1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 638 FunctionLoweringInfo &FuncInfo, 639 const SDLoc &dl, SDValue &Chain, 640 SDValue *Flag, const Value *V) const { 641 // A Value with type {} or [0 x %t] needs no registers. 642 if (ValueVTs.empty()) 643 return SDValue(); 644 645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 646 647 // Assemble the legal parts into the final values. 648 SmallVector<SDValue, 4> Values(ValueVTs.size()); 649 SmallVector<SDValue, 8> Parts; 650 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 651 // Copy the legal parts from the registers. 652 EVT ValueVT = ValueVTs[Value]; 653 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 654 MVT RegisterVT = RegVTs[Value]; 655 656 Parts.resize(NumRegs); 657 for (unsigned i = 0; i != NumRegs; ++i) { 658 SDValue P; 659 if (!Flag) { 660 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 661 } else { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 663 *Flag = P.getValue(2); 664 } 665 666 Chain = P.getValue(1); 667 Parts[i] = P; 668 669 // If the source register was virtual and if we know something about it, 670 // add an assert node. 671 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 672 !RegisterVT.isInteger() || RegisterVT.isVector()) 673 continue; 674 675 const FunctionLoweringInfo::LiveOutInfo *LOI = 676 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 677 if (!LOI) 678 continue; 679 680 unsigned RegSize = RegisterVT.getSizeInBits(); 681 unsigned NumSignBits = LOI->NumSignBits; 682 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 683 684 if (NumZeroBits == RegSize) { 685 // The current value is a zero. 686 // Explicitly express that as it would be easier for 687 // optimizations to kick in. 688 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 689 continue; 690 } 691 692 // FIXME: We capture more information than the dag can represent. For 693 // now, just use the tightest assertzext/assertsext possible. 694 bool isSExt = true; 695 EVT FromVT(MVT::Other); 696 if (NumSignBits == RegSize) { 697 isSExt = true; // ASSERT SEXT 1 698 FromVT = MVT::i1; 699 } else if (NumZeroBits >= RegSize - 1) { 700 isSExt = false; // ASSERT ZEXT 1 701 FromVT = MVT::i1; 702 } else if (NumSignBits > RegSize - 8) { 703 isSExt = true; // ASSERT SEXT 8 704 FromVT = MVT::i8; 705 } else if (NumZeroBits >= RegSize - 8) { 706 isSExt = false; // ASSERT ZEXT 8 707 FromVT = MVT::i8; 708 } else if (NumSignBits > RegSize - 16) { 709 isSExt = true; // ASSERT SEXT 16 710 FromVT = MVT::i16; 711 } else if (NumZeroBits >= RegSize - 16) { 712 isSExt = false; // ASSERT ZEXT 16 713 FromVT = MVT::i16; 714 } else if (NumSignBits > RegSize - 32) { 715 isSExt = true; // ASSERT SEXT 32 716 FromVT = MVT::i32; 717 } else if (NumZeroBits >= RegSize - 32) { 718 isSExt = false; // ASSERT ZEXT 32 719 FromVT = MVT::i32; 720 } else { 721 continue; 722 } 723 // Add an assertion node. 724 assert(FromVT != MVT::Other); 725 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 726 RegisterVT, P, DAG.getValueType(FromVT)); 727 } 728 729 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 730 NumRegs, RegisterVT, ValueVT, V); 731 Part += NumRegs; 732 Parts.clear(); 733 } 734 735 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 736 } 737 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 739 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 740 const Value *V, 741 ISD::NodeType PreferredExtendType) const { 742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 743 ISD::NodeType ExtendKind = PreferredExtendType; 744 745 // Get the list of the values's legal parts. 746 unsigned NumRegs = Regs.size(); 747 SmallVector<SDValue, 8> Parts(NumRegs); 748 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 749 EVT ValueVT = ValueVTs[Value]; 750 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 751 MVT RegisterVT = RegVTs[Value]; 752 753 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 754 ExtendKind = ISD::ZERO_EXTEND; 755 756 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 757 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 758 Part += NumParts; 759 } 760 761 // Copy the parts into the registers. 762 SmallVector<SDValue, 8> Chains(NumRegs); 763 for (unsigned i = 0; i != NumRegs; ++i) { 764 SDValue Part; 765 if (!Flag) { 766 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 767 } else { 768 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 769 *Flag = Part.getValue(1); 770 } 771 772 Chains[i] = Part.getValue(0); 773 } 774 775 if (NumRegs == 1 || Flag) 776 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 777 // flagged to it. That is the CopyToReg nodes and the user are considered 778 // a single scheduling unit. If we create a TokenFactor and return it as 779 // chain, then the TokenFactor is both a predecessor (operand) of the 780 // user as well as a successor (the TF operands are flagged to the user). 781 // c1, f1 = CopyToReg 782 // c2, f2 = CopyToReg 783 // c3 = TokenFactor c1, c2 784 // ... 785 // = op c3, ..., f2 786 Chain = Chains[NumRegs-1]; 787 else 788 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 789 } 790 791 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 792 unsigned MatchingIdx, const SDLoc &dl, 793 SelectionDAG &DAG, 794 std::vector<SDValue> &Ops) const { 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 797 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 798 if (HasMatching) 799 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 800 else if (!Regs.empty() && 801 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 802 // Put the register class of the virtual registers in the flag word. That 803 // way, later passes can recompute register class constraints for inline 804 // assembly as well as normal instructions. 805 // Don't do this for tied operands that can use the regclass information 806 // from the def. 807 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 808 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 809 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 810 } 811 812 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 813 Ops.push_back(Res); 814 815 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 816 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 818 MVT RegisterVT = RegVTs[Value]; 819 for (unsigned i = 0; i != NumRegs; ++i) { 820 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 821 unsigned TheReg = Regs[Reg++]; 822 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 823 824 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 825 // If we clobbered the stack pointer, MFI should know about it. 826 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 827 } 828 } 829 } 830 } 831 832 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 833 const TargetLibraryInfo *li) { 834 AA = &aa; 835 GFI = gfi; 836 LibInfo = li; 837 DL = &DAG.getDataLayout(); 838 Context = DAG.getContext(); 839 LPadToCallSiteMap.clear(); 840 } 841 842 void SelectionDAGBuilder::clear() { 843 NodeMap.clear(); 844 UnusedArgNodeMap.clear(); 845 PendingLoads.clear(); 846 PendingExports.clear(); 847 CurInst = nullptr; 848 HasTailCall = false; 849 SDNodeOrder = LowestSDNodeOrder; 850 StatepointLowering.clear(); 851 } 852 853 void SelectionDAGBuilder::clearDanglingDebugInfo() { 854 DanglingDebugInfoMap.clear(); 855 } 856 857 SDValue SelectionDAGBuilder::getRoot() { 858 if (PendingLoads.empty()) 859 return DAG.getRoot(); 860 861 if (PendingLoads.size() == 1) { 862 SDValue Root = PendingLoads[0]; 863 DAG.setRoot(Root); 864 PendingLoads.clear(); 865 return Root; 866 } 867 868 // Otherwise, we have to make a token factor node. 869 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 870 PendingLoads); 871 PendingLoads.clear(); 872 DAG.setRoot(Root); 873 return Root; 874 } 875 876 SDValue SelectionDAGBuilder::getControlRoot() { 877 SDValue Root = DAG.getRoot(); 878 879 if (PendingExports.empty()) 880 return Root; 881 882 // Turn all of the CopyToReg chains into one factored node. 883 if (Root.getOpcode() != ISD::EntryToken) { 884 unsigned i = 0, e = PendingExports.size(); 885 for (; i != e; ++i) { 886 assert(PendingExports[i].getNode()->getNumOperands() > 1); 887 if (PendingExports[i].getNode()->getOperand(0) == Root) 888 break; // Don't add the root if we already indirectly depend on it. 889 } 890 891 if (i == e) 892 PendingExports.push_back(Root); 893 } 894 895 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingExports); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::visit(const Instruction &I) { 903 // Set up outgoing PHI node register values before emitting the terminator. 904 if (isa<TerminatorInst>(&I)) { 905 HandlePHINodesInSuccessorBlocks(I.getParent()); 906 } 907 908 // Increase the SDNodeOrder if dealing with a non-debug instruction. 909 if (!isa<DbgInfoIntrinsic>(I)) 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 958 DAG.AddDbgValue(SDV, Val.getNode(), false); 959 } 960 } else 961 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 962 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 963 } 964 } 965 966 /// getCopyFromRegs - If there was virtual register allocated for the value V 967 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 968 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 SDValue Result; 971 972 if (It != FuncInfo.ValueMap.end()) { 973 unsigned InReg = It->second; 974 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 975 DAG.getDataLayout(), InReg, Ty); 976 SDValue Chain = DAG.getEntryNode(); 977 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 978 resolveDanglingDebugInfo(V, Result); 979 } 980 981 return Result; 982 } 983 984 /// getValue - Return an SDValue for the given Value. 985 SDValue SelectionDAGBuilder::getValue(const Value *V) { 986 // If we already have an SDValue for this value, use it. It's important 987 // to do this first, so that we don't create a CopyFromReg if we already 988 // have a regular SDValue. 989 SDValue &N = NodeMap[V]; 990 if (N.getNode()) return N; 991 992 // If there's a virtual register allocated and initialized for this 993 // value, use it. 994 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 995 return copyFromReg; 996 997 // Otherwise create a new SDValue and remember it. 998 SDValue Val = getValueImpl(V); 999 NodeMap[V] = Val; 1000 resolveDanglingDebugInfo(V, Val); 1001 return Val; 1002 } 1003 1004 // Return true if SDValue exists for the given Value 1005 bool SelectionDAGBuilder::findValue(const Value *V) const { 1006 return (NodeMap.find(V) != NodeMap.end()) || 1007 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1008 } 1009 1010 /// getNonRegisterValue - Return an SDValue for the given Value, but 1011 /// don't look in FuncInfo.ValueMap for a virtual register. 1012 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1013 // If we already have an SDValue for this value, use it. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) { 1016 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1017 // Remove the debug location from the node as the node is about to be used 1018 // in a location which may differ from the original debug location. This 1019 // is relevant to Constant and ConstantFP nodes because they can appear 1020 // as constant expressions inside PHI nodes. 1021 N->setDebugLoc(DebugLoc()); 1022 } 1023 return N; 1024 } 1025 1026 // Otherwise create a new SDValue and remember it. 1027 SDValue Val = getValueImpl(V); 1028 NodeMap[V] = Val; 1029 resolveDanglingDebugInfo(V, Val); 1030 return Val; 1031 } 1032 1033 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1034 /// Create an SDValue for the given value. 1035 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1037 1038 if (const Constant *C = dyn_cast<Constant>(V)) { 1039 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1040 1041 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1042 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1043 1044 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1045 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1046 1047 if (isa<ConstantPointerNull>(C)) { 1048 unsigned AS = V->getType()->getPointerAddressSpace(); 1049 return DAG.getConstant(0, getCurSDLoc(), 1050 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1051 } 1052 1053 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1054 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1055 1056 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1057 return DAG.getUNDEF(VT); 1058 1059 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1060 visit(CE->getOpcode(), *CE); 1061 SDValue N1 = NodeMap[V]; 1062 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1063 return N1; 1064 } 1065 1066 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1067 SmallVector<SDValue, 4> Constants; 1068 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1069 OI != OE; ++OI) { 1070 SDNode *Val = getValue(*OI).getNode(); 1071 // If the operand is an empty aggregate, there are no values. 1072 if (!Val) continue; 1073 // Add each leaf value from the operand to the Constants list 1074 // to form a flattened list of all the values. 1075 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1076 Constants.push_back(SDValue(Val, i)); 1077 } 1078 1079 return DAG.getMergeValues(Constants, getCurSDLoc()); 1080 } 1081 1082 if (const ConstantDataSequential *CDS = 1083 dyn_cast<ConstantDataSequential>(C)) { 1084 SmallVector<SDValue, 4> Ops; 1085 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1086 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1087 // Add each leaf value from the operand to the Constants list 1088 // to form a flattened list of all the values. 1089 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1090 Ops.push_back(SDValue(Val, i)); 1091 } 1092 1093 if (isa<ArrayType>(CDS->getType())) 1094 return DAG.getMergeValues(Ops, getCurSDLoc()); 1095 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1096 VT, Ops); 1097 } 1098 1099 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1100 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1101 "Unknown struct or array constant!"); 1102 1103 SmallVector<EVT, 4> ValueVTs; 1104 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1105 unsigned NumElts = ValueVTs.size(); 1106 if (NumElts == 0) 1107 return SDValue(); // empty struct 1108 SmallVector<SDValue, 4> Constants(NumElts); 1109 for (unsigned i = 0; i != NumElts; ++i) { 1110 EVT EltVT = ValueVTs[i]; 1111 if (isa<UndefValue>(C)) 1112 Constants[i] = DAG.getUNDEF(EltVT); 1113 else if (EltVT.isFloatingPoint()) 1114 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1115 else 1116 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1117 } 1118 1119 return DAG.getMergeValues(Constants, getCurSDLoc()); 1120 } 1121 1122 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1123 return DAG.getBlockAddress(BA, VT); 1124 1125 VectorType *VecTy = cast<VectorType>(V->getType()); 1126 unsigned NumElements = VecTy->getNumElements(); 1127 1128 // Now that we know the number and type of the elements, get that number of 1129 // elements into the Ops array based on what kind of constant it is. 1130 SmallVector<SDValue, 16> Ops; 1131 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1132 for (unsigned i = 0; i != NumElements; ++i) 1133 Ops.push_back(getValue(CV->getOperand(i))); 1134 } else { 1135 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1136 EVT EltVT = 1137 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1138 1139 SDValue Op; 1140 if (EltVT.isFloatingPoint()) 1141 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1142 else 1143 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1144 Ops.assign(NumElements, Op); 1145 } 1146 1147 // Create a BUILD_VECTOR node. 1148 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1149 } 1150 1151 // If this is a static alloca, generate it as the frameindex instead of 1152 // computation. 1153 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1154 DenseMap<const AllocaInst*, int>::iterator SI = 1155 FuncInfo.StaticAllocaMap.find(AI); 1156 if (SI != FuncInfo.StaticAllocaMap.end()) 1157 return DAG.getFrameIndex(SI->second, 1158 TLI.getPointerTy(DAG.getDataLayout())); 1159 } 1160 1161 // If this is an instruction which fast-isel has deferred, select it now. 1162 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1163 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1164 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1165 Inst->getType()); 1166 SDValue Chain = DAG.getEntryNode(); 1167 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1168 } 1169 1170 llvm_unreachable("Can't get register for value!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1175 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1176 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1177 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1178 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1179 if (IsMSVCCXX || IsCoreCLR) 1180 CatchPadMBB->setIsEHFuncletEntry(); 1181 1182 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1183 } 1184 1185 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1186 // Update machine-CFG edge. 1187 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1188 FuncInfo.MBB->addSuccessor(TargetMBB); 1189 1190 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1191 bool IsSEH = isAsynchronousEHPersonality(Pers); 1192 if (IsSEH) { 1193 // If this is not a fall-through branch or optimizations are switched off, 1194 // emit the branch. 1195 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1196 TM.getOptLevel() == CodeGenOpt::None) 1197 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1198 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1199 return; 1200 } 1201 1202 // Figure out the funclet membership for the catchret's successor. 1203 // This will be used by the FuncletLayout pass to determine how to order the 1204 // BB's. 1205 // A 'catchret' returns to the outer scope's color. 1206 Value *ParentPad = I.getCatchSwitchParentPad(); 1207 const BasicBlock *SuccessorColor; 1208 if (isa<ConstantTokenNone>(ParentPad)) 1209 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1210 else 1211 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch 1234 /// instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1304 report_fatal_error("visitCatchSwitch not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 auto &DL = DAG.getDataLayout(); 1310 SDValue Chain = getControlRoot(); 1311 SmallVector<ISD::OutputArg, 8> Outs; 1312 SmallVector<SDValue, 8> OutVals; 1313 1314 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1315 // lower 1316 // 1317 // %val = call <ty> @llvm.experimental.deoptimize() 1318 // ret <ty> %val 1319 // 1320 // differently. 1321 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1322 LowerDeoptimizingReturn(); 1323 return; 1324 } 1325 1326 if (!FuncInfo.CanLowerReturn) { 1327 unsigned DemoteReg = FuncInfo.DemoteRegister; 1328 const Function *F = I.getParent()->getParent(); 1329 1330 // Emit a store of the return value through the virtual register. 1331 // Leave Outs empty so that LowerReturn won't try to load return 1332 // registers the usual way. 1333 SmallVector<EVT, 1> PtrValueVTs; 1334 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1335 PtrValueVTs); 1336 1337 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1338 DemoteReg, PtrValueVTs[0]); 1339 SDValue RetOp = getValue(I.getOperand(0)); 1340 1341 SmallVector<EVT, 4> ValueVTs; 1342 SmallVector<uint64_t, 4> Offsets; 1343 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1344 unsigned NumValues = ValueVTs.size(); 1345 1346 // An aggregate return value cannot wrap around the address space, so 1347 // offsets to its parts don't wrap either. 1348 SDNodeFlags Flags; 1349 Flags.setNoUnsignedWrap(true); 1350 1351 SmallVector<SDValue, 4> Chains(NumValues); 1352 for (unsigned i = 0; i != NumValues; ++i) { 1353 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1354 RetPtr.getValueType(), RetPtr, 1355 DAG.getIntPtrConstant(Offsets[i], 1356 getCurSDLoc()), 1357 &Flags); 1358 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1359 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1360 // FIXME: better loc info would be nice. 1361 Add, MachinePointerInfo()); 1362 } 1363 1364 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1365 MVT::Other, Chains); 1366 } else if (I.getNumOperands() != 0) { 1367 SmallVector<EVT, 4> ValueVTs; 1368 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1369 unsigned NumValues = ValueVTs.size(); 1370 if (NumValues) { 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 const Function *F = I.getParent()->getParent(); 1374 1375 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1376 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1377 Attribute::SExt)) 1378 ExtendKind = ISD::SIGN_EXTEND; 1379 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1380 Attribute::ZExt)) 1381 ExtendKind = ISD::ZERO_EXTEND; 1382 1383 LLVMContext &Context = F->getContext(); 1384 bool RetInReg = F->getAttributes().hasAttribute( 1385 AttributeList::ReturnIndex, Attribute::InReg); 1386 1387 for (unsigned j = 0; j != NumValues; ++j) { 1388 EVT VT = ValueVTs[j]; 1389 1390 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1391 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1392 1393 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1394 MVT PartVT = TLI.getRegisterType(Context, VT); 1395 SmallVector<SDValue, 4> Parts(NumParts); 1396 getCopyToParts(DAG, getCurSDLoc(), 1397 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1398 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1399 1400 // 'inreg' on function refers to return value 1401 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1402 if (RetInReg) 1403 Flags.setInReg(); 1404 1405 // Propagate extension type if any 1406 if (ExtendKind == ISD::SIGN_EXTEND) 1407 Flags.setSExt(); 1408 else if (ExtendKind == ISD::ZERO_EXTEND) 1409 Flags.setZExt(); 1410 1411 for (unsigned i = 0; i < NumParts; ++i) { 1412 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1413 VT, /*isfixed=*/true, 0, 0)); 1414 OutVals.push_back(Parts[i]); 1415 } 1416 } 1417 } 1418 } 1419 1420 // Push in swifterror virtual register as the last element of Outs. This makes 1421 // sure swifterror virtual register will be returned in the swifterror 1422 // physical register. 1423 const Function *F = I.getParent()->getParent(); 1424 if (TLI.supportSwiftError() && 1425 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1426 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1427 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1428 Flags.setSwiftError(); 1429 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1430 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1431 true /*isfixed*/, 1 /*origidx*/, 1432 0 /*partOffs*/)); 1433 // Create SDNode for the swifterror virtual register. 1434 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1435 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1436 EVT(TLI.getPointerTy(DL)))); 1437 } 1438 1439 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1440 CallingConv::ID CallConv = 1441 DAG.getMachineFunction().getFunction()->getCallingConv(); 1442 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1443 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1444 1445 // Verify that the target's LowerReturn behaved as expected. 1446 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1447 "LowerReturn didn't return a valid chain!"); 1448 1449 // Update the DAG with the new chain value resulting from return lowering. 1450 DAG.setRoot(Chain); 1451 } 1452 1453 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1454 /// created for it, emit nodes to copy the value into the virtual 1455 /// registers. 1456 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1457 // Skip empty types 1458 if (V->getType()->isEmptyTy()) 1459 return; 1460 1461 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1462 if (VMI != FuncInfo.ValueMap.end()) { 1463 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1464 CopyValueToVirtualRegister(V, VMI->second); 1465 } 1466 } 1467 1468 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1469 /// the current basic block, add it to ValueMap now so that we'll get a 1470 /// CopyTo/FromReg. 1471 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1472 // No need to export constants. 1473 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1474 1475 // Already exported? 1476 if (FuncInfo.isExportedInst(V)) return; 1477 1478 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1479 CopyValueToVirtualRegister(V, Reg); 1480 } 1481 1482 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1483 const BasicBlock *FromBB) { 1484 // The operands of the setcc have to be in this block. We don't know 1485 // how to export them from some other block. 1486 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1487 // Can export from current BB. 1488 if (VI->getParent() == FromBB) 1489 return true; 1490 1491 // Is already exported, noop. 1492 return FuncInfo.isExportedInst(V); 1493 } 1494 1495 // If this is an argument, we can export it if the BB is the entry block or 1496 // if it is already exported. 1497 if (isa<Argument>(V)) { 1498 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1499 return true; 1500 1501 // Otherwise, can only export this if it is already exported. 1502 return FuncInfo.isExportedInst(V); 1503 } 1504 1505 // Otherwise, constants can always be exported. 1506 return true; 1507 } 1508 1509 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1510 BranchProbability 1511 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1512 const MachineBasicBlock *Dst) const { 1513 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1514 const BasicBlock *SrcBB = Src->getBasicBlock(); 1515 const BasicBlock *DstBB = Dst->getBasicBlock(); 1516 if (!BPI) { 1517 // If BPI is not available, set the default probability as 1 / N, where N is 1518 // the number of successors. 1519 auto SuccSize = std::max<uint32_t>( 1520 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1521 return BranchProbability(1, SuccSize); 1522 } 1523 return BPI->getEdgeProbability(SrcBB, DstBB); 1524 } 1525 1526 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1527 MachineBasicBlock *Dst, 1528 BranchProbability Prob) { 1529 if (!FuncInfo.BPI) 1530 Src->addSuccessorWithoutProb(Dst); 1531 else { 1532 if (Prob.isUnknown()) 1533 Prob = getEdgeProbability(Src, Dst); 1534 Src->addSuccessor(Dst, Prob); 1535 } 1536 } 1537 1538 static bool InBlock(const Value *V, const BasicBlock *BB) { 1539 if (const Instruction *I = dyn_cast<Instruction>(V)) 1540 return I->getParent() == BB; 1541 return true; 1542 } 1543 1544 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1545 /// This function emits a branch and is used at the leaves of an OR or an 1546 /// AND operator tree. 1547 /// 1548 void 1549 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1550 MachineBasicBlock *TBB, 1551 MachineBasicBlock *FBB, 1552 MachineBasicBlock *CurBB, 1553 MachineBasicBlock *SwitchBB, 1554 BranchProbability TProb, 1555 BranchProbability FProb, 1556 bool InvertCond) { 1557 const BasicBlock *BB = CurBB->getBasicBlock(); 1558 1559 // If the leaf of the tree is a comparison, merge the condition into 1560 // the caseblock. 1561 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1562 // The operands of the cmp have to be in this block. We don't know 1563 // how to export them from some other block. If this is the first block 1564 // of the sequence, no exporting is needed. 1565 if (CurBB == SwitchBB || 1566 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1567 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1568 ISD::CondCode Condition; 1569 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1570 ICmpInst::Predicate Pred = 1571 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1572 Condition = getICmpCondCode(Pred); 1573 } else { 1574 const FCmpInst *FC = cast<FCmpInst>(Cond); 1575 FCmpInst::Predicate Pred = 1576 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1577 Condition = getFCmpCondCode(Pred); 1578 if (TM.Options.NoNaNsFPMath) 1579 Condition = getFCmpCodeWithoutNaN(Condition); 1580 } 1581 1582 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1583 TBB, FBB, CurBB, TProb, FProb); 1584 SwitchCases.push_back(CB); 1585 return; 1586 } 1587 } 1588 1589 // Create a CaseBlock record representing this branch. 1590 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1591 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1592 nullptr, TBB, FBB, CurBB, TProb, FProb); 1593 SwitchCases.push_back(CB); 1594 } 1595 1596 /// FindMergedConditions - If Cond is an expression like 1597 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1598 MachineBasicBlock *TBB, 1599 MachineBasicBlock *FBB, 1600 MachineBasicBlock *CurBB, 1601 MachineBasicBlock *SwitchBB, 1602 Instruction::BinaryOps Opc, 1603 BranchProbability TProb, 1604 BranchProbability FProb, 1605 bool InvertCond) { 1606 // Skip over not part of the tree and remember to invert op and operands at 1607 // next level. 1608 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1609 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1610 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1611 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1612 !InvertCond); 1613 return; 1614 } 1615 } 1616 1617 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1618 // Compute the effective opcode for Cond, taking into account whether it needs 1619 // to be inverted, e.g. 1620 // and (not (or A, B)), C 1621 // gets lowered as 1622 // and (and (not A, not B), C) 1623 unsigned BOpc = 0; 1624 if (BOp) { 1625 BOpc = BOp->getOpcode(); 1626 if (InvertCond) { 1627 if (BOpc == Instruction::And) 1628 BOpc = Instruction::Or; 1629 else if (BOpc == Instruction::Or) 1630 BOpc = Instruction::And; 1631 } 1632 } 1633 1634 // If this node is not part of the or/and tree, emit it as a branch. 1635 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1636 BOpc != Opc || !BOp->hasOneUse() || 1637 BOp->getParent() != CurBB->getBasicBlock() || 1638 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1639 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1640 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1641 TProb, FProb, InvertCond); 1642 return; 1643 } 1644 1645 // Create TmpBB after CurBB. 1646 MachineFunction::iterator BBI(CurBB); 1647 MachineFunction &MF = DAG.getMachineFunction(); 1648 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1649 CurBB->getParent()->insert(++BBI, TmpBB); 1650 1651 if (Opc == Instruction::Or) { 1652 // Codegen X | Y as: 1653 // BB1: 1654 // jmp_if_X TBB 1655 // jmp TmpBB 1656 // TmpBB: 1657 // jmp_if_Y TBB 1658 // jmp FBB 1659 // 1660 1661 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1662 // The requirement is that 1663 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1664 // = TrueProb for original BB. 1665 // Assuming the original probabilities are A and B, one choice is to set 1666 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1667 // A/(1+B) and 2B/(1+B). This choice assumes that 1668 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1669 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1670 // TmpBB, but the math is more complicated. 1671 1672 auto NewTrueProb = TProb / 2; 1673 auto NewFalseProb = TProb / 2 + FProb; 1674 // Emit the LHS condition. 1675 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1676 NewTrueProb, NewFalseProb, InvertCond); 1677 1678 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1679 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1680 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1681 // Emit the RHS condition into TmpBB. 1682 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1683 Probs[0], Probs[1], InvertCond); 1684 } else { 1685 assert(Opc == Instruction::And && "Unknown merge op!"); 1686 // Codegen X & Y as: 1687 // BB1: 1688 // jmp_if_X TmpBB 1689 // jmp FBB 1690 // TmpBB: 1691 // jmp_if_Y TBB 1692 // jmp FBB 1693 // 1694 // This requires creation of TmpBB after CurBB. 1695 1696 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1697 // The requirement is that 1698 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1699 // = FalseProb for original BB. 1700 // Assuming the original probabilities are A and B, one choice is to set 1701 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1702 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1703 // TrueProb for BB1 * FalseProb for TmpBB. 1704 1705 auto NewTrueProb = TProb + FProb / 2; 1706 auto NewFalseProb = FProb / 2; 1707 // Emit the LHS condition. 1708 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1709 NewTrueProb, NewFalseProb, InvertCond); 1710 1711 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1712 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1713 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1714 // Emit the RHS condition into TmpBB. 1715 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1716 Probs[0], Probs[1], InvertCond); 1717 } 1718 } 1719 1720 /// If the set of cases should be emitted as a series of branches, return true. 1721 /// If we should emit this as a bunch of and/or'd together conditions, return 1722 /// false. 1723 bool 1724 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1725 if (Cases.size() != 2) return true; 1726 1727 // If this is two comparisons of the same values or'd or and'd together, they 1728 // will get folded into a single comparison, so don't emit two blocks. 1729 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1730 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1731 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1732 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1733 return false; 1734 } 1735 1736 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1737 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1738 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1739 Cases[0].CC == Cases[1].CC && 1740 isa<Constant>(Cases[0].CmpRHS) && 1741 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1742 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1743 return false; 1744 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1745 return false; 1746 } 1747 1748 return true; 1749 } 1750 1751 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1752 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1753 1754 // Update machine-CFG edges. 1755 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1756 1757 if (I.isUnconditional()) { 1758 // Update machine-CFG edges. 1759 BrMBB->addSuccessor(Succ0MBB); 1760 1761 // If this is not a fall-through branch or optimizations are switched off, 1762 // emit the branch. 1763 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1764 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1765 MVT::Other, getControlRoot(), 1766 DAG.getBasicBlock(Succ0MBB))); 1767 1768 return; 1769 } 1770 1771 // If this condition is one of the special cases we handle, do special stuff 1772 // now. 1773 const Value *CondVal = I.getCondition(); 1774 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1775 1776 // If this is a series of conditions that are or'd or and'd together, emit 1777 // this as a sequence of branches instead of setcc's with and/or operations. 1778 // As long as jumps are not expensive, this should improve performance. 1779 // For example, instead of something like: 1780 // cmp A, B 1781 // C = seteq 1782 // cmp D, E 1783 // F = setle 1784 // or C, F 1785 // jnz foo 1786 // Emit: 1787 // cmp A, B 1788 // je foo 1789 // cmp D, E 1790 // jle foo 1791 // 1792 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1793 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1794 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1795 !I.getMetadata(LLVMContext::MD_unpredictable) && 1796 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1797 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1798 Opcode, 1799 getEdgeProbability(BrMBB, Succ0MBB), 1800 getEdgeProbability(BrMBB, Succ1MBB), 1801 /*InvertCond=*/false); 1802 // If the compares in later blocks need to use values not currently 1803 // exported from this block, export them now. This block should always 1804 // be the first entry. 1805 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1806 1807 // Allow some cases to be rejected. 1808 if (ShouldEmitAsBranches(SwitchCases)) { 1809 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1810 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1811 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1812 } 1813 1814 // Emit the branch for this block. 1815 visitSwitchCase(SwitchCases[0], BrMBB); 1816 SwitchCases.erase(SwitchCases.begin()); 1817 return; 1818 } 1819 1820 // Okay, we decided not to do this, remove any inserted MBB's and clear 1821 // SwitchCases. 1822 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1823 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1824 1825 SwitchCases.clear(); 1826 } 1827 } 1828 1829 // Create a CaseBlock record representing this branch. 1830 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1831 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1832 1833 // Use visitSwitchCase to actually insert the fast branch sequence for this 1834 // cond branch. 1835 visitSwitchCase(CB, BrMBB); 1836 } 1837 1838 /// visitSwitchCase - Emits the necessary code to represent a single node in 1839 /// the binary search tree resulting from lowering a switch instruction. 1840 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1841 MachineBasicBlock *SwitchBB) { 1842 SDValue Cond; 1843 SDValue CondLHS = getValue(CB.CmpLHS); 1844 SDLoc dl = getCurSDLoc(); 1845 1846 // Build the setcc now. 1847 if (!CB.CmpMHS) { 1848 // Fold "(X == true)" to X and "(X == false)" to !X to 1849 // handle common cases produced by branch lowering. 1850 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1851 CB.CC == ISD::SETEQ) 1852 Cond = CondLHS; 1853 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1854 CB.CC == ISD::SETEQ) { 1855 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1856 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1857 } else 1858 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1859 } else { 1860 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1861 1862 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1863 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1864 1865 SDValue CmpOp = getValue(CB.CmpMHS); 1866 EVT VT = CmpOp.getValueType(); 1867 1868 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1869 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1870 ISD::SETLE); 1871 } else { 1872 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1873 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1874 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1875 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1876 } 1877 } 1878 1879 // Update successor info 1880 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1881 // TrueBB and FalseBB are always different unless the incoming IR is 1882 // degenerate. This only happens when running llc on weird IR. 1883 if (CB.TrueBB != CB.FalseBB) 1884 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1885 SwitchBB->normalizeSuccProbs(); 1886 1887 // If the lhs block is the next block, invert the condition so that we can 1888 // fall through to the lhs instead of the rhs block. 1889 if (CB.TrueBB == NextBlock(SwitchBB)) { 1890 std::swap(CB.TrueBB, CB.FalseBB); 1891 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1892 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1893 } 1894 1895 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1896 MVT::Other, getControlRoot(), Cond, 1897 DAG.getBasicBlock(CB.TrueBB)); 1898 1899 // Insert the false branch. Do this even if it's a fall through branch, 1900 // this makes it easier to do DAG optimizations which require inverting 1901 // the branch condition. 