1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 SDValue InChain, 157 std::optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue 165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 166 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 167 SDValue InChain, 168 std::optional<CallingConv::ID> CC = std::nullopt, 169 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 InChain, CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = llvm::bit_floor(NumParts); 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 200 InChain); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 202 PartVT, HalfVT, V, InChain); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, InChain, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 227 DAG.getConstant(Lo.getValueSizeInBits(), DL, 228 TLI.getShiftAmountTy( 229 TotalVT, DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 249 InChain, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) { 290 291 SDValue NoChange = 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 293 294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 295 llvm::Attribute::StrictFP)) { 296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 298 NoChange); 299 } 300 301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 305 } 306 307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 308 // then truncating. 309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 310 ValueVT.bitsLT(PartEVT)) { 311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 315 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 316 } 317 318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 319 const Twine &ErrMsg) { 320 const Instruction *I = dyn_cast_or_null<Instruction>(V); 321 if (!V) 322 return Ctx.emitError(ErrMsg); 323 324 const char *AsmError = ", possible invalid constraint for vector type"; 325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 326 if (CI->isInlineAsm()) 327 return Ctx.emitError(I, ErrMsg + AsmError); 328 329 return Ctx.emitError(I, ErrMsg); 330 } 331 332 /// getCopyFromPartsVector - Create a value that contains the specified legal 333 /// parts combined into the value they represent. If the parts combine to a 334 /// type larger than ValueVT then AssertOp can be used to specify whether the 335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 336 /// ValueVT (ISD::AssertSext). 337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 338 const SDValue *Parts, unsigned NumParts, 339 MVT PartVT, EVT ValueVT, const Value *V, 340 SDValue InChain, 341 std::optional<CallingConv::ID> CallConv) { 342 assert(ValueVT.isVector() && "Not a vector value"); 343 assert(NumParts > 0 && "No parts to assemble!"); 344 const bool IsABIRegCopy = CallConv.has_value(); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 359 NumIntermediates, RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 380 V, InChain, CallConv); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 389 IntermediateVT, V, InChain, CallConv); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 IntermediateVT.isVector() 396 ? EVT::getVectorVT( 397 *DAG.getContext(), IntermediateVT.getScalarType(), 398 IntermediateVT.getVectorElementCount() * NumParts) 399 : EVT::getVectorVT(*DAG.getContext(), 400 IntermediateVT.getScalarType(), 401 NumIntermediates); 402 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 403 : ISD::BUILD_VECTOR, 404 DL, BuiltVectorTy, Ops); 405 } 406 407 // There is now one part, held in Val. Correct it to match ValueVT. 408 EVT PartEVT = Val.getValueType(); 409 410 if (PartEVT == ValueVT) 411 return Val; 412 413 if (PartEVT.isVector()) { 414 // Vector/Vector bitcast. 415 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 416 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 417 418 // If the parts vector has more elements than the value vector, then we 419 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 420 // Extract the elements we want. 421 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 422 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 423 ValueVT.getVectorElementCount().getKnownMinValue()) && 424 (PartEVT.getVectorElementCount().isScalable() == 425 ValueVT.getVectorElementCount().isScalable()) && 426 "Cannot narrow, it would be a lossy transformation"); 427 PartEVT = 428 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 429 ValueVT.getVectorElementCount()); 430 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 431 DAG.getVectorIdxConstant(0, DL)); 432 if (PartEVT == ValueVT) 433 return Val; 434 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 } 441 442 // Promoted vector extract 443 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 444 } 445 446 // Trivial bitcast if the types are the same size and the destination 447 // vector type is legal. 448 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 449 TLI.isTypeLegal(ValueVT)) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 if (ValueVT.getVectorNumElements() != 1) { 453 // Certain ABIs require that vectors are passed as integers. For vectors 454 // are the same size, this is an obvious bitcast. 455 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 457 } else if (ValueVT.bitsLT(PartEVT)) { 458 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 460 // Drop the extra bits. 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 return DAG.getBitcast(ValueVT, Val); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 473 unsigned ValueSize = ValueSVT.getSizeInBits(); 474 if (ValueSize == PartEVT.getSizeInBits()) { 475 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 476 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 477 // It's possible a scalar floating point type gets softened to integer and 478 // then promoted to a larger integer. If PartEVT is the larger integer 479 // we need to truncate it and then bitcast to the FP type. 480 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 481 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 482 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 483 Val = DAG.getBitcast(ValueSVT, Val); 484 } else { 485 Val = ValueVT.isFloatingPoint() 486 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 488 } 489 } 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 std::optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void 503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 504 unsigned NumParts, MVT PartVT, const Value *V, 505 std::optional<CallingConv::ID> CallConv = std::nullopt, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 // Let the target split the parts if it wants to 508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 509 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 510 CallConv)) 511 return; 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned OrigNumParts = NumParts; 520 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 521 "Copying to an illegal type!"); 522 523 if (NumParts == 0) 524 return; 525 526 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 527 EVT PartEVT = PartVT; 528 if (PartEVT == ValueVT) { 529 assert(NumParts == 1 && "No-op copy with multiple parts!"); 530 Parts[0] = Val; 531 return; 532 } 533 534 unsigned PartBits = PartVT.getSizeInBits(); 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = llvm::bit_floor(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 640 const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 EVT PartEVT = PartVT.getVectorElementType(); 646 EVT ValueEVT = ValueVT.getVectorElementType(); 647 ElementCount PartNumElts = PartVT.getVectorElementCount(); 648 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 649 650 // We only support widening vectors with equivalent element types and 651 // fixed/scalable properties. If a target needs to widen a fixed-length type 652 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 653 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 654 PartNumElts.isScalable() != ValueNumElts.isScalable()) 655 return SDValue(); 656 657 // Have a try for bf16 because some targets share its ABI with fp16. 658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 659 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 660 "Cannot widen to illegal type"); 661 Val = DAG.getNode(ISD::BITCAST, DL, 662 ValueVT.changeVectorElementType(MVT::f16), Val); 663 } else if (PartEVT != ValueEVT) { 664 return SDValue(); 665 } 666 667 // Widening a scalable vector to another scalable vector is done by inserting 668 // the vector into a larger undef one. 669 if (PartNumElts.isScalable()) 670 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 671 Val, DAG.getVectorIdxConstant(0, DL)); 672 673 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 674 // undef elements. 675 SmallVector<SDValue, 16> Ops; 676 DAG.ExtractVectorElements(Val, Ops); 677 SDValue EltUndef = DAG.getUNDEF(PartEVT); 678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 679 680 // FIXME: Use CONCAT for 2x -> 4x. 681 return DAG.getBuildVector(PartVT, DL, Ops); 682 } 683 684 /// getCopyToPartsVector - Create a series of nodes that contain the specified 685 /// value split into legal parts. 686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 687 SDValue Val, SDValue *Parts, unsigned NumParts, 688 MVT PartVT, const Value *V, 689 std::optional<CallingConv::ID> CallConv) { 690 EVT ValueVT = Val.getValueType(); 691 assert(ValueVT.isVector() && "Not a vector"); 692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 693 const bool IsABIRegCopy = CallConv.has_value(); 694 695 if (NumParts == 1) { 696 EVT PartEVT = PartVT; 697 if (PartEVT == ValueVT) { 698 // Nothing to do. 699 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 700 // Bitconvert vector->vector case. 701 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 702 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 703 Val = Widened; 704 } else if (PartVT.isVector() && 705 PartEVT.getVectorElementType().bitsGE( 706 ValueVT.getVectorElementType()) && 707 PartEVT.getVectorElementCount() == 708 ValueVT.getVectorElementCount()) { 709 710 // Promoted vector extract 711 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 712 } else if (PartEVT.isVector() && 713 PartEVT.getVectorElementType() != 714 ValueVT.getVectorElementType() && 715 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 716 TargetLowering::TypeWidenVector) { 717 // Combination of widening and promotion. 718 EVT WidenVT = 719 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 720 PartVT.getVectorElementCount()); 721 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 722 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 723 } else { 724 // Don't extract an integer from a float vector. This can happen if the 725 // FP type gets softened to integer and then promoted. The promotion 726 // prevents it from being picked up by the earlier bitcast case. 727 if (ValueVT.getVectorElementCount().isScalar() && 728 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 729 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 730 DAG.getVectorIdxConstant(0, DL)); 731 } else { 732 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 733 assert(PartVT.getFixedSizeInBits() > ValueSize && 734 "lossy conversion of vector to scalar type"); 735 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 736 Val = DAG.getBitcast(IntermediateType, Val); 737 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 738 } 739 } 740 741 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 742 Parts[0] = Val; 743 return; 744 } 745 746 // Handle a multi-element vector. 747 EVT IntermediateVT; 748 MVT RegisterVT; 749 unsigned NumIntermediates; 750 unsigned NumRegs; 751 if (IsABIRegCopy) { 752 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 753 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 754 RegisterVT); 755 } else { 756 NumRegs = 757 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 758 NumIntermediates, RegisterVT); 759 } 760 761 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 762 NumParts = NumRegs; // Silence a compiler warning. 763 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 764 765 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 766 "Mixing scalable and fixed vectors when copying in parts"); 767 768 std::optional<ElementCount> DestEltCnt; 769 770 if (IntermediateVT.isVector()) 771 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 772 else 773 DestEltCnt = ElementCount::getFixed(NumIntermediates); 774 775 EVT BuiltVectorTy = EVT::getVectorVT( 776 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 777 778 if (ValueVT == BuiltVectorTy) { 779 // Nothing to do. 780 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 781 // Bitconvert vector->vector case. 782 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 783 } else { 784 if (BuiltVectorTy.getVectorElementType().bitsGT( 785 ValueVT.getVectorElementType())) { 786 // Integer promotion. 787 ValueVT = EVT::getVectorVT(*DAG.getContext(), 788 BuiltVectorTy.getVectorElementType(), 789 ValueVT.getVectorElementCount()); 790 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 791 } 792 793 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 794 Val = Widened; 795 } 796 } 797 798 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 799 800 // Split the vector into intermediate operands. 801 SmallVector<SDValue, 8> Ops(NumIntermediates); 802 for (unsigned i = 0; i != NumIntermediates; ++i) { 803 if (IntermediateVT.isVector()) { 804 // This does something sensible for scalable vectors - see the 805 // definition of EXTRACT_SUBVECTOR for further details. 806 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 807 Ops[i] = 808 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 809 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 810 } else { 811 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 812 DAG.getVectorIdxConstant(i, DL)); 813 } 814 } 815 816 // Split the intermediate operands into legal parts. 817 if (NumParts == NumIntermediates) { 818 // If the register was not expanded, promote or copy the value, 819 // as appropriate. 820 for (unsigned i = 0; i != NumParts; ++i) 821 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 822 } else if (NumParts > 0) { 823 // If the intermediate type was expanded, split each the value into 824 // legal parts. 825 assert(NumIntermediates != 0 && "division by zero"); 826 assert(NumParts % NumIntermediates == 0 && 827 "Must expand into a divisible number of parts!"); 828 unsigned Factor = NumParts / NumIntermediates; 829 for (unsigned i = 0; i != NumIntermediates; ++i) 830 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 831 CallConv); 832 } 833 } 834 835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 836 EVT valuevt, std::optional<CallingConv::ID> CC) 837 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 838 RegCount(1, regs.size()), CallConv(CC) {} 839 840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 841 const DataLayout &DL, unsigned Reg, Type *Ty, 842 std::optional<CallingConv::ID> CC) { 843 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 844 845 CallConv = CC; 846 847 for (EVT ValueVT : ValueVTs) { 848 unsigned NumRegs = 849 isABIMangled() 850 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 851 : TLI.getNumRegisters(Context, ValueVT); 852 MVT RegisterVT = 853 isABIMangled() 854 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 855 : TLI.getRegisterType(Context, ValueVT); 856 for (unsigned i = 0; i != NumRegs; ++i) 857 Regs.push_back(Reg + i); 858 RegVTs.push_back(RegisterVT); 859 RegCount.push_back(NumRegs); 860 Reg += NumRegs; 861 } 862 } 863 864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 865 FunctionLoweringInfo &FuncInfo, 866 const SDLoc &dl, SDValue &Chain, 867 SDValue *Glue, const Value *V) const { 868 // A Value with type {} or [0 x %t] needs no registers. 869 if (ValueVTs.empty()) 870 return SDValue(); 871 872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 873 874 // Assemble the legal parts into the final values. 875 SmallVector<SDValue, 4> Values(ValueVTs.size()); 876 SmallVector<SDValue, 8> Parts; 877 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 878 // Copy the legal parts from the registers. 879 EVT ValueVT = ValueVTs[Value]; 880 unsigned NumRegs = RegCount[Value]; 881 MVT RegisterVT = isABIMangled() 882 ? TLI.getRegisterTypeForCallingConv( 883 *DAG.getContext(), *CallConv, RegVTs[Value]) 884 : RegVTs[Value]; 885 886 Parts.resize(NumRegs); 887 for (unsigned i = 0; i != NumRegs; ++i) { 888 SDValue P; 889 if (!Glue) { 890 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 891 } else { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 893 *Glue = P.getValue(2); 894 } 895 896 Chain = P.getValue(1); 897 Parts[i] = P; 898 899 // If the source register was virtual and if we know something about it, 900 // add an assert node. 901 if (!Register::isVirtualRegister(Regs[Part + i]) || 902 !RegisterVT.isInteger()) 903 continue; 904 905 const FunctionLoweringInfo::LiveOutInfo *LOI = 906 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 907 if (!LOI) 908 continue; 909 910 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 911 unsigned NumSignBits = LOI->NumSignBits; 912 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 913 914 if (NumZeroBits == RegSize) { 915 // The current value is a zero. 916 // Explicitly express that as it would be easier for 917 // optimizations to kick in. 918 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 919 continue; 920 } 921 922 // FIXME: We capture more information than the dag can represent. For 923 // now, just use the tightest assertzext/assertsext possible. 924 bool isSExt; 925 EVT FromVT(MVT::Other); 926 if (NumZeroBits) { 927 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 928 isSExt = false; 929 } else if (NumSignBits > 1) { 930 FromVT = 931 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 932 isSExt = true; 933 } else { 934 continue; 935 } 936 // Add an assertion node. 937 assert(FromVT != MVT::Other); 938 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 939 RegisterVT, P, DAG.getValueType(FromVT)); 940 } 941 942 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 943 RegisterVT, ValueVT, V, Chain, CallConv); 944 Part += NumRegs; 945 Parts.clear(); 946 } 947 948 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 949 } 950 951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 952 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 953 const Value *V, 954 ISD::NodeType PreferredExtendType) const { 955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 956 ISD::NodeType ExtendKind = PreferredExtendType; 957 958 // Get the list of the values's legal parts. 959 unsigned NumRegs = Regs.size(); 960 SmallVector<SDValue, 8> Parts(NumRegs); 961 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 962 unsigned NumParts = RegCount[Value]; 963 964 MVT RegisterVT = isABIMangled() 965 ? TLI.getRegisterTypeForCallingConv( 966 *DAG.getContext(), *CallConv, RegVTs[Value]) 967 : RegVTs[Value]; 968 969 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 970 ExtendKind = ISD::ZERO_EXTEND; 971 972 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 973 NumParts, RegisterVT, V, CallConv, ExtendKind); 974 Part += NumParts; 975 } 976 977 // Copy the parts into the registers. 978 SmallVector<SDValue, 8> Chains(NumRegs); 979 for (unsigned i = 0; i != NumRegs; ++i) { 980 SDValue Part; 981 if (!Glue) { 982 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 983 } else { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 985 *Glue = Part.getValue(1); 986 } 987 988 Chains[i] = Part.getValue(0); 989 } 990 991 if (NumRegs == 1 || Glue) 992 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 993 // flagged to it. That is the CopyToReg nodes and the user are considered 994 // a single scheduling unit. If we create a TokenFactor and return it as 995 // chain, then the TokenFactor is both a predecessor (operand) of the 996 // user as well as a successor (the TF operands are flagged to the user). 997 // c1, f1 = CopyToReg 998 // c2, f2 = CopyToReg 999 // c3 = TokenFactor c1, c2 1000 // ... 1001 // = op c3, ..., f2 1002 Chain = Chains[NumRegs-1]; 1003 else 1004 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1005 } 1006 1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1008 unsigned MatchingIdx, const SDLoc &dl, 1009 SelectionDAG &DAG, 1010 std::vector<SDValue> &Ops) const { 1011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1012 1013 InlineAsm::Flag Flag(Code, Regs.size()); 1014 if (HasMatching) 1015 Flag.setMatchingOp(MatchingIdx); 1016 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1017 // Put the register class of the virtual registers in the flag word. That 1018 // way, later passes can recompute register class constraints for inline 1019 // assembly as well as normal instructions. 1020 // Don't do this for tied operands that can use the regclass information 1021 // from the def. 1022 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1023 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1024 Flag.setRegClass(RC->getID()); 1025 } 1026 1027 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1028 Ops.push_back(Res); 1029 1030 if (Code == InlineAsm::Kind::Clobber) { 1031 // Clobbers should always have a 1:1 mapping with registers, and may 1032 // reference registers that have illegal (e.g. vector) types. Hence, we 1033 // shouldn't try to apply any sort of splitting logic to them. 1034 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1035 "No 1:1 mapping from clobbers to regs?"); 1036 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1037 (void)SP; 1038 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1039 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1040 assert( 1041 (Regs[I] != SP || 1042 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1043 "If we clobbered the stack pointer, MFI should know about it."); 1044 } 1045 return; 1046 } 1047 1048 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1049 MVT RegisterVT = RegVTs[Value]; 1050 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1051 RegisterVT); 1052 for (unsigned i = 0; i != NumRegs; ++i) { 1053 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1054 unsigned TheReg = Regs[Reg++]; 1055 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1056 } 1057 } 1058 } 1059 1060 SmallVector<std::pair<unsigned, TypeSize>, 4> 1061 RegsForValue::getRegsAndSizes() const { 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1063 unsigned I = 0; 1064 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1065 unsigned RegCount = std::get<0>(CountAndVT); 1066 MVT RegisterVT = std::get<1>(CountAndVT); 1067 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1068 for (unsigned E = I + RegCount; I != E; ++I) 1069 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1070 } 1071 return OutVec; 1072 } 1073 1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1075 AssumptionCache *ac, 1076 const TargetLibraryInfo *li) { 1077 AA = aa; 1078 AC = ac; 1079 GFI = gfi; 1080 LibInfo = li; 1081 Context = DAG.getContext(); 1082 LPadToCallSiteMap.clear(); 1083 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1084 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1085 *DAG.getMachineFunction().getFunction().getParent()); 1086 } 1087 1088 void SelectionDAGBuilder::clear() { 1089 NodeMap.clear(); 1090 UnusedArgNodeMap.clear(); 1091 PendingLoads.clear(); 1092 PendingExports.clear(); 1093 PendingConstrainedFP.clear(); 1094 PendingConstrainedFPStrict.clear(); 1095 CurInst = nullptr; 1096 HasTailCall = false; 1097 SDNodeOrder = LowestSDNodeOrder; 1098 StatepointLowering.clear(); 1099 } 1100 1101 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1102 DanglingDebugInfoMap.clear(); 1103 } 1104 1105 // Update DAG root to include dependencies on Pending chains. 1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1107 SDValue Root = DAG.getRoot(); 1108 1109 if (Pending.empty()) 1110 return Root; 1111 1112 // Add current root to PendingChains, unless we already indirectly 1113 // depend on it. 1114 if (Root.getOpcode() != ISD::EntryToken) { 1115 unsigned i = 0, e = Pending.size(); 1116 for (; i != e; ++i) { 1117 assert(Pending[i].getNode()->getNumOperands() > 1); 1118 if (Pending[i].getNode()->getOperand(0) == Root) 1119 break; // Don't add the root if we already indirectly depend on it. 1120 } 1121 1122 if (i == e) 1123 Pending.push_back(Root); 1124 } 1125 1126 if (Pending.size() == 1) 1127 Root = Pending[0]; 1128 else 1129 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1130 1131 DAG.setRoot(Root); 1132 Pending.clear(); 1133 return Root; 1134 } 1135 1136 SDValue SelectionDAGBuilder::getMemoryRoot() { 1137 return updateRoot(PendingLoads); 1138 } 1139 1140 SDValue SelectionDAGBuilder::getRoot() { 1141 // Chain up all pending constrained intrinsics together with all 1142 // pending loads, by simply appending them to PendingLoads and 1143 // then calling getMemoryRoot(). 1144 PendingLoads.reserve(PendingLoads.size() + 1145 PendingConstrainedFP.size() + 1146 PendingConstrainedFPStrict.size()); 1147 PendingLoads.append(PendingConstrainedFP.begin(), 1148 PendingConstrainedFP.end()); 1149 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1150 PendingConstrainedFPStrict.end()); 1151 PendingConstrainedFP.clear(); 1152 PendingConstrainedFPStrict.clear(); 1153 return getMemoryRoot(); 1154 } 1155 1156 SDValue SelectionDAGBuilder::getControlRoot() { 1157 // We need to emit pending fpexcept.strict constrained intrinsics, 1158 // so append them to the PendingExports list. 1159 PendingExports.append(PendingConstrainedFPStrict.begin(), 1160 PendingConstrainedFPStrict.end()); 1161 PendingConstrainedFPStrict.clear(); 1162 return updateRoot(PendingExports); 1163 } 1164 1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1166 DILocalVariable *Variable, 1167 DIExpression *Expression, 1168 DebugLoc DL) { 1169 assert(Variable && "Missing variable"); 1170 1171 // Check if address has undef value. 1172 if (!Address || isa<UndefValue>(Address) || 1173 (Address->use_empty() && !isa<Argument>(Address))) { 1174 LLVM_DEBUG( 1175 dbgs() 1176 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1177 return; 1178 } 1179 1180 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1181 1182 SDValue &N = NodeMap[Address]; 1183 if (!N.getNode() && isa<Argument>(Address)) 1184 // Check unused arguments map. 1185 N = UnusedArgNodeMap[Address]; 1186 SDDbgValue *SDV; 1187 if (N.getNode()) { 1188 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1189 Address = BCI->getOperand(0); 1190 // Parameters are handled specially. 1191 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1192 if (IsParameter && FINode) { 1193 // Byval parameter. We have a frame index at this point. 1194 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1195 /*IsIndirect*/ true, DL, SDNodeOrder); 1196 } else if (isa<Argument>(Address)) { 1197 // Address is an argument, so try to emit its dbg value using 1198 // virtual register info from the FuncInfo.ValueMap. 1199 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1200 FuncArgumentDbgValueKind::Declare, N); 1201 return; 1202 } else { 1203 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1204 true, DL, SDNodeOrder); 1205 } 1206 DAG.AddDbgValue(SDV, IsParameter); 1207 } else { 1208 // If Address is an argument then try to emit its dbg value using 1209 // virtual register info from the FuncInfo.ValueMap. 1210 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1211 FuncArgumentDbgValueKind::Declare, N)) { 1212 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1213 << " (could not emit func-arg dbg_value)\n"); 1214 } 1215 } 1216 return; 1217 } 1218 1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1220 // Add SDDbgValue nodes for any var locs here. Do so before updating 1221 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1222 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1223 // Add SDDbgValue nodes for any var locs here. Do so before updating 1224 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1225 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1226 It != End; ++It) { 1227 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1228 dropDanglingDebugInfo(Var, It->Expr); 1229 if (It->Values.isKillLocation(It->Expr)) { 1230 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1231 continue; 1232 } 1233 SmallVector<Value *> Values(It->Values.location_ops()); 1234 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1235 It->Values.hasArgList())) { 1236 SmallVector<Value *, 4> Vals; 1237 for (Value *V : It->Values.location_ops()) 1238 Vals.push_back(V); 1239 addDanglingDebugInfo(Vals, 1240 FnVarLocs->getDILocalVariable(It->VariableID), 1241 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1242 } 1243 } 1244 } 1245 1246 // We must skip DPValues if they've already been processed above as we 1247 // have just emitted the debug values resulting from assignment tracking 1248 // analysis, making any existing DPValues redundant (and probably less 1249 // correct). We still need to process DPLabels. This does sink DPLabels 1250 // to the bottom of the group of debug records. That sholdn't be important 1251 // as it does so deterministcally and ordering between DPLabels and DPValues 1252 // is immaterial (other than for MIR/IR printing). 1253 bool SkipDPValues = DAG.getFunctionVarLocs(); 1254 // Is there is any debug-info attached to this instruction, in the form of 1255 // DbgRecord non-instruction debug-info records. 1256 for (DbgRecord &DR : I.getDbgValueRange()) { 1257 if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) { 1258 assert(DPL->getLabel() && "Missing label"); 1259 SDDbgLabel *SDV = 1260 DAG.getDbgLabel(DPL->getLabel(), DPL->getDebugLoc(), SDNodeOrder); 1261 DAG.AddDbgLabel(SDV); 1262 continue; 1263 } 1264 1265 if (SkipDPValues) 1266 continue; 1267 DPValue &DPV = cast<DPValue>(DR); 1268 DILocalVariable *Variable = DPV.getVariable(); 1269 DIExpression *Expression = DPV.getExpression(); 1270 dropDanglingDebugInfo(Variable, Expression); 1271 1272 if (DPV.getType() == DPValue::LocationType::Declare) { 1273 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1274 continue; 1275 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV 1276 << "\n"); 1277 handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression, 1278 DPV.getDebugLoc()); 1279 continue; 1280 } 1281 1282 // A DPValue with no locations is a kill location. 1283 SmallVector<Value *, 4> Values(DPV.location_ops()); 1284 if (Values.empty()) { 1285 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1286 SDNodeOrder); 1287 continue; 1288 } 1289 1290 // A DPValue with an undef or absent location is also a kill location. 1291 if (llvm::any_of(Values, 1292 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1293 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1294 SDNodeOrder); 1295 continue; 1296 } 1297 1298 bool IsVariadic = DPV.hasArgList(); 1299 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1300 SDNodeOrder, IsVariadic)) { 1301 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1302 DPV.getDebugLoc(), SDNodeOrder); 1303 } 1304 } 1305 } 1306 1307 void SelectionDAGBuilder::visit(const Instruction &I) { 1308 visitDbgInfo(I); 1309 1310 // Set up outgoing PHI node register values before emitting the terminator. 1311 if (I.isTerminator()) { 1312 HandlePHINodesInSuccessorBlocks(I.getParent()); 1313 } 1314 1315 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1316 if (!isa<DbgInfoIntrinsic>(I)) 1317 ++SDNodeOrder; 1318 1319 CurInst = &I; 1320 1321 // Set inserted listener only if required. 1322 bool NodeInserted = false; 1323 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1324 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1325 if (PCSectionsMD) { 1326 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1327 DAG, [&](SDNode *) { NodeInserted = true; }); 1328 } 1329 1330 visit(I.getOpcode(), I); 1331 1332 if (!I.isTerminator() && !HasTailCall && 1333 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1334 CopyToExportRegsIfNeeded(&I); 1335 1336 // Handle metadata. 1337 if (PCSectionsMD) { 1338 auto It = NodeMap.find(&I); 1339 if (It != NodeMap.end()) { 1340 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1341 } else if (NodeInserted) { 1342 // This should not happen; if it does, don't let it go unnoticed so we can 1343 // fix it. Relevant visit*() function is probably missing a setValue(). 1344 errs() << "warning: loosing !pcsections metadata [" 1345 << I.getModule()->getName() << "]\n"; 1346 LLVM_DEBUG(I.dump()); 1347 assert(false); 1348 } 1349 } 1350 1351 CurInst = nullptr; 1352 } 1353 1354 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1355 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1356 } 1357 1358 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1359 // Note: this doesn't use InstVisitor, because it has to work with 1360 // ConstantExpr's in addition to instructions. 1361 switch (Opcode) { 1362 default: llvm_unreachable("Unknown instruction type encountered!"); 1363 // Build the switch statement using the Instruction.def file. 1364 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1365 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1366 #include "llvm/IR/Instruction.def" 1367 } 1368 } 1369 1370 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1371 DILocalVariable *Variable, 1372 DebugLoc DL, unsigned Order, 1373 SmallVectorImpl<Value *> &Values, 1374 DIExpression *Expression) { 1375 // For variadic dbg_values we will now insert an undef. 1376 // FIXME: We can potentially recover these! 1377 SmallVector<SDDbgOperand, 2> Locs; 1378 for (const Value *V : Values) { 1379 auto *Undef = UndefValue::get(V->getType()); 1380 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1381 } 1382 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1383 /*IsIndirect=*/false, DL, Order, 1384 /*IsVariadic=*/true); 1385 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1386 return true; 1387 } 1388 1389 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1390 DILocalVariable *Var, 1391 DIExpression *Expr, 1392 bool IsVariadic, DebugLoc DL, 1393 unsigned Order) { 1394 if (IsVariadic) { 1395 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1396 return; 1397 } 1398 // TODO: Dangling debug info will eventually either be resolved or produce 1399 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1400 // between the original dbg.value location and its resolved DBG_VALUE, 1401 // which we should ideally fill with an extra Undef DBG_VALUE. 1402 assert(Values.size() == 1); 1403 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1404 } 1405 1406 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1407 const DIExpression *Expr) { 1408 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1409 DIVariable *DanglingVariable = DDI.getVariable(); 1410 DIExpression *DanglingExpr = DDI.getExpression(); 1411 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1412 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1413 << printDDI(nullptr, DDI) << "\n"); 1414 return true; 1415 } 1416 return false; 1417 }; 1418 1419 for (auto &DDIMI : DanglingDebugInfoMap) { 1420 DanglingDebugInfoVector &DDIV = DDIMI.second; 1421 1422 // If debug info is to be dropped, run it through final checks to see 1423 // whether it can be salvaged. 1424 for (auto &DDI : DDIV) 1425 if (isMatchingDbgValue(DDI)) 1426 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1427 1428 erase_if(DDIV, isMatchingDbgValue); 1429 } 1430 } 1431 1432 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1433 // generate the debug data structures now that we've seen its definition. 1434 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1435 SDValue Val) { 1436 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1437 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1438 return; 1439 1440 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1441 for (auto &DDI : DDIV) { 1442 DebugLoc DL = DDI.getDebugLoc(); 1443 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1444 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1445 DILocalVariable *Variable = DDI.getVariable(); 1446 DIExpression *Expr = DDI.getExpression(); 1447 assert(Variable->isValidLocationForIntrinsic(DL) && 1448 "Expected inlined-at fields to agree"); 1449 SDDbgValue *SDV; 1450 if (Val.getNode()) { 1451 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1452 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1453 // we couldn't resolve it directly when examining the DbgValue intrinsic 1454 // in the first place we should not be more successful here). Unless we 1455 // have some test case that prove this to be correct we should avoid 1456 // calling EmitFuncArgumentDbgValue here. 1457 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1458 FuncArgumentDbgValueKind::Value, Val)) { 1459 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1460 << printDDI(V, DDI) << "\n"); 1461 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1462 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1463 // inserted after the definition of Val when emitting the instructions 1464 // after ISel. An alternative could be to teach 1465 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1466 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1467 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1468 << ValSDNodeOrder << "\n"); 1469 SDV = getDbgValue(Val, Variable, Expr, DL, 1470 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1471 DAG.AddDbgValue(SDV, false); 1472 } else 1473 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1474 << printDDI(V, DDI) 1475 << " in EmitFuncArgumentDbgValue\n"); 1476 } else { 1477 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1478 << "\n"); 1479 auto Undef = UndefValue::get(V->getType()); 1480 auto SDV = 1481 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1482 DAG.AddDbgValue(SDV, false); 1483 } 1484 } 1485 DDIV.clear(); 1486 } 1487 1488 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1489 DanglingDebugInfo &DDI) { 1490 // TODO: For the variadic implementation, instead of only checking the fail 1491 // state of `handleDebugValue`, we need know specifically which values were 1492 // invalid, so that we attempt to salvage only those values when processing 1493 // a DIArgList. 1494 const Value *OrigV = V; 1495 DILocalVariable *Var = DDI.getVariable(); 1496 DIExpression *Expr = DDI.getExpression(); 1497 DebugLoc DL = DDI.getDebugLoc(); 1498 unsigned SDOrder = DDI.getSDNodeOrder(); 1499 1500 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1501 // that DW_OP_stack_value is desired. 1502 bool StackValue = true; 1503 1504 // Can this Value can be encoded without any further work? 1505 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1506 return; 1507 1508 // Attempt to salvage back through as many instructions as possible. Bail if 1509 // a non-instruction is seen, such as a constant expression or global 1510 // variable. FIXME: Further work could recover those too. 1511 while (isa<Instruction>(V)) { 1512 const Instruction &VAsInst = *cast<const Instruction>(V); 1513 // Temporary "0", awaiting real implementation. 1514 SmallVector<uint64_t, 16> Ops; 1515 SmallVector<Value *, 4> AdditionalValues; 1516 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1517 Expr->getNumLocationOperands(), Ops, 1518 AdditionalValues); 1519 // If we cannot salvage any further, and haven't yet found a suitable debug 1520 // expression, bail out. 1521 if (!V) 1522 break; 1523 1524 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1525 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1526 // here for variadic dbg_values, remove that condition. 1527 if (!AdditionalValues.empty()) 1528 break; 1529 1530 // New value and expr now represent this debuginfo. 1531 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1532 1533 // Some kind of simplification occurred: check whether the operand of the 1534 // salvaged debug expression can be encoded in this DAG. 1535 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1536 LLVM_DEBUG( 1537 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1538 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1539 return; 1540 } 1541 } 1542 1543 // This was the final opportunity to salvage this debug information, and it 1544 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1545 // any earlier variable location. 1546 assert(OrigV && "V shouldn't be null"); 1547 auto *Undef = UndefValue::get(OrigV->getType()); 1548 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1549 DAG.AddDbgValue(SDV, false); 1550 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1551 << printDDI(OrigV, DDI) << "\n"); 1552 } 1553 1554 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1555 DIExpression *Expr, 1556 DebugLoc DbgLoc, 1557 unsigned Order) { 1558 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1559 DIExpression *NewExpr = 1560 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1561 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1562 /*IsVariadic*/ false); 1563 } 1564 1565 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1566 DILocalVariable *Var, 1567 DIExpression *Expr, DebugLoc DbgLoc, 1568 unsigned Order, bool IsVariadic) { 1569 if (Values.empty()) 1570 return true; 1571 1572 // Filter EntryValue locations out early. 1573 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1574 return true; 1575 1576 SmallVector<SDDbgOperand> LocationOps; 1577 SmallVector<SDNode *> Dependencies; 1578 for (const Value *V : Values) { 1579 // Constant value. 1580 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1581 isa<ConstantPointerNull>(V)) { 1582 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1583 continue; 1584 } 1585 1586 // Look through IntToPtr constants. 1587 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1588 if (CE->getOpcode() == Instruction::IntToPtr) { 1589 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1590 continue; 1591 } 1592 1593 // If the Value is a frame index, we can create a FrameIndex debug value 1594 // without relying on the DAG at all. 1595 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1596 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1597 if (SI != FuncInfo.StaticAllocaMap.end()) { 1598 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1599 continue; 1600 } 1601 } 1602 1603 // Do not use getValue() in here; we don't want to generate code at 1604 // this point if it hasn't been done yet. 1605 SDValue N = NodeMap[V]; 1606 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1607 N = UnusedArgNodeMap[V]; 1608 if (N.getNode()) { 1609 // Only emit func arg dbg value for non-variadic dbg.values for now. 1610 if (!IsVariadic && 1611 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1612 FuncArgumentDbgValueKind::Value, N)) 1613 return true; 1614 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1615 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1616 // describe stack slot locations. 1617 // 1618 // Consider "int x = 0; int *px = &x;". There are two kinds of 1619 // interesting debug values here after optimization: 1620 // 1621 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1622 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1623 // 1624 // Both describe the direct values of their associated variables. 1625 Dependencies.push_back(N.getNode()); 1626 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1627 continue; 1628 } 1629 LocationOps.emplace_back( 1630 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1631 continue; 1632 } 1633 1634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1635 // Special rules apply for the first dbg.values of parameter variables in a 1636 // function. Identify them by the fact they reference Argument Values, that 1637 // they're parameters, and they are parameters of the current function. We 1638 // need to let them dangle until they get an SDNode. 1639 bool IsParamOfFunc = 1640 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1641 if (IsParamOfFunc) 1642 return false; 1643 1644 // The value is not used in this block yet (or it would have an SDNode). 1645 // We still want the value to appear for the user if possible -- if it has 1646 // an associated VReg, we can refer to that instead. 1647 auto VMI = FuncInfo.ValueMap.find(V); 1648 if (VMI != FuncInfo.ValueMap.end()) { 1649 unsigned Reg = VMI->second; 1650 // If this is a PHI node, it may be split up into several MI PHI nodes 1651 // (in FunctionLoweringInfo::set). 1652 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1653 V->getType(), std::nullopt); 1654 if (RFV.occupiesMultipleRegs()) { 1655 // FIXME: We could potentially support variadic dbg_values here. 1656 if (IsVariadic) 1657 return false; 1658 unsigned Offset = 0; 1659 unsigned BitsToDescribe = 0; 1660 if (auto VarSize = Var->getSizeInBits()) 1661 BitsToDescribe = *VarSize; 1662 if (auto Fragment = Expr->getFragmentInfo()) 1663 BitsToDescribe = Fragment->SizeInBits; 1664 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1665 // Bail out if all bits are described already. 1666 if (Offset >= BitsToDescribe) 1667 break; 1668 // TODO: handle scalable vectors. 1669 unsigned RegisterSize = RegAndSize.second; 1670 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1671 ? BitsToDescribe - Offset 1672 : RegisterSize; 1673 auto FragmentExpr = DIExpression::createFragmentExpression( 1674 Expr, Offset, FragmentSize); 1675 if (!FragmentExpr) 1676 continue; 1677 SDDbgValue *SDV = DAG.getVRegDbgValue( 1678 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1679 DAG.AddDbgValue(SDV, false); 1680 Offset += RegisterSize; 1681 } 1682 return true; 1683 } 1684 // We can use simple vreg locations for variadic dbg_values as well. 1685 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1686 continue; 1687 } 1688 // We failed to create a SDDbgOperand for V. 1689 return false; 1690 } 1691 1692 // We have created a SDDbgOperand for each Value in Values. 1693 // Should use Order instead of SDNodeOrder? 1694 assert(!LocationOps.empty()); 1695 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1696 /*IsIndirect=*/false, DbgLoc, 1697 SDNodeOrder, IsVariadic); 1698 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1699 return true; 1700 } 1701 1702 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1703 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1704 for (auto &Pair : DanglingDebugInfoMap) 1705 for (auto &DDI : Pair.second) 1706 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1707 clearDanglingDebugInfo(); 1708 } 1709 1710 /// getCopyFromRegs - If there was virtual register allocated for the value V 1711 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1712 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1713 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1714 SDValue Result; 1715 1716 if (It != FuncInfo.ValueMap.end()) { 1717 Register InReg = It->second; 1718 1719 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1720 DAG.getDataLayout(), InReg, Ty, 1721 std::nullopt); // This is not an ABI copy. 1722 SDValue Chain = DAG.getEntryNode(); 1723 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1724 V); 1725 resolveDanglingDebugInfo(V, Result); 1726 } 1727 1728 return Result; 1729 } 1730 1731 /// getValue - Return an SDValue for the given Value. 1732 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1733 // If we already have an SDValue for this value, use it. It's important 1734 // to do this first, so that we don't create a CopyFromReg if we already 1735 // have a regular SDValue. 1736 SDValue &N = NodeMap[V]; 1737 if (N.getNode()) return N; 1738 1739 // If there's a virtual register allocated and initialized for this 1740 // value, use it. 1741 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1742 return copyFromReg; 1743 1744 // Otherwise create a new SDValue and remember it. 1745 SDValue Val = getValueImpl(V); 1746 NodeMap[V] = Val; 1747 resolveDanglingDebugInfo(V, Val); 1748 return Val; 1749 } 1750 1751 /// getNonRegisterValue - Return an SDValue for the given Value, but 1752 /// don't look in FuncInfo.ValueMap for a virtual register. 1753 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1754 // If we already have an SDValue for this value, use it. 1755 SDValue &N = NodeMap[V]; 1756 if (N.getNode()) { 1757 if (isIntOrFPConstant(N)) { 1758 // Remove the debug location from the node as the node is about to be used 1759 // in a location which may differ from the original debug location. This 1760 // is relevant to Constant and ConstantFP nodes because they can appear 1761 // as constant expressions inside PHI nodes. 1762 N->setDebugLoc(DebugLoc()); 1763 } 1764 return N; 1765 } 1766 1767 // Otherwise create a new SDValue and remember it. 1768 SDValue Val = getValueImpl(V); 1769 NodeMap[V] = Val; 1770 resolveDanglingDebugInfo(V, Val); 1771 return Val; 1772 } 1773 1774 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1775 /// Create an SDValue for the given value. 1776 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1778 1779 if (const Constant *C = dyn_cast<Constant>(V)) { 1780 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1781 1782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1783 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1784 1785 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1786 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1787 1788 if (isa<ConstantPointerNull>(C)) { 1789 unsigned AS = V->getType()->getPointerAddressSpace(); 1790 return DAG.getConstant(0, getCurSDLoc(), 1791 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1792 } 1793 1794 if (match(C, m_VScale())) 1795 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1796 1797 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1798 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1799 1800 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1801 return DAG.getUNDEF(VT); 1802 1803 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1804 visit(CE->getOpcode(), *CE); 1805 SDValue N1 = NodeMap[V]; 1806 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1807 return N1; 1808 } 1809 1810 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1811 SmallVector<SDValue, 4> Constants; 1812 for (const Use &U : C->operands()) { 1813 SDNode *Val = getValue(U).getNode(); 1814 // If the operand is an empty aggregate, there are no values. 1815 if (!Val) continue; 1816 // Add each leaf value from the operand to the Constants list 1817 // to form a flattened list of all the values. 1818 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1819 Constants.push_back(SDValue(Val, i)); 1820 } 1821 1822 return DAG.getMergeValues(Constants, getCurSDLoc()); 1823 } 1824 1825 if (const ConstantDataSequential *CDS = 1826 dyn_cast<ConstantDataSequential>(C)) { 1827 SmallVector<SDValue, 4> Ops; 1828 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1829 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1830 // Add each leaf value from the operand to the Constants list 1831 // to form a flattened list of all the values. 1832 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1833 Ops.push_back(SDValue(Val, i)); 1834 } 1835 1836 if (isa<ArrayType>(CDS->getType())) 1837 return DAG.getMergeValues(Ops, getCurSDLoc()); 1838 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1839 } 1840 1841 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1842 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1843 "Unknown struct or array constant!"); 1844 1845 SmallVector<EVT, 4> ValueVTs; 1846 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1847 unsigned NumElts = ValueVTs.size(); 1848 if (NumElts == 0) 1849 return SDValue(); // empty struct 1850 SmallVector<SDValue, 4> Constants(NumElts); 1851 for (unsigned i = 0; i != NumElts; ++i) { 1852 EVT EltVT = ValueVTs[i]; 1853 if (isa<UndefValue>(C)) 1854 Constants[i] = DAG.getUNDEF(EltVT); 1855 else if (EltVT.isFloatingPoint()) 1856 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1857 else 1858 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1859 } 1860 1861 return DAG.getMergeValues(Constants, getCurSDLoc()); 1862 } 1863 1864 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1865 return DAG.getBlockAddress(BA, VT); 1866 1867 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1868 return getValue(Equiv->getGlobalValue()); 1869 1870 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1871 return getValue(NC->getGlobalValue()); 1872 1873 if (VT == MVT::aarch64svcount) { 1874 assert(C->isNullValue() && "Can only zero this target type!"); 1875 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1876 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1877 } 1878 1879 VectorType *VecTy = cast<VectorType>(V->getType()); 1880 1881 // Now that we know the number and type of the elements, get that number of 1882 // elements into the Ops array based on what kind of constant it is. 1883 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1884 SmallVector<SDValue, 16> Ops; 1885 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1886 for (unsigned i = 0; i != NumElements; ++i) 1887 Ops.push_back(getValue(CV->getOperand(i))); 1888 1889 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1890 } 1891 1892 if (isa<ConstantAggregateZero>(C)) { 1893 EVT EltVT = 1894 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1895 1896 SDValue Op; 1897 if (EltVT.isFloatingPoint()) 1898 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1899 else 1900 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1901 1902 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1903 } 1904 1905 llvm_unreachable("Unknown vector constant"); 1906 } 1907 1908 // If this is a static alloca, generate it as the frameindex instead of 1909 // computation. 