j) { 5739 // if it isn't first piece, alignment must be 1 5740 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5741 if (NumParts > 1 && j == 0) 5742 MyFlags.Flags.setSplit(); 5743 else if (j != 0) 5744 MyFlags.Flags.setOrigAlign(1); 5745 5746 Outs.push_back(MyFlags); 5747 } 5748 } 5749 } 5750 5751 // Handle the incoming return values from the call. 5752 SmallVector<ISD::InputArg, 32> Ins; 5753 SmallVector<EVT, 4> RetTys; 5754 ComputeValueVTs(*this, RetTy, RetTys); 5755 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5756 EVT VT = RetTys[I]; 5757 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5758 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5759 for (unsigned i = 0; i != NumRegs; ++i) { 5760 ISD::InputArg MyFlags; 5761 MyFlags.VT = RegisterVT; 5762 MyFlags.Used = isReturnValueUsed; 5763 if (RetSExt) 5764 MyFlags.Flags.setSExt(); 5765 if (RetZExt) 5766 MyFlags.Flags.setZExt(); 5767 if (isInreg) 5768 MyFlags.Flags.setInReg(); 5769 Ins.push_back(MyFlags); 5770 } 5771 } 5772 5773 SmallVector<SDValue, 4> InVals; 5774 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5775 Outs, Ins, dl, DAG, InVals); 5776 5777 // Verify that the target's LowerCall behaved as expected. 5778 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5779 "LowerCall didn't return a valid chain!"); 5780 assert((!isTailCall || InVals.empty()) && 5781 "LowerCall emitted a return value for a tail call!"); 5782 assert((isTailCall || InVals.size() == Ins.size()) && 5783 "LowerCall didn't emit the correct number of values!"); 5784 5785 // For a tail call, the return value is merely live-out and there aren't 5786 // any nodes in the DAG representing it. Return a special value to 5787 // indicate that a tail call has been emitted and no more Instructions 5788 // should be processed in the current block. 5789 if (isTailCall) { 5790 DAG.setRoot(Chain); 5791 return std::make_pair(SDValue(), SDValue()); 5792 } 5793 5794 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5795 assert(InVals[i].getNode() && 5796 "LowerCall emitted a null value!"); 5797 assert(Ins[i].VT == InVals[i].getValueType() && 5798 "LowerCall emitted a value with the wrong type!"); 5799 }); 5800 5801 // Collect the legal value parts into potentially illegal values 5802 // that correspond to the original function's return values. 5803 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5804 if (RetSExt) 5805 AssertOp = ISD::AssertSext; 5806 else if (RetZExt) 5807 AssertOp = ISD::AssertZext; 5808 SmallVector<SDValue, 4> ReturnValues; 5809 unsigned CurReg = 0; 5810 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5811 EVT VT = RetTys[I]; 5812 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5813 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5814 5815 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5816 NumRegs, RegisterVT, VT, 5817 AssertOp)); 5818 CurReg += NumRegs; 5819 } 5820 5821 // For a function returning void, there is no return value. We can't create 5822 // such a node, so we just return a null return value in that case. In 5823 // that case, nothing will actualy look at the value. 5824 if (ReturnValues.empty()) 5825 return std::make_pair(SDValue(), Chain); 5826 5827 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5828 DAG.getVTList(&RetTys[0], RetTys.size()), 5829 &ReturnValues[0], ReturnValues.size()); 5830 return std::make_pair(Res, Chain); 5831 } 5832 5833 void TargetLowering::LowerOperationWrapper(SDNode *N, 5834 SmallVectorImpl<SDValue> &Results, 5835 SelectionDAG &DAG) const { 5836 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5837 if (Res.getNode()) 5838 Results.push_back(Res); 5839 } 5840 5841 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5842 llvm_unreachable("LowerOperation not implemented for this target!"); 5843 return SDValue(); 5844 } 5845 5846 void 5847 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5848 SDValue Op = getValue(V); 5849 assert((Op.getOpcode() != ISD::CopyFromReg || 5850 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5851 "Copy from a reg to the same reg!"); 5852 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5853 5854 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5855 SDValue Chain = DAG.getEntryNode(); 5856 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5857 PendingExports.push_back(Chain); 5858 } 5859 5860 #include "llvm/CodeGen/SelectionDAGISel.h" 5861 5862 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5863 // If this is the entry block, emit arguments. 