1902 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1903 DAG.getBasicBlock(CB.FalseBB)); 1904 1905 DAG.setRoot(BrCond); 1906 } 1907 1908 /// visitJumpTable - Emit JumpTable node in the current MBB 1909 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1910 // Emit the code for the jump table 1911 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1912 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1913 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1914 JT.Reg, PTy); 1915 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1916 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1917 MVT::Other, Index.getValue(1), 1918 Table, Index); 1919 DAG.setRoot(BrJumpTable); 1920 } 1921 1922 /// visitJumpTableHeader - This function emits necessary code to produce index 1923 /// in the JumpTable from switch case. 1924 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1925 JumpTableHeader &JTH, 1926 MachineBasicBlock *SwitchBB) { 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // Subtract the lowest switch case value from the value being switched on and 1930 // conditional branch to default mbb if the result is greater than the 1931 // difference between smallest and largest cases. 1932 SDValue SwitchOp = getValue(JTH.SValue); 1933 EVT VT = SwitchOp.getValueType(); 1934 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1935 DAG.getConstant(JTH.First, dl, VT)); 1936 1937 // The SDNode we just created, which holds the value being switched on minus 1938 // the smallest case value, needs to be copied to a virtual register so it 1939 // can be used as an index into the jump table in a subsequent basic block. 1940 // This value may be smaller or larger than the target's pointer type, and 1941 // therefore require extension or truncating. 1942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1943 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1944 1945 unsigned JumpTableReg = 1946 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1947 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1948 JumpTableReg, SwitchOp); 1949 JT.Reg = JumpTableReg; 1950 1951 // Emit the range check for the jump table, and branch to the default block 1952 // for the switch statement if the value being switched on exceeds the largest 1953 // case in the switch. 1954 SDValue CMP = DAG.getSetCC( 1955 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1956 Sub.getValueType()), 1957 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1958 1959 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, CopyTo, CMP, 1961 DAG.getBasicBlock(JT.Default)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (JT.MBB != NextBlock(SwitchBB)) 1965 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1966 DAG.getBasicBlock(JT.MBB)); 1967 1968 DAG.setRoot(BrCond); 1969 } 1970 1971 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1972 /// variable if there exists one. 1973 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1974 SDValue &Chain) { 1975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1976 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1977 MachineFunction &MF = DAG.getMachineFunction(); 1978 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1979 MachineSDNode *Node = 1980 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1981 if (Global) { 1982 MachinePointerInfo MPInfo(Global); 1983 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1984 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1985 MachineMemOperand::MODereferenceable; 1986 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1987 DAG.getEVTAlignment(PtrTy)); 1988 Node->setMemRefs(MemRefs, MemRefs + 1); 1989 } 1990 return SDValue(Node, 0); 1991 } 1992 1993 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1994 /// tail spliced into a stack protector check success bb. 1995 /// 1996 /// For a high level explanation of how this fits into the stack protector 1997 /// generation see the comment on the declaration of class 1998 /// StackProtectorDescriptor. 1999 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2000 MachineBasicBlock *ParentBB) { 2001 2002 // First create the loads to the guard/stack slot for the comparison. 2003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2004 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2005 2006 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2007 int FI = MFI.getStackProtectorIndex(); 2008 2009 SDValue Guard; 2010 SDLoc dl = getCurSDLoc(); 2011 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2012 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2013 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2014 2015 // Generate code to load the content of the guard slot. 2016 SDValue StackSlot = DAG.getLoad( 2017 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2018 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2019 MachineMemOperand::MOVolatile); 2020 2021 // Retrieve guard check function, nullptr if instrumentation is inlined. 2022 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2023 // The target provides a guard check function to validate the guard value. 2024 // Generate a call to that function with the content of the guard slot as 2025 // argument. 2026 auto *Fn = cast<Function>(GuardCheck); 2027 FunctionType *FnTy = Fn->getFunctionType(); 2028 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2029 2030 TargetLowering::ArgListTy Args; 2031 TargetLowering::ArgListEntry Entry; 2032 Entry.Node = StackSlot; 2033 Entry.Ty = FnTy->getParamType(0); 2034 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2035 Entry.IsInReg = true; 2036 Args.push_back(Entry); 2037 2038 TargetLowering::CallLoweringInfo CLI(DAG); 2039 CLI.setDebugLoc(getCurSDLoc()) 2040 .setChain(DAG.getEntryNode()) 2041 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2042 getValue(GuardCheck), std::move(Args)); 2043 2044 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2045 DAG.setRoot(Result.second); 2046 return; 2047 } 2048 2049 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2050 // Otherwise, emit a volatile load to retrieve the stack guard value. 2051 SDValue Chain = DAG.getEntryNode(); 2052 if (TLI.useLoadStackGuardNode()) { 2053 Guard = getLoadStackGuard(DAG, dl, Chain); 2054 } else { 2055 const Value *IRGuard = TLI.getSDagStackGuard(M); 2056 SDValue GuardPtr = getValue(IRGuard); 2057 2058 Guard = 2059 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2060 Align, MachineMemOperand::MOVolatile); 2061 } 2062 2063 // Perform the comparison via a subtract/getsetcc. 2064 EVT VT = Guard.getValueType(); 2065 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2066 2067 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2068 *DAG.getContext(), 2069 Sub.getValueType()), 2070 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2071 2072 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2073 // branch to failure MBB. 2074 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2075 MVT::Other, StackSlot.getOperand(0), 2076 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2077 // Otherwise branch to success MBB. 2078 SDValue Br = DAG.getNode(ISD::BR, dl, 2079 MVT::Other, BrCond, 2080 DAG.getBasicBlock(SPD.getSuccessMBB())); 2081 2082 DAG.setRoot(Br); 2083 } 2084 2085 /// Codegen the failure basic block for a stack protector check. 2086 /// 2087 /// A failure stack protector machine basic block consists simply of a call to 2088 /// __stack_chk_fail(). 2089 /// 2090 /// For a high level explanation of how this fits into the stack protector 2091 /// generation see the comment on the declaration of class 2092 /// StackProtectorDescriptor. 2093 void 2094 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2096 SDValue Chain = 2097 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2098 None, false, getCurSDLoc(), false, false).second; 2099 DAG.setRoot(Chain); 2100 } 2101 2102 /// visitBitTestHeader - This function emits necessary code to produce value 2103 /// suitable for "bit tests" 2104 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2105 MachineBasicBlock *SwitchBB) { 2106 SDLoc dl = getCurSDLoc(); 2107 2108 // Subtract the minimum value 2109 SDValue SwitchOp = getValue(B.SValue); 2110 EVT VT = SwitchOp.getValueType(); 2111 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2112 DAG.getConstant(B.First, dl, VT)); 2113 2114 // Check range 2115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2116 SDValue RangeCmp = DAG.getSetCC( 2117 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2118 Sub.getValueType()), 2119 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2120 2121 // Determine the type of the test operands. 2122 bool UsePtrType = false; 2123 if (!TLI.isTypeLegal(VT)) 2124 UsePtrType = true; 2125 else { 2126 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2127 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2128 // Switch table case range are encoded into series of masks. 2129 // Just use pointer type, it's guaranteed to fit. 2130 UsePtrType = true; 2131 break; 2132 } 2133 } 2134 if (UsePtrType) { 2135 VT = TLI.getPointerTy(DAG.getDataLayout()); 2136 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2137 } 2138 2139 B.RegVT = VT.getSimpleVT(); 2140 B.Reg = FuncInfo.CreateReg(B.RegVT); 2141 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2142 2143 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2144 2145 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2146 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2147 SwitchBB->normalizeSuccProbs(); 2148 2149 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2150 MVT::Other, CopyTo, RangeCmp, 2151 DAG.getBasicBlock(B.Default)); 2152 2153 // Avoid emitting unnecessary branches to the next block. 2154 if (MBB != NextBlock(SwitchBB)) 2155 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2156 DAG.getBasicBlock(MBB)); 2157 2158 DAG.setRoot(BrRange); 2159 } 2160 2161 /// visitBitTestCase - this function produces one "bit test" 2162 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2163 MachineBasicBlock* NextMBB, 2164 BranchProbability BranchProbToNext, 2165 unsigned Reg, 2166 BitTestCase &B, 2167 MachineBasicBlock *SwitchBB) { 2168 SDLoc dl = getCurSDLoc(); 2169 MVT VT = BB.RegVT; 2170 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2171 SDValue Cmp; 2172 unsigned PopCount = countPopulation(B.Mask); 2173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2174 if (PopCount == 1) { 2175 // Testing for a single bit; just compare the shift count with what it 2176 // would need to be to shift a 1 bit in that position. 2177 Cmp = DAG.getSetCC( 2178 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2179 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2180 ISD::SETEQ); 2181 } else if (PopCount == BB.Range) { 2182 // There is only one zero bit in the range, test for it directly. 2183 Cmp = DAG.getSetCC( 2184 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2185 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2186 ISD::SETNE); 2187 } else { 2188 // Make desired shift 2189 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2190 DAG.getConstant(1, dl, VT), ShiftOp); 2191 2192 // Emit bit tests and jumps 2193 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2194 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2195 Cmp = DAG.getSetCC( 2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2197 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2198 } 2199 2200 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2201 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2202 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2203 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2204 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2205 // one as they are relative probabilities (and thus work more like weights), 2206 // and hence we need to normalize them to let the sum of them become one. 2207 SwitchBB->normalizeSuccProbs(); 2208 2209 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2210 MVT::Other, getControlRoot(), 2211 Cmp, DAG.getBasicBlock(B.TargetBB)); 2212 2213 // Avoid emitting unnecessary branches to the next block. 2214 if (NextMBB != NextBlock(SwitchBB)) 2215 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2216 DAG.getBasicBlock(NextMBB)); 2217 2218 DAG.setRoot(BrAnd); 2219 } 2220 2221 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2222 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2223 2224 // Retrieve successors. Look through artificial IR level blocks like 2225 // catchswitch for successors. 2226 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 const BasicBlock *EHPadBB = I.getSuccessor(1); 2228 2229 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2230 // have to do anything here to lower funclet bundles. 2231 assert(!I.hasOperandBundlesOtherThan( 2232 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2233 "Cannot lower invokes with arbitrary operand bundles yet!"); 2234 2235 const Value *Callee(I.getCalledValue()); 2236 const Function *Fn = dyn_cast<Function>(Callee); 2237 if (isa<InlineAsm>(Callee)) 2238 visitInlineAsm(&I); 2239 else if (Fn && Fn->isIntrinsic()) { 2240 switch (Fn->getIntrinsicID()) { 2241 default: 2242 llvm_unreachable("Cannot invoke this intrinsic"); 2243 case Intrinsic::donothing: 2244 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2245 break; 2246 case Intrinsic::experimental_patchpoint_void: 2247 case Intrinsic::experimental_patchpoint_i64: 2248 visitPatchpoint(&I, EHPadBB); 2249 break; 2250 case Intrinsic::experimental_gc_statepoint: 2251 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2252 break; 2253 } 2254 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2255 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2256 // Eventually we will support lowering the @llvm.experimental.deoptimize 2257 // intrinsic, and right now there are no plans to support other intrinsics 2258 // with deopt state. 2259 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2260 } else { 2261 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2262 } 2263 2264 // If the value of the invoke is used outside of its defining block, make it 2265 // available as a virtual register. 2266 // We already took care of the exported value for the statepoint instruction 2267 // during call to the LowerStatepoint. 2268 if (!isStatepoint(I)) { 2269 CopyToExportRegsIfNeeded(&I); 2270 } 2271 2272 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2273 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2274 BranchProbability EHPadBBProb = 2275 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2276 : BranchProbability::getZero(); 2277 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2278 2279 // Update successor info. 2280 addSuccessorWithProb(InvokeMBB, Return); 2281 for (auto &UnwindDest : UnwindDests) { 2282 UnwindDest.first->setIsEHPad(); 2283 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2284 } 2285 InvokeMBB->normalizeSuccProbs(); 2286 2287 // Drop into normal successor. 2288 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2289 MVT::Other, getControlRoot(), 2290 DAG.getBasicBlock(Return))); 2291 } 2292 2293 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2294 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2295 } 2296 2297 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2298 assert(FuncInfo.MBB->isEHPad() && 2299 "Call to landingpad not in landing pad!"); 2300 2301 MachineBasicBlock *MBB = FuncInfo.MBB; 2302 addLandingPadInfo(LP, *MBB); 2303 2304 // If there aren't registers to copy the values into (e.g., during SjLj 2305 // exceptions), then don't bother to create these DAG nodes. 2306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2307 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2308 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2309 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2310 return; 2311 2312 // If landingpad's return type is token type, we don't create DAG nodes 2313 // for its exception pointer and selector value. The extraction of exception 2314 // pointer or selector value from token type landingpads is not currently 2315 // supported. 2316 if (LP.getType()->isTokenTy()) 2317 return; 2318 2319 SmallVector<EVT, 2> ValueVTs; 2320 SDLoc dl = getCurSDLoc(); 2321 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2322 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2323 2324 // Get the two live-in registers as SDValues. The physregs have already been 2325 // copied into virtual registers. 2326 SDValue Ops[2]; 2327 if (FuncInfo.ExceptionPointerVirtReg) { 2328 Ops[0] = DAG.getZExtOrTrunc( 2329 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2330 FuncInfo.ExceptionPointerVirtReg, 2331 TLI.getPointerTy(DAG.getDataLayout())), 2332 dl, ValueVTs[0]); 2333 } else { 2334 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2335 } 2336 Ops[1] = DAG.getZExtOrTrunc( 2337 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2338 FuncInfo.ExceptionSelectorVirtReg, 2339 TLI.getPointerTy(DAG.getDataLayout())), 2340 dl, ValueVTs[1]); 2341 2342 // Merge into one. 2343 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2344 DAG.getVTList(ValueVTs), Ops); 2345 setValue(&LP, Res); 2346 } 2347 2348 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2349 #ifndef NDEBUG 2350 for (const CaseCluster &CC : Clusters) 2351 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2352 #endif 2353 2354 std::sort(Clusters.begin(), Clusters.end(), 2355 [](const CaseCluster &a, const CaseCluster &b) { 2356 return a.Low->getValue().slt(b.Low->getValue()); 2357 }); 2358 2359 // Merge adjacent clusters with the same destination. 2360 const unsigned N = Clusters.size(); 2361 unsigned DstIndex = 0; 2362 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2363 CaseCluster &CC = Clusters[SrcIndex]; 2364 const ConstantInt *CaseVal = CC.Low; 2365 MachineBasicBlock *Succ = CC.MBB; 2366 2367 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2368 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2369 // If this case has the same successor and is a neighbour, merge it into 2370 // the previous cluster. 2371 Clusters[DstIndex - 1].High = CaseVal; 2372 Clusters[DstIndex - 1].Prob += CC.Prob; 2373 } else { 2374 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2375 sizeof(Clusters[SrcIndex])); 2376 } 2377 } 2378 Clusters.resize(DstIndex); 2379 } 2380 2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2382 MachineBasicBlock *Last) { 2383 // Update JTCases. 2384 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2385 if (JTCases[i].first.HeaderBB == First) 2386 JTCases[i].first.HeaderBB = Last; 2387 2388 // Update BitTestCases. 2389 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2390 if (BitTestCases[i].Parent == First) 2391 BitTestCases[i].Parent = Last; 2392 } 2393 2394 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2395 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2396 2397 // Update machine-CFG edges with unique successors. 2398 SmallSet<BasicBlock*, 32> Done; 2399 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2400 BasicBlock *BB = I.getSuccessor(i); 2401 bool Inserted = Done.insert(BB).second; 2402 if (!Inserted) 2403 continue; 2404 2405 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2406 addSuccessorWithProb(IndirectBrMBB, Succ); 2407 } 2408 IndirectBrMBB->normalizeSuccProbs(); 2409 2410 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2411 MVT::Other, getControlRoot(), 2412 getValue(I.getAddress()))); 2413 } 2414 2415 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2416 if (DAG.getTarget().Options.TrapUnreachable) 2417 DAG.setRoot( 2418 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2419 } 2420 2421 void SelectionDAGBuilder::visitFSub(const User &I) { 2422 // -0.0 - X --> fneg 2423 Type *Ty = I.getType(); 2424 if (isa<Constant>(I.getOperand(0)) && 2425 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2426 SDValue Op2 = getValue(I.getOperand(1)); 2427 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2428 Op2.getValueType(), Op2)); 2429 return; 2430 } 2431 2432 visitBinary(I, ISD::FSUB); 2433 } 2434 2435 /// Checks if the given instruction performs a vector reduction, in which case 2436 /// we have the freedom to alter the elements in the result as long as the 2437 /// reduction of them stays unchanged. 2438 static bool isVectorReductionOp(const User *I) { 2439 const Instruction *Inst = dyn_cast<Instruction>(I); 2440 if (!Inst || !Inst->getType()->isVectorTy()) 2441 return false; 2442 2443 auto OpCode = Inst->getOpcode(); 2444 switch (OpCode) { 2445 case Instruction::Add: 2446 case Instruction::Mul: 2447 case Instruction::And: 2448 case Instruction::Or: 2449 case Instruction::Xor: 2450 break; 2451 case Instruction::FAdd: 2452 case Instruction::FMul: 2453 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2454 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2455 break; 2456 LLVM_FALLTHROUGH; 2457 default: 2458 return false; 2459 } 2460 2461 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2462 unsigned ElemNumToReduce = ElemNum; 2463 2464 // Do DFS search on the def-use chain from the given instruction. We only 2465 // allow four kinds of operations during the search until we reach the 2466 // instruction that extracts the first element from the vector: 2467 // 2468 // 1. The reduction operation of the same opcode as the given instruction. 2469 // 2470 // 2. PHI node. 2471 // 2472 // 3. ShuffleVector instruction together with a reduction operation that 2473 // does a partial reduction. 2474 // 2475 // 4. ExtractElement that extracts the first element from the vector, and we 2476 // stop searching the def-use chain here. 2477 // 2478 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2479 // from 1-3 to the stack to continue the DFS. The given instruction is not 2480 // a reduction operation if we meet any other instructions other than those 2481 // listed above. 2482 2483 SmallVector<const User *, 16> UsersToVisit{Inst}; 2484 SmallPtrSet<const User *, 16> Visited; 2485 bool ReduxExtracted = false; 2486 2487 while (!UsersToVisit.empty()) { 2488 auto User = UsersToVisit.back(); 2489 UsersToVisit.pop_back(); 2490 if (!Visited.insert(User).second) 2491 continue; 2492 2493 for (const auto &U : User->users()) { 2494 auto Inst = dyn_cast<Instruction>(U); 2495 if (!Inst) 2496 return false; 2497 2498 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2499 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2500 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2501 return false; 2502 UsersToVisit.push_back(U); 2503 } else if (const ShuffleVectorInst *ShufInst = 2504 dyn_cast<ShuffleVectorInst>(U)) { 2505 // Detect the following pattern: A ShuffleVector instruction together 2506 // with a reduction that do partial reduction on the first and second 2507 // ElemNumToReduce / 2 elements, and store the result in 2508 // ElemNumToReduce / 2 elements in another vector. 2509 2510 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2511 if (ResultElements < ElemNum) 2512 return false; 2513 2514 if (ElemNumToReduce == 1) 2515 return false; 2516 if (!isa<UndefValue>(U->getOperand(1))) 2517 return false; 2518 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2519 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2520 return false; 2521 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2522 if (ShufInst->getMaskValue(i) != -1) 2523 return false; 2524 2525 // There is only one user of this ShuffleVector instruction, which 2526 // must be a reduction operation. 2527 if (!U->hasOneUse()) 2528 return false; 2529 2530 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2531 if (!U2 || U2->getOpcode() != OpCode) 2532 return false; 2533 2534 // Check operands of the reduction operation. 2535 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2536 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2537 UsersToVisit.push_back(U2); 2538 ElemNumToReduce /= 2; 2539 } else 2540 return false; 2541 } else if (isa<ExtractElementInst>(U)) { 2542 // At this moment we should have reduced all elements in the vector. 2543 if (ElemNumToReduce != 1) 2544 return false; 2545 2546 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2547 if (!Val || Val->getZExtValue() != 0) 2548 return false; 2549 2550 ReduxExtracted = true; 2551 } else 2552 return false; 2553 } 2554 } 2555 return ReduxExtracted; 2556 } 2557 2558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2559 SDValue Op1 = getValue(I.getOperand(0)); 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 2562 bool nuw = false; 2563 bool nsw = false; 2564 bool exact = false; 2565 bool vec_redux = false; 2566 FastMathFlags FMF; 2567 2568 if (const OverflowingBinaryOperator *OFBinOp = 2569 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2570 nuw = OFBinOp->hasNoUnsignedWrap(); 2571 nsw = OFBinOp->hasNoSignedWrap(); 2572 } 2573 if (const PossiblyExactOperator *ExactOp = 2574 dyn_cast<const PossiblyExactOperator>(&I)) 2575 exact = ExactOp->isExact(); 2576 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2577 FMF = FPOp->getFastMathFlags(); 2578 2579 if (isVectorReductionOp(&I)) { 2580 vec_redux = true; 2581 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2582 } 2583 2584 SDNodeFlags Flags; 2585 Flags.setExact(exact); 2586 Flags.setNoSignedWrap(nsw); 2587 Flags.setNoUnsignedWrap(nuw); 2588 Flags.setVectorReduction(vec_redux); 2589 if (EnableFMFInDAG) { 2590 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2591 Flags.setNoInfs(FMF.noInfs()); 2592 Flags.setNoNaNs(FMF.noNaNs()); 2593 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2594 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2595 } 2596 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2597 Op1, Op2, &Flags); 2598 setValue(&I, BinNodeValue); 2599 } 2600 2601 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2602 SDValue Op1 = getValue(I.getOperand(0)); 2603 SDValue Op2 = getValue(I.getOperand(1)); 2604 2605 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2606 Op2.getValueType(), DAG.getDataLayout()); 2607 2608 // Coerce the shift amount to the right type if we can. 2609 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2610 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2611 unsigned Op2Size = Op2.getValueSizeInBits(); 2612 SDLoc DL = getCurSDLoc(); 2613 2614 // If the operand is smaller than the shift count type, promote it. 2615 if (ShiftSize > Op2Size) 2616 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2617 2618 // If the operand is larger than the shift count type but the shift 2619 // count type has enough bits to represent any shift value, truncate 2620 // it now. This is a common case and it exposes the truncate to 2621 // optimization early. 2622 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2623 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2624 // Otherwise we'll need to temporarily settle for some other convenient 2625 // type. Type legalization will make adjustments once the shiftee is split. 2626 else 2627 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2628 } 2629 2630 bool nuw = false; 2631 bool nsw = false; 2632 bool exact = false; 2633 2634 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2635 2636 if (const OverflowingBinaryOperator *OFBinOp = 2637 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2638 nuw = OFBinOp->hasNoUnsignedWrap(); 2639 nsw = OFBinOp->hasNoSignedWrap(); 2640 } 2641 if (const PossiblyExactOperator *ExactOp = 2642 dyn_cast<const PossiblyExactOperator>(&I)) 2643 exact = ExactOp->isExact(); 2644 } 2645 SDNodeFlags Flags; 2646 Flags.setExact(exact); 2647 Flags.setNoSignedWrap(nsw); 2648 Flags.setNoUnsignedWrap(nuw); 2649 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2650 &Flags); 2651 setValue(&I, Res); 2652 } 2653 2654 void SelectionDAGBuilder::visitSDiv(const User &I) { 2655 SDValue Op1 = getValue(I.getOperand(0)); 2656 SDValue Op2 = getValue(I.getOperand(1)); 2657 2658 SDNodeFlags Flags; 2659 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2660 cast<PossiblyExactOperator>(&I)->isExact()); 2661 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2662 Op2, &Flags)); 2663 } 2664 2665 void SelectionDAGBuilder::visitICmp(const User &I) { 2666 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2667 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2668 predicate = IC->getPredicate(); 2669 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2670 predicate = ICmpInst::Predicate(IC->getPredicate()); 2671 SDValue Op1 = getValue(I.getOperand(0)); 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 ISD::CondCode Opcode = getICmpCondCode(predicate); 2674 2675 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2676 I.getType()); 2677 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2678 } 2679 2680 void SelectionDAGBuilder::visitFCmp(const User &I) { 2681 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2682 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2683 predicate = FC->getPredicate(); 2684 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2685 predicate = FCmpInst::Predicate(FC->getPredicate()); 2686 SDValue Op1 = getValue(I.getOperand(0)); 2687 SDValue Op2 = getValue(I.getOperand(1)); 2688 ISD::CondCode Condition = getFCmpCondCode(predicate); 2689 2690 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2691 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2692 // further optimization, but currently FMF is only applicable to binary nodes. 2693 if (TM.Options.NoNaNsFPMath) 2694 Condition = getFCmpCodeWithoutNaN(Condition); 2695 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2696 I.getType()); 2697 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2698 } 2699 2700 // Check if the condition of the select has one use or two users that are both 2701 // selects with the same condition. 2702 static bool hasOnlySelectUsers(const Value *Cond) { 2703 return all_of(Cond->users(), [](const Value *V) { 2704 return isa<SelectInst>(V); 2705 }); 2706 } 2707 2708 void SelectionDAGBuilder::visitSelect(const User &I) { 2709 SmallVector<EVT, 4> ValueVTs; 2710 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2711 ValueVTs); 2712 unsigned NumValues = ValueVTs.size(); 2713 if (NumValues == 0) return; 2714 2715 SmallVector<SDValue, 4> Values(NumValues); 2716 SDValue Cond = getValue(I.getOperand(0)); 2717 SDValue LHSVal = getValue(I.getOperand(1)); 2718 SDValue RHSVal = getValue(I.getOperand(2)); 2719 auto BaseOps = {Cond}; 2720 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2721 ISD::VSELECT : ISD::SELECT; 2722 2723 // Min/max matching is only viable if all output VTs are the same. 2724 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2725 EVT VT = ValueVTs[0]; 2726 LLVMContext &Ctx = *DAG.getContext(); 2727 auto &TLI = DAG.getTargetLoweringInfo(); 2728 2729 // We care about the legality of the operation after it has been type 2730 // legalized. 2731 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2732 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2733 VT = TLI.getTypeToTransformTo(Ctx, VT); 2734 2735 // If the vselect is legal, assume we want to leave this as a vector setcc + 2736 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2737 // min/max is legal on the scalar type. 2738 bool UseScalarMinMax = VT.isVector() && 2739 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2740 2741 Value *LHS, *RHS; 2742 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2743 ISD::NodeType Opc = ISD::DELETED_NODE; 2744 switch (SPR.Flavor) { 2745 case SPF_UMAX: Opc = ISD::UMAX; break; 2746 case SPF_UMIN: Opc = ISD::UMIN; break; 2747 case SPF_SMAX: Opc = ISD::SMAX; break; 2748 case SPF_SMIN: Opc = ISD::SMIN; break; 2749 case SPF_FMINNUM: 2750 switch (SPR.NaNBehavior) { 2751 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2752 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2753 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2754 case SPNB_RETURNS_ANY: { 2755 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2756 Opc = ISD::FMINNUM; 2757 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2758 Opc = ISD::FMINNAN; 2759 else if (UseScalarMinMax) 2760 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2761 ISD::FMINNUM : ISD::FMINNAN; 2762 break; 2763 } 2764 } 2765 break; 2766 case SPF_FMAXNUM: 2767 switch (SPR.NaNBehavior) { 2768 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2769 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2770 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2771 case SPNB_RETURNS_ANY: 2772 2773 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2774 Opc = ISD::FMAXNUM; 2775 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2776 Opc = ISD::FMAXNAN; 2777 else if (UseScalarMinMax) 2778 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2779 ISD::FMAXNUM : ISD::FMAXNAN; 2780 break; 2781 } 2782 break; 2783 default: break; 2784 } 2785 2786 if (Opc != ISD::DELETED_NODE && 2787 (TLI.isOperationLegalOrCustom(Opc, VT) || 2788 (UseScalarMinMax && 2789 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2790 // If the underlying comparison instruction is used by any other 2791 // instruction, the consumed instructions won't be destroyed, so it is 2792 // not profitable to convert to a min/max. 2793 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2794 OpCode = Opc; 2795 LHSVal = getValue(LHS); 2796 RHSVal = getValue(RHS); 2797 BaseOps = {}; 2798 } 2799 } 2800 2801 for (unsigned i = 0; i != NumValues; ++i) { 2802 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2803 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2804 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2805 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2806 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2807 Ops); 2808 } 2809 2810 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2811 DAG.getVTList(ValueVTs), Values)); 2812 } 2813 2814 void SelectionDAGBuilder::visitTrunc(const User &I) { 2815 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2816 SDValue N = getValue(I.getOperand(0)); 2817 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2818 I.getType()); 2819 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2820 } 2821 2822 void SelectionDAGBuilder::visitZExt(const User &I) { 2823 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2824 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2825 SDValue N = getValue(I.getOperand(0)); 2826 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2827 I.getType()); 2828 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2829 } 2830 2831 void SelectionDAGBuilder::visitSExt(const User &I) { 2832 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2833 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2834 SDValue N = getValue(I.getOperand(0)); 2835 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2836 I.getType()); 2837 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2838 } 2839 2840 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2841 // FPTrunc is never a no-op cast, no need to check 2842 SDValue N = getValue(I.getOperand(0)); 2843 SDLoc dl = getCurSDLoc(); 2844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2845 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2846 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2847 DAG.getTargetConstant( 2848 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2849 } 2850 2851 void SelectionDAGBuilder::visitFPExt(const User &I) { 2852 // FPExt is never a no-op cast, no need to check 2853 SDValue N = getValue(I.getOperand(0)); 2854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2855 I.getType()); 2856 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2857 } 2858 2859 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2860 // FPToUI is never a no-op cast, no need to check 2861 SDValue N = getValue(I.getOperand(0)); 2862 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2863 I.getType()); 2864 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2865 } 2866 2867 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2868 // FPToSI is never a no-op cast, no need to check 2869 SDValue N = getValue(I.getOperand(0)); 2870 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2871 I.getType()); 2872 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2873 } 2874 2875 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2876 // UIToFP is never a no-op cast, no need to check 2877 SDValue N = getValue(I.getOperand(0)); 2878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2879 I.getType()); 2880 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2881 } 2882 2883 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2884 // SIToFP is never a no-op cast, no need to check 2885 SDValue N = getValue(I.getOperand(0)); 2886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2887 I.getType()); 2888 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2889 } 2890 2891 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2892 // What to do depends on the size of the integer and the size of the pointer. 2893 // We can either truncate, zero extend, or no-op, accordingly. 2894 SDValue N = getValue(I.getOperand(0)); 2895 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2896 I.getType()); 2897 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2898 } 2899 2900 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2901 // What to do depends on the size of the integer and the size of the pointer. 2902 // We can either truncate, zero extend, or no-op, accordingly. 2903 SDValue N = getValue(I.getOperand(0)); 2904 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2905 I.getType()); 2906 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2907 } 2908 2909 void SelectionDAGBuilder::visitBitCast(const User &I) { 2910 SDValue N = getValue(I.getOperand(0)); 2911 SDLoc dl = getCurSDLoc(); 2912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2913 I.getType()); 2914 2915 // BitCast assures us that source and destination are the same size so this is 2916 // either a BITCAST or a no-op. 2917 if (DestVT != N.getValueType()) 2918 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2919 DestVT, N)); // convert types. 2920 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2921 // might fold any kind of constant expression to an integer constant and that 2922 // is not what we are looking for. Only recognize a bitcast of a genuine 2923 // constant integer as an opaque constant. 2924 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2925 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2926 /*isOpaque*/true)); 2927 else 2928 setValue(&I, N); // noop cast. 2929 } 2930 2931 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 const Value *SV = I.getOperand(0); 2934 SDValue N = getValue(SV); 2935 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2936 2937 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2938 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2939 2940 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2941 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2942 2943 setValue(&I, N); 2944 } 2945 2946 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2948 SDValue InVec = getValue(I.getOperand(0)); 2949 SDValue InVal = getValue(I.getOperand(1)); 2950 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2951 TLI.getVectorIdxTy(DAG.getDataLayout())); 2952 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2953 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2954 InVec, InVal, InIdx)); 2955 } 2956 2957 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2959 SDValue InVec = getValue(I.getOperand(0)); 2960 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2961 TLI.getVectorIdxTy(DAG.getDataLayout())); 2962 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2963 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2964 InVec, InIdx)); 2965 } 2966 2967 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2968 SDValue Src1 = getValue(I.getOperand(0)); 2969 SDValue Src2 = getValue(I.getOperand(1)); 2970 SDLoc DL = getCurSDLoc(); 2971 2972 SmallVector<int, 8> Mask; 2973 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2974 unsigned MaskNumElts = Mask.size(); 2975 2976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2977 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2978 EVT SrcVT = Src1.getValueType(); 2979 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2980 2981 if (SrcNumElts == MaskNumElts) { 2982 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2983 return; 2984 } 2985 2986 // Normalize the shuffle vector since mask and vector length don't match. 