1910 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1911 DenseMap<const AllocaInst*, int>::iterator SI = 1912 FuncInfo.StaticAllocaMap.find(AI); 1913 if (SI != FuncInfo.StaticAllocaMap.end()) 1914 return DAG.getFrameIndex( 1915 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1916 } 1917 1918 // If this is an instruction which fast-isel has deferred, select it now. 1919 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1920 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1921 1922 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1923 Inst->getType(), std::nullopt); 1924 SDValue Chain = DAG.getEntryNode(); 1925 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1926 } 1927 1928 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1929 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1930 1931 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1932 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1933 1934 llvm_unreachable("Can't get register for value!"); 1935 } 1936 1937 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1938 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1939 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1940 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1941 bool IsSEH = isAsynchronousEHPersonality(Pers); 1942 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1943 if (!IsSEH) 1944 CatchPadMBB->setIsEHScopeEntry(); 1945 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1946 if (IsMSVCCXX || IsCoreCLR) 1947 CatchPadMBB->setIsEHFuncletEntry(); 1948 } 1949 1950 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1951 // Update machine-CFG edge. 1952 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1953 FuncInfo.MBB->addSuccessor(TargetMBB); 1954 TargetMBB->setIsEHCatchretTarget(true); 1955 DAG.getMachineFunction().setHasEHCatchret(true); 1956 1957 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1958 bool IsSEH = isAsynchronousEHPersonality(Pers); 1959 if (IsSEH) { 1960 // If this is not a fall-through branch or optimizations are switched off, 1961 // emit the branch. 1962 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1963 TM.getOptLevel() == CodeGenOptLevel::None) 1964 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1965 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1966 return; 1967 } 1968 1969 // Figure out the funclet membership for the catchret's successor. 1970 // This will be used by the FuncletLayout pass to determine how to order the 1971 // BB's. 1972 // A 'catchret' returns to the outer scope's color. 1973 Value *ParentPad = I.getCatchSwitchParentPad(); 1974 const BasicBlock *SuccessorColor; 1975 if (isa<ConstantTokenNone>(ParentPad)) 1976 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1977 else 1978 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1979 assert(SuccessorColor && "No parent funclet for catchret!"); 1980 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1981 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1982 1983 // Create the terminator node. 1984 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1985 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1986 DAG.getBasicBlock(SuccessorColorMBB)); 1987 DAG.setRoot(Ret); 1988 } 1989 1990 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1991 // Don't emit any special code for the cleanuppad instruction. It just marks 1992 // the start of an EH scope/funclet. 1993 FuncInfo.MBB->setIsEHScopeEntry(); 1994 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1995 if (Pers != EHPersonality::Wasm_CXX) { 1996 FuncInfo.MBB->setIsEHFuncletEntry(); 1997 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1998 } 1999 } 2000 2001 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2002 // not match, it is OK to add only the first unwind destination catchpad to the 2003 // successors, because there will be at least one invoke instruction within the 2004 // catch scope that points to the next unwind destination, if one exists, so 2005 // CFGSort cannot mess up with BB sorting order. 2006 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2007 // call within them, and catchpads only consisting of 'catch (...)' have a 2008 // '__cxa_end_catch' call within them, both of which generate invokes in case 2009 // the next unwind destination exists, i.e., the next unwind destination is not 2010 // the caller.) 2011 // 2012 // Having at most one EH pad successor is also simpler and helps later 2013 // transformations. 2014 // 2015 // For example, 2016 // current: 2017 // invoke void @foo to ... unwind label %catch.dispatch 2018 // catch.dispatch: 2019 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2020 // catch.start: 2021 // ... 2022 // ... in this BB or some other child BB dominated by this BB there will be an 2023 // invoke that points to 'next' BB as an unwind destination 2024 // 2025 // next: ; We don't need to add this to 'current' BB's successor 2026 // ... 2027 static void findWasmUnwindDestinations( 2028 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2029 BranchProbability Prob, 2030 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2031 &UnwindDests) { 2032 while (EHPadBB) { 2033 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2034 if (isa<CleanupPadInst>(Pad)) { 2035 // Stop on cleanup pads. 2036 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2037 UnwindDests.back().first->setIsEHScopeEntry(); 2038 break; 2039 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2040 // Add the catchpad handlers to the possible destinations. We don't 2041 // continue to the unwind destination of the catchswitch for wasm. 2042 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2043 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2044 UnwindDests.back().first->setIsEHScopeEntry(); 2045 } 2046 break; 2047 } else { 2048 continue; 2049 } 2050 } 2051 } 2052 2053 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2054 /// many places it could ultimately go. In the IR, we have a single unwind 2055 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2056 /// This function skips over imaginary basic blocks that hold catchswitch 2057 /// instructions, and finds all the "real" machine 2058 /// basic block destinations. As those destinations may not be successors of 2059 /// EHPadBB, here we also calculate the edge probability to those destinations. 2060 /// The passed-in Prob is the edge probability to EHPadBB. 2061 static void findUnwindDestinations( 2062 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2063 BranchProbability Prob, 2064 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2065 &UnwindDests) { 2066 EHPersonality Personality = 2067 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2068 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2069 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2070 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2071 bool IsSEH = isAsynchronousEHPersonality(Personality); 2072 2073 if (IsWasmCXX) { 2074 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2075 assert(UnwindDests.size() <= 1 && 2076 "There should be at most one unwind destination for wasm"); 2077 return; 2078 } 2079 2080 while (EHPadBB) { 2081 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2082 BasicBlock *NewEHPadBB = nullptr; 2083 if (isa<LandingPadInst>(Pad)) { 2084 // Stop on landingpads. They are not funclets. 2085 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2086 break; 2087 } else if (isa<CleanupPadInst>(Pad)) { 2088 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2089 // personalities. 2090 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2091 UnwindDests.back().first->setIsEHScopeEntry(); 2092 UnwindDests.back().first->setIsEHFuncletEntry(); 2093 break; 2094 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2095 // Add the catchpad handlers to the possible destinations. 2096 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2097 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2098 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2099 if (IsMSVCCXX || IsCoreCLR) 2100 UnwindDests.back().first->setIsEHFuncletEntry(); 2101 if (!IsSEH) 2102 UnwindDests.back().first->setIsEHScopeEntry(); 2103 } 2104 NewEHPadBB = CatchSwitch->getUnwindDest(); 2105 } else { 2106 continue; 2107 } 2108 2109 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2110 if (BPI && NewEHPadBB) 2111 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2112 EHPadBB = NewEHPadBB; 2113 } 2114 } 2115 2116 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2117 // Update successor info. 2118 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2119 auto UnwindDest = I.getUnwindDest(); 2120 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2121 BranchProbability UnwindDestProb = 2122 (BPI && UnwindDest) 2123 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2124 : BranchProbability::getZero(); 2125 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2126 for (auto &UnwindDest : UnwindDests) { 2127 UnwindDest.first->setIsEHPad(); 2128 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2129 } 2130 FuncInfo.MBB->normalizeSuccProbs(); 2131 2132 // Create the terminator node. 2133 SDValue Ret = 2134 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2135 DAG.setRoot(Ret); 2136 } 2137 2138 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2139 report_fatal_error("visitCatchSwitch not yet implemented!"); 2140 } 2141 2142 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2144 auto &DL = DAG.getDataLayout(); 2145 SDValue Chain = getControlRoot(); 2146 SmallVector<ISD::OutputArg, 8> Outs; 2147 SmallVector<SDValue, 8> OutVals; 2148 2149 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2150 // lower 2151 // 2152 // %val = call <ty> @llvm.experimental.deoptimize() 2153 // ret <ty> %val 2154 // 2155 // differently. 2156 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2157 LowerDeoptimizingReturn(); 2158 return; 2159 } 2160 2161 if (!FuncInfo.CanLowerReturn) { 2162 unsigned DemoteReg = FuncInfo.DemoteRegister; 2163 const Function *F = I.getParent()->getParent(); 2164 2165 // Emit a store of the return value through the virtual register. 2166 // Leave Outs empty so that LowerReturn won't try to load return 2167 // registers the usual way. 2168 SmallVector<EVT, 1> PtrValueVTs; 2169 ComputeValueVTs(TLI, DL, 2170 PointerType::get(F->getContext(), 2171 DAG.getDataLayout().getAllocaAddrSpace()), 2172 PtrValueVTs); 2173 2174 SDValue RetPtr = 2175 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2176 SDValue RetOp = getValue(I.getOperand(0)); 2177 2178 SmallVector<EVT, 4> ValueVTs, MemVTs; 2179 SmallVector<uint64_t, 4> Offsets; 2180 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2181 &Offsets, 0); 2182 unsigned NumValues = ValueVTs.size(); 2183 2184 SmallVector<SDValue, 4> Chains(NumValues); 2185 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2186 for (unsigned i = 0; i != NumValues; ++i) { 2187 // An aggregate return value cannot wrap around the address space, so 2188 // offsets to its parts don't wrap either. 2189 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2190 TypeSize::getFixed(Offsets[i])); 2191 2192 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2193 if (MemVTs[i] != ValueVTs[i]) 2194 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2195 Chains[i] = DAG.getStore( 2196 Chain, getCurSDLoc(), Val, 2197 // FIXME: better loc info would be nice. 2198 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2199 commonAlignment(BaseAlign, Offsets[i])); 2200 } 2201 2202 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2203 MVT::Other, Chains); 2204 } else if (I.getNumOperands() != 0) { 2205 SmallVector<EVT, 4> ValueVTs; 2206 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2207 unsigned NumValues = ValueVTs.size(); 2208 if (NumValues) { 2209 SDValue RetOp = getValue(I.getOperand(0)); 2210 2211 const Function *F = I.getParent()->getParent(); 2212 2213 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2214 I.getOperand(0)->getType(), F->getCallingConv(), 2215 /*IsVarArg*/ false, DL); 2216 2217 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2218 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2219 ExtendKind = ISD::SIGN_EXTEND; 2220 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2221 ExtendKind = ISD::ZERO_EXTEND; 2222 2223 LLVMContext &Context = F->getContext(); 2224 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2225 2226 for (unsigned j = 0; j != NumValues; ++j) { 2227 EVT VT = ValueVTs[j]; 2228 2229 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2230 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2231 2232 CallingConv::ID CC = F->getCallingConv(); 2233 2234 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2235 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2236 SmallVector<SDValue, 4> Parts(NumParts); 2237 getCopyToParts(DAG, getCurSDLoc(), 2238 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2239 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2240 2241 // 'inreg' on function refers to return value 2242 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2243 if (RetInReg) 2244 Flags.setInReg(); 2245 2246 if (I.getOperand(0)->getType()->isPointerTy()) { 2247 Flags.setPointer(); 2248 Flags.setPointerAddrSpace( 2249 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2250 } 2251 2252 if (NeedsRegBlock) { 2253 Flags.setInConsecutiveRegs(); 2254 if (j == NumValues - 1) 2255 Flags.setInConsecutiveRegsLast(); 2256 } 2257 2258 // Propagate extension type if any 2259 if (ExtendKind == ISD::SIGN_EXTEND) 2260 Flags.setSExt(); 2261 else if (ExtendKind == ISD::ZERO_EXTEND) 2262 Flags.setZExt(); 2263 2264 for (unsigned i = 0; i < NumParts; ++i) { 2265 Outs.push_back(ISD::OutputArg(Flags, 2266 Parts[i].getValueType().getSimpleVT(), 2267 VT, /*isfixed=*/true, 0, 0)); 2268 OutVals.push_back(Parts[i]); 2269 } 2270 } 2271 } 2272 } 2273 2274 // Push in swifterror virtual register as the last element of Outs. This makes 2275 // sure swifterror virtual register will be returned in the swifterror 2276 // physical register. 2277 const Function *F = I.getParent()->getParent(); 2278 if (TLI.supportSwiftError() && 2279 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2280 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2281 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2282 Flags.setSwiftError(); 2283 Outs.push_back(ISD::OutputArg( 2284 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2285 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2286 // Create SDNode for the swifterror virtual register. 2287 OutVals.push_back( 2288 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2289 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2290 EVT(TLI.getPointerTy(DL)))); 2291 } 2292 2293 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2294 CallingConv::ID CallConv = 2295 DAG.getMachineFunction().getFunction().getCallingConv(); 2296 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2297 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2298 2299 // Verify that the target's LowerReturn behaved as expected. 2300 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2301 "LowerReturn didn't return a valid chain!"); 2302 2303 // Update the DAG with the new chain value resulting from return lowering. 2304 DAG.setRoot(Chain); 2305 } 2306 2307 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2308 /// created for it, emit nodes to copy the value into the virtual 2309 /// registers. 2310 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2311 // Skip empty types 2312 if (V->getType()->isEmptyTy()) 2313 return; 2314 2315 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2316 if (VMI != FuncInfo.ValueMap.end()) { 2317 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2318 "Unused value assigned virtual registers!"); 2319 CopyValueToVirtualRegister(V, VMI->second); 2320 } 2321 } 2322 2323 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2324 /// the current basic block, add it to ValueMap now so that we'll get a 2325 /// CopyTo/FromReg. 2326 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2327 // No need to export constants. 2328 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2329 2330 // Already exported? 2331 if (FuncInfo.isExportedInst(V)) return; 2332 2333 Register Reg = FuncInfo.InitializeRegForValue(V); 2334 CopyValueToVirtualRegister(V, Reg); 2335 } 2336 2337 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2338 const BasicBlock *FromBB) { 2339 // The operands of the setcc have to be in this block. We don't know 2340 // how to export them from some other block. 2341 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2342 // Can export from current BB. 2343 if (VI->getParent() == FromBB) 2344 return true; 2345 2346 // Is already exported, noop. 2347 return FuncInfo.isExportedInst(V); 2348 } 2349 2350 // If this is an argument, we can export it if the BB is the entry block or 2351 // if it is already exported. 2352 if (isa<Argument>(V)) { 2353 if (FromBB->isEntryBlock()) 2354 return true; 2355 2356 // Otherwise, can only export this if it is already exported. 2357 return FuncInfo.isExportedInst(V); 2358 } 2359 2360 // Otherwise, constants can always be exported. 2361 return true; 2362 } 2363 2364 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2365 BranchProbability 2366 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2367 const MachineBasicBlock *Dst) const { 2368 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2369 const BasicBlock *SrcBB = Src->getBasicBlock(); 2370 const BasicBlock *DstBB = Dst->getBasicBlock(); 2371 if (!BPI) { 2372 // If BPI is not available, set the default probability as 1 / N, where N is 2373 // the number of successors. 2374 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2375 return BranchProbability(1, SuccSize); 2376 } 2377 return BPI->getEdgeProbability(SrcBB, DstBB); 2378 } 2379 2380 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2381 MachineBasicBlock *Dst, 2382 BranchProbability Prob) { 2383 if (!FuncInfo.BPI) 2384 Src->addSuccessorWithoutProb(Dst); 2385 else { 2386 if (Prob.isUnknown()) 2387 Prob = getEdgeProbability(Src, Dst); 2388 Src->addSuccessor(Dst, Prob); 2389 } 2390 } 2391 2392 static bool InBlock(const Value *V, const BasicBlock *BB) { 2393 if (const Instruction *I = dyn_cast<Instruction>(V)) 2394 return I->getParent() == BB; 2395 return true; 2396 } 2397 2398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2399 /// This function emits a branch and is used at the leaves of an OR or an 2400 /// AND operator tree. 2401 void 2402 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2403 MachineBasicBlock *TBB, 2404 MachineBasicBlock *FBB, 2405 MachineBasicBlock *CurBB, 2406 MachineBasicBlock *SwitchBB, 2407 BranchProbability TProb, 2408 BranchProbability FProb, 2409 bool InvertCond) { 2410 const BasicBlock *BB = CurBB->getBasicBlock(); 2411 2412 // If the leaf of the tree is a comparison, merge the condition into 2413 // the caseblock. 2414 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2415 // The operands of the cmp have to be in this block. We don't know 2416 // how to export them from some other block. If this is the first block 2417 // of the sequence, no exporting is needed. 2418 if (CurBB == SwitchBB || 2419 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2420 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2421 ISD::CondCode Condition; 2422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2423 ICmpInst::Predicate Pred = 2424 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2425 Condition = getICmpCondCode(Pred); 2426 } else { 2427 const FCmpInst *FC = cast<FCmpInst>(Cond); 2428 FCmpInst::Predicate Pred = 2429 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2430 Condition = getFCmpCondCode(Pred); 2431 if (TM.Options.NoNaNsFPMath) 2432 Condition = getFCmpCodeWithoutNaN(Condition); 2433 } 2434 2435 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2436 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2437 SL->SwitchCases.push_back(CB); 2438 return; 2439 } 2440 } 2441 2442 // Create a CaseBlock record representing this branch. 2443 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2444 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2445 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2446 SL->SwitchCases.push_back(CB); 2447 } 2448 2449 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2450 MachineBasicBlock *TBB, 2451 MachineBasicBlock *FBB, 2452 MachineBasicBlock *CurBB, 2453 MachineBasicBlock *SwitchBB, 2454 Instruction::BinaryOps Opc, 2455 BranchProbability TProb, 2456 BranchProbability FProb, 2457 bool InvertCond) { 2458 // Skip over not part of the tree and remember to invert op and operands at 2459 // next level. 2460 Value *NotCond; 2461 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2462 InBlock(NotCond, CurBB->getBasicBlock())) { 2463 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2464 !InvertCond); 2465 return; 2466 } 2467 2468 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2469 const Value *BOpOp0, *BOpOp1; 2470 // Compute the effective opcode for Cond, taking into account whether it needs 2471 // to be inverted, e.g. 2472 // and (not (or A, B)), C 2473 // gets lowered as 2474 // and (and (not A, not B), C) 2475 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2476 if (BOp) { 2477 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2478 ? Instruction::And 2479 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2480 ? Instruction::Or 2481 : (Instruction::BinaryOps)0); 2482 if (InvertCond) { 2483 if (BOpc == Instruction::And) 2484 BOpc = Instruction::Or; 2485 else if (BOpc == Instruction::Or) 2486 BOpc = Instruction::And; 2487 } 2488 } 2489 2490 // If this node is not part of the or/and tree, emit it as a branch. 2491 // Note that all nodes in the tree should have same opcode. 2492 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2493 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2494 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2495 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2496 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2497 TProb, FProb, InvertCond); 2498 return; 2499 } 2500 2501 // Create TmpBB after CurBB. 2502 MachineFunction::iterator BBI(CurBB); 2503 MachineFunction &MF = DAG.getMachineFunction(); 2504 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2505 CurBB->getParent()->insert(++BBI, TmpBB); 2506 2507 if (Opc == Instruction::Or) { 2508 // Codegen X | Y as: 2509 // BB1: 2510 // jmp_if_X TBB 2511 // jmp TmpBB 2512 // TmpBB: 2513 // jmp_if_Y TBB 2514 // jmp FBB 2515 // 2516 2517 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2518 // The requirement is that 2519 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2520 // = TrueProb for original BB. 2521 // Assuming the original probabilities are A and B, one choice is to set 2522 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2523 // A/(1+B) and 2B/(1+B). This choice assumes that 2524 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2525 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2526 // TmpBB, but the math is more complicated. 2527 2528 auto NewTrueProb = TProb / 2; 2529 auto NewFalseProb = TProb / 2 + FProb; 2530 // Emit the LHS condition. 2531 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2532 NewFalseProb, InvertCond); 2533 2534 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2535 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2536 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2537 // Emit the RHS condition into TmpBB. 2538 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2539 Probs[1], InvertCond); 2540 } else { 2541 assert(Opc == Instruction::And && "Unknown merge op!"); 2542 // Codegen X & Y as: 2543 // BB1: 2544 // jmp_if_X TmpBB 2545 // jmp FBB 2546 // TmpBB: 2547 // jmp_if_Y TBB 2548 // jmp FBB 2549 // 2550 // This requires creation of TmpBB after CurBB. 2551 2552 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2553 // The requirement is that 2554 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2555 // = FalseProb for original BB. 2556 // Assuming the original probabilities are A and B, one choice is to set 2557 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2558 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2559 // TrueProb for BB1 * FalseProb for TmpBB. 2560 2561 auto NewTrueProb = TProb + FProb / 2; 2562 auto NewFalseProb = FProb / 2; 2563 // Emit the LHS condition. 2564 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2565 NewFalseProb, InvertCond); 2566 2567 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2568 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2569 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2570 // Emit the RHS condition into TmpBB. 2571 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2572 Probs[1], InvertCond); 2573 } 2574 } 2575 2576 /// If the set of cases should be emitted as a series of branches, return true. 2577 /// If we should emit this as a bunch of and/or'd together conditions, return 2578 /// false. 2579 bool 2580 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2581 if (Cases.size() != 2) return true; 2582 2583 // If this is two comparisons of the same values or'd or and'd together, they 2584 // will get folded into a single comparison, so don't emit two blocks. 2585 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2586 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2587 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2588 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2589 return false; 2590 } 2591 2592 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2593 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2594 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2595 Cases[0].CC == Cases[1].CC && 2596 isa<Constant>(Cases[0].CmpRHS) && 2597 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2598 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2599 return false; 2600 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2601 return false; 2602 } 2603 2604 return true; 2605 } 2606 2607 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2608 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2609 2610 // Update machine-CFG edges. 2611 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2612 2613 if (I.isUnconditional()) { 2614 // Update machine-CFG edges. 2615 BrMBB->addSuccessor(Succ0MBB); 2616 2617 // If this is not a fall-through branch or optimizations are switched off, 2618 // emit the branch. 2619 if (Succ0MBB != NextBlock(BrMBB) || 2620 TM.getOptLevel() == CodeGenOptLevel::None) { 2621 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2622 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2623 setValue(&I, Br); 2624 DAG.setRoot(Br); 2625 } 2626 2627 return; 2628 } 2629 2630 // If this condition is one of the special cases we handle, do special stuff 2631 // now. 2632 const Value *CondVal = I.getCondition(); 2633 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2634 2635 // If this is a series of conditions that are or'd or and'd together, emit 2636 // this as a sequence of branches instead of setcc's with and/or operations. 2637 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2638 // unpredictable branches, and vector extracts because those jumps are likely 2639 // expensive for any target), this should improve performance. 2640 // For example, instead of something like: 2641 // cmp A, B 2642 // C = seteq 2643 // cmp D, E 2644 // F = setle 2645 // or C, F 2646 // jnz foo 2647 // Emit: 2648 // cmp A, B 2649 // je foo 2650 // cmp D, E 2651 // jle foo 2652 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2653 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2654 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2655 Value *Vec; 2656 const Value *BOp0, *BOp1; 2657 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2658 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2659 Opcode = Instruction::And; 2660 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2661 Opcode = Instruction::Or; 2662 2663 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2664 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2665 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2666 getEdgeProbability(BrMBB, Succ0MBB), 2667 getEdgeProbability(BrMBB, Succ1MBB), 2668 /*InvertCond=*/false); 2669 // If the compares in later blocks need to use values not currently 2670 // exported from this block, export them now. This block should always 2671 // be the first entry. 2672 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2673 2674 // Allow some cases to be rejected. 2675 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2676 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2677 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2678 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2679 } 2680 2681 // Emit the branch for this block. 2682 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2683 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2684 return; 2685 } 2686 2687 // Okay, we decided not to do this, remove any inserted MBB's and clear 2688 // SwitchCases. 2689 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2690 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2691 2692 SL->SwitchCases.clear(); 2693 } 2694 } 2695 2696 // Create a CaseBlock record representing this branch. 2697 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2698 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2699 2700 // Use visitSwitchCase to actually insert the fast branch sequence for this 2701 // cond branch. 2702 visitSwitchCase(CB, BrMBB); 2703 } 2704 2705 /// visitSwitchCase - Emits the necessary code to represent a single node in 2706 /// the binary search tree resulting from lowering a switch instruction. 2707 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2708 MachineBasicBlock *SwitchBB) { 2709 SDValue Cond; 2710 SDValue CondLHS = getValue(CB.CmpLHS); 2711 SDLoc dl = CB.DL; 2712 2713 if (CB.CC == ISD::SETTRUE) { 2714 // Branch or fall through to TrueBB. 2715 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2716 SwitchBB->normalizeSuccProbs(); 2717 if (CB.TrueBB != NextBlock(SwitchBB)) { 2718 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2719 DAG.getBasicBlock(CB.TrueBB))); 2720 } 2721 return; 2722 } 2723 2724 auto &TLI = DAG.getTargetLoweringInfo(); 2725 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2726 2727 // Build the setcc now. 2728 if (!CB.CmpMHS) { 2729 // Fold "(X == true)" to X and "(X == false)" to !X to 2730 // handle common cases produced by branch lowering. 2731 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2732 CB.CC == ISD::SETEQ) 2733 Cond = CondLHS; 2734 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2735 CB.CC == ISD::SETEQ) { 2736 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2737 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2738 } else { 2739 SDValue CondRHS = getValue(CB.CmpRHS); 2740 2741 // If a pointer's DAG type is larger than its memory type then the DAG 2742 // values are zero-extended. This breaks signed comparisons so truncate 2743 // back to the underlying type before doing the compare. 2744 if (CondLHS.getValueType() != MemVT) { 2745 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2746 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2747 } 2748 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2749 } 2750 } else { 2751 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2752 2753 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2754 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2755 2756 SDValue CmpOp = getValue(CB.CmpMHS); 2757 EVT VT = CmpOp.getValueType(); 2758 2759 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2760 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2761 ISD::SETLE); 2762 } else { 2763 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2764 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2765 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2766 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2767 } 2768 } 2769 2770 // Update successor info 2771 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2772 // TrueBB and FalseBB are always different unless the incoming IR is 2773 // degenerate. This only happens when running llc on weird IR. 2774 if (CB.TrueBB != CB.FalseBB) 2775 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2776 SwitchBB->normalizeSuccProbs(); 2777 2778 // If the lhs block is the next block, invert the condition so that we can 2779 // fall through to the lhs instead of the rhs block. 2780 if (CB.TrueBB == NextBlock(SwitchBB)) { 2781 std::swap(CB.TrueBB, CB.FalseBB); 2782 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2783 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2784 } 2785 2786 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2787 MVT::Other, getControlRoot(), Cond, 2788 DAG.getBasicBlock(CB.TrueBB)); 2789 2790 setValue(CurInst, BrCond); 2791 2792 // Insert the false branch. Do this even if it's a fall through branch, 2793 // this makes it easier to do DAG optimizations which require inverting 2794 // the branch condition. 2795 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2796 DAG.getBasicBlock(CB.FalseBB)); 2797 2798 DAG.setRoot(BrCond); 2799 } 2800 2801 /// visitJumpTable - Emit JumpTable node in the current MBB 2802 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2803 // Emit the code for the jump table 2804 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2805 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2806 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2807 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2808 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2809 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2810 Index.getValue(1), Table, Index); 2811 DAG.setRoot(BrJumpTable); 2812 } 2813 2814 /// visitJumpTableHeader - This function emits necessary code to produce index 2815 /// in the JumpTable from switch case. 2816 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2817 JumpTableHeader &JTH, 2818 MachineBasicBlock *SwitchBB) { 2819 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2820 const SDLoc &dl = *JT.SL; 2821 2822 // Subtract the lowest switch case value from the value being switched on. 2823 SDValue SwitchOp = getValue(JTH.SValue); 2824 EVT VT = SwitchOp.getValueType(); 2825 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2826 DAG.getConstant(JTH.First, dl, VT)); 2827 2828 // The SDNode we just created, which holds the value being switched on minus 2829 // the smallest case value, needs to be copied to a virtual register so it 2830 // can be used as an index into the jump table in a subsequent basic block. 2831 // This value may be smaller or larger than the target's pointer type, and 2832 // therefore require extension or truncating. 2833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2834 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2835 2836 unsigned JumpTableReg = 2837 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2838 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2839 JumpTableReg, SwitchOp); 2840 JT.Reg = JumpTableReg; 2841 2842 if (!JTH.FallthroughUnreachable) { 2843 // Emit the range check for the jump table, and branch to the default block 2844 // for the switch statement if the value being switched on exceeds the 2845 // largest case in the switch. 2846 SDValue CMP = DAG.getSetCC( 2847 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2848 Sub.getValueType()), 2849 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2850 2851 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2852 MVT::Other, CopyTo, CMP, 2853 DAG.getBasicBlock(JT.Default)); 2854 2855 // Avoid emitting unnecessary branches to the next block. 2856 if (JT.MBB != NextBlock(SwitchBB)) 2857 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2858 DAG.getBasicBlock(JT.MBB)); 2859 2860 DAG.setRoot(BrCond); 2861 } else { 2862 // Avoid emitting unnecessary branches to the next block. 2863 if (JT.MBB != NextBlock(SwitchBB)) 2864 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2865 DAG.getBasicBlock(JT.MBB))); 2866 else 2867 DAG.setRoot(CopyTo); 2868 } 2869 } 2870 2871 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2872 /// variable if there exists one. 2873 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2874 SDValue &Chain) { 2875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2876 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2877 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2878 MachineFunction &MF = DAG.getMachineFunction(); 2879 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2880 MachineSDNode *Node = 2881 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2882 if (Global) { 2883 MachinePointerInfo MPInfo(Global); 2884 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2885 MachineMemOperand::MODereferenceable; 2886 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2887 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2888 DAG.setNodeMemRefs(Node, {MemRef}); 2889 } 2890 if (PtrTy != PtrMemTy) 2891 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2892 return SDValue(Node, 0); 2893 } 2894 2895 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2896 /// tail spliced into a stack protector check success bb. 2897 /// 2898 /// For a high level explanation of how this fits into the stack protector 2899 /// generation see the comment on the declaration of class 2900 /// StackProtectorDescriptor. 2901 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2902 MachineBasicBlock *ParentBB) { 2903 2904 // First create the loads to the guard/stack slot for the comparison. 2905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2906 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2907 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2908 2909 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2910 int FI = MFI.getStackProtectorIndex(); 2911 2912 SDValue Guard; 2913 SDLoc dl = getCurSDLoc(); 2914 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2915 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2916 Align Align = 2917 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2918 2919 // Generate code to load the content of the guard slot. 2920 SDValue GuardVal = DAG.getLoad( 2921 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2922 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2923 MachineMemOperand::MOVolatile); 2924 2925 if (TLI.useStackGuardXorFP()) 2926 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2927 2928 // Retrieve guard check function, nullptr if instrumentation is inlined. 2929 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2930 // The target provides a guard check function to validate the guard value. 2931 // Generate a call to that function with the content of the guard slot as 2932 // argument. 2933 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2934 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2935 2936 TargetLowering::ArgListTy Args; 2937 TargetLowering::ArgListEntry Entry; 2938 Entry.Node = GuardVal; 2939 Entry.Ty = FnTy->getParamType(0); 2940 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2941 Entry.IsInReg = true; 2942 Args.push_back(Entry); 2943 2944 TargetLowering::CallLoweringInfo CLI(DAG); 2945 CLI.setDebugLoc(getCurSDLoc()) 2946 .setChain(DAG.getEntryNode()) 2947 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2948 getValue(GuardCheckFn), std::move(Args)); 2949 2950 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2951 DAG.setRoot(Result.second); 2952 return; 2953 } 2954 2955 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2956 // Otherwise, emit a volatile load to retrieve the stack guard value. 2957 SDValue Chain = DAG.getEntryNode(); 2958 if (TLI.useLoadStackGuardNode()) { 2959 Guard = getLoadStackGuard(DAG, dl, Chain); 2960 } else { 2961 const Value *IRGuard = TLI.getSDagStackGuard(M); 2962 SDValue GuardPtr = getValue(IRGuard); 2963 2964 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2965 MachinePointerInfo(IRGuard, 0), Align, 2966 MachineMemOperand::MOVolatile); 2967 } 2968 2969 // Perform the comparison via a getsetcc. 2970 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2971 *DAG.getContext(), 2972 Guard.getValueType()), 2973 Guard, GuardVal, ISD::SETNE); 2974 2975 // If the guard/stackslot do not equal, branch to failure MBB. 2976 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2977 MVT::Other, GuardVal.getOperand(0), 2978 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2979 // Otherwise branch to success MBB. 2980 SDValue Br = DAG.getNode(ISD::BR, dl, 2981 MVT::Other, BrCond, 2982 DAG.getBasicBlock(SPD.getSuccessMBB())); 2983 2984 DAG.setRoot(Br); 2985 } 2986 2987 /// Codegen the failure basic block for a stack protector check. 2988 /// 2989 /// A failure stack protector machine basic block consists simply of a call to 2990 /// __stack_chk_fail(). 2991 /// 2992 /// For a high level explanation of how this fits into the stack protector 2993 /// generation see the comment on the declaration of class 2994 /// StackProtectorDescriptor. 2995 void 2996 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2998 TargetLowering::MakeLibCallOptions CallOptions; 2999 CallOptions.setDiscardResult(true); 3000 SDValue Chain = 3001 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3002 std::nullopt, CallOptions, getCurSDLoc()) 3003 .second; 3004 // On PS4/PS5, the "return address" must still be within the calling 3005 // function, even if it's at the very end, so emit an explicit TRAP here. 3006 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3007 if (TM.getTargetTriple().isPS()) 3008 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3009 // WebAssembly needs an unreachable instruction after a non-returning call, 3010 // because the function return type can be different from __stack_chk_fail's 3011 // return type (void). 3012 if (TM.getTargetTriple().isWasm()) 3013 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3014 3015 DAG.setRoot(Chain); 3016 } 3017 3018 /// visitBitTestHeader - This function emits necessary code to produce value 3019 /// suitable for "bit tests" 3020 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3021 MachineBasicBlock *SwitchBB) { 3022 SDLoc dl = getCurSDLoc(); 3023 3024 // Subtract the minimum value. 3025 SDValue SwitchOp = getValue(B.SValue); 3026 EVT VT = SwitchOp.getValueType(); 3027 SDValue RangeSub = 3028 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3029 3030 // Determine the type of the test operands. 3031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3032 bool UsePtrType = false; 3033 if (!TLI.isTypeLegal(VT)) { 3034 UsePtrType = true; 3035 } else { 3036 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3037 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3038 // Switch table case range are encoded into series of masks. 3039 // Just use pointer type, it's guaranteed to fit. 3040 UsePtrType = true; 3041 break; 3042 } 3043 } 3044 SDValue Sub = RangeSub; 3045 if (UsePtrType) { 3046 VT = TLI.getPointerTy(DAG.getDataLayout()); 3047 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3048 } 3049 3050 B.RegVT = VT.getSimpleVT(); 3051 B.Reg = FuncInfo.CreateReg(B.RegVT); 3052 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3053 3054 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3055 3056 if (!B.FallthroughUnreachable) 3057 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3058 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3059 SwitchBB->normalizeSuccProbs(); 3060 3061 SDValue Root = CopyTo; 3062 if (!B.FallthroughUnreachable) { 3063 // Conditional branch to the default block. 3064 SDValue RangeCmp = DAG.getSetCC(dl, 3065 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3066 RangeSub.getValueType()), 3067 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3068 ISD::SETUGT); 3069 3070 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3071 DAG.getBasicBlock(B.Default)); 3072 } 3073 3074 // Avoid emitting unnecessary branches to the next block. 3075 if (MBB != NextBlock(SwitchBB)) 3076 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3077 3078 DAG.setRoot(Root); 3079 } 3080 3081 /// visitBitTestCase - this function produces one "bit test" 3082 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3083 MachineBasicBlock* NextMBB, 3084 BranchProbability BranchProbToNext, 3085 unsigned Reg, 3086 BitTestCase &B, 3087 MachineBasicBlock *SwitchBB) { 3088 SDLoc dl = getCurSDLoc(); 3089 MVT VT = BB.RegVT; 3090 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3091 SDValue Cmp; 3092 unsigned PopCount = llvm::popcount(B.Mask); 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 if (PopCount == 1) { 3095 // Testing for a single bit; just compare the shift count with what it 3096 // would need to be to shift a 1 bit in that position. 3097 Cmp = DAG.getSetCC( 3098 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3099 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3100 ISD::SETEQ); 3101 } else if (PopCount == BB.Range) { 3102 // There is only one zero bit in the range, test for it directly. 3103 Cmp = DAG.getSetCC( 3104 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3105 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3106 } else { 3107 // Make desired shift 3108 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3109 DAG.getConstant(1, dl, VT), ShiftOp); 3110 3111 // Emit bit tests and jumps 3112 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3113 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3114 Cmp = DAG.getSetCC( 3115 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3116 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3117 } 3118 3119 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3120 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3121 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3122 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3123 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3124 // one as they are relative probabilities (and thus work more like weights), 3125 // and hence we need to normalize them to let the sum of them become one. 3126 SwitchBB->normalizeSuccProbs(); 3127 3128 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3129 MVT::Other, getControlRoot(), 3130 Cmp, DAG.getBasicBlock(B.TargetBB)); 3131 3132 // Avoid emitting unnecessary branches to the next block. 3133 if (NextMBB != NextBlock(SwitchBB)) 3134 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3135 DAG.getBasicBlock(NextMBB)); 3136 3137 DAG.setRoot(BrAnd); 3138 } 3139 3140 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3141 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3142 3143 // Retrieve successors. Look through artificial IR level blocks like 3144 // catchswitch for successors. 3145 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3146 const BasicBlock *EHPadBB = I.getSuccessor(1); 3147 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3148 3149 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3150 // have to do anything here to lower funclet bundles. 3151 assert(!I.hasOperandBundlesOtherThan( 3152 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3153 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3154 LLVMContext::OB_cfguardtarget, 3155 LLVMContext::OB_clang_arc_attachedcall}) && 3156 "Cannot lower invokes with arbitrary operand bundles yet!"); 3157 3158 const Value *Callee(I.getCalledOperand()); 3159 const Function *Fn = dyn_cast<Function>(Callee); 3160 if (isa<InlineAsm>(Callee)) 3161 visitInlineAsm(I, EHPadBB); 3162 else if (Fn && Fn->isIntrinsic()) { 3163 switch (Fn->getIntrinsicID()) { 3164 default: 3165 llvm_unreachable("Cannot invoke this intrinsic"); 3166 case Intrinsic::donothing: 3167 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3168 case Intrinsic::seh_try_begin: 3169 case Intrinsic::seh_scope_begin: 3170 case Intrinsic::seh_try_end: 3171 case Intrinsic::seh_scope_end: 3172 if (EHPadMBB) 3173 // a block referenced by EH table 3174 // so dtor-funclet not removed by opts 3175 EHPadMBB->setMachineBlockAddressTaken(); 3176 break; 3177 case Intrinsic::experimental_patchpoint_void: 3178 case Intrinsic::experimental_patchpoint_i64: 3179 visitPatchpoint(I, EHPadBB); 3180 break; 3181 case Intrinsic::experimental_gc_statepoint: 3182 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3183 break; 3184 case Intrinsic::wasm_rethrow: { 3185 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3186 // special because it can be invoked, so we manually lower it to a DAG 3187 // node here. 3188 SmallVector<SDValue, 8> Ops; 3189 Ops.push_back(getRoot()); // inchain 3190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3191 Ops.push_back( 3192 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3193 TLI.getPointerTy(DAG.getDataLayout()))); 3194 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3195 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3196 break; 3197 } 3198 } 3199 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3200 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3201 // Eventually we will support lowering the @llvm.experimental.deoptimize 3202 // intrinsic, and right now there are no plans to support other intrinsics 3203 // with deopt state. 3204 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3205 } else { 3206 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3207 } 3208 3209 // If the value of the invoke is used outside of its defining block, make it 3210 // available as a virtual register. 3211 // We already took care of the exported value for the statepoint instruction 3212 // during call to the LowerStatepoint. 3213 if (!isa<GCStatepointInst>(I)) { 3214 CopyToExportRegsIfNeeded(&I); 3215 } 3216 3217 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3218 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3219 BranchProbability EHPadBBProb = 3220 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3221 : BranchProbability::getZero(); 3222 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3223 3224 // Update successor info. 3225 addSuccessorWithProb(InvokeMBB, Return); 3226 for (auto &UnwindDest : UnwindDests) { 3227 UnwindDest.first->setIsEHPad(); 3228 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3229 } 3230 InvokeMBB->normalizeSuccProbs(); 3231 3232 // Drop into normal successor. 3233 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3234 DAG.getBasicBlock(Return))); 3235 } 3236 3237 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3238 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3239 3240 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3241 // have to do anything here to lower funclet bundles. 3242 assert(!I.hasOperandBundlesOtherThan( 3243 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3244 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3245 3246 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3247 visitInlineAsm(I); 3248 CopyToExportRegsIfNeeded(&I); 3249 3250 // Retrieve successors. 3251 SmallPtrSet<BasicBlock *, 8> Dests; 3252 Dests.insert(I.getDefaultDest()); 3253 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3254 3255 // Update successor info. 3256 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3257 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3258 BasicBlock *Dest = I.getIndirectDest(i); 3259 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3260 Target->setIsInlineAsmBrIndirectTarget(); 3261 Target->setMachineBlockAddressTaken(); 3262 Target->setLabelMustBeEmitted(); 3263 // Don't add duplicate machine successors. 3264 if (Dests.insert(Dest).second) 3265 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3266 } 3267 CallBrMBB->normalizeSuccProbs(); 3268 3269 // Drop into default successor. 