5864 const Function &F = *LLVMBB->getParent(); 5865 SelectionDAG &DAG = SDB->DAG; 5866 SDValue OldRoot = DAG.getRoot(); 5867 DebugLoc dl = SDB->getCurDebugLoc(); 5868 const TargetData *TD = TLI.getTargetData(); 5869 SmallVector<ISD::InputArg, 16> Ins; 5870 5871 // Check whether the function can return without sret-demotion. 5872 SmallVector<EVT, 4> OutVTs; 5873 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5874 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5875 OutVTs, OutsFlags, TLI); 5876 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5877 5878 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5879 OutVTs, OutsFlags, DAG); 5880 if (!FLI.CanLowerReturn) { 5881 // Put in an sret pointer parameter before all the other parameters. 5882 SmallVector<EVT, 1> ValueVTs; 5883 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5884 5885 // NOTE: Assuming that a pointer will never break down to more than one VT 5886 // or one register. 5887 ISD::ArgFlagsTy Flags; 5888 Flags.setSRet(); 5889 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5890 ISD::InputArg RetArg(Flags, RegisterVT, true); 5891 Ins.push_back(RetArg); 5892 } 5893 5894 // Set up the incoming argument description vector. 5895 unsigned Idx = 1; 5896 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5897 I != E; ++I, ++Idx) { 5898 SmallVector<EVT, 4> ValueVTs; 5899 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5900 bool isArgValueUsed = !I->use_empty(); 5901 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5902 Value != NumValues; ++Value) { 5903 EVT VT = ValueVTs[Value]; 5904 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5905 ISD::ArgFlagsTy Flags; 5906 unsigned OriginalAlignment = 5907 TD->getABITypeAlignment(ArgTy); 5908 5909 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5910 Flags.setZExt(); 5911 if (F.paramHasAttr(Idx, Attribute::SExt)) 5912 Flags.setSExt(); 5913 if (F.paramHasAttr(Idx, Attribute::InReg)) 5914 Flags.setInReg(); 5915 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5916 Flags.setSRet(); 5917 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5918 Flags.setByVal(); 5919 const PointerType *Ty = cast<PointerType>(I->getType()); 5920 const Type *ElementTy = Ty->getElementType(); 5921 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5922 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5923 // For ByVal, alignment should be passed from FE. BE will guess if 5924 // this info is not there but there are cases it cannot get right. 5925 if (F.getParamAlignment(Idx)) 5926 FrameAlign = F.getParamAlignment(Idx); 5927 Flags.setByValAlign(FrameAlign); 5928 Flags.setByValSize(FrameSize); 5929 } 5930 if (F.paramHasAttr(Idx, Attribute::Nest)) 5931 Flags.setNest(); 5932 Flags.setOrigAlign(OriginalAlignment); 5933 5934 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5935 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5936 for (unsigned i = 0; i != NumRegs; ++i) { 5937 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5938 if (NumRegs > 1 && i == 0) 5939 MyFlags.Flags.setSplit(); 5940 // if it isn't first piece, alignment must be 1 5941 else if (i > 0) 5942 MyFlags.Flags.setOrigAlign(1); 5943 Ins.push_back(MyFlags); 5944 } 5945 } 5946 } 5947 5948 // Call the target to set up the argument values. 5949 SmallVector<SDValue, 8> InVals; 5950 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5951 F.isVarArg(), Ins, 5952 dl, DAG, InVals); 5953 5954 // Verify that the target's LowerFormalArguments behaved as expected. 5955 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5956 "LowerFormalArguments didn't return a valid chain!"); 5957 assert(InVals.size() == Ins.size() && 5958 "LowerFormalArguments didn't emit the correct number of values!"); 5959 DEBUG({ 5960 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5961 assert(InVals[i].getNode() && 5962 "LowerFormalArguments emitted a null value!"); 5963 assert(Ins[i].VT == InVals[i].getValueType() && 5964 "LowerFormalArguments emitted a value with the wrong type!"); 5965 } 5966 }); 5967 5968 // Update the DAG with the new chain value resulting from argument lowering. 5969 DAG.setRoot(NewRoot); 5970 5971 // Set up the argument values. 5972 unsigned i = 0; 5973 Idx = 1; 5974 if (!FLI.CanLowerReturn) { 5975 // Create a virtual register for the sret pointer, and put in a copy 5976 // from the sret argument into it. 5977 SmallVector<EVT, 1> ValueVTs; 5978 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5979 EVT VT = ValueVTs[0]; 5980 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5981 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5982 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 5983 RegVT, VT, AssertOp); 5984 5985 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5986 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5987 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5988 FLI.DemoteRegister = SRetReg; 5989 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 5990 SRetReg, ArgValue); 5991 DAG.setRoot(NewRoot); 5992 5993 // i indexes lowered arguments. Bump it past the hidden sret argument. 