2987 if (SrcNumElts < MaskNumElts) { 2988 // Mask is longer than the source vectors. We can use concatenate vector to 2989 // make the mask and vectors lengths match. 2990 2991 if (MaskNumElts % SrcNumElts == 0) { 2992 // Mask length is a multiple of the source vector length. 2993 // Check if the shuffle is some kind of concatenation of the input 2994 // vectors. 2995 unsigned NumConcat = MaskNumElts / SrcNumElts; 2996 bool IsConcat = true; 2997 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2998 for (unsigned i = 0; i != MaskNumElts; ++i) { 2999 int Idx = Mask[i]; 3000 if (Idx < 0) 3001 continue; 3002 // Ensure the indices in each SrcVT sized piece are sequential and that 3003 // the same source is used for the whole piece. 3004 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3005 (ConcatSrcs[i / SrcNumElts] >= 0 && 3006 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3007 IsConcat = false; 3008 break; 3009 } 3010 // Remember which source this index came from. 3011 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3012 } 3013 3014 // The shuffle is concatenating multiple vectors together. Just emit 3015 // a CONCAT_VECTORS operation. 3016 if (IsConcat) { 3017 SmallVector<SDValue, 8> ConcatOps; 3018 for (auto Src : ConcatSrcs) { 3019 if (Src < 0) 3020 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3021 else if (Src == 0) 3022 ConcatOps.push_back(Src1); 3023 else 3024 ConcatOps.push_back(Src2); 3025 } 3026 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3027 return; 3028 } 3029 } 3030 3031 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3032 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3033 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3034 PaddedMaskNumElts); 3035 3036 // Pad both vectors with undefs to make them the same length as the mask. 3037 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3038 3039 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3040 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3041 MOps1[0] = Src1; 3042 MOps2[0] = Src2; 3043 3044 Src1 = Src1.isUndef() 3045 ? DAG.getUNDEF(PaddedVT) 3046 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3047 Src2 = Src2.isUndef() 3048 ? DAG.getUNDEF(PaddedVT) 3049 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3050 3051 // Readjust mask for new input vector length. 3052 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3053 for (unsigned i = 0; i != MaskNumElts; ++i) { 3054 int Idx = Mask[i]; 3055 if (Idx >= (int)SrcNumElts) 3056 Idx -= SrcNumElts - PaddedMaskNumElts; 3057 MappedOps[i] = Idx; 3058 } 3059 3060 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3061 3062 // If the concatenated vector was padded, extract a subvector with the 3063 // correct number of elements. 3064 if (MaskNumElts != PaddedMaskNumElts) 3065 Result = DAG.getNode( 3066 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3067 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3068 3069 setValue(&I, Result); 3070 return; 3071 } 3072 3073 if (SrcNumElts > MaskNumElts) { 3074 // Analyze the access pattern of the vector to see if we can extract 3075 // two subvectors and do the shuffle. 3076 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3077 bool CanExtract = true; 3078 for (int Idx : Mask) { 3079 unsigned Input = 0; 3080 if (Idx < 0) 3081 continue; 3082 3083 if (Idx >= (int)SrcNumElts) { 3084 Input = 1; 3085 Idx -= SrcNumElts; 3086 } 3087 3088 // If all the indices come from the same MaskNumElts sized portion of 3089 // the sources we can use extract. Also make sure the extract wouldn't 3090 // extract past the end of the source. 3091 int NewStartIdx = alignDown(Idx, MaskNumElts); 3092 if (NewStartIdx + MaskNumElts > SrcNumElts || 3093 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3094 CanExtract = false; 3095 // Make sure we always update StartIdx as we use it to track if all 3096 // elements are undef. 3097 StartIdx[Input] = NewStartIdx; 3098 } 3099 3100 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3101 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3102 return; 3103 } 3104 if (CanExtract) { 3105 // Extract appropriate subvector and generate a vector shuffle 3106 for (unsigned Input = 0; Input < 2; ++Input) { 3107 SDValue &Src = Input == 0 ? Src1 : Src2; 3108 if (StartIdx[Input] < 0) 3109 Src = DAG.getUNDEF(VT); 3110 else { 3111 Src = DAG.getNode( 3112 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3113 DAG.getConstant(StartIdx[Input], DL, 3114 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3115 } 3116 } 3117 3118 // Calculate new mask. 3119 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3120 for (int &Idx : MappedOps) { 3121 if (Idx >= (int)SrcNumElts) 3122 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3123 else if (Idx >= 0) 3124 Idx -= StartIdx[0]; 3125 } 3126 3127 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3128 return; 3129 } 3130 } 3131 3132 // We can't use either concat vectors or extract subvectors so fall back to 3133 // replacing the shuffle with extract and build vector. 3134 // to insert and build vector. 3135 EVT EltVT = VT.getVectorElementType(); 3136 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3137 SmallVector<SDValue,8> Ops; 3138 for (int Idx : Mask) { 3139 SDValue Res; 3140 3141 if (Idx < 0) { 3142 Res = DAG.getUNDEF(EltVT); 3143 } else { 3144 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3145 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3146 3147 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3148 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3149 } 3150 3151 Ops.push_back(Res); 3152 } 3153 3154 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3155 } 3156 3157 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3158 const Value *Op0 = I.getOperand(0); 3159 const Value *Op1 = I.getOperand(1); 3160 Type *AggTy = I.getType(); 3161 Type *ValTy = Op1->getType(); 3162 bool IntoUndef = isa<UndefValue>(Op0); 3163 bool FromUndef = isa<UndefValue>(Op1); 3164 3165 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3166 3167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3168 SmallVector<EVT, 4> AggValueVTs; 3169 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3170 SmallVector<EVT, 4> ValValueVTs; 3171 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3172 3173 unsigned NumAggValues = AggValueVTs.size(); 3174 unsigned NumValValues = ValValueVTs.size(); 3175 SmallVector<SDValue, 4> Values(NumAggValues); 3176 3177 // Ignore an insertvalue that produces an empty object 3178 if (!NumAggValues) { 3179 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3180 return; 3181 } 3182 3183 SDValue Agg = getValue(Op0); 3184 unsigned i = 0; 3185 // Copy the beginning value(s) from the original aggregate. 3186 for (; i != LinearIndex; ++i) 3187 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3188 SDValue(Agg.getNode(), Agg.getResNo() + i); 3189 // Copy values from the inserted value(s). 3190 if (NumValValues) { 3191 SDValue Val = getValue(Op1); 3192 for (; i != LinearIndex + NumValValues; ++i) 3193 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3194 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3195 } 3196 // Copy remaining value(s) from the original aggregate. 3197 for (; i != NumAggValues; ++i) 3198 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3199 SDValue(Agg.getNode(), Agg.getResNo() + i); 3200 3201 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3202 DAG.getVTList(AggValueVTs), Values)); 3203 } 3204 3205 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3206 const Value *Op0 = I.getOperand(0); 3207 Type *AggTy = Op0->getType(); 3208 Type *ValTy = I.getType(); 3209 bool OutOfUndef = isa<UndefValue>(Op0); 3210 3211 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3212 3213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3214 SmallVector<EVT, 4> ValValueVTs; 3215 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3216 3217 unsigned NumValValues = ValValueVTs.size(); 3218 3219 // Ignore a extractvalue that produces an empty object 3220 if (!NumValValues) { 3221 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3222 return; 3223 } 3224 3225 SmallVector<SDValue, 4> Values(NumValValues); 3226 3227 SDValue Agg = getValue(Op0); 3228 // Copy out the selected value(s). 3229 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3230 Values[i - LinearIndex] = 3231 OutOfUndef ? 3232 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3233 SDValue(Agg.getNode(), Agg.getResNo() + i); 3234 3235 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3236 DAG.getVTList(ValValueVTs), Values)); 3237 } 3238 3239 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3240 Value *Op0 = I.getOperand(0); 3241 // Note that the pointer operand may be a vector of pointers. Take the scalar 3242 // element which holds a pointer. 3243 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3244 SDValue N = getValue(Op0); 3245 SDLoc dl = getCurSDLoc(); 3246 3247 // Normalize Vector GEP - all scalar operands should be converted to the 3248 // splat vector. 3249 unsigned VectorWidth = I.getType()->isVectorTy() ? 3250 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3251 3252 if (VectorWidth && !N.getValueType().isVector()) { 3253 LLVMContext &Context = *DAG.getContext(); 3254 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3255 N = DAG.getSplatBuildVector(VT, dl, N); 3256 } 3257 3258 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3259 GTI != E; ++GTI) { 3260 const Value *Idx = GTI.getOperand(); 3261 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3262 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3263 if (Field) { 3264 // N = N + Offset 3265 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3266 3267 // In an inbounds GEP with an offset that is nonnegative even when 3268 // interpreted as signed, assume there is no unsigned overflow. 3269 SDNodeFlags Flags; 3270 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3271 Flags.setNoUnsignedWrap(true); 3272 3273 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3274 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3275 } 3276 } else { 3277 MVT PtrTy = 3278 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3279 unsigned PtrSize = PtrTy.getSizeInBits(); 3280 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3281 3282 // If this is a scalar constant or a splat vector of constants, 3283 // handle it quickly. 3284 const auto *CI = dyn_cast<ConstantInt>(Idx); 3285 if (!CI && isa<ConstantDataVector>(Idx) && 3286 cast<ConstantDataVector>(Idx)->getSplatValue()) 3287 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3288 3289 if (CI) { 3290 if (CI->isZero()) 3291 continue; 3292 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3293 LLVMContext &Context = *DAG.getContext(); 3294 SDValue OffsVal = VectorWidth ? 3295 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3296 DAG.getConstant(Offs, dl, PtrTy); 3297 3298 // In an inbouds GEP with an offset that is nonnegative even when 3299 // interpreted as signed, assume there is no unsigned overflow. 3300 SDNodeFlags Flags; 3301 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3302 Flags.setNoUnsignedWrap(true); 3303 3304 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3305 continue; 3306 } 3307 3308 // N = N + Idx * ElementSize; 3309 SDValue IdxN = getValue(Idx); 3310 3311 if (!IdxN.getValueType().isVector() && VectorWidth) { 3312 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3313 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3314 } 3315 3316 // If the index is smaller or larger than intptr_t, truncate or extend 3317 // it. 3318 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3319 3320 // If this is a multiply by a power of two, turn it into a shl 3321 // immediately. This is a very common case. 3322 if (ElementSize != 1) { 3323 if (ElementSize.isPowerOf2()) { 3324 unsigned Amt = ElementSize.logBase2(); 3325 IdxN = DAG.getNode(ISD::SHL, dl, 3326 N.getValueType(), IdxN, 3327 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3328 } else { 3329 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3330 IdxN = DAG.getNode(ISD::MUL, dl, 3331 N.getValueType(), IdxN, Scale); 3332 } 3333 } 3334 3335 N = DAG.getNode(ISD::ADD, dl, 3336 N.getValueType(), N, IdxN); 3337 } 3338 } 3339 3340 setValue(&I, N); 3341 } 3342 3343 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3344 // If this is a fixed sized alloca in the entry block of the function, 3345 // allocate it statically on the stack. 3346 if (FuncInfo.StaticAllocaMap.count(&I)) 3347 return; // getValue will auto-populate this. 3348 3349 SDLoc dl = getCurSDLoc(); 3350 Type *Ty = I.getAllocatedType(); 3351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3352 auto &DL = DAG.getDataLayout(); 3353 uint64_t TySize = DL.getTypeAllocSize(Ty); 3354 unsigned Align = 3355 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3356 3357 SDValue AllocSize = getValue(I.getArraySize()); 3358 3359 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3360 if (AllocSize.getValueType() != IntPtr) 3361 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3362 3363 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3364 AllocSize, 3365 DAG.getConstant(TySize, dl, IntPtr)); 3366 3367 // Handle alignment. If the requested alignment is less than or equal to 3368 // the stack alignment, ignore it. If the size is greater than or equal to 3369 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3370 unsigned StackAlign = 3371 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3372 if (Align <= StackAlign) 3373 Align = 0; 3374 3375 // Round the size of the allocation up to the stack alignment size 3376 // by add SA-1 to the size. This doesn't overflow because we're computing 3377 // an address inside an alloca. 3378 SDNodeFlags Flags; 3379 Flags.setNoUnsignedWrap(true); 3380 AllocSize = DAG.getNode(ISD::ADD, dl, 3381 AllocSize.getValueType(), AllocSize, 3382 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3383 3384 // Mask out the low bits for alignment purposes. 3385 AllocSize = DAG.getNode(ISD::AND, dl, 3386 AllocSize.getValueType(), AllocSize, 3387 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3388 dl)); 3389 3390 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3391 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3392 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3393 setValue(&I, DSA); 3394 DAG.setRoot(DSA.getValue(1)); 3395 3396 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3397 } 3398 3399 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3400 if (I.isAtomic()) 3401 return visitAtomicLoad(I); 3402 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 const Value *SV = I.getOperand(0); 3405 if (TLI.supportSwiftError()) { 3406 // Swifterror values can come from either a function parameter with 3407 // swifterror attribute or an alloca with swifterror attribute. 3408 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3409 if (Arg->hasSwiftErrorAttr()) 3410 return visitLoadFromSwiftError(I); 3411 } 3412 3413 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3414 if (Alloca->isSwiftError()) 3415 return visitLoadFromSwiftError(I); 3416 } 3417 } 3418 3419 SDValue Ptr = getValue(SV); 3420 3421 Type *Ty = I.getType(); 3422 3423 bool isVolatile = I.isVolatile(); 3424 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3425 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3426 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3427 unsigned Alignment = I.getAlignment(); 3428 3429 AAMDNodes AAInfo; 3430 I.getAAMetadata(AAInfo); 3431 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3432 3433 SmallVector<EVT, 4> ValueVTs; 3434 SmallVector<uint64_t, 4> Offsets; 3435 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3436 unsigned NumValues = ValueVTs.size(); 3437 if (NumValues == 0) 3438 return; 3439 3440 SDValue Root; 3441 bool ConstantMemory = false; 3442 if (isVolatile || NumValues > MaxParallelChains) 3443 // Serialize volatile loads with other side effects. 3444 Root = getRoot(); 3445 else if (AA->pointsToConstantMemory(MemoryLocation( 3446 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3447 // Do not serialize (non-volatile) loads of constant memory with anything. 3448 Root = DAG.getEntryNode(); 3449 ConstantMemory = true; 3450 } else { 3451 // Do not serialize non-volatile loads against each other. 3452 Root = DAG.getRoot(); 3453 } 3454 3455 SDLoc dl = getCurSDLoc(); 3456 3457 if (isVolatile) 3458 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3459 3460 // An aggregate load cannot wrap around the address space, so offsets to its 3461 // parts don't wrap either. 3462 SDNodeFlags Flags; 3463 Flags.setNoUnsignedWrap(true); 3464 3465 SmallVector<SDValue, 4> Values(NumValues); 3466 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3467 EVT PtrVT = Ptr.getValueType(); 3468 unsigned ChainI = 0; 3469 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3470 // Serializing loads here may result in excessive register pressure, and 3471 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3472 // could recover a bit by hoisting nodes upward in the chain by recognizing 3473 // they are side-effect free or do not alias. The optimizer should really 3474 // avoid this case by converting large object/array copies to llvm.memcpy 3475 // (MaxParallelChains should always remain as failsafe). 3476 if (ChainI == MaxParallelChains) { 3477 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3478 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3479 makeArrayRef(Chains.data(), ChainI)); 3480 Root = Chain; 3481 ChainI = 0; 3482 } 3483 SDValue A = DAG.getNode(ISD::ADD, dl, 3484 PtrVT, Ptr, 3485 DAG.getConstant(Offsets[i], dl, PtrVT), 3486 &Flags); 3487 auto MMOFlags = MachineMemOperand::MONone; 3488 if (isVolatile) 3489 MMOFlags |= MachineMemOperand::MOVolatile; 3490 if (isNonTemporal) 3491 MMOFlags |= MachineMemOperand::MONonTemporal; 3492 if (isInvariant) 3493 MMOFlags |= MachineMemOperand::MOInvariant; 3494 if (isDereferenceable) 3495 MMOFlags |= MachineMemOperand::MODereferenceable; 3496 3497 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3498 MachinePointerInfo(SV, Offsets[i]), Alignment, 3499 MMOFlags, AAInfo, Ranges); 3500 3501 Values[i] = L; 3502 Chains[ChainI] = L.getValue(1); 3503 } 3504 3505 if (!ConstantMemory) { 3506 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3507 makeArrayRef(Chains.data(), ChainI)); 3508 if (isVolatile) 3509 DAG.setRoot(Chain); 3510 else 3511 PendingLoads.push_back(Chain); 3512 } 3513 3514 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3515 DAG.getVTList(ValueVTs), Values)); 3516 } 3517 3518 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3520 assert(TLI.supportSwiftError() && 3521 "call visitStoreToSwiftError when backend supports swifterror"); 3522 3523 SmallVector<EVT, 4> ValueVTs; 3524 SmallVector<uint64_t, 4> Offsets; 3525 const Value *SrcV = I.getOperand(0); 3526 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3527 SrcV->getType(), ValueVTs, &Offsets); 3528 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3529 "expect a single EVT for swifterror"); 3530 3531 SDValue Src = getValue(SrcV); 3532 // Create a virtual register, then update the virtual register. 3533 auto &DL = DAG.getDataLayout(); 3534 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3535 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3536 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3537 // Chain can be getRoot or getControlRoot. 3538 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3539 SDValue(Src.getNode(), Src.getResNo())); 3540 DAG.setRoot(CopyNode); 3541 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3542 } 3543 3544 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3545 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3546 "call visitLoadFromSwiftError when backend supports swifterror"); 3547 3548 assert(!I.isVolatile() && 3549 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3550 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3551 "Support volatile, non temporal, invariant for load_from_swift_error"); 3552 3553 const Value *SV = I.getOperand(0); 3554 Type *Ty = I.getType(); 3555 AAMDNodes AAInfo; 3556 I.getAAMetadata(AAInfo); 3557 assert(!AA->pointsToConstantMemory(MemoryLocation( 3558 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3559 "load_from_swift_error should not be constant memory"); 3560 3561 SmallVector<EVT, 4> ValueVTs; 3562 SmallVector<uint64_t, 4> Offsets; 3563 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3564 ValueVTs, &Offsets); 3565 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3566 "expect a single EVT for swifterror"); 3567 3568 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3569 SDValue L = DAG.getCopyFromReg( 3570 getRoot(), getCurSDLoc(), 3571 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3572 3573 setValue(&I, L); 3574 } 3575 3576 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3577 if (I.isAtomic()) 3578 return visitAtomicStore(I); 3579 3580 const Value *SrcV = I.getOperand(0); 3581 const Value *PtrV = I.getOperand(1); 3582 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 if (TLI.supportSwiftError()) { 3585 // Swifterror values can come from either a function parameter with 3586 // swifterror attribute or an alloca with swifterror attribute. 3587 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3588 if (Arg->hasSwiftErrorAttr()) 3589 return visitStoreToSwiftError(I); 3590 } 3591 3592 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3593 if (Alloca->isSwiftError()) 3594 return visitStoreToSwiftError(I); 3595 } 3596 } 3597 3598 SmallVector<EVT, 4> ValueVTs; 3599 SmallVector<uint64_t, 4> Offsets; 3600 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3601 SrcV->getType(), ValueVTs, &Offsets); 3602 unsigned NumValues = ValueVTs.size(); 3603 if (NumValues == 0) 3604 return; 3605 3606 // Get the lowered operands. Note that we do this after 3607 // checking if NumResults is zero, because with zero results 3608 // the operands won't have values in the map. 3609 SDValue Src = getValue(SrcV); 3610 SDValue Ptr = getValue(PtrV); 3611 3612 SDValue Root = getRoot(); 3613 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3614 SDLoc dl = getCurSDLoc(); 3615 EVT PtrVT = Ptr.getValueType(); 3616 unsigned Alignment = I.getAlignment(); 3617 AAMDNodes AAInfo; 3618 I.getAAMetadata(AAInfo); 3619 3620 auto MMOFlags = MachineMemOperand::MONone; 3621 if (I.isVolatile()) 3622 MMOFlags |= MachineMemOperand::MOVolatile; 3623 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3624 MMOFlags |= MachineMemOperand::MONonTemporal; 3625 3626 // An aggregate load cannot wrap around the address space, so offsets to its 3627 // parts don't wrap either. 3628 SDNodeFlags Flags; 3629 Flags.setNoUnsignedWrap(true); 3630 3631 unsigned ChainI = 0; 3632 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3633 // See visitLoad comments. 3634 if (ChainI == MaxParallelChains) { 3635 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3636 makeArrayRef(Chains.data(), ChainI)); 3637 Root = Chain; 3638 ChainI = 0; 3639 } 3640 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3641 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3642 SDValue St = DAG.getStore( 3643 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3644 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3645 Chains[ChainI] = St; 3646 } 3647 3648 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3649 makeArrayRef(Chains.data(), ChainI)); 3650 DAG.setRoot(StoreNode); 3651 } 3652 3653 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3654 bool IsCompressing) { 3655 SDLoc sdl = getCurSDLoc(); 3656 3657 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3658 unsigned& Alignment) { 3659 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3660 Src0 = I.getArgOperand(0); 3661 Ptr = I.getArgOperand(1); 3662 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3663 Mask = I.getArgOperand(3); 3664 }; 3665 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3666 unsigned& Alignment) { 3667 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3668 Src0 = I.getArgOperand(0); 3669 Ptr = I.getArgOperand(1); 3670 Mask = I.getArgOperand(2); 3671 Alignment = 0; 3672 }; 3673 3674 Value *PtrOperand, *MaskOperand, *Src0Operand; 3675 unsigned Alignment; 3676 if (IsCompressing) 3677 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3678 else 3679 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3680 3681 SDValue Ptr = getValue(PtrOperand); 3682 SDValue Src0 = getValue(Src0Operand); 3683 SDValue Mask = getValue(MaskOperand); 3684 3685 EVT VT = Src0.getValueType(); 3686 if (!Alignment) 3687 Alignment = DAG.getEVTAlignment(VT); 3688 3689 AAMDNodes AAInfo; 3690 I.getAAMetadata(AAInfo); 3691 3692 MachineMemOperand *MMO = 3693 DAG.getMachineFunction(). 3694 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3695 MachineMemOperand::MOStore, VT.getStoreSize(), 3696 Alignment, AAInfo); 3697 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3698 MMO, false /* Truncating */, 3699 IsCompressing); 3700 DAG.setRoot(StoreNode); 3701 setValue(&I, StoreNode); 3702 } 3703 3704 // Get a uniform base for the Gather/Scatter intrinsic. 3705 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3706 // We try to represent it as a base pointer + vector of indices. 3707 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3708 // The first operand of the GEP may be a single pointer or a vector of pointers 3709 // Example: 3710 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3711 // or 3712 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3713 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3714 // 3715 // When the first GEP operand is a single pointer - it is the uniform base we 3716 // are looking for. If first operand of the GEP is a splat vector - we 3717 // extract the spalt value and use it as a uniform base. 3718 // In all other cases the function returns 'false'. 3719 // 3720 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3721 SelectionDAGBuilder* SDB) { 3722 3723 SelectionDAG& DAG = SDB->DAG; 3724 LLVMContext &Context = *DAG.getContext(); 3725 3726 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3727 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3728 if (!GEP || GEP->getNumOperands() > 2) 3729 return false; 3730 3731 const Value *GEPPtr = GEP->getPointerOperand(); 3732 if (!GEPPtr->getType()->isVectorTy()) 3733 Ptr = GEPPtr; 3734 else if (!(Ptr = getSplatValue(GEPPtr))) 3735 return false; 3736 3737 Value *IndexVal = GEP->getOperand(1); 3738 3739 // The operands of the GEP may be defined in another basic block. 3740 // In this case we'll not find nodes for the operands. 3741 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3742 return false; 3743 3744 Base = SDB->getValue(Ptr); 3745 Index = SDB->getValue(IndexVal); 3746 3747 // Suppress sign extension. 3748 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3749 if (SDB->findValue(Sext->getOperand(0))) { 3750 IndexVal = Sext->getOperand(0); 3751 Index = SDB->getValue(IndexVal); 3752 } 3753 } 3754 if (!Index.getValueType().isVector()) { 3755 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3756 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3757 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3758 } 3759 return true; 3760 } 3761 3762 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3763 SDLoc sdl = getCurSDLoc(); 3764 3765 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3766 const Value *Ptr = I.getArgOperand(1); 3767 SDValue Src0 = getValue(I.getArgOperand(0)); 3768 SDValue Mask = getValue(I.getArgOperand(3)); 3769 EVT VT = Src0.getValueType(); 3770 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3771 if (!Alignment) 3772 Alignment = DAG.getEVTAlignment(VT); 3773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3774 3775 AAMDNodes AAInfo; 3776 I.getAAMetadata(AAInfo); 3777 3778 SDValue Base; 3779 SDValue Index; 3780 const Value *BasePtr = Ptr; 3781 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3782 3783 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3784 MachineMemOperand *MMO = DAG.getMachineFunction(). 3785 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3786 MachineMemOperand::MOStore, VT.getStoreSize(), 3787 Alignment, AAInfo); 3788 if (!UniformBase) { 3789 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3790 Index = getValue(Ptr); 3791 } 3792 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3793 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3794 Ops, MMO); 3795 DAG.setRoot(Scatter); 3796 setValue(&I, Scatter); 3797 } 3798 3799 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3800 SDLoc sdl = getCurSDLoc(); 3801 3802 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3803 unsigned& Alignment) { 3804 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3805 Ptr = I.getArgOperand(0); 3806 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3807 Mask = I.getArgOperand(2); 3808 Src0 = I.getArgOperand(3); 3809 }; 3810 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3811 unsigned& Alignment) { 3812 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3813 Ptr = I.getArgOperand(0); 3814 Alignment = 0; 3815 Mask = I.getArgOperand(1); 3816 Src0 = I.getArgOperand(2); 3817 }; 3818 3819 Value *PtrOperand, *MaskOperand, *Src0Operand; 3820 unsigned Alignment; 3821 if (IsExpanding) 3822 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3823 else 3824 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3825 3826 SDValue Ptr = getValue(PtrOperand); 3827 SDValue Src0 = getValue(Src0Operand); 3828 SDValue Mask = getValue(MaskOperand); 3829 3830 EVT VT = Src0.getValueType(); 3831 if (!Alignment) 3832 Alignment = DAG.getEVTAlignment(VT); 3833 3834 AAMDNodes AAInfo; 3835 I.getAAMetadata(AAInfo); 3836 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3837 3838 // Do not serialize masked loads of constant memory with anything. 3839 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3840 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3841 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3842 3843 MachineMemOperand *MMO = 3844 DAG.getMachineFunction(). 3845 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3846 MachineMemOperand::MOLoad, VT.getStoreSize(), 3847 Alignment, AAInfo, Ranges); 3848 3849 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3850 ISD::NON_EXTLOAD, IsExpanding); 3851 if (AddToChain) { 3852 SDValue OutChain = Load.getValue(1); 3853 DAG.setRoot(OutChain); 3854 } 3855 setValue(&I, Load); 3856 } 3857 3858 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3859 SDLoc sdl = getCurSDLoc(); 3860 3861 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3862 const Value *Ptr = I.getArgOperand(0); 3863 SDValue Src0 = getValue(I.getArgOperand(3)); 3864 SDValue Mask = getValue(I.getArgOperand(2)); 3865 3866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3867 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3868 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3869 if (!Alignment) 3870 Alignment = DAG.getEVTAlignment(VT); 3871 3872 AAMDNodes AAInfo; 3873 I.getAAMetadata(AAInfo); 3874 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3875 3876 SDValue Root = DAG.getRoot(); 3877 SDValue Base; 3878 SDValue Index; 3879 const Value *BasePtr = Ptr; 3880 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3881 bool ConstantMemory = false; 3882 if (UniformBase && 3883 AA->pointsToConstantMemory(MemoryLocation( 3884 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3885 AAInfo))) { 3886 // Do not serialize (non-volatile) loads of constant memory with anything. 3887 Root = DAG.getEntryNode(); 3888 ConstantMemory = true; 3889 } 3890 3891 MachineMemOperand *MMO = 3892 DAG.getMachineFunction(). 3893 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3894 MachineMemOperand::MOLoad, VT.getStoreSize(), 3895 Alignment, AAInfo, Ranges); 3896 3897 if (!UniformBase) { 3898 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3899 Index = getValue(Ptr); 3900 } 3901 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3902 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3903 Ops, MMO); 3904 3905 SDValue OutChain = Gather.getValue(1); 3906 if (!ConstantMemory) 3907 PendingLoads.push_back(OutChain); 3908 setValue(&I, Gather); 3909 } 3910 3911 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3912 SDLoc dl = getCurSDLoc(); 3913 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3914 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3915 SynchronizationScope Scope = I.getSynchScope(); 3916 3917 SDValue InChain = getRoot(); 3918 3919 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3920 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3921 SDValue L = DAG.getAtomicCmpSwap( 3922 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3923 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3924 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3925 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3926 3927 SDValue OutChain = L.getValue(2); 3928 3929 setValue(&I, L); 3930 DAG.setRoot(OutChain); 3931 } 3932 3933 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3934 SDLoc dl = getCurSDLoc(); 3935 ISD::NodeType NT; 3936 switch (I.getOperation()) { 3937 default: llvm_unreachable("Unknown atomicrmw operation"); 3938 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3939 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3940 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3941 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3942 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3943 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3944 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3945 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3946 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3947 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3948 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3949 } 3950 AtomicOrdering Order = I.getOrdering(); 3951 SynchronizationScope Scope = I.getSynchScope(); 3952 3953 SDValue InChain = getRoot(); 3954 3955 SDValue L = 3956 DAG.getAtomic(NT, dl, 3957 getValue(I.getValOperand()).getSimpleValueType(), 3958 InChain, 3959 getValue(I.getPointerOperand()), 3960 getValue(I.getValOperand()), 3961 I.getPointerOperand(), 3962 /* Alignment=*/ 0, Order, Scope); 3963 3964 SDValue OutChain = L.getValue(1); 3965 3966 setValue(&I, L); 3967 DAG.setRoot(OutChain); 3968 } 3969 3970 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3971 SDLoc dl = getCurSDLoc(); 3972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3973 SDValue Ops[3]; 3974 Ops[0] = getRoot(); 3975 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3976 TLI.getPointerTy(DAG.getDataLayout())); 3977 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3978 TLI.getPointerTy(DAG.getDataLayout())); 3979 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3980 } 3981 3982 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3983 SDLoc dl = getCurSDLoc(); 3984 AtomicOrdering Order = I.getOrdering(); 3985 SynchronizationScope Scope = I.getSynchScope(); 3986 3987 SDValue InChain = getRoot(); 3988 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3991 3992 if (I.getAlignment() < VT.getSizeInBits() / 8) 3993 report_fatal_error("Cannot generate unaligned atomic load"); 3994 3995 MachineMemOperand *MMO = 3996 DAG.getMachineFunction(). 3997 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3998 MachineMemOperand::MOVolatile | 3999 MachineMemOperand::MOLoad, 4000 VT.getStoreSize(), 4001 I.getAlignment() ? I.getAlignment() : 4002 DAG.getEVTAlignment(VT), 4003 AAMDNodes(), nullptr, Scope, Order); 4004 4005 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4006 SDValue L = 4007 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4008 getValue(I.getPointerOperand()), MMO); 4009 4010 SDValue OutChain = L.getValue(1); 4011 4012 setValue(&I, L); 4013 DAG.setRoot(OutChain); 4014 } 4015 4016 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4017 SDLoc dl = getCurSDLoc(); 4018 4019 AtomicOrdering Order = I.getOrdering(); 4020 SynchronizationScope Scope = I.getSynchScope(); 4021 4022 SDValue InChain = getRoot(); 4023 4024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4025 EVT VT = 4026 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4027 4028 if (I.getAlignment() < VT.getSizeInBits() / 8) 4029 report_fatal_error("Cannot generate unaligned atomic store"); 4030 4031 SDValue OutChain = 4032 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4033 InChain, 4034 getValue(I.getPointerOperand()), 4035 getValue(I.getValueOperand()), 4036 I.getPointerOperand(), I.getAlignment(), 4037 Order, Scope); 4038 4039 DAG.setRoot(OutChain); 4040 } 4041 4042 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4043 /// node. 4044 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4045 unsigned Intrinsic) { 4046 // Ignore the callsite's attributes. A specific call site may be marked with 4047 // readnone, but the lowering code will expect the chain based on the 4048 // definition. 4049 const Function *F = I.getCalledFunction(); 4050 bool HasChain = !F->doesNotAccessMemory(); 4051 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4052 4053 // Build the operand list. 4054 SmallVector<SDValue, 8> Ops; 4055 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4056 if (OnlyLoad) { 4057 // We don't need to serialize loads against other loads. 4058 Ops.push_back(DAG.getRoot()); 4059 } else { 4060 Ops.push_back(getRoot()); 4061 } 4062 } 4063 4064 // Info is set by getTgtMemInstrinsic 4065 TargetLowering::IntrinsicInfo Info; 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4068 4069 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4070 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4071 Info.opc == ISD::INTRINSIC_W_CHAIN) 4072 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4073 TLI.getPointerTy(DAG.getDataLayout()))); 4074 4075 // Add all operands of the call to the operand list. 4076 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4077 SDValue Op = getValue(I.getArgOperand(i)); 4078 Ops.push_back(Op); 4079 } 4080 4081 SmallVector<EVT, 4> ValueVTs; 4082 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4083 4084 if (HasChain) 4085 ValueVTs.push_back(MVT::Other); 4086 4087 SDVTList VTs = DAG.getVTList(ValueVTs); 4088 4089 // Create the node. 4090 SDValue Result; 4091 if (IsTgtIntrinsic) { 4092 // This is target intrinsic that touches memory 4093 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4094 VTs, Ops, Info.memVT, 4095 MachinePointerInfo(Info.ptrVal, Info.offset), 4096 Info.align, Info.vol, 4097 Info.readMem, Info.writeMem, Info.size); 4098 } else if (!HasChain) { 4099 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4100 } else if (!I.getType()->isVoidTy()) { 4101 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4102 } else { 4103 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4104 } 4105 4106 if (HasChain) { 4107 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4108 if (OnlyLoad) 4109 PendingLoads.push_back(Chain); 4110 else 4111 DAG.setRoot(Chain); 4112 } 4113 4114 if (!I.getType()->isVoidTy()) { 4115 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4116 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4117 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4118 } else 4119 Result = lowerRangeToAssertZExt(DAG, I, Result); 4120 4121 setValue(&I, Result); 4122 } 4123 } 4124 4125 /// GetSignificand - Get the significand and build it into a floating-point 4126 /// number with exponent of 1: 4127 /// 4128 /// Op = (Op & 0x007fffff) | 0x3f800000; 4129 /// 4130 /// where Op is the hexadecimal representation of floating point value. 