3270 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3271 MVT::Other, getControlRoot(), 3272 DAG.getBasicBlock(Return))); 3273 } 3274 3275 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3276 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3277 } 3278 3279 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3280 assert(FuncInfo.MBB->isEHPad() && 3281 "Call to landingpad not in landing pad!"); 3282 3283 // If there aren't registers to copy the values into (e.g., during SjLj 3284 // exceptions), then don't bother to create these DAG nodes. 3285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3286 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3287 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3288 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3289 return; 3290 3291 // If landingpad's return type is token type, we don't create DAG nodes 3292 // for its exception pointer and selector value. The extraction of exception 3293 // pointer or selector value from token type landingpads is not currently 3294 // supported. 3295 if (LP.getType()->isTokenTy()) 3296 return; 3297 3298 SmallVector<EVT, 2> ValueVTs; 3299 SDLoc dl = getCurSDLoc(); 3300 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3301 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3302 3303 // Get the two live-in registers as SDValues. The physregs have already been 3304 // copied into virtual registers. 3305 SDValue Ops[2]; 3306 if (FuncInfo.ExceptionPointerVirtReg) { 3307 Ops[0] = DAG.getZExtOrTrunc( 3308 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3309 FuncInfo.ExceptionPointerVirtReg, 3310 TLI.getPointerTy(DAG.getDataLayout())), 3311 dl, ValueVTs[0]); 3312 } else { 3313 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3314 } 3315 Ops[1] = DAG.getZExtOrTrunc( 3316 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3317 FuncInfo.ExceptionSelectorVirtReg, 3318 TLI.getPointerTy(DAG.getDataLayout())), 3319 dl, ValueVTs[1]); 3320 3321 // Merge into one. 3322 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3323 DAG.getVTList(ValueVTs), Ops); 3324 setValue(&LP, Res); 3325 } 3326 3327 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3328 MachineBasicBlock *Last) { 3329 // Update JTCases. 3330 for (JumpTableBlock &JTB : SL->JTCases) 3331 if (JTB.first.HeaderBB == First) 3332 JTB.first.HeaderBB = Last; 3333 3334 // Update BitTestCases. 3335 for (BitTestBlock &BTB : SL->BitTestCases) 3336 if (BTB.Parent == First) 3337 BTB.Parent = Last; 3338 } 3339 3340 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3341 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3342 3343 // Update machine-CFG edges with unique successors. 3344 SmallSet<BasicBlock*, 32> Done; 3345 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3346 BasicBlock *BB = I.getSuccessor(i); 3347 bool Inserted = Done.insert(BB).second; 3348 if (!Inserted) 3349 continue; 3350 3351 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3352 addSuccessorWithProb(IndirectBrMBB, Succ); 3353 } 3354 IndirectBrMBB->normalizeSuccProbs(); 3355 3356 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3357 MVT::Other, getControlRoot(), 3358 getValue(I.getAddress()))); 3359 } 3360 3361 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3362 if (!DAG.getTarget().Options.TrapUnreachable) 3363 return; 3364 3365 // We may be able to ignore unreachable behind a noreturn call. 3366 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3367 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3368 if (Call->doesNotReturn()) 3369 return; 3370 } 3371 } 3372 3373 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3374 } 3375 3376 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3377 SDNodeFlags Flags; 3378 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3379 Flags.copyFMF(*FPOp); 3380 3381 SDValue Op = getValue(I.getOperand(0)); 3382 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3383 Op, Flags); 3384 setValue(&I, UnNodeValue); 3385 } 3386 3387 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3388 SDNodeFlags Flags; 3389 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3390 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3391 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3392 } 3393 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3394 Flags.setExact(ExactOp->isExact()); 3395 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3396 Flags.setDisjoint(DisjointOp->isDisjoint()); 3397 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3398 Flags.copyFMF(*FPOp); 3399 3400 SDValue Op1 = getValue(I.getOperand(0)); 3401 SDValue Op2 = getValue(I.getOperand(1)); 3402 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3403 Op1, Op2, Flags); 3404 setValue(&I, BinNodeValue); 3405 } 3406 3407 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3408 SDValue Op1 = getValue(I.getOperand(0)); 3409 SDValue Op2 = getValue(I.getOperand(1)); 3410 3411 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3412 Op1.getValueType(), DAG.getDataLayout()); 3413 3414 // Coerce the shift amount to the right type if we can. This exposes the 3415 // truncate or zext to optimization early. 3416 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3417 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3418 "Unexpected shift type"); 3419 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3420 } 3421 3422 bool nuw = false; 3423 bool nsw = false; 3424 bool exact = false; 3425 3426 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3427 3428 if (const OverflowingBinaryOperator *OFBinOp = 3429 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3430 nuw = OFBinOp->hasNoUnsignedWrap(); 3431 nsw = OFBinOp->hasNoSignedWrap(); 3432 } 3433 if (const PossiblyExactOperator *ExactOp = 3434 dyn_cast<const PossiblyExactOperator>(&I)) 3435 exact = ExactOp->isExact(); 3436 } 3437 SDNodeFlags Flags; 3438 Flags.setExact(exact); 3439 Flags.setNoSignedWrap(nsw); 3440 Flags.setNoUnsignedWrap(nuw); 3441 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3442 Flags); 3443 setValue(&I, Res); 3444 } 3445 3446 void SelectionDAGBuilder::visitSDiv(const User &I) { 3447 SDValue Op1 = getValue(I.getOperand(0)); 3448 SDValue Op2 = getValue(I.getOperand(1)); 3449 3450 SDNodeFlags Flags; 3451 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3452 cast<PossiblyExactOperator>(&I)->isExact()); 3453 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3454 Op2, Flags)); 3455 } 3456 3457 void SelectionDAGBuilder::visitICmp(const User &I) { 3458 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3459 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3460 predicate = IC->getPredicate(); 3461 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3462 predicate = ICmpInst::Predicate(IC->getPredicate()); 3463 SDValue Op1 = getValue(I.getOperand(0)); 3464 SDValue Op2 = getValue(I.getOperand(1)); 3465 ISD::CondCode Opcode = getICmpCondCode(predicate); 3466 3467 auto &TLI = DAG.getTargetLoweringInfo(); 3468 EVT MemVT = 3469 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3470 3471 // If a pointer's DAG type is larger than its memory type then the DAG values 3472 // are zero-extended. This breaks signed comparisons so truncate back to the 3473 // underlying type before doing the compare. 3474 if (Op1.getValueType() != MemVT) { 3475 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3476 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3477 } 3478 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3482 } 3483 3484 void SelectionDAGBuilder::visitFCmp(const User &I) { 3485 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3486 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3487 predicate = FC->getPredicate(); 3488 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3489 predicate = FCmpInst::Predicate(FC->getPredicate()); 3490 SDValue Op1 = getValue(I.getOperand(0)); 3491 SDValue Op2 = getValue(I.getOperand(1)); 3492 3493 ISD::CondCode Condition = getFCmpCondCode(predicate); 3494 auto *FPMO = cast<FPMathOperator>(&I); 3495 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3496 Condition = getFCmpCodeWithoutNaN(Condition); 3497 3498 SDNodeFlags Flags; 3499 Flags.copyFMF(*FPMO); 3500 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3501 3502 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3503 I.getType()); 3504 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3505 } 3506 3507 // Check if the condition of the select has one use or two users that are both 3508 // selects with the same condition. 3509 static bool hasOnlySelectUsers(const Value *Cond) { 3510 return llvm::all_of(Cond->users(), [](const Value *V) { 3511 return isa<SelectInst>(V); 3512 }); 3513 } 3514 3515 void SelectionDAGBuilder::visitSelect(const User &I) { 3516 SmallVector<EVT, 4> ValueVTs; 3517 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3518 ValueVTs); 3519 unsigned NumValues = ValueVTs.size(); 3520 if (NumValues == 0) return; 3521 3522 SmallVector<SDValue, 4> Values(NumValues); 3523 SDValue Cond = getValue(I.getOperand(0)); 3524 SDValue LHSVal = getValue(I.getOperand(1)); 3525 SDValue RHSVal = getValue(I.getOperand(2)); 3526 SmallVector<SDValue, 1> BaseOps(1, Cond); 3527 ISD::NodeType OpCode = 3528 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3529 3530 bool IsUnaryAbs = false; 3531 bool Negate = false; 3532 3533 SDNodeFlags Flags; 3534 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3535 Flags.copyFMF(*FPOp); 3536 3537 Flags.setUnpredictable( 3538 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3539 3540 // Min/max matching is only viable if all output VTs are the same. 3541 if (all_equal(ValueVTs)) { 3542 EVT VT = ValueVTs[0]; 3543 LLVMContext &Ctx = *DAG.getContext(); 3544 auto &TLI = DAG.getTargetLoweringInfo(); 3545 3546 // We care about the legality of the operation after it has been type 3547 // legalized. 3548 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3549 VT = TLI.getTypeToTransformTo(Ctx, VT); 3550 3551 // If the vselect is legal, assume we want to leave this as a vector setcc + 3552 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3553 // min/max is legal on the scalar type. 3554 bool UseScalarMinMax = VT.isVector() && 3555 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3556 3557 // ValueTracking's select pattern matching does not account for -0.0, 3558 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3559 // -0.0 is less than +0.0. 3560 Value *LHS, *RHS; 3561 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3562 ISD::NodeType Opc = ISD::DELETED_NODE; 3563 switch (SPR.Flavor) { 3564 case SPF_UMAX: Opc = ISD::UMAX; break; 3565 case SPF_UMIN: Opc = ISD::UMIN; break; 3566 case SPF_SMAX: Opc = ISD::SMAX; break; 3567 case SPF_SMIN: Opc = ISD::SMIN; break; 3568 case SPF_FMINNUM: 3569 switch (SPR.NaNBehavior) { 3570 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3571 case SPNB_RETURNS_NAN: break; 3572 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3573 case SPNB_RETURNS_ANY: 3574 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3575 (UseScalarMinMax && 3576 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3577 Opc = ISD::FMINNUM; 3578 break; 3579 } 3580 break; 3581 case SPF_FMAXNUM: 3582 switch (SPR.NaNBehavior) { 3583 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3584 case SPNB_RETURNS_NAN: break; 3585 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3586 case SPNB_RETURNS_ANY: 3587 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3588 (UseScalarMinMax && 3589 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3590 Opc = ISD::FMAXNUM; 3591 break; 3592 } 3593 break; 3594 case SPF_NABS: 3595 Negate = true; 3596 [[fallthrough]]; 3597 case SPF_ABS: 3598 IsUnaryAbs = true; 3599 Opc = ISD::ABS; 3600 break; 3601 default: break; 3602 } 3603 3604 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3605 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3606 (UseScalarMinMax && 3607 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3608 // If the underlying comparison instruction is used by any other 3609 // instruction, the consumed instructions won't be destroyed, so it is 3610 // not profitable to convert to a min/max. 3611 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3612 OpCode = Opc; 3613 LHSVal = getValue(LHS); 3614 RHSVal = getValue(RHS); 3615 BaseOps.clear(); 3616 } 3617 3618 if (IsUnaryAbs) { 3619 OpCode = Opc; 3620 LHSVal = getValue(LHS); 3621 BaseOps.clear(); 3622 } 3623 } 3624 3625 if (IsUnaryAbs) { 3626 for (unsigned i = 0; i != NumValues; ++i) { 3627 SDLoc dl = getCurSDLoc(); 3628 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3629 Values[i] = 3630 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3631 if (Negate) 3632 Values[i] = DAG.getNegative(Values[i], dl, VT); 3633 } 3634 } else { 3635 for (unsigned i = 0; i != NumValues; ++i) { 3636 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3637 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3638 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3639 Values[i] = DAG.getNode( 3640 OpCode, getCurSDLoc(), 3641 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3642 } 3643 } 3644 3645 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3646 DAG.getVTList(ValueVTs), Values)); 3647 } 3648 3649 void SelectionDAGBuilder::visitTrunc(const User &I) { 3650 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3651 SDValue N = getValue(I.getOperand(0)); 3652 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3653 I.getType()); 3654 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3655 } 3656 3657 void SelectionDAGBuilder::visitZExt(const User &I) { 3658 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3659 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3660 SDValue N = getValue(I.getOperand(0)); 3661 auto &TLI = DAG.getTargetLoweringInfo(); 3662 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3663 3664 SDNodeFlags Flags; 3665 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3666 Flags.setNonNeg(PNI->hasNonNeg()); 3667 3668 // Eagerly use nonneg information to canonicalize towards sign_extend if 3669 // that is the target's preference. 3670 // TODO: Let the target do this later. 3671 if (Flags.hasNonNeg() && 3672 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3673 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3674 return; 3675 } 3676 3677 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3678 } 3679 3680 void SelectionDAGBuilder::visitSExt(const User &I) { 3681 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3682 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3683 SDValue N = getValue(I.getOperand(0)); 3684 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3685 I.getType()); 3686 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3687 } 3688 3689 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3690 // FPTrunc is never a no-op cast, no need to check 3691 SDValue N = getValue(I.getOperand(0)); 3692 SDLoc dl = getCurSDLoc(); 3693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3694 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3695 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3696 DAG.getTargetConstant( 3697 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3698 } 3699 3700 void SelectionDAGBuilder::visitFPExt(const User &I) { 3701 // FPExt is never a no-op cast, no need to check 3702 SDValue N = getValue(I.getOperand(0)); 3703 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3704 I.getType()); 3705 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3706 } 3707 3708 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3709 // FPToUI is never a no-op cast, no need to check 3710 SDValue N = getValue(I.getOperand(0)); 3711 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3712 I.getType()); 3713 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3714 } 3715 3716 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3717 // FPToSI is never a no-op cast, no need to check 3718 SDValue N = getValue(I.getOperand(0)); 3719 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3720 I.getType()); 3721 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3722 } 3723 3724 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3725 // UIToFP is never a no-op cast, no need to check 3726 SDValue N = getValue(I.getOperand(0)); 3727 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3728 I.getType()); 3729 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3730 } 3731 3732 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3733 // SIToFP is never a no-op cast, no need to check 3734 SDValue N = getValue(I.getOperand(0)); 3735 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3736 I.getType()); 3737 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3738 } 3739 3740 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3741 // What to do depends on the size of the integer and the size of the pointer. 3742 // We can either truncate, zero extend, or no-op, accordingly. 3743 SDValue N = getValue(I.getOperand(0)); 3744 auto &TLI = DAG.getTargetLoweringInfo(); 3745 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3746 I.getType()); 3747 EVT PtrMemVT = 3748 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3749 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3750 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3751 setValue(&I, N); 3752 } 3753 3754 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3755 // What to do depends on the size of the integer and the size of the pointer. 3756 // We can either truncate, zero extend, or no-op, accordingly. 3757 SDValue N = getValue(I.getOperand(0)); 3758 auto &TLI = DAG.getTargetLoweringInfo(); 3759 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3760 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3761 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3762 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3763 setValue(&I, N); 3764 } 3765 3766 void SelectionDAGBuilder::visitBitCast(const User &I) { 3767 SDValue N = getValue(I.getOperand(0)); 3768 SDLoc dl = getCurSDLoc(); 3769 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3770 I.getType()); 3771 3772 // BitCast assures us that source and destination are the same size so this is 3773 // either a BITCAST or a no-op. 3774 if (DestVT != N.getValueType()) 3775 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3776 DestVT, N)); // convert types. 3777 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3778 // might fold any kind of constant expression to an integer constant and that 3779 // is not what we are looking for. Only recognize a bitcast of a genuine 3780 // constant integer as an opaque constant. 3781 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3782 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3783 /*isOpaque*/true)); 3784 else 3785 setValue(&I, N); // noop cast. 3786 } 3787 3788 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3790 const Value *SV = I.getOperand(0); 3791 SDValue N = getValue(SV); 3792 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3793 3794 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3795 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3796 3797 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3798 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3799 3800 setValue(&I, N); 3801 } 3802 3803 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3805 SDValue InVec = getValue(I.getOperand(0)); 3806 SDValue InVal = getValue(I.getOperand(1)); 3807 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3808 TLI.getVectorIdxTy(DAG.getDataLayout())); 3809 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3810 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3811 InVec, InVal, InIdx)); 3812 } 3813 3814 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 SDValue InVec = getValue(I.getOperand(0)); 3817 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3818 TLI.getVectorIdxTy(DAG.getDataLayout())); 3819 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3820 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3821 InVec, InIdx)); 3822 } 3823 3824 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3825 SDValue Src1 = getValue(I.getOperand(0)); 3826 SDValue Src2 = getValue(I.getOperand(1)); 3827 ArrayRef<int> Mask; 3828 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3829 Mask = SVI->getShuffleMask(); 3830 else 3831 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3832 SDLoc DL = getCurSDLoc(); 3833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3834 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3835 EVT SrcVT = Src1.getValueType(); 3836 3837 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3838 VT.isScalableVector()) { 3839 // Canonical splat form of first element of first input vector. 3840 SDValue FirstElt = 3841 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3842 DAG.getVectorIdxConstant(0, DL)); 3843 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3844 return; 3845 } 3846 3847 // For now, we only handle splats for scalable vectors. 3848 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3849 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3850 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3851 3852 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3853 unsigned MaskNumElts = Mask.size(); 3854 3855 if (SrcNumElts == MaskNumElts) { 3856 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3857 return; 3858 } 3859 3860 // Normalize the shuffle vector since mask and vector length don't match. 3861 if (SrcNumElts < MaskNumElts) { 3862 // Mask is longer than the source vectors. We can use concatenate vector to 3863 // make the mask and vectors lengths match. 3864 3865 if (MaskNumElts % SrcNumElts == 0) { 3866 // Mask length is a multiple of the source vector length. 3867 // Check if the shuffle is some kind of concatenation of the input 3868 // vectors. 3869 unsigned NumConcat = MaskNumElts / SrcNumElts; 3870 bool IsConcat = true; 3871 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3872 for (unsigned i = 0; i != MaskNumElts; ++i) { 3873 int Idx = Mask[i]; 3874 if (Idx < 0) 3875 continue; 3876 // Ensure the indices in each SrcVT sized piece are sequential and that 3877 // the same source is used for the whole piece. 3878 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3879 (ConcatSrcs[i / SrcNumElts] >= 0 && 3880 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3881 IsConcat = false; 3882 break; 3883 } 3884 // Remember which source this index came from. 3885 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3886 } 3887 3888 // The shuffle is concatenating multiple vectors together. Just emit 3889 // a CONCAT_VECTORS operation. 3890 if (IsConcat) { 3891 SmallVector<SDValue, 8> ConcatOps; 3892 for (auto Src : ConcatSrcs) { 3893 if (Src < 0) 3894 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3895 else if (Src == 0) 3896 ConcatOps.push_back(Src1); 3897 else 3898 ConcatOps.push_back(Src2); 3899 } 3900 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3901 return; 3902 } 3903 } 3904 3905 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3906 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3907 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3908 PaddedMaskNumElts); 3909 3910 // Pad both vectors with undefs to make them the same length as the mask. 3911 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3912 3913 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3914 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3915 MOps1[0] = Src1; 3916 MOps2[0] = Src2; 3917 3918 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3919 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3920 3921 // Readjust mask for new input vector length. 3922 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3923 for (unsigned i = 0; i != MaskNumElts; ++i) { 3924 int Idx = Mask[i]; 3925 if (Idx >= (int)SrcNumElts) 3926 Idx -= SrcNumElts - PaddedMaskNumElts; 3927 MappedOps[i] = Idx; 3928 } 3929 3930 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3931 3932 // If the concatenated vector was padded, extract a subvector with the 3933 // correct number of elements. 3934 if (MaskNumElts != PaddedMaskNumElts) 3935 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3936 DAG.getVectorIdxConstant(0, DL)); 3937 3938 setValue(&I, Result); 3939 return; 3940 } 3941 3942 if (SrcNumElts > MaskNumElts) { 3943 // Analyze the access pattern of the vector to see if we can extract 3944 // two subvectors and do the shuffle. 3945 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3946 bool CanExtract = true; 3947 for (int Idx : Mask) { 3948 unsigned Input = 0; 3949 if (Idx < 0) 3950 continue; 3951 3952 if (Idx >= (int)SrcNumElts) { 3953 Input = 1; 3954 Idx -= SrcNumElts; 3955 } 3956 3957 // If all the indices come from the same MaskNumElts sized portion of 3958 // the sources we can use extract. Also make sure the extract wouldn't 3959 // extract past the end of the source. 3960 int NewStartIdx = alignDown(Idx, MaskNumElts); 3961 if (NewStartIdx + MaskNumElts > SrcNumElts || 3962 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3963 CanExtract = false; 3964 // Make sure we always update StartIdx as we use it to track if all 3965 // elements are undef. 3966 StartIdx[Input] = NewStartIdx; 3967 } 3968 3969 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3970 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3971 return; 3972 } 3973 if (CanExtract) { 3974 // Extract appropriate subvector and generate a vector shuffle 3975 for (unsigned Input = 0; Input < 2; ++Input) { 3976 SDValue &Src = Input == 0 ? Src1 : Src2; 3977 if (StartIdx[Input] < 0) 3978 Src = DAG.getUNDEF(VT); 3979 else { 3980 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3981 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3982 } 3983 } 3984 3985 // Calculate new mask. 3986 SmallVector<int, 8> MappedOps(Mask); 3987 for (int &Idx : MappedOps) { 3988 if (Idx >= (int)SrcNumElts) 3989 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3990 else if (Idx >= 0) 3991 Idx -= StartIdx[0]; 3992 } 3993 3994 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3995 return; 3996 } 3997 } 3998 3999 // We can't use either concat vectors or extract subvectors so fall back to 4000 // replacing the shuffle with extract and build vector. 4001 // to insert and build vector. 4002 EVT EltVT = VT.getVectorElementType(); 4003 SmallVector<SDValue,8> Ops; 4004 for (int Idx : Mask) { 4005 SDValue Res; 4006 4007 if (Idx < 0) { 4008 Res = DAG.getUNDEF(EltVT); 4009 } else { 4010 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4011 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4012 4013 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4014 DAG.getVectorIdxConstant(Idx, DL)); 4015 } 4016 4017 Ops.push_back(Res); 4018 } 4019 4020 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4021 } 4022 4023 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4024 ArrayRef<unsigned> Indices = I.getIndices(); 4025 const Value *Op0 = I.getOperand(0); 4026 const Value *Op1 = I.getOperand(1); 4027 Type *AggTy = I.getType(); 4028 Type *ValTy = Op1->getType(); 4029 bool IntoUndef = isa<UndefValue>(Op0); 4030 bool FromUndef = isa<UndefValue>(Op1); 4031 4032 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4033 4034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4035 SmallVector<EVT, 4> AggValueVTs; 4036 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4037 SmallVector<EVT, 4> ValValueVTs; 4038 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4039 4040 unsigned NumAggValues = AggValueVTs.size(); 4041 unsigned NumValValues = ValValueVTs.size(); 4042 SmallVector<SDValue, 4> Values(NumAggValues); 4043 4044 // Ignore an insertvalue that produces an empty object 4045 if (!NumAggValues) { 4046 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4047 return; 4048 } 4049 4050 SDValue Agg = getValue(Op0); 4051 unsigned i = 0; 4052 // Copy the beginning value(s) from the original aggregate. 4053 for (; i != LinearIndex; ++i) 4054 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4055 SDValue(Agg.getNode(), Agg.getResNo() + i); 4056 // Copy values from the inserted value(s). 4057 if (NumValValues) { 4058 SDValue Val = getValue(Op1); 4059 for (; i != LinearIndex + NumValValues; ++i) 4060 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4061 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4062 } 4063 // Copy remaining value(s) from the original aggregate. 4064 for (; i != NumAggValues; ++i) 4065 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4066 SDValue(Agg.getNode(), Agg.getResNo() + i); 4067 4068 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4069 DAG.getVTList(AggValueVTs), Values)); 4070 } 4071 4072 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4073 ArrayRef<unsigned> Indices = I.getIndices(); 4074 const Value *Op0 = I.getOperand(0); 4075 Type *AggTy = Op0->getType(); 4076 Type *ValTy = I.getType(); 4077 bool OutOfUndef = isa<UndefValue>(Op0); 4078 4079 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4080 4081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4082 SmallVector<EVT, 4> ValValueVTs; 4083 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4084 4085 unsigned NumValValues = ValValueVTs.size(); 4086 4087 // Ignore a extractvalue that produces an empty object 4088 if (!NumValValues) { 4089 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4090 return; 4091 } 4092 4093 SmallVector<SDValue, 4> Values(NumValValues); 4094 4095 SDValue Agg = getValue(Op0); 4096 // Copy out the selected value(s). 4097 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4098 Values[i - LinearIndex] = 4099 OutOfUndef ? 4100 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4101 SDValue(Agg.getNode(), Agg.getResNo() + i); 4102 4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4104 DAG.getVTList(ValValueVTs), Values)); 4105 } 4106 4107 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4108 Value *Op0 = I.getOperand(0); 4109 // Note that the pointer operand may be a vector of pointers. Take the scalar 4110 // element which holds a pointer. 4111 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4112 SDValue N = getValue(Op0); 4113 SDLoc dl = getCurSDLoc(); 4114 auto &TLI = DAG.getTargetLoweringInfo(); 4115 4116 // Normalize Vector GEP - all scalar operands should be converted to the 4117 // splat vector. 4118 bool IsVectorGEP = I.getType()->isVectorTy(); 4119 ElementCount VectorElementCount = 4120 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4121 : ElementCount::getFixed(0); 4122 4123 if (IsVectorGEP && !N.getValueType().isVector()) { 4124 LLVMContext &Context = *DAG.getContext(); 4125 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4126 N = DAG.getSplat(VT, dl, N); 4127 } 4128 4129 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4130 GTI != E; ++GTI) { 4131 const Value *Idx = GTI.getOperand(); 4132 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4133 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4134 if (Field) { 4135 // N = N + Offset 4136 uint64_t Offset = 4137 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4138 4139 // In an inbounds GEP with an offset that is nonnegative even when 4140 // interpreted as signed, assume there is no unsigned overflow. 4141 SDNodeFlags Flags; 4142 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4143 Flags.setNoUnsignedWrap(true); 4144 4145 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4146 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4147 } 4148 } else { 4149 // IdxSize is the width of the arithmetic according to IR semantics. 4150 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4151 // (and fix up the result later). 4152 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4153 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4154 TypeSize ElementSize = 4155 GTI.getSequentialElementStride(DAG.getDataLayout()); 4156 // We intentionally mask away the high bits here; ElementSize may not 4157 // fit in IdxTy. 4158 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4159 bool ElementScalable = ElementSize.isScalable(); 4160 4161 // If this is a scalar constant or a splat vector of constants, 4162 // handle it quickly. 4163 const auto *C = dyn_cast<Constant>(Idx); 4164 if (C && isa<VectorType>(C->getType())) 4165 C = C->getSplatValue(); 4166 4167 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4168 if (CI && CI->isZero()) 4169 continue; 4170 if (CI && !ElementScalable) { 4171 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4172 LLVMContext &Context = *DAG.getContext(); 4173 SDValue OffsVal; 4174 if (IsVectorGEP) 4175 OffsVal = DAG.getConstant( 4176 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4177 else 4178 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4179 4180 // In an inbounds GEP with an offset that is nonnegative even when 4181 // interpreted as signed, assume there is no unsigned overflow. 4182 SDNodeFlags Flags; 4183 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4184 Flags.setNoUnsignedWrap(true); 4185 4186 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4187 4188 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4189 continue; 4190 } 4191 4192 // N = N + Idx * ElementMul; 4193 SDValue IdxN = getValue(Idx); 4194 4195 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4196 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4197 VectorElementCount); 4198 IdxN = DAG.getSplat(VT, dl, IdxN); 4199 } 4200 4201 // If the index is smaller or larger than intptr_t, truncate or extend 4202 // it. 4203 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4204 4205 if (ElementScalable) { 4206 EVT VScaleTy = N.getValueType().getScalarType(); 4207 SDValue VScale = DAG.getNode( 4208 ISD::VSCALE, dl, VScaleTy, 4209 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4210 if (IsVectorGEP) 4211 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4212 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4213 } else { 4214 // If this is a multiply by a power of two, turn it into a shl 4215 // immediately. This is a very common case. 4216 if (ElementMul != 1) { 4217 if (ElementMul.isPowerOf2()) { 4218 unsigned Amt = ElementMul.logBase2(); 4219 IdxN = DAG.getNode(ISD::SHL, dl, 4220 N.getValueType(), IdxN, 4221 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4222 } else { 4223 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4224 IdxN.getValueType()); 4225 IdxN = DAG.getNode(ISD::MUL, dl, 4226 N.getValueType(), IdxN, Scale); 4227 } 4228 } 4229 } 4230 4231 N = DAG.getNode(ISD::ADD, dl, 4232 N.getValueType(), N, IdxN); 4233 } 4234 } 4235 4236 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4237 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4238 if (IsVectorGEP) { 4239 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4240 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4241 } 4242 4243 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4244 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4245 4246 setValue(&I, N); 4247 } 4248 4249 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4250 // If this is a fixed sized alloca in the entry block of the function, 4251 // allocate it statically on the stack. 4252 if (FuncInfo.StaticAllocaMap.count(&I)) 4253 return; // getValue will auto-populate this. 4254 4255 SDLoc dl = getCurSDLoc(); 4256 Type *Ty = I.getAllocatedType(); 4257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4258 auto &DL = DAG.getDataLayout(); 4259 TypeSize TySize = DL.getTypeAllocSize(Ty); 4260 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4261 4262 SDValue AllocSize = getValue(I.getArraySize()); 4263 4264 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4265 if (AllocSize.getValueType() != IntPtr) 4266 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4267 4268 if (TySize.isScalable()) 4269 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4270 DAG.getVScale(dl, IntPtr, 4271 APInt(IntPtr.getScalarSizeInBits(), 4272 TySize.getKnownMinValue()))); 4273 else { 4274 SDValue TySizeValue = 4275 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4276 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4277 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4278 } 4279 4280 // Handle alignment. If the requested alignment is less than or equal to 4281 // the stack alignment, ignore it. If the size is greater than or equal to 4282 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4283 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4284 if (*Alignment <= StackAlign) 4285 Alignment = std::nullopt; 4286 4287 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4288 // Round the size of the allocation up to the stack alignment size 4289 // by add SA-1 to the size. This doesn't overflow because we're computing 4290 // an address inside an alloca. 4291 SDNodeFlags Flags; 4292 Flags.setNoUnsignedWrap(true); 4293 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4294 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4295 4296 // Mask out the low bits for alignment purposes. 4297 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4298 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4299 4300 SDValue Ops[] = { 4301 getRoot(), AllocSize, 4302 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4303 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4304 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4305 setValue(&I, DSA); 4306 DAG.setRoot(DSA.getValue(1)); 4307 4308 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4309 } 4310 4311 static const MDNode *getRangeMetadata(const Instruction &I) { 4312 // If !noundef is not present, then !range violation results in a poison 4313 // value rather than immediate undefined behavior. In theory, transferring 4314 // these annotations to SDAG is fine, but in practice there are key SDAG 4315 // transforms that are known not to be poison-safe, such as folding logical 4316 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4317 // also present. 4318 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4319 return nullptr; 4320 return I.getMetadata(LLVMContext::MD_range); 4321 } 4322 4323 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4324 if (I.isAtomic()) 4325 return visitAtomicLoad(I); 4326 4327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4328 const Value *SV = I.getOperand(0); 4329 if (TLI.supportSwiftError()) { 4330 // Swifterror values can come from either a function parameter with 4331 // swifterror attribute or an alloca with swifterror attribute. 4332 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4333 if (Arg->hasSwiftErrorAttr()) 4334 return visitLoadFromSwiftError(I); 4335 } 4336 4337 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4338 if (Alloca->isSwiftError()) 4339 return visitLoadFromSwiftError(I); 4340 } 4341 } 4342 4343 SDValue Ptr = getValue(SV); 4344 4345 Type *Ty = I.getType(); 4346 SmallVector<EVT, 4> ValueVTs, MemVTs; 4347 SmallVector<TypeSize, 4> Offsets; 4348 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4349 unsigned NumValues = ValueVTs.size(); 4350 if (NumValues == 0) 4351 return; 4352 4353 Align Alignment = I.getAlign(); 4354 AAMDNodes AAInfo = I.getAAMetadata(); 4355 const MDNode *Ranges = getRangeMetadata(I); 4356 bool isVolatile = I.isVolatile(); 4357 MachineMemOperand::Flags MMOFlags = 4358 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4359 4360 SDValue Root; 4361 bool ConstantMemory = false; 4362 if (isVolatile) 4363 // Serialize volatile loads with other side effects. 4364 Root = getRoot(); 4365 else if (NumValues > MaxParallelChains) 4366 Root = getMemoryRoot(); 4367 else if (AA && 4368 AA->pointsToConstantMemory(MemoryLocation( 4369 SV, 4370 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4371 AAInfo))) { 4372 // Do not serialize (non-volatile) loads of constant memory with anything. 4373 Root = DAG.getEntryNode(); 4374 ConstantMemory = true; 4375 MMOFlags |= MachineMemOperand::MOInvariant; 4376 } else { 4377 // Do not serialize non-volatile loads against each other. 4378 Root = DAG.getRoot(); 4379 } 4380 4381 SDLoc dl = getCurSDLoc(); 4382 4383 if (isVolatile) 4384 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4385 4386 SmallVector<SDValue, 4> Values(NumValues); 4387 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4388 4389 unsigned ChainI = 0; 4390 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4391 // Serializing loads here may result in excessive register pressure, and 4392 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4393 // could recover a bit by hoisting nodes upward in the chain by recognizing 4394 // they are side-effect free or do not alias. The optimizer should really 4395 // avoid this case by converting large object/array copies to llvm.memcpy 4396 // (MaxParallelChains should always remain as failsafe). 4397 if (ChainI == MaxParallelChains) { 4398 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4399 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4400 ArrayRef(Chains.data(), ChainI)); 4401 Root = Chain; 4402 ChainI = 0; 4403 } 4404 4405 // TODO: MachinePointerInfo only supports a fixed length offset. 4406 MachinePointerInfo PtrInfo = 4407 !Offsets[i].isScalable() || Offsets[i].isZero() 4408 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4409 : MachinePointerInfo(); 4410 4411 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4412 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4413 MMOFlags, AAInfo, Ranges); 4414 Chains[ChainI] = L.getValue(1); 4415 4416 if (MemVTs[i] != ValueVTs[i]) 4417 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4418 4419 Values[i] = L; 4420 } 4421 4422 if (!ConstantMemory) { 4423 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4424 ArrayRef(Chains.data(), ChainI)); 4425 if (isVolatile) 4426 DAG.setRoot(Chain); 4427 else 4428 PendingLoads.push_back(Chain); 4429 } 4430 4431 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4432 DAG.getVTList(ValueVTs), Values)); 4433 } 4434 4435 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4436 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4437 "call visitStoreToSwiftError when backend supports swifterror"); 4438 4439 SmallVector<EVT, 4> ValueVTs; 4440 SmallVector<uint64_t, 4> Offsets; 4441 const Value *SrcV = I.getOperand(0); 4442 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4443 SrcV->getType(), ValueVTs, &Offsets, 0); 4444 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4445 "expect a single EVT for swifterror"); 4446 4447 SDValue Src = getValue(SrcV); 4448 // Create a virtual register, then update the virtual register. 4449 Register VReg = 4450 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4451 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4452 // Chain can be getRoot or getControlRoot. 4453 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4454 SDValue(Src.getNode(), Src.getResNo())); 4455 DAG.setRoot(CopyNode); 4456 } 4457 4458 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4459 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4460 "call visitLoadFromSwiftError when backend supports swifterror"); 4461 4462 assert(!I.isVolatile() && 4463 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4464 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4465 "Support volatile, non temporal, invariant for load_from_swift_error"); 4466 4467 const Value *SV = I.getOperand(0); 4468 Type *Ty = I.getType(); 4469 assert( 4470 (!AA || 4471 !AA->pointsToConstantMemory(MemoryLocation( 4472 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4473 I.getAAMetadata()))) && 4474 "load_from_swift_error should not be constant memory"); 4475 4476 SmallVector<EVT, 4> ValueVTs; 4477 SmallVector<uint64_t, 4> Offsets; 4478 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4479 ValueVTs, &Offsets, 0); 4480 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4481 "expect a single EVT for swifterror"); 4482 4483 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4484 SDValue L = DAG.getCopyFromReg( 4485 getRoot(), getCurSDLoc(), 4486 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4487 4488 setValue(&I, L); 4489 } 4490 4491 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4492 if (I.isAtomic()) 4493 return visitAtomicStore(I); 4494 4495 const Value *SrcV = I.getOperand(0); 4496 const Value *PtrV = I.getOperand(1); 4497 4498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4499 if (TLI.supportSwiftError()) { 4500 // Swifterror values can come from either a function parameter with 4501 // swifterror attribute or an alloca with swifterror attribute. 4502 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4503 if (Arg->hasSwiftErrorAttr()) 4504 return visitStoreToSwiftError(I); 4505 } 4506 4507 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4508 if (Alloca->isSwiftError()) 4509 return visitStoreToSwiftError(I); 4510 } 4511 } 4512 4513 SmallVector<EVT, 4> ValueVTs, MemVTs; 4514 SmallVector<TypeSize, 4> Offsets; 4515 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4516 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4517 unsigned NumValues = ValueVTs.size(); 4518 if (NumValues == 0) 4519 return; 4520 4521 // Get the lowered operands. Note that we do this after 4522 // checking if NumResults is zero, because with zero results 4523 // the operands won't have values in the map. 4524 SDValue Src = getValue(SrcV); 4525 SDValue Ptr = getValue(PtrV); 4526 4527 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4528 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4529 SDLoc dl = getCurSDLoc(); 4530 Align Alignment = I.getAlign(); 4531 AAMDNodes AAInfo = I.getAAMetadata(); 4532 4533 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4534 4535 unsigned ChainI = 0; 4536 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4537 // See visitLoad comments. 4538 if (ChainI == MaxParallelChains) { 4539 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4540 ArrayRef(Chains.data(), ChainI)); 4541 Root = Chain; 4542 ChainI = 0; 4543 } 4544 4545 // TODO: MachinePointerInfo only supports a fixed length offset. 4546 MachinePointerInfo PtrInfo = 4547 !Offsets[i].isScalable() || Offsets[i].isZero() 4548 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4549 : MachinePointerInfo(); 4550 4551 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4552 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4553 if (MemVTs[i] != ValueVTs[i]) 4554 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4555 SDValue St = 4556 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4557 Chains[ChainI] = St; 4558 } 4559 4560 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4561 ArrayRef(Chains.data(), ChainI)); 4562 setValue(&I, StoreNode); 4563 DAG.setRoot(StoreNode); 4564 } 4565 4566 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4567 bool IsCompressing) { 4568 SDLoc sdl = getCurSDLoc(); 4569 4570 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4571 MaybeAlign &Alignment) { 4572 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4573 Src0 = I.getArgOperand(0); 4574 Ptr = I.getArgOperand(1); 4575 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4576 Mask = I.getArgOperand(3); 4577 }; 4578 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4579 MaybeAlign &Alignment) { 4580 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4581 Src0 = I.getArgOperand(0); 4582 Ptr = I.getArgOperand(1); 4583 Mask = I.getArgOperand(2); 4584 Alignment = std::nullopt; 4585 }; 4586 4587 Value *PtrOperand, *MaskOperand, *Src0Operand; 4588 MaybeAlign Alignment; 4589 if (IsCompressing) 4590 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4591 else 4592 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4593 4594 SDValue Ptr = getValue(PtrOperand); 4595 SDValue Src0 = getValue(Src0Operand); 4596 SDValue Mask = getValue(MaskOperand); 4597 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4598 4599 EVT VT = Src0.getValueType(); 4600 if (!Alignment) 4601 Alignment = DAG.getEVTAlign(VT); 4602 4603 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4604 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4605 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4606 SDValue StoreNode = 4607 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4608 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4609 DAG.setRoot(StoreNode); 4610 setValue(&I, StoreNode); 4611 } 4612 4613 // Get a uniform base for the Gather/Scatter intrinsic. 4614 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4615 // We try to represent it as a base pointer + vector of indices. 4616 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4617 // The first operand of the GEP may be a single pointer or a vector of pointers 4618 // Example: 4619 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4620 // or 4621 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4622 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4623 // 4624 // When the first GEP operand is a single pointer - it is the uniform base we 4625 // are looking for. If first operand of the GEP is a splat vector - we 4626 // extract the splat value and use it as a uniform base. 4627 // In all other cases the function returns 'false'. 4628 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4629 ISD::MemIndexType &IndexType, SDValue &Scale, 4630 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4631 uint64_t ElemSize) { 4632 SelectionDAG& DAG = SDB->DAG; 4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4634 const DataLayout &DL = DAG.getDataLayout(); 4635 4636 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4637 4638 // Handle splat constant pointer. 4639 if (auto *C = dyn_cast<Constant>(Ptr)) { 4640 C = C->getSplatValue(); 4641 if (!C) 4642 return false; 4643 4644 Base = SDB->getValue(C); 4645 4646 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4647 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4648 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4649 IndexType = ISD::SIGNED_SCALED; 4650 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4651 return true; 4652 } 4653 4654 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4655 if (!GEP || GEP->getParent() != CurBB) 4656 return false; 4657 4658 if (GEP->getNumOperands() != 2) 4659 return false; 4660 4661 const Value *BasePtr = GEP->getPointerOperand(); 4662 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4663 4664 // Make sure the base is scalar and the index is a vector. 4665 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4666 return false; 4667 4668 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4669 if (ScaleVal.isScalable()) 4670 return false; 4671 4672 // Target may not support the required addressing mode. 4673 if (ScaleVal != 1 && 4674 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4675 return false; 4676 4677 Base = SDB->getValue(BasePtr); 4678 Index = SDB->getValue(IndexVal); 4679 IndexType = ISD::SIGNED_SCALED; 4680 4681 Scale = 4682 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4683 return true; 4684 } 4685 4686 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4687 SDLoc sdl = getCurSDLoc(); 4688 4689 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4690 const Value *Ptr = I.getArgOperand(1); 4691 SDValue Src0 = getValue(I.getArgOperand(0)); 4692 SDValue Mask = getValue(I.getArgOperand(3)); 4693 EVT VT = Src0.getValueType(); 4694 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4695 ->getMaybeAlignValue() 4696 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4698 4699 SDValue Base; 4700 SDValue Index; 4701 ISD::MemIndexType IndexType; 4702 SDValue Scale; 4703 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4704 I.getParent(), VT.getScalarStoreSize()); 4705 4706 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4707 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4708 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4709 // TODO: Make MachineMemOperands aware of scalable 4710 // vectors. 4711 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4712 if (!UniformBase) { 4713 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4714 Index = getValue(Ptr); 4715 IndexType = ISD::SIGNED_SCALED; 4716 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4717 } 4718 4719 EVT IdxVT = Index.getValueType(); 4720 EVT EltTy = IdxVT.getVectorElementType(); 4721 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4722 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4723 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4724 } 4725 4726 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4727 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4728 Ops, MMO, IndexType, false); 4729 DAG.setRoot(Scatter); 4730 setValue(&I, Scatter); 4731 } 4732 4733 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4734 SDLoc sdl = getCurSDLoc(); 4735 4736 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4737 MaybeAlign &Alignment) { 4738 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4739 Ptr = I.getArgOperand(0); 4740 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4741 Mask = I.getArgOperand(2); 4742 Src0 = I.getArgOperand(3); 4743 }; 4744 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4745 MaybeAlign &Alignment) { 4746 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4747 Ptr = I.getArgOperand(0); 4748 Alignment = std::nullopt; 4749 Mask = I.getArgOperand(1); 4750 Src0 = I.getArgOperand(2); 4751 }; 4752 4753 Value *PtrOperand, *MaskOperand, *Src0Operand; 4754 MaybeAlign Alignment; 4755 if (IsExpanding) 4756 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4757 else 4758 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4759 4760 SDValue Ptr = getValue(PtrOperand); 4761 SDValue Src0 = getValue(Src0Operand); 4762 SDValue Mask = getValue(MaskOperand); 4763 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4764 4765 EVT VT = Src0.getValueType(); 4766 if (!Alignment) 4767 Alignment = DAG.getEVTAlign(VT); 4768 4769 AAMDNodes AAInfo = I.getAAMetadata(); 4770 const MDNode *Ranges = getRangeMetadata(I); 4771 4772 // Do not serialize masked loads of constant memory with anything. 