5994 // Idx indexes LLVM arguments. Don't touch it. 5995 ++i; 5996 } 5997 5998 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5999 ++I, ++Idx) { 6000 SmallVector<SDValue, 4> ArgValues; 6001 SmallVector<EVT, 4> ValueVTs; 6002 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6003 unsigned NumValues = ValueVTs.size(); 6004 for (unsigned Value = 0; Value != NumValues; ++Value) { 6005 EVT VT = ValueVTs[Value]; 6006 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6007 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6008 6009 if (!I->use_empty()) { 6010 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6011 if (F.paramHasAttr(Idx, Attribute::SExt)) 6012 AssertOp = ISD::AssertSext; 6013 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6014 AssertOp = ISD::AssertZext; 6015 6016 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6017 NumParts, PartVT, VT, 6018 AssertOp)); 6019 } 6020 6021 i += NumParts; 6022 } 6023 6024 if (!I->use_empty()) { 6025 SDValue Res; 6026 if (!ArgValues.empty()) 6027 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6028 SDB->getCurDebugLoc()); 6029 SDB->setValue(I, Res); 6030 6031 // If this argument is live outside of the entry block, insert a copy from 6032 // whereever we got it to the vreg that other BB's will reference it as. 6033 SDB->CopyToExportRegsIfNeeded(I); 6034 } 6035 } 6036 6037 assert(i == InVals.size() && "Argument register count mismatch!"); 6038 6039 // Finally, if the target has anything special to do, allow it to do so. 6040 // FIXME: this should insert code into the DAG! 6041 EmitFunctionEntryCode(); 6042 } 6043 6044 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6045 /// ensure constants are generated when needed. Remember the virtual registers 6046 /// that need to be added to the Machine PHI nodes as input. We cannot just 6047 /// directly add them, because expansion might result in multiple MBB's for one 6048 /// BB. As such, the start of the BB might correspond to a different MBB than 6049 /// the end. 6050 /// 6051 void 6052 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6053 const TerminatorInst *TI = LLVMBB->getTerminator(); 6054 6055 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6056 6057 // Check successor nodes' PHI nodes that expect a constant to be available 6058 // from this block. 6059 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6060 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6061 if (!isa<PHINode>(SuccBB->begin())) continue; 6062 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6063 6064 // If this terminator has multiple identical successors (common for 6065 // switches), only handle each succ once. 6066 if (!SuccsHandled.insert(SuccMBB)) continue; 6067 6068 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6069 6070 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6071 // nodes and Machine PHI nodes, but the incoming operands have not been 6072 // emitted yet. 6073 for (BasicBlock::const_iterator I = SuccBB->begin(); 6074 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6075 // Ignore dead phi's. 6076 if (PN->use_empty()) continue; 6077 6078 unsigned Reg; 6079 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6080 6081 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6082 unsigned &RegOut = ConstantsOut[C]; 6083 if (RegOut == 0) { 6084 RegOut = FuncInfo.CreateRegForValue(C); 6085 CopyValueToVirtualRegister(C, RegOut); 6086 } 6087 Reg = RegOut; 6088 } else { 6089 Reg = FuncInfo.ValueMap[PHIOp]; 6090 if (Reg == 0) { 6091 assert(isa<AllocaInst>(PHIOp) && 6092 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6093 "Didn't codegen value into a register!??"); 6094 Reg = FuncInfo.CreateRegForValue(PHIOp); 6095 CopyValueToVirtualRegister(PHIOp, Reg); 6096 } 6097 } 6098 6099 // Remember that this register needs to added to the machine PHI node as 6100 // the input for this MBB. 6101 SmallVector<EVT, 4> ValueVTs; 6102 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6103 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6104 EVT VT = ValueVTs[vti]; 6105 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6106 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6107 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6108 Reg += NumRegisters; 6109 } 6110 } 6111 } 6112 ConstantsOut.clear(); 6113 } 6114