4131 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4132 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4133 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4134 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4135 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4136 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4137 } 4138 4139 /// GetExponent - Get the exponent: 4140 /// 4141 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4142 /// 4143 /// where Op is the hexadecimal representation of floating point value. 4144 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4145 const TargetLowering &TLI, const SDLoc &dl) { 4146 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4147 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4148 SDValue t1 = DAG.getNode( 4149 ISD::SRL, dl, MVT::i32, t0, 4150 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4151 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4152 DAG.getConstant(127, dl, MVT::i32)); 4153 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4154 } 4155 4156 /// getF32Constant - Get 32-bit floating point constant. 4157 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4158 const SDLoc &dl) { 4159 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4160 MVT::f32); 4161 } 4162 4163 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4164 SelectionDAG &DAG) { 4165 // TODO: What fast-math-flags should be set on the floating-point nodes? 4166 4167 // IntegerPartOfX = ((int32_t)(t0); 4168 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4169 4170 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4171 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4172 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4173 4174 // IntegerPartOfX <<= 23; 4175 IntegerPartOfX = DAG.getNode( 4176 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4177 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4178 DAG.getDataLayout()))); 4179 4180 SDValue TwoToFractionalPartOfX; 4181 if (LimitFloatPrecision <= 6) { 4182 // For floating-point precision of 6: 4183 // 4184 // TwoToFractionalPartOfX = 4185 // 0.997535578f + 4186 // (0.735607626f + 0.252464424f * x) * x; 4187 // 4188 // error 0.0144103317, which is 6 bits 4189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4190 getF32Constant(DAG, 0x3e814304, dl)); 4191 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4192 getF32Constant(DAG, 0x3f3c50c8, dl)); 4193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4194 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4195 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4196 } else if (LimitFloatPrecision <= 12) { 4197 // For floating-point precision of 12: 4198 // 4199 // TwoToFractionalPartOfX = 4200 // 0.999892986f + 4201 // (0.696457318f + 4202 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4203 // 4204 // error 0.000107046256, which is 13 to 14 bits 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0x3da235e3, dl)); 4207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4208 getF32Constant(DAG, 0x3e65b8f3, dl)); 4209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4211 getF32Constant(DAG, 0x3f324b07, dl)); 4212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4213 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4214 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4215 } else { // LimitFloatPrecision <= 18 4216 // For floating-point precision of 18: 4217 // 4218 // TwoToFractionalPartOfX = 4219 // 0.999999982f + 4220 // (0.693148872f + 4221 // (0.240227044f + 4222 // (0.554906021e-1f + 4223 // (0.961591928e-2f + 4224 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4225 // error 2.47208000*10^(-7), which is better than 18 bits 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4227 getF32Constant(DAG, 0x3924b03e, dl)); 4228 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4229 getF32Constant(DAG, 0x3ab24b87, dl)); 4230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4231 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4232 getF32Constant(DAG, 0x3c1d8c17, dl)); 4233 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4234 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4235 getF32Constant(DAG, 0x3d634a1d, dl)); 4236 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4237 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4238 getF32Constant(DAG, 0x3e75fe14, dl)); 4239 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4240 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4241 getF32Constant(DAG, 0x3f317234, dl)); 4242 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4243 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4244 getF32Constant(DAG, 0x3f800000, dl)); 4245 } 4246 4247 // Add the exponent into the result in integer domain. 4248 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4249 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4250 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4251 } 4252 4253 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4254 /// limited-precision mode. 4255 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4256 const TargetLowering &TLI) { 4257 if (Op.getValueType() == MVT::f32 && 4258 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4259 4260 // Put the exponent in the right bit position for later addition to the 4261 // final result: 4262 // 4263 // #define LOG2OFe 1.4426950f 4264 // t0 = Op * LOG2OFe 4265 4266 // TODO: What fast-math-flags should be set here? 4267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4268 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4269 return getLimitedPrecisionExp2(t0, dl, DAG); 4270 } 4271 4272 // No special expansion. 4273 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4274 } 4275 4276 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4277 /// limited-precision mode. 4278 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4279 const TargetLowering &TLI) { 4280 4281 // TODO: What fast-math-flags should be set on the floating-point nodes? 4282 4283 if (Op.getValueType() == MVT::f32 && 4284 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4285 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4286 4287 // Scale the exponent by log(2) [0.69314718f]. 4288 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4289 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4290 getF32Constant(DAG, 0x3f317218, dl)); 4291 4292 // Get the significand and build it into a floating-point number with 4293 // exponent of 1. 4294 SDValue X = GetSignificand(DAG, Op1, dl); 4295 4296 SDValue LogOfMantissa; 4297 if (LimitFloatPrecision <= 6) { 4298 // For floating-point precision of 6: 4299 // 4300 // LogofMantissa = 4301 // -1.1609546f + 4302 // (1.4034025f - 0.23903021f * x) * x; 4303 // 4304 // error 0.0034276066, which is better than 8 bits 4305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0xbe74c456, dl)); 4307 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4308 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4310 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4311 getF32Constant(DAG, 0x3f949a29, dl)); 4312 } else if (LimitFloatPrecision <= 12) { 4313 // For floating-point precision of 12: 4314 // 4315 // LogOfMantissa = 4316 // -1.7417939f + 4317 // (2.8212026f + 4318 // (-1.4699568f + 4319 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4320 // 4321 // error 0.000061011436, which is 14 bits 4322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4323 getF32Constant(DAG, 0xbd67b6d6, dl)); 4324 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4325 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4327 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3fbc278b, dl)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x40348e95, dl)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3fdef31a, dl)); 4335 } else { // LimitFloatPrecision <= 18 4336 // For floating-point precision of 18: 4337 // 4338 // LogOfMantissa = 4339 // -2.1072184f + 4340 // (4.2372794f + 4341 // (-3.7029485f + 4342 // (2.2781945f + 4343 // (-0.87823314f + 4344 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4345 // 4346 // error 0.0000023660568, which is better than 18 bits 4347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0xbc91e5ac, dl)); 4349 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4350 getF32Constant(DAG, 0x3e4350aa, dl)); 4351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4352 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4353 getF32Constant(DAG, 0x3f60d3e3, dl)); 4354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4355 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4356 getF32Constant(DAG, 0x4011cdf0, dl)); 4357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4358 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4359 getF32Constant(DAG, 0x406cfd1c, dl)); 4360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4361 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4362 getF32Constant(DAG, 0x408797cb, dl)); 4363 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4364 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4365 getF32Constant(DAG, 0x4006dcab, dl)); 4366 } 4367 4368 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4369 } 4370 4371 // No special expansion. 4372 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4373 } 4374 4375 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4376 /// limited-precision mode. 4377 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4378 const TargetLowering &TLI) { 4379 4380 // TODO: What fast-math-flags should be set on the floating-point nodes? 4381 4382 if (Op.getValueType() == MVT::f32 && 4383 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4384 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4385 4386 // Get the exponent. 4387 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4388 4389 // Get the significand and build it into a floating-point number with 4390 // exponent of 1. 4391 SDValue X = GetSignificand(DAG, Op1, dl); 4392 4393 // Different possible minimax approximations of significand in 4394 // floating-point for various degrees of accuracy over [1,2]. 4395 SDValue Log2ofMantissa; 4396 if (LimitFloatPrecision <= 6) { 4397 // For floating-point precision of 6: 4398 // 4399 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4400 // 4401 // error 0.0049451742, which is more than 7 bits 4402 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0xbeb08fe0, dl)); 4404 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4405 getF32Constant(DAG, 0x40019463, dl)); 4406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4407 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3fd6633d, dl)); 4409 } else if (LimitFloatPrecision <= 12) { 4410 // For floating-point precision of 12: 4411 // 4412 // Log2ofMantissa = 4413 // -2.51285454f + 4414 // (4.07009056f + 4415 // (-2.12067489f + 4416 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4417 // 4418 // error 0.0000876136000, which is better than 13 bits 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0xbda7262e, dl)); 4421 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4422 getF32Constant(DAG, 0x3f25280b, dl)); 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4424 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x4007b923, dl)); 4426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4427 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4428 getF32Constant(DAG, 0x40823e2f, dl)); 4429 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4430 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4431 getF32Constant(DAG, 0x4020d29c, dl)); 4432 } else { // LimitFloatPrecision <= 18 4433 // For floating-point precision of 18: 4434 // 4435 // Log2ofMantissa = 4436 // -3.0400495f + 4437 // (6.1129976f + 4438 // (-5.3420409f + 4439 // (3.2865683f + 4440 // (-1.2669343f + 4441 // (0.27515199f - 4442 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4443 // 4444 // error 0.0000018516, which is better than 18 bits 4445 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4446 getF32Constant(DAG, 0xbcd2769e, dl)); 4447 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4448 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4450 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4451 getF32Constant(DAG, 0x3fa22ae7, dl)); 4452 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4453 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4454 getF32Constant(DAG, 0x40525723, dl)); 4455 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4456 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4457 getF32Constant(DAG, 0x40aaf200, dl)); 4458 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4459 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4460 getF32Constant(DAG, 0x40c39dad, dl)); 4461 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4462 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4463 getF32Constant(DAG, 0x4042902c, dl)); 4464 } 4465 4466 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4467 } 4468 4469 // No special expansion. 4470 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4471 } 4472 4473 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4474 /// limited-precision mode. 4475 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4476 const TargetLowering &TLI) { 4477 4478 // TODO: What fast-math-flags should be set on the floating-point nodes? 4479 4480 if (Op.getValueType() == MVT::f32 && 4481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4482 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4483 4484 // Scale the exponent by log10(2) [0.30102999f]. 4485 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4486 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4487 getF32Constant(DAG, 0x3e9a209a, dl)); 4488 4489 // Get the significand and build it into a floating-point number with 4490 // exponent of 1. 4491 SDValue X = GetSignificand(DAG, Op1, dl); 4492 4493 SDValue Log10ofMantissa; 4494 if (LimitFloatPrecision <= 6) { 4495 // For floating-point precision of 6: 4496 // 4497 // Log10ofMantissa = 4498 // -0.50419619f + 4499 // (0.60948995f - 0.10380950f * x) * x; 4500 // 4501 // error 0.0014886165, which is 6 bits 4502 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4503 getF32Constant(DAG, 0xbdd49a13, dl)); 4504 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4505 getF32Constant(DAG, 0x3f1c0789, dl)); 4506 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4507 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4508 getF32Constant(DAG, 0x3f011300, dl)); 4509 } else if (LimitFloatPrecision <= 12) { 4510 // For floating-point precision of 12: 4511 // 4512 // Log10ofMantissa = 4513 // -0.64831180f + 4514 // (0.91751397f + 4515 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4516 // 4517 // error 0.00019228036, which is better than 12 bits 4518 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4519 getF32Constant(DAG, 0x3d431f31, dl)); 4520 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4521 getF32Constant(DAG, 0x3ea21fb2, dl)); 4522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4523 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4524 getF32Constant(DAG, 0x3f6ae232, dl)); 4525 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4526 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4527 getF32Constant(DAG, 0x3f25f7c3, dl)); 4528 } else { // LimitFloatPrecision <= 18 4529 // For floating-point precision of 18: 4530 // 4531 // Log10ofMantissa = 4532 // -0.84299375f + 4533 // (1.5327582f + 4534 // (-1.0688956f + 4535 // (0.49102474f + 4536 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4537 // 4538 // error 0.0000037995730, which is better than 18 bits 4539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4540 getF32Constant(DAG, 0x3c5d51ce, dl)); 4541 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4542 getF32Constant(DAG, 0x3e00685a, dl)); 4543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4544 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4545 getF32Constant(DAG, 0x3efb6798, dl)); 4546 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4547 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4548 getF32Constant(DAG, 0x3f88d192, dl)); 4549 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4550 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4551 getF32Constant(DAG, 0x3fc4316c, dl)); 4552 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4553 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4554 getF32Constant(DAG, 0x3f57ce70, dl)); 4555 } 4556 4557 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4558 } 4559 4560 // No special expansion. 4561 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4562 } 4563 4564 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4565 /// limited-precision mode. 4566 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4567 const TargetLowering &TLI) { 4568 if (Op.getValueType() == MVT::f32 && 4569 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4570 return getLimitedPrecisionExp2(Op, dl, DAG); 4571 4572 // No special expansion. 4573 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4574 } 4575 4576 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4577 /// limited-precision mode with x == 10.0f. 4578 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4579 SelectionDAG &DAG, const TargetLowering &TLI) { 4580 bool IsExp10 = false; 4581 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4582 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4583 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4584 APFloat Ten(10.0f); 4585 IsExp10 = LHSC->isExactlyValue(Ten); 4586 } 4587 } 4588 4589 // TODO: What fast-math-flags should be set on the FMUL node? 4590 if (IsExp10) { 4591 // Put the exponent in the right bit position for later addition to the 4592 // final result: 4593 // 4594 // #define LOG2OF10 3.3219281f 4595 // t0 = Op * LOG2OF10; 4596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4597 getF32Constant(DAG, 0x40549a78, dl)); 4598 return getLimitedPrecisionExp2(t0, dl, DAG); 4599 } 4600 4601 // No special expansion. 4602 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4603 } 4604 4605 4606 /// ExpandPowI - Expand a llvm.powi intrinsic. 4607 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4608 SelectionDAG &DAG) { 4609 // If RHS is a constant, we can expand this out to a multiplication tree, 4610 // otherwise we end up lowering to a call to __powidf2 (for example). When 4611 // optimizing for size, we only want to do this if the expansion would produce 4612 // a small number of multiplies, otherwise we do the full expansion. 4613 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4614 // Get the exponent as a positive value. 4615 unsigned Val = RHSC->getSExtValue(); 4616 if ((int)Val < 0) Val = -Val; 4617 4618 // powi(x, 0) -> 1.0 4619 if (Val == 0) 4620 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4621 4622 const Function *F = DAG.getMachineFunction().getFunction(); 4623 if (!F->optForSize() || 4624 // If optimizing for size, don't insert too many multiplies. 4625 // This inserts up to 5 multiplies. 4626 countPopulation(Val) + Log2_32(Val) < 7) { 4627 // We use the simple binary decomposition method to generate the multiply 4628 // sequence. There are more optimal ways to do this (for example, 4629 // powi(x,15) generates one more multiply than it should), but this has 4630 // the benefit of being both really simple and much better than a libcall. 4631 SDValue Res; // Logically starts equal to 1.0 4632 SDValue CurSquare = LHS; 4633 // TODO: Intrinsics should have fast-math-flags that propagate to these 4634 // nodes. 4635 while (Val) { 4636 if (Val & 1) { 4637 if (Res.getNode()) 4638 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4639 else 4640 Res = CurSquare; // 1.0*CurSquare. 4641 } 4642 4643 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4644 CurSquare, CurSquare); 4645 Val >>= 1; 4646 } 4647 4648 // If the original was negative, invert the result, producing 1/(x*x*x). 4649 if (RHSC->getSExtValue() < 0) 4650 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4651 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4652 return Res; 4653 } 4654 } 4655 4656 // Otherwise, expand to a libcall. 4657 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4658 } 4659 4660 // getUnderlyingArgReg - Find underlying register used for a truncated or 4661 // bitcasted argument. 4662 static unsigned getUnderlyingArgReg(const SDValue &N) { 4663 switch (N.getOpcode()) { 4664 case ISD::CopyFromReg: 4665 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4666 case ISD::BITCAST: 4667 case ISD::AssertZext: 4668 case ISD::AssertSext: 4669 case ISD::TRUNCATE: 4670 return getUnderlyingArgReg(N.getOperand(0)); 4671 default: 4672 return 0; 4673 } 4674 } 4675 4676 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4677 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4678 /// At the end of instruction selection, they will be inserted to the entry BB. 4679 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4680 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4681 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4682 const Argument *Arg = dyn_cast<Argument>(V); 4683 if (!Arg) 4684 return false; 4685 4686 MachineFunction &MF = DAG.getMachineFunction(); 4687 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4688 4689 // Ignore inlined function arguments here. 4690 // 4691 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4692 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4693 return false; 4694 4695 Optional<MachineOperand> Op; 4696 // Some arguments' frame index is recorded during argument lowering. 4697 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4698 Op = MachineOperand::CreateFI(FI); 4699 4700 if (!Op && N.getNode()) { 4701 unsigned Reg = getUnderlyingArgReg(N); 4702 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4703 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4704 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4705 if (PR) 4706 Reg = PR; 4707 } 4708 if (Reg) 4709 Op = MachineOperand::CreateReg(Reg, false); 4710 } 4711 4712 if (!Op) { 4713 // Check if ValueMap has reg number. 4714 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4715 if (VMI != FuncInfo.ValueMap.end()) 4716 Op = MachineOperand::CreateReg(VMI->second, false); 4717 } 4718 4719 if (!Op && N.getNode()) 4720 // Check if frame index is available. 4721 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4722 if (FrameIndexSDNode *FINode = 4723 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4724 Op = MachineOperand::CreateFI(FINode->getIndex()); 4725 4726 if (!Op) 4727 return false; 4728 4729 assert(Variable->isValidLocationForIntrinsic(DL) && 4730 "Expected inlined-at fields to agree"); 4731 if (Op->isReg()) 4732 FuncInfo.ArgDbgValues.push_back( 4733 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4734 Op->getReg(), Offset, Variable, Expr)); 4735 else 4736 FuncInfo.ArgDbgValues.push_back( 4737 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4738 .add(*Op) 4739 .addImm(Offset) 4740 .addMetadata(Variable) 4741 .addMetadata(Expr)); 4742 4743 return true; 4744 } 4745 4746 /// Return the appropriate SDDbgValue based on N. 4747 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4748 DILocalVariable *Variable, 4749 DIExpression *Expr, int64_t Offset, 4750 const DebugLoc &dl, 4751 unsigned DbgSDNodeOrder) { 4752 SDDbgValue *SDV; 4753 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4754 if (FISDN && Expr->startsWithDeref()) { 4755 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4756 // stack slot locations as such instead of as indirectly addressed 4757 // locations. 4758 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4759 Expr->elements_end()); 4760 DIExpression *DerefedDIExpr = 4761 DIExpression::get(*DAG.getContext(), TrailingElements); 4762 int FI = FISDN->getIndex(); 4763 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4764 DbgSDNodeOrder); 4765 } else { 4766 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4767 Offset, dl, DbgSDNodeOrder); 4768 } 4769 return SDV; 4770 } 4771 4772 // VisualStudio defines setjmp as _setjmp 4773 #if defined(_MSC_VER) && defined(setjmp) && \ 4774 !defined(setjmp_undefined_for_msvc) 4775 # pragma push_macro("setjmp") 4776 # undef setjmp 4777 # define setjmp_undefined_for_msvc 4778 #endif 4779 4780 /// Lower the call to the specified intrinsic function. If we want to emit this 4781 /// as a call to a named external function, return the name. Otherwise, lower it 4782 /// and return null. 4783 const char * 4784 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4786 SDLoc sdl = getCurSDLoc(); 4787 DebugLoc dl = getCurDebugLoc(); 4788 SDValue Res; 4789 4790 switch (Intrinsic) { 4791 default: 4792 // By default, turn this into a target intrinsic node. 4793 visitTargetIntrinsic(I, Intrinsic); 4794 return nullptr; 4795 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4796 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4797 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4798 case Intrinsic::returnaddress: 4799 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4800 TLI.getPointerTy(DAG.getDataLayout()), 4801 getValue(I.getArgOperand(0)))); 4802 return nullptr; 4803 case Intrinsic::addressofreturnaddress: 4804 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4805 TLI.getPointerTy(DAG.getDataLayout()))); 4806 return nullptr; 4807 case Intrinsic::frameaddress: 4808 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4809 TLI.getPointerTy(DAG.getDataLayout()), 4810 getValue(I.getArgOperand(0)))); 4811 return nullptr; 4812 case Intrinsic::read_register: { 4813 Value *Reg = I.getArgOperand(0); 4814 SDValue Chain = getRoot(); 4815 SDValue RegName = 4816 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4817 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4818 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4819 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4820 setValue(&I, Res); 4821 DAG.setRoot(Res.getValue(1)); 4822 return nullptr; 4823 } 4824 case Intrinsic::write_register: { 4825 Value *Reg = I.getArgOperand(0); 4826 Value *RegValue = I.getArgOperand(1); 4827 SDValue Chain = getRoot(); 4828 SDValue RegName = 4829 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4830 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4831 RegName, getValue(RegValue))); 4832 return nullptr; 4833 } 4834 case Intrinsic::setjmp: 4835 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4836 case Intrinsic::longjmp: 4837 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4838 case Intrinsic::memcpy: { 4839 SDValue Op1 = getValue(I.getArgOperand(0)); 4840 SDValue Op2 = getValue(I.getArgOperand(1)); 4841 SDValue Op3 = getValue(I.getArgOperand(2)); 4842 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4843 if (!Align) 4844 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4845 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4846 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4847 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4848 false, isTC, 4849 MachinePointerInfo(I.getArgOperand(0)), 4850 MachinePointerInfo(I.getArgOperand(1))); 4851 updateDAGForMaybeTailCall(MC); 4852 return nullptr; 4853 } 4854 case Intrinsic::memset: { 4855 SDValue Op1 = getValue(I.getArgOperand(0)); 4856 SDValue Op2 = getValue(I.getArgOperand(1)); 4857 SDValue Op3 = getValue(I.getArgOperand(2)); 4858 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4859 if (!Align) 4860 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4861 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4862 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4863 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4864 isTC, MachinePointerInfo(I.getArgOperand(0))); 4865 updateDAGForMaybeTailCall(MS); 4866 return nullptr; 4867 } 4868 case Intrinsic::memmove: { 4869 SDValue Op1 = getValue(I.getArgOperand(0)); 4870 SDValue Op2 = getValue(I.getArgOperand(1)); 4871 SDValue Op3 = getValue(I.getArgOperand(2)); 4872 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4873 if (!Align) 4874 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4875 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4876 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4877 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4878 isTC, MachinePointerInfo(I.getArgOperand(0)), 4879 MachinePointerInfo(I.getArgOperand(1))); 4880 updateDAGForMaybeTailCall(MM); 4881 return nullptr; 4882 } 4883 case Intrinsic::memcpy_element_atomic: { 4884 SDValue Dst = getValue(I.getArgOperand(0)); 4885 SDValue Src = getValue(I.getArgOperand(1)); 4886 SDValue NumElements = getValue(I.getArgOperand(2)); 4887 SDValue ElementSize = getValue(I.getArgOperand(3)); 4888 4889 // Emit a library call. 4890 TargetLowering::ArgListTy Args; 4891 TargetLowering::ArgListEntry Entry; 4892 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4893 Entry.Node = Dst; 4894 Args.push_back(Entry); 4895 4896 Entry.Node = Src; 4897 Args.push_back(Entry); 4898 4899 Entry.Ty = I.getArgOperand(2)->getType(); 4900 Entry.Node = NumElements; 4901 Args.push_back(Entry); 4902 4903 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4904 Entry.Node = ElementSize; 4905 Args.push_back(Entry); 4906 4907 uint64_t ElementSizeConstant = 4908 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4909 RTLIB::Libcall LibraryCall = 4910 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4911 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4912 report_fatal_error("Unsupported element size"); 4913 4914 TargetLowering::CallLoweringInfo CLI(DAG); 4915 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 4916 TLI.getLibcallCallingConv(LibraryCall), 4917 Type::getVoidTy(*DAG.getContext()), 4918 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 4919 TLI.getPointerTy(DAG.getDataLayout())), 4920 std::move(Args)); 4921 4922 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4923 DAG.setRoot(CallResult.second); 4924 return nullptr; 4925 } 4926 case Intrinsic::dbg_declare: { 4927 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4928 DILocalVariable *Variable = DI.getVariable(); 4929 DIExpression *Expression = DI.getExpression(); 4930 const Value *Address = DI.getAddress(); 4931 assert(Variable && "Missing variable"); 4932 if (!Address) { 4933 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4934 return nullptr; 4935 } 4936 4937 // Check if address has undef value. 4938 if (isa<UndefValue>(Address) || 4939 (Address->use_empty() && !isa<Argument>(Address))) { 4940 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4941 return nullptr; 4942 } 4943 4944 SDValue &N = NodeMap[Address]; 4945 if (!N.getNode() && isa<Argument>(Address)) 4946 // Check unused arguments map. 4947 N = UnusedArgNodeMap[Address]; 4948 SDDbgValue *SDV; 4949 if (N.getNode()) { 4950 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4951 Address = BCI->getOperand(0); 4952 // Parameters are handled specially. 4953 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4954 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4955 if (isParameter && FINode) { 4956 // Byval parameter. We have a frame index at this point. 4957 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4958 FINode->getIndex(), 0, dl, SDNodeOrder); 4959 } else if (isa<Argument>(Address)) { 4960 // Address is an argument, so try to emit its dbg value using 4961 // virtual register info from the FuncInfo.ValueMap. 4962 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4963 N); 4964 return nullptr; 4965 } else { 4966 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4967 true, 0, dl, SDNodeOrder); 4968 } 4969 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4970 } else { 4971 // If Address is an argument then try to emit its dbg value using 4972 // virtual register info from the FuncInfo.ValueMap. 4973 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4974 N)) { 4975 // If variable is pinned by a alloca in dominating bb then 4976 // use StaticAllocaMap. 4977 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4978 if (AI->getParent() != DI.getParent()) { 4979 DenseMap<const AllocaInst*, int>::iterator SI = 4980 FuncInfo.StaticAllocaMap.find(AI); 4981 if (SI != FuncInfo.StaticAllocaMap.end()) { 4982 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4983 0, dl, SDNodeOrder); 4984 DAG.AddDbgValue(SDV, nullptr, false); 4985 return nullptr; 4986 } 4987 } 4988 } 4989 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4990 } 4991 } 4992 return nullptr; 4993 } 4994 case Intrinsic::dbg_value: { 4995 const DbgValueInst &DI = cast<DbgValueInst>(I); 4996 assert(DI.getVariable() && "Missing variable"); 4997 4998 DILocalVariable *Variable = DI.getVariable(); 4999 DIExpression *Expression = DI.getExpression(); 5000 uint64_t Offset = DI.getOffset(); 5001 const Value *V = DI.getValue(); 5002 if (!V) 5003 return nullptr; 5004 5005 SDDbgValue *SDV; 5006 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5007 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5008 SDNodeOrder); 5009 DAG.AddDbgValue(SDV, nullptr, false); 5010 } else { 5011 // Do not use getValue() in here; we don't want to generate code at 5012 // this point if it hasn't been done yet. 5013 SDValue N = NodeMap[V]; 5014 if (!N.getNode() && isa<Argument>(V)) 5015 // Check unused arguments map. 5016 N = UnusedArgNodeMap[V]; 5017 if (N.getNode()) { 5018 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5019 false, N)) { 5020 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5021 DAG.AddDbgValue(SDV, N.getNode(), false); 5022 } 5023 } else if (!V->use_empty() ) { 5024 // Do not call getValue(V) yet, as we don't want to generate code. 5025 // Remember it for later. 5026 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5027 DanglingDebugInfoMap[V] = DDI; 5028 } else { 5029 // We may expand this to cover more cases. One case where we have no 5030 // data available is an unreferenced parameter. 5031 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5032 } 5033 } 5034 5035 // Build a debug info table entry. 5036 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5037 V = BCI->getOperand(0); 5038 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5039 // Don't handle byval struct arguments or VLAs, for example. 5040 if (!AI) { 5041 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5042 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5043 return nullptr; 5044 } 5045 DenseMap<const AllocaInst*, int>::iterator SI = 5046 FuncInfo.StaticAllocaMap.find(AI); 5047 if (SI == FuncInfo.StaticAllocaMap.end()) 5048 return nullptr; // VLAs. 5049 return nullptr; 5050 } 5051 5052 case Intrinsic::eh_typeid_for: { 5053 // Find the type id for the given typeinfo. 5054 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5055 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5056 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5057 setValue(&I, Res); 5058 return nullptr; 5059 } 5060 5061 case Intrinsic::eh_return_i32: 5062 case Intrinsic::eh_return_i64: 5063 DAG.getMachineFunction().setCallsEHReturn(true); 5064 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5065 MVT::Other, 5066 getControlRoot(), 5067 getValue(I.getArgOperand(0)), 5068 getValue(I.getArgOperand(1)))); 5069 return nullptr; 5070 case Intrinsic::eh_unwind_init: 5071 DAG.getMachineFunction().setCallsUnwindInit(true); 5072 return nullptr; 5073 case Intrinsic::eh_dwarf_cfa: { 5074 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5075 TLI.getPointerTy(DAG.getDataLayout()), 5076 getValue(I.getArgOperand(0)))); 5077 return nullptr; 5078 } 5079 case Intrinsic::eh_sjlj_callsite: { 5080 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5081 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5082 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5083 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5084 5085 MMI.setCurrentCallSite(CI->getZExtValue()); 5086 return nullptr; 5087 } 5088 case Intrinsic::eh_sjlj_functioncontext: { 5089 // Get and store the index of the function context. 