4773 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4774 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4775 4776 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4777 4778 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4779 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4780 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4781 4782 SDValue Load = 4783 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4784 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4785 if (AddToChain) 4786 PendingLoads.push_back(Load.getValue(1)); 4787 setValue(&I, Load); 4788 } 4789 4790 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4791 SDLoc sdl = getCurSDLoc(); 4792 4793 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4794 const Value *Ptr = I.getArgOperand(0); 4795 SDValue Src0 = getValue(I.getArgOperand(3)); 4796 SDValue Mask = getValue(I.getArgOperand(2)); 4797 4798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4799 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4800 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4801 ->getMaybeAlignValue() 4802 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4803 4804 const MDNode *Ranges = getRangeMetadata(I); 4805 4806 SDValue Root = DAG.getRoot(); 4807 SDValue Base; 4808 SDValue Index; 4809 ISD::MemIndexType IndexType; 4810 SDValue Scale; 4811 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4812 I.getParent(), VT.getScalarStoreSize()); 4813 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4814 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4815 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4816 // TODO: Make MachineMemOperands aware of scalable 4817 // vectors. 4818 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4819 4820 if (!UniformBase) { 4821 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4822 Index = getValue(Ptr); 4823 IndexType = ISD::SIGNED_SCALED; 4824 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4825 } 4826 4827 EVT IdxVT = Index.getValueType(); 4828 EVT EltTy = IdxVT.getVectorElementType(); 4829 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4830 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4831 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4832 } 4833 4834 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4835 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4836 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4837 4838 PendingLoads.push_back(Gather.getValue(1)); 4839 setValue(&I, Gather); 4840 } 4841 4842 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4843 SDLoc dl = getCurSDLoc(); 4844 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4845 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4846 SyncScope::ID SSID = I.getSyncScopeID(); 4847 4848 SDValue InChain = getRoot(); 4849 4850 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4851 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4852 4853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4854 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4855 4856 MachineFunction &MF = DAG.getMachineFunction(); 4857 MachineMemOperand *MMO = MF.getMachineMemOperand( 4858 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4859 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4860 FailureOrdering); 4861 4862 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4863 dl, MemVT, VTs, InChain, 4864 getValue(I.getPointerOperand()), 4865 getValue(I.getCompareOperand()), 4866 getValue(I.getNewValOperand()), MMO); 4867 4868 SDValue OutChain = L.getValue(2); 4869 4870 setValue(&I, L); 4871 DAG.setRoot(OutChain); 4872 } 4873 4874 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4875 SDLoc dl = getCurSDLoc(); 4876 ISD::NodeType NT; 4877 switch (I.getOperation()) { 4878 default: llvm_unreachable("Unknown atomicrmw operation"); 4879 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4880 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4881 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4882 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4883 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4884 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4885 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4886 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4887 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4888 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4889 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4890 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4891 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4892 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4893 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4894 case AtomicRMWInst::UIncWrap: 4895 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4896 break; 4897 case AtomicRMWInst::UDecWrap: 4898 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4899 break; 4900 } 4901 AtomicOrdering Ordering = I.getOrdering(); 4902 SyncScope::ID SSID = I.getSyncScopeID(); 4903 4904 SDValue InChain = getRoot(); 4905 4906 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4908 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4909 4910 MachineFunction &MF = DAG.getMachineFunction(); 4911 MachineMemOperand *MMO = MF.getMachineMemOperand( 4912 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4913 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4914 4915 SDValue L = 4916 DAG.getAtomic(NT, dl, MemVT, InChain, 4917 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4918 MMO); 4919 4920 SDValue OutChain = L.getValue(1); 4921 4922 setValue(&I, L); 4923 DAG.setRoot(OutChain); 4924 } 4925 4926 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4927 SDLoc dl = getCurSDLoc(); 4928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4929 SDValue Ops[3]; 4930 Ops[0] = getRoot(); 4931 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4932 TLI.getFenceOperandTy(DAG.getDataLayout())); 4933 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4934 TLI.getFenceOperandTy(DAG.getDataLayout())); 4935 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4936 setValue(&I, N); 4937 DAG.setRoot(N); 4938 } 4939 4940 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4941 SDLoc dl = getCurSDLoc(); 4942 AtomicOrdering Order = I.getOrdering(); 4943 SyncScope::ID SSID = I.getSyncScopeID(); 4944 4945 SDValue InChain = getRoot(); 4946 4947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4949 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4950 4951 if (!TLI.supportsUnalignedAtomics() && 4952 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4953 report_fatal_error("Cannot generate unaligned atomic load"); 4954 4955 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4956 4957 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4958 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4959 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4960 4961 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4962 4963 SDValue Ptr = getValue(I.getPointerOperand()); 4964 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4965 Ptr, MMO); 4966 4967 SDValue OutChain = L.getValue(1); 4968 if (MemVT != VT) 4969 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4970 4971 setValue(&I, L); 4972 DAG.setRoot(OutChain); 4973 } 4974 4975 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4976 SDLoc dl = getCurSDLoc(); 4977 4978 AtomicOrdering Ordering = I.getOrdering(); 4979 SyncScope::ID SSID = I.getSyncScopeID(); 4980 4981 SDValue InChain = getRoot(); 4982 4983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4984 EVT MemVT = 4985 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4986 4987 if (!TLI.supportsUnalignedAtomics() && 4988 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4989 report_fatal_error("Cannot generate unaligned atomic store"); 4990 4991 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4992 4993 MachineFunction &MF = DAG.getMachineFunction(); 4994 MachineMemOperand *MMO = MF.getMachineMemOperand( 4995 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4996 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4997 4998 SDValue Val = getValue(I.getValueOperand()); 4999 if (Val.getValueType() != MemVT) 5000 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5001 SDValue Ptr = getValue(I.getPointerOperand()); 5002 5003 SDValue OutChain = 5004 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5005 5006 setValue(&I, OutChain); 5007 DAG.setRoot(OutChain); 5008 } 5009 5010 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5011 /// node. 5012 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5013 unsigned Intrinsic) { 5014 // Ignore the callsite's attributes. A specific call site may be marked with 5015 // readnone, but the lowering code will expect the chain based on the 5016 // definition. 5017 const Function *F = I.getCalledFunction(); 5018 bool HasChain = !F->doesNotAccessMemory(); 5019 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5020 5021 // Build the operand list. 5022 SmallVector<SDValue, 8> Ops; 5023 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5024 if (OnlyLoad) { 5025 // We don't need to serialize loads against other loads. 5026 Ops.push_back(DAG.getRoot()); 5027 } else { 5028 Ops.push_back(getRoot()); 5029 } 5030 } 5031 5032 // Info is set by getTgtMemIntrinsic 5033 TargetLowering::IntrinsicInfo Info; 5034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5035 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5036 DAG.getMachineFunction(), 5037 Intrinsic); 5038 5039 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5040 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5041 Info.opc == ISD::INTRINSIC_W_CHAIN) 5042 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5043 TLI.getPointerTy(DAG.getDataLayout()))); 5044 5045 // Add all operands of the call to the operand list. 5046 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5047 const Value *Arg = I.getArgOperand(i); 5048 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5049 Ops.push_back(getValue(Arg)); 5050 continue; 5051 } 5052 5053 // Use TargetConstant instead of a regular constant for immarg. 5054 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5055 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5056 assert(CI->getBitWidth() <= 64 && 5057 "large intrinsic immediates not handled"); 5058 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5059 } else { 5060 Ops.push_back( 5061 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5062 } 5063 } 5064 5065 SmallVector<EVT, 4> ValueVTs; 5066 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5067 5068 if (HasChain) 5069 ValueVTs.push_back(MVT::Other); 5070 5071 SDVTList VTs = DAG.getVTList(ValueVTs); 5072 5073 // Propagate fast-math-flags from IR to node(s). 5074 SDNodeFlags Flags; 5075 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5076 Flags.copyFMF(*FPMO); 5077 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5078 5079 // Create the node. 5080 SDValue Result; 5081 // In some cases, custom collection of operands from CallInst I may be needed. 5082 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5083 if (IsTgtIntrinsic) { 5084 // This is target intrinsic that touches memory 5085 // 5086 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5087 // didn't yield anything useful. 5088 MachinePointerInfo MPI; 5089 if (Info.ptrVal) 5090 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5091 else if (Info.fallbackAddressSpace) 5092 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5093 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5094 Info.memVT, MPI, Info.align, Info.flags, 5095 Info.size, I.getAAMetadata()); 5096 } else if (!HasChain) { 5097 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5098 } else if (!I.getType()->isVoidTy()) { 5099 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5100 } else { 5101 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5102 } 5103 5104 if (HasChain) { 5105 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5106 if (OnlyLoad) 5107 PendingLoads.push_back(Chain); 5108 else 5109 DAG.setRoot(Chain); 5110 } 5111 5112 if (!I.getType()->isVoidTy()) { 5113 if (!isa<VectorType>(I.getType())) 5114 Result = lowerRangeToAssertZExt(DAG, I, Result); 5115 5116 MaybeAlign Alignment = I.getRetAlign(); 5117 5118 // Insert `assertalign` node if there's an alignment. 5119 if (InsertAssertAlign && Alignment) { 5120 Result = 5121 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5122 } 5123 5124 setValue(&I, Result); 5125 } 5126 } 5127 5128 /// GetSignificand - Get the significand and build it into a floating-point 5129 /// number with exponent of 1: 5130 /// 5131 /// Op = (Op & 0x007fffff) | 0x3f800000; 5132 /// 5133 /// where Op is the hexadecimal representation of floating point value. 5134 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5135 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5136 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5137 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5138 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5139 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5140 } 5141 5142 /// GetExponent - Get the exponent: 5143 /// 5144 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5145 /// 5146 /// where Op is the hexadecimal representation of floating point value. 5147 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5148 const TargetLowering &TLI, const SDLoc &dl) { 5149 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5150 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5151 SDValue t1 = DAG.getNode( 5152 ISD::SRL, dl, MVT::i32, t0, 5153 DAG.getConstant(23, dl, 5154 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5155 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5156 DAG.getConstant(127, dl, MVT::i32)); 5157 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5158 } 5159 5160 /// getF32Constant - Get 32-bit floating point constant. 5161 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5162 const SDLoc &dl) { 5163 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5164 MVT::f32); 5165 } 5166 5167 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5168 SelectionDAG &DAG) { 5169 // TODO: What fast-math-flags should be set on the floating-point nodes? 5170 5171 // IntegerPartOfX = ((int32_t)(t0); 5172 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5173 5174 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5175 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5176 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5177 5178 // IntegerPartOfX <<= 23; 5179 IntegerPartOfX = 5180 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5181 DAG.getConstant(23, dl, 5182 DAG.getTargetLoweringInfo().getShiftAmountTy( 5183 MVT::i32, DAG.getDataLayout()))); 5184 5185 SDValue TwoToFractionalPartOfX; 5186 if (LimitFloatPrecision <= 6) { 5187 // For floating-point precision of 6: 5188 // 5189 // TwoToFractionalPartOfX = 5190 // 0.997535578f + 5191 // (0.735607626f + 0.252464424f * x) * x; 5192 // 5193 // error 0.0144103317, which is 6 bits 5194 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0x3e814304, dl)); 5196 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5197 getF32Constant(DAG, 0x3f3c50c8, dl)); 5198 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5199 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5200 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5201 } else if (LimitFloatPrecision <= 12) { 5202 // For floating-point precision of 12: 5203 // 5204 // TwoToFractionalPartOfX = 5205 // 0.999892986f + 5206 // (0.696457318f + 5207 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5208 // 5209 // error 0.000107046256, which is 13 to 14 bits 5210 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5211 getF32Constant(DAG, 0x3da235e3, dl)); 5212 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5213 getF32Constant(DAG, 0x3e65b8f3, dl)); 5214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5216 getF32Constant(DAG, 0x3f324b07, dl)); 5217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5218 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5219 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5220 } else { // LimitFloatPrecision <= 18 5221 // For floating-point precision of 18: 5222 // 5223 // TwoToFractionalPartOfX = 5224 // 0.999999982f + 5225 // (0.693148872f + 5226 // (0.240227044f + 5227 // (0.554906021e-1f + 5228 // (0.961591928e-2f + 5229 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5230 // error 2.47208000*10^(-7), which is better than 18 bits 5231 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5232 getF32Constant(DAG, 0x3924b03e, dl)); 5233 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5234 getF32Constant(DAG, 0x3ab24b87, dl)); 5235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5236 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5237 getF32Constant(DAG, 0x3c1d8c17, dl)); 5238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5239 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5240 getF32Constant(DAG, 0x3d634a1d, dl)); 5241 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5242 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5243 getF32Constant(DAG, 0x3e75fe14, dl)); 5244 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5245 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5246 getF32Constant(DAG, 0x3f317234, dl)); 5247 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5248 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5249 getF32Constant(DAG, 0x3f800000, dl)); 5250 } 5251 5252 // Add the exponent into the result in integer domain. 5253 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5254 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5255 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5256 } 5257 5258 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5259 /// limited-precision mode. 5260 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5261 const TargetLowering &TLI, SDNodeFlags Flags) { 5262 if (Op.getValueType() == MVT::f32 && 5263 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5264 5265 // Put the exponent in the right bit position for later addition to the 5266 // final result: 5267 // 5268 // t0 = Op * log2(e) 5269 5270 // TODO: What fast-math-flags should be set here? 5271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5272 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5273 return getLimitedPrecisionExp2(t0, dl, DAG); 5274 } 5275 5276 // No special expansion. 5277 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5278 } 5279 5280 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5281 /// limited-precision mode. 5282 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5283 const TargetLowering &TLI, SDNodeFlags Flags) { 5284 // TODO: What fast-math-flags should be set on the floating-point nodes? 5285 5286 if (Op.getValueType() == MVT::f32 && 5287 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5288 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5289 5290 // Scale the exponent by log(2). 5291 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5292 SDValue LogOfExponent = 5293 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5294 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5295 5296 // Get the significand and build it into a floating-point number with 5297 // exponent of 1. 5298 SDValue X = GetSignificand(DAG, Op1, dl); 5299 5300 SDValue LogOfMantissa; 5301 if (LimitFloatPrecision <= 6) { 5302 // For floating-point precision of 6: 5303 // 5304 // LogofMantissa = 5305 // -1.1609546f + 5306 // (1.4034025f - 0.23903021f * x) * x; 5307 // 5308 // error 0.0034276066, which is better than 8 bits 5309 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5310 getF32Constant(DAG, 0xbe74c456, dl)); 5311 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5312 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5314 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5315 getF32Constant(DAG, 0x3f949a29, dl)); 5316 } else if (LimitFloatPrecision <= 12) { 5317 // For floating-point precision of 12: 5318 // 5319 // LogOfMantissa = 5320 // -1.7417939f + 5321 // (2.8212026f + 5322 // (-1.4699568f + 5323 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5324 // 5325 // error 0.000061011436, which is 14 bits 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5327 getF32Constant(DAG, 0xbd67b6d6, dl)); 5328 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5329 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5331 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5332 getF32Constant(DAG, 0x3fbc278b, dl)); 5333 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5334 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5335 getF32Constant(DAG, 0x40348e95, dl)); 5336 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5337 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5338 getF32Constant(DAG, 0x3fdef31a, dl)); 5339 } else { // LimitFloatPrecision <= 18 5340 // For floating-point precision of 18: 5341 // 5342 // LogOfMantissa = 5343 // -2.1072184f + 5344 // (4.2372794f + 5345 // (-3.7029485f + 5346 // (2.2781945f + 5347 // (-0.87823314f + 5348 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5349 // 5350 // error 0.0000023660568, which is better than 18 bits 5351 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5352 getF32Constant(DAG, 0xbc91e5ac, dl)); 5353 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5354 getF32Constant(DAG, 0x3e4350aa, dl)); 5355 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5356 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5357 getF32Constant(DAG, 0x3f60d3e3, dl)); 5358 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5359 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5360 getF32Constant(DAG, 0x4011cdf0, dl)); 5361 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5362 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5363 getF32Constant(DAG, 0x406cfd1c, dl)); 5364 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5365 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5366 getF32Constant(DAG, 0x408797cb, dl)); 5367 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5368 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5369 getF32Constant(DAG, 0x4006dcab, dl)); 5370 } 5371 5372 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5373 } 5374 5375 // No special expansion. 5376 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5377 } 5378 5379 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5380 /// limited-precision mode. 5381 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5382 const TargetLowering &TLI, SDNodeFlags Flags) { 5383 // TODO: What fast-math-flags should be set on the floating-point nodes? 5384 5385 if (Op.getValueType() == MVT::f32 && 5386 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5387 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5388 5389 // Get the exponent. 5390 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5391 5392 // Get the significand and build it into a floating-point number with 5393 // exponent of 1. 5394 SDValue X = GetSignificand(DAG, Op1, dl); 5395 5396 // Different possible minimax approximations of significand in 5397 // floating-point for various degrees of accuracy over [1,2]. 5398 SDValue Log2ofMantissa; 5399 if (LimitFloatPrecision <= 6) { 5400 // For floating-point precision of 6: 5401 // 5402 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5403 // 5404 // error 0.0049451742, which is more than 7 bits 5405 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5406 getF32Constant(DAG, 0xbeb08fe0, dl)); 5407 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5408 getF32Constant(DAG, 0x40019463, dl)); 5409 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5410 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5411 getF32Constant(DAG, 0x3fd6633d, dl)); 5412 } else if (LimitFloatPrecision <= 12) { 5413 // For floating-point precision of 12: 5414 // 5415 // Log2ofMantissa = 5416 // -2.51285454f + 5417 // (4.07009056f + 5418 // (-2.12067489f + 5419 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5420 // 5421 // error 0.0000876136000, which is better than 13 bits 5422 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5423 getF32Constant(DAG, 0xbda7262e, dl)); 5424 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5425 getF32Constant(DAG, 0x3f25280b, dl)); 5426 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5427 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5428 getF32Constant(DAG, 0x4007b923, dl)); 5429 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5430 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5431 getF32Constant(DAG, 0x40823e2f, dl)); 5432 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5433 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5434 getF32Constant(DAG, 0x4020d29c, dl)); 5435 } else { // LimitFloatPrecision <= 18 5436 // For floating-point precision of 18: 5437 // 5438 // Log2ofMantissa = 5439 // -3.0400495f + 5440 // (6.1129976f + 5441 // (-5.3420409f + 5442 // (3.2865683f + 5443 // (-1.2669343f + 5444 // (0.27515199f - 5445 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5446 // 5447 // error 0.0000018516, which is better than 18 bits 5448 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5449 getF32Constant(DAG, 0xbcd2769e, dl)); 5450 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5451 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5453 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5454 getF32Constant(DAG, 0x3fa22ae7, dl)); 5455 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5456 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5457 getF32Constant(DAG, 0x40525723, dl)); 5458 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5459 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5460 getF32Constant(DAG, 0x40aaf200, dl)); 5461 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5462 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5463 getF32Constant(DAG, 0x40c39dad, dl)); 5464 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5465 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5466 getF32Constant(DAG, 0x4042902c, dl)); 5467 } 5468 5469 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5470 } 5471 5472 // No special expansion. 5473 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5474 } 5475 5476 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5477 /// limited-precision mode. 5478 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5479 const TargetLowering &TLI, SDNodeFlags Flags) { 5480 // TODO: What fast-math-flags should be set on the floating-point nodes? 5481 5482 if (Op.getValueType() == MVT::f32 && 5483 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5484 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5485 5486 // Scale the exponent by log10(2) [0.30102999f]. 5487 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5488 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5489 getF32Constant(DAG, 0x3e9a209a, dl)); 5490 5491 // Get the significand and build it into a floating-point number with 5492 // exponent of 1. 5493 SDValue X = GetSignificand(DAG, Op1, dl); 5494 5495 SDValue Log10ofMantissa; 5496 if (LimitFloatPrecision <= 6) { 5497 // For floating-point precision of 6: 5498 // 5499 // Log10ofMantissa = 5500 // -0.50419619f + 5501 // (0.60948995f - 0.10380950f * x) * x; 5502 // 5503 // error 0.0014886165, which is 6 bits 5504 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5505 getF32Constant(DAG, 0xbdd49a13, dl)); 5506 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5507 getF32Constant(DAG, 0x3f1c0789, dl)); 5508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5509 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5510 getF32Constant(DAG, 0x3f011300, dl)); 5511 } else if (LimitFloatPrecision <= 12) { 5512 // For floating-point precision of 12: 5513 // 5514 // Log10ofMantissa = 5515 // -0.64831180f + 5516 // (0.91751397f + 5517 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5518 // 5519 // error 0.00019228036, which is better than 12 bits 5520 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5521 getF32Constant(DAG, 0x3d431f31, dl)); 5522 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5523 getF32Constant(DAG, 0x3ea21fb2, dl)); 5524 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5525 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5526 getF32Constant(DAG, 0x3f6ae232, dl)); 5527 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5528 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5529 getF32Constant(DAG, 0x3f25f7c3, dl)); 5530 } else { // LimitFloatPrecision <= 18 5531 // For floating-point precision of 18: 5532 // 5533 // Log10ofMantissa = 5534 // -0.84299375f + 5535 // (1.5327582f + 5536 // (-1.0688956f + 5537 // (0.49102474f + 5538 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5539 // 5540 // error 0.0000037995730, which is better than 18 bits 5541 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5542 getF32Constant(DAG, 0x3c5d51ce, dl)); 5543 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5544 getF32Constant(DAG, 0x3e00685a, dl)); 5545 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5546 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5547 getF32Constant(DAG, 0x3efb6798, dl)); 5548 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5549 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5550 getF32Constant(DAG, 0x3f88d192, dl)); 5551 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5552 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5553 getF32Constant(DAG, 0x3fc4316c, dl)); 5554 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5555 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5556 getF32Constant(DAG, 0x3f57ce70, dl)); 5557 } 5558 5559 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5560 } 5561 5562 // No special expansion. 5563 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5564 } 5565 5566 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5567 /// limited-precision mode. 5568 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5569 const TargetLowering &TLI, SDNodeFlags Flags) { 5570 if (Op.getValueType() == MVT::f32 && 5571 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5572 return getLimitedPrecisionExp2(Op, dl, DAG); 5573 5574 // No special expansion. 5575 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5576 } 5577 5578 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5579 /// limited-precision mode with x == 10.0f. 5580 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5581 SelectionDAG &DAG, const TargetLowering &TLI, 5582 SDNodeFlags Flags) { 5583 bool IsExp10 = false; 5584 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5585 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5586 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5587 APFloat Ten(10.0f); 5588 IsExp10 = LHSC->isExactlyValue(Ten); 5589 } 5590 } 5591 5592 // TODO: What fast-math-flags should be set on the FMUL node? 5593 if (IsExp10) { 5594 // Put the exponent in the right bit position for later addition to the 5595 // final result: 5596 // 5597 // #define LOG2OF10 3.3219281f 5598 // t0 = Op * LOG2OF10; 5599 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5600 getF32Constant(DAG, 0x40549a78, dl)); 5601 return getLimitedPrecisionExp2(t0, dl, DAG); 5602 } 5603 5604 // No special expansion. 5605 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5606 } 5607 5608 /// ExpandPowI - Expand a llvm.powi intrinsic. 5609 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5610 SelectionDAG &DAG) { 5611 // If RHS is a constant, we can expand this out to a multiplication tree if 5612 // it's beneficial on the target, otherwise we end up lowering to a call to 5613 // __powidf2 (for example). 5614 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5615 unsigned Val = RHSC->getSExtValue(); 5616 5617 // powi(x, 0) -> 1.0 5618 if (Val == 0) 5619 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5620 5621 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5622 Val, DAG.shouldOptForSize())) { 5623 // Get the exponent as a positive value. 5624 if ((int)Val < 0) 5625 Val = -Val; 5626 // We use the simple binary decomposition method to generate the multiply 5627 // sequence. There are more optimal ways to do this (for example, 5628 // powi(x,15) generates one more multiply than it should), but this has 5629 // the benefit of being both really simple and much better than a libcall. 5630 SDValue Res; // Logically starts equal to 1.0 5631 SDValue CurSquare = LHS; 5632 // TODO: Intrinsics should have fast-math-flags that propagate to these 5633 // nodes. 5634 while (Val) { 5635 if (Val & 1) { 5636 if (Res.getNode()) 5637 Res = 5638 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5639 else 5640 Res = CurSquare; // 1.0*CurSquare. 5641 } 5642 5643 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5644 CurSquare, CurSquare); 5645 Val >>= 1; 5646 } 5647 5648 // If the original was negative, invert the result, producing 1/(x*x*x). 5649 if (RHSC->getSExtValue() < 0) 5650 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5651 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5652 return Res; 5653 } 5654 } 5655 5656 // Otherwise, expand to a libcall. 5657 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5658 } 5659 5660 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5661 SDValue LHS, SDValue RHS, SDValue Scale, 5662 SelectionDAG &DAG, const TargetLowering &TLI) { 5663 EVT VT = LHS.getValueType(); 5664 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5665 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5666 LLVMContext &Ctx = *DAG.getContext(); 5667 5668 // If the type is legal but the operation isn't, this node might survive all 5669 // the way to operation legalization. If we end up there and we do not have 5670 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5671 // node. 5672 5673 // Coax the legalizer into expanding the node during type legalization instead 5674 // by bumping the size by one bit. This will force it to Promote, enabling the 5675 // early expansion and avoiding the need to expand later. 5676 5677 // We don't have to do this if Scale is 0; that can always be expanded, unless 5678 // it's a saturating signed operation. Those can experience true integer 5679 // division overflow, a case which we must avoid. 5680 5681 // FIXME: We wouldn't have to do this (or any of the early 5682 // expansion/promotion) if it was possible to expand a libcall of an 5683 // illegal type during operation legalization. But it's not, so things 5684 // get a bit hacky. 5685 unsigned ScaleInt = Scale->getAsZExtVal(); 5686 if ((ScaleInt > 0 || (Saturating && Signed)) && 5687 (TLI.isTypeLegal(VT) || 5688 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5689 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5690 Opcode, VT, ScaleInt); 5691 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5692 EVT PromVT; 5693 if (VT.isScalarInteger()) 5694 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5695 else if (VT.isVector()) { 5696 PromVT = VT.getVectorElementType(); 5697 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5698 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5699 } else 5700 llvm_unreachable("Wrong VT for DIVFIX?"); 5701 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5702 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5703 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5704 // For saturating operations, we need to shift up the LHS to get the 5705 // proper saturation width, and then shift down again afterwards. 5706 if (Saturating) 5707 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5708 DAG.getConstant(1, DL, ShiftTy)); 5709 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5710 if (Saturating) 5711 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5712 DAG.getConstant(1, DL, ShiftTy)); 5713 return DAG.getZExtOrTrunc(Res, DL, VT); 5714 } 5715 } 5716 5717 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5718 } 5719 5720 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5721 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5722 static void 5723 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5724 const SDValue &N) { 5725 switch (N.getOpcode()) { 5726 case ISD::CopyFromReg: { 5727 SDValue Op = N.getOperand(1); 5728 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5729 Op.getValueType().getSizeInBits()); 5730 return; 5731 } 5732 case ISD::BITCAST: 5733 case ISD::AssertZext: 5734 case ISD::AssertSext: 5735 case ISD::TRUNCATE: 5736 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5737 return; 5738 case ISD::BUILD_PAIR: 5739 case ISD::BUILD_VECTOR: 5740 case ISD::CONCAT_VECTORS: 5741 for (SDValue Op : N->op_values()) 5742 getUnderlyingArgRegs(Regs, Op); 5743 return; 5744 default: 5745 return; 5746 } 5747 } 5748 5749 /// If the DbgValueInst is a dbg_value of a function argument, create the 5750 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5751 /// instruction selection, they will be inserted to the entry BB. 5752 /// We don't currently support this for variadic dbg_values, as they shouldn't 5753 /// appear for function arguments or in the prologue. 5754 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5755 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5756 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5757 const Argument *Arg = dyn_cast<Argument>(V); 5758 if (!Arg) 5759 return false; 5760 5761 MachineFunction &MF = DAG.getMachineFunction(); 5762 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5763 5764 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5765 // we've been asked to pursue. 5766 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5767 bool Indirect) { 5768 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5769 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5770 // pointing at the VReg, which will be patched up later. 5771 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5772 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5773 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5774 /* isKill */ false, /* isDead */ false, 5775 /* isUndef */ false, /* isEarlyClobber */ false, 5776 /* SubReg */ 0, /* isDebug */ true)}); 5777 5778 auto *NewDIExpr = FragExpr; 5779 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5780 // the DIExpression. 5781 if (Indirect) 5782 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5783 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5784 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5785 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5786 } else { 5787 // Create a completely standard DBG_VALUE. 5788 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5789 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5790 } 5791 }; 5792 5793 if (Kind == FuncArgumentDbgValueKind::Value) { 5794 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5795 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5796 // the entry block. 5797 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5798 if (!IsInEntryBlock) 5799 return false; 5800 5801 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5802 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5803 // variable that also is a param. 5804 // 5805 // Although, if we are at the top of the entry block already, we can still 5806 // emit using ArgDbgValue. This might catch some situations when the 5807 // dbg.value refers to an argument that isn't used in the entry block, so 5808 // any CopyToReg node would be optimized out and the only way to express 5809 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5810 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5811 // we should only emit as ArgDbgValue if the Variable is an argument to the 5812 // current function, and the dbg.value intrinsic is found in the entry 5813 // block. 5814 bool VariableIsFunctionInputArg = Variable->isParameter() && 5815 !DL->getInlinedAt(); 5816 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5817 if (!IsInPrologue && !VariableIsFunctionInputArg) 5818 return false; 5819 5820 // Here we assume that a function argument on IR level only can be used to 5821 // describe one input parameter on source level. If we for example have 5822 // source code like this 5823 // 5824 // struct A { long x, y; }; 5825 // void foo(struct A a, long b) { 5826 // ... 5827 // b = a.x; 5828 // ... 5829 // } 5830 // 5831 // and IR like this 5832 // 5833 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5834 // entry: 5835 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5836 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5837 // call void @llvm.dbg.value(metadata i32 %b, "b", 5838 // ... 5839 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5840 // ... 5841 // 5842 // then the last dbg.value is describing a parameter "b" using a value that 5843 // is an argument. But since we already has used %a1 to describe a parameter 5844 // we should not handle that last dbg.value here (that would result in an 5845 // incorrect hoisting of the DBG_VALUE to the function entry). 5846 // Notice that we allow one dbg.value per IR level argument, to accommodate 5847 // for the situation with fragments above. 5848 if (VariableIsFunctionInputArg) { 5849 unsigned ArgNo = Arg->getArgNo(); 5850 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5851 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5852 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5853 return false; 5854 FuncInfo.DescribedArgs.set(ArgNo); 5855 } 5856 } 5857 5858 bool IsIndirect = false; 5859 std::optional<MachineOperand> Op; 5860 // Some arguments' frame index is recorded during argument lowering. 5861 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5862 if (FI != std::numeric_limits<int>::max()) 5863 Op = MachineOperand::CreateFI(FI); 5864 5865 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5866 if (!Op && N.getNode()) { 5867 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5868 Register Reg; 5869 if (ArgRegsAndSizes.size() == 1) 5870 Reg = ArgRegsAndSizes.front().first; 5871 5872 if (Reg && Reg.isVirtual()) { 5873 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5874 Register PR = RegInfo.getLiveInPhysReg(Reg); 5875 if (PR) 5876 Reg = PR; 5877 } 5878 if (Reg) { 5879 Op = MachineOperand::CreateReg(Reg, false); 5880 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5881 } 5882 } 5883 5884 if (!Op && N.getNode()) { 5885 // Check if frame index is available. 5886 SDValue LCandidate = peekThroughBitcasts(N); 5887 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5888 if (FrameIndexSDNode *FINode = 5889 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5890 Op = MachineOperand::CreateFI(FINode->getIndex()); 5891 } 5892 5893 if (!Op) { 5894 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5895 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5896 SplitRegs) { 5897 unsigned Offset = 0; 5898 for (const auto &RegAndSize : SplitRegs) { 5899 // If the expression is already a fragment, the current register 5900 // offset+size might extend beyond the fragment. In this case, only 5901 // the register bits that are inside the fragment are relevant. 5902 int RegFragmentSizeInBits = RegAndSize.second; 5903 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5904 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5905 // The register is entirely outside the expression fragment, 5906 // so is irrelevant for debug info. 5907 if (Offset >= ExprFragmentSizeInBits) 5908 break; 5909 // The register is partially outside the expression fragment, only 5910 // the low bits within the fragment are relevant for debug info. 5911 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5912 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5913 } 5914 } 5915 5916 auto FragmentExpr = DIExpression::createFragmentExpression( 5917 Expr, Offset, RegFragmentSizeInBits); 5918 Offset += RegAndSize.second; 5919 // If a valid fragment expression cannot be created, the variable's 5920 // correct value cannot be determined and so it is set as Undef. 5921 if (!FragmentExpr) { 5922 SDDbgValue *SDV = DAG.getConstantDbgValue( 5923 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5924 DAG.AddDbgValue(SDV, false); 5925 continue; 5926 } 5927 MachineInstr *NewMI = 5928 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5929 Kind != FuncArgumentDbgValueKind::Value); 5930 FuncInfo.ArgDbgValues.push_back(NewMI); 5931 } 5932 }; 5933 5934 // Check if ValueMap has reg number. 5935 DenseMap<const Value *, Register>::const_iterator 5936 VMI = FuncInfo.ValueMap.find(V); 5937 if (VMI != FuncInfo.ValueMap.end()) { 5938 const auto &TLI = DAG.getTargetLoweringInfo(); 5939 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5940 V->getType(), std::nullopt); 5941 if (RFV.occupiesMultipleRegs()) { 5942 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5943 return true; 5944 } 5945 5946 Op = MachineOperand::CreateReg(VMI->second, false); 5947 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5948 } else if (ArgRegsAndSizes.size() > 1) { 5949 // This was split due to the calling convention, and no virtual register 5950 // mapping exists for the value. 5951 splitMultiRegDbgValue(ArgRegsAndSizes); 5952 return true; 5953 } 5954 } 5955 5956 if (!Op) 5957 return false; 5958 5959 assert(Variable->isValidLocationForIntrinsic(DL) && 5960 "Expected inlined-at fields to agree"); 5961 MachineInstr *NewMI = nullptr; 5962 5963 if (Op->isReg()) 5964 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5965 else 5966 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5967 Variable, Expr); 5968 5969 // Otherwise, use ArgDbgValues. 5970 FuncInfo.ArgDbgValues.push_back(NewMI); 5971 return true; 5972 } 5973 5974 /// Return the appropriate SDDbgValue based on N. 5975 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5976 DILocalVariable *Variable, 5977 DIExpression *Expr, 5978 const DebugLoc &dl, 5979 unsigned DbgSDNodeOrder) { 5980 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5981 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5982 // stack slot locations. 5983 // 5984 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5985 // debug values here after optimization: 5986 // 5987 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5988 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5989 // 5990 // Both describe the direct values of their associated variables. 5991 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5992 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5993 } 5994 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5995 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5996 } 5997 5998 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5999 switch (Intrinsic) { 6000 case Intrinsic::smul_fix: 6001 return ISD::SMULFIX; 6002 case Intrinsic::umul_fix: 6003 return ISD::UMULFIX; 6004 case Intrinsic::smul_fix_sat: 6005 return ISD::SMULFIXSAT; 6006 case Intrinsic::umul_fix_sat: 6007 return ISD::UMULFIXSAT; 6008 case Intrinsic::sdiv_fix: 6009 return ISD::SDIVFIX; 6010 case Intrinsic::udiv_fix: 6011 return ISD::UDIVFIX; 6012 case Intrinsic::sdiv_fix_sat: 6013 return ISD::SDIVFIXSAT; 6014 case Intrinsic::udiv_fix_sat: 6015 return ISD::UDIVFIXSAT; 6016 default: 6017 llvm_unreachable("Unhandled fixed point intrinsic"); 6018 } 6019 } 6020 6021 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6022 const char *FunctionName) { 6023 assert(FunctionName && "FunctionName must not be nullptr"); 6024 SDValue Callee = DAG.getExternalSymbol( 6025 FunctionName, 6026 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6027 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6028 } 6029 6030 /// Given a @llvm.call.preallocated.setup, return the corresponding 6031 /// preallocated call. 6032 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6033 assert(cast<CallBase>(PreallocatedSetup) 6034 ->getCalledFunction() 6035 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6036 "expected call_preallocated_setup Value"); 6037 for (const auto *U : PreallocatedSetup->users()) { 6038 auto *UseCall = cast<CallBase>(U); 6039 const Function *Fn = UseCall->getCalledFunction(); 6040 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6041 return UseCall; 6042 } 6043 } 6044 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6045 } 6046 6047 /// If DI is a debug value with an EntryValue expression, lower it using the 6048 /// corresponding physical register of the associated Argument value 6049 /// (guaranteed to exist by the verifier). 6050 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6051 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6052 DIExpression *Expr, DebugLoc DbgLoc) { 6053 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6054 return false; 6055 6056 // These properties are guaranteed by the verifier. 6057 const Argument *Arg = cast<Argument>(Values[0]); 6058 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6059 6060 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6061 if (ArgIt == FuncInfo.ValueMap.end()) { 6062 LLVM_DEBUG( 6063 dbgs() << "Dropping dbg.value: expression is entry_value but " 6064 "couldn't find an associated register for the Argument\n"); 6065 return true; 6066 } 6067 Register ArgVReg = ArgIt->getSecond(); 6068 6069 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6070 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6071 SDDbgValue *SDV = DAG.getVRegDbgValue( 6072 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6073 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6074 return true; 6075 } 6076 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6077 "couldn't find a physical register\n"); 6078 return true; 6079 } 6080 6081 /// Lower the call to the specified intrinsic function. 