5090 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5091 AllocaInst *FnCtx = 5092 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5093 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5094 MFI.setFunctionContextIndex(FI); 5095 return nullptr; 5096 } 5097 case Intrinsic::eh_sjlj_setjmp: { 5098 SDValue Ops[2]; 5099 Ops[0] = getRoot(); 5100 Ops[1] = getValue(I.getArgOperand(0)); 5101 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5102 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5103 setValue(&I, Op.getValue(0)); 5104 DAG.setRoot(Op.getValue(1)); 5105 return nullptr; 5106 } 5107 case Intrinsic::eh_sjlj_longjmp: { 5108 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5109 getRoot(), getValue(I.getArgOperand(0)))); 5110 return nullptr; 5111 } 5112 case Intrinsic::eh_sjlj_setup_dispatch: { 5113 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5114 getRoot())); 5115 return nullptr; 5116 } 5117 5118 case Intrinsic::masked_gather: 5119 visitMaskedGather(I); 5120 return nullptr; 5121 case Intrinsic::masked_load: 5122 visitMaskedLoad(I); 5123 return nullptr; 5124 case Intrinsic::masked_scatter: 5125 visitMaskedScatter(I); 5126 return nullptr; 5127 case Intrinsic::masked_store: 5128 visitMaskedStore(I); 5129 return nullptr; 5130 case Intrinsic::masked_expandload: 5131 visitMaskedLoad(I, true /* IsExpanding */); 5132 return nullptr; 5133 case Intrinsic::masked_compressstore: 5134 visitMaskedStore(I, true /* IsCompressing */); 5135 return nullptr; 5136 case Intrinsic::x86_mmx_pslli_w: 5137 case Intrinsic::x86_mmx_pslli_d: 5138 case Intrinsic::x86_mmx_pslli_q: 5139 case Intrinsic::x86_mmx_psrli_w: 5140 case Intrinsic::x86_mmx_psrli_d: 5141 case Intrinsic::x86_mmx_psrli_q: 5142 case Intrinsic::x86_mmx_psrai_w: 5143 case Intrinsic::x86_mmx_psrai_d: { 5144 SDValue ShAmt = getValue(I.getArgOperand(1)); 5145 if (isa<ConstantSDNode>(ShAmt)) { 5146 visitTargetIntrinsic(I, Intrinsic); 5147 return nullptr; 5148 } 5149 unsigned NewIntrinsic = 0; 5150 EVT ShAmtVT = MVT::v2i32; 5151 switch (Intrinsic) { 5152 case Intrinsic::x86_mmx_pslli_w: 5153 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5154 break; 5155 case Intrinsic::x86_mmx_pslli_d: 5156 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5157 break; 5158 case Intrinsic::x86_mmx_pslli_q: 5159 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5160 break; 5161 case Intrinsic::x86_mmx_psrli_w: 5162 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5163 break; 5164 case Intrinsic::x86_mmx_psrli_d: 5165 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5166 break; 5167 case Intrinsic::x86_mmx_psrli_q: 5168 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5169 break; 5170 case Intrinsic::x86_mmx_psrai_w: 5171 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5172 break; 5173 case Intrinsic::x86_mmx_psrai_d: 5174 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5175 break; 5176 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5177 } 5178 5179 // The vector shift intrinsics with scalars uses 32b shift amounts but 5180 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5181 // to be zero. 5182 // We must do this early because v2i32 is not a legal type. 5183 SDValue ShOps[2]; 5184 ShOps[0] = ShAmt; 5185 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5186 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5187 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5188 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5189 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5190 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5191 getValue(I.getArgOperand(0)), ShAmt); 5192 setValue(&I, Res); 5193 return nullptr; 5194 } 5195 case Intrinsic::powi: 5196 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5197 getValue(I.getArgOperand(1)), DAG)); 5198 return nullptr; 5199 case Intrinsic::log: 5200 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5201 return nullptr; 5202 case Intrinsic::log2: 5203 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5204 return nullptr; 5205 case Intrinsic::log10: 5206 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5207 return nullptr; 5208 case Intrinsic::exp: 5209 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5210 return nullptr; 5211 case Intrinsic::exp2: 5212 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5213 return nullptr; 5214 case Intrinsic::pow: 5215 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5216 getValue(I.getArgOperand(1)), DAG, TLI)); 5217 return nullptr; 5218 case Intrinsic::sqrt: 5219 case Intrinsic::fabs: 5220 case Intrinsic::sin: 5221 case Intrinsic::cos: 5222 case Intrinsic::floor: 5223 case Intrinsic::ceil: 5224 case Intrinsic::trunc: 5225 case Intrinsic::rint: 5226 case Intrinsic::nearbyint: 5227 case Intrinsic::round: 5228 case Intrinsic::canonicalize: { 5229 unsigned Opcode; 5230 switch (Intrinsic) { 5231 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5232 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5233 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5234 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5235 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5236 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5237 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5238 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5239 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5240 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5241 case Intrinsic::round: Opcode = ISD::FROUND; break; 5242 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5243 } 5244 5245 setValue(&I, DAG.getNode(Opcode, sdl, 5246 getValue(I.getArgOperand(0)).getValueType(), 5247 getValue(I.getArgOperand(0)))); 5248 return nullptr; 5249 } 5250 case Intrinsic::minnum: { 5251 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5252 unsigned Opc = 5253 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5254 ? ISD::FMINNAN 5255 : ISD::FMINNUM; 5256 setValue(&I, DAG.getNode(Opc, sdl, VT, 5257 getValue(I.getArgOperand(0)), 5258 getValue(I.getArgOperand(1)))); 5259 return nullptr; 5260 } 5261 case Intrinsic::maxnum: { 5262 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5263 unsigned Opc = 5264 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5265 ? ISD::FMAXNAN 5266 : ISD::FMAXNUM; 5267 setValue(&I, DAG.getNode(Opc, sdl, VT, 5268 getValue(I.getArgOperand(0)), 5269 getValue(I.getArgOperand(1)))); 5270 return nullptr; 5271 } 5272 case Intrinsic::copysign: 5273 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5274 getValue(I.getArgOperand(0)).getValueType(), 5275 getValue(I.getArgOperand(0)), 5276 getValue(I.getArgOperand(1)))); 5277 return nullptr; 5278 case Intrinsic::fma: 5279 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5280 getValue(I.getArgOperand(0)).getValueType(), 5281 getValue(I.getArgOperand(0)), 5282 getValue(I.getArgOperand(1)), 5283 getValue(I.getArgOperand(2)))); 5284 return nullptr; 5285 case Intrinsic::experimental_constrained_fadd: 5286 case Intrinsic::experimental_constrained_fsub: 5287 case Intrinsic::experimental_constrained_fmul: 5288 case Intrinsic::experimental_constrained_fdiv: 5289 case Intrinsic::experimental_constrained_frem: 5290 visitConstrainedFPIntrinsic(I, Intrinsic); 5291 return nullptr; 5292 case Intrinsic::fmuladd: { 5293 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5294 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5295 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5296 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5297 getValue(I.getArgOperand(0)).getValueType(), 5298 getValue(I.getArgOperand(0)), 5299 getValue(I.getArgOperand(1)), 5300 getValue(I.getArgOperand(2)))); 5301 } else { 5302 // TODO: Intrinsic calls should have fast-math-flags. 5303 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5304 getValue(I.getArgOperand(0)).getValueType(), 5305 getValue(I.getArgOperand(0)), 5306 getValue(I.getArgOperand(1))); 5307 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5308 getValue(I.getArgOperand(0)).getValueType(), 5309 Mul, 5310 getValue(I.getArgOperand(2))); 5311 setValue(&I, Add); 5312 } 5313 return nullptr; 5314 } 5315 case Intrinsic::convert_to_fp16: 5316 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5317 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5318 getValue(I.getArgOperand(0)), 5319 DAG.getTargetConstant(0, sdl, 5320 MVT::i32)))); 5321 return nullptr; 5322 case Intrinsic::convert_from_fp16: 5323 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5324 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5325 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5326 getValue(I.getArgOperand(0))))); 5327 return nullptr; 5328 case Intrinsic::pcmarker: { 5329 SDValue Tmp = getValue(I.getArgOperand(0)); 5330 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5331 return nullptr; 5332 } 5333 case Intrinsic::readcyclecounter: { 5334 SDValue Op = getRoot(); 5335 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5336 DAG.getVTList(MVT::i64, MVT::Other), Op); 5337 setValue(&I, Res); 5338 DAG.setRoot(Res.getValue(1)); 5339 return nullptr; 5340 } 5341 case Intrinsic::bitreverse: 5342 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5343 getValue(I.getArgOperand(0)).getValueType(), 5344 getValue(I.getArgOperand(0)))); 5345 return nullptr; 5346 case Intrinsic::bswap: 5347 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5348 getValue(I.getArgOperand(0)).getValueType(), 5349 getValue(I.getArgOperand(0)))); 5350 return nullptr; 5351 case Intrinsic::cttz: { 5352 SDValue Arg = getValue(I.getArgOperand(0)); 5353 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5354 EVT Ty = Arg.getValueType(); 5355 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5356 sdl, Ty, Arg)); 5357 return nullptr; 5358 } 5359 case Intrinsic::ctlz: { 5360 SDValue Arg = getValue(I.getArgOperand(0)); 5361 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5362 EVT Ty = Arg.getValueType(); 5363 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5364 sdl, Ty, Arg)); 5365 return nullptr; 5366 } 5367 case Intrinsic::ctpop: { 5368 SDValue Arg = getValue(I.getArgOperand(0)); 5369 EVT Ty = Arg.getValueType(); 5370 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5371 return nullptr; 5372 } 5373 case Intrinsic::stacksave: { 5374 SDValue Op = getRoot(); 5375 Res = DAG.getNode( 5376 ISD::STACKSAVE, sdl, 5377 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5378 setValue(&I, Res); 5379 DAG.setRoot(Res.getValue(1)); 5380 return nullptr; 5381 } 5382 case Intrinsic::stackrestore: { 5383 Res = getValue(I.getArgOperand(0)); 5384 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5385 return nullptr; 5386 } 5387 case Intrinsic::get_dynamic_area_offset: { 5388 SDValue Op = getRoot(); 5389 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5390 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5391 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5392 // target. 5393 if (PtrTy != ResTy) 5394 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5395 " intrinsic!"); 5396 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5397 Op); 5398 DAG.setRoot(Op); 5399 setValue(&I, Res); 5400 return nullptr; 5401 } 5402 case Intrinsic::stackguard: { 5403 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5404 MachineFunction &MF = DAG.getMachineFunction(); 5405 const Module &M = *MF.getFunction()->getParent(); 5406 SDValue Chain = getRoot(); 5407 if (TLI.useLoadStackGuardNode()) { 5408 Res = getLoadStackGuard(DAG, sdl, Chain); 5409 } else { 5410 const Value *Global = TLI.getSDagStackGuard(M); 5411 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5412 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5413 MachinePointerInfo(Global, 0), Align, 5414 MachineMemOperand::MOVolatile); 5415 } 5416 DAG.setRoot(Chain); 5417 setValue(&I, Res); 5418 return nullptr; 5419 } 5420 case Intrinsic::stackprotector: { 5421 // Emit code into the DAG to store the stack guard onto the stack. 5422 MachineFunction &MF = DAG.getMachineFunction(); 5423 MachineFrameInfo &MFI = MF.getFrameInfo(); 5424 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5425 SDValue Src, Chain = getRoot(); 5426 5427 if (TLI.useLoadStackGuardNode()) 5428 Src = getLoadStackGuard(DAG, sdl, Chain); 5429 else 5430 Src = getValue(I.getArgOperand(0)); // The guard's value. 5431 5432 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5433 5434 int FI = FuncInfo.StaticAllocaMap[Slot]; 5435 MFI.setStackProtectorIndex(FI); 5436 5437 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5438 5439 // Store the stack protector onto the stack. 5440 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5441 DAG.getMachineFunction(), FI), 5442 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5443 setValue(&I, Res); 5444 DAG.setRoot(Res); 5445 return nullptr; 5446 } 5447 case Intrinsic::objectsize: { 5448 // If we don't know by now, we're never going to know. 5449 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5450 5451 assert(CI && "Non-constant type in __builtin_object_size?"); 5452 5453 SDValue Arg = getValue(I.getCalledValue()); 5454 EVT Ty = Arg.getValueType(); 5455 5456 if (CI->isZero()) 5457 Res = DAG.getConstant(-1ULL, sdl, Ty); 5458 else 5459 Res = DAG.getConstant(0, sdl, Ty); 5460 5461 setValue(&I, Res); 5462 return nullptr; 5463 } 5464 case Intrinsic::annotation: 5465 case Intrinsic::ptr_annotation: 5466 case Intrinsic::invariant_group_barrier: 5467 // Drop the intrinsic, but forward the value 5468 setValue(&I, getValue(I.getOperand(0))); 5469 return nullptr; 5470 case Intrinsic::assume: 5471 case Intrinsic::var_annotation: 5472 // Discard annotate attributes and assumptions 5473 return nullptr; 5474 5475 case Intrinsic::init_trampoline: { 5476 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5477 5478 SDValue Ops[6]; 5479 Ops[0] = getRoot(); 5480 Ops[1] = getValue(I.getArgOperand(0)); 5481 Ops[2] = getValue(I.getArgOperand(1)); 5482 Ops[3] = getValue(I.getArgOperand(2)); 5483 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5484 Ops[5] = DAG.getSrcValue(F); 5485 5486 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5487 5488 DAG.setRoot(Res); 5489 return nullptr; 5490 } 5491 case Intrinsic::adjust_trampoline: { 5492 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5493 TLI.getPointerTy(DAG.getDataLayout()), 5494 getValue(I.getArgOperand(0)))); 5495 return nullptr; 5496 } 5497 case Intrinsic::gcroot: { 5498 MachineFunction &MF = DAG.getMachineFunction(); 5499 const Function *F = MF.getFunction(); 5500 (void)F; 5501 assert(F->hasGC() && 5502 "only valid in functions with gc specified, enforced by Verifier"); 5503 assert(GFI && "implied by previous"); 5504 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5505 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5506 5507 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5508 GFI->addStackRoot(FI->getIndex(), TypeMap); 5509 return nullptr; 5510 } 5511 case Intrinsic::gcread: 5512 case Intrinsic::gcwrite: 5513 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5514 case Intrinsic::flt_rounds: 5515 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5516 return nullptr; 5517 5518 case Intrinsic::expect: { 5519 // Just replace __builtin_expect(exp, c) with EXP. 5520 setValue(&I, getValue(I.getArgOperand(0))); 5521 return nullptr; 5522 } 5523 5524 case Intrinsic::debugtrap: 5525 case Intrinsic::trap: { 5526 StringRef TrapFuncName = 5527 I.getAttributes() 5528 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5529 .getValueAsString(); 5530 if (TrapFuncName.empty()) { 5531 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5532 ISD::TRAP : ISD::DEBUGTRAP; 5533 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5534 return nullptr; 5535 } 5536 TargetLowering::ArgListTy Args; 5537 5538 TargetLowering::CallLoweringInfo CLI(DAG); 5539 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5540 CallingConv::C, I.getType(), 5541 DAG.getExternalSymbol(TrapFuncName.data(), 5542 TLI.getPointerTy(DAG.getDataLayout())), 5543 std::move(Args)); 5544 5545 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5546 DAG.setRoot(Result.second); 5547 return nullptr; 5548 } 5549 5550 case Intrinsic::uadd_with_overflow: 5551 case Intrinsic::sadd_with_overflow: 5552 case Intrinsic::usub_with_overflow: 5553 case Intrinsic::ssub_with_overflow: 5554 case Intrinsic::umul_with_overflow: 5555 case Intrinsic::smul_with_overflow: { 5556 ISD::NodeType Op; 5557 switch (Intrinsic) { 5558 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5559 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5560 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5561 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5562 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5563 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5564 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5565 } 5566 SDValue Op1 = getValue(I.getArgOperand(0)); 5567 SDValue Op2 = getValue(I.getArgOperand(1)); 5568 5569 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5570 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5571 return nullptr; 5572 } 5573 case Intrinsic::prefetch: { 5574 SDValue Ops[5]; 5575 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5576 Ops[0] = getRoot(); 5577 Ops[1] = getValue(I.getArgOperand(0)); 5578 Ops[2] = getValue(I.getArgOperand(1)); 5579 Ops[3] = getValue(I.getArgOperand(2)); 5580 Ops[4] = getValue(I.getArgOperand(3)); 5581 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5582 DAG.getVTList(MVT::Other), Ops, 5583 EVT::getIntegerVT(*Context, 8), 5584 MachinePointerInfo(I.getArgOperand(0)), 5585 0, /* align */ 5586 false, /* volatile */ 5587 rw==0, /* read */ 5588 rw==1)); /* write */ 5589 return nullptr; 5590 } 5591 case Intrinsic::lifetime_start: 5592 case Intrinsic::lifetime_end: { 5593 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5594 // Stack coloring is not enabled in O0, discard region information. 5595 if (TM.getOptLevel() == CodeGenOpt::None) 5596 return nullptr; 5597 5598 SmallVector<Value *, 4> Allocas; 5599 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5600 5601 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5602 E = Allocas.end(); Object != E; ++Object) { 5603 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5604 5605 // Could not find an Alloca. 5606 if (!LifetimeObject) 5607 continue; 5608 5609 // First check that the Alloca is static, otherwise it won't have a 5610 // valid frame index. 5611 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5612 if (SI == FuncInfo.StaticAllocaMap.end()) 5613 return nullptr; 5614 5615 int FI = SI->second; 5616 5617 SDValue Ops[2]; 5618 Ops[0] = getRoot(); 5619 Ops[1] = 5620 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5621 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5622 5623 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5624 DAG.setRoot(Res); 5625 } 5626 return nullptr; 5627 } 5628 case Intrinsic::invariant_start: 5629 // Discard region information. 5630 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5631 return nullptr; 5632 case Intrinsic::invariant_end: 5633 // Discard region information. 5634 return nullptr; 5635 case Intrinsic::clear_cache: 5636 return TLI.getClearCacheBuiltinName(); 5637 case Intrinsic::donothing: 5638 // ignore 5639 return nullptr; 5640 case Intrinsic::experimental_stackmap: { 5641 visitStackmap(I); 5642 return nullptr; 5643 } 5644 case Intrinsic::experimental_patchpoint_void: 5645 case Intrinsic::experimental_patchpoint_i64: { 5646 visitPatchpoint(&I); 5647 return nullptr; 5648 } 5649 case Intrinsic::experimental_gc_statepoint: { 5650 LowerStatepoint(ImmutableStatepoint(&I)); 5651 return nullptr; 5652 } 5653 case Intrinsic::experimental_gc_result: { 5654 visitGCResult(cast<GCResultInst>(I)); 5655 return nullptr; 5656 } 5657 case Intrinsic::experimental_gc_relocate: { 5658 visitGCRelocate(cast<GCRelocateInst>(I)); 5659 return nullptr; 5660 } 5661 case Intrinsic::instrprof_increment: 5662 llvm_unreachable("instrprof failed to lower an increment"); 5663 case Intrinsic::instrprof_value_profile: 5664 llvm_unreachable("instrprof failed to lower a value profiling call"); 5665 case Intrinsic::localescape: { 5666 MachineFunction &MF = DAG.getMachineFunction(); 5667 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5668 5669 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5670 // is the same on all targets. 5671 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5672 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5673 if (isa<ConstantPointerNull>(Arg)) 5674 continue; // Skip null pointers. They represent a hole in index space. 5675 AllocaInst *Slot = cast<AllocaInst>(Arg); 5676 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5677 "can only escape static allocas"); 5678 int FI = FuncInfo.StaticAllocaMap[Slot]; 5679 MCSymbol *FrameAllocSym = 5680 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5681 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5682 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5683 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5684 .addSym(FrameAllocSym) 5685 .addFrameIndex(FI); 5686 } 5687 5688 return nullptr; 5689 } 5690 5691 case Intrinsic::localrecover: { 5692 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5693 MachineFunction &MF = DAG.getMachineFunction(); 5694 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5695 5696 // Get the symbol that defines the frame offset. 5697 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5698 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5699 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5700 MCSymbol *FrameAllocSym = 5701 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5702 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5703 5704 // Create a MCSymbol for the label to avoid any target lowering 5705 // that would make this PC relative. 5706 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5707 SDValue OffsetVal = 5708 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5709 5710 // Add the offset to the FP. 5711 Value *FP = I.getArgOperand(1); 5712 SDValue FPVal = getValue(FP); 5713 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5714 setValue(&I, Add); 5715 5716 return nullptr; 5717 } 5718 5719 case Intrinsic::eh_exceptionpointer: 5720 case Intrinsic::eh_exceptioncode: { 5721 // Get the exception pointer vreg, copy from it, and resize it to fit. 5722 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5723 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5724 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5725 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5726 SDValue N = 5727 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5728 if (Intrinsic == Intrinsic::eh_exceptioncode) 5729 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5730 setValue(&I, N); 5731 return nullptr; 5732 } 5733 5734 case Intrinsic::experimental_deoptimize: 5735 LowerDeoptimizeCall(&I); 5736 return nullptr; 5737 } 5738 } 5739 5740 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5741 unsigned Intrinsic) { 5742 SDLoc sdl = getCurSDLoc(); 5743 unsigned Opcode; 5744 switch (Intrinsic) { 5745 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5746 case Intrinsic::experimental_constrained_fadd: 5747 Opcode = ISD::STRICT_FADD; 5748 break; 5749 case Intrinsic::experimental_constrained_fsub: 5750 Opcode = ISD::STRICT_FSUB; 5751 break; 5752 case Intrinsic::experimental_constrained_fmul: 5753 Opcode = ISD::STRICT_FMUL; 5754 break; 5755 case Intrinsic::experimental_constrained_fdiv: 5756 Opcode = ISD::STRICT_FDIV; 5757 break; 5758 case Intrinsic::experimental_constrained_frem: 5759 Opcode = ISD::STRICT_FREM; 5760 break; 5761 } 5762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5763 SDValue Chain = getRoot(); 5764 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5765 getValue(I.getArgOperand(1)) }; 5766 SmallVector<EVT, 4> ValueVTs; 5767 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5768 ValueVTs.push_back(MVT::Other); // Out chain 5769 5770 SDVTList VTs = DAG.getVTList(ValueVTs); 5771 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5772 5773 assert(Result.getNode()->getNumValues() == 2); 5774 SDValue OutChain = Result.getValue(1); 5775 DAG.setRoot(OutChain); 5776 SDValue FPResult = Result.getValue(0); 5777 setValue(&I, FPResult); 5778 } 5779 5780 std::pair<SDValue, SDValue> 5781 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5782 const BasicBlock *EHPadBB) { 5783 MachineFunction &MF = DAG.getMachineFunction(); 5784 MachineModuleInfo &MMI = MF.getMMI(); 5785 MCSymbol *BeginLabel = nullptr; 5786 5787 if (EHPadBB) { 5788 // Insert a label before the invoke call to mark the try range. This can be 5789 // used to detect deletion of the invoke via the MachineModuleInfo. 5790 BeginLabel = MMI.getContext().createTempSymbol(); 5791 5792 // For SjLj, keep track of which landing pads go with which invokes 5793 // so as to maintain the ordering of pads in the LSDA. 5794 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5795 if (CallSiteIndex) { 5796 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5797 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5798 5799 // Now that the call site is handled, stop tracking it. 5800 MMI.setCurrentCallSite(0); 5801 } 5802 5803 // Both PendingLoads and PendingExports must be flushed here; 5804 // this call might not return. 5805 (void)getRoot(); 5806 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5807 5808 CLI.setChain(getRoot()); 5809 } 5810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5811 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5812 5813 assert((CLI.IsTailCall || Result.second.getNode()) && 5814 "Non-null chain expected with non-tail call!"); 5815 assert((Result.second.getNode() || !Result.first.getNode()) && 5816 "Null value expected with tail call!"); 5817 5818 if (!Result.second.getNode()) { 5819 // As a special case, a null chain means that a tail call has been emitted 5820 // and the DAG root is already updated. 5821 HasTailCall = true; 5822 5823 // Since there's no actual continuation from this block, nothing can be 5824 // relying on us setting vregs for them. 5825 PendingExports.clear(); 5826 } else { 5827 DAG.setRoot(Result.second); 5828 } 5829 5830 if (EHPadBB) { 5831 // Insert a label at the end of the invoke call to mark the try range. This 5832 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5833 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5834 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5835 5836 // Inform MachineModuleInfo of range. 5837 if (MF.hasEHFunclets()) { 5838 assert(CLI.CS); 5839 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5840 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5841 BeginLabel, EndLabel); 5842 } else { 5843 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5844 } 5845 } 5846 5847 return Result; 5848 } 5849 5850 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5851 bool isTailCall, 5852 const BasicBlock *EHPadBB) { 5853 auto &DL = DAG.getDataLayout(); 5854 FunctionType *FTy = CS.getFunctionType(); 5855 Type *RetTy = CS.getType(); 5856 5857 TargetLowering::ArgListTy Args; 5858 Args.reserve(CS.arg_size()); 5859 5860 const Value *SwiftErrorVal = nullptr; 5861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5862 5863 // We can't tail call inside a function with a swifterror argument. Lowering 5864 // does not support this yet. It would have to move into the swifterror 5865 // register before the call. 5866 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5867 if (TLI.supportSwiftError() && 5868 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5869 isTailCall = false; 5870 5871 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5872 i != e; ++i) { 5873 TargetLowering::ArgListEntry Entry; 5874 const Value *V = *i; 5875 5876 // Skip empty types 5877 if (V->getType()->isEmptyTy()) 5878 continue; 5879 5880 SDValue ArgNode = getValue(V); 5881 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5882 5883 // Skip the first return-type Attribute to get to params. 5884 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5885 5886 // Use swifterror virtual register as input to the call. 5887 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 5888 SwiftErrorVal = V; 5889 // We find the virtual register for the actual swifterror argument. 5890 // Instead of using the Value, we use the virtual register instead. 5891 Entry.Node = 5892 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5893 EVT(TLI.getPointerTy(DL))); 5894 } 5895 5896 Args.push_back(Entry); 5897 5898 // If we have an explicit sret argument that is an Instruction, (i.e., it 5899 // might point to function-local memory), we can't meaningfully tail-call. 5900 if (Entry.IsSRet && isa<Instruction>(V)) 5901 isTailCall = false; 5902 } 5903 5904 // Check if target-independent constraints permit a tail call here. 5905 // Target-dependent constraints are checked within TLI->LowerCallTo. 5906 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5907 isTailCall = false; 5908 5909 // Disable tail calls if there is an swifterror argument. Targets have not 5910 // been updated to support tail calls. 5911 if (TLI.supportSwiftError() && SwiftErrorVal) 5912 isTailCall = false; 5913 5914 TargetLowering::CallLoweringInfo CLI(DAG); 5915 CLI.setDebugLoc(getCurSDLoc()) 5916 .setChain(getRoot()) 5917 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5918 .setTailCall(isTailCall) 5919 .setConvergent(CS.isConvergent()); 5920 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5921 5922 if (Result.first.getNode()) { 5923 const Instruction *Inst = CS.getInstruction(); 5924 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5925 setValue(Inst, Result.first); 5926 } 5927 5928 // The last element of CLI.InVals has the SDValue for swifterror return. 5929 // Here we copy it to a virtual register and update SwiftErrorMap for 5930 // book-keeping. 5931 if (SwiftErrorVal && TLI.supportSwiftError()) { 5932 // Get the last element of InVals. 5933 SDValue Src = CLI.InVals.back(); 5934 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5935 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5936 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5937 // We update the virtual register for the actual swifterror argument. 5938 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5939 DAG.setRoot(CopyNode); 5940 } 5941 } 5942 5943 /// Return true if it only matters that the value is equal or not-equal to zero. 5944 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5945 for (const User *U : V->users()) { 5946 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5947 if (IC->isEquality()) 5948 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5949 if (C->isNullValue()) 5950 continue; 5951 // Unknown instruction. 5952 return false; 5953 } 5954 return true; 5955 } 5956 5957 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5958 SelectionDAGBuilder &Builder) { 5959 5960 // Check to see if this load can be trivially constant folded, e.g. if the 5961 // input is from a string literal. 5962 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5963 // Cast pointer to the type we really want to load. 5964 Type *LoadTy = 5965 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 5966 if (LoadVT.isVector()) 5967 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 5968 5969 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5970 PointerType::getUnqual(LoadTy)); 5971 5972 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5973 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5974 return Builder.getValue(LoadCst); 5975 } 5976 5977 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5978 // still constant memory, the input chain can be the entry node. 5979 SDValue Root; 5980 bool ConstantMemory = false; 5981 5982 // Do not serialize (non-volatile) loads of constant memory with anything. 5983 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5984 Root = Builder.DAG.getEntryNode(); 5985 ConstantMemory = true; 5986 } else { 5987 // Do not serialize non-volatile loads against each other. 5988 Root = Builder.DAG.getRoot(); 5989 } 5990 5991 SDValue Ptr = Builder.getValue(PtrVal); 5992 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5993 Ptr, MachinePointerInfo(PtrVal), 5994 /* Alignment = */ 1); 5995 5996 if (!ConstantMemory) 5997 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5998 return LoadVal; 5999 } 6000 6001 /// Record the value for an instruction that produces an integer result, 6002 /// converting the type where necessary. 6003 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6004 SDValue Value, 6005 bool IsSigned) { 6006 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6007 I.getType(), true); 6008 if (IsSigned) 6009 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6010 else 6011 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6012 setValue(&I, Value); 6013 } 6014 6015 /// See if we can lower a memcmp call into an optimized form. If so, return 6016 /// true and lower it. Otherwise return false, and it will be lowered like a 6017 /// normal call. 6018 /// The caller already checked that \p I calls the appropriate LibFunc with a 6019 /// correct prototype. 6020 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6021 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6022 const Value *Size = I.getArgOperand(2); 6023 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6024 if (CSize && CSize->getZExtValue() == 0) { 6025 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6026 I.getType(), true); 6027 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6028 return true; 6029 } 6030 6031 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6032 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6033 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6034 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6035 if (Res.first.getNode()) { 6036 processIntegerCallValue(I, Res.first, true); 6037 PendingLoads.push_back(Res.second); 6038 return true; 6039 } 6040 6041 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6042 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6043 if (!CSize || !IsOnlyUsedInZeroEqualityComparison(&I)) 6044 return false; 6045 6046 // If the target has a fast compare for the given size, it will return a 6047 // preferred load type for that size. Require that the load VT is legal and 6048 // that the target supports unaligned loads of that type. Otherwise, return 6049 // INVALID. 6050 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6052 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6053 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6054 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6055 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6056 // TODO: Check alignment of src and dest ptrs. 6057 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6058 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6059 if (!TLI.isTypeLegal(LVT) || 6060 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6061 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6062 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6063 } 6064 6065 return LVT; 6066 }; 6067 6068 // This turns into unaligned loads. We only do this if the target natively 6069 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6070 // we'll only produce a small number of byte loads. 6071 MVT LoadVT; 6072 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6073 switch (NumBitsToCompare) { 6074 default: 6075 return false; 6076 case 16: 6077 LoadVT = MVT::i16; 6078 break; 6079 case 32: 6080 LoadVT = MVT::i32; 6081 break; 6082 case 64: 6083 case 128: 6084 case 256: 6085 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6086 break; 6087 } 6088 6089 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6090 return false; 6091 6092 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6093 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6094 6095 // Bitcast to a wide integer type if the loads are vectors. 6096 if (LoadVT.isVector()) { 6097 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6098 LoadL = DAG.getBitcast(CmpVT, LoadL); 6099 LoadR = DAG.getBitcast(CmpVT, LoadR); 6100 } 6101 6102 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6103 processIntegerCallValue(I, Cmp, false); 6104 return true; 6105 } 6106 6107 /// See if we can lower a memchr call into an optimized form. If so, return 6108 /// true and lower it. Otherwise return false, and it will be lowered like a 6109 /// normal call. 6110 /// The caller already checked that \p I calls the appropriate LibFunc with a 6111 /// correct prototype. 6112 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6113 const Value *Src = I.getArgOperand(0); 6114 const Value *Char = I.getArgOperand(1); 6115 const Value *Length = I.getArgOperand(2); 6116 6117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6118 std::pair<SDValue, SDValue> Res = 6119 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6120 getValue(Src), getValue(Char), getValue(Length), 6121 MachinePointerInfo(Src)); 6122 if (Res.first.getNode()) { 6123 setValue(&I, Res.first); 6124 PendingLoads.push_back(Res.second); 6125 return true; 6126 } 6127 6128 return false; 6129 } 6130 6131 /// See if we can lower a mempcpy call into an optimized form. If so, return 6132 /// true and lower it. Otherwise return false, and it will be lowered like a 6133 /// normal call. 6134 /// The caller already checked that \p I calls the appropriate LibFunc with a 6135 /// correct prototype. 6136 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6137 SDValue Dst = getValue(I.getArgOperand(0)); 6138 SDValue Src = getValue(I.getArgOperand(1)); 6139 SDValue Size = getValue(I.getArgOperand(2)); 6140 6141 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6142 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6143 unsigned Align = std::min(DstAlign, SrcAlign); 6144 if (Align == 0) // Alignment of one or both could not be inferred. 6145 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6146 6147 bool isVol = false; 6148 SDLoc sdl = getCurSDLoc(); 6149 6150 // In the mempcpy context we need to pass in a false value for isTailCall 6151 // because the return pointer needs to be adjusted by the size of 6152 // the copied memory. 6153 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6154 false, /*isTailCall=*/false, 6155 MachinePointerInfo(I.getArgOperand(0)), 6156 MachinePointerInfo(I.getArgOperand(1))); 6157 assert(MC.getNode() != nullptr && 6158 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6159 DAG.setRoot(MC); 6160 6161 // Check if Size needs to be truncated or extended. 6162 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6163 6164 // Adjust return pointer to point just past the last dst byte. 6165 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6166 Dst, Size); 6167 setValue(&I, DstPlusSize); 6168 return true; 6169 } 6170 6171 /// See if we can lower a strcpy call into an optimized form. If so, return 6172 /// true and lower it, otherwise return false and it will be lowered like a 6173 /// normal call. 6174 /// The caller already checked that \p I calls the appropriate LibFunc with a 6175 /// correct prototype. 6176 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6177 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6178 6179 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6180 std::pair<SDValue, SDValue> Res = 6181 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6182 getValue(Arg0), getValue(Arg1), 6183 MachinePointerInfo(Arg0), 6184 MachinePointerInfo(Arg1), isStpcpy); 6185 if (Res.first.getNode()) { 6186 setValue(&I, Res.first); 6187 DAG.setRoot(Res.second); 6188 return true; 6189 } 6190 6191 return false; 6192 } 6193 6194 /// See if we can lower a strcmp call into an optimized form. If so, return 6195 /// true and lower it, otherwise return false and it will be lowered like a 6196 /// normal call. 6197 /// The caller already checked that \p I calls the appropriate LibFunc with a 6198 /// correct prototype. 6199 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6200 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6201 6202 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6203 std::pair<SDValue, SDValue> Res = 6204 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6205 getValue(Arg0), getValue(Arg1), 6206 MachinePointerInfo(Arg0), 6207 MachinePointerInfo(Arg1)); 6208 if (Res.first.getNode()) { 6209 processIntegerCallValue(I, Res.first, true); 6210 PendingLoads.push_back(Res.second); 6211 return true; 6212 } 6213 6214 return false; 6215 } 6216 6217 /// See if we can lower a strlen call into an optimized form. If so, return 6218 /// true and lower it, otherwise return false and it will be lowered like a 6219 /// normal call. 6220 /// The caller already checked that \p I calls the appropriate LibFunc with a 6221 /// correct prototype. 6222 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6223 const Value *Arg0 = I.getArgOperand(0); 6224 6225 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6226 std::pair<SDValue, SDValue> Res = 6227 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6228 getValue(Arg0), MachinePointerInfo(Arg0)); 6229 if (Res.first.getNode()) { 6230 processIntegerCallValue(I, Res.first, false); 6231 PendingLoads.push_back(Res.second); 6232 return true; 6233 } 6234 6235 return false; 6236 } 6237 6238 /// See if we can lower a strnlen call into an optimized form. If so, return 6239 /// true and lower it, otherwise return false and it will be lowered like a 6240 /// normal call. 6241 /// The caller already checked that \p I calls the appropriate LibFunc with a 6242 /// correct prototype. 6243 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6244 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6245 6246 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6247 std::pair<SDValue, SDValue> Res = 6248 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6249 getValue(Arg0), getValue(Arg1), 6250 MachinePointerInfo(Arg0)); 6251 if (Res.first.getNode()) { 6252 processIntegerCallValue(I, Res.first, false); 6253 PendingLoads.push_back(Res.second); 6254 return true; 6255 } 6256 6257 return false; 6258 } 6259 6260 /// See if we can lower a unary floating-point operation into an SDNode with 6261 /// the specified Opcode. If so, return true and lower it, otherwise return 6262 /// false and it will be lowered like a normal call. 6263 /// The caller already checked that \p I calls the appropriate LibFunc with a 6264 /// correct prototype. 6265 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6266 unsigned Opcode) { 6267 // We already checked this call's prototype; verify it doesn't modify errno. 6268 if (!I.onlyReadsMemory()) 6269 return false; 6270 6271 SDValue Tmp = getValue(I.getArgOperand(0)); 6272 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6273 return true; 6274 } 6275 6276 /// See if we can lower a binary floating-point operation into an SDNode with 6277 /// the specified Opcode. If so, return true and lower it. Otherwise return 6278 /// false, and it will be lowered like a normal call. 6279 /// The caller already checked that \p I calls the appropriate LibFunc with a 6280 /// correct prototype. 6281 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6282 unsigned Opcode) { 6283 // We already checked this call's prototype; verify it doesn't modify errno. 6284 if (!I.onlyReadsMemory()) 6285 return false; 6286 6287 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6288 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6289 EVT VT = Tmp0.getValueType(); 6290 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6291 return true; 6292 } 6293 6294 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6295 // Handle inline assembly differently. 6296 if (isa<InlineAsm>(I.getCalledValue())) { 6297 visitInlineAsm(&I); 6298 return; 6299 } 6300 6301 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6302 computeUsesVAFloatArgument(I, MMI); 6303 6304 const char *RenameFn = nullptr; 6305 if (Function *F = I.getCalledFunction()) { 6306 if (F->isDeclaration()) { 6307 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6308 if (unsigned IID = II->getIntrinsicID(F)) { 6309 RenameFn = visitIntrinsicCall(I, IID); 6310 if (!RenameFn) 6311 return; 6312 } 6313 } 6314 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6315 RenameFn = visitIntrinsicCall(I, IID); 6316 if (!RenameFn) 6317 return; 6318 } 6319 } 6320 6321 // Check for well-known libc/libm calls. If the function is internal, it 6322 // can't be a library call. Don't do the check if marked as nobuiltin for 6323 // some reason. 6324 LibFunc Func; 6325 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6326 LibInfo->getLibFunc(*F, Func) && 6327 LibInfo->hasOptimizedCodeGen(Func)) { 6328 switch (Func) { 6329 default: break; 6330 case LibFunc_copysign: 6331 case LibFunc_copysignf: 6332 case LibFunc_copysignl: 6333 // We already checked this call's prototype; verify it doesn't modify 6334 // errno. 6335 if (I.onlyReadsMemory()) { 6336 SDValue LHS = getValue(I.getArgOperand(0)); 6337 SDValue RHS = getValue(I.getArgOperand(1)); 6338 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6339 LHS.getValueType(), LHS, RHS)); 6340 return; 6341 } 6342 break; 6343 case LibFunc_fabs: 6344 case LibFunc_fabsf: 6345 case LibFunc_fabsl: 6346 if (visitUnaryFloatCall(I, ISD::FABS)) 6347 return; 6348 break; 6349 case LibFunc_fmin: 6350 case LibFunc_fminf: 6351 case LibFunc_fminl: 6352 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6353 return; 6354 break; 6355 case LibFunc_fmax: 6356 case LibFunc_fmaxf: 6357 case LibFunc_fmaxl: 6358 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6359 return; 6360 break; 6361 case LibFunc_sin: 6362 case LibFunc_sinf: 6363 case LibFunc_sinl: 6364 if (visitUnaryFloatCall(I, ISD::FSIN)) 6365 return; 6366 break; 6367 case LibFunc_cos: 6368 case LibFunc_cosf: 6369 case LibFunc_cosl: 6370 if (visitUnaryFloatCall(I, ISD::FCOS)) 6371 return; 6372 break; 6373 case LibFunc_sqrt: 6374 case LibFunc_sqrtf: 6375 case LibFunc_sqrtl: 6376 case LibFunc_sqrt_finite: 6377 case LibFunc_sqrtf_finite: 6378 case LibFunc_sqrtl_finite: 6379 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6380 return; 6381 break; 6382 case LibFunc_floor: 6383 case LibFunc_floorf: 6384 case LibFunc_floorl: 6385 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6386 return; 6387 break; 6388 case LibFunc_nearbyint: 6389 case LibFunc_nearbyintf: 6390 case LibFunc_nearbyintl: 6391 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6392 return; 6393 break; 6394 case LibFunc_ceil: 6395 case LibFunc_ceilf: 6396 case LibFunc_ceill: 6397 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6398 return; 6399 break; 6400 case LibFunc_rint: 6401 case LibFunc_rintf: 6402 case LibFunc_rintl: 6403 if (visitUnaryFloatCall(I, ISD::FRINT)) 6404 return; 6405 break; 6406 case LibFunc_round: 6407 case LibFunc_roundf: 6408 case LibFunc_roundl: 6409 if (visitUnaryFloatCall(I, ISD::FROUND)) 6410 return; 6411 break; 6412 case LibFunc_trunc: 6413 case LibFunc_truncf: 6414 case LibFunc_truncl: 6415 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6416 return; 6417 break; 6418 case LibFunc_log2: 6419 case LibFunc_log2f: 6420 case LibFunc_log2l: 6421 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6422 return; 6423 break; 6424 case LibFunc_exp2: 6425 case LibFunc_exp2f: 6426 case LibFunc_exp2l: 6427 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6428 return; 6429 break; 6430 case LibFunc_memcmp: 6431 if (visitMemCmpCall(I)) 6432 return; 6433 break; 6434 case LibFunc_mempcpy: 6435 if (visitMemPCpyCall(I)) 6436 return; 6437 break; 6438 case LibFunc_memchr: 6439 if (visitMemChrCall(I)) 6440 return; 6441 break; 6442 case LibFunc_strcpy: 6443 if (visitStrCpyCall(I, false)) 6444 return; 6445 break; 6446 case LibFunc_stpcpy: 6447 if (visitStrCpyCall(I, true)) 6448 return; 6449 break; 6450 case LibFunc_strcmp: 6451 if (visitStrCmpCall(I)) 6452 return; 6453 break; 6454 case LibFunc_strlen: 6455 if (visitStrLenCall(I)) 6456 return; 6457 break; 6458 case LibFunc_strnlen: 6459 if (visitStrNLenCall(I)) 6460 return; 6461 break; 6462 } 6463 } 6464 } 6465 6466 SDValue Callee; 6467 if (!RenameFn) 6468 Callee = getValue(I.getCalledValue()); 6469 else 6470 Callee = DAG.getExternalSymbol( 6471 RenameFn, 6472 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6473 6474 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6475 // have to do anything here to lower funclet bundles. 6476 assert(!I.hasOperandBundlesOtherThan( 6477 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6478 "Cannot lower calls with arbitrary operand bundles!"); 6479 6480 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6481 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6482 else 6483 // Check if we can potentially perform a tail call. More detailed checking 6484 // is be done within LowerCallTo, after more information about the call is 6485 // known. 6486 LowerCallTo(&I, Callee, I.isTailCall()); 6487 } 6488 6489 namespace { 6490 6491 /// AsmOperandInfo - This contains information for each constraint that we are 6492 /// lowering. 6493 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6494 public: 6495 /// CallOperand - If this is the result output operand or a clobber 6496 /// this is null, otherwise it is the incoming operand to the CallInst. 6497 /// This gets modified as the asm is processed. 6498 SDValue CallOperand; 6499 6500 /// AssignedRegs - If this is a register or register class operand, this 6501 /// contains the set of register corresponding to the operand. 6502 RegsForValue AssignedRegs; 6503 6504 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6505 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6506 } 6507 6508 /// Whether or not this operand accesses memory 6509 bool hasMemory(const TargetLowering &TLI) const { 6510 // Indirect operand accesses access memory. 6511 if (isIndirect) 6512 return true; 6513 6514 for (const auto &Code : Codes) 6515 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6516 return true; 6517 6518 return false; 6519 } 6520 6521 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6522 /// corresponds to. If there is no Value* for this operand, it returns 6523 /// MVT::Other. 6524 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6525 const DataLayout &DL) const { 6526 if (!CallOperandVal) return MVT::Other; 6527 6528 if (isa<BasicBlock>(CallOperandVal)) 6529 return TLI.getPointerTy(DL); 6530 6531 llvm::Type *OpTy = CallOperandVal->getType(); 6532 6533 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6534 // If this is an indirect operand, the operand is a pointer to the 6535 // accessed type. 6536 if (isIndirect) { 6537 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6538 if (!PtrTy) 6539 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6540 OpTy = PtrTy->getElementType(); 6541 } 6542 6543 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6544 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6545 if (STy->getNumElements() == 1) 6546 OpTy = STy->getElementType(0); 6547 6548 // If OpTy is not a single value, it may be a struct/union that we 6549 // can tile with integers. 6550 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6551 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6552 switch (BitSize) { 6553 default: break; 6554 case 1: 6555 case 8: 6556 case 16: 6557 case 32: 6558 case 64: 6559 case 128: 6560 OpTy = IntegerType::get(Context, BitSize); 6561 break; 6562 } 6563 } 6564 6565 return TLI.getValueType(DL, OpTy, true); 6566 } 6567 }; 6568 6569 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6570 6571 } // end anonymous namespace 6572 6573 /// Make sure that the output operand \p OpInfo and its corresponding input 6574 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6575 /// out). 6576 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6577 SDISelAsmOperandInfo &MatchingOpInfo, 6578 SelectionDAG &DAG) { 6579 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6580 return; 6581 6582 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6583 const auto &TLI = DAG.getTargetLoweringInfo(); 6584 6585 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6586 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6587 OpInfo.ConstraintVT); 6588 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6589 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6590 MatchingOpInfo.ConstraintVT); 6591 if ((OpInfo.ConstraintVT.isInteger() != 6592 MatchingOpInfo.ConstraintVT.isInteger()) || 6593 (MatchRC.second != InputRC.second)) { 6594 // FIXME: error out in a more elegant fashion 6595 report_fatal_error("Unsupported asm: input constraint" 6596 " with a matching output constraint of" 6597 " incompatible type!"); 6598 } 6599 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6600 } 6601 6602 /// Get a direct memory input to behave well as an indirect operand. 6603 /// This may introduce stores, hence the need for a \p Chain. 6604 /// \return The (possibly updated) chain. 6605 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6606 SDISelAsmOperandInfo &OpInfo, 6607 SelectionDAG &DAG) { 6608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6609 6610 // If we don't have an indirect input, put it in the constpool if we can, 6611 // otherwise spill it to a stack slot. 6612 // TODO: This isn't quite right. We need to handle these according to 6613 // the addressing mode that the constraint wants. Also, this may take 6614 // an additional register for the computation and we don't want that 6615 // either. 6616 6617 // If the operand is a float, integer, or vector constant, spill to a 6618 // constant pool entry to get its address. 6619 const Value *OpVal = OpInfo.CallOperandVal; 6620 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6621 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6622 OpInfo.CallOperand = DAG.getConstantPool( 6623 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6624 return Chain; 6625 } 6626 6627 // Otherwise, create a stack slot and emit a store to it before the asm. 6628 Type *Ty = OpVal->getType(); 6629 auto &DL = DAG.getDataLayout(); 6630 uint64_t TySize = DL.getTypeAllocSize(Ty); 6631 unsigned Align = DL.getPrefTypeAlignment(Ty); 6632 MachineFunction &MF = DAG.getMachineFunction(); 6633 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6634 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6635 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6636 MachinePointerInfo::getFixedStack(MF, SSFI)); 6637 OpInfo.CallOperand = StackSlot; 6638 6639 return Chain; 6640 } 6641 6642 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6643 /// specified operand. We prefer to assign virtual registers, to allow the 6644 /// register allocator to handle the assignment process. However, if the asm 6645 /// uses features that we can't model on machineinstrs, we have SDISel do the 6646 /// allocation. This produces generally horrible, but correct, code. 6647 /// 6648 /// OpInfo describes the operand. 6649 /// 6650 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6651 const SDLoc &DL, 6652 SDISelAsmOperandInfo &OpInfo) { 6653 LLVMContext &Context = *DAG.getContext(); 6654 6655 MachineFunction &MF = DAG.getMachineFunction(); 6656 SmallVector<unsigned, 4> Regs; 6657 6658 // If this is a constraint for a single physreg, or a constraint for a 6659 // register class, find it. 6660 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6661 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6662 OpInfo.ConstraintCode, 6663 OpInfo.ConstraintVT); 6664 6665 unsigned NumRegs = 1; 6666 if (OpInfo.ConstraintVT != MVT::Other) { 6667 // If this is a FP input in an integer register (or visa versa) insert a bit 6668 // cast of the input value. More generally, handle any case where the input 6669 // value disagrees with the register class we plan to stick this in. 6670 if (OpInfo.Type == InlineAsm::isInput && 6671 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6672 // Try to convert to the first EVT that the reg class contains. If the 6673 // types are identical size, use a bitcast to convert (e.g. two differing 6674 // vector types). 6675 MVT RegVT = *PhysReg.second->vt_begin(); 6676 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6677 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6678 RegVT, OpInfo.CallOperand); 6679 OpInfo.ConstraintVT = RegVT; 6680 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6681 // If the input is a FP value and we want it in FP registers, do a 6682 // bitcast to the corresponding integer type. This turns an f64 value 6683 // into i64, which can be passed with two i32 values on a 32-bit 6684 // machine. 6685 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6686 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6687 RegVT, OpInfo.CallOperand); 6688 OpInfo.ConstraintVT = RegVT; 6689 } 6690 } 6691 6692 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6693 } 6694 6695 MVT RegVT; 6696 EVT ValueVT = OpInfo.ConstraintVT; 6697 6698 // If this is a constraint for a specific physical register, like {r17}, 6699 // assign it now. 6700 if (unsigned AssignedReg = PhysReg.first) { 6701 const TargetRegisterClass *RC = PhysReg.second; 6702 if (OpInfo.ConstraintVT == MVT::Other) 6703 ValueVT = *RC->vt_begin(); 6704 6705 // Get the actual register value type. This is important, because the user 6706 // may have asked for (e.g.) the AX register in i32 type. We need to 6707 // remember that AX is actually i16 to get the right extension. 6708 RegVT = *RC->vt_begin(); 6709 6710 // This is a explicit reference to a physical register. 6711 Regs.push_back(AssignedReg); 6712 6713 // If this is an expanded reference, add the rest of the regs to Regs. 6714 if (NumRegs != 1) { 6715 TargetRegisterClass::iterator I = RC->begin(); 6716 for (; *I != AssignedReg; ++I) 6717 assert(I != RC->end() && "Didn't find reg!"); 6718 6719 // Already added the first reg. 6720 --NumRegs; ++I; 6721 for (; NumRegs; --NumRegs, ++I) { 6722 assert(I != RC->end() && "Ran out of registers to allocate!"); 6723 Regs.push_back(*I); 6724 } 6725 } 6726 6727 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6728 return; 6729 } 6730 6731 // Otherwise, if this was a reference to an LLVM register class, create vregs 6732 // for this reference. 6733 if (const TargetRegisterClass *RC = PhysReg.second) { 6734 RegVT = *RC->vt_begin(); 6735 if (OpInfo.ConstraintVT == MVT::Other) 6736 ValueVT = RegVT; 6737 6738 // Create the appropriate number of virtual registers. 6739 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6740 for (; NumRegs; --NumRegs) 6741 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6742 6743 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6744 return; 6745 } 6746 6747 // Otherwise, we couldn't allocate enough registers for this. 6748 } 6749 6750 static unsigned 6751 findMatchingInlineAsmOperand(unsigned OperandNo, 6752 const std::vector<SDValue> &AsmNodeOperands) { 6753 // Scan until we find the definition we already emitted of this operand. 6754 unsigned CurOp = InlineAsm::Op_FirstOperand; 6755 for (; OperandNo; --OperandNo) { 6756 // Advance to the next operand. 6757 unsigned OpFlag = 6758 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6759 assert((InlineAsm::isRegDefKind(OpFlag) || 6760 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6761 InlineAsm::isMemKind(OpFlag)) && 6762 "Skipped past definitions?"); 6763 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6764 } 6765 return CurOp; 6766 } 6767 6768 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6769 /// \return true if it has succeeded, false otherwise 6770 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6771 MVT RegVT, SelectionDAG &DAG) { 6772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6773 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6774 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6775 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6776 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6777 else 6778 return false; 6779 } 6780 return true; 6781 } 6782 6783 class ExtraFlags { 6784 unsigned Flags = 0; 6785 6786 public: 6787 explicit ExtraFlags(ImmutableCallSite CS) { 6788 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6789 if (IA->hasSideEffects()) 6790 Flags |= InlineAsm::Extra_HasSideEffects; 6791 if (IA->isAlignStack()) 6792 Flags |= InlineAsm::Extra_IsAlignStack; 6793 if (CS.isConvergent()) 6794 Flags |= InlineAsm::Extra_IsConvergent; 6795 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6796 } 6797 6798 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6799 // Ideally, we would only check against memory constraints. However, the 6800 // meaning of an Other constraint can be target-specific and we can't easily 6801 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6802 // for Other constraints as well. 6803 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6804 OpInfo.ConstraintType == TargetLowering::C_Other) { 6805 if (OpInfo.Type == InlineAsm::isInput) 6806 Flags |= InlineAsm::Extra_MayLoad; 6807 else if (OpInfo.Type == InlineAsm::isOutput) 6808 Flags |= InlineAsm::Extra_MayStore; 6809 else if (OpInfo.Type == InlineAsm::isClobber) 6810 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6811 } 6812 } 6813 6814 unsigned get() const { return Flags; } 6815 }; 6816 6817 /// visitInlineAsm - Handle a call to an InlineAsm object. 6818 /// 6819 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6820 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6821 6822 /// ConstraintOperands - Information about all of the constraints. 6823 SDISelAsmOperandInfoVector ConstraintOperands; 6824 6825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6826 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6827 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6828 6829 bool hasMemory = false; 6830 6831 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6832 ExtraFlags ExtraInfo(CS); 6833 6834 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6835 unsigned ResNo = 0; // ResNo - The result number of the next output. 6836 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6837 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6838 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6839 6840 MVT OpVT = MVT::Other; 6841 6842 // Compute the value type for each operand. 6843 if (OpInfo.Type == InlineAsm::isInput || 6844 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6845 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6846 6847 // Process the call argument. BasicBlocks are labels, currently appearing 6848 // only in asm's. 6849 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6850 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6851 } else { 6852 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6853 } 6854 6855 OpVT = 6856 OpInfo 6857 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6858 .getSimpleVT(); 6859 } 6860 6861 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6862 // The return value of the call is this value. As such, there is no 6863 // corresponding argument. 6864 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6865 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6866 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6867 STy->getElementType(ResNo)); 6868 } else { 6869 assert(ResNo == 0 && "Asm only has one result!"); 6870 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6871 } 6872 ++ResNo; 6873 } 6874 6875 OpInfo.ConstraintVT = OpVT; 6876 6877 if (!hasMemory) 6878 hasMemory = OpInfo.hasMemory(TLI); 6879 6880 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6881 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6882 auto TargetConstraint = TargetConstraints[i]; 6883 6884 // Compute the constraint code and ConstraintType to use. 6885 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6886 6887 ExtraInfo.update(TargetConstraint); 6888 } 6889 6890 SDValue Chain, Flag; 6891 6892 // We won't need to flush pending loads if this asm doesn't touch 6893 // memory and is nonvolatile. 6894 if (hasMemory || IA->hasSideEffects()) 6895 Chain = getRoot(); 6896 else 6897 Chain = DAG.getRoot(); 6898 6899 // Second pass over the constraints: compute which constraint option to use 6900 // and assign registers to constraints that want a specific physreg. 6901 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6902 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6903 6904 // If this is an output operand with a matching input operand, look up the 6905 // matching input. If their types mismatch, e.g. one is an integer, the 6906 // other is floating point, or their sizes are different, flag it as an 6907 // error. 6908 if (OpInfo.hasMatchingInput()) { 6909 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6910 patchMatchingInput(OpInfo, Input, DAG); 6911 } 6912 6913 // Compute the constraint code and ConstraintType to use. 6914 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6915 6916 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6917 OpInfo.Type == InlineAsm::isClobber) 6918 continue; 6919 6920 // If this is a memory input, and if the operand is not indirect, do what we 6921 // need to to provide an address for the memory input. 6922 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6923 !OpInfo.isIndirect) { 6924 assert((OpInfo.isMultipleAlternative || 6925 (OpInfo.Type == InlineAsm::isInput)) && 6926 "Can only indirectify direct input operands!"); 6927 6928 // Memory operands really want the address of the value. 6929 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6930 6931 // There is no longer a Value* corresponding to this operand. 6932 OpInfo.CallOperandVal = nullptr; 6933 6934 // It is now an indirect operand. 6935 OpInfo.isIndirect = true; 6936 } 6937 6938 // If this constraint is for a specific register, allocate it before 6939 // anything else. 6940 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6941 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6942 } 6943 6944 // Third pass - Loop over all of the operands, assigning virtual or physregs 6945 // to register class operands. 6946 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6947 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6948 6949 // C_Register operands have already been allocated, Other/Memory don't need 6950 // to be. 6951 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6952 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6953 } 6954 6955 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6956 std::vector<SDValue> AsmNodeOperands; 6957 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6958 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6959 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6960 6961 // If we have a !srcloc metadata node associated with it, we want to attach 6962 // this to the ultimately generated inline asm machineinstr. To do this, we 6963 // pass in the third operand as this (potentially null) inline asm MDNode. 6964 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6965 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6966 6967 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6968 // bits as operand 3. 6969 AsmNodeOperands.push_back(DAG.getTargetConstant( 6970 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6971 6972 // Loop over all of the inputs, copying the operand values into the 6973 // appropriate registers and processing the output regs. 6974 RegsForValue RetValRegs; 6975 6976 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6977 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6978 6979 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6980 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6981 6982 switch (OpInfo.Type) { 6983 case InlineAsm::isOutput: { 6984 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6985 OpInfo.ConstraintType != TargetLowering::C_Register) { 6986 // Memory output, or 'other' output (e.g. 'X' constraint). 6987 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6988 6989 unsigned ConstraintID = 6990 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6991 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6992 "Failed to convert memory constraint code to constraint id."); 6993 6994 // Add information to the INLINEASM node to know about this output. 6995 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6996 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6997 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6998 MVT::i32)); 6999 AsmNodeOperands.push_back(OpInfo.CallOperand); 7000 break; 7001 } 7002 7003 // Otherwise, this is a register or register class output. 7004 7005 // Copy the output from the appropriate register. Find a register that 7006 // we can use. 7007 if (OpInfo.AssignedRegs.Regs.empty()) { 7008 emitInlineAsmError( 7009 CS, "couldn't allocate output register for constraint '" + 7010 Twine(OpInfo.ConstraintCode) + "'"); 7011 return; 7012 } 7013 7014 // If this is an indirect operand, store through the pointer after the 7015 // asm. 7016 if (OpInfo.isIndirect) { 7017 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7018 OpInfo.CallOperandVal)); 7019 } else { 7020 // This is the result value of the call. 7021 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7022 // Concatenate this output onto the outputs list. 7023 RetValRegs.append(OpInfo.AssignedRegs); 7024 } 7025 7026 // Add information to the INLINEASM node to know that this register is 7027 // set. 7028 OpInfo.AssignedRegs 7029 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7030 ? InlineAsm::Kind_RegDefEarlyClobber 7031 : InlineAsm::Kind_RegDef, 7032 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7033 break; 7034 } 7035 case InlineAsm::isInput: { 7036 SDValue InOperandVal = OpInfo.CallOperand; 7037 7038 if (OpInfo.isMatchingInputConstraint()) { 7039 // If this is required to match an output register we have already set, 7040 // just use its register. 7041 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7042 AsmNodeOperands); 7043 unsigned OpFlag = 7044 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7045 if (InlineAsm::isRegDefKind(OpFlag) || 7046 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7047 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7048 if (OpInfo.isIndirect) { 7049 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7050 emitInlineAsmError(CS, "inline asm not supported yet:" 7051 " don't know how to handle tied " 7052 "indirect register inputs"); 7053 return; 7054 } 7055 7056 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7057 SmallVector<unsigned, 4> Regs; 7058 7059 if (!createVirtualRegs(Regs, 7060 InlineAsm::getNumOperandRegisters(OpFlag), 7061 RegVT, DAG)) { 7062 emitInlineAsmError(CS, "inline asm error: This value type register " 7063 "class is not natively supported!"); 7064 return; 7065 } 7066 7067 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7068 7069 SDLoc dl = getCurSDLoc(); 7070 // Use the produced MatchedRegs object to 7071 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7072 Chain, &Flag, CS.getInstruction()); 7073 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7074 true, OpInfo.getMatchedOperand(), dl, 7075 DAG, AsmNodeOperands); 7076 break; 7077 } 7078 7079 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7080 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7081 "Unexpected number of operands"); 7082 // Add information to the INLINEASM node to know about this input. 7083 // See InlineAsm.h isUseOperandTiedToDef. 7084 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7085 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7086 OpInfo.getMatchedOperand()); 7087 AsmNodeOperands.push_back(DAG.getTargetConstant( 7088 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7089 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7090 break; 7091 } 7092 7093 // Treat indirect 'X' constraint as memory. 7094 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7095 OpInfo.isIndirect) 7096 OpInfo.ConstraintType = TargetLowering::C_Memory; 7097 7098 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7099 std::vector<SDValue> Ops; 7100 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7101 Ops, DAG); 7102 if (Ops.empty()) { 7103 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7104 Twine(OpInfo.ConstraintCode) + "'"); 7105 return; 7106 } 7107 7108 // Add information to the INLINEASM node to know about this input. 7109 unsigned ResOpType = 7110 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7111 AsmNodeOperands.push_back(DAG.getTargetConstant( 7112 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7113 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7114 break; 7115 } 7116 7117 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7118 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7119 assert(InOperandVal.getValueType() == 7120 TLI.getPointerTy(DAG.getDataLayout()) && 7121 "Memory operands expect pointer values"); 7122 7123 unsigned ConstraintID = 7124 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7125 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7126 "Failed to convert memory constraint code to constraint id."); 7127 7128 // Add information to the INLINEASM node to know about this input. 7129 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7130 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7131 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7132 getCurSDLoc(), 7133 MVT::i32)); 7134 AsmNodeOperands.push_back(InOperandVal); 7135 break; 7136 } 7137 7138 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7139 OpInfo.ConstraintType == TargetLowering::C_Register) && 7140 "Unknown constraint type!"); 7141 7142 // TODO: Support this. 7143 if (OpInfo.isIndirect) { 7144 emitInlineAsmError( 7145 CS, "Don't know how to handle indirect register inputs yet " 7146 "for constraint '" + 7147 Twine(OpInfo.ConstraintCode) + "'"); 7148 return; 7149 } 7150 7151 // Copy the input into the appropriate registers. 7152 if (OpInfo.AssignedRegs.Regs.empty()) { 7153 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7154 Twine(OpInfo.ConstraintCode) + "'"); 7155 return; 7156 } 7157 7158 SDLoc dl = getCurSDLoc(); 7159 7160 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7161 Chain, &Flag, CS.getInstruction()); 7162 7163 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7164 dl, DAG, AsmNodeOperands); 7165 break; 7166 } 7167 case InlineAsm::isClobber: { 7168 // Add the clobbered value to the operand list, so that the register 7169 // allocator is aware that the physreg got clobbered. 7170 if (!OpInfo.AssignedRegs.Regs.empty()) 7171 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7172 false, 0, getCurSDLoc(), DAG, 7173 AsmNodeOperands); 7174 break; 7175 } 7176 } 7177 } 7178 7179 // Finish up input operands. Set the input chain and add the flag last. 7180 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7181 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7182 7183 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7184 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7185 Flag = Chain.getValue(1); 7186 7187 // If this asm returns a register value, copy the result from that register 7188 // and set it as the value of the call. 7189 if (!RetValRegs.Regs.empty()) { 7190 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7191 Chain, &Flag, CS.getInstruction()); 7192 7193 // FIXME: Why don't we do this for inline asms with MRVs? 7194 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7195 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7196 7197 // If any of the results of the inline asm is a vector, it may have the 7198 // wrong width/num elts. This can happen for register classes that can 7199 // contain multiple different value types. The preg or vreg allocated may 7200 // not have the same VT as was expected. Convert it to the right type 7201 // with bit_convert. 7202 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7203 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7204 ResultType, Val); 7205 7206 } else if (ResultType != Val.getValueType() && 7207 ResultType.isInteger() && Val.getValueType().isInteger()) { 7208 // If a result value was tied to an input value, the computed result may 7209 // have a wider width than the expected result. Extract the relevant 7210 // portion. 7211 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7212 } 7213 7214 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7215 } 7216 7217 setValue(CS.getInstruction(), Val); 7218 // Don't need to use this as a chain in this case. 7219 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7220 return; 7221 } 7222 7223 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7224 7225 // Process indirect outputs, first output all of the flagged copies out of 7226 // physregs. 7227 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7228 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7229 const Value *Ptr = IndirectStoresToEmit[i].second; 7230 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7231 Chain, &Flag, IA); 7232 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7233 } 7234 7235 // Emit the non-flagged stores from the physregs. 7236 SmallVector<SDValue, 8> OutChains; 7237 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7238 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7239 getValue(StoresToEmit[i].second), 7240 MachinePointerInfo(StoresToEmit[i].second)); 7241 OutChains.push_back(Val); 7242 } 7243 7244 if (!OutChains.empty()) 7245 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7246 7247 DAG.setRoot(Chain); 7248 } 7249 7250 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7251 const Twine &Message) { 7252 LLVMContext &Ctx = *DAG.getContext(); 7253 Ctx.emitError(CS.getInstruction(), Message); 7254 7255 // Make sure we leave the DAG in a valid state 7256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7257 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7258 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7259 } 7260 7261 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7262 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7263 MVT::Other, getRoot(), 7264 getValue(I.getArgOperand(0)), 7265 DAG.getSrcValue(I.getArgOperand(0)))); 7266 } 7267 7268 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7270 const DataLayout &DL = DAG.getDataLayout(); 7271 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7272 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7273 DAG.getSrcValue(I.getOperand(0)), 7274 DL.getABITypeAlignment(I.getType())); 7275 setValue(&I, V); 7276 DAG.setRoot(V.getValue(1)); 7277 } 7278 7279 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7280 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7281 MVT::Other, getRoot(), 7282 getValue(I.getArgOperand(0)), 7283 DAG.getSrcValue(I.getArgOperand(0)))); 7284 } 7285 7286 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7287 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7288 MVT::Other, getRoot(), 7289 getValue(I.getArgOperand(0)), 7290 getValue(I.getArgOperand(1)), 7291 DAG.getSrcValue(I.getArgOperand(0)), 7292 DAG.getSrcValue(I.getArgOperand(1)))); 7293 } 7294 7295 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7296 const Instruction &I, 7297 SDValue Op) { 7298 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7299 if (!Range) 7300 return Op; 7301 7302 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7303 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7304 return Op; 7305 7306 APInt Lo = CR.getUnsignedMin(); 7307 if (!Lo.isMinValue()) 7308 return Op; 7309 7310 APInt Hi = CR.getUnsignedMax(); 7311 unsigned Bits = Hi.getActiveBits(); 7312 7313 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7314 7315 SDLoc SL = getCurSDLoc(); 7316 7317 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7318 DAG.getValueType(SmallVT)); 7319 unsigned NumVals = Op.getNode()->getNumValues(); 7320 if (NumVals == 1) 7321 return ZExt; 7322 7323 SmallVector<SDValue, 4> Ops; 7324 7325 Ops.push_back(ZExt); 7326 for (unsigned I = 1; I != NumVals; ++I) 7327 Ops.push_back(Op.getValue(I)); 7328 7329 return DAG.getMergeValues(Ops, SL); 7330 } 7331 7332 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7333 /// the call being lowered. 7334 /// 7335 /// This is a helper for lowering intrinsics that follow a target calling 7336 /// convention or require stack pointer adjustment. Only a subset of the 7337 /// intrinsic's operands need to participate in the calling convention. 7338 void SelectionDAGBuilder::populateCallLoweringInfo( 7339 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7340 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7341 bool IsPatchPoint) { 7342 TargetLowering::ArgListTy Args; 7343 Args.reserve(NumArgs); 7344 7345 // Populate the argument list. 7346 // Attributes for args start at offset 1, after the return attribute. 7347 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7348 ArgI != ArgE; ++ArgI) { 7349 const Value *V = CS->getOperand(ArgI); 7350 7351 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7352 7353 TargetLowering::ArgListEntry Entry; 7354 Entry.Node = getValue(V); 7355 Entry.Ty = V->getType(); 7356 Entry.setAttributes(&CS, AttrI); 7357 Args.push_back(Entry); 7358 } 7359 7360 CLI.setDebugLoc(getCurSDLoc()) 7361 .setChain(getRoot()) 7362 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7363 .setDiscardResult(CS->use_empty()) 7364 .setIsPatchPoint(IsPatchPoint); 7365 } 7366 7367 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7368 /// or patchpoint target node's operand list. 7369 /// 7370 /// Constants are converted to TargetConstants purely as an optimization to 7371 /// avoid constant materialization and register allocation. 7372 /// 7373 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7374 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7375 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7376 /// address materialization and register allocation, but may also be required 7377 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7378 /// alloca in the entry block, then the runtime may assume that the alloca's 7379 /// StackMap location can be read immediately after compilation and that the 7380 /// location is valid at any point during execution (this is similar to the 7381 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7382 /// only available in a register, then the runtime would need to trap when 7383 /// execution reaches the StackMap in order to read the alloca's location. 7384 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7385 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7386 SelectionDAGBuilder &Builder) { 7387 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7388 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7389 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7390 Ops.push_back( 7391 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7392 Ops.push_back( 7393 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7394 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7395 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7396 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7397 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7398 } else 7399 Ops.push_back(OpVal); 7400 } 7401 } 7402 7403 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7404 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7405 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7406 // [live variables...]) 