6082 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6083 unsigned Intrinsic) { 6084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6085 SDLoc sdl = getCurSDLoc(); 6086 DebugLoc dl = getCurDebugLoc(); 6087 SDValue Res; 6088 6089 SDNodeFlags Flags; 6090 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6091 Flags.copyFMF(*FPOp); 6092 6093 switch (Intrinsic) { 6094 default: 6095 // By default, turn this into a target intrinsic node. 6096 visitTargetIntrinsic(I, Intrinsic); 6097 return; 6098 case Intrinsic::vscale: { 6099 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6100 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6101 return; 6102 } 6103 case Intrinsic::vastart: visitVAStart(I); return; 6104 case Intrinsic::vaend: visitVAEnd(I); return; 6105 case Intrinsic::vacopy: visitVACopy(I); return; 6106 case Intrinsic::returnaddress: 6107 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6108 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6109 getValue(I.getArgOperand(0)))); 6110 return; 6111 case Intrinsic::addressofreturnaddress: 6112 setValue(&I, 6113 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6114 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6115 return; 6116 case Intrinsic::sponentry: 6117 setValue(&I, 6118 DAG.getNode(ISD::SPONENTRY, sdl, 6119 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6120 return; 6121 case Intrinsic::frameaddress: 6122 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6123 TLI.getFrameIndexTy(DAG.getDataLayout()), 6124 getValue(I.getArgOperand(0)))); 6125 return; 6126 case Intrinsic::read_volatile_register: 6127 case Intrinsic::read_register: { 6128 Value *Reg = I.getArgOperand(0); 6129 SDValue Chain = getRoot(); 6130 SDValue RegName = 6131 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6132 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6133 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6134 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6135 setValue(&I, Res); 6136 DAG.setRoot(Res.getValue(1)); 6137 return; 6138 } 6139 case Intrinsic::write_register: { 6140 Value *Reg = I.getArgOperand(0); 6141 Value *RegValue = I.getArgOperand(1); 6142 SDValue Chain = getRoot(); 6143 SDValue RegName = 6144 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6145 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6146 RegName, getValue(RegValue))); 6147 return; 6148 } 6149 case Intrinsic::memcpy: { 6150 const auto &MCI = cast<MemCpyInst>(I); 6151 SDValue Op1 = getValue(I.getArgOperand(0)); 6152 SDValue Op2 = getValue(I.getArgOperand(1)); 6153 SDValue Op3 = getValue(I.getArgOperand(2)); 6154 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6155 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6156 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6157 Align Alignment = std::min(DstAlign, SrcAlign); 6158 bool isVol = MCI.isVolatile(); 6159 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6160 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6161 // node. 6162 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6163 SDValue MC = DAG.getMemcpy( 6164 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6165 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6166 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6167 updateDAGForMaybeTailCall(MC); 6168 return; 6169 } 6170 case Intrinsic::memcpy_inline: { 6171 const auto &MCI = cast<MemCpyInlineInst>(I); 6172 SDValue Dst = getValue(I.getArgOperand(0)); 6173 SDValue Src = getValue(I.getArgOperand(1)); 6174 SDValue Size = getValue(I.getArgOperand(2)); 6175 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6176 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6177 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6178 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6179 Align Alignment = std::min(DstAlign, SrcAlign); 6180 bool isVol = MCI.isVolatile(); 6181 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6182 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6183 // node. 6184 SDValue MC = DAG.getMemcpy( 6185 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6186 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6187 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6188 updateDAGForMaybeTailCall(MC); 6189 return; 6190 } 6191 case Intrinsic::memset: { 6192 const auto &MSI = cast<MemSetInst>(I); 6193 SDValue Op1 = getValue(I.getArgOperand(0)); 6194 SDValue Op2 = getValue(I.getArgOperand(1)); 6195 SDValue Op3 = getValue(I.getArgOperand(2)); 6196 // @llvm.memset defines 0 and 1 to both mean no alignment. 6197 Align Alignment = MSI.getDestAlign().valueOrOne(); 6198 bool isVol = MSI.isVolatile(); 6199 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6200 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6201 SDValue MS = DAG.getMemset( 6202 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6203 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6204 updateDAGForMaybeTailCall(MS); 6205 return; 6206 } 6207 case Intrinsic::memset_inline: { 6208 const auto &MSII = cast<MemSetInlineInst>(I); 6209 SDValue Dst = getValue(I.getArgOperand(0)); 6210 SDValue Value = getValue(I.getArgOperand(1)); 6211 SDValue Size = getValue(I.getArgOperand(2)); 6212 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6213 // @llvm.memset defines 0 and 1 to both mean no alignment. 6214 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6215 bool isVol = MSII.isVolatile(); 6216 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6217 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6218 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6219 /* AlwaysInline */ true, isTC, 6220 MachinePointerInfo(I.getArgOperand(0)), 6221 I.getAAMetadata()); 6222 updateDAGForMaybeTailCall(MC); 6223 return; 6224 } 6225 case Intrinsic::memmove: { 6226 const auto &MMI = cast<MemMoveInst>(I); 6227 SDValue Op1 = getValue(I.getArgOperand(0)); 6228 SDValue Op2 = getValue(I.getArgOperand(1)); 6229 SDValue Op3 = getValue(I.getArgOperand(2)); 6230 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6231 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6232 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6233 Align Alignment = std::min(DstAlign, SrcAlign); 6234 bool isVol = MMI.isVolatile(); 6235 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6236 // FIXME: Support passing different dest/src alignments to the memmove DAG 6237 // node. 6238 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6239 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6240 isTC, MachinePointerInfo(I.getArgOperand(0)), 6241 MachinePointerInfo(I.getArgOperand(1)), 6242 I.getAAMetadata(), AA); 6243 updateDAGForMaybeTailCall(MM); 6244 return; 6245 } 6246 case Intrinsic::memcpy_element_unordered_atomic: { 6247 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6248 SDValue Dst = getValue(MI.getRawDest()); 6249 SDValue Src = getValue(MI.getRawSource()); 6250 SDValue Length = getValue(MI.getLength()); 6251 6252 Type *LengthTy = MI.getLength()->getType(); 6253 unsigned ElemSz = MI.getElementSizeInBytes(); 6254 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6255 SDValue MC = 6256 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6257 isTC, MachinePointerInfo(MI.getRawDest()), 6258 MachinePointerInfo(MI.getRawSource())); 6259 updateDAGForMaybeTailCall(MC); 6260 return; 6261 } 6262 case Intrinsic::memmove_element_unordered_atomic: { 6263 auto &MI = cast<AtomicMemMoveInst>(I); 6264 SDValue Dst = getValue(MI.getRawDest()); 6265 SDValue Src = getValue(MI.getRawSource()); 6266 SDValue Length = getValue(MI.getLength()); 6267 6268 Type *LengthTy = MI.getLength()->getType(); 6269 unsigned ElemSz = MI.getElementSizeInBytes(); 6270 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6271 SDValue MC = 6272 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6273 isTC, MachinePointerInfo(MI.getRawDest()), 6274 MachinePointerInfo(MI.getRawSource())); 6275 updateDAGForMaybeTailCall(MC); 6276 return; 6277 } 6278 case Intrinsic::memset_element_unordered_atomic: { 6279 auto &MI = cast<AtomicMemSetInst>(I); 6280 SDValue Dst = getValue(MI.getRawDest()); 6281 SDValue Val = getValue(MI.getValue()); 6282 SDValue Length = getValue(MI.getLength()); 6283 6284 Type *LengthTy = MI.getLength()->getType(); 6285 unsigned ElemSz = MI.getElementSizeInBytes(); 6286 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6287 SDValue MC = 6288 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6289 isTC, MachinePointerInfo(MI.getRawDest())); 6290 updateDAGForMaybeTailCall(MC); 6291 return; 6292 } 6293 case Intrinsic::call_preallocated_setup: { 6294 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6295 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6296 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6297 getRoot(), SrcValue); 6298 setValue(&I, Res); 6299 DAG.setRoot(Res); 6300 return; 6301 } 6302 case Intrinsic::call_preallocated_arg: { 6303 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6304 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6305 SDValue Ops[3]; 6306 Ops[0] = getRoot(); 6307 Ops[1] = SrcValue; 6308 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6309 MVT::i32); // arg index 6310 SDValue Res = DAG.getNode( 6311 ISD::PREALLOCATED_ARG, sdl, 6312 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6313 setValue(&I, Res); 6314 DAG.setRoot(Res.getValue(1)); 6315 return; 6316 } 6317 case Intrinsic::dbg_declare: { 6318 const auto &DI = cast<DbgDeclareInst>(I); 6319 // Debug intrinsics are handled separately in assignment tracking mode. 6320 // Some intrinsics are handled right after Argument lowering. 6321 if (AssignmentTrackingEnabled || 6322 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6323 return; 6324 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6325 DILocalVariable *Variable = DI.getVariable(); 6326 DIExpression *Expression = DI.getExpression(); 6327 dropDanglingDebugInfo(Variable, Expression); 6328 // Assume dbg.declare can not currently use DIArgList, i.e. 6329 // it is non-variadic. 6330 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6331 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6332 DI.getDebugLoc()); 6333 return; 6334 } 6335 case Intrinsic::dbg_label: { 6336 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6337 DILabel *Label = DI.getLabel(); 6338 assert(Label && "Missing label"); 6339 6340 SDDbgLabel *SDV; 6341 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6342 DAG.AddDbgLabel(SDV); 6343 return; 6344 } 6345 case Intrinsic::dbg_assign: { 6346 // Debug intrinsics are handled seperately in assignment tracking mode. 6347 if (AssignmentTrackingEnabled) 6348 return; 6349 // If assignment tracking hasn't been enabled then fall through and treat 6350 // the dbg.assign as a dbg.value. 6351 [[fallthrough]]; 6352 } 6353 case Intrinsic::dbg_value: { 6354 // Debug intrinsics are handled seperately in assignment tracking mode. 6355 if (AssignmentTrackingEnabled) 6356 return; 6357 const DbgValueInst &DI = cast<DbgValueInst>(I); 6358 assert(DI.getVariable() && "Missing variable"); 6359 6360 DILocalVariable *Variable = DI.getVariable(); 6361 DIExpression *Expression = DI.getExpression(); 6362 dropDanglingDebugInfo(Variable, Expression); 6363 6364 if (DI.isKillLocation()) { 6365 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6366 return; 6367 } 6368 6369 SmallVector<Value *, 4> Values(DI.getValues()); 6370 if (Values.empty()) 6371 return; 6372 6373 bool IsVariadic = DI.hasArgList(); 6374 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6375 SDNodeOrder, IsVariadic)) 6376 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6377 DI.getDebugLoc(), SDNodeOrder); 6378 return; 6379 } 6380 6381 case Intrinsic::eh_typeid_for: { 6382 // Find the type id for the given typeinfo. 6383 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6384 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6385 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6386 setValue(&I, Res); 6387 return; 6388 } 6389 6390 case Intrinsic::eh_return_i32: 6391 case Intrinsic::eh_return_i64: 6392 DAG.getMachineFunction().setCallsEHReturn(true); 6393 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6394 MVT::Other, 6395 getControlRoot(), 6396 getValue(I.getArgOperand(0)), 6397 getValue(I.getArgOperand(1)))); 6398 return; 6399 case Intrinsic::eh_unwind_init: 6400 DAG.getMachineFunction().setCallsUnwindInit(true); 6401 return; 6402 case Intrinsic::eh_dwarf_cfa: 6403 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6404 TLI.getPointerTy(DAG.getDataLayout()), 6405 getValue(I.getArgOperand(0)))); 6406 return; 6407 case Intrinsic::eh_sjlj_callsite: { 6408 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6409 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6410 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6411 6412 MMI.setCurrentCallSite(CI->getZExtValue()); 6413 return; 6414 } 6415 case Intrinsic::eh_sjlj_functioncontext: { 6416 // Get and store the index of the function context. 6417 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6418 AllocaInst *FnCtx = 6419 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6420 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6421 MFI.setFunctionContextIndex(FI); 6422 return; 6423 } 6424 case Intrinsic::eh_sjlj_setjmp: { 6425 SDValue Ops[2]; 6426 Ops[0] = getRoot(); 6427 Ops[1] = getValue(I.getArgOperand(0)); 6428 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6429 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6430 setValue(&I, Op.getValue(0)); 6431 DAG.setRoot(Op.getValue(1)); 6432 return; 6433 } 6434 case Intrinsic::eh_sjlj_longjmp: 6435 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6436 getRoot(), getValue(I.getArgOperand(0)))); 6437 return; 6438 case Intrinsic::eh_sjlj_setup_dispatch: 6439 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6440 getRoot())); 6441 return; 6442 case Intrinsic::masked_gather: 6443 visitMaskedGather(I); 6444 return; 6445 case Intrinsic::masked_load: 6446 visitMaskedLoad(I); 6447 return; 6448 case Intrinsic::masked_scatter: 6449 visitMaskedScatter(I); 6450 return; 6451 case Intrinsic::masked_store: 6452 visitMaskedStore(I); 6453 return; 6454 case Intrinsic::masked_expandload: 6455 visitMaskedLoad(I, true /* IsExpanding */); 6456 return; 6457 case Intrinsic::masked_compressstore: 6458 visitMaskedStore(I, true /* IsCompressing */); 6459 return; 6460 case Intrinsic::powi: 6461 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6462 getValue(I.getArgOperand(1)), DAG)); 6463 return; 6464 case Intrinsic::log: 6465 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6466 return; 6467 case Intrinsic::log2: 6468 setValue(&I, 6469 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6470 return; 6471 case Intrinsic::log10: 6472 setValue(&I, 6473 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6474 return; 6475 case Intrinsic::exp: 6476 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6477 return; 6478 case Intrinsic::exp2: 6479 setValue(&I, 6480 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6481 return; 6482 case Intrinsic::pow: 6483 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6484 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6485 return; 6486 case Intrinsic::sqrt: 6487 case Intrinsic::fabs: 6488 case Intrinsic::sin: 6489 case Intrinsic::cos: 6490 case Intrinsic::exp10: 6491 case Intrinsic::floor: 6492 case Intrinsic::ceil: 6493 case Intrinsic::trunc: 6494 case Intrinsic::rint: 6495 case Intrinsic::nearbyint: 6496 case Intrinsic::round: 6497 case Intrinsic::roundeven: 6498 case Intrinsic::canonicalize: { 6499 unsigned Opcode; 6500 switch (Intrinsic) { 6501 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6502 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6503 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6504 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6505 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6506 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6507 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6508 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6509 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6510 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6511 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6512 case Intrinsic::round: Opcode = ISD::FROUND; break; 6513 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6514 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6515 } 6516 6517 setValue(&I, DAG.getNode(Opcode, sdl, 6518 getValue(I.getArgOperand(0)).getValueType(), 6519 getValue(I.getArgOperand(0)), Flags)); 6520 return; 6521 } 6522 case Intrinsic::lround: 6523 case Intrinsic::llround: 6524 case Intrinsic::lrint: 6525 case Intrinsic::llrint: { 6526 unsigned Opcode; 6527 switch (Intrinsic) { 6528 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6529 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6530 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6531 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6532 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6533 } 6534 6535 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6536 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6537 getValue(I.getArgOperand(0)))); 6538 return; 6539 } 6540 case Intrinsic::minnum: 6541 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6542 getValue(I.getArgOperand(0)).getValueType(), 6543 getValue(I.getArgOperand(0)), 6544 getValue(I.getArgOperand(1)), Flags)); 6545 return; 6546 case Intrinsic::maxnum: 6547 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6548 getValue(I.getArgOperand(0)).getValueType(), 6549 getValue(I.getArgOperand(0)), 6550 getValue(I.getArgOperand(1)), Flags)); 6551 return; 6552 case Intrinsic::minimum: 6553 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6554 getValue(I.getArgOperand(0)).getValueType(), 6555 getValue(I.getArgOperand(0)), 6556 getValue(I.getArgOperand(1)), Flags)); 6557 return; 6558 case Intrinsic::maximum: 6559 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6560 getValue(I.getArgOperand(0)).getValueType(), 6561 getValue(I.getArgOperand(0)), 6562 getValue(I.getArgOperand(1)), Flags)); 6563 return; 6564 case Intrinsic::copysign: 6565 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6566 getValue(I.getArgOperand(0)).getValueType(), 6567 getValue(I.getArgOperand(0)), 6568 getValue(I.getArgOperand(1)), Flags)); 6569 return; 6570 case Intrinsic::ldexp: 6571 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6572 getValue(I.getArgOperand(0)).getValueType(), 6573 getValue(I.getArgOperand(0)), 6574 getValue(I.getArgOperand(1)), Flags)); 6575 return; 6576 case Intrinsic::frexp: { 6577 SmallVector<EVT, 2> ValueVTs; 6578 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6579 SDVTList VTs = DAG.getVTList(ValueVTs); 6580 setValue(&I, 6581 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6582 return; 6583 } 6584 case Intrinsic::arithmetic_fence: { 6585 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6586 getValue(I.getArgOperand(0)).getValueType(), 6587 getValue(I.getArgOperand(0)), Flags)); 6588 return; 6589 } 6590 case Intrinsic::fma: 6591 setValue(&I, DAG.getNode( 6592 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6593 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6594 getValue(I.getArgOperand(2)), Flags)); 6595 return; 6596 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6597 case Intrinsic::INTRINSIC: 6598 #include "llvm/IR/ConstrainedOps.def" 6599 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6600 return; 6601 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6602 #include "llvm/IR/VPIntrinsics.def" 6603 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6604 return; 6605 case Intrinsic::fptrunc_round: { 6606 // Get the last argument, the metadata and convert it to an integer in the 6607 // call 6608 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6609 std::optional<RoundingMode> RoundMode = 6610 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6611 6612 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6613 6614 // Propagate fast-math-flags from IR to node(s). 6615 SDNodeFlags Flags; 6616 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6617 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6618 6619 SDValue Result; 6620 Result = DAG.getNode( 6621 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6622 DAG.getTargetConstant((int)*RoundMode, sdl, 6623 TLI.getPointerTy(DAG.getDataLayout()))); 6624 setValue(&I, Result); 6625 6626 return; 6627 } 6628 case Intrinsic::fmuladd: { 6629 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6630 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6631 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6632 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6633 getValue(I.getArgOperand(0)).getValueType(), 6634 getValue(I.getArgOperand(0)), 6635 getValue(I.getArgOperand(1)), 6636 getValue(I.getArgOperand(2)), Flags)); 6637 } else { 6638 // TODO: Intrinsic calls should have fast-math-flags. 6639 SDValue Mul = DAG.getNode( 6640 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6641 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6642 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6643 getValue(I.getArgOperand(0)).getValueType(), 6644 Mul, getValue(I.getArgOperand(2)), Flags); 6645 setValue(&I, Add); 6646 } 6647 return; 6648 } 6649 case Intrinsic::convert_to_fp16: 6650 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6651 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6652 getValue(I.getArgOperand(0)), 6653 DAG.getTargetConstant(0, sdl, 6654 MVT::i32)))); 6655 return; 6656 case Intrinsic::convert_from_fp16: 6657 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6658 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6659 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6660 getValue(I.getArgOperand(0))))); 6661 return; 6662 case Intrinsic::fptosi_sat: { 6663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6664 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6665 getValue(I.getArgOperand(0)), 6666 DAG.getValueType(VT.getScalarType()))); 6667 return; 6668 } 6669 case Intrinsic::fptoui_sat: { 6670 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6671 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6672 getValue(I.getArgOperand(0)), 6673 DAG.getValueType(VT.getScalarType()))); 6674 return; 6675 } 6676 case Intrinsic::set_rounding: 6677 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6678 {getRoot(), getValue(I.getArgOperand(0))}); 6679 setValue(&I, Res); 6680 DAG.setRoot(Res.getValue(0)); 6681 return; 6682 case Intrinsic::is_fpclass: { 6683 const DataLayout DLayout = DAG.getDataLayout(); 6684 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6685 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6686 FPClassTest Test = static_cast<FPClassTest>( 6687 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6688 MachineFunction &MF = DAG.getMachineFunction(); 6689 const Function &F = MF.getFunction(); 6690 SDValue Op = getValue(I.getArgOperand(0)); 6691 SDNodeFlags Flags; 6692 Flags.setNoFPExcept( 6693 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6694 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6695 // expansion can use illegal types. Making expansion early allows 6696 // legalizing these types prior to selection. 6697 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6698 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6699 setValue(&I, Result); 6700 return; 6701 } 6702 6703 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6704 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6705 setValue(&I, V); 6706 return; 6707 } 6708 case Intrinsic::get_fpenv: { 6709 const DataLayout DLayout = DAG.getDataLayout(); 6710 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6711 Align TempAlign = DAG.getEVTAlign(EnvVT); 6712 SDValue Chain = getRoot(); 6713 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6714 // and temporary storage in stack. 6715 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6716 Res = DAG.getNode( 6717 ISD::GET_FPENV, sdl, 6718 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6719 MVT::Other), 6720 Chain); 6721 } else { 6722 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6723 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6724 auto MPI = 6725 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6726 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6727 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6728 TempAlign); 6729 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6730 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6731 } 6732 setValue(&I, Res); 6733 DAG.setRoot(Res.getValue(1)); 6734 return; 6735 } 6736 case Intrinsic::set_fpenv: { 6737 const DataLayout DLayout = DAG.getDataLayout(); 6738 SDValue Env = getValue(I.getArgOperand(0)); 6739 EVT EnvVT = Env.getValueType(); 6740 Align TempAlign = DAG.getEVTAlign(EnvVT); 6741 SDValue Chain = getRoot(); 6742 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6743 // environment from memory. 6744 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6745 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6746 } else { 6747 // Allocate space in stack, copy environment bits into it and use this 6748 // memory in SET_FPENV_MEM. 6749 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6750 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6751 auto MPI = 6752 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6753 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6754 MachineMemOperand::MOStore); 6755 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6756 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6757 TempAlign); 6758 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6759 } 6760 DAG.setRoot(Chain); 6761 return; 6762 } 6763 case Intrinsic::reset_fpenv: 6764 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6765 return; 6766 case Intrinsic::get_fpmode: 6767 Res = DAG.getNode( 6768 ISD::GET_FPMODE, sdl, 6769 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6770 MVT::Other), 6771 DAG.getRoot()); 6772 setValue(&I, Res); 6773 DAG.setRoot(Res.getValue(1)); 6774 return; 6775 case Intrinsic::set_fpmode: 6776 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6777 getValue(I.getArgOperand(0))); 6778 DAG.setRoot(Res); 6779 return; 6780 case Intrinsic::reset_fpmode: { 6781 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6782 DAG.setRoot(Res); 6783 return; 6784 } 6785 case Intrinsic::pcmarker: { 6786 SDValue Tmp = getValue(I.getArgOperand(0)); 6787 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6788 return; 6789 } 6790 case Intrinsic::readcyclecounter: { 6791 SDValue Op = getRoot(); 6792 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6793 DAG.getVTList(MVT::i64, MVT::Other), Op); 6794 setValue(&I, Res); 6795 DAG.setRoot(Res.getValue(1)); 6796 return; 6797 } 6798 case Intrinsic::readsteadycounter: { 6799 SDValue Op = getRoot(); 6800 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 6801 DAG.getVTList(MVT::i64, MVT::Other), Op); 6802 setValue(&I, Res); 6803 DAG.setRoot(Res.getValue(1)); 6804 return; 6805 } 6806 case Intrinsic::bitreverse: 6807 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6808 getValue(I.getArgOperand(0)).getValueType(), 6809 getValue(I.getArgOperand(0)))); 6810 return; 6811 case Intrinsic::bswap: 6812 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6813 getValue(I.getArgOperand(0)).getValueType(), 6814 getValue(I.getArgOperand(0)))); 6815 return; 6816 case Intrinsic::cttz: { 6817 SDValue Arg = getValue(I.getArgOperand(0)); 6818 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6819 EVT Ty = Arg.getValueType(); 6820 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6821 sdl, Ty, Arg)); 6822 return; 6823 } 6824 case Intrinsic::ctlz: { 6825 SDValue Arg = getValue(I.getArgOperand(0)); 6826 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6827 EVT Ty = Arg.getValueType(); 6828 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6829 sdl, Ty, Arg)); 6830 return; 6831 } 6832 case Intrinsic::ctpop: { 6833 SDValue Arg = getValue(I.getArgOperand(0)); 6834 EVT Ty = Arg.getValueType(); 6835 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6836 return; 6837 } 6838 case Intrinsic::fshl: 6839 case Intrinsic::fshr: { 6840 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6841 SDValue X = getValue(I.getArgOperand(0)); 6842 SDValue Y = getValue(I.getArgOperand(1)); 6843 SDValue Z = getValue(I.getArgOperand(2)); 6844 EVT VT = X.getValueType(); 6845 6846 if (X == Y) { 6847 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6848 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6849 } else { 6850 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6851 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6852 } 6853 return; 6854 } 6855 case Intrinsic::sadd_sat: { 6856 SDValue Op1 = getValue(I.getArgOperand(0)); 6857 SDValue Op2 = getValue(I.getArgOperand(1)); 6858 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6859 return; 6860 } 6861 case Intrinsic::uadd_sat: { 6862 SDValue Op1 = getValue(I.getArgOperand(0)); 6863 SDValue Op2 = getValue(I.getArgOperand(1)); 6864 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6865 return; 6866 } 6867 case Intrinsic::ssub_sat: { 6868 SDValue Op1 = getValue(I.getArgOperand(0)); 6869 SDValue Op2 = getValue(I.getArgOperand(1)); 6870 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6871 return; 6872 } 6873 case Intrinsic::usub_sat: { 6874 SDValue Op1 = getValue(I.getArgOperand(0)); 6875 SDValue Op2 = getValue(I.getArgOperand(1)); 6876 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6877 return; 6878 } 6879 case Intrinsic::sshl_sat: { 6880 SDValue Op1 = getValue(I.getArgOperand(0)); 6881 SDValue Op2 = getValue(I.getArgOperand(1)); 6882 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6883 return; 6884 } 6885 case Intrinsic::ushl_sat: { 6886 SDValue Op1 = getValue(I.getArgOperand(0)); 6887 SDValue Op2 = getValue(I.getArgOperand(1)); 6888 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6889 return; 6890 } 6891 case Intrinsic::smul_fix: 6892 case Intrinsic::umul_fix: 6893 case Intrinsic::smul_fix_sat: 6894 case Intrinsic::umul_fix_sat: { 6895 SDValue Op1 = getValue(I.getArgOperand(0)); 6896 SDValue Op2 = getValue(I.getArgOperand(1)); 6897 SDValue Op3 = getValue(I.getArgOperand(2)); 6898 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6899 Op1.getValueType(), Op1, Op2, Op3)); 6900 return; 6901 } 6902 case Intrinsic::sdiv_fix: 6903 case Intrinsic::udiv_fix: 6904 case Intrinsic::sdiv_fix_sat: 6905 case Intrinsic::udiv_fix_sat: { 6906 SDValue Op1 = getValue(I.getArgOperand(0)); 6907 SDValue Op2 = getValue(I.getArgOperand(1)); 6908 SDValue Op3 = getValue(I.getArgOperand(2)); 6909 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6910 Op1, Op2, Op3, DAG, TLI)); 6911 return; 6912 } 6913 case Intrinsic::smax: { 6914 SDValue Op1 = getValue(I.getArgOperand(0)); 6915 SDValue Op2 = getValue(I.getArgOperand(1)); 6916 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6917 return; 6918 } 6919 case Intrinsic::smin: { 6920 SDValue Op1 = getValue(I.getArgOperand(0)); 6921 SDValue Op2 = getValue(I.getArgOperand(1)); 6922 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6923 return; 6924 } 6925 case Intrinsic::umax: { 6926 SDValue Op1 = getValue(I.getArgOperand(0)); 6927 SDValue Op2 = getValue(I.getArgOperand(1)); 6928 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6929 return; 6930 } 6931 case Intrinsic::umin: { 6932 SDValue Op1 = getValue(I.getArgOperand(0)); 6933 SDValue Op2 = getValue(I.getArgOperand(1)); 6934 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6935 return; 6936 } 6937 case Intrinsic::abs: { 6938 // TODO: Preserve "int min is poison" arg in SDAG? 6939 SDValue Op1 = getValue(I.getArgOperand(0)); 6940 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6941 return; 6942 } 6943 case Intrinsic::stacksave: { 6944 SDValue Op = getRoot(); 6945 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6946 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6947 setValue(&I, Res); 6948 DAG.setRoot(Res.getValue(1)); 6949 return; 6950 } 6951 case Intrinsic::stackrestore: 6952 Res = getValue(I.getArgOperand(0)); 6953 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6954 return; 6955 case Intrinsic::get_dynamic_area_offset: { 6956 SDValue Op = getRoot(); 6957 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6958 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6959 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6960 // target. 6961 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6962 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6963 " intrinsic!"); 6964 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6965 Op); 6966 DAG.setRoot(Op); 6967 setValue(&I, Res); 6968 return; 6969 } 6970 case Intrinsic::stackguard: { 6971 MachineFunction &MF = DAG.getMachineFunction(); 6972 const Module &M = *MF.getFunction().getParent(); 6973 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6974 SDValue Chain = getRoot(); 6975 if (TLI.useLoadStackGuardNode()) { 6976 Res = getLoadStackGuard(DAG, sdl, Chain); 6977 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 6978 } else { 6979 const Value *Global = TLI.getSDagStackGuard(M); 6980 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6981 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6982 MachinePointerInfo(Global, 0), Align, 6983 MachineMemOperand::MOVolatile); 6984 } 6985 if (TLI.useStackGuardXorFP()) 6986 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6987 DAG.setRoot(Chain); 6988 setValue(&I, Res); 6989 return; 6990 } 6991 case Intrinsic::stackprotector: { 6992 // Emit code into the DAG to store the stack guard onto the stack. 6993 MachineFunction &MF = DAG.getMachineFunction(); 6994 MachineFrameInfo &MFI = MF.getFrameInfo(); 6995 SDValue Src, Chain = getRoot(); 6996 6997 if (TLI.useLoadStackGuardNode()) 6998 Src = getLoadStackGuard(DAG, sdl, Chain); 6999 else 7000 Src = getValue(I.getArgOperand(0)); // The guard's value. 7001 7002 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7003 7004 int FI = FuncInfo.StaticAllocaMap[Slot]; 7005 MFI.setStackProtectorIndex(FI); 7006 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7007 7008 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7009 7010 // Store the stack protector onto the stack. 7011 Res = DAG.getStore( 7012 Chain, sdl, Src, FIN, 7013 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7014 MaybeAlign(), MachineMemOperand::MOVolatile); 7015 setValue(&I, Res); 7016 DAG.setRoot(Res); 7017 return; 7018 } 7019 case Intrinsic::objectsize: 7020 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7021 7022 case Intrinsic::is_constant: 7023 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7024 7025 case Intrinsic::annotation: 7026 case Intrinsic::ptr_annotation: 7027 case Intrinsic::launder_invariant_group: 7028 case Intrinsic::strip_invariant_group: 7029 // Drop the intrinsic, but forward the value 7030 setValue(&I, getValue(I.getOperand(0))); 7031 return; 7032 7033 case Intrinsic::assume: 7034 case Intrinsic::experimental_noalias_scope_decl: 7035 case Intrinsic::var_annotation: 7036 case Intrinsic::sideeffect: 7037 // Discard annotate attributes, noalias scope declarations, assumptions, and 7038 // artificial side-effects. 7039 return; 7040 7041 case Intrinsic::codeview_annotation: { 7042 // Emit a label associated with this metadata. 7043 MachineFunction &MF = DAG.getMachineFunction(); 7044 MCSymbol *Label = 7045 MF.getMMI().getContext().createTempSymbol("annotation", true); 7046 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7047 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7048 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7049 DAG.setRoot(Res); 7050 return; 7051 } 7052 7053 case Intrinsic::init_trampoline: { 7054 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7055 7056 SDValue Ops[6]; 7057 Ops[0] = getRoot(); 7058 Ops[1] = getValue(I.getArgOperand(0)); 7059 Ops[2] = getValue(I.getArgOperand(1)); 7060 Ops[3] = getValue(I.getArgOperand(2)); 7061 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7062 Ops[5] = DAG.getSrcValue(F); 7063 7064 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7065 7066 DAG.setRoot(Res); 7067 return; 7068 } 7069 case Intrinsic::adjust_trampoline: 7070 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7071 TLI.getPointerTy(DAG.getDataLayout()), 7072 getValue(I.getArgOperand(0)))); 7073 return; 7074 case Intrinsic::gcroot: { 7075 assert(DAG.getMachineFunction().getFunction().hasGC() && 7076 "only valid in functions with gc specified, enforced by Verifier"); 7077 assert(GFI && "implied by previous"); 7078 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7079 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7080 7081 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7082 GFI->addStackRoot(FI->getIndex(), TypeMap); 7083 return; 7084 } 7085 case Intrinsic::gcread: 7086 case Intrinsic::gcwrite: 7087 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7088 case Intrinsic::get_rounding: 7089 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7090 setValue(&I, Res); 7091 DAG.setRoot(Res.getValue(1)); 7092 return; 7093 7094 case Intrinsic::expect: 7095 // Just replace __builtin_expect(exp, c) with EXP. 7096 setValue(&I, getValue(I.getArgOperand(0))); 7097 return; 7098 7099 case Intrinsic::ubsantrap: 7100 case Intrinsic::debugtrap: 7101 case Intrinsic::trap: { 7102 StringRef TrapFuncName = 7103 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7104 if (TrapFuncName.empty()) { 7105 switch (Intrinsic) { 7106 case Intrinsic::trap: 7107 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7108 break; 7109 case Intrinsic::debugtrap: 7110 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7111 break; 7112 case Intrinsic::ubsantrap: 7113 DAG.setRoot(DAG.getNode( 7114 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7115 DAG.getTargetConstant( 7116 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7117 MVT::i32))); 7118 break; 7119 default: llvm_unreachable("unknown trap intrinsic"); 7120 } 7121 return; 7122 } 7123 TargetLowering::ArgListTy Args; 7124 if (Intrinsic == Intrinsic::ubsantrap) { 7125 Args.push_back(TargetLoweringBase::ArgListEntry()); 7126 Args[0].Val = I.getArgOperand(0); 7127 Args[0].Node = getValue(Args[0].Val); 7128 Args[0].Ty = Args[0].Val->getType(); 7129 } 7130 7131 TargetLowering::CallLoweringInfo CLI(DAG); 7132 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7133 CallingConv::C, I.getType(), 7134 DAG.getExternalSymbol(TrapFuncName.data(), 7135 TLI.getPointerTy(DAG.getDataLayout())), 7136 std::move(Args)); 7137 7138 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7139 DAG.setRoot(Result.second); 7140 return; 7141 } 7142 7143 case Intrinsic::uadd_with_overflow: 7144 case Intrinsic::sadd_with_overflow: 7145 case Intrinsic::usub_with_overflow: 7146 case Intrinsic::ssub_with_overflow: 7147 case Intrinsic::umul_with_overflow: 7148 case Intrinsic::smul_with_overflow: { 7149 ISD::NodeType Op; 7150 switch (Intrinsic) { 7151 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7152 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7153 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7154 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7155 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7156 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7157 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7158 } 7159 SDValue Op1 = getValue(I.getArgOperand(0)); 7160 SDValue Op2 = getValue(I.getArgOperand(1)); 7161 7162 EVT ResultVT = Op1.getValueType(); 7163 EVT OverflowVT = MVT::i1; 7164 if (ResultVT.isVector()) 7165 OverflowVT = EVT::getVectorVT( 7166 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7167 7168 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7169 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7170 return; 7171 } 7172 case Intrinsic::prefetch: { 7173 SDValue Ops[5]; 7174 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7175 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7176 Ops[0] = DAG.getRoot(); 7177 Ops[1] = getValue(I.getArgOperand(0)); 7178 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7179 MVT::i32); 7180 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7181 MVT::i32); 7182 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7183 MVT::i32); 7184 SDValue Result = DAG.getMemIntrinsicNode( 7185 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7186 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7187 /* align */ std::nullopt, Flags); 7188 7189 // Chain the prefetch in parallel with any pending loads, to stay out of 7190 // the way of later optimizations. 7191 PendingLoads.push_back(Result); 7192 Result = getRoot(); 7193 DAG.setRoot(Result); 7194 return; 7195 } 7196 case Intrinsic::lifetime_start: 7197 case Intrinsic::lifetime_end: { 7198 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7199 // Stack coloring is not enabled in O0, discard region information. 7200 if (TM.getOptLevel() == CodeGenOptLevel::None) 7201 return; 7202 7203 const int64_t ObjectSize = 7204 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7205 Value *const ObjectPtr = I.getArgOperand(1); 7206 SmallVector<const Value *, 4> Allocas; 7207 getUnderlyingObjects(ObjectPtr, Allocas); 7208 7209 for (const Value *Alloca : Allocas) { 7210 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7211 7212 // Could not find an Alloca. 7213 if (!LifetimeObject) 7214 continue; 7215 7216 // First check that the Alloca is static, otherwise it won't have a 7217 // valid frame index. 7218 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7219 if (SI == FuncInfo.StaticAllocaMap.end()) 7220 return; 7221 7222 const int FrameIndex = SI->second; 7223 int64_t Offset; 7224 if (GetPointerBaseWithConstantOffset( 7225 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7226 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7227 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7228 Offset); 7229 DAG.setRoot(Res); 7230 } 7231 return; 7232 } 7233 case Intrinsic::pseudoprobe: { 7234 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7235 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7236 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7237 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7238 DAG.setRoot(Res); 7239 return; 7240 } 7241 case Intrinsic::invariant_start: 7242 // Discard region information. 7243 setValue(&I, 7244 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7245 return; 7246 case Intrinsic::invariant_end: 7247 // Discard region information. 7248 return; 7249 case Intrinsic::clear_cache: 7250 /// FunctionName may be null. 7251 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7252 lowerCallToExternalSymbol(I, FunctionName); 7253 return; 7254 case Intrinsic::donothing: 7255 case Intrinsic::seh_try_begin: 7256 case Intrinsic::seh_scope_begin: 7257 case Intrinsic::seh_try_end: 7258 case Intrinsic::seh_scope_end: 7259 // ignore 7260 return; 7261 case Intrinsic::experimental_stackmap: 7262 visitStackmap(I); 7263 return; 7264 case Intrinsic::experimental_patchpoint_void: 7265 case Intrinsic::experimental_patchpoint_i64: 7266 visitPatchpoint(I); 7267 return; 7268 case Intrinsic::experimental_gc_statepoint: 7269 LowerStatepoint(cast<GCStatepointInst>(I)); 7270 return; 7271 case Intrinsic::experimental_gc_result: 7272 visitGCResult(cast<GCResultInst>(I)); 7273 return; 7274 case Intrinsic::experimental_gc_relocate: 7275 visitGCRelocate(cast<GCRelocateInst>(I)); 7276 return; 7277 case Intrinsic::instrprof_cover: 7278 llvm_unreachable("instrprof failed to lower a cover"); 7279 case Intrinsic::instrprof_increment: 7280 llvm_unreachable("instrprof failed to lower an increment"); 7281 case Intrinsic::instrprof_timestamp: 7282 llvm_unreachable("instrprof failed to lower a timestamp"); 7283 case Intrinsic::instrprof_value_profile: 7284 llvm_unreachable("instrprof failed to lower a value profiling call"); 7285 case Intrinsic::instrprof_mcdc_parameters: 7286 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7287 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7288 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7289 case Intrinsic::instrprof_mcdc_condbitmap_update: 7290 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7291 case Intrinsic::localescape: { 7292 MachineFunction &MF = DAG.getMachineFunction(); 7293 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7294 7295 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7296 // is the same on all targets. 7297 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7298 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7299 if (isa<ConstantPointerNull>(Arg)) 7300 continue; // Skip null pointers. They represent a hole in index space. 7301 AllocaInst *Slot = cast<AllocaInst>(Arg); 7302 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7303 "can only escape static allocas"); 7304 int FI = FuncInfo.StaticAllocaMap[Slot]; 7305 MCSymbol *FrameAllocSym = 7306 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7307 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7309 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7310 .addSym(FrameAllocSym) 7311 .addFrameIndex(FI); 7312 } 7313 7314 return; 7315 } 7316 7317 case Intrinsic::localrecover: { 7318 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7319 MachineFunction &MF = DAG.getMachineFunction(); 7320 7321 // Get the symbol that defines the frame offset. 7322 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7323 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7324 unsigned IdxVal = 7325 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7326 MCSymbol *FrameAllocSym = 7327 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7328 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7329 7330 Value *FP = I.getArgOperand(1); 7331 SDValue FPVal = getValue(FP); 7332 EVT PtrVT = FPVal.getValueType(); 7333 7334 // Create a MCSymbol for the label to avoid any target lowering 7335 // that would make this PC relative. 7336 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7337 SDValue OffsetVal = 7338 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7339 7340 // Add the offset to the FP. 7341 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7342 setValue(&I, Add); 7343 7344 return; 7345 } 7346 7347 case Intrinsic::eh_exceptionpointer: 7348 case Intrinsic::eh_exceptioncode: { 7349 // Get the exception pointer vreg, copy from it, and resize it to fit. 7350 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7351 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7352 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7353 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7354 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7355 if (Intrinsic == Intrinsic::eh_exceptioncode) 7356 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7357 setValue(&I, N); 7358 return; 7359 } 7360 case Intrinsic::xray_customevent: { 7361 // Here we want to make sure that the intrinsic behaves as if it has a 7362 // specific calling convention. 7363 const auto &Triple = DAG.getTarget().getTargetTriple(); 7364 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7365 return; 7366 7367 SmallVector<SDValue, 8> Ops; 7368 7369 // We want to say that we always want the arguments in registers. 7370 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7371 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7372 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7373 SDValue Chain = getRoot(); 7374 Ops.push_back(LogEntryVal); 7375 Ops.push_back(StrSizeVal); 7376 Ops.push_back(Chain); 7377 7378 // We need to enforce the calling convention for the callsite, so that 7379 // argument ordering is enforced correctly, and that register allocation can 7380 // see that some registers may be assumed clobbered and have to preserve 7381 // them across calls to the intrinsic. 7382 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7383 sdl, NodeTys, Ops); 7384 SDValue patchableNode = SDValue(MN, 0); 7385 DAG.setRoot(patchableNode); 7386 setValue(&I, patchableNode); 7387 return; 7388 } 7389 case Intrinsic::xray_typedevent: { 7390 // Here we want to make sure that the intrinsic behaves as if it has a 7391 // specific calling convention. 7392 const auto &Triple = DAG.getTarget().getTargetTriple(); 7393 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7394 return; 7395 7396 SmallVector<SDValue, 8> Ops; 7397 7398 // We want to say that we always want the arguments in registers. 7399 // It's unclear to me how manipulating the selection DAG here forces callers 7400 // to provide arguments in registers instead of on the stack. 7401 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7402 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7403 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7404 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7405 SDValue Chain = getRoot(); 7406 Ops.push_back(LogTypeId); 7407 Ops.push_back(LogEntryVal); 7408 Ops.push_back(StrSizeVal); 7409 Ops.push_back(Chain); 7410 7411 // We need to enforce the calling convention for the callsite, so that 7412 // argument ordering is enforced correctly, and that register allocation can 7413 // see that some registers may be assumed clobbered and have to preserve 7414 // them across calls to the intrinsic. 7415 MachineSDNode *MN = DAG.getMachineNode( 7416 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7417 SDValue patchableNode = SDValue(MN, 0); 7418 DAG.setRoot(patchableNode); 7419 setValue(&I, patchableNode); 7420 return; 7421 } 7422 case Intrinsic::experimental_deoptimize: 7423 LowerDeoptimizeCall(&I); 7424 return; 7425 case Intrinsic::experimental_stepvector: 7426 visitStepVector(I); 7427 return; 7428 case Intrinsic::vector_reduce_fadd: 7429 case Intrinsic::vector_reduce_fmul: 7430 case Intrinsic::vector_reduce_add: 7431 case Intrinsic::vector_reduce_mul: 7432 case Intrinsic::vector_reduce_and: 7433 case Intrinsic::vector_reduce_or: 7434 case Intrinsic::vector_reduce_xor: 7435 case Intrinsic::vector_reduce_smax: 7436 case Intrinsic::vector_reduce_smin: 7437 case Intrinsic::vector_reduce_umax: 7438 case Intrinsic::vector_reduce_umin: 7439 case Intrinsic::vector_reduce_fmax: 7440 case Intrinsic::vector_reduce_fmin: 7441 case Intrinsic::vector_reduce_fmaximum: 7442 case Intrinsic::vector_reduce_fminimum: 7443 visitVectorReduce(I, Intrinsic); 7444 return; 7445 7446 case Intrinsic::icall_branch_funnel: { 7447 SmallVector<SDValue, 16> Ops; 7448 Ops.push_back(getValue(I.getArgOperand(0))); 7449 7450 int64_t Offset; 7451 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7452 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7453 if (!Base) 7454 report_fatal_error( 7455 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7456 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7457 7458 struct BranchFunnelTarget { 7459 int64_t Offset; 7460 SDValue Target; 7461 }; 7462 SmallVector<BranchFunnelTarget, 8> Targets; 7463 7464 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7465 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7466 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7467 if (ElemBase != Base) 7468 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7469 "to the same GlobalValue"); 7470 7471 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7472 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7473 if (!GA) 7474 report_fatal_error( 7475 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7476 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7477 GA->getGlobal(), sdl, Val.getValueType(), 7478 GA->getOffset())}); 7479 } 7480 llvm::sort(Targets, 7481 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7482 return T1.Offset < T2.Offset; 7483 }); 7484 7485 for (auto &T : Targets) { 7486 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7487 Ops.push_back(T.Target); 7488 } 7489 7490 Ops.push_back(DAG.getRoot()); // Chain 7491 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7492 MVT::Other, Ops), 7493 0); 7494 DAG.setRoot(N); 7495 setValue(&I, N); 7496 HasTailCall = true; 7497 return; 7498 } 7499 7500 case Intrinsic::wasm_landingpad_index: 7501 // Information this intrinsic contained has been transferred to 7502 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7503 // delete it now. 7504 return; 7505 7506 case Intrinsic::aarch64_settag: 7507 case Intrinsic::aarch64_settag_zero: { 7508 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7509 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7510 SDValue Val = TSI.EmitTargetCodeForSetTag( 7511 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7512 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7513 ZeroMemory); 7514 DAG.setRoot(Val); 7515 setValue(&I, Val); 7516 return; 7517 } 7518 case Intrinsic::amdgcn_cs_chain: { 7519 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7520 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7521 "Non-zero flags not supported yet"); 7522 7523 // At this point we don't care if it's amdgpu_cs_chain or 7524 // amdgpu_cs_chain_preserve. 