7407 7408 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7409 7410 SDValue Chain, InFlag, Callee, NullPtr; 7411 SmallVector<SDValue, 32> Ops; 7412 7413 SDLoc DL = getCurSDLoc(); 7414 Callee = getValue(CI.getCalledValue()); 7415 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7416 7417 // The stackmap intrinsic only records the live variables (the arguemnts 7418 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7419 // intrinsic, this won't be lowered to a function call. This means we don't 7420 // have to worry about calling conventions and target specific lowering code. 7421 // Instead we perform the call lowering right here. 7422 // 7423 // chain, flag = CALLSEQ_START(chain, 0) 7424 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7425 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7426 // 7427 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7428 InFlag = Chain.getValue(1); 7429 7430 // Add the <id> and <numBytes> constants. 7431 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7432 Ops.push_back(DAG.getTargetConstant( 7433 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7434 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7435 Ops.push_back(DAG.getTargetConstant( 7436 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7437 MVT::i32)); 7438 7439 // Push live variables for the stack map. 7440 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7441 7442 // We are not pushing any register mask info here on the operands list, 7443 // because the stackmap doesn't clobber anything. 7444 7445 // Push the chain and the glue flag. 7446 Ops.push_back(Chain); 7447 Ops.push_back(InFlag); 7448 7449 // Create the STACKMAP node. 7450 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7451 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7452 Chain = SDValue(SM, 0); 7453 InFlag = Chain.getValue(1); 7454 7455 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7456 7457 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7458 7459 // Set the root to the target-lowered call chain. 7460 DAG.setRoot(Chain); 7461 7462 // Inform the Frame Information that we have a stackmap in this function. 7463 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7464 } 7465 7466 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7467 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7468 const BasicBlock *EHPadBB) { 7469 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7470 // i32 <numBytes>, 7471 // i8* <target>, 7472 // i32 <numArgs>, 7473 // [Args...], 7474 // [live variables...]) 7475 7476 CallingConv::ID CC = CS.getCallingConv(); 7477 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7478 bool HasDef = !CS->getType()->isVoidTy(); 7479 SDLoc dl = getCurSDLoc(); 7480 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7481 7482 // Handle immediate and symbolic callees. 7483 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7484 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7485 /*isTarget=*/true); 7486 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7487 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7488 SDLoc(SymbolicCallee), 7489 SymbolicCallee->getValueType(0)); 7490 7491 // Get the real number of arguments participating in the call <numArgs> 7492 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7493 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7494 7495 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7496 // Intrinsics include all meta-operands up to but not including CC. 7497 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7498 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7499 "Not enough arguments provided to the patchpoint intrinsic"); 7500 7501 // For AnyRegCC the arguments are lowered later on manually. 7502 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7503 Type *ReturnTy = 7504 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7505 7506 TargetLowering::CallLoweringInfo CLI(DAG); 7507 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7508 true); 7509 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7510 7511 SDNode *CallEnd = Result.second.getNode(); 7512 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7513 CallEnd = CallEnd->getOperand(0).getNode(); 7514 7515 /// Get a call instruction from the call sequence chain. 7516 /// Tail calls are not allowed. 7517 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7518 "Expected a callseq node."); 7519 SDNode *Call = CallEnd->getOperand(0).getNode(); 7520 bool HasGlue = Call->getGluedNode(); 7521 7522 // Replace the target specific call node with the patchable intrinsic. 7523 SmallVector<SDValue, 8> Ops; 7524 7525 // Add the <id> and <numBytes> constants. 7526 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7527 Ops.push_back(DAG.getTargetConstant( 7528 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7529 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7530 Ops.push_back(DAG.getTargetConstant( 7531 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7532 MVT::i32)); 7533 7534 // Add the callee. 7535 Ops.push_back(Callee); 7536 7537 // Adjust <numArgs> to account for any arguments that have been passed on the 7538 // stack instead. 7539 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7540 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7541 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7542 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7543 7544 // Add the calling convention 7545 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7546 7547 // Add the arguments we omitted previously. The register allocator should 7548 // place these in any free register. 7549 if (IsAnyRegCC) 7550 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7551 Ops.push_back(getValue(CS.getArgument(i))); 7552 7553 // Push the arguments from the call instruction up to the register mask. 7554 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7555 Ops.append(Call->op_begin() + 2, e); 7556 7557 // Push live variables for the stack map. 7558 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7559 7560 // Push the register mask info. 7561 if (HasGlue) 7562 Ops.push_back(*(Call->op_end()-2)); 7563 else 7564 Ops.push_back(*(Call->op_end()-1)); 7565 7566 // Push the chain (this is originally the first operand of the call, but 7567 // becomes now the last or second to last operand). 7568 Ops.push_back(*(Call->op_begin())); 7569 7570 // Push the glue flag (last operand). 7571 if (HasGlue) 7572 Ops.push_back(*(Call->op_end()-1)); 7573 7574 SDVTList NodeTys; 7575 if (IsAnyRegCC && HasDef) { 7576 // Create the return types based on the intrinsic definition 7577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7578 SmallVector<EVT, 3> ValueVTs; 7579 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7580 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7581 7582 // There is always a chain and a glue type at the end 7583 ValueVTs.push_back(MVT::Other); 7584 ValueVTs.push_back(MVT::Glue); 7585 NodeTys = DAG.getVTList(ValueVTs); 7586 } else 7587 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7588 7589 // Replace the target specific call node with a PATCHPOINT node. 7590 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7591 dl, NodeTys, Ops); 7592 7593 // Update the NodeMap. 7594 if (HasDef) { 7595 if (IsAnyRegCC) 7596 setValue(CS.getInstruction(), SDValue(MN, 0)); 7597 else 7598 setValue(CS.getInstruction(), Result.first); 7599 } 7600 7601 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7602 // call sequence. Furthermore the location of the chain and glue can change 7603 // when the AnyReg calling convention is used and the intrinsic returns a 7604 // value. 7605 if (IsAnyRegCC && HasDef) { 7606 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7607 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7608 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7609 } else 7610 DAG.ReplaceAllUsesWith(Call, MN); 7611 DAG.DeleteNode(Call); 7612 7613 // Inform the Frame Information that we have a patchpoint in this function. 7614 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7615 } 7616 7617 /// Returns an AttributeList representing the attributes applied to the return 7618 /// value of the given call. 7619 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7620 SmallVector<Attribute::AttrKind, 2> Attrs; 7621 if (CLI.RetSExt) 7622 Attrs.push_back(Attribute::SExt); 7623 if (CLI.RetZExt) 7624 Attrs.push_back(Attribute::ZExt); 7625 if (CLI.IsInReg) 7626 Attrs.push_back(Attribute::InReg); 7627 7628 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7629 Attrs); 7630 } 7631 7632 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7633 /// implementation, which just calls LowerCall. 7634 /// FIXME: When all targets are 7635 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7636 std::pair<SDValue, SDValue> 7637 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7638 // Handle the incoming return values from the call. 7639 CLI.Ins.clear(); 7640 Type *OrigRetTy = CLI.RetTy; 7641 SmallVector<EVT, 4> RetTys; 7642 SmallVector<uint64_t, 4> Offsets; 7643 auto &DL = CLI.DAG.getDataLayout(); 7644 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7645 7646 SmallVector<ISD::OutputArg, 4> Outs; 7647 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7648 7649 bool CanLowerReturn = 7650 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7651 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7652 7653 SDValue DemoteStackSlot; 7654 int DemoteStackIdx = -100; 7655 if (!CanLowerReturn) { 7656 // FIXME: equivalent assert? 7657 // assert(!CS.hasInAllocaArgument() && 7658 // "sret demotion is incompatible with inalloca"); 7659 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7660 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7661 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7662 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7663 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7664 7665 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7666 ArgListEntry Entry; 7667 Entry.Node = DemoteStackSlot; 7668 Entry.Ty = StackSlotPtrType; 7669 Entry.IsSExt = false; 7670 Entry.IsZExt = false; 7671 Entry.IsInReg = false; 7672 Entry.IsSRet = true; 7673 Entry.IsNest = false; 7674 Entry.IsByVal = false; 7675 Entry.IsReturned = false; 7676 Entry.IsSwiftSelf = false; 7677 Entry.IsSwiftError = false; 7678 Entry.Alignment = Align; 7679 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7680 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7681 7682 // sret demotion isn't compatible with tail-calls, since the sret argument 7683 // points into the callers stack frame. 7684 CLI.IsTailCall = false; 7685 } else { 7686 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7687 EVT VT = RetTys[I]; 7688 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7689 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7690 for (unsigned i = 0; i != NumRegs; ++i) { 7691 ISD::InputArg MyFlags; 7692 MyFlags.VT = RegisterVT; 7693 MyFlags.ArgVT = VT; 7694 MyFlags.Used = CLI.IsReturnValueUsed; 7695 if (CLI.RetSExt) 7696 MyFlags.Flags.setSExt(); 7697 if (CLI.RetZExt) 7698 MyFlags.Flags.setZExt(); 7699 if (CLI.IsInReg) 7700 MyFlags.Flags.setInReg(); 7701 CLI.Ins.push_back(MyFlags); 7702 } 7703 } 7704 } 7705 7706 // We push in swifterror return as the last element of CLI.Ins. 7707 ArgListTy &Args = CLI.getArgs(); 7708 if (supportSwiftError()) { 7709 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7710 if (Args[i].IsSwiftError) { 7711 ISD::InputArg MyFlags; 7712 MyFlags.VT = getPointerTy(DL); 7713 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7714 MyFlags.Flags.setSwiftError(); 7715 CLI.Ins.push_back(MyFlags); 7716 } 7717 } 7718 } 7719 7720 // Handle all of the outgoing arguments. 7721 CLI.Outs.clear(); 7722 CLI.OutVals.clear(); 7723 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7724 SmallVector<EVT, 4> ValueVTs; 7725 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7726 Type *FinalType = Args[i].Ty; 7727 if (Args[i].IsByVal) 7728 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7729 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7730 FinalType, CLI.CallConv, CLI.IsVarArg); 7731 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7732 ++Value) { 7733 EVT VT = ValueVTs[Value]; 7734 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7735 SDValue Op = SDValue(Args[i].Node.getNode(), 7736 Args[i].Node.getResNo() + Value); 7737 ISD::ArgFlagsTy Flags; 7738 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7739 7740 if (Args[i].IsZExt) 7741 Flags.setZExt(); 7742 if (Args[i].IsSExt) 7743 Flags.setSExt(); 7744 if (Args[i].IsInReg) { 7745 // If we are using vectorcall calling convention, a structure that is 7746 // passed InReg - is surely an HVA 7747 if (CLI.CallConv == CallingConv::X86_VectorCall && 7748 isa<StructType>(FinalType)) { 7749 // The first value of a structure is marked 7750 if (0 == Value) 7751 Flags.setHvaStart(); 7752 Flags.setHva(); 7753 } 7754 // Set InReg Flag 7755 Flags.setInReg(); 7756 } 7757 if (Args[i].IsSRet) 7758 Flags.setSRet(); 7759 if (Args[i].IsSwiftSelf) 7760 Flags.setSwiftSelf(); 7761 if (Args[i].IsSwiftError) 7762 Flags.setSwiftError(); 7763 if (Args[i].IsByVal) 7764 Flags.setByVal(); 7765 if (Args[i].IsInAlloca) { 7766 Flags.setInAlloca(); 7767 // Set the byval flag for CCAssignFn callbacks that don't know about 7768 // inalloca. This way we can know how many bytes we should've allocated 7769 // and how many bytes a callee cleanup function will pop. If we port 7770 // inalloca to more targets, we'll have to add custom inalloca handling 7771 // in the various CC lowering callbacks. 7772 Flags.setByVal(); 7773 } 7774 if (Args[i].IsByVal || Args[i].IsInAlloca) { 7775 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7776 Type *ElementTy = Ty->getElementType(); 7777 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7778 // For ByVal, alignment should come from FE. BE will guess if this 7779 // info is not there but there are cases it cannot get right. 7780 unsigned FrameAlign; 7781 if (Args[i].Alignment) 7782 FrameAlign = Args[i].Alignment; 7783 else 7784 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7785 Flags.setByValAlign(FrameAlign); 7786 } 7787 if (Args[i].IsNest) 7788 Flags.setNest(); 7789 if (NeedsRegBlock) 7790 Flags.setInConsecutiveRegs(); 7791 Flags.setOrigAlign(OriginalAlignment); 7792 7793 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7794 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7795 SmallVector<SDValue, 4> Parts(NumParts); 7796 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7797 7798 if (Args[i].IsSExt) 7799 ExtendKind = ISD::SIGN_EXTEND; 7800 else if (Args[i].IsZExt) 7801 ExtendKind = ISD::ZERO_EXTEND; 7802 7803 // Conservatively only handle 'returned' on non-vectors for now 7804 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 7805 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7806 "unexpected use of 'returned'"); 7807 // Before passing 'returned' to the target lowering code, ensure that 7808 // either the register MVT and the actual EVT are the same size or that 7809 // the return value and argument are extended in the same way; in these 7810 // cases it's safe to pass the argument register value unchanged as the 7811 // return register value (although it's at the target's option whether 7812 // to do so) 7813 // TODO: allow code generation to take advantage of partially preserved 7814 // registers rather than clobbering the entire register when the 7815 // parameter extension method is not compatible with the return 7816 // extension method 7817 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7818 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 7819 CLI.RetZExt == Args[i].IsZExt)) 7820 Flags.setReturned(); 7821 } 7822 7823 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7824 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7825 7826 for (unsigned j = 0; j != NumParts; ++j) { 7827 // if it isn't first piece, alignment must be 1 7828 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7829 i < CLI.NumFixedArgs, 7830 i, j*Parts[j].getValueType().getStoreSize()); 7831 if (NumParts > 1 && j == 0) 7832 MyFlags.Flags.setSplit(); 7833 else if (j != 0) { 7834 MyFlags.Flags.setOrigAlign(1); 7835 if (j == NumParts - 1) 7836 MyFlags.Flags.setSplitEnd(); 7837 } 7838 7839 CLI.Outs.push_back(MyFlags); 7840 CLI.OutVals.push_back(Parts[j]); 7841 } 7842 7843 if (NeedsRegBlock && Value == NumValues - 1) 7844 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7845 } 7846 } 7847 7848 SmallVector<SDValue, 4> InVals; 7849 CLI.Chain = LowerCall(CLI, InVals); 7850 7851 // Update CLI.InVals to use outside of this function. 7852 CLI.InVals = InVals; 7853 7854 // Verify that the target's LowerCall behaved as expected. 7855 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7856 "LowerCall didn't return a valid chain!"); 7857 assert((!CLI.IsTailCall || InVals.empty()) && 7858 "LowerCall emitted a return value for a tail call!"); 7859 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7860 "LowerCall didn't emit the correct number of values!"); 7861 7862 // For a tail call, the return value is merely live-out and there aren't 7863 // any nodes in the DAG representing it. Return a special value to 7864 // indicate that a tail call has been emitted and no more Instructions 7865 // should be processed in the current block. 7866 if (CLI.IsTailCall) { 7867 CLI.DAG.setRoot(CLI.Chain); 7868 return std::make_pair(SDValue(), SDValue()); 7869 } 7870 7871 #ifndef NDEBUG 7872 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7873 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7874 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7875 "LowerCall emitted a value with the wrong type!"); 7876 } 7877 #endif 7878 7879 SmallVector<SDValue, 4> ReturnValues; 7880 if (!CanLowerReturn) { 7881 // The instruction result is the result of loading from the 7882 // hidden sret parameter. 7883 SmallVector<EVT, 1> PVTs; 7884 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7885 7886 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7887 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7888 EVT PtrVT = PVTs[0]; 7889 7890 unsigned NumValues = RetTys.size(); 7891 ReturnValues.resize(NumValues); 7892 SmallVector<SDValue, 4> Chains(NumValues); 7893 7894 // An aggregate return value cannot wrap around the address space, so 7895 // offsets to its parts don't wrap either. 7896 SDNodeFlags Flags; 7897 Flags.setNoUnsignedWrap(true); 7898 7899 for (unsigned i = 0; i < NumValues; ++i) { 7900 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7901 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7902 PtrVT), &Flags); 7903 SDValue L = CLI.DAG.getLoad( 7904 RetTys[i], CLI.DL, CLI.Chain, Add, 7905 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7906 DemoteStackIdx, Offsets[i]), 7907 /* Alignment = */ 1); 7908 ReturnValues[i] = L; 7909 Chains[i] = L.getValue(1); 7910 } 7911 7912 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7913 } else { 7914 // Collect the legal value parts into potentially illegal values 7915 // that correspond to the original function's return values. 7916 Optional<ISD::NodeType> AssertOp; 7917 if (CLI.RetSExt) 7918 AssertOp = ISD::AssertSext; 7919 else if (CLI.RetZExt) 7920 AssertOp = ISD::AssertZext; 7921 unsigned CurReg = 0; 7922 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7923 EVT VT = RetTys[I]; 7924 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7925 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7926 7927 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7928 NumRegs, RegisterVT, VT, nullptr, 7929 AssertOp)); 7930 CurReg += NumRegs; 7931 } 7932 7933 // For a function returning void, there is no return value. We can't create 7934 // such a node, so we just return a null return value in that case. In 7935 // that case, nothing will actually look at the value. 7936 if (ReturnValues.empty()) 7937 return std::make_pair(SDValue(), CLI.Chain); 7938 } 7939 7940 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7941 CLI.DAG.getVTList(RetTys), ReturnValues); 7942 return std::make_pair(Res, CLI.Chain); 7943 } 7944 7945 void TargetLowering::LowerOperationWrapper(SDNode *N, 7946 SmallVectorImpl<SDValue> &Results, 7947 SelectionDAG &DAG) const { 7948 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7949 Results.push_back(Res); 7950 } 7951 7952 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7953 llvm_unreachable("LowerOperation not implemented for this target!"); 7954 } 7955 7956 void 7957 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7958 SDValue Op = getNonRegisterValue(V); 7959 assert((Op.getOpcode() != ISD::CopyFromReg || 7960 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7961 "Copy from a reg to the same reg!"); 7962 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7963 7964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7965 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7966 V->getType()); 7967 SDValue Chain = DAG.getEntryNode(); 7968 7969 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7970 FuncInfo.PreferredExtendType.end()) 7971 ? ISD::ANY_EXTEND 7972 : FuncInfo.PreferredExtendType[V]; 7973 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7974 PendingExports.push_back(Chain); 7975 } 7976 7977 #include "llvm/CodeGen/SelectionDAGISel.h" 7978 7979 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7980 /// entry block, return true. This includes arguments used by switches, since 7981 /// the switch may expand into multiple basic blocks. 7982 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7983 // With FastISel active, we may be splitting blocks, so force creation 7984 // of virtual registers for all non-dead arguments. 7985 if (FastISel) 7986 return A->use_empty(); 7987 7988 const BasicBlock &Entry = A->getParent()->front(); 7989 for (const User *U : A->users()) 7990 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7991 return false; // Use not in entry block. 7992 7993 return true; 7994 } 7995 7996 typedef DenseMap<const Argument *, 7997 std::pair<const AllocaInst *, const StoreInst *>> 7998 ArgCopyElisionMapTy; 7999 8000 /// Scan the entry block of the function in FuncInfo for arguments that look 8001 /// like copies into a local alloca. Record any copied arguments in 8002 /// ArgCopyElisionCandidates. 8003 static void 8004 findArgumentCopyElisionCandidates(const DataLayout &DL, 8005 FunctionLoweringInfo *FuncInfo, 8006 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8007 // Record the state of every static alloca used in the entry block. Argument 8008 // allocas are all used in the entry block, so we need approximately as many 8009 // entries as we have arguments. 8010 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8011 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8012 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8013 StaticAllocas.reserve(NumArgs * 2); 8014 8015 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8016 if (!V) 8017 return nullptr; 8018 V = V->stripPointerCasts(); 8019 const auto *AI = dyn_cast<AllocaInst>(V); 8020 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8021 return nullptr; 8022 auto Iter = StaticAllocas.insert({AI, Unknown}); 8023 return &Iter.first->second; 8024 }; 8025 8026 // Look for stores of arguments to static allocas. Look through bitcasts and 8027 // GEPs to handle type coercions, as long as the alloca is fully initialized 8028 // by the store. Any non-store use of an alloca escapes it and any subsequent 8029 // unanalyzed store might write it. 8030 // FIXME: Handle structs initialized with multiple stores. 8031 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8032 // Look for stores, and handle non-store uses conservatively. 8033 const auto *SI = dyn_cast<StoreInst>(&I); 8034 if (!SI) { 8035 // We will look through cast uses, so ignore them completely. 8036 if (I.isCast()) 8037 continue; 8038 // Ignore debug info intrinsics, they don't escape or store to allocas. 8039 if (isa<DbgInfoIntrinsic>(I)) 8040 continue; 8041 // This is an unknown instruction. Assume it escapes or writes to all 8042 // static alloca operands. 8043 for (const Use &U : I.operands()) { 8044 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8045 *Info = StaticAllocaInfo::Clobbered; 8046 } 8047 continue; 8048 } 8049 8050 // If the stored value is a static alloca, mark it as escaped. 8051 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8052 *Info = StaticAllocaInfo::Clobbered; 8053 8054 // Check if the destination is a static alloca. 8055 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8056 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8057 if (!Info) 8058 continue; 8059 const AllocaInst *AI = cast<AllocaInst>(Dst); 8060 8061 // Skip allocas that have been initialized or clobbered. 8062 if (*Info != StaticAllocaInfo::Unknown) 8063 continue; 8064 8065 // Check if the stored value is an argument, and that this store fully 8066 // initializes the alloca. Don't elide copies from the same argument twice. 8067 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8068 const auto *Arg = dyn_cast<Argument>(Val); 8069 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8070 Arg->getType()->isEmptyTy() || 8071 DL.getTypeStoreSize(Arg->getType()) != 8072 DL.getTypeAllocSize(AI->getAllocatedType()) || 8073 ArgCopyElisionCandidates.count(Arg)) { 8074 *Info = StaticAllocaInfo::Clobbered; 8075 continue; 8076 } 8077 8078 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8079 8080 // Mark this alloca and store for argument copy elision. 8081 *Info = StaticAllocaInfo::Elidable; 8082 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8083 8084 // Stop scanning if we've seen all arguments. This will happen early in -O0 8085 // builds, which is useful, because -O0 builds have large entry blocks and 8086 // many allocas. 8087 if (ArgCopyElisionCandidates.size() == NumArgs) 8088 break; 8089 } 8090 } 8091 8092 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8093 /// ArgVal is a load from a suitable fixed stack object. 8094 static void tryToElideArgumentCopy( 8095 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8096 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8097 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8098 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8099 SDValue ArgVal, bool &ArgHasUses) { 8100 // Check if this is a load from a fixed stack object. 8101 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8102 if (!LNode) 8103 return; 8104 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8105 if (!FINode) 8106 return; 8107 8108 // Check that the fixed stack object is the right size and alignment. 8109 // Look at the alignment that the user wrote on the alloca instead of looking 8110 // at the stack object. 8111 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8112 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8113 const AllocaInst *AI = ArgCopyIter->second.first; 8114 int FixedIndex = FINode->getIndex(); 8115 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8116 int OldIndex = AllocaIndex; 8117 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8118 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8119 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8120 "object size\n"); 8121 return; 8122 } 8123 unsigned RequiredAlignment = AI->getAlignment(); 8124 if (!RequiredAlignment) { 8125 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8126 AI->getAllocatedType()); 8127 } 8128 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8129 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8130 "greater than stack argument alignment (" 8131 << RequiredAlignment << " vs " 8132 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8133 return; 8134 } 8135 8136 // Perform the elision. Delete the old stack object and replace its only use 8137 // in the variable info map. Mark the stack object as mutable. 8138 DEBUG({ 8139 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8140 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8141 << '\n'; 8142 }); 8143 MFI.RemoveStackObject(OldIndex); 8144 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8145 AllocaIndex = FixedIndex; 8146 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8147 Chains.push_back(ArgVal.getValue(1)); 8148 8149 // Avoid emitting code for the store implementing the copy. 8150 const StoreInst *SI = ArgCopyIter->second.second; 8151 ElidedArgCopyInstrs.insert(SI); 8152 8153 // Check for uses of the argument again so that we can avoid exporting ArgVal 8154 // if it is't used by anything other than the store. 8155 for (const Value *U : Arg.users()) { 8156 if (U != SI) { 8157 ArgHasUses = true; 8158 break; 8159 } 8160 } 8161 } 8162 8163 void SelectionDAGISel::LowerArguments(const Function &F) { 8164 SelectionDAG &DAG = SDB->DAG; 8165 SDLoc dl = SDB->getCurSDLoc(); 8166 const DataLayout &DL = DAG.getDataLayout(); 8167 SmallVector<ISD::InputArg, 16> Ins; 8168 8169 if (!FuncInfo->CanLowerReturn) { 8170 // Put in an sret pointer parameter before all the other parameters. 8171 SmallVector<EVT, 1> ValueVTs; 8172 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8173 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8174 8175 // NOTE: Assuming that a pointer will never break down to more than one VT 8176 // or one register. 8177 ISD::ArgFlagsTy Flags; 8178 Flags.setSRet(); 8179 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8180 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8181 ISD::InputArg::NoArgIndex, 0); 8182 Ins.push_back(RetArg); 8183 } 8184 8185 // Look for stores of arguments to static allocas. Mark such arguments with a 8186 // flag to ask the target to give us the memory location of that argument if 8187 // available. 8188 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8189 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8190 8191 // Set up the incoming argument description vector. 8192 unsigned Idx = 0; 8193 for (const Argument &Arg : F.args()) { 8194 ++Idx; 8195 SmallVector<EVT, 4> ValueVTs; 8196 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8197 bool isArgValueUsed = !Arg.use_empty(); 8198 unsigned PartBase = 0; 8199 Type *FinalType = Arg.getType(); 8200 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8201 FinalType = cast<PointerType>(FinalType)->getElementType(); 8202 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8203 FinalType, F.getCallingConv(), F.isVarArg()); 8204 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8205 Value != NumValues; ++Value) { 8206 EVT VT = ValueVTs[Value]; 8207 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8208 ISD::ArgFlagsTy Flags; 8209 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8210 8211 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8212 Flags.setZExt(); 8213 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8214 Flags.setSExt(); 8215 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8216 // If we are using vectorcall calling convention, a structure that is 8217 // passed InReg - is surely an HVA 8218 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8219 isa<StructType>(Arg.getType())) { 8220 // The first value of a structure is marked 8221 if (0 == Value) 8222 Flags.setHvaStart(); 8223 Flags.setHva(); 8224 } 8225 // Set InReg Flag 8226 Flags.setInReg(); 8227 } 8228 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8229 Flags.setSRet(); 8230 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8231 Flags.setSwiftSelf(); 8232 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8233 Flags.setSwiftError(); 8234 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8235 Flags.setByVal(); 8236 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8237 Flags.setInAlloca(); 8238 // Set the byval flag for CCAssignFn callbacks that don't know about 8239 // inalloca. This way we can know how many bytes we should've allocated 8240 // and how many bytes a callee cleanup function will pop. If we port 8241 // inalloca to more targets, we'll have to add custom inalloca handling 8242 // in the various CC lowering callbacks. 8243 Flags.setByVal(); 8244 } 8245 if (F.getCallingConv() == CallingConv::X86_INTR) { 8246 // IA Interrupt passes frame (1st parameter) by value in the stack. 8247 if (Idx == 1) 8248 Flags.setByVal(); 8249 } 8250 if (Flags.isByVal() || Flags.isInAlloca()) { 8251 PointerType *Ty = cast<PointerType>(Arg.getType()); 8252 Type *ElementTy = Ty->getElementType(); 8253 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8254 // For ByVal, alignment should be passed from FE. BE will guess if 8255 // this info is not there but there are cases it cannot get right. 8256 unsigned FrameAlign; 8257 if (F.getParamAlignment(Idx)) 8258 FrameAlign = F.getParamAlignment(Idx); 8259 else 8260 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8261 Flags.setByValAlign(FrameAlign); 8262 } 8263 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8264 Flags.setNest(); 8265 if (NeedsRegBlock) 8266 Flags.setInConsecutiveRegs(); 8267 Flags.setOrigAlign(OriginalAlignment); 8268 if (ArgCopyElisionCandidates.count(&Arg)) 8269 Flags.setCopyElisionCandidate(); 8270 8271 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8272 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8273 for (unsigned i = 0; i != NumRegs; ++i) { 8274 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8275 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8276 if (NumRegs > 1 && i == 0) 8277 MyFlags.Flags.setSplit(); 8278 // if it isn't first piece, alignment must be 1 8279 else if (i > 0) { 8280 MyFlags.Flags.setOrigAlign(1); 8281 if (i == NumRegs - 1) 8282 MyFlags.Flags.setSplitEnd(); 8283 } 8284 Ins.push_back(MyFlags); 8285 } 8286 if (NeedsRegBlock && Value == NumValues - 1) 8287 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8288 PartBase += VT.getStoreSize(); 8289 } 8290 } 8291 8292 // Call the target to set up the argument values. 8293 SmallVector<SDValue, 8> InVals; 8294 SDValue NewRoot = TLI->LowerFormalArguments( 8295 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8296 8297 // Verify that the target's LowerFormalArguments behaved as expected. 8298 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8299 "LowerFormalArguments didn't return a valid chain!"); 8300 assert(InVals.size() == Ins.size() && 8301 "LowerFormalArguments didn't emit the correct number of values!"); 8302 DEBUG({ 8303 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8304 assert(InVals[i].getNode() && 8305 "LowerFormalArguments emitted a null value!"); 8306 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8307 "LowerFormalArguments emitted a value with the wrong type!"); 8308 } 8309 }); 8310 8311 // Update the DAG with the new chain value resulting from argument lowering. 8312 DAG.setRoot(NewRoot); 8313 8314 // Set up the argument values. 8315 unsigned i = 0; 8316 Idx = 0; 8317 if (!FuncInfo->CanLowerReturn) { 8318 // Create a virtual register for the sret pointer, and put in a copy 8319 // from the sret argument into it. 8320 SmallVector<EVT, 1> ValueVTs; 8321 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8322 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8323 MVT VT = ValueVTs[0].getSimpleVT(); 8324 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8325 Optional<ISD::NodeType> AssertOp = None; 8326 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8327 RegVT, VT, nullptr, AssertOp); 8328 8329 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8330 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8331 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8332 FuncInfo->DemoteRegister = SRetReg; 8333 NewRoot = 8334 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8335 DAG.setRoot(NewRoot); 8336 8337 // i indexes lowered arguments. Bump it past the hidden sret argument. 8338 // Idx indexes LLVM arguments. Don't touch it. 8339 ++i; 8340 } 8341 8342 SmallVector<SDValue, 4> Chains; 8343 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8344 for (const Argument &Arg : F.args()) { 8345 ++Idx; 8346 SmallVector<SDValue, 4> ArgValues; 8347 SmallVector<EVT, 4> ValueVTs; 8348 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8349 unsigned NumValues = ValueVTs.size(); 8350 if (NumValues == 0) 8351 continue; 8352 8353 bool ArgHasUses = !Arg.use_empty(); 8354 8355 // Elide the copying store if the target loaded this argument from a 8356 // suitable fixed stack object. 8357 if (Ins[i].Flags.isCopyElisionCandidate()) { 8358 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8359 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8360 InVals[i], ArgHasUses); 8361 } 8362 8363 // If this argument is unused then remember its value. It is used to generate 8364 // debugging information. 8365 bool isSwiftErrorArg = 8366 TLI->supportSwiftError() && 8367 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8368 if (!ArgHasUses && !isSwiftErrorArg) { 8369 SDB->setUnusedArgValue(&Arg, InVals[i]); 8370 8371 // Also remember any frame index for use in FastISel. 8372 if (FrameIndexSDNode *FI = 8373 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8374 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8375 } 8376 8377 for (unsigned Val = 0; Val != NumValues; ++Val) { 8378 EVT VT = ValueVTs[Val]; 8379 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8380 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8381 8382 // Even an apparant 'unused' swifterror argument needs to be returned. So 8383 // we do generate a copy for it that can be used on return from the 8384 // function. 8385 if (ArgHasUses || isSwiftErrorArg) { 8386 Optional<ISD::NodeType> AssertOp; 8387 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8388 AssertOp = ISD::AssertSext; 8389 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8390 AssertOp = ISD::AssertZext; 8391 8392 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8393 PartVT, VT, nullptr, AssertOp)); 8394 } 8395 8396 i += NumParts; 8397 } 8398 8399 // We don't need to do anything else for unused arguments. 8400 if (ArgValues.empty()) 8401 continue; 8402 8403 // Note down frame index. 8404 if (FrameIndexSDNode *FI = 8405 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8406 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8407 8408 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8409 SDB->getCurSDLoc()); 8410 8411 SDB->setValue(&Arg, Res); 8412 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8413 if (LoadSDNode *LNode = 8414 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8415 if (FrameIndexSDNode *FI = 8416 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8417 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8418 } 8419 8420 // Update the SwiftErrorVRegDefMap. 8421 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8422 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8423 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8424 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8425 FuncInfo->SwiftErrorArg, Reg); 8426 } 8427 8428 // If this argument is live outside of the entry block, insert a copy from 8429 // wherever we got it to the vreg that other BB's will reference it as. 8430 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8431 // If we can, though, try to skip creating an unnecessary vreg. 8432 // FIXME: This isn't very clean... it would be nice to make this more 8433 // general. It's also subtly incompatible with the hacks FastISel 8434 // uses with vregs. 