7525 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7526 7527 Type *RetTy = I.getType(); 7528 assert(RetTy->isVoidTy() && "Should not return"); 7529 7530 SDValue Callee = getValue(I.getOperand(0)); 7531 7532 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7533 // We'll also tack the value of the EXEC mask at the end. 7534 TargetLowering::ArgListTy Args; 7535 Args.reserve(3); 7536 7537 for (unsigned Idx : {2, 3, 1}) { 7538 TargetLowering::ArgListEntry Arg; 7539 Arg.Node = getValue(I.getOperand(Idx)); 7540 Arg.Ty = I.getOperand(Idx)->getType(); 7541 Arg.setAttributes(&I, Idx); 7542 Args.push_back(Arg); 7543 } 7544 7545 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7546 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7547 Args[2].IsInReg = true; // EXEC should be inreg 7548 7549 TargetLowering::CallLoweringInfo CLI(DAG); 7550 CLI.setDebugLoc(getCurSDLoc()) 7551 .setChain(getRoot()) 7552 .setCallee(CC, RetTy, Callee, std::move(Args)) 7553 .setNoReturn(true) 7554 .setTailCall(true) 7555 .setConvergent(I.isConvergent()); 7556 CLI.CB = &I; 7557 std::pair<SDValue, SDValue> Result = 7558 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7559 (void)Result; 7560 assert(!Result.first.getNode() && !Result.second.getNode() && 7561 "Should've lowered as tail call"); 7562 7563 HasTailCall = true; 7564 return; 7565 } 7566 case Intrinsic::ptrmask: { 7567 SDValue Ptr = getValue(I.getOperand(0)); 7568 SDValue Mask = getValue(I.getOperand(1)); 7569 7570 EVT PtrVT = Ptr.getValueType(); 7571 assert(PtrVT == Mask.getValueType() && 7572 "Pointers with different index type are not supported by SDAG"); 7573 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7574 return; 7575 } 7576 case Intrinsic::threadlocal_address: { 7577 setValue(&I, getValue(I.getOperand(0))); 7578 return; 7579 } 7580 case Intrinsic::get_active_lane_mask: { 7581 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7582 SDValue Index = getValue(I.getOperand(0)); 7583 EVT ElementVT = Index.getValueType(); 7584 7585 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7586 visitTargetIntrinsic(I, Intrinsic); 7587 return; 7588 } 7589 7590 SDValue TripCount = getValue(I.getOperand(1)); 7591 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7592 CCVT.getVectorElementCount()); 7593 7594 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7595 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7596 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7597 SDValue VectorInduction = DAG.getNode( 7598 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7599 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7600 VectorTripCount, ISD::CondCode::SETULT); 7601 setValue(&I, SetCC); 7602 return; 7603 } 7604 case Intrinsic::experimental_get_vector_length: { 7605 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7606 "Expected positive VF"); 7607 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7608 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7609 7610 SDValue Count = getValue(I.getOperand(0)); 7611 EVT CountVT = Count.getValueType(); 7612 7613 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7614 visitTargetIntrinsic(I, Intrinsic); 7615 return; 7616 } 7617 7618 // Expand to a umin between the trip count and the maximum elements the type 7619 // can hold. 7620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7621 7622 // Extend the trip count to at least the result VT. 7623 if (CountVT.bitsLT(VT)) { 7624 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7625 CountVT = VT; 7626 } 7627 7628 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7629 ElementCount::get(VF, IsScalable)); 7630 7631 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7632 // Clip to the result type if needed. 7633 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7634 7635 setValue(&I, Trunc); 7636 return; 7637 } 7638 case Intrinsic::experimental_cttz_elts: { 7639 auto DL = getCurSDLoc(); 7640 SDValue Op = getValue(I.getOperand(0)); 7641 EVT OpVT = Op.getValueType(); 7642 7643 if (!TLI.shouldExpandCttzElements(OpVT)) { 7644 visitTargetIntrinsic(I, Intrinsic); 7645 return; 7646 } 7647 7648 if (OpVT.getScalarType() != MVT::i1) { 7649 // Compare the input vector elements to zero & use to count trailing zeros 7650 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7651 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7652 OpVT.getVectorElementCount()); 7653 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7654 } 7655 7656 // Find the smallest "sensible" element type to use for the expansion. 7657 ConstantRange CR( 7658 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7659 if (OpVT.isScalableVT()) 7660 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7661 7662 // If the zero-is-poison flag is set, we can assume the upper limit 7663 // of the result is VF-1. 7664 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7665 CR = CR.subtract(APInt(64, 1)); 7666 7667 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7668 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7669 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7670 7671 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7672 7673 // Create the new vector type & get the vector length 7674 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7675 OpVT.getVectorElementCount()); 7676 7677 SDValue VL = 7678 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7679 7680 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7681 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7682 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7683 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7684 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7685 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7686 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7687 7688 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7689 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7690 7691 setValue(&I, Ret); 7692 return; 7693 } 7694 case Intrinsic::vector_insert: { 7695 SDValue Vec = getValue(I.getOperand(0)); 7696 SDValue SubVec = getValue(I.getOperand(1)); 7697 SDValue Index = getValue(I.getOperand(2)); 7698 7699 // The intrinsic's index type is i64, but the SDNode requires an index type 7700 // suitable for the target. Convert the index as required. 7701 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7702 if (Index.getValueType() != VectorIdxTy) 7703 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7704 7705 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7706 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7707 Index)); 7708 return; 7709 } 7710 case Intrinsic::vector_extract: { 7711 SDValue Vec = getValue(I.getOperand(0)); 7712 SDValue Index = getValue(I.getOperand(1)); 7713 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7714 7715 // The intrinsic's index type is i64, but the SDNode requires an index type 7716 // suitable for the target. Convert the index as required. 7717 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7718 if (Index.getValueType() != VectorIdxTy) 7719 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7720 7721 setValue(&I, 7722 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7723 return; 7724 } 7725 case Intrinsic::experimental_vector_reverse: 7726 visitVectorReverse(I); 7727 return; 7728 case Intrinsic::experimental_vector_splice: 7729 visitVectorSplice(I); 7730 return; 7731 case Intrinsic::callbr_landingpad: 7732 visitCallBrLandingPad(I); 7733 return; 7734 case Intrinsic::experimental_vector_interleave2: 7735 visitVectorInterleave(I); 7736 return; 7737 case Intrinsic::experimental_vector_deinterleave2: 7738 visitVectorDeinterleave(I); 7739 return; 7740 } 7741 } 7742 7743 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7744 const ConstrainedFPIntrinsic &FPI) { 7745 SDLoc sdl = getCurSDLoc(); 7746 7747 // We do not need to serialize constrained FP intrinsics against 7748 // each other or against (nonvolatile) loads, so they can be 7749 // chained like loads. 7750 SDValue Chain = DAG.getRoot(); 7751 SmallVector<SDValue, 4> Opers; 7752 Opers.push_back(Chain); 7753 if (FPI.isUnaryOp()) { 7754 Opers.push_back(getValue(FPI.getArgOperand(0))); 7755 } else if (FPI.isTernaryOp()) { 7756 Opers.push_back(getValue(FPI.getArgOperand(0))); 7757 Opers.push_back(getValue(FPI.getArgOperand(1))); 7758 Opers.push_back(getValue(FPI.getArgOperand(2))); 7759 } else { 7760 Opers.push_back(getValue(FPI.getArgOperand(0))); 7761 Opers.push_back(getValue(FPI.getArgOperand(1))); 7762 } 7763 7764 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7765 assert(Result.getNode()->getNumValues() == 2); 7766 7767 // Push node to the appropriate list so that future instructions can be 7768 // chained up correctly. 7769 SDValue OutChain = Result.getValue(1); 7770 switch (EB) { 7771 case fp::ExceptionBehavior::ebIgnore: 7772 // The only reason why ebIgnore nodes still need to be chained is that 7773 // they might depend on the current rounding mode, and therefore must 7774 // not be moved across instruction that may change that mode. 7775 [[fallthrough]]; 7776 case fp::ExceptionBehavior::ebMayTrap: 7777 // These must not be moved across calls or instructions that may change 7778 // floating-point exception masks. 7779 PendingConstrainedFP.push_back(OutChain); 7780 break; 7781 case fp::ExceptionBehavior::ebStrict: 7782 // These must not be moved across calls or instructions that may change 7783 // floating-point exception masks or read floating-point exception flags. 7784 // In addition, they cannot be optimized out even if unused. 7785 PendingConstrainedFPStrict.push_back(OutChain); 7786 break; 7787 } 7788 }; 7789 7790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7791 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7792 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7793 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7794 7795 SDNodeFlags Flags; 7796 if (EB == fp::ExceptionBehavior::ebIgnore) 7797 Flags.setNoFPExcept(true); 7798 7799 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7800 Flags.copyFMF(*FPOp); 7801 7802 unsigned Opcode; 7803 switch (FPI.getIntrinsicID()) { 7804 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7805 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7806 case Intrinsic::INTRINSIC: \ 7807 Opcode = ISD::STRICT_##DAGN; \ 7808 break; 7809 #include "llvm/IR/ConstrainedOps.def" 7810 case Intrinsic::experimental_constrained_fmuladd: { 7811 Opcode = ISD::STRICT_FMA; 7812 // Break fmuladd into fmul and fadd. 7813 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7814 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7815 Opers.pop_back(); 7816 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7817 pushOutChain(Mul, EB); 7818 Opcode = ISD::STRICT_FADD; 7819 Opers.clear(); 7820 Opers.push_back(Mul.getValue(1)); 7821 Opers.push_back(Mul.getValue(0)); 7822 Opers.push_back(getValue(FPI.getArgOperand(2))); 7823 } 7824 break; 7825 } 7826 } 7827 7828 // A few strict DAG nodes carry additional operands that are not 7829 // set up by the default code above. 7830 switch (Opcode) { 7831 default: break; 7832 case ISD::STRICT_FP_ROUND: 7833 Opers.push_back( 7834 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7835 break; 7836 case ISD::STRICT_FSETCC: 7837 case ISD::STRICT_FSETCCS: { 7838 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7839 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7840 if (TM.Options.NoNaNsFPMath) 7841 Condition = getFCmpCodeWithoutNaN(Condition); 7842 Opers.push_back(DAG.getCondCode(Condition)); 7843 break; 7844 } 7845 } 7846 7847 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7848 pushOutChain(Result, EB); 7849 7850 SDValue FPResult = Result.getValue(0); 7851 setValue(&FPI, FPResult); 7852 } 7853 7854 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7855 std::optional<unsigned> ResOPC; 7856 switch (VPIntrin.getIntrinsicID()) { 7857 case Intrinsic::vp_ctlz: { 7858 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7859 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7860 break; 7861 } 7862 case Intrinsic::vp_cttz: { 7863 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7864 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7865 break; 7866 } 7867 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7868 case Intrinsic::VPID: \ 7869 ResOPC = ISD::VPSD; \ 7870 break; 7871 #include "llvm/IR/VPIntrinsics.def" 7872 } 7873 7874 if (!ResOPC) 7875 llvm_unreachable( 7876 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7877 7878 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7879 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7880 if (VPIntrin.getFastMathFlags().allowReassoc()) 7881 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7882 : ISD::VP_REDUCE_FMUL; 7883 } 7884 7885 return *ResOPC; 7886 } 7887 7888 void SelectionDAGBuilder::visitVPLoad( 7889 const VPIntrinsic &VPIntrin, EVT VT, 7890 const SmallVectorImpl<SDValue> &OpValues) { 7891 SDLoc DL = getCurSDLoc(); 7892 Value *PtrOperand = VPIntrin.getArgOperand(0); 7893 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7894 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7895 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7896 SDValue LD; 7897 // Do not serialize variable-length loads of constant memory with 7898 // anything. 7899 if (!Alignment) 7900 Alignment = DAG.getEVTAlign(VT); 7901 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7902 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7903 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7904 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7905 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7906 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7907 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7908 MMO, false /*IsExpanding */); 7909 if (AddToChain) 7910 PendingLoads.push_back(LD.getValue(1)); 7911 setValue(&VPIntrin, LD); 7912 } 7913 7914 void SelectionDAGBuilder::visitVPGather( 7915 const VPIntrinsic &VPIntrin, EVT VT, 7916 const SmallVectorImpl<SDValue> &OpValues) { 7917 SDLoc DL = getCurSDLoc(); 7918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7919 Value *PtrOperand = VPIntrin.getArgOperand(0); 7920 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7921 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7922 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7923 SDValue LD; 7924 if (!Alignment) 7925 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7926 unsigned AS = 7927 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7928 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7929 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7930 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7931 SDValue Base, Index, Scale; 7932 ISD::MemIndexType IndexType; 7933 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7934 this, VPIntrin.getParent(), 7935 VT.getScalarStoreSize()); 7936 if (!UniformBase) { 7937 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7938 Index = getValue(PtrOperand); 7939 IndexType = ISD::SIGNED_SCALED; 7940 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7941 } 7942 EVT IdxVT = Index.getValueType(); 7943 EVT EltTy = IdxVT.getVectorElementType(); 7944 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7945 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7946 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7947 } 7948 LD = DAG.getGatherVP( 7949 DAG.getVTList(VT, MVT::Other), VT, DL, 7950 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7951 IndexType); 7952 PendingLoads.push_back(LD.getValue(1)); 7953 setValue(&VPIntrin, LD); 7954 } 7955 7956 void SelectionDAGBuilder::visitVPStore( 7957 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7958 SDLoc DL = getCurSDLoc(); 7959 Value *PtrOperand = VPIntrin.getArgOperand(1); 7960 EVT VT = OpValues[0].getValueType(); 7961 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7962 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7963 SDValue ST; 7964 if (!Alignment) 7965 Alignment = DAG.getEVTAlign(VT); 7966 SDValue Ptr = OpValues[1]; 7967 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7968 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7969 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7970 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7971 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7972 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7973 /* IsTruncating */ false, /*IsCompressing*/ false); 7974 DAG.setRoot(ST); 7975 setValue(&VPIntrin, ST); 7976 } 7977 7978 void SelectionDAGBuilder::visitVPScatter( 7979 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7980 SDLoc DL = getCurSDLoc(); 7981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7982 Value *PtrOperand = VPIntrin.getArgOperand(1); 7983 EVT VT = OpValues[0].getValueType(); 7984 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7985 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7986 SDValue ST; 7987 if (!Alignment) 7988 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7989 unsigned AS = 7990 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7991 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7992 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7993 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7994 SDValue Base, Index, Scale; 7995 ISD::MemIndexType IndexType; 7996 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7997 this, VPIntrin.getParent(), 7998 VT.getScalarStoreSize()); 7999 if (!UniformBase) { 8000 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8001 Index = getValue(PtrOperand); 8002 IndexType = ISD::SIGNED_SCALED; 8003 Scale = 8004 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8005 } 8006 EVT IdxVT = Index.getValueType(); 8007 EVT EltTy = IdxVT.getVectorElementType(); 8008 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8009 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8010 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8011 } 8012 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8013 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8014 OpValues[2], OpValues[3]}, 8015 MMO, IndexType); 8016 DAG.setRoot(ST); 8017 setValue(&VPIntrin, ST); 8018 } 8019 8020 void SelectionDAGBuilder::visitVPStridedLoad( 8021 const VPIntrinsic &VPIntrin, EVT VT, 8022 const SmallVectorImpl<SDValue> &OpValues) { 8023 SDLoc DL = getCurSDLoc(); 8024 Value *PtrOperand = VPIntrin.getArgOperand(0); 8025 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8026 if (!Alignment) 8027 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8028 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8029 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8030 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8031 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8032 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8033 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8034 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8035 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8036 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8037 8038 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8039 OpValues[2], OpValues[3], MMO, 8040 false /*IsExpanding*/); 8041 8042 if (AddToChain) 8043 PendingLoads.push_back(LD.getValue(1)); 8044 setValue(&VPIntrin, LD); 8045 } 8046 8047 void SelectionDAGBuilder::visitVPStridedStore( 8048 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8049 SDLoc DL = getCurSDLoc(); 8050 Value *PtrOperand = VPIntrin.getArgOperand(1); 8051 EVT VT = OpValues[0].getValueType(); 8052 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8053 if (!Alignment) 8054 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8055 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8056 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8057 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8058 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8059 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8060 8061 SDValue ST = DAG.getStridedStoreVP( 8062 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8063 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8064 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8065 /*IsCompressing*/ false); 8066 8067 DAG.setRoot(ST); 8068 setValue(&VPIntrin, ST); 8069 } 8070 8071 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8073 SDLoc DL = getCurSDLoc(); 8074 8075 ISD::CondCode Condition; 8076 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8077 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8078 if (IsFP) { 8079 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8080 // flags, but calls that don't return floating-point types can't be 8081 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8082 Condition = getFCmpCondCode(CondCode); 8083 if (TM.Options.NoNaNsFPMath) 8084 Condition = getFCmpCodeWithoutNaN(Condition); 8085 } else { 8086 Condition = getICmpCondCode(CondCode); 8087 } 8088 8089 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8090 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8091 // #2 is the condition code 8092 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8093 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8094 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8095 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8096 "Unexpected target EVL type"); 8097 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8098 8099 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8100 VPIntrin.getType()); 8101 setValue(&VPIntrin, 8102 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8103 } 8104 8105 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8106 const VPIntrinsic &VPIntrin) { 8107 SDLoc DL = getCurSDLoc(); 8108 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8109 8110 auto IID = VPIntrin.getIntrinsicID(); 8111 8112 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8113 return visitVPCmp(*CmpI); 8114 8115 SmallVector<EVT, 4> ValueVTs; 8116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8117 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8118 SDVTList VTs = DAG.getVTList(ValueVTs); 8119 8120 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8121 8122 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8123 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8124 "Unexpected target EVL type"); 8125 8126 // Request operands. 8127 SmallVector<SDValue, 7> OpValues; 8128 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8129 auto Op = getValue(VPIntrin.getArgOperand(I)); 8130 if (I == EVLParamPos) 8131 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8132 OpValues.push_back(Op); 8133 } 8134 8135 switch (Opcode) { 8136 default: { 8137 SDNodeFlags SDFlags; 8138 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8139 SDFlags.copyFMF(*FPMO); 8140 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8141 setValue(&VPIntrin, Result); 8142 break; 8143 } 8144 case ISD::VP_LOAD: 8145 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8146 break; 8147 case ISD::VP_GATHER: 8148 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8149 break; 8150 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8151 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8152 break; 8153 case ISD::VP_STORE: 8154 visitVPStore(VPIntrin, OpValues); 8155 break; 8156 case ISD::VP_SCATTER: 8157 visitVPScatter(VPIntrin, OpValues); 8158 break; 8159 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8160 visitVPStridedStore(VPIntrin, OpValues); 8161 break; 8162 case ISD::VP_FMULADD: { 8163 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8164 SDNodeFlags SDFlags; 8165 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8166 SDFlags.copyFMF(*FPMO); 8167 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8168 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8169 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8170 } else { 8171 SDValue Mul = DAG.getNode( 8172 ISD::VP_FMUL, DL, VTs, 8173 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8174 SDValue Add = 8175 DAG.getNode(ISD::VP_FADD, DL, VTs, 8176 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8177 setValue(&VPIntrin, Add); 8178 } 8179 break; 8180 } 8181 case ISD::VP_IS_FPCLASS: { 8182 const DataLayout DLayout = DAG.getDataLayout(); 8183 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8184 auto Constant = OpValues[1]->getAsZExtVal(); 8185 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8186 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8187 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8188 setValue(&VPIntrin, V); 8189 return; 8190 } 8191 case ISD::VP_INTTOPTR: { 8192 SDValue N = OpValues[0]; 8193 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8194 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8195 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8196 OpValues[2]); 8197 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8198 OpValues[2]); 8199 setValue(&VPIntrin, N); 8200 break; 8201 } 8202 case ISD::VP_PTRTOINT: { 8203 SDValue N = OpValues[0]; 8204 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8205 VPIntrin.getType()); 8206 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8207 VPIntrin.getOperand(0)->getType()); 8208 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8209 OpValues[2]); 8210 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8211 OpValues[2]); 8212 setValue(&VPIntrin, N); 8213 break; 8214 } 8215 case ISD::VP_ABS: 8216 case ISD::VP_CTLZ: 8217 case ISD::VP_CTLZ_ZERO_UNDEF: 8218 case ISD::VP_CTTZ: 8219 case ISD::VP_CTTZ_ZERO_UNDEF: { 8220 SDValue Result = 8221 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8222 setValue(&VPIntrin, Result); 8223 break; 8224 } 8225 } 8226 } 8227 8228 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8229 const BasicBlock *EHPadBB, 8230 MCSymbol *&BeginLabel) { 8231 MachineFunction &MF = DAG.getMachineFunction(); 8232 MachineModuleInfo &MMI = MF.getMMI(); 8233 8234 // Insert a label before the invoke call to mark the try range. This can be 8235 // used to detect deletion of the invoke via the MachineModuleInfo. 8236 BeginLabel = MMI.getContext().createTempSymbol(); 8237 8238 // For SjLj, keep track of which landing pads go with which invokes 8239 // so as to maintain the ordering of pads in the LSDA. 8240 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8241 if (CallSiteIndex) { 8242 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8243 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8244 8245 // Now that the call site is handled, stop tracking it. 8246 MMI.setCurrentCallSite(0); 8247 } 8248 8249 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8250 } 8251 8252 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8253 const BasicBlock *EHPadBB, 8254 MCSymbol *BeginLabel) { 8255 assert(BeginLabel && "BeginLabel should've been set"); 8256 8257 MachineFunction &MF = DAG.getMachineFunction(); 8258 MachineModuleInfo &MMI = MF.getMMI(); 8259 8260 // Insert a label at the end of the invoke call to mark the try range. This 8261 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8262 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8263 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8264 8265 // Inform MachineModuleInfo of range. 8266 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8267 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8268 // actually use outlined funclets and their LSDA info style. 8269 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8270 assert(II && "II should've been set"); 8271 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8272 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8273 } else if (!isScopedEHPersonality(Pers)) { 8274 assert(EHPadBB); 8275 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8276 } 8277 8278 return Chain; 8279 } 8280 8281 std::pair<SDValue, SDValue> 8282 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8283 const BasicBlock *EHPadBB) { 8284 MCSymbol *BeginLabel = nullptr; 8285 8286 if (EHPadBB) { 8287 // Both PendingLoads and PendingExports must be flushed here; 8288 // this call might not return. 8289 (void)getRoot(); 8290 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8291 CLI.setChain(getRoot()); 8292 } 8293 8294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8295 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8296 8297 assert((CLI.IsTailCall || Result.second.getNode()) && 8298 "Non-null chain expected with non-tail call!"); 8299 assert((Result.second.getNode() || !Result.first.getNode()) && 8300 "Null value expected with tail call!"); 8301 8302 if (!Result.second.getNode()) { 8303 // As a special case, a null chain means that a tail call has been emitted 8304 // and the DAG root is already updated. 8305 HasTailCall = true; 8306 8307 // Since there's no actual continuation from this block, nothing can be 8308 // relying on us setting vregs for them. 8309 PendingExports.clear(); 8310 } else { 8311 DAG.setRoot(Result.second); 8312 } 8313 8314 if (EHPadBB) { 8315 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8316 BeginLabel)); 8317 } 8318 8319 return Result; 8320 } 8321 8322 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8323 bool isTailCall, 8324 bool isMustTailCall, 8325 const BasicBlock *EHPadBB) { 8326 auto &DL = DAG.getDataLayout(); 8327 FunctionType *FTy = CB.getFunctionType(); 8328 Type *RetTy = CB.getType(); 8329 8330 TargetLowering::ArgListTy Args; 8331 Args.reserve(CB.arg_size()); 8332 8333 const Value *SwiftErrorVal = nullptr; 8334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8335 8336 if (isTailCall) { 8337 // Avoid emitting tail calls in functions with the disable-tail-calls 8338 // attribute. 8339 auto *Caller = CB.getParent()->getParent(); 8340 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8341 "true" && !isMustTailCall) 8342 isTailCall = false; 8343 8344 // We can't tail call inside a function with a swifterror argument. Lowering 8345 // does not support this yet. It would have to move into the swifterror 8346 // register before the call. 8347 if (TLI.supportSwiftError() && 8348 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8349 isTailCall = false; 8350 } 8351 8352 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8353 TargetLowering::ArgListEntry Entry; 8354 const Value *V = *I; 8355 8356 // Skip empty types 8357 if (V->getType()->isEmptyTy()) 8358 continue; 8359 8360 SDValue ArgNode = getValue(V); 8361 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8362 8363 Entry.setAttributes(&CB, I - CB.arg_begin()); 8364 8365 // Use swifterror virtual register as input to the call. 8366 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8367 SwiftErrorVal = V; 8368 // We find the virtual register for the actual swifterror argument. 8369 // Instead of using the Value, we use the virtual register instead. 8370 Entry.Node = 8371 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8372 EVT(TLI.getPointerTy(DL))); 8373 } 8374 8375 Args.push_back(Entry); 8376 8377 // If we have an explicit sret argument that is an Instruction, (i.e., it 8378 // might point to function-local memory), we can't meaningfully tail-call. 8379 if (Entry.IsSRet && isa<Instruction>(V)) 8380 isTailCall = false; 8381 } 8382 8383 // If call site has a cfguardtarget operand bundle, create and add an 8384 // additional ArgListEntry. 8385 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8386 TargetLowering::ArgListEntry Entry; 8387 Value *V = Bundle->Inputs[0]; 8388 SDValue ArgNode = getValue(V); 8389 Entry.Node = ArgNode; 8390 Entry.Ty = V->getType(); 8391 Entry.IsCFGuardTarget = true; 8392 Args.push_back(Entry); 8393 } 8394 8395 // Check if target-independent constraints permit a tail call here. 8396 // Target-dependent constraints are checked within TLI->LowerCallTo. 8397 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8398 isTailCall = false; 8399 8400 // Disable tail calls if there is an swifterror argument. Targets have not 8401 // been updated to support tail calls. 8402 if (TLI.supportSwiftError() && SwiftErrorVal) 8403 isTailCall = false; 8404 8405 ConstantInt *CFIType = nullptr; 8406 if (CB.isIndirectCall()) { 8407 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8408 if (!TLI.supportKCFIBundles()) 8409 report_fatal_error( 8410 "Target doesn't support calls with kcfi operand bundles."); 8411 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8412 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8413 } 8414 } 8415 8416 TargetLowering::CallLoweringInfo CLI(DAG); 8417 CLI.setDebugLoc(getCurSDLoc()) 8418 .setChain(getRoot()) 8419 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8420 .setTailCall(isTailCall) 8421 .setConvergent(CB.isConvergent()) 8422 .setIsPreallocated( 8423 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8424 .setCFIType(CFIType); 8425 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8426 8427 if (Result.first.getNode()) { 8428 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8429 setValue(&CB, Result.first); 8430 } 8431 8432 // The last element of CLI.InVals has the SDValue for swifterror return. 8433 // Here we copy it to a virtual register and update SwiftErrorMap for 8434 // book-keeping. 8435 if (SwiftErrorVal && TLI.supportSwiftError()) { 8436 // Get the last element of InVals. 8437 SDValue Src = CLI.InVals.back(); 8438 Register VReg = 8439 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8440 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8441 DAG.setRoot(CopyNode); 8442 } 8443 } 8444 8445 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8446 SelectionDAGBuilder &Builder) { 8447 // Check to see if this load can be trivially constant folded, e.g. if the 8448 // input is from a string literal. 8449 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8450 // Cast pointer to the type we really want to load. 8451 Type *LoadTy = 8452 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8453 if (LoadVT.isVector()) 8454 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8455 8456 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8457 PointerType::getUnqual(LoadTy)); 8458 8459 if (const Constant *LoadCst = 8460 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8461 LoadTy, Builder.DAG.getDataLayout())) 8462 return Builder.getValue(LoadCst); 8463 } 8464 8465 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8466 // still constant memory, the input chain can be the entry node. 8467 SDValue Root; 8468 bool ConstantMemory = false; 8469 8470 // Do not serialize (non-volatile) loads of constant memory with anything. 8471 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8472 Root = Builder.DAG.getEntryNode(); 8473 ConstantMemory = true; 8474 } else { 8475 // Do not serialize non-volatile loads against each other. 8476 Root = Builder.DAG.getRoot(); 8477 } 8478 8479 SDValue Ptr = Builder.getValue(PtrVal); 8480 SDValue LoadVal = 8481 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8482 MachinePointerInfo(PtrVal), Align(1)); 8483 8484 if (!ConstantMemory) 8485 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8486 return LoadVal; 8487 } 8488 8489 /// Record the value for an instruction that produces an integer result, 8490 /// converting the type where necessary. 8491 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8492 SDValue Value, 8493 bool IsSigned) { 8494 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8495 I.getType(), true); 8496 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8497 setValue(&I, Value); 8498 } 8499 8500 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8501 /// true and lower it. Otherwise return false, and it will be lowered like a 8502 /// normal call. 8503 /// The caller already checked that \p I calls the appropriate LibFunc with a 8504 /// correct prototype. 8505 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8506 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8507 const Value *Size = I.getArgOperand(2); 8508 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8509 if (CSize && CSize->getZExtValue() == 0) { 8510 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8511 I.getType(), true); 8512 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8513 return true; 8514 } 8515 8516 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8517 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8518 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8519 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8520 if (Res.first.getNode()) { 8521 processIntegerCallValue(I, Res.first, true); 8522 PendingLoads.push_back(Res.second); 8523 return true; 8524 } 8525 8526 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8527 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8528 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8529 return false; 8530 8531 // If the target has a fast compare for the given size, it will return a 8532 // preferred load type for that size. Require that the load VT is legal and 8533 // that the target supports unaligned loads of that type. Otherwise, return 8534 // INVALID. 8535 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8537 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8538 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8539 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8540 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8541 // TODO: Check alignment of src and dest ptrs. 8542 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8543 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8544 if (!TLI.isTypeLegal(LVT) || 8545 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8546 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8547 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8548 } 8549 8550 return LVT; 8551 }; 8552 8553 // This turns into unaligned loads. We only do this if the target natively 8554 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8555 // we'll only produce a small number of byte loads. 8556 MVT LoadVT; 8557 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8558 switch (NumBitsToCompare) { 8559 default: 8560 return false; 8561 case 16: 8562 LoadVT = MVT::i16; 8563 break; 8564 case 32: 8565 LoadVT = MVT::i32; 8566 break; 8567 case 64: 8568 case 128: 8569 case 256: 8570 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8571 break; 8572 } 8573 8574 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8575 return false; 8576 8577 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8578 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8579 8580 // Bitcast to a wide integer type if the loads are vectors. 8581 if (LoadVT.isVector()) { 8582 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8583 LoadL = DAG.getBitcast(CmpVT, LoadL); 8584 LoadR = DAG.getBitcast(CmpVT, LoadR); 8585 } 8586 8587 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8588 processIntegerCallValue(I, Cmp, false); 8589 return true; 8590 } 8591 8592 /// See if we can lower a memchr call into an optimized form. If so, return 8593 /// true and lower it. Otherwise return false, and it will be lowered like a 8594 /// normal call. 8595 /// The caller already checked that \p I calls the appropriate LibFunc with a 8596 /// correct prototype. 8597 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8598 const Value *Src = I.getArgOperand(0); 8599 const Value *Char = I.getArgOperand(1); 8600 const Value *Length = I.getArgOperand(2); 8601 8602 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8603 std::pair<SDValue, SDValue> Res = 8604 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8605 getValue(Src), getValue(Char), getValue(Length), 8606 MachinePointerInfo(Src)); 8607 if (Res.first.getNode()) { 8608 setValue(&I, Res.first); 8609 PendingLoads.push_back(Res.second); 8610 return true; 8611 } 8612 8613 return false; 8614 } 8615 8616 /// See if we can lower a mempcpy call into an optimized form. If so, return 8617 /// true and lower it. Otherwise return false, and it will be lowered like a 8618 /// normal call. 8619 /// The caller already checked that \p I calls the appropriate LibFunc with a 8620 /// correct prototype. 8621 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8622 SDValue Dst = getValue(I.getArgOperand(0)); 8623 SDValue Src = getValue(I.getArgOperand(1)); 8624 SDValue Size = getValue(I.getArgOperand(2)); 8625 8626 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8627 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8628 // DAG::getMemcpy needs Alignment to be defined. 8629 Align Alignment = std::min(DstAlign, SrcAlign); 8630 8631 SDLoc sdl = getCurSDLoc(); 8632 8633 // In the mempcpy context we need to pass in a false value for isTailCall 8634 // because the return pointer needs to be adjusted by the size of 8635 // the copied memory. 8636 SDValue Root = getMemoryRoot(); 8637 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8638 /*isTailCall=*/false, 8639 MachinePointerInfo(I.getArgOperand(0)), 8640 MachinePointerInfo(I.getArgOperand(1)), 8641 I.getAAMetadata()); 8642 assert(MC.getNode() != nullptr && 8643 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8644 DAG.setRoot(MC); 8645 8646 // Check if Size needs to be truncated or extended. 8647 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8648 8649 // Adjust return pointer to point just past the last dst byte. 8650 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8651 Dst, Size); 8652 setValue(&I, DstPlusSize); 8653 return true; 8654 } 8655 8656 /// See if we can lower a strcpy call into an optimized form. If so, return 8657 /// true and lower it, otherwise return false and it will be lowered like a 8658 /// normal call. 8659 /// The caller already checked that \p I calls the appropriate LibFunc with a 8660 /// correct prototype. 8661 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8662 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8663 8664 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8665 std::pair<SDValue, SDValue> Res = 8666 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8667 getValue(Arg0), getValue(Arg1), 8668 MachinePointerInfo(Arg0), 8669 MachinePointerInfo(Arg1), isStpcpy); 8670 if (Res.first.getNode()) { 8671 setValue(&I, Res.first); 8672 DAG.setRoot(Res.second); 8673 return true; 8674 } 8675 8676 return false; 8677 } 8678 8679 /// See if we can lower a strcmp call into an optimized form. If so, return 8680 /// true and lower it, otherwise return false and it will be lowered like a 8681 /// normal call. 8682 /// The caller already checked that \p I calls the appropriate LibFunc with a 8683 /// correct prototype. 8684 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8685 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8686 8687 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8688 std::pair<SDValue, SDValue> Res = 8689 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8690 getValue(Arg0), getValue(Arg1), 8691 MachinePointerInfo(Arg0), 8692 MachinePointerInfo(Arg1)); 8693 if (Res.first.getNode()) { 8694 processIntegerCallValue(I, Res.first, true); 8695 PendingLoads.push_back(Res.second); 8696 return true; 8697 } 8698 8699 return false; 8700 } 8701 8702 /// See if we can lower a strlen call into an optimized form. If so, return 8703 /// true and lower it, otherwise return false and it will be lowered like a 8704 /// normal call. 8705 /// The caller already checked that \p I calls the appropriate LibFunc with a 8706 /// correct prototype. 8707 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8708 const Value *Arg0 = I.getArgOperand(0); 8709 8710 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8711 std::pair<SDValue, SDValue> Res = 8712 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8713 getValue(Arg0), MachinePointerInfo(Arg0)); 8714 if (Res.first.getNode()) { 8715 processIntegerCallValue(I, Res.first, false); 8716 PendingLoads.push_back(Res.second); 8717 return true; 8718 } 8719 8720 return false; 8721 } 8722 8723 /// See if we can lower a strnlen call into an optimized form. If so, return 8724 /// true and lower it, otherwise return false and it will be lowered like a 8725 /// normal call. 8726 /// The caller already checked that \p I calls the appropriate LibFunc with a 8727 /// correct prototype. 8728 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8729 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8730 8731 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8732 std::pair<SDValue, SDValue> Res = 8733 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8734 getValue(Arg0), getValue(Arg1), 8735 MachinePointerInfo(Arg0)); 8736 if (Res.first.getNode()) { 8737 processIntegerCallValue(I, Res.first, false); 8738 PendingLoads.push_back(Res.second); 8739 return true; 8740 } 8741 8742 return false; 8743 } 8744 8745 /// See if we can lower a unary floating-point operation into an SDNode with 8746 /// the specified Opcode. If so, return true and lower it, otherwise return 8747 /// false and it will be lowered like a normal call. 8748 /// The caller already checked that \p I calls the appropriate LibFunc with a 8749 /// correct prototype. 8750 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8751 unsigned Opcode) { 8752 // We already checked this call's prototype; verify it doesn't modify errno. 8753 if (!I.onlyReadsMemory()) 8754 return false; 8755 8756 SDNodeFlags Flags; 8757 Flags.copyFMF(cast<FPMathOperator>(I)); 8758 8759 SDValue Tmp = getValue(I.getArgOperand(0)); 8760 setValue(&I, 8761 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8762 return true; 8763 } 8764 8765 /// See if we can lower a binary floating-point operation into an SDNode with 8766 /// the specified Opcode. If so, return true and lower it. Otherwise return 8767 /// false, and it will be lowered like a normal call. 8768 /// The caller already checked that \p I calls the appropriate LibFunc with a 8769 /// correct prototype. 8770 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8771 unsigned Opcode) { 8772 // We already checked this call's prototype; verify it doesn't modify errno. 8773 if (!I.onlyReadsMemory()) 8774 return false; 8775 8776 SDNodeFlags Flags; 8777 Flags.copyFMF(cast<FPMathOperator>(I)); 8778 8779 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8780 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8781 EVT VT = Tmp0.getValueType(); 8782 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8783 return true; 8784 } 8785 8786 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8787 // Handle inline assembly differently. 8788 if (I.isInlineAsm()) { 8789 visitInlineAsm(I); 8790 return; 8791 } 8792 8793 diagnoseDontCall(I); 8794 8795 if (Function *F = I.getCalledFunction()) { 8796 if (F->isDeclaration()) { 8797 // Is this an LLVM intrinsic or a target-specific intrinsic? 8798 unsigned IID = F->getIntrinsicID(); 8799 if (!IID) 8800 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8801 IID = II->getIntrinsicID(F); 8802 8803 if (IID) { 8804 visitIntrinsicCall(I, IID); 8805 return; 8806 } 8807 } 8808 8809 // Check for well-known libc/libm calls. If the function is internal, it 8810 // can't be a library call. Don't do the check if marked as nobuiltin for 8811 // some reason or the call site requires strict floating point semantics. 8812 LibFunc Func; 8813 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8814 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8815 LibInfo->hasOptimizedCodeGen(Func)) { 8816 switch (Func) { 8817 default: break; 8818 case LibFunc_bcmp: 8819 if (visitMemCmpBCmpCall(I)) 8820 return; 8821 break; 8822 case LibFunc_copysign: 8823 case LibFunc_copysignf: 8824 case LibFunc_copysignl: 8825 // We already checked this call's prototype; verify it doesn't modify 8826 // errno. 8827 if (I.onlyReadsMemory()) { 8828 SDValue LHS = getValue(I.getArgOperand(0)); 8829 SDValue RHS = getValue(I.getArgOperand(1)); 8830 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8831 LHS.getValueType(), LHS, RHS)); 8832 return; 8833 } 8834 break; 8835 case LibFunc_fabs: 8836 case LibFunc_fabsf: 8837 case LibFunc_fabsl: 8838 if (visitUnaryFloatCall(I, ISD::FABS)) 8839 return; 8840 break; 8841 case LibFunc_fmin: 8842 case LibFunc_fminf: 8843 case LibFunc_fminl: 8844 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8845 return; 8846 break; 8847 case LibFunc_fmax: 8848 case LibFunc_fmaxf: 8849 case LibFunc_fmaxl: 8850 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8851 return; 8852 break; 8853 case LibFunc_sin: 8854 case LibFunc_sinf: 8855 case LibFunc_sinl: 8856 if (visitUnaryFloatCall(I, ISD::FSIN)) 8857 return; 8858 break; 8859 case LibFunc_cos: 8860 case LibFunc_cosf: 8861 case LibFunc_cosl: 8862 if (visitUnaryFloatCall(I, ISD::FCOS)) 8863 return; 8864 break; 8865 case LibFunc_sqrt: 8866 case LibFunc_sqrtf: 8867 case LibFunc_sqrtl: 8868 case LibFunc_sqrt_finite: 8869 case LibFunc_sqrtf_finite: 8870 case LibFunc_sqrtl_finite: 8871 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8872 return; 8873 break; 8874 case LibFunc_floor: 8875 case LibFunc_floorf: 8876 case LibFunc_floorl: 8877 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8878 return; 8879 break; 8880 case LibFunc_nearbyint: 8881 case LibFunc_nearbyintf: 8882 case LibFunc_nearbyintl: 8883 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8884 return; 8885 break; 8886 case LibFunc_ceil: 8887 case LibFunc_ceilf: 8888 case LibFunc_ceill: 8889 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8890 return; 8891 break; 8892 case LibFunc_rint: 8893 case LibFunc_rintf: 8894 case LibFunc_rintl: 8895 if (visitUnaryFloatCall(I, ISD::FRINT)) 8896 return; 8897 break; 8898 case LibFunc_round: 8899 case LibFunc_roundf: 8900 case LibFunc_roundl: 8901 if (visitUnaryFloatCall(I, ISD::FROUND)) 8902 return; 8903 break; 8904 case LibFunc_trunc: 8905 case LibFunc_truncf: 8906 case LibFunc_truncl: 8907 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8908 return; 8909 break; 8910 case LibFunc_log2: 8911 case LibFunc_log2f: 8912 case LibFunc_log2l: 8913 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8914 return; 8915 break; 8916 case LibFunc_exp2: 8917 case LibFunc_exp2f: 8918 case LibFunc_exp2l: 8919 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8920 return; 8921 break; 8922 case LibFunc_exp10: 8923 case LibFunc_exp10f: 8924 case LibFunc_exp10l: 8925 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8926 return; 8927 break; 8928 case LibFunc_ldexp: 8929 case LibFunc_ldexpf: 8930 case LibFunc_ldexpl: 8931 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8932 return; 8933 break; 8934 case LibFunc_memcmp: 8935 if (visitMemCmpBCmpCall(I)) 8936 return; 8937 break; 8938 case LibFunc_mempcpy: 8939 if (visitMemPCpyCall(I)) 8940 return; 8941 break; 8942 case LibFunc_memchr: 8943 if (visitMemChrCall(I)) 8944 return; 8945 break; 8946 case LibFunc_strcpy: 8947 if (visitStrCpyCall(I, false)) 8948 return; 8949 break; 8950 case LibFunc_stpcpy: 8951 if (visitStrCpyCall(I, true)) 8952 return; 8953 break; 8954 case LibFunc_strcmp: 8955 if (visitStrCmpCall(I)) 8956 return; 8957 break; 8958 case LibFunc_strlen: 8959 if (visitStrLenCall(I)) 8960 return; 8961 break; 8962 case LibFunc_strnlen: 8963 if (visitStrNLenCall(I)) 8964 return; 8965 break; 8966 } 8967 } 8968 } 8969 8970 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8971 // have to do anything here to lower funclet bundles. 8972 // CFGuardTarget bundles are lowered in LowerCallTo. 8973 assert(!I.hasOperandBundlesOtherThan( 8974 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8975 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8976 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8977 "Cannot lower calls with arbitrary operand bundles!"); 8978 8979 SDValue Callee = getValue(I.getCalledOperand()); 8980 8981 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8982 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8983 else 8984 // Check if we can potentially perform a tail call. More detailed checking 8985 // is be done within LowerCallTo, after more information about the call is 8986 // known. 8987 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8988 } 8989 8990 namespace { 8991 8992 /// AsmOperandInfo - This contains information for each constraint that we are 8993 /// lowering. 8994 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8995 public: 8996 /// CallOperand - If this is the result output operand or a clobber 8997 /// this is null, otherwise it is the incoming operand to the CallInst. 8998 /// This gets modified as the asm is processed. 8999 SDValue CallOperand; 9000 9001 /// AssignedRegs - If this is a register or register class operand, this 9002 /// contains the set of register corresponding to the operand. 9003 RegsForValue AssignedRegs; 9004 9005 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9006 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9007 } 9008 9009 /// Whether or not this operand accesses memory 9010 bool hasMemory(const TargetLowering &TLI) const { 9011 // Indirect operand accesses access memory. 9012 if (isIndirect) 9013 return true; 9014 9015 for (const auto &Code : Codes) 9016 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9017 return true; 9018 9019 return false; 9020 } 9021 }; 9022 9023 9024 } // end anonymous namespace 9025 9026 /// Make sure that the output operand \p OpInfo and its corresponding input 9027 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9028 /// out). 9029 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9030 SDISelAsmOperandInfo &MatchingOpInfo, 9031 SelectionDAG &DAG) { 9032 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9033 return; 9034 9035 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9036 const auto &TLI = DAG.getTargetLoweringInfo(); 9037 9038 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9039 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9040 OpInfo.ConstraintVT); 9041 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9042 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9043 MatchingOpInfo.ConstraintVT); 9044 if ((OpInfo.ConstraintVT.isInteger() != 9045 MatchingOpInfo.ConstraintVT.isInteger()) || 9046 (MatchRC.second != InputRC.second)) { 9047 // FIXME: error out in a more elegant fashion 9048 report_fatal_error("Unsupported asm: input constraint" 9049 " with a matching output constraint of" 9050 " incompatible type!"); 9051 } 9052 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9053 } 9054 9055 /// Get a direct memory input to behave well as an indirect operand. 9056 /// This may introduce stores, hence the need for a \p Chain. 9057 /// \return The (possibly updated) chain. 9058 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9059 SDISelAsmOperandInfo &OpInfo, 9060 SelectionDAG &DAG) { 9061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9062 9063 // If we don't have an indirect input, put it in the constpool if we can, 9064 // otherwise spill it to a stack slot. 9065 // TODO: This isn't quite right. We need to handle these according to 9066 // the addressing mode that the constraint wants. Also, this may take 9067 // an additional register for the computation and we don't want that 9068 // either. 9069 9070 // If the operand is a float, integer, or vector constant, spill to a 9071 // constant pool entry to get its address. 9072 const Value *OpVal = OpInfo.CallOperandVal; 9073 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9074 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9075 OpInfo.CallOperand = DAG.getConstantPool( 9076 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9077 return Chain; 9078 } 9079 9080 // Otherwise, create a stack slot and emit a store to it before the asm. 9081 Type *Ty = OpVal->getType(); 9082 auto &DL = DAG.getDataLayout(); 9083 uint64_t TySize = DL.getTypeAllocSize(Ty); 9084 MachineFunction &MF = DAG.getMachineFunction(); 9085 int SSFI = MF.getFrameInfo().CreateStackObject( 9086 TySize, DL.getPrefTypeAlign(Ty), false); 9087 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9088 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9089 MachinePointerInfo::getFixedStack(MF, SSFI), 9090 TLI.getMemValueType(DL, Ty)); 9091 OpInfo.CallOperand = StackSlot; 9092 9093 return Chain; 9094 } 9095 9096 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9097 /// specified operand. We prefer to assign virtual registers, to allow the 9098 /// register allocator to handle the assignment process. However, if the asm 9099 /// uses features that we can't model on machineinstrs, we have SDISel do the 9100 /// allocation. This produces generally horrible, but correct, code. 9101 /// 9102 /// OpInfo describes the operand 9103 /// RefOpInfo describes the matching operand if any, the operand otherwise 9104 static std::optional<unsigned> 9105 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9106 SDISelAsmOperandInfo &OpInfo, 9107 SDISelAsmOperandInfo &RefOpInfo) { 9108 LLVMContext &Context = *DAG.getContext(); 9109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9110 9111 MachineFunction &MF = DAG.getMachineFunction(); 9112 SmallVector<unsigned, 4> Regs; 9113 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9114 9115 // No work to do for memory/address operands. 9116 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9117 OpInfo.ConstraintType == TargetLowering::C_Address) 9118 return std::nullopt; 9119 9120 // If this is a constraint for a single physreg, or a constraint for a 9121 // register class, find it. 9122 unsigned AssignedReg; 9123 const TargetRegisterClass *RC; 9124 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9125 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9126 // RC is unset only on failure. Return immediately. 9127 if (!RC) 9128 return std::nullopt; 9129 9130 // Get the actual register value type. This is important, because the user 9131 // may have asked for (e.g.) the AX register in i32 type. We need to 9132 // remember that AX is actually i16 to get the right extension. 9133 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9134 9135 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9136 // If this is an FP operand in an integer register (or visa versa), or more 9137 // generally if the operand value disagrees with the register class we plan 9138 // to stick it in, fix the operand type. 9139 // 9140 // If this is an input value, the bitcast to the new type is done now. 9141 // Bitcast for output value is done at the end of visitInlineAsm(). 9142 if ((OpInfo.Type == InlineAsm::isOutput || 9143 OpInfo.Type == InlineAsm::isInput) && 9144 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9145 // Try to convert to the first EVT that the reg class contains. If the 9146 // types are identical size, use a bitcast to convert (e.g. two differing 9147 // vector types). Note: output bitcast is done at the end of 9148 // visitInlineAsm(). 9149 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9150 // Exclude indirect inputs while they are unsupported because the code 9151 // to perform the load is missing and thus OpInfo.CallOperand still 9152 // refers to the input address rather than the pointed-to value. 9153 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9154 OpInfo.CallOperand = 9155 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9156 OpInfo.ConstraintVT = RegVT; 9157 // If the operand is an FP value and we want it in integer registers, 9158 // use the corresponding integer type. This turns an f64 value into 9159 // i64, which can be passed with two i32 values on a 32-bit machine. 9160 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9161 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9162 if (OpInfo.Type == InlineAsm::isInput) 9163 OpInfo.CallOperand = 9164 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9165 OpInfo.ConstraintVT = VT; 9166 } 9167 } 9168 } 9169 9170 // No need to allocate a matching input constraint since the constraint it's 9171 // matching to has already been allocated. 9172 if (OpInfo.isMatchingInputConstraint()) 9173 return std::nullopt; 9174 9175 EVT ValueVT = OpInfo.ConstraintVT; 9176 if (OpInfo.ConstraintVT == MVT::Other) 9177 ValueVT = RegVT; 9178 9179 // Initialize NumRegs. 9180 unsigned NumRegs = 1; 9181 if (OpInfo.ConstraintVT != MVT::Other) 9182 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9183 9184 // If this is a constraint for a specific physical register, like {r17}, 9185 // assign it now. 9186 9187 // If this associated to a specific register, initialize iterator to correct 9188 // place. If virtual, make sure we have enough registers 9189 9190 // Initialize iterator if necessary 9191 TargetRegisterClass::iterator I = RC->begin(); 9192 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9193 9194 // Do not check for single registers. 9195 if (AssignedReg) { 9196 I = std::find(I, RC->end(), AssignedReg); 9197 if (I == RC->end()) { 9198 // RC does not contain the selected register, which indicates a 9199 // mismatch between the register and the required type/bitwidth. 9200 return {AssignedReg}; 9201 } 9202 } 9203 9204 for (; NumRegs; --NumRegs, ++I) { 9205 assert(I != RC->end() && "Ran out of registers to allocate!"); 9206 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9207 Regs.push_back(R); 9208 } 9209 9210 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9211 return std::nullopt; 9212 } 9213 9214 static unsigned 9215 findMatchingInlineAsmOperand(unsigned OperandNo, 9216 const std::vector<SDValue> &AsmNodeOperands) { 9217 // Scan until we find the definition we already emitted of this operand. 9218 unsigned CurOp = InlineAsm::Op_FirstOperand; 9219 for (; OperandNo; --OperandNo) { 9220 // Advance to the next operand. 9221 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9222 const InlineAsm::Flag F(OpFlag); 9223 assert( 9224 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9225 "Skipped past definitions?"); 9226 CurOp += F.getNumOperandRegisters() + 1; 9227 } 9228 return CurOp; 9229 } 9230 9231 namespace { 9232 9233 class ExtraFlags { 9234 unsigned Flags = 0; 9235 9236 public: 9237 explicit ExtraFlags(const CallBase &Call) { 9238 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9239 if (IA->hasSideEffects()) 9240 Flags |= InlineAsm::Extra_HasSideEffects; 9241 if (IA->isAlignStack()) 9242 Flags |= InlineAsm::Extra_IsAlignStack; 9243 if (Call.isConvergent()) 9244 Flags |= InlineAsm::Extra_IsConvergent; 9245 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9246 } 9247 9248 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9249 // Ideally, we would only check against memory constraints. However, the 9250 // meaning of an Other constraint can be target-specific and we can't easily 9251 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9252 // for Other constraints as well. 9253 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9254 OpInfo.ConstraintType == TargetLowering::C_Other) { 9255 if (OpInfo.Type == InlineAsm::isInput) 9256 Flags |= InlineAsm::Extra_MayLoad; 9257 else if (OpInfo.Type == InlineAsm::isOutput) 9258 Flags |= InlineAsm::Extra_MayStore; 9259 else if (OpInfo.Type == InlineAsm::isClobber) 9260 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9261 } 9262 } 9263 9264 unsigned get() const { return Flags; } 9265 }; 9266 9267 } // end anonymous namespace 9268 9269 static bool isFunction(SDValue Op) { 9270 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9271 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9272 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9273 9274 // In normal "call dllimport func" instruction (non-inlineasm) it force 9275 // indirect access by specifing call opcode. And usually specially print 9276 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9277 // not do in this way now. (In fact, this is similar with "Data Access" 9278 // action). So here we ignore dllimport function. 9279 if (Fn && !Fn->hasDLLImportStorageClass()) 9280 return true; 9281 } 9282 } 9283 return false; 9284 } 9285 9286 /// visitInlineAsm - Handle a call to an InlineAsm object. 9287 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9288 const BasicBlock *EHPadBB) { 9289 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9290 9291 /// ConstraintOperands - Information about all of the constraints. 9292 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9293 9294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9295 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9296 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9297 9298 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9299 // AsmDialect, MayLoad, MayStore). 9300 bool HasSideEffect = IA->hasSideEffects(); 9301 ExtraFlags ExtraInfo(Call); 9302 9303 for (auto &T : TargetConstraints) { 9304 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9305 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9306 9307 if (OpInfo.CallOperandVal) 9308 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9309 9310 if (!HasSideEffect) 9311 HasSideEffect = OpInfo.hasMemory(TLI); 9312 9313 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9314 // FIXME: Could we compute this on OpInfo rather than T? 9315 9316 // Compute the constraint code and ConstraintType to use. 9317 TLI.ComputeConstraintToUse(T, SDValue()); 9318 9319 if (T.ConstraintType == TargetLowering::C_Immediate && 9320 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9321 // We've delayed emitting a diagnostic like the "n" constraint because 9322 // inlining could cause an integer showing up. 9323 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9324 "' expects an integer constant " 9325 "expression"); 9326 9327 ExtraInfo.update(T); 9328 } 9329 9330 // We won't need to flush pending loads if this asm doesn't touch 9331 // memory and is nonvolatile. 9332 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9333 9334 bool EmitEHLabels = isa<InvokeInst>(Call); 9335 if (EmitEHLabels) { 9336 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9337 } 9338 bool IsCallBr = isa<CallBrInst>(Call); 9339 9340 if (IsCallBr || EmitEHLabels) { 9341 // If this is a callbr or invoke we need to flush pending exports since 9342 // inlineasm_br and invoke are terminators. 9343 // We need to do this before nodes are glued to the inlineasm_br node. 9344 Chain = getControlRoot(); 9345 } 9346 9347 MCSymbol *BeginLabel = nullptr; 9348 if (EmitEHLabels) { 9349 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9350 } 9351 9352 int OpNo = -1; 9353 SmallVector<StringRef> AsmStrs; 9354 IA->collectAsmStrs(AsmStrs); 9355 9356 // Second pass over the constraints: compute which constraint option to use. 9357 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9358 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9359 OpNo++; 9360 9361 // If this is an output operand with a matching input operand, look up the 9362 // matching input. If their types mismatch, e.g. one is an integer, the 9363 // other is floating point, or their sizes are different, flag it as an 9364 // error. 9365 if (OpInfo.hasMatchingInput()) { 9366 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9367 patchMatchingInput(OpInfo, Input, DAG); 9368 } 9369 9370 // Compute the constraint code and ConstraintType to use. 9371 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9372 9373 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9374 OpInfo.Type == InlineAsm::isClobber) || 9375 OpInfo.ConstraintType == TargetLowering::C_Address) 9376 continue; 9377 9378 // In Linux PIC model, there are 4 cases about value/label addressing: 9379 // 9380 // 1: Function call or Label jmp inside the module. 9381 // 2: Data access (such as global variable, static variable) inside module. 9382 // 3: Function call or Label jmp outside the module. 9383 // 4: Data access (such as global variable) outside the module. 9384 // 9385 // Due to current llvm inline asm architecture designed to not "recognize" 9386 // the asm code, there are quite troubles for us to treat mem addressing 9387 // differently for same value/adress used in different instuctions. 9388 // For example, in pic model, call a func may in plt way or direclty 9389 // pc-related, but lea/mov a function adress may use got. 9390 // 9391 // Here we try to "recognize" function call for the case 1 and case 3 in 9392 // inline asm. And try to adjust the constraint for them. 9393 // 9394 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9395 // label, so here we don't handle jmp function label now, but we need to 9396 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9397 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9398 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9399 TM.getCodeModel() != CodeModel::Large) { 9400 OpInfo.isIndirect = false; 9401 OpInfo.ConstraintType = TargetLowering::C_Address; 9402 } 9403 9404 // If this is a memory input, and if the operand is not indirect, do what we 9405 // need to provide an address for the memory input. 9406 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9407 !OpInfo.isIndirect) { 9408 assert((OpInfo.isMultipleAlternative || 9409 (OpInfo.Type == InlineAsm::isInput)) && 9410 "Can only indirectify direct input operands!"); 9411 9412 // Memory operands really want the address of the value. 9413 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9414 9415 // There is no longer a Value* corresponding to this operand. 9416 OpInfo.CallOperandVal = nullptr; 9417 9418 // It is now an indirect operand. 9419 OpInfo.isIndirect = true; 9420 } 9421 9422 } 9423 9424 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9425 std::vector<SDValue> AsmNodeOperands; 9426 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9427 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9428 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9429 9430 // If we have a !srcloc metadata node associated with it, we want to attach 9431 // this to the ultimately generated inline asm machineinstr. To do this, we 9432 // pass in the third operand as this (potentially null) inline asm MDNode. 9433 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9434 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9435 9436 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9437 // bits as operand 3. 9438 AsmNodeOperands.push_back(DAG.getTargetConstant( 9439 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9440 9441 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9442 // this, assign virtual and physical registers for inputs and otput. 9443 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9444 // Assign Registers. 9445 SDISelAsmOperandInfo &RefOpInfo = 9446 OpInfo.isMatchingInputConstraint() 9447 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9448 : OpInfo; 9449 const auto RegError = 9450 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9451 if (RegError) { 9452 const MachineFunction &MF = DAG.getMachineFunction(); 9453 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9454 const char *RegName = TRI.getName(*RegError); 9455 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9456 "' allocated for constraint '" + 9457 Twine(OpInfo.ConstraintCode) + 9458 "' does not match required type"); 9459 return; 9460 } 9461 9462 auto DetectWriteToReservedRegister = [&]() { 9463 const MachineFunction &MF = DAG.getMachineFunction(); 9464 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9465 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9466 if (Register::isPhysicalRegister(Reg) && 9467 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9468 const char *RegName = TRI.getName(Reg); 9469 emitInlineAsmError(Call, "write to reserved register '" + 9470 Twine(RegName) + "'"); 9471 return true; 9472 } 9473 } 9474 return false; 9475 }; 9476 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9477 (OpInfo.Type == InlineAsm::isInput && 9478 !OpInfo.isMatchingInputConstraint())) && 9479 "Only address as input operand is allowed."); 9480 9481 switch (OpInfo.Type) { 9482 case InlineAsm::isOutput: 9483 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9484 const InlineAsm::ConstraintCode ConstraintID = 9485 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9486 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9487 "Failed to convert memory constraint code to constraint id."); 9488 9489 // Add information to the INLINEASM node to know about this output. 9490 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9491 OpFlags.setMemConstraint(ConstraintID); 9492 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9493 MVT::i32)); 9494 AsmNodeOperands.push_back(OpInfo.CallOperand); 9495 } else { 9496 // Otherwise, this outputs to a register (directly for C_Register / 9497 // C_RegisterClass, and a target-defined fashion for 9498 // C_Immediate/C_Other). Find a register that we can use. 9499 if (OpInfo.AssignedRegs.Regs.empty()) { 9500 emitInlineAsmError( 9501 Call, "couldn't allocate output register for constraint '" + 9502 Twine(OpInfo.ConstraintCode) + "'"); 9503 return; 9504 } 9505 9506 if (DetectWriteToReservedRegister()) 9507 return; 9508 9509 // Add information to the INLINEASM node to know that this register is 9510 // set. 9511 OpInfo.AssignedRegs.AddInlineAsmOperands( 9512 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9513 : InlineAsm::Kind::RegDef, 9514 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9515 } 9516 break; 9517 9518 case InlineAsm::isInput: 9519 case InlineAsm::isLabel: { 9520 SDValue InOperandVal = OpInfo.CallOperand; 9521 9522 if (OpInfo.isMatchingInputConstraint()) { 9523 // If this is required to match an output register we have already set, 9524 // just use its register. 9525 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9526 AsmNodeOperands); 9527 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9528 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9529 if (OpInfo.isIndirect) { 9530 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9531 emitInlineAsmError(Call, "inline asm not supported yet: " 9532 "don't know how to handle tied " 9533 "indirect register inputs"); 9534 return; 9535 } 9536 9537 SmallVector<unsigned, 4> Regs; 9538 MachineFunction &MF = DAG.getMachineFunction(); 9539 MachineRegisterInfo &MRI = MF.getRegInfo(); 9540 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9541 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9542 Register TiedReg = R->getReg(); 9543 MVT RegVT = R->getSimpleValueType(0); 9544 const TargetRegisterClass *RC = 9545 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9546 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9547 : TRI.getMinimalPhysRegClass(TiedReg); 9548 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9549 Regs.push_back(MRI.createVirtualRegister(RC)); 9550 9551 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9552 9553 SDLoc dl = getCurSDLoc(); 9554 // Use the produced MatchedRegs object to 9555 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9556 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9557 OpInfo.getMatchedOperand(), dl, DAG, 9558 AsmNodeOperands); 9559 break; 9560 } 9561 9562 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9563 assert(Flag.getNumOperandRegisters() == 1 && 9564 "Unexpected number of operands"); 9565 // Add information to the INLINEASM node to know about this input. 9566 // See InlineAsm.h isUseOperandTiedToDef. 9567 Flag.clearMemConstraint(); 9568 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9569 AsmNodeOperands.push_back(DAG.getTargetConstant( 9570 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9571 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9572 break; 9573 } 9574 9575 // Treat indirect 'X' constraint as memory. 9576 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9577 OpInfo.isIndirect) 9578 OpInfo.ConstraintType = TargetLowering::C_Memory; 9579 9580 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9581 OpInfo.ConstraintType == TargetLowering::C_Other) { 9582 std::vector<SDValue> Ops; 9583 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9584 Ops, DAG); 9585 if (Ops.empty()) { 9586 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9587 if (isa<ConstantSDNode>(InOperandVal)) { 9588 emitInlineAsmError(Call, "value out of range for constraint '" + 9589 Twine(OpInfo.ConstraintCode) + "'"); 9590 return; 9591 } 9592 9593 emitInlineAsmError(Call, 9594 "invalid operand for inline asm constraint '" + 9595 Twine(OpInfo.ConstraintCode) + "'"); 9596 return; 9597 } 9598 9599 // Add information to the INLINEASM node to know about this input. 9600 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9601 AsmNodeOperands.push_back(DAG.getTargetConstant( 9602 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9603 llvm::append_range(AsmNodeOperands, Ops); 9604 break; 9605 } 9606 9607 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9608 assert((OpInfo.isIndirect || 9609 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9610 "Operand must be indirect to be a mem!"); 9611 assert(InOperandVal.getValueType() == 9612 TLI.getPointerTy(DAG.getDataLayout()) && 9613 "Memory operands expect pointer values"); 9614 9615 const InlineAsm::ConstraintCode ConstraintID = 9616 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9617 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9618 "Failed to convert memory constraint code to constraint id."); 9619 9620 // Add information to the INLINEASM node to know about this input. 9621 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9622 ResOpType.setMemConstraint(ConstraintID); 9623 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9624 getCurSDLoc(), 9625 MVT::i32)); 9626 AsmNodeOperands.push_back(InOperandVal); 9627 break; 9628 } 9629 9630 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9631 const InlineAsm::ConstraintCode ConstraintID = 9632 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9633 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9634 "Failed to convert memory constraint code to constraint id."); 9635 9636 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9637 9638 SDValue AsmOp = InOperandVal; 9639 if (isFunction(InOperandVal)) { 9640 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9641 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9642 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9643 InOperandVal.getValueType(), 9644 GA->getOffset()); 9645 } 9646 9647 // Add information to the INLINEASM node to know about this input. 9648 ResOpType.setMemConstraint(ConstraintID); 9649 9650 AsmNodeOperands.push_back( 9651 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9652 9653 AsmNodeOperands.push_back(AsmOp); 9654 break; 9655 } 9656 9657 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9658 OpInfo.ConstraintType == TargetLowering::C_Register) && 9659 "Unknown constraint type!"); 9660 9661 // TODO: Support this. 9662 if (OpInfo.isIndirect) { 9663 emitInlineAsmError( 9664 Call, "Don't know how to handle indirect register inputs yet " 9665 "for constraint '" + 9666 Twine(OpInfo.ConstraintCode) + "'"); 9667 return; 9668 } 9669 9670 // Copy the input into the appropriate registers. 9671 if (OpInfo.AssignedRegs.Regs.empty()) { 9672 emitInlineAsmError(Call, 9673 "couldn't allocate input reg for constraint '" + 9674 Twine(OpInfo.ConstraintCode) + "'"); 9675 return; 9676 } 9677 9678 if (DetectWriteToReservedRegister()) 9679 return; 9680 9681 SDLoc dl = getCurSDLoc(); 9682 9683 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9684 &Call); 9685 9686 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9687 0, dl, DAG, AsmNodeOperands); 9688 break; 9689 } 9690 case InlineAsm::isClobber: 9691 // Add the clobbered value to the operand list, so that the register 9692 // allocator is aware that the physreg got clobbered. 9693 if (!OpInfo.AssignedRegs.Regs.empty()) 9694 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9695 false, 0, getCurSDLoc(), DAG, 9696 AsmNodeOperands); 9697 break; 9698 } 9699 } 9700 9701 // Finish up input operands. Set the input chain and add the flag last. 9702 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9703 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9704 9705 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9706 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9707 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9708 Glue = Chain.getValue(1); 9709 9710 // Do additional work to generate outputs. 9711 9712 SmallVector<EVT, 1> ResultVTs; 9713 SmallVector<SDValue, 1> ResultValues; 9714 SmallVector<SDValue, 8> OutChains; 9715 9716 llvm::Type *CallResultType = Call.getType(); 9717 ArrayRef<Type *> ResultTypes; 9718 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9719 ResultTypes = StructResult->elements(); 9720 else if (!CallResultType->isVoidTy()) 9721 ResultTypes = ArrayRef(CallResultType); 9722 9723 auto CurResultType = ResultTypes.begin(); 9724 auto handleRegAssign = [&](SDValue V) { 9725 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9726 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9727 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9728 ++CurResultType; 9729 // If the type of the inline asm call site return value is different but has 9730 // same size as the type of the asm output bitcast it. One example of this 9731 // is for vectors with different width / number of elements. This can 9732 // happen for register classes that can contain multiple different value 9733 // types. The preg or vreg allocated may not have the same VT as was 9734 // expected. 9735 // 9736 // This can also happen for a return value that disagrees with the register 9737 // class it is put in, eg. a double in a general-purpose register on a 9738 // 32-bit machine. 9739 if (ResultVT != V.getValueType() && 9740 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9741 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9742 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9743 V.getValueType().isInteger()) { 9744 // If a result value was tied to an input value, the computed result 9745 // may have a wider width than the expected result. Extract the 9746 // relevant portion. 9747 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9748 } 9749 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9750 ResultVTs.push_back(ResultVT); 9751 ResultValues.push_back(V); 9752 }; 9753 9754 // Deal with output operands. 9755 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9756 if (OpInfo.Type == InlineAsm::isOutput) { 9757 SDValue Val; 9758 // Skip trivial output operands. 9759 if (OpInfo.AssignedRegs.Regs.empty()) 9760 continue; 9761 9762 switch (OpInfo.ConstraintType) { 9763 case TargetLowering::C_Register: 9764 case TargetLowering::C_RegisterClass: 9765 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9766 Chain, &Glue, &Call); 9767 break; 9768 case TargetLowering::C_Immediate: 9769 case TargetLowering::C_Other: 9770 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9771 OpInfo, DAG); 9772 break; 9773 case TargetLowering::C_Memory: 9774 break; // Already handled. 9775 case TargetLowering::C_Address: 9776 break; // Silence warning. 9777 case TargetLowering::C_Unknown: 9778 assert(false && "Unexpected unknown constraint"); 9779 } 9780 9781 // Indirect output manifest as stores. Record output chains. 9782 if (OpInfo.isIndirect) { 9783 const Value *Ptr = OpInfo.CallOperandVal; 9784 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9785 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9786 MachinePointerInfo(Ptr)); 9787 OutChains.push_back(Store); 9788 } else { 9789 // generate CopyFromRegs to associated registers. 9790 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9791 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9792 for (const SDValue &V : Val->op_values()) 9793 handleRegAssign(V); 9794 } else 9795 handleRegAssign(Val); 9796 } 9797 } 9798 } 9799 9800 // Set results. 9801 if (!ResultValues.empty()) { 9802 assert(CurResultType == ResultTypes.end() && 9803 "Mismatch in number of ResultTypes"); 9804 assert(ResultValues.size() == ResultTypes.size() && 9805 "Mismatch in number of output operands in asm result"); 9806 9807 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9808 DAG.getVTList(ResultVTs), ResultValues); 9809 setValue(&Call, V); 9810 } 9811 9812 // Collect store chains. 9813 if (!OutChains.empty()) 9814 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9815 9816 if (EmitEHLabels) { 9817 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9818 } 9819 9820 // Only Update Root if inline assembly has a memory effect. 9821 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9822 EmitEHLabels) 9823 DAG.setRoot(Chain); 9824 } 9825 9826 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9827 const Twine &Message) { 9828 LLVMContext &Ctx = *DAG.getContext(); 9829 Ctx.emitError(&Call, Message); 9830 9831 // Make sure we leave the DAG in a valid state 9832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9833 SmallVector<EVT, 1> ValueVTs; 9834 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9835 9836 if (ValueVTs.empty()) 9837 return; 9838 9839 SmallVector<SDValue, 1> Ops; 9840 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9841 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9842 9843 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9844 } 9845 9846 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9847 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9848 MVT::Other, getRoot(), 9849 getValue(I.getArgOperand(0)), 9850 DAG.getSrcValue(I.getArgOperand(0)))); 9851 } 9852 9853 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9855 const DataLayout &DL = DAG.getDataLayout(); 9856 SDValue V = DAG.getVAArg( 9857 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9858 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9859 DL.getABITypeAlign(I.getType()).value()); 9860 DAG.setRoot(V.getValue(1)); 9861 9862 if (I.getType()->isPointerTy()) 9863 V = DAG.getPtrExtOrTrunc( 9864 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9865 setValue(&I, V); 9866 } 9867 9868 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9869 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9870 MVT::Other, getRoot(), 9871 getValue(I.getArgOperand(0)), 9872 DAG.getSrcValue(I.getArgOperand(0)))); 9873 } 9874 9875 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9876 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9877 MVT::Other, getRoot(), 9878 getValue(I.getArgOperand(0)), 9879 getValue(I.getArgOperand(1)), 9880 DAG.getSrcValue(I.getArgOperand(0)), 9881 DAG.getSrcValue(I.getArgOperand(1)))); 9882 } 9883 9884 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9885 const Instruction &I, 9886 SDValue Op) { 9887 const MDNode *Range = getRangeMetadata(I); 9888 if (!Range) 9889 return Op; 9890 9891 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9892 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9893 return Op; 9894 9895 APInt Lo = CR.getUnsignedMin(); 9896 if (!Lo.isMinValue()) 9897 return Op; 9898 9899 APInt Hi = CR.getUnsignedMax(); 9900 unsigned Bits = std::max(Hi.getActiveBits(), 9901 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9902 9903 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9904 9905 SDLoc SL = getCurSDLoc(); 9906 9907 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9908 DAG.getValueType(SmallVT)); 9909 unsigned NumVals = Op.getNode()->getNumValues(); 9910 if (NumVals == 1) 9911 return ZExt; 9912 9913 SmallVector<SDValue, 4> Ops; 9914 9915 Ops.push_back(ZExt); 9916 for (unsigned I = 1; I != NumVals; ++I) 9917 Ops.push_back(Op.getValue(I)); 9918 9919 return DAG.getMergeValues(Ops, SL); 9920 } 9921 9922 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9923 /// the call being lowered. 9924 /// 9925 /// This is a helper for lowering intrinsics that follow a target calling 9926 /// convention or require stack pointer adjustment. Only a subset of the 9927 /// intrinsic's operands need to participate in the calling convention. 9928 void SelectionDAGBuilder::populateCallLoweringInfo( 9929 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9930 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9931 AttributeSet RetAttrs, bool IsPatchPoint) { 9932 TargetLowering::ArgListTy Args; 9933 Args.reserve(NumArgs); 9934 9935 // Populate the argument list. 9936 // Attributes for args start at offset 1, after the return attribute. 9937 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9938 ArgI != ArgE; ++ArgI) { 9939 const Value *V = Call->getOperand(ArgI); 9940 9941 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9942 9943 TargetLowering::ArgListEntry Entry; 9944 Entry.Node = getValue(V); 9945 Entry.Ty = V->getType(); 9946 Entry.setAttributes(Call, ArgI); 9947 Args.push_back(Entry); 9948 } 9949 9950 CLI.setDebugLoc(getCurSDLoc()) 9951 .setChain(getRoot()) 9952 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9953 RetAttrs) 9954 .setDiscardResult(Call->use_empty()) 9955 .setIsPatchPoint(IsPatchPoint) 9956 .setIsPreallocated( 9957 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9958 } 9959 9960 /// Add a stack map intrinsic call's live variable operands to a stackmap 9961 /// or patchpoint target node's operand list. 9962 /// 9963 /// Constants are converted to TargetConstants purely as an optimization to 9964 /// avoid constant materialization and register allocation. 9965 /// 9966 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9967 /// generate addess computation nodes, and so FinalizeISel can convert the 9968 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9969 /// address materialization and register allocation, but may also be required 9970 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9971 /// alloca in the entry block, then the runtime may assume that the alloca's 9972 /// StackMap location can be read immediately after compilation and that the 9973 /// location is valid at any point during execution (this is similar to the 9974 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9975 /// only available in a register, then the runtime would need to trap when 9976 /// execution reaches the StackMap in order to read the alloca's location. 9977 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9978 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9979 SelectionDAGBuilder &Builder) { 9980 SelectionDAG &DAG = Builder.DAG; 9981 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9982 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9983 9984 // Things on the stack are pointer-typed, meaning that they are already 9985 // legal and can be emitted directly to target nodes. 9986 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9987 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9988 } else { 9989 // Otherwise emit a target independent node to be legalised. 9990 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9991 } 9992 } 9993 } 9994 9995 /// Lower llvm.experimental.stackmap. 9996 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9997 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9998 // [live variables...]) 9999 10000 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10001 10002 SDValue Chain, InGlue, Callee; 10003 SmallVector<SDValue, 32> Ops; 10004 10005 SDLoc DL = getCurSDLoc(); 10006 Callee = getValue(CI.getCalledOperand()); 10007 10008 // The stackmap intrinsic only records the live variables (the arguments 10009 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10010 // intrinsic, this won't be lowered to a function call. This means we don't 10011 // have to worry about calling conventions and target specific lowering code. 10012 // Instead we perform the call lowering right here. 10013 // 10014 // chain, flag = CALLSEQ_START(chain, 0, 0) 10015 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10016 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10017 // 10018 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10019 InGlue = Chain.getValue(1); 10020 10021 // Add the STACKMAP operands, starting with DAG house-keeping. 10022 Ops.push_back(Chain); 10023 Ops.push_back(InGlue); 10024 10025 // Add the <id>, <numShadowBytes> operands. 10026 // 10027 // These do not require legalisation, and can be emitted directly to target 10028 // constant nodes. 10029 SDValue ID = getValue(CI.getArgOperand(0)); 10030 assert(ID.getValueType() == MVT::i64); 10031 SDValue IDConst = 10032 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10033 Ops.push_back(IDConst); 10034 10035 SDValue Shad = getValue(CI.getArgOperand(1)); 10036 assert(Shad.getValueType() == MVT::i32); 10037 SDValue ShadConst = 10038 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10039 Ops.push_back(ShadConst); 10040 10041 // Add the live variables. 10042 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10043 10044 // Create the STACKMAP node. 10045 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10046 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10047 InGlue = Chain.getValue(1); 10048 10049 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10050 10051 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10052 10053 // Set the root to the target-lowered call chain. 10054 DAG.setRoot(Chain); 10055 10056 // Inform the Frame Information that we have a stackmap in this function. 10057 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10058 } 10059 10060 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10061 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10062 const BasicBlock *EHPadBB) { 10063 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10064 // i32 <numBytes>, 10065 // i8* <target>, 10066 // i32 <numArgs>, 10067 // [Args...], 10068 // [live variables...]) 10069 10070 CallingConv::ID CC = CB.getCallingConv(); 10071 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10072 bool HasDef = !CB.getType()->isVoidTy(); 10073 SDLoc dl = getCurSDLoc(); 10074 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10075 10076 // Handle immediate and symbolic callees. 10077 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10078 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10079 /*isTarget=*/true); 10080 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10081 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10082 SDLoc(SymbolicCallee), 10083 SymbolicCallee->getValueType(0)); 10084 10085 // Get the real number of arguments participating in the call <numArgs> 10086 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10087 unsigned NumArgs = NArgVal->getAsZExtVal(); 10088 10089 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10090 // Intrinsics include all meta-operands up to but not including CC. 10091 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10092 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10093 "Not enough arguments provided to the patchpoint intrinsic"); 10094 10095 // For AnyRegCC the arguments are lowered later on manually. 10096 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10097 Type *ReturnTy = 10098 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10099 10100 TargetLowering::CallLoweringInfo CLI(DAG); 10101 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10102 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10103 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10104 10105 SDNode *CallEnd = Result.second.getNode(); 10106 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10107 CallEnd = CallEnd->getOperand(0).getNode(); 10108 10109 /// Get a call instruction from the call sequence chain. 10110 /// Tail calls are not allowed. 10111 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10112 "Expected a callseq node."); 10113 SDNode *Call = CallEnd->getOperand(0).getNode(); 10114 bool HasGlue = Call->getGluedNode(); 10115 10116 // Replace the target specific call node with the patchable intrinsic. 10117 SmallVector<SDValue, 8> Ops; 10118 10119 // Push the chain. 10120 Ops.push_back(*(Call->op_begin())); 10121 10122 // Optionally, push the glue (if any). 10123 if (HasGlue) 10124 Ops.push_back(*(Call->op_end() - 1)); 10125 10126 // Push the register mask info. 10127 if (HasGlue) 10128 Ops.push_back(*(Call->op_end() - 2)); 10129 else 10130 Ops.push_back(*(Call->op_end() - 1)); 10131 10132 // Add the <id> and <numBytes> constants. 10133 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10134 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10135 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10136 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10137 10138 // Add the callee. 10139 Ops.push_back(Callee); 10140 10141 // Adjust <numArgs> to account for any arguments that have been passed on the 10142 // stack instead. 10143 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10144 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10145 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10146 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10147 10148 // Add the calling convention 10149 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10150 10151 // Add the arguments we omitted previously. The register allocator should 10152 // place these in any free register. 10153 if (IsAnyRegCC) 10154 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10155 Ops.push_back(getValue(CB.getArgOperand(i))); 10156 10157 // Push the arguments from the call instruction. 10158 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10159 Ops.append(Call->op_begin() + 2, e); 10160 10161 // Push live variables for the stack map. 10162 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10163 10164 SDVTList NodeTys; 10165 if (IsAnyRegCC && HasDef) { 10166 // Create the return types based on the intrinsic definition 10167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10168 SmallVector<EVT, 3> ValueVTs; 10169 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10170 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10171 10172 // There is always a chain and a glue type at the end 10173 ValueVTs.push_back(MVT::Other); 10174 ValueVTs.push_back(MVT::Glue); 10175 NodeTys = DAG.getVTList(ValueVTs); 10176 } else 10177 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10178 10179 // Replace the target specific call node with a PATCHPOINT node. 10180 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10181 10182 // Update the NodeMap. 10183 if (HasDef) { 10184 if (IsAnyRegCC) 10185 setValue(&CB, SDValue(PPV.getNode(), 0)); 10186 else 10187 setValue(&CB, Result.first); 10188 } 10189 10190 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10191 // call sequence. Furthermore the location of the chain and glue can change 10192 // when the AnyReg calling convention is used and the intrinsic returns a 10193 // value. 10194 if (IsAnyRegCC && HasDef) { 10195 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10196 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10197 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10198 } else 10199 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10200 DAG.DeleteNode(Call); 10201 10202 // Inform the Frame Information that we have a patchpoint in this function. 10203 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10204 } 10205 10206 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10207 unsigned Intrinsic) { 10208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10209 SDValue Op1 = getValue(I.getArgOperand(0)); 10210 SDValue Op2; 10211 if (I.arg_size() > 1) 10212 Op2 = getValue(I.getArgOperand(1)); 10213 SDLoc dl = getCurSDLoc(); 10214 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10215 SDValue Res; 10216 SDNodeFlags SDFlags; 10217 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10218 SDFlags.copyFMF(*FPMO); 10219 10220 switch (Intrinsic) { 10221 case Intrinsic::vector_reduce_fadd: 10222 if (SDFlags.hasAllowReassociation()) 10223 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10224 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10225 SDFlags); 10226 else 10227 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10228 break; 10229 case Intrinsic::vector_reduce_fmul: 10230 if (SDFlags.hasAllowReassociation()) 10231 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10232 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10233 SDFlags); 10234 else 10235 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10236 break; 10237 case Intrinsic::vector_reduce_add: 10238 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10239 break; 10240 case Intrinsic::vector_reduce_mul: 10241 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10242 break; 10243 case Intrinsic::vector_reduce_and: 10244 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10245 break; 10246 case Intrinsic::vector_reduce_or: 10247 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10248 break; 10249 case Intrinsic::vector_reduce_xor: 10250 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10251 break; 10252 case Intrinsic::vector_reduce_smax: 10253 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10254 break; 10255 case Intrinsic::vector_reduce_smin: 10256 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10257 break; 10258 case Intrinsic::vector_reduce_umax: 10259 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10260 break; 10261 case Intrinsic::vector_reduce_umin: 10262 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10263 break; 10264 case Intrinsic::vector_reduce_fmax: 10265 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10266 break; 10267 case Intrinsic::vector_reduce_fmin: 10268 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10269 break; 10270 case Intrinsic::vector_reduce_fmaximum: 10271 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10272 break; 10273 case Intrinsic::vector_reduce_fminimum: 10274 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10275 break; 10276 default: 10277 llvm_unreachable("Unhandled vector reduce intrinsic"); 10278 } 10279 setValue(&I, Res); 10280 } 10281 10282 /// Returns an AttributeList representing the attributes applied to the return 10283 /// value of the given call. 10284 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10285 SmallVector<Attribute::AttrKind, 2> Attrs; 10286 if (CLI.RetSExt) 10287 Attrs.push_back(Attribute::SExt); 10288 if (CLI.RetZExt) 10289 Attrs.push_back(Attribute::ZExt); 10290 if (CLI.IsInReg) 10291 Attrs.push_back(Attribute::InReg); 10292 10293 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10294 Attrs); 10295 } 10296 10297 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10298 /// implementation, which just calls LowerCall. 10299 /// FIXME: When all targets are 10300 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10301 std::pair<SDValue, SDValue> 10302 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10303 // Handle the incoming return values from the call. 10304 CLI.Ins.clear(); 10305 Type *OrigRetTy = CLI.RetTy; 10306 SmallVector<EVT, 4> RetTys; 10307 SmallVector<uint64_t, 4> Offsets; 10308 auto &DL = CLI.DAG.getDataLayout(); 10309 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10310 10311 if (CLI.IsPostTypeLegalization) { 10312 // If we are lowering a libcall after legalization, split the return type. 10313 SmallVector<EVT, 4> OldRetTys; 10314 SmallVector<uint64_t, 4> OldOffsets; 10315 RetTys.swap(OldRetTys); 10316 Offsets.swap(OldOffsets); 10317 10318 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10319 EVT RetVT = OldRetTys[i]; 10320 uint64_t Offset = OldOffsets[i]; 10321 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10322 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10323 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10324 RetTys.append(NumRegs, RegisterVT); 10325 for (unsigned j = 0; j != NumRegs; ++j) 10326 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10327 } 10328 } 10329 10330 SmallVector<ISD::OutputArg, 4> Outs; 10331 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10332 10333 bool CanLowerReturn = 10334 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10335 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10336 10337 SDValue DemoteStackSlot; 10338 int DemoteStackIdx = -100; 10339 if (!CanLowerReturn) { 10340 // FIXME: equivalent assert? 10341 // assert(!CS.hasInAllocaArgument() && 10342 // "sret demotion is incompatible with inalloca"); 10343 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10344 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10345 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10346 DemoteStackIdx = 10347 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10348 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10349 DL.getAllocaAddrSpace()); 10350 10351 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10352 ArgListEntry Entry; 10353 Entry.Node = DemoteStackSlot; 10354 Entry.Ty = StackSlotPtrType; 10355 Entry.IsSExt = false; 10356 Entry.IsZExt = false; 10357 Entry.IsInReg = false; 10358 Entry.IsSRet = true; 10359 Entry.IsNest = false; 10360 Entry.IsByVal = false; 10361 Entry.IsByRef = false; 10362 Entry.IsReturned = false; 10363 Entry.IsSwiftSelf = false; 10364 Entry.IsSwiftAsync = false; 10365 Entry.IsSwiftError = false; 10366 Entry.IsCFGuardTarget = false; 10367 Entry.Alignment = Alignment; 10368 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10369 CLI.NumFixedArgs += 1; 10370 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10371 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10372 10373 // sret demotion isn't compatible with tail-calls, since the sret argument 10374 // points into the callers stack frame. 10375 CLI.IsTailCall = false; 10376 } else { 10377 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10378 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10379 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10380 ISD::ArgFlagsTy Flags; 10381 if (NeedsRegBlock) { 10382 Flags.setInConsecutiveRegs(); 10383 if (I == RetTys.size() - 1) 10384 Flags.setInConsecutiveRegsLast(); 10385 } 10386 EVT VT = RetTys[I]; 10387 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10388 CLI.CallConv, VT); 10389 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10390 CLI.CallConv, VT); 10391 for (unsigned i = 0; i != NumRegs; ++i) { 10392 ISD::InputArg MyFlags; 10393 MyFlags.Flags = Flags; 10394 MyFlags.VT = RegisterVT; 10395 MyFlags.ArgVT = VT; 10396 MyFlags.Used = CLI.IsReturnValueUsed; 10397 if (CLI.RetTy->isPointerTy()) { 10398 MyFlags.Flags.setPointer(); 10399 MyFlags.Flags.setPointerAddrSpace( 10400 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10401 } 10402 if (CLI.RetSExt) 10403 MyFlags.Flags.setSExt(); 10404 if (CLI.RetZExt) 10405 MyFlags.Flags.setZExt(); 10406 if (CLI.IsInReg) 10407 MyFlags.Flags.setInReg(); 10408 CLI.Ins.push_back(MyFlags); 10409 } 10410 } 10411 } 10412 10413 // We push in swifterror return as the last element of CLI.Ins. 10414 ArgListTy &Args = CLI.getArgs(); 10415 if (supportSwiftError()) { 10416 for (const ArgListEntry &Arg : Args) { 10417 if (Arg.IsSwiftError) { 10418 ISD::InputArg MyFlags; 10419 MyFlags.VT = getPointerTy(DL); 10420 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10421 MyFlags.Flags.setSwiftError(); 10422 CLI.Ins.push_back(MyFlags); 10423 } 10424 } 10425 } 10426 10427 // Handle all of the outgoing arguments. 10428 CLI.Outs.clear(); 10429 CLI.OutVals.clear(); 10430 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10431 SmallVector<EVT, 4> ValueVTs; 10432 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10433 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10434 Type *FinalType = Args[i].Ty; 10435 if (Args[i].IsByVal) 10436 FinalType = Args[i].IndirectType; 10437 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10438 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10439 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10440 ++Value) { 10441 EVT VT = ValueVTs[Value]; 10442 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10443 SDValue Op = SDValue(Args[i].Node.getNode(), 10444 Args[i].Node.getResNo() + Value); 10445 ISD::ArgFlagsTy Flags; 10446 10447 // Certain targets (such as MIPS), may have a different ABI alignment 10448 // for a type depending on the context. Give the target a chance to 10449 // specify the alignment it wants. 