8435 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8436 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8437 FuncInfo->ValueMap[&Arg] = Reg; 8438 continue; 8439 } 8440 } 8441 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8442 FuncInfo->InitializeRegForValue(&Arg); 8443 SDB->CopyToExportRegsIfNeeded(&Arg); 8444 } 8445 } 8446 8447 if (!Chains.empty()) { 8448 Chains.push_back(NewRoot); 8449 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8450 } 8451 8452 DAG.setRoot(NewRoot); 8453 8454 assert(i == InVals.size() && "Argument register count mismatch!"); 8455 8456 // If any argument copy elisions occurred and we have debug info, update the 8457 // stale frame indices used in the dbg.declare variable info table. 8458 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8459 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8460 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8461 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8462 if (I != ArgCopyElisionFrameIndexMap.end()) 8463 VI.Slot = I->second; 8464 } 8465 } 8466 8467 // Finally, if the target has anything special to do, allow it to do so. 8468 EmitFunctionEntryCode(); 8469 } 8470 8471 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8472 /// ensure constants are generated when needed. Remember the virtual registers 8473 /// that need to be added to the Machine PHI nodes as input. We cannot just 8474 /// directly add them, because expansion might result in multiple MBB's for one 8475 /// BB. As such, the start of the BB might correspond to a different MBB than 8476 /// the end. 8477 /// 8478 void 8479 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8480 const TerminatorInst *TI = LLVMBB->getTerminator(); 8481 8482 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8483 8484 // Check PHI nodes in successors that expect a value to be available from this 8485 // block. 8486 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8487 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8488 if (!isa<PHINode>(SuccBB->begin())) continue; 8489 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8490 8491 // If this terminator has multiple identical successors (common for 8492 // switches), only handle each succ once. 8493 if (!SuccsHandled.insert(SuccMBB).second) 8494 continue; 8495 8496 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8497 8498 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8499 // nodes and Machine PHI nodes, but the incoming operands have not been 8500 // emitted yet. 8501 for (BasicBlock::const_iterator I = SuccBB->begin(); 8502 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8503 // Ignore dead phi's. 8504 if (PN->use_empty()) continue; 8505 8506 // Skip empty types 8507 if (PN->getType()->isEmptyTy()) 8508 continue; 8509 8510 unsigned Reg; 8511 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8512 8513 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8514 unsigned &RegOut = ConstantsOut[C]; 8515 if (RegOut == 0) { 8516 RegOut = FuncInfo.CreateRegs(C->getType()); 8517 CopyValueToVirtualRegister(C, RegOut); 8518 } 8519 Reg = RegOut; 8520 } else { 8521 DenseMap<const Value *, unsigned>::iterator I = 8522 FuncInfo.ValueMap.find(PHIOp); 8523 if (I != FuncInfo.ValueMap.end()) 8524 Reg = I->second; 8525 else { 8526 assert(isa<AllocaInst>(PHIOp) && 8527 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8528 "Didn't codegen value into a register!??"); 8529 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8530 CopyValueToVirtualRegister(PHIOp, Reg); 8531 } 8532 } 8533 8534 // Remember that this register needs to added to the machine PHI node as 8535 // the input for this MBB. 8536 SmallVector<EVT, 4> ValueVTs; 8537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8538 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8539 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8540 EVT VT = ValueVTs[vti]; 8541 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8542 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8543 FuncInfo.PHINodesToUpdate.push_back( 8544 std::make_pair(&*MBBI++, Reg + i)); 8545 Reg += NumRegisters; 8546 } 8547 } 8548 } 8549 8550 ConstantsOut.clear(); 8551 } 8552 8553 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8554 /// is 0. 8555 MachineBasicBlock * 8556 SelectionDAGBuilder::StackProtectorDescriptor:: 8557 AddSuccessorMBB(const BasicBlock *BB, 8558 MachineBasicBlock *ParentMBB, 8559 bool IsLikely, 8560 MachineBasicBlock *SuccMBB) { 8561 // If SuccBB has not been created yet, create it. 8562 if (!SuccMBB) { 8563 MachineFunction *MF = ParentMBB->getParent(); 8564 MachineFunction::iterator BBI(ParentMBB); 8565 SuccMBB = MF->CreateMachineBasicBlock(BB); 8566 MF->insert(++BBI, SuccMBB); 8567 } 8568 // Add it as a successor of ParentMBB. 8569 ParentMBB->addSuccessor( 8570 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8571 return SuccMBB; 8572 } 8573 8574 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8575 MachineFunction::iterator I(MBB); 8576 if (++I == FuncInfo.MF->end()) 8577 return nullptr; 8578 return &*I; 8579 } 8580 8581 /// During lowering new call nodes can be created (such as memset, etc.). 8582 /// Those will become new roots of the current DAG, but complications arise 8583 /// when they are tail calls. In such cases, the call lowering will update 8584 /// the root, but the builder still needs to know that a tail call has been 8585 /// lowered in order to avoid generating an additional return. 8586 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8587 // If the node is null, we do have a tail call. 8588 if (MaybeTC.getNode() != nullptr) 8589 DAG.setRoot(MaybeTC); 8590 else 8591 HasTailCall = true; 8592 } 8593 8594 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8595 const SmallVectorImpl<unsigned> &TotalCases, 8596 unsigned First, unsigned Last, 8597 unsigned Density) const { 8598 assert(Last >= First); 8599 assert(TotalCases[Last] >= TotalCases[First]); 8600 8601 const APInt &LowCase = Clusters[First].Low->getValue(); 8602 const APInt &HighCase = Clusters[Last].High->getValue(); 8603 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8604 8605 // FIXME: A range of consecutive cases has 100% density, but only requires one 8606 // comparison to lower. We should discriminate against such consecutive ranges 8607 // in jump tables. 8608 8609 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8610 uint64_t Range = Diff + 1; 8611 8612 uint64_t NumCases = 8613 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8614 8615 assert(NumCases < UINT64_MAX / 100); 8616 assert(Range >= NumCases); 8617 8618 return NumCases * 100 >= Range * Density; 8619 } 8620 8621 static inline bool areJTsAllowed(const TargetLowering &TLI, 8622 const SwitchInst *SI) { 8623 const Function *Fn = SI->getParent()->getParent(); 8624 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8625 return false; 8626 8627 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8628 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8629 } 8630 8631 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8632 unsigned First, unsigned Last, 8633 const SwitchInst *SI, 8634 MachineBasicBlock *DefaultMBB, 8635 CaseCluster &JTCluster) { 8636 assert(First <= Last); 8637 8638 auto Prob = BranchProbability::getZero(); 8639 unsigned NumCmps = 0; 8640 std::vector<MachineBasicBlock*> Table; 8641 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8642 8643 // Initialize probabilities in JTProbs. 8644 for (unsigned I = First; I <= Last; ++I) 8645 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8646 8647 for (unsigned I = First; I <= Last; ++I) { 8648 assert(Clusters[I].Kind == CC_Range); 8649 Prob += Clusters[I].Prob; 8650 const APInt &Low = Clusters[I].Low->getValue(); 8651 const APInt &High = Clusters[I].High->getValue(); 8652 NumCmps += (Low == High) ? 1 : 2; 8653 if (I != First) { 8654 // Fill the gap between this and the previous cluster. 8655 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8656 assert(PreviousHigh.slt(Low)); 8657 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8658 for (uint64_t J = 0; J < Gap; J++) 8659 Table.push_back(DefaultMBB); 8660 } 8661 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8662 for (uint64_t J = 0; J < ClusterSize; ++J) 8663 Table.push_back(Clusters[I].MBB); 8664 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8665 } 8666 8667 unsigned NumDests = JTProbs.size(); 8668 if (isSuitableForBitTests(NumDests, NumCmps, 8669 Clusters[First].Low->getValue(), 8670 Clusters[Last].High->getValue())) { 8671 // Clusters[First..Last] should be lowered as bit tests instead. 8672 return false; 8673 } 8674 8675 // Create the MBB that will load from and jump through the table. 8676 // Note: We create it here, but it's not inserted into the function yet. 8677 MachineFunction *CurMF = FuncInfo.MF; 8678 MachineBasicBlock *JumpTableMBB = 8679 CurMF->CreateMachineBasicBlock(SI->getParent()); 8680 8681 // Add successors. Note: use table order for determinism. 8682 SmallPtrSet<MachineBasicBlock *, 8> Done; 8683 for (MachineBasicBlock *Succ : Table) { 8684 if (Done.count(Succ)) 8685 continue; 8686 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8687 Done.insert(Succ); 8688 } 8689 JumpTableMBB->normalizeSuccProbs(); 8690 8691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8692 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8693 ->createJumpTableIndex(Table); 8694 8695 // Set up the jump table info. 8696 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8697 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8698 Clusters[Last].High->getValue(), SI->getCondition(), 8699 nullptr, false); 8700 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8701 8702 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8703 JTCases.size() - 1, Prob); 8704 return true; 8705 } 8706 8707 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8708 const SwitchInst *SI, 8709 MachineBasicBlock *DefaultMBB) { 8710 #ifndef NDEBUG 8711 // Clusters must be non-empty, sorted, and only contain Range clusters. 8712 assert(!Clusters.empty()); 8713 for (CaseCluster &C : Clusters) 8714 assert(C.Kind == CC_Range); 8715 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8716 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8717 #endif 8718 8719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8720 if (!areJTsAllowed(TLI, SI)) 8721 return; 8722 8723 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8724 8725 const int64_t N = Clusters.size(); 8726 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8727 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8728 const unsigned MaxJumpTableSize = 8729 OptForSize || TLI.getMaximumJumpTableSize() == 0 8730 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8731 8732 if (N < 2 || N < MinJumpTableEntries) 8733 return; 8734 8735 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8736 SmallVector<unsigned, 8> TotalCases(N); 8737 for (unsigned i = 0; i < N; ++i) { 8738 const APInt &Hi = Clusters[i].High->getValue(); 8739 const APInt &Lo = Clusters[i].Low->getValue(); 8740 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8741 if (i != 0) 8742 TotalCases[i] += TotalCases[i - 1]; 8743 } 8744 8745 const unsigned MinDensity = 8746 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8747 8748 // Cheap case: the whole range may be suitable for jump table. 8749 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8750 Clusters[0].Low->getValue()) 8751 .getLimitedValue(UINT_MAX - 1) + 1; 8752 if (JumpTableSize <= MaxJumpTableSize && 8753 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8754 CaseCluster JTCluster; 8755 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8756 Clusters[0] = JTCluster; 8757 Clusters.resize(1); 8758 return; 8759 } 8760 } 8761 8762 // The algorithm below is not suitable for -O0. 8763 if (TM.getOptLevel() == CodeGenOpt::None) 8764 return; 8765 8766 // Split Clusters into minimum number of dense partitions. The algorithm uses 8767 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8768 // for the Case Statement'" (1994), but builds the MinPartitions array in 8769 // reverse order to make it easier to reconstruct the partitions in ascending 8770 // order. In the choice between two optimal partitionings, it picks the one 8771 // which yields more jump tables. 8772 8773 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8774 SmallVector<unsigned, 8> MinPartitions(N); 8775 // LastElement[i] is the last element of the partition starting at i. 8776 SmallVector<unsigned, 8> LastElement(N); 8777 // PartitionsScore[i] is used to break ties when choosing between two 8778 // partitionings resulting in the same number of partitions. 8779 SmallVector<unsigned, 8> PartitionsScore(N); 8780 // For PartitionsScore, a small number of comparisons is considered as good as 8781 // a jump table and a single comparison is considered better than a jump 8782 // table. 8783 enum PartitionScores : unsigned { 8784 NoTable = 0, 8785 Table = 1, 8786 FewCases = 1, 8787 SingleCase = 2 8788 }; 8789 8790 // Base case: There is only one way to partition Clusters[N-1]. 8791 MinPartitions[N - 1] = 1; 8792 LastElement[N - 1] = N - 1; 8793 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8794 8795 // Note: loop indexes are signed to avoid underflow. 8796 for (int64_t i = N - 2; i >= 0; i--) { 8797 // Find optimal partitioning of Clusters[i..N-1]. 8798 // Baseline: Put Clusters[i] into a partition on its own. 8799 MinPartitions[i] = MinPartitions[i + 1] + 1; 8800 LastElement[i] = i; 8801 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8802 8803 // Search for a solution that results in fewer partitions. 8804 for (int64_t j = N - 1; j > i; j--) { 8805 // Try building a partition from Clusters[i..j]. 8806 JumpTableSize = (Clusters[j].High->getValue() - 8807 Clusters[i].Low->getValue()) 8808 .getLimitedValue(UINT_MAX - 1) + 1; 8809 if (JumpTableSize <= MaxJumpTableSize && 8810 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8811 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8812 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8813 int64_t NumEntries = j - i + 1; 8814 8815 if (NumEntries == 1) 8816 Score += PartitionScores::SingleCase; 8817 else if (NumEntries <= SmallNumberOfEntries) 8818 Score += PartitionScores::FewCases; 8819 else if (NumEntries >= MinJumpTableEntries) 8820 Score += PartitionScores::Table; 8821 8822 // If this leads to fewer partitions, or to the same number of 8823 // partitions with better score, it is a better partitioning. 8824 if (NumPartitions < MinPartitions[i] || 8825 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8826 MinPartitions[i] = NumPartitions; 8827 LastElement[i] = j; 8828 PartitionsScore[i] = Score; 8829 } 8830 } 8831 } 8832 } 8833 8834 // Iterate over the partitions, replacing some with jump tables in-place. 8835 unsigned DstIndex = 0; 8836 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8837 Last = LastElement[First]; 8838 assert(Last >= First); 8839 assert(DstIndex <= First); 8840 unsigned NumClusters = Last - First + 1; 8841 8842 CaseCluster JTCluster; 8843 if (NumClusters >= MinJumpTableEntries && 8844 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8845 Clusters[DstIndex++] = JTCluster; 8846 } else { 8847 for (unsigned I = First; I <= Last; ++I) 8848 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8849 } 8850 } 8851 Clusters.resize(DstIndex); 8852 } 8853 8854 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8855 // FIXME: Using the pointer type doesn't seem ideal. 8856 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8857 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8858 return Range <= BW; 8859 } 8860 8861 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8862 unsigned NumCmps, 8863 const APInt &Low, 8864 const APInt &High) { 8865 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8866 // range of cases both require only one branch to lower. Just looking at the 8867 // number of clusters and destinations should be enough to decide whether to 8868 // build bit tests. 8869 8870 // To lower a range with bit tests, the range must fit the bitwidth of a 8871 // machine word. 8872 if (!rangeFitsInWord(Low, High)) 8873 return false; 8874 8875 // Decide whether it's profitable to lower this range with bit tests. Each 8876 // destination requires a bit test and branch, and there is an overall range 8877 // check branch. For a small number of clusters, separate comparisons might be 8878 // cheaper, and for many destinations, splitting the range might be better. 8879 return (NumDests == 1 && NumCmps >= 3) || 8880 (NumDests == 2 && NumCmps >= 5) || 8881 (NumDests == 3 && NumCmps >= 6); 8882 } 8883 8884 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8885 unsigned First, unsigned Last, 8886 const SwitchInst *SI, 8887 CaseCluster &BTCluster) { 8888 assert(First <= Last); 8889 if (First == Last) 8890 return false; 8891 8892 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8893 unsigned NumCmps = 0; 8894 for (int64_t I = First; I <= Last; ++I) { 8895 assert(Clusters[I].Kind == CC_Range); 8896 Dests.set(Clusters[I].MBB->getNumber()); 8897 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8898 } 8899 unsigned NumDests = Dests.count(); 8900 8901 APInt Low = Clusters[First].Low->getValue(); 8902 APInt High = Clusters[Last].High->getValue(); 8903 assert(Low.slt(High)); 8904 8905 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8906 return false; 8907 8908 APInt LowBound; 8909 APInt CmpRange; 8910 8911 const int BitWidth = DAG.getTargetLoweringInfo() 8912 .getPointerTy(DAG.getDataLayout()) 8913 .getSizeInBits(); 8914 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8915 8916 // Check if the clusters cover a contiguous range such that no value in the 8917 // range will jump to the default statement. 8918 bool ContiguousRange = true; 8919 for (int64_t I = First + 1; I <= Last; ++I) { 8920 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8921 ContiguousRange = false; 8922 break; 8923 } 8924 } 8925 8926 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8927 // Optimize the case where all the case values fit in a word without having 8928 // to subtract minValue. In this case, we can optimize away the subtraction. 8929 LowBound = APInt::getNullValue(Low.getBitWidth()); 8930 CmpRange = High; 8931 ContiguousRange = false; 8932 } else { 8933 LowBound = Low; 8934 CmpRange = High - Low; 8935 } 8936 8937 CaseBitsVector CBV; 8938 auto TotalProb = BranchProbability::getZero(); 8939 for (unsigned i = First; i <= Last; ++i) { 8940 // Find the CaseBits for this destination. 8941 unsigned j; 8942 for (j = 0; j < CBV.size(); ++j) 8943 if (CBV[j].BB == Clusters[i].MBB) 8944 break; 8945 if (j == CBV.size()) 8946 CBV.push_back( 8947 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8948 CaseBits *CB = &CBV[j]; 8949 8950 // Update Mask, Bits and ExtraProb. 8951 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8952 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8953 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8954 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8955 CB->Bits += Hi - Lo + 1; 8956 CB->ExtraProb += Clusters[i].Prob; 8957 TotalProb += Clusters[i].Prob; 8958 } 8959 8960 BitTestInfo BTI; 8961 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8962 // Sort by probability first, number of bits second. 8963 if (a.ExtraProb != b.ExtraProb) 8964 return a.ExtraProb > b.ExtraProb; 8965 return a.Bits > b.Bits; 8966 }); 8967 8968 for (auto &CB : CBV) { 8969 MachineBasicBlock *BitTestBB = 8970 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8971 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8972 } 8973 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8974 SI->getCondition(), -1U, MVT::Other, false, 8975 ContiguousRange, nullptr, nullptr, std::move(BTI), 8976 TotalProb); 8977 8978 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8979 BitTestCases.size() - 1, TotalProb); 8980 return true; 8981 } 8982 8983 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8984 const SwitchInst *SI) { 8985 // Partition Clusters into as few subsets as possible, where each subset has a 8986 // range that fits in a machine word and has <= 3 unique destinations. 8987 8988 #ifndef NDEBUG 8989 // Clusters must be sorted and contain Range or JumpTable clusters. 8990 assert(!Clusters.empty()); 8991 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8992 for (const CaseCluster &C : Clusters) 8993 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8994 for (unsigned i = 1; i < Clusters.size(); ++i) 8995 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8996 #endif 8997 8998 // The algorithm below is not suitable for -O0. 8999 if (TM.getOptLevel() == CodeGenOpt::None) 9000 return; 9001 9002 // If target does not have legal shift left, do not emit bit tests at all. 9003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9004 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 9005 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9006 return; 9007 9008 int BitWidth = PTy.getSizeInBits(); 9009 const int64_t N = Clusters.size(); 9010 9011 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9012 SmallVector<unsigned, 8> MinPartitions(N); 9013 // LastElement[i] is the last element of the partition starting at i. 9014 SmallVector<unsigned, 8> LastElement(N); 9015 9016 // FIXME: This might not be the best algorithm for finding bit test clusters. 9017 9018 // Base case: There is only one way to partition Clusters[N-1]. 9019 MinPartitions[N - 1] = 1; 9020 LastElement[N - 1] = N - 1; 9021 9022 // Note: loop indexes are signed to avoid underflow. 9023 for (int64_t i = N - 2; i >= 0; --i) { 9024 // Find optimal partitioning of Clusters[i..N-1]. 9025 // Baseline: Put Clusters[i] into a partition on its own. 9026 MinPartitions[i] = MinPartitions[i + 1] + 1; 9027 LastElement[i] = i; 9028 9029 // Search for a solution that results in fewer partitions. 9030 // Note: the search is limited by BitWidth, reducing time complexity. 9031 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9032 // Try building a partition from Clusters[i..j]. 9033 9034 // Check the range. 9035 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 9036 Clusters[j].High->getValue())) 9037 continue; 9038 9039 // Check nbr of destinations and cluster types. 9040 // FIXME: This works, but doesn't seem very efficient. 9041 bool RangesOnly = true; 9042 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9043 for (int64_t k = i; k <= j; k++) { 9044 if (Clusters[k].Kind != CC_Range) { 9045 RangesOnly = false; 9046 break; 9047 } 9048 Dests.set(Clusters[k].MBB->getNumber()); 9049 } 9050 if (!RangesOnly || Dests.count() > 3) 9051 break; 9052 9053 // Check if it's a better partition. 9054 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9055 if (NumPartitions < MinPartitions[i]) { 9056 // Found a better partition. 9057 MinPartitions[i] = NumPartitions; 9058 LastElement[i] = j; 9059 } 9060 } 9061 } 9062 9063 // Iterate over the partitions, replacing with bit-test clusters in-place. 9064 unsigned DstIndex = 0; 9065 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9066 Last = LastElement[First]; 9067 assert(First <= Last); 9068 assert(DstIndex <= First); 9069 9070 CaseCluster BitTestCluster; 9071 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9072 Clusters[DstIndex++] = BitTestCluster; 9073 } else { 9074 size_t NumClusters = Last - First + 1; 9075 std::memmove(&Clusters[DstIndex], &Clusters[First], 9076 sizeof(Clusters[0]) * NumClusters); 9077 DstIndex += NumClusters; 9078 } 9079 } 9080 Clusters.resize(DstIndex); 9081 } 9082 9083 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9084 MachineBasicBlock *SwitchMBB, 9085 MachineBasicBlock *DefaultMBB) { 9086 MachineFunction *CurMF = FuncInfo.MF; 9087 MachineBasicBlock *NextMBB = nullptr; 9088 MachineFunction::iterator BBI(W.MBB); 9089 if (++BBI != FuncInfo.MF->end()) 9090 NextMBB = &*BBI; 9091 9092 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9093 9094 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9095 9096 if (Size == 2 && W.MBB == SwitchMBB) { 9097 // If any two of the cases has the same destination, and if one value 9098 // is the same as the other, but has one bit unset that the other has set, 9099 // use bit manipulation to do two compares at once. For example: 9100 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9101 // TODO: This could be extended to merge any 2 cases in switches with 3 9102 // cases. 9103 // TODO: Handle cases where W.CaseBB != SwitchBB. 9104 CaseCluster &Small = *W.FirstCluster; 9105 CaseCluster &Big = *W.LastCluster; 9106 9107 if (Small.Low == Small.High && Big.Low == Big.High && 9108 Small.MBB == Big.MBB) { 9109 const APInt &SmallValue = Small.Low->getValue(); 9110 const APInt &BigValue = Big.Low->getValue(); 9111 9112 // Check that there is only one bit different. 9113 APInt CommonBit = BigValue ^ SmallValue; 9114 if (CommonBit.isPowerOf2()) { 9115 SDValue CondLHS = getValue(Cond); 9116 EVT VT = CondLHS.getValueType(); 9117 SDLoc DL = getCurSDLoc(); 9118 9119 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9120 DAG.getConstant(CommonBit, DL, VT)); 9121 SDValue Cond = DAG.getSetCC( 9122 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9123 ISD::SETEQ); 9124 9125 // Update successor info. 9126 // Both Small and Big will jump to Small.BB, so we sum up the 9127 // probabilities. 9128 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9129 if (BPI) 9130 addSuccessorWithProb( 9131 SwitchMBB, DefaultMBB, 9132 // The default destination is the first successor in IR. 9133 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9134 else 9135 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9136 9137 // Insert the true branch. 9138 SDValue BrCond = 9139 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9140 DAG.getBasicBlock(Small.MBB)); 9141 // Insert the false branch. 9142 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9143 DAG.getBasicBlock(DefaultMBB)); 9144 9145 DAG.setRoot(BrCond); 9146 return; 9147 } 9148 } 9149 } 9150 9151 if (TM.getOptLevel() != CodeGenOpt::None) { 9152 // Order cases by probability so the most likely case will be checked first. 9153 std::sort(W.FirstCluster, W.LastCluster + 1, 9154 [](const CaseCluster &a, const CaseCluster &b) { 9155 return a.Prob > b.Prob; 9156 }); 9157 9158 // Rearrange the case blocks so that the last one falls through if possible 9159 // without without changing the order of probabilities. 9160 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9161 --I; 9162 if (I->Prob > W.LastCluster->Prob) 9163 break; 9164 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9165 std::swap(*I, *W.LastCluster); 9166 break; 9167 } 9168 } 9169 } 9170 9171 // Compute total probability. 9172 BranchProbability DefaultProb = W.DefaultProb; 9173 BranchProbability UnhandledProbs = DefaultProb; 9174 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9175 UnhandledProbs += I->Prob; 9176 9177 MachineBasicBlock *CurMBB = W.MBB; 9178 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9179 MachineBasicBlock *Fallthrough; 9180 if (I == W.LastCluster) { 9181 // For the last cluster, fall through to the default destination. 9182 Fallthrough = DefaultMBB; 9183 } else { 9184 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9185 CurMF->insert(BBI, Fallthrough); 9186 // Put Cond in a virtual register to make it available from the new blocks. 9187 ExportFromCurrentBlock(Cond); 9188 } 9189 UnhandledProbs -= I->Prob; 9190 9191 switch (I->Kind) { 9192 case CC_JumpTable: { 9193 // FIXME: Optimize away range check based on pivot comparisons. 9194 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9195 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9196 9197 // The jump block hasn't been inserted yet; insert it here. 9198 MachineBasicBlock *JumpMBB = JT->MBB; 9199 CurMF->insert(BBI, JumpMBB); 9200 9201 auto JumpProb = I->Prob; 9202 auto FallthroughProb = UnhandledProbs; 9203 9204 // If the default statement is a target of the jump table, we evenly 9205 // distribute the default probability to successors of CurMBB. Also 9206 // update the probability on the edge from JumpMBB to Fallthrough. 9207 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9208 SE = JumpMBB->succ_end(); 9209 SI != SE; ++SI) { 9210 if (*SI == DefaultMBB) { 9211 JumpProb += DefaultProb / 2; 9212 FallthroughProb -= DefaultProb / 2; 9213 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9214 JumpMBB->normalizeSuccProbs(); 9215 break; 9216 } 9217 } 9218 9219 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9220 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9221 CurMBB->normalizeSuccProbs(); 9222 9223 // The jump table header will be inserted in our current block, do the 9224 // range check, and fall through to our fallthrough block. 9225 JTH->HeaderBB = CurMBB; 9226 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9227 9228 // If we're in the right place, emit the jump table header right now. 9229 if (CurMBB == SwitchMBB) { 9230 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9231 JTH->Emitted = true; 9232 } 9233 break; 9234 } 9235 case CC_BitTests: { 9236 // FIXME: Optimize away range check based on pivot comparisons. 9237 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9238 9239 // The bit test blocks haven't been inserted yet; insert them here. 9240 for (BitTestCase &BTC : BTB->Cases) 9241 CurMF->insert(BBI, BTC.ThisBB); 9242 9243 // Fill in fields of the BitTestBlock. 9244 BTB->Parent = CurMBB; 9245 BTB->Default = Fallthrough; 9246 9247 BTB->DefaultProb = UnhandledProbs; 9248 // If the cases in bit test don't form a contiguous range, we evenly 9249 // distribute the probability on the edge to Fallthrough to two 9250 // successors of CurMBB. 9251 if (!BTB->ContiguousRange) { 9252 BTB->Prob += DefaultProb / 2; 9253 BTB->DefaultProb -= DefaultProb / 2; 9254 } 9255 9256 // If we're in the right place, emit the bit test header right now. 9257 if (CurMBB == SwitchMBB) { 9258 visitBitTestHeader(*BTB, SwitchMBB); 9259 BTB->Emitted = true; 9260 } 9261 break; 9262 } 9263 case CC_Range: { 9264 const Value *RHS, *LHS, *MHS; 9265 ISD::CondCode CC; 9266 if (I->Low == I->High) { 9267 // Check Cond == I->Low. 9268 CC = ISD::SETEQ; 9269 LHS = Cond; 9270 RHS=I->Low; 9271 MHS = nullptr; 9272 } else { 9273 // Check I->Low <= Cond <= I->High. 9274 CC = ISD::SETLE; 9275 LHS = I->Low; 9276 MHS = Cond; 9277 RHS = I->High; 9278 } 9279 9280 // The false probability is the sum of all unhandled cases. 9281 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9282 UnhandledProbs); 9283 9284 if (CurMBB == SwitchMBB) 9285 visitSwitchCase(CB, SwitchMBB); 9286 else 9287 SwitchCases.push_back(CB); 9288 9289 break; 9290 } 9291 } 9292 CurMBB = Fallthrough; 9293 } 9294 } 9295 9296 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9297 CaseClusterIt First, 9298 CaseClusterIt Last) { 9299 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9300 if (X.Prob != CC.Prob) 9301 return X.Prob > CC.Prob; 9302 9303 // Ties are broken by comparing the case value. 9304 return X.Low->getValue().slt(CC.Low->getValue()); 9305 }); 9306 } 9307 9308 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9309 const SwitchWorkListItem &W, 9310 Value *Cond, 9311 MachineBasicBlock *SwitchMBB) { 9312 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9313 "Clusters not sorted?"); 9314 9315 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9316 9317 // Balance the tree based on branch probabilities to create a near-optimal (in 9318 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9319 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9320 CaseClusterIt LastLeft = W.FirstCluster; 9321 CaseClusterIt FirstRight = W.LastCluster; 9322 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9323 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9324 9325 // Move LastLeft and FirstRight towards each other from opposite directions to 9326 // find a partitioning of the clusters which balances the probability on both 9327 // sides. If LeftProb and RightProb are equal, alternate which side is 9328 // taken to ensure 0-probability nodes are distributed evenly. 9329 unsigned I = 0; 9330 while (LastLeft + 1 < FirstRight) { 9331 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9332 LeftProb += (++LastLeft)->Prob; 9333 else 9334 RightProb += (--FirstRight)->Prob; 9335 I++; 9336 } 9337 9338 for (;;) { 9339 // Our binary search tree differs from a typical BST in that ours can have up 9340 // to three values in each leaf. The pivot selection above doesn't take that 9341 // into account, which means the tree might require more nodes and be less 9342 // efficient. We compensate for this here. 9343 9344 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9345 unsigned NumRight = W.LastCluster - FirstRight + 1; 9346 9347 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9348 // If one side has less than 3 clusters, and the other has more than 3, 9349 // consider taking a cluster from the other side. 9350 9351 if (NumLeft < NumRight) { 9352 // Consider moving the first cluster on the right to the left side. 9353 CaseCluster &CC = *FirstRight; 9354 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9355 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9356 if (LeftSideRank <= RightSideRank) { 9357 // Moving the cluster to the left does not demote it. 9358 ++LastLeft; 9359 ++FirstRight; 9360 continue; 9361 } 9362 } else { 9363 assert(NumRight < NumLeft); 9364 // Consider moving the last element on the left to the right side. 9365 CaseCluster &CC = *LastLeft; 9366 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9367 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9368 if (RightSideRank <= LeftSideRank) { 9369 // Moving the cluster to the right does not demot it. 9370 --LastLeft; 9371 --FirstRight; 9372 continue; 9373 } 9374 } 9375 } 9376 break; 9377 } 9378 9379 assert(LastLeft + 1 == FirstRight); 9380 assert(LastLeft >= W.FirstCluster); 9381 assert(FirstRight <= W.LastCluster); 9382 9383 // Use the first element on the right as pivot since we will make less-than 9384 // comparisons against it. 9385 CaseClusterIt PivotCluster = FirstRight; 9386 assert(PivotCluster > W.FirstCluster); 9387 assert(PivotCluster <= W.LastCluster); 9388 9389 CaseClusterIt FirstLeft = W.FirstCluster; 9390 CaseClusterIt LastRight = W.LastCluster; 9391 9392 const ConstantInt *Pivot = PivotCluster->Low; 9393 9394 // New blocks will be inserted immediately after the current one. 9395 MachineFunction::iterator BBI(W.MBB); 9396 ++BBI; 9397 9398 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9399 // we can branch to its destination directly if it's squeezed exactly in 9400 // between the known lower bound and Pivot - 1. 9401 MachineBasicBlock *LeftMBB; 9402 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9403 FirstLeft->Low == W.GE && 9404 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9405 LeftMBB = FirstLeft->MBB; 9406 } else { 9407 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9408 FuncInfo.MF->insert(BBI, LeftMBB); 9409 WorkList.push_back( 9410 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9411 // Put Cond in a virtual register to make it available from the new blocks. 9412 ExportFromCurrentBlock(Cond); 9413 } 9414 9415 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9416 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9417 // directly if RHS.High equals the current upper bound. 9418 MachineBasicBlock *RightMBB; 9419 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9420 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9421 RightMBB = FirstRight->MBB; 9422 } else { 9423 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9424 FuncInfo.MF->insert(BBI, RightMBB); 9425 WorkList.push_back( 9426 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9427 // Put Cond in a virtual register to make it available from the new blocks. 9428 ExportFromCurrentBlock(Cond); 9429 } 9430 9431 // Create the CaseBlock record that will be used to lower the branch. 9432 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9433 LeftProb, RightProb); 9434 9435 if (W.MBB == SwitchMBB) 9436 visitSwitchCase(CB, SwitchMBB); 9437 else 9438 SwitchCases.push_back(CB); 9439 } 9440 9441 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9442 // Extract cases from the switch. 9443 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9444 CaseClusterVector Clusters; 9445 Clusters.reserve(SI.getNumCases()); 9446 for (auto I : SI.cases()) { 9447 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9448 const ConstantInt *CaseVal = I.getCaseValue(); 9449 BranchProbability Prob = 9450 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9451 : BranchProbability(1, SI.getNumCases() + 1); 9452 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9453 } 9454 9455 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9456 9457 // Cluster adjacent cases with the same destination. We do this at all 9458 // optimization levels because it's cheap to do and will make codegen faster 9459 // if there are many clusters. 9460 sortAndRangeify(Clusters); 9461 9462 if (TM.getOptLevel() != CodeGenOpt::None) { 9463 // Replace an unreachable default with the most popular destination. 9464 // FIXME: Exploit unreachable default more aggressively. 9465 bool UnreachableDefault = 9466 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9467 if (UnreachableDefault && !Clusters.empty()) { 9468 DenseMap<const BasicBlock *, unsigned> Popularity; 9469 unsigned MaxPop = 0; 9470 const BasicBlock *MaxBB = nullptr; 9471 for (auto I : SI.cases()) { 9472 const BasicBlock *BB = I.getCaseSuccessor(); 9473 if (++Popularity[BB] > MaxPop) { 9474 MaxPop = Popularity[BB]; 9475 MaxBB = BB; 9476 } 9477 } 9478 // Set new default. 9479 assert(MaxPop > 0 && MaxBB); 9480 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9481 9482 // Remove cases that were pointing to the destination that is now the 9483 // default. 9484 CaseClusterVector New; 9485 New.reserve(Clusters.size()); 9486 for (CaseCluster &CC : Clusters) { 9487 if (CC.MBB != DefaultMBB) 9488 New.push_back(CC); 9489 } 9490 Clusters = std::move(New); 9491 } 9492 } 9493 9494 // If there is only the default destination, jump there directly. 9495 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9496 if (Clusters.empty()) { 9497 SwitchMBB->addSuccessor(DefaultMBB); 9498 if (DefaultMBB != NextBlock(SwitchMBB)) { 9499 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9500 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9501 } 9502 return; 9503 } 9504 9505 findJumpTables(Clusters, &SI, DefaultMBB); 9506 findBitTestClusters(Clusters, &SI); 9507 9508 DEBUG({ 9509 dbgs() << "Case clusters: "; 9510 for (const CaseCluster &C : Clusters) { 9511 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9512 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9513 9514 C.Low->getValue().print(dbgs(), true); 9515 if (C.Low != C.High) { 9516 dbgs() << '-'; 9517 C.High->getValue().print(dbgs(), true); 9518 } 9519 dbgs() << ' '; 9520 } 9521 dbgs() << '\n'; 9522 }); 9523 9524 assert(!Clusters.empty()); 9525 SwitchWorkList WorkList; 9526 CaseClusterIt First = Clusters.begin(); 9527 CaseClusterIt Last = Clusters.end() - 1; 9528 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9529 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9530 9531 while (!WorkList.empty()) { 9532 SwitchWorkListItem W = WorkList.back(); 9533 WorkList.pop_back(); 9534 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9535 9536 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9537 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9538 // For optimized builds, lower large range as a balanced binary tree. 9539 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9540 continue; 9541 } 9542 9543 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9544 } 9545 } 9546