10450 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10451 Flags.setOrigAlign(OriginalAlignment); 10452 10453 if (Args[i].Ty->isPointerTy()) { 10454 Flags.setPointer(); 10455 Flags.setPointerAddrSpace( 10456 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10457 } 10458 if (Args[i].IsZExt) 10459 Flags.setZExt(); 10460 if (Args[i].IsSExt) 10461 Flags.setSExt(); 10462 if (Args[i].IsInReg) { 10463 // If we are using vectorcall calling convention, a structure that is 10464 // passed InReg - is surely an HVA 10465 if (CLI.CallConv == CallingConv::X86_VectorCall && 10466 isa<StructType>(FinalType)) { 10467 // The first value of a structure is marked 10468 if (0 == Value) 10469 Flags.setHvaStart(); 10470 Flags.setHva(); 10471 } 10472 // Set InReg Flag 10473 Flags.setInReg(); 10474 } 10475 if (Args[i].IsSRet) 10476 Flags.setSRet(); 10477 if (Args[i].IsSwiftSelf) 10478 Flags.setSwiftSelf(); 10479 if (Args[i].IsSwiftAsync) 10480 Flags.setSwiftAsync(); 10481 if (Args[i].IsSwiftError) 10482 Flags.setSwiftError(); 10483 if (Args[i].IsCFGuardTarget) 10484 Flags.setCFGuardTarget(); 10485 if (Args[i].IsByVal) 10486 Flags.setByVal(); 10487 if (Args[i].IsByRef) 10488 Flags.setByRef(); 10489 if (Args[i].IsPreallocated) { 10490 Flags.setPreallocated(); 10491 // Set the byval flag for CCAssignFn callbacks that don't know about 10492 // preallocated. This way we can know how many bytes we should've 10493 // allocated and how many bytes a callee cleanup function will pop. If 10494 // we port preallocated to more targets, we'll have to add custom 10495 // preallocated handling in the various CC lowering callbacks. 10496 Flags.setByVal(); 10497 } 10498 if (Args[i].IsInAlloca) { 10499 Flags.setInAlloca(); 10500 // Set the byval flag for CCAssignFn callbacks that don't know about 10501 // inalloca. This way we can know how many bytes we should've allocated 10502 // and how many bytes a callee cleanup function will pop. If we port 10503 // inalloca to more targets, we'll have to add custom inalloca handling 10504 // in the various CC lowering callbacks. 10505 Flags.setByVal(); 10506 } 10507 Align MemAlign; 10508 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10509 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10510 Flags.setByValSize(FrameSize); 10511 10512 // info is not there but there are cases it cannot get right. 10513 if (auto MA = Args[i].Alignment) 10514 MemAlign = *MA; 10515 else 10516 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10517 } else if (auto MA = Args[i].Alignment) { 10518 MemAlign = *MA; 10519 } else { 10520 MemAlign = OriginalAlignment; 10521 } 10522 Flags.setMemAlign(MemAlign); 10523 if (Args[i].IsNest) 10524 Flags.setNest(); 10525 if (NeedsRegBlock) 10526 Flags.setInConsecutiveRegs(); 10527 10528 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10529 CLI.CallConv, VT); 10530 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10531 CLI.CallConv, VT); 10532 SmallVector<SDValue, 4> Parts(NumParts); 10533 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10534 10535 if (Args[i].IsSExt) 10536 ExtendKind = ISD::SIGN_EXTEND; 10537 else if (Args[i].IsZExt) 10538 ExtendKind = ISD::ZERO_EXTEND; 10539 10540 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10541 // for now. 10542 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10543 CanLowerReturn) { 10544 assert((CLI.RetTy == Args[i].Ty || 10545 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10546 CLI.RetTy->getPointerAddressSpace() == 10547 Args[i].Ty->getPointerAddressSpace())) && 10548 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10549 // Before passing 'returned' to the target lowering code, ensure that 10550 // either the register MVT and the actual EVT are the same size or that 10551 // the return value and argument are extended in the same way; in these 10552 // cases it's safe to pass the argument register value unchanged as the 10553 // return register value (although it's at the target's option whether 10554 // to do so) 10555 // TODO: allow code generation to take advantage of partially preserved 10556 // registers rather than clobbering the entire register when the 10557 // parameter extension method is not compatible with the return 10558 // extension method 10559 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10560 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10561 CLI.RetZExt == Args[i].IsZExt)) 10562 Flags.setReturned(); 10563 } 10564 10565 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10566 CLI.CallConv, ExtendKind); 10567 10568 for (unsigned j = 0; j != NumParts; ++j) { 10569 // if it isn't first piece, alignment must be 1 10570 // For scalable vectors the scalable part is currently handled 10571 // by individual targets, so we just use the known minimum size here. 10572 ISD::OutputArg MyFlags( 10573 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10574 i < CLI.NumFixedArgs, i, 10575 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10576 if (NumParts > 1 && j == 0) 10577 MyFlags.Flags.setSplit(); 10578 else if (j != 0) { 10579 MyFlags.Flags.setOrigAlign(Align(1)); 10580 if (j == NumParts - 1) 10581 MyFlags.Flags.setSplitEnd(); 10582 } 10583 10584 CLI.Outs.push_back(MyFlags); 10585 CLI.OutVals.push_back(Parts[j]); 10586 } 10587 10588 if (NeedsRegBlock && Value == NumValues - 1) 10589 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10590 } 10591 } 10592 10593 SmallVector<SDValue, 4> InVals; 10594 CLI.Chain = LowerCall(CLI, InVals); 10595 10596 // Update CLI.InVals to use outside of this function. 10597 CLI.InVals = InVals; 10598 10599 // Verify that the target's LowerCall behaved as expected. 10600 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10601 "LowerCall didn't return a valid chain!"); 10602 assert((!CLI.IsTailCall || InVals.empty()) && 10603 "LowerCall emitted a return value for a tail call!"); 10604 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10605 "LowerCall didn't emit the correct number of values!"); 10606 10607 // For a tail call, the return value is merely live-out and there aren't 10608 // any nodes in the DAG representing it. Return a special value to 10609 // indicate that a tail call has been emitted and no more Instructions 10610 // should be processed in the current block. 10611 if (CLI.IsTailCall) { 10612 CLI.DAG.setRoot(CLI.Chain); 10613 return std::make_pair(SDValue(), SDValue()); 10614 } 10615 10616 #ifndef NDEBUG 10617 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10618 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10619 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10620 "LowerCall emitted a value with the wrong type!"); 10621 } 10622 #endif 10623 10624 SmallVector<SDValue, 4> ReturnValues; 10625 if (!CanLowerReturn) { 10626 // The instruction result is the result of loading from the 10627 // hidden sret parameter. 10628 SmallVector<EVT, 1> PVTs; 10629 Type *PtrRetTy = 10630 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10631 10632 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10633 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10634 EVT PtrVT = PVTs[0]; 10635 10636 unsigned NumValues = RetTys.size(); 10637 ReturnValues.resize(NumValues); 10638 SmallVector<SDValue, 4> Chains(NumValues); 10639 10640 // An aggregate return value cannot wrap around the address space, so 10641 // offsets to its parts don't wrap either. 10642 SDNodeFlags Flags; 10643 Flags.setNoUnsignedWrap(true); 10644 10645 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10646 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10647 for (unsigned i = 0; i < NumValues; ++i) { 10648 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10649 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10650 PtrVT), Flags); 10651 SDValue L = CLI.DAG.getLoad( 10652 RetTys[i], CLI.DL, CLI.Chain, Add, 10653 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10654 DemoteStackIdx, Offsets[i]), 10655 HiddenSRetAlign); 10656 ReturnValues[i] = L; 10657 Chains[i] = L.getValue(1); 10658 } 10659 10660 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10661 } else { 10662 // Collect the legal value parts into potentially illegal values 10663 // that correspond to the original function's return values. 10664 std::optional<ISD::NodeType> AssertOp; 10665 if (CLI.RetSExt) 10666 AssertOp = ISD::AssertSext; 10667 else if (CLI.RetZExt) 10668 AssertOp = ISD::AssertZext; 10669 unsigned CurReg = 0; 10670 for (EVT VT : RetTys) { 10671 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10672 CLI.CallConv, VT); 10673 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10674 CLI.CallConv, VT); 10675 10676 ReturnValues.push_back(getCopyFromParts( 10677 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10678 CLI.Chain, CLI.CallConv, AssertOp)); 10679 CurReg += NumRegs; 10680 } 10681 10682 // For a function returning void, there is no return value. We can't create 10683 // such a node, so we just return a null return value in that case. In 10684 // that case, nothing will actually look at the value. 10685 if (ReturnValues.empty()) 10686 return std::make_pair(SDValue(), CLI.Chain); 10687 } 10688 10689 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10690 CLI.DAG.getVTList(RetTys), ReturnValues); 10691 return std::make_pair(Res, CLI.Chain); 10692 } 10693 10694 /// Places new result values for the node in Results (their number 10695 /// and types must exactly match those of the original return values of 10696 /// the node), or leaves Results empty, which indicates that the node is not 10697 /// to be custom lowered after all. 10698 void TargetLowering::LowerOperationWrapper(SDNode *N, 10699 SmallVectorImpl<SDValue> &Results, 10700 SelectionDAG &DAG) const { 10701 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10702 10703 if (!Res.getNode()) 10704 return; 10705 10706 // If the original node has one result, take the return value from 10707 // LowerOperation as is. It might not be result number 0. 10708 if (N->getNumValues() == 1) { 10709 Results.push_back(Res); 10710 return; 10711 } 10712 10713 // If the original node has multiple results, then the return node should 10714 // have the same number of results. 10715 assert((N->getNumValues() == Res->getNumValues()) && 10716 "Lowering returned the wrong number of results!"); 10717 10718 // Places new result values base on N result number. 10719 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10720 Results.push_back(Res.getValue(I)); 10721 } 10722 10723 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10724 llvm_unreachable("LowerOperation not implemented for this target!"); 10725 } 10726 10727 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10728 unsigned Reg, 10729 ISD::NodeType ExtendType) { 10730 SDValue Op = getNonRegisterValue(V); 10731 assert((Op.getOpcode() != ISD::CopyFromReg || 10732 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10733 "Copy from a reg to the same reg!"); 10734 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10735 10736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10737 // If this is an InlineAsm we have to match the registers required, not the 10738 // notional registers required by the type. 10739 10740 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10741 std::nullopt); // This is not an ABI copy. 10742 SDValue Chain = DAG.getEntryNode(); 10743 10744 if (ExtendType == ISD::ANY_EXTEND) { 10745 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10746 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10747 ExtendType = PreferredExtendIt->second; 10748 } 10749 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10750 PendingExports.push_back(Chain); 10751 } 10752 10753 #include "llvm/CodeGen/SelectionDAGISel.h" 10754 10755 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10756 /// entry block, return true. This includes arguments used by switches, since 10757 /// the switch may expand into multiple basic blocks. 10758 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10759 // With FastISel active, we may be splitting blocks, so force creation 10760 // of virtual registers for all non-dead arguments. 10761 if (FastISel) 10762 return A->use_empty(); 10763 10764 const BasicBlock &Entry = A->getParent()->front(); 10765 for (const User *U : A->users()) 10766 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10767 return false; // Use not in entry block. 10768 10769 return true; 10770 } 10771 10772 using ArgCopyElisionMapTy = 10773 DenseMap<const Argument *, 10774 std::pair<const AllocaInst *, const StoreInst *>>; 10775 10776 /// Scan the entry block of the function in FuncInfo for arguments that look 10777 /// like copies into a local alloca. Record any copied arguments in 10778 /// ArgCopyElisionCandidates. 10779 static void 10780 findArgumentCopyElisionCandidates(const DataLayout &DL, 10781 FunctionLoweringInfo *FuncInfo, 10782 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10783 // Record the state of every static alloca used in the entry block. Argument 10784 // allocas are all used in the entry block, so we need approximately as many 10785 // entries as we have arguments. 10786 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10787 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10788 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10789 StaticAllocas.reserve(NumArgs * 2); 10790 10791 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10792 if (!V) 10793 return nullptr; 10794 V = V->stripPointerCasts(); 10795 const auto *AI = dyn_cast<AllocaInst>(V); 10796 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10797 return nullptr; 10798 auto Iter = StaticAllocas.insert({AI, Unknown}); 10799 return &Iter.first->second; 10800 }; 10801 10802 // Look for stores of arguments to static allocas. Look through bitcasts and 10803 // GEPs to handle type coercions, as long as the alloca is fully initialized 10804 // by the store. Any non-store use of an alloca escapes it and any subsequent 10805 // unanalyzed store might write it. 10806 // FIXME: Handle structs initialized with multiple stores. 10807 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10808 // Look for stores, and handle non-store uses conservatively. 10809 const auto *SI = dyn_cast<StoreInst>(&I); 10810 if (!SI) { 10811 // We will look through cast uses, so ignore them completely. 10812 if (I.isCast()) 10813 continue; 10814 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10815 // to allocas. 10816 if (I.isDebugOrPseudoInst()) 10817 continue; 10818 // This is an unknown instruction. Assume it escapes or writes to all 10819 // static alloca operands. 10820 for (const Use &U : I.operands()) { 10821 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10822 *Info = StaticAllocaInfo::Clobbered; 10823 } 10824 continue; 10825 } 10826 10827 // If the stored value is a static alloca, mark it as escaped. 10828 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10829 *Info = StaticAllocaInfo::Clobbered; 10830 10831 // Check if the destination is a static alloca. 10832 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10833 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10834 if (!Info) 10835 continue; 10836 const AllocaInst *AI = cast<AllocaInst>(Dst); 10837 10838 // Skip allocas that have been initialized or clobbered. 10839 if (*Info != StaticAllocaInfo::Unknown) 10840 continue; 10841 10842 // Check if the stored value is an argument, and that this store fully 10843 // initializes the alloca. 10844 // If the argument type has padding bits we can't directly forward a pointer 10845 // as the upper bits may contain garbage. 10846 // Don't elide copies from the same argument twice. 10847 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10848 const auto *Arg = dyn_cast<Argument>(Val); 10849 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10850 Arg->getType()->isEmptyTy() || 10851 DL.getTypeStoreSize(Arg->getType()) != 10852 DL.getTypeAllocSize(AI->getAllocatedType()) || 10853 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10854 ArgCopyElisionCandidates.count(Arg)) { 10855 *Info = StaticAllocaInfo::Clobbered; 10856 continue; 10857 } 10858 10859 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10860 << '\n'); 10861 10862 // Mark this alloca and store for argument copy elision. 10863 *Info = StaticAllocaInfo::Elidable; 10864 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10865 10866 // Stop scanning if we've seen all arguments. This will happen early in -O0 10867 // builds, which is useful, because -O0 builds have large entry blocks and 10868 // many allocas. 10869 if (ArgCopyElisionCandidates.size() == NumArgs) 10870 break; 10871 } 10872 } 10873 10874 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10875 /// ArgVal is a load from a suitable fixed stack object. 10876 static void tryToElideArgumentCopy( 10877 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10878 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10879 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10880 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10881 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10882 // Check if this is a load from a fixed stack object. 10883 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10884 if (!LNode) 10885 return; 10886 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10887 if (!FINode) 10888 return; 10889 10890 // Check that the fixed stack object is the right size and alignment. 10891 // Look at the alignment that the user wrote on the alloca instead of looking 10892 // at the stack object. 10893 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10894 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10895 const AllocaInst *AI = ArgCopyIter->second.first; 10896 int FixedIndex = FINode->getIndex(); 10897 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10898 int OldIndex = AllocaIndex; 10899 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10900 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10901 LLVM_DEBUG( 10902 dbgs() << " argument copy elision failed due to bad fixed stack " 10903 "object size\n"); 10904 return; 10905 } 10906 Align RequiredAlignment = AI->getAlign(); 10907 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10908 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10909 "greater than stack argument alignment (" 10910 << DebugStr(RequiredAlignment) << " vs " 10911 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10912 return; 10913 } 10914 10915 // Perform the elision. Delete the old stack object and replace its only use 10916 // in the variable info map. Mark the stack object as mutable. 10917 LLVM_DEBUG({ 10918 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10919 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10920 << '\n'; 10921 }); 10922 MFI.RemoveStackObject(OldIndex); 10923 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10924 AllocaIndex = FixedIndex; 10925 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10926 for (SDValue ArgVal : ArgVals) 10927 Chains.push_back(ArgVal.getValue(1)); 10928 10929 // Avoid emitting code for the store implementing the copy. 10930 const StoreInst *SI = ArgCopyIter->second.second; 10931 ElidedArgCopyInstrs.insert(SI); 10932 10933 // Check for uses of the argument again so that we can avoid exporting ArgVal 10934 // if it is't used by anything other than the store. 10935 for (const Value *U : Arg.users()) { 10936 if (U != SI) { 10937 ArgHasUses = true; 10938 break; 10939 } 10940 } 10941 } 10942 10943 void SelectionDAGISel::LowerArguments(const Function &F) { 10944 SelectionDAG &DAG = SDB->DAG; 10945 SDLoc dl = SDB->getCurSDLoc(); 10946 const DataLayout &DL = DAG.getDataLayout(); 10947 SmallVector<ISD::InputArg, 16> Ins; 10948 10949 // In Naked functions we aren't going to save any registers. 10950 if (F.hasFnAttribute(Attribute::Naked)) 10951 return; 10952 10953 if (!FuncInfo->CanLowerReturn) { 10954 // Put in an sret pointer parameter before all the other parameters. 10955 SmallVector<EVT, 1> ValueVTs; 10956 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10957 PointerType::get(F.getContext(), 10958 DAG.getDataLayout().getAllocaAddrSpace()), 10959 ValueVTs); 10960 10961 // NOTE: Assuming that a pointer will never break down to more than one VT 10962 // or one register. 10963 ISD::ArgFlagsTy Flags; 10964 Flags.setSRet(); 10965 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10966 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10967 ISD::InputArg::NoArgIndex, 0); 10968 Ins.push_back(RetArg); 10969 } 10970 10971 // Look for stores of arguments to static allocas. Mark such arguments with a 10972 // flag to ask the target to give us the memory location of that argument if 10973 // available. 10974 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10975 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10976 ArgCopyElisionCandidates); 10977 10978 // Set up the incoming argument description vector. 10979 for (const Argument &Arg : F.args()) { 10980 unsigned ArgNo = Arg.getArgNo(); 10981 SmallVector<EVT, 4> ValueVTs; 10982 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10983 bool isArgValueUsed = !Arg.use_empty(); 10984 unsigned PartBase = 0; 10985 Type *FinalType = Arg.getType(); 10986 if (Arg.hasAttribute(Attribute::ByVal)) 10987 FinalType = Arg.getParamByValType(); 10988 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10989 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10990 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10991 Value != NumValues; ++Value) { 10992 EVT VT = ValueVTs[Value]; 10993 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10994 ISD::ArgFlagsTy Flags; 10995 10996 10997 if (Arg.getType()->isPointerTy()) { 10998 Flags.setPointer(); 10999 Flags.setPointerAddrSpace( 11000 cast<PointerType>(Arg.getType())->getAddressSpace()); 11001 } 11002 if (Arg.hasAttribute(Attribute::ZExt)) 11003 Flags.setZExt(); 11004 if (Arg.hasAttribute(Attribute::SExt)) 11005 Flags.setSExt(); 11006 if (Arg.hasAttribute(Attribute::InReg)) { 11007 // If we are using vectorcall calling convention, a structure that is 11008 // passed InReg - is surely an HVA 11009 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11010 isa<StructType>(Arg.getType())) { 11011 // The first value of a structure is marked 11012 if (0 == Value) 11013 Flags.setHvaStart(); 11014 Flags.setHva(); 11015 } 11016 // Set InReg Flag 11017 Flags.setInReg(); 11018 } 11019 if (Arg.hasAttribute(Attribute::StructRet)) 11020 Flags.setSRet(); 11021 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11022 Flags.setSwiftSelf(); 11023 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11024 Flags.setSwiftAsync(); 11025 if (Arg.hasAttribute(Attribute::SwiftError)) 11026 Flags.setSwiftError(); 11027 if (Arg.hasAttribute(Attribute::ByVal)) 11028 Flags.setByVal(); 11029 if (Arg.hasAttribute(Attribute::ByRef)) 11030 Flags.setByRef(); 11031 if (Arg.hasAttribute(Attribute::InAlloca)) { 11032 Flags.setInAlloca(); 11033 // Set the byval flag for CCAssignFn callbacks that don't know about 11034 // inalloca. This way we can know how many bytes we should've allocated 11035 // and how many bytes a callee cleanup function will pop. If we port 11036 // inalloca to more targets, we'll have to add custom inalloca handling 11037 // in the various CC lowering callbacks. 11038 Flags.setByVal(); 11039 } 11040 if (Arg.hasAttribute(Attribute::Preallocated)) { 11041 Flags.setPreallocated(); 11042 // Set the byval flag for CCAssignFn callbacks that don't know about 11043 // preallocated. This way we can know how many bytes we should've 11044 // allocated and how many bytes a callee cleanup function will pop. If 11045 // we port preallocated to more targets, we'll have to add custom 11046 // preallocated handling in the various CC lowering callbacks. 11047 Flags.setByVal(); 11048 } 11049 11050 // Certain targets (such as MIPS), may have a different ABI alignment 11051 // for a type depending on the context. Give the target a chance to 11052 // specify the alignment it wants. 11053 const Align OriginalAlignment( 11054 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11055 Flags.setOrigAlign(OriginalAlignment); 11056 11057 Align MemAlign; 11058 Type *ArgMemTy = nullptr; 11059 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11060 Flags.isByRef()) { 11061 if (!ArgMemTy) 11062 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11063 11064 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11065 11066 // For in-memory arguments, size and alignment should be passed from FE. 11067 // BE will guess if this info is not there but there are cases it cannot 11068 // get right. 11069 if (auto ParamAlign = Arg.getParamStackAlign()) 11070 MemAlign = *ParamAlign; 11071 else if ((ParamAlign = Arg.getParamAlign())) 11072 MemAlign = *ParamAlign; 11073 else 11074 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11075 if (Flags.isByRef()) 11076 Flags.setByRefSize(MemSize); 11077 else 11078 Flags.setByValSize(MemSize); 11079 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11080 MemAlign = *ParamAlign; 11081 } else { 11082 MemAlign = OriginalAlignment; 11083 } 11084 Flags.setMemAlign(MemAlign); 11085 11086 if (Arg.hasAttribute(Attribute::Nest)) 11087 Flags.setNest(); 11088 if (NeedsRegBlock) 11089 Flags.setInConsecutiveRegs(); 11090 if (ArgCopyElisionCandidates.count(&Arg)) 11091 Flags.setCopyElisionCandidate(); 11092 if (Arg.hasAttribute(Attribute::Returned)) 11093 Flags.setReturned(); 11094 11095 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11096 *CurDAG->getContext(), F.getCallingConv(), VT); 11097 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11098 *CurDAG->getContext(), F.getCallingConv(), VT); 11099 for (unsigned i = 0; i != NumRegs; ++i) { 11100 // For scalable vectors, use the minimum size; individual targets 11101 // are responsible for handling scalable vector arguments and 11102 // return values. 11103 ISD::InputArg MyFlags( 11104 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11105 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11106 if (NumRegs > 1 && i == 0) 11107 MyFlags.Flags.setSplit(); 11108 // if it isn't first piece, alignment must be 1 11109 else if (i > 0) { 11110 MyFlags.Flags.setOrigAlign(Align(1)); 11111 if (i == NumRegs - 1) 11112 MyFlags.Flags.setSplitEnd(); 11113 } 11114 Ins.push_back(MyFlags); 11115 } 11116 if (NeedsRegBlock && Value == NumValues - 1) 11117 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11118 PartBase += VT.getStoreSize().getKnownMinValue(); 11119 } 11120 } 11121 11122 // Call the target to set up the argument values. 11123 SmallVector<SDValue, 8> InVals; 11124 SDValue NewRoot = TLI->LowerFormalArguments( 11125 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11126 11127 // Verify that the target's LowerFormalArguments behaved as expected. 11128 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11129 "LowerFormalArguments didn't return a valid chain!"); 11130 assert(InVals.size() == Ins.size() && 11131 "LowerFormalArguments didn't emit the correct number of values!"); 11132 LLVM_DEBUG({ 11133 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11134 assert(InVals[i].getNode() && 11135 "LowerFormalArguments emitted a null value!"); 11136 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11137 "LowerFormalArguments emitted a value with the wrong type!"); 11138 } 11139 }); 11140 11141 // Update the DAG with the new chain value resulting from argument lowering. 11142 DAG.setRoot(NewRoot); 11143 11144 // Set up the argument values. 11145 unsigned i = 0; 11146 if (!FuncInfo->CanLowerReturn) { 11147 // Create a virtual register for the sret pointer, and put in a copy 11148 // from the sret argument into it. 11149 SmallVector<EVT, 1> ValueVTs; 11150 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11151 PointerType::get(F.getContext(), 11152 DAG.getDataLayout().getAllocaAddrSpace()), 11153 ValueVTs); 11154 MVT VT = ValueVTs[0].getSimpleVT(); 11155 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11156 std::optional<ISD::NodeType> AssertOp; 11157 SDValue ArgValue = 11158 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11159 F.getCallingConv(), AssertOp); 11160 11161 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11162 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11163 Register SRetReg = 11164 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11165 FuncInfo->DemoteRegister = SRetReg; 11166 NewRoot = 11167 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11168 DAG.setRoot(NewRoot); 11169 11170 // i indexes lowered arguments. Bump it past the hidden sret argument. 11171 ++i; 11172 } 11173 11174 SmallVector<SDValue, 4> Chains; 11175 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11176 for (const Argument &Arg : F.args()) { 11177 SmallVector<SDValue, 4> ArgValues; 11178 SmallVector<EVT, 4> ValueVTs; 11179 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11180 unsigned NumValues = ValueVTs.size(); 11181 if (NumValues == 0) 11182 continue; 11183 11184 bool ArgHasUses = !Arg.use_empty(); 11185 11186 // Elide the copying store if the target loaded this argument from a 11187 // suitable fixed stack object. 11188 if (Ins[i].Flags.isCopyElisionCandidate()) { 11189 unsigned NumParts = 0; 11190 for (EVT VT : ValueVTs) 11191 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11192 F.getCallingConv(), VT); 11193 11194 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11195 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11196 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11197 } 11198 11199 // If this argument is unused then remember its value. It is used to generate 11200 // debugging information. 11201 bool isSwiftErrorArg = 11202 TLI->supportSwiftError() && 11203 Arg.hasAttribute(Attribute::SwiftError); 11204 if (!ArgHasUses && !isSwiftErrorArg) { 11205 SDB->setUnusedArgValue(&Arg, InVals[i]); 11206 11207 // Also remember any frame index for use in FastISel. 11208 if (FrameIndexSDNode *FI = 11209 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11210 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11211 } 11212 11213 for (unsigned Val = 0; Val != NumValues; ++Val) { 11214 EVT VT = ValueVTs[Val]; 11215 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11216 F.getCallingConv(), VT); 11217 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11218 *CurDAG->getContext(), F.getCallingConv(), VT); 11219 11220 // Even an apparent 'unused' swifterror argument needs to be returned. So 11221 // we do generate a copy for it that can be used on return from the 11222 // function. 11223 if (ArgHasUses || isSwiftErrorArg) { 11224 std::optional<ISD::NodeType> AssertOp; 11225 if (Arg.hasAttribute(Attribute::SExt)) 11226 AssertOp = ISD::AssertSext; 11227 else if (Arg.hasAttribute(Attribute::ZExt)) 11228 AssertOp = ISD::AssertZext; 11229 11230 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11231 PartVT, VT, nullptr, NewRoot, 11232 F.getCallingConv(), AssertOp)); 11233 } 11234 11235 i += NumParts; 11236 } 11237 11238 // We don't need to do anything else for unused arguments. 11239 if (ArgValues.empty()) 11240 continue; 11241 11242 // Note down frame index. 11243 if (FrameIndexSDNode *FI = 11244 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11245 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11246 11247 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11248 SDB->getCurSDLoc()); 11249 11250 SDB->setValue(&Arg, Res); 11251 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11252 // We want to associate the argument with the frame index, among 11253 // involved operands, that correspond to the lowest address. The 11254 // getCopyFromParts function, called earlier, is swapping the order of 11255 // the operands to BUILD_PAIR depending on endianness. The result of 11256 // that swapping is that the least significant bits of the argument will 11257 // be in the first operand of the BUILD_PAIR node, and the most 11258 // significant bits will be in the second operand. 11259 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11260 if (LoadSDNode *LNode = 11261 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11262 if (FrameIndexSDNode *FI = 11263 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11264 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11265 } 11266 11267 // Analyses past this point are naive and don't expect an assertion. 11268 if (Res.getOpcode() == ISD::AssertZext) 11269 Res = Res.getOperand(0); 11270 11271 // Update the SwiftErrorVRegDefMap. 11272 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11273 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11274 if (Register::isVirtualRegister(Reg)) 11275 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11276 Reg); 11277 } 11278 11279 // If this argument is live outside of the entry block, insert a copy from 11280 // wherever we got it to the vreg that other BB's will reference it as. 11281 if (Res.getOpcode() == ISD::CopyFromReg) { 11282 // If we can, though, try to skip creating an unnecessary vreg. 11283 // FIXME: This isn't very clean... it would be nice to make this more 11284 // general. 11285 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11286 if (Register::isVirtualRegister(Reg)) { 11287 FuncInfo->ValueMap[&Arg] = Reg; 11288 continue; 11289 } 11290 } 11291 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11292 FuncInfo->InitializeRegForValue(&Arg); 11293 SDB->CopyToExportRegsIfNeeded(&Arg); 11294 } 11295 } 11296 11297 if (!Chains.empty()) { 11298 Chains.push_back(NewRoot); 11299 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11300 } 11301 11302 DAG.setRoot(NewRoot); 11303 11304 assert(i == InVals.size() && "Argument register count mismatch!"); 11305 11306 // If any argument copy elisions occurred and we have debug info, update the 11307 // stale frame indices used in the dbg.declare variable info table. 11308 if (!ArgCopyElisionFrameIndexMap.empty()) { 11309 for (MachineFunction::VariableDbgInfo &VI : 11310 MF->getInStackSlotVariableDbgInfo()) { 11311 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11312 if (I != ArgCopyElisionFrameIndexMap.end()) 11313 VI.updateStackSlot(I->second); 11314 } 11315 } 11316 11317 // Finally, if the target has anything special to do, allow it to do so. 11318 emitFunctionEntryCode(); 11319 } 11320 11321 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11322 /// ensure constants are generated when needed. Remember the virtual registers 11323 /// that need to be added to the Machine PHI nodes as input. We cannot just 11324 /// directly add them, because expansion might result in multiple MBB's for one 11325 /// BB. As such, the start of the BB might correspond to a different MBB than 11326 /// the end. 11327 void 11328 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11330 11331 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11332 11333 // Check PHI nodes in successors that expect a value to be available from this 11334 // block. 11335 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11336 if (!isa<PHINode>(SuccBB->begin())) continue; 11337 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11338 11339 // If this terminator has multiple identical successors (common for 11340 // switches), only handle each succ once. 11341 if (!SuccsHandled.insert(SuccMBB).second) 11342 continue; 11343 11344 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11345 11346 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11347 // nodes and Machine PHI nodes, but the incoming operands have not been 11348 // emitted yet. 11349 for (const PHINode &PN : SuccBB->phis()) { 11350 // Ignore dead phi's. 11351 if (PN.use_empty()) 11352 continue; 11353 11354 // Skip empty types 11355 if (PN.getType()->isEmptyTy()) 11356 continue; 11357 11358 unsigned Reg; 11359 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11360 11361 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11362 unsigned &RegOut = ConstantsOut[C]; 11363 if (RegOut == 0) { 11364 RegOut = FuncInfo.CreateRegs(C); 11365 // We need to zero/sign extend ConstantInt phi operands to match 11366 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11367 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11368 if (auto *CI = dyn_cast<ConstantInt>(C)) 11369 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11370 : ISD::ZERO_EXTEND; 11371 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11372 } 11373 Reg = RegOut; 11374 } else { 11375 DenseMap<const Value *, Register>::iterator I = 11376 FuncInfo.ValueMap.find(PHIOp); 11377 if (I != FuncInfo.ValueMap.end()) 11378 Reg = I->second; 11379 else { 11380 assert(isa<AllocaInst>(PHIOp) && 11381 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11382 "Didn't codegen value into a register!??"); 11383 Reg = FuncInfo.CreateRegs(PHIOp); 11384 CopyValueToVirtualRegister(PHIOp, Reg); 11385 } 11386 } 11387 11388 // Remember that this register needs to added to the machine PHI node as 11389 // the input for this MBB. 11390 SmallVector<EVT, 4> ValueVTs; 11391 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11392 for (EVT VT : ValueVTs) { 11393 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11394 for (unsigned i = 0; i != NumRegisters; ++i) 11395 FuncInfo.PHINodesToUpdate.push_back( 11396 std::make_pair(&*MBBI++, Reg + i)); 11397 Reg += NumRegisters; 11398 } 11399 } 11400 } 11401 11402 ConstantsOut.clear(); 11403 } 11404 11405 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11406 MachineFunction::iterator I(MBB); 11407 if (++I == FuncInfo.MF->end()) 11408 return nullptr; 11409 return &*I; 11410 } 11411 11412 /// During lowering new call nodes can be created (such as memset, etc.). 11413 /// Those will become new roots of the current DAG, but complications arise 11414 /// when they are tail calls. In such cases, the call lowering will update 11415 /// the root, but the builder still needs to know that a tail call has been 11416 /// lowered in order to avoid generating an additional return. 11417 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11418 // If the node is null, we do have a tail call. 11419 if (MaybeTC.getNode() != nullptr) 11420 DAG.setRoot(MaybeTC); 11421 else 11422 HasTailCall = true; 11423 } 11424 11425 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11426 MachineBasicBlock *SwitchMBB, 11427 MachineBasicBlock *DefaultMBB) { 11428 MachineFunction *CurMF = FuncInfo.MF; 11429 MachineBasicBlock *NextMBB = nullptr; 11430 MachineFunction::iterator BBI(W.MBB); 11431 if (++BBI != FuncInfo.MF->end()) 11432 NextMBB = &*BBI; 11433 11434 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11435 11436 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11437 11438 if (Size == 2 && W.MBB == SwitchMBB) { 11439 // If any two of the cases has the same destination, and if one value 11440 // is the same as the other, but has one bit unset that the other has set, 11441 // use bit manipulation to do two compares at once. For example: 11442 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11443 // TODO: This could be extended to merge any 2 cases in switches with 3 11444 // cases. 11445 // TODO: Handle cases where W.CaseBB != SwitchBB. 11446 CaseCluster &Small = *W.FirstCluster; 11447 CaseCluster &Big = *W.LastCluster; 11448 11449 if (Small.Low == Small.High && Big.Low == Big.High && 11450 Small.MBB == Big.MBB) { 11451 const APInt &SmallValue = Small.Low->getValue(); 11452 const APInt &BigValue = Big.Low->getValue(); 11453 11454 // Check that there is only one bit different. 11455 APInt CommonBit = BigValue ^ SmallValue; 11456 if (CommonBit.isPowerOf2()) { 11457 SDValue CondLHS = getValue(Cond); 11458 EVT VT = CondLHS.getValueType(); 11459 SDLoc DL = getCurSDLoc(); 11460 11461 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11462 DAG.getConstant(CommonBit, DL, VT)); 11463 SDValue Cond = DAG.getSetCC( 11464 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11465 ISD::SETEQ); 11466 11467 // Update successor info. 11468 // Both Small and Big will jump to Small.BB, so we sum up the 11469 // probabilities. 11470 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11471 if (BPI) 11472 addSuccessorWithProb( 11473 SwitchMBB, DefaultMBB, 11474 // The default destination is the first successor in IR. 11475 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11476 else 11477 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11478 11479 // Insert the true branch. 11480 SDValue BrCond = 11481 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11482 DAG.getBasicBlock(Small.MBB)); 11483 // Insert the false branch. 11484 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11485 DAG.getBasicBlock(DefaultMBB)); 11486 11487 DAG.setRoot(BrCond); 11488 return; 11489 } 11490 } 11491 } 11492 11493 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11494 // Here, we order cases by probability so the most likely case will be 11495 // checked first. However, two clusters can have the same probability in 11496 // which case their relative ordering is non-deterministic. So we use Low 11497 // as a tie-breaker as clusters are guaranteed to never overlap. 11498 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11499 [](const CaseCluster &a, const CaseCluster &b) { 11500 return a.Prob != b.Prob ? 11501 a.Prob > b.Prob : 11502 a.Low->getValue().slt(b.Low->getValue()); 11503 }); 11504 11505 // Rearrange the case blocks so that the last one falls through if possible 11506 // without changing the order of probabilities. 11507 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11508 --I; 11509 if (I->Prob > W.LastCluster->Prob) 11510 break; 11511 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11512 std::swap(*I, *W.LastCluster); 11513 break; 11514 } 11515 } 11516 } 11517 11518 // Compute total probability. 11519 BranchProbability DefaultProb = W.DefaultProb; 11520 BranchProbability UnhandledProbs = DefaultProb; 11521 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11522 UnhandledProbs += I->Prob; 11523 11524 MachineBasicBlock *CurMBB = W.MBB; 11525 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11526 bool FallthroughUnreachable = false; 11527 MachineBasicBlock *Fallthrough; 11528 if (I == W.LastCluster) { 11529 // For the last cluster, fall through to the default destination. 11530 Fallthrough = DefaultMBB; 11531 FallthroughUnreachable = isa<UnreachableInst>( 11532 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11533 } else { 11534 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11535 CurMF->insert(BBI, Fallthrough); 11536 // Put Cond in a virtual register to make it available from the new blocks. 11537 ExportFromCurrentBlock(Cond); 11538 } 11539 UnhandledProbs -= I->Prob; 11540 11541 switch (I->Kind) { 11542 case CC_JumpTable: { 11543 // FIXME: Optimize away range check based on pivot comparisons. 11544 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11545 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11546 11547 // The jump block hasn't been inserted yet; insert it here. 11548 MachineBasicBlock *JumpMBB = JT->MBB; 11549 CurMF->insert(BBI, JumpMBB); 11550 11551 auto JumpProb = I->Prob; 11552 auto FallthroughProb = UnhandledProbs; 11553 11554 // If the default statement is a target of the jump table, we evenly 11555 // distribute the default probability to successors of CurMBB. Also 11556 // update the probability on the edge from JumpMBB to Fallthrough. 11557 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11558 SE = JumpMBB->succ_end(); 11559 SI != SE; ++SI) { 11560 if (*SI == DefaultMBB) { 11561 JumpProb += DefaultProb / 2; 11562 FallthroughProb -= DefaultProb / 2; 11563 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11564 JumpMBB->normalizeSuccProbs(); 11565 break; 11566 } 11567 } 11568 11569 // If the default clause is unreachable, propagate that knowledge into 11570 // JTH->FallthroughUnreachable which will use it to suppress the range 11571 // check. 11572 // 11573 // However, don't do this if we're doing branch target enforcement, 11574 // because a table branch _without_ a range check can be a tempting JOP 11575 // gadget - out-of-bounds inputs that are impossible in correct 11576 // execution become possible again if an attacker can influence the 11577 // control flow. So if an attacker doesn't already have a BTI bypass 11578 // available, we don't want them to be able to get one out of this 11579 // table branch. 11580 if (FallthroughUnreachable) { 11581 Function &CurFunc = CurMF->getFunction(); 11582 bool HasBranchTargetEnforcement = false; 11583 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11584 HasBranchTargetEnforcement = 11585 CurFunc.getFnAttribute("branch-target-enforcement") 11586 .getValueAsBool(); 11587 } else { 11588 HasBranchTargetEnforcement = 11589 CurMF->getMMI().getModule()->getModuleFlag( 11590 "branch-target-enforcement"); 11591 } 11592 if (!HasBranchTargetEnforcement) 11593 JTH->FallthroughUnreachable = true; 11594 } 11595 11596 if (!JTH->FallthroughUnreachable) 11597 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11598 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11599 CurMBB->normalizeSuccProbs(); 11600 11601 // The jump table header will be inserted in our current block, do the 11602 // range check, and fall through to our fallthrough block. 11603 JTH->HeaderBB = CurMBB; 11604 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11605 11606 // If we're in the right place, emit the jump table header right now. 11607 if (CurMBB == SwitchMBB) { 11608 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11609 JTH->Emitted = true; 11610 } 11611 break; 11612 } 11613 case CC_BitTests: { 11614 // FIXME: Optimize away range check based on pivot comparisons. 11615 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11616 11617 // The bit test blocks haven't been inserted yet; insert them here. 11618 for (BitTestCase &BTC : BTB->Cases) 11619 CurMF->insert(BBI, BTC.ThisBB); 11620 11621 // Fill in fields of the BitTestBlock. 11622 BTB->Parent = CurMBB; 11623 BTB->Default = Fallthrough; 11624 11625 BTB->DefaultProb = UnhandledProbs; 11626 // If the cases in bit test don't form a contiguous range, we evenly 11627 // distribute the probability on the edge to Fallthrough to two 11628 // successors of CurMBB. 11629 if (!BTB->ContiguousRange) { 11630 BTB->Prob += DefaultProb / 2; 11631 BTB->DefaultProb -= DefaultProb / 2; 11632 } 11633 11634 if (FallthroughUnreachable) 11635 BTB->FallthroughUnreachable = true; 11636 11637 // If we're in the right place, emit the bit test header right now. 11638 if (CurMBB == SwitchMBB) { 11639 visitBitTestHeader(*BTB, SwitchMBB); 11640 BTB->Emitted = true; 11641 } 11642 break; 11643 } 11644 case CC_Range: { 11645 const Value *RHS, *LHS, *MHS; 11646 ISD::CondCode CC; 11647 if (I->Low == I->High) { 11648 // Check Cond == I->Low. 11649 CC = ISD::SETEQ; 11650 LHS = Cond; 11651 RHS=I->Low; 11652 MHS = nullptr; 11653 } else { 11654 // Check I->Low <= Cond <= I->High. 11655 CC = ISD::SETLE; 11656 LHS = I->Low; 11657 MHS = Cond; 11658 RHS = I->High; 11659 } 11660 11661 // If Fallthrough is unreachable, fold away the comparison. 11662 if (FallthroughUnreachable) 11663 CC = ISD::SETTRUE; 11664 11665 // The false probability is the sum of all unhandled cases. 11666 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11667 getCurSDLoc(), I->Prob, UnhandledProbs); 11668 11669 if (CurMBB == SwitchMBB) 11670 visitSwitchCase(CB, SwitchMBB); 11671 else 11672 SL->SwitchCases.push_back(CB); 11673 11674 break; 11675 } 11676 } 11677 CurMBB = Fallthrough; 11678 } 11679 } 11680 11681 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11682 const SwitchWorkListItem &W, 11683 Value *Cond, 11684 MachineBasicBlock *SwitchMBB) { 11685 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11686 "Clusters not sorted?"); 11687 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11688 11689 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11690 SL->computeSplitWorkItemInfo(W); 11691 11692 // Use the first element on the right as pivot since we will make less-than 11693 // comparisons against it. 11694 CaseClusterIt PivotCluster = FirstRight; 11695 assert(PivotCluster > W.FirstCluster); 11696 assert(PivotCluster <= W.LastCluster); 11697 11698 CaseClusterIt FirstLeft = W.FirstCluster; 11699 CaseClusterIt LastRight = W.LastCluster; 11700 11701 const ConstantInt *Pivot = PivotCluster->Low; 11702 11703 // New blocks will be inserted immediately after the current one. 11704 MachineFunction::iterator BBI(W.MBB); 11705 ++BBI; 11706 11707 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11708 // we can branch to its destination directly if it's squeezed exactly in 11709 // between the known lower bound and Pivot - 1. 11710 MachineBasicBlock *LeftMBB; 11711 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11712 FirstLeft->Low == W.GE && 11713 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11714 LeftMBB = FirstLeft->MBB; 11715 } else { 11716 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11717 FuncInfo.MF->insert(BBI, LeftMBB); 11718 WorkList.push_back( 11719 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11720 // Put Cond in a virtual register to make it available from the new blocks. 11721 ExportFromCurrentBlock(Cond); 11722 } 11723 11724 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11725 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11726 // directly if RHS.High equals the current upper bound. 11727 MachineBasicBlock *RightMBB; 11728 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11729 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11730 RightMBB = FirstRight->MBB; 11731 } else { 11732 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11733 FuncInfo.MF->insert(BBI, RightMBB); 11734 WorkList.push_back( 11735 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11736 // Put Cond in a virtual register to make it available from the new blocks. 11737 ExportFromCurrentBlock(Cond); 11738 } 11739 11740 // Create the CaseBlock record that will be used to lower the branch. 11741 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11742 getCurSDLoc(), LeftProb, RightProb); 11743 11744 if (W.MBB == SwitchMBB) 11745 visitSwitchCase(CB, SwitchMBB); 11746 else 11747 SL->SwitchCases.push_back(CB); 11748 } 11749 11750 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11751 // from the swith statement. 11752 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11753 BranchProbability PeeledCaseProb) { 11754 if (PeeledCaseProb == BranchProbability::getOne()) 11755 return BranchProbability::getZero(); 11756 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11757 11758 uint32_t Numerator = CaseProb.getNumerator(); 11759 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11760 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11761 } 11762 11763 // Try to peel the top probability case if it exceeds the threshold. 11764 // Return current MachineBasicBlock for the switch statement if the peeling 11765 // does not occur. 11766 // If the peeling is performed, return the newly created MachineBasicBlock 11767 // for the peeled switch statement. Also update Clusters to remove the peeled 11768 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11769 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11770 const SwitchInst &SI, CaseClusterVector &Clusters, 11771 BranchProbability &PeeledCaseProb) { 11772 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11773 // Don't perform if there is only one cluster or optimizing for size. 11774 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11775 TM.getOptLevel() == CodeGenOptLevel::None || 11776 SwitchMBB->getParent()->getFunction().hasMinSize()) 11777 return SwitchMBB; 11778 11779 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11780 unsigned PeeledCaseIndex = 0; 11781 bool SwitchPeeled = false; 11782 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11783 CaseCluster &CC = Clusters[Index]; 11784 if (CC.Prob < TopCaseProb) 11785 continue; 11786 TopCaseProb = CC.Prob; 11787 PeeledCaseIndex = Index; 11788 SwitchPeeled = true; 11789 } 11790 if (!SwitchPeeled) 11791 return SwitchMBB; 11792 11793 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11794 << TopCaseProb << "\n"); 11795 11796 // Record the MBB for the peeled switch statement. 11797 MachineFunction::iterator BBI(SwitchMBB); 11798 ++BBI; 11799 MachineBasicBlock *PeeledSwitchMBB = 11800 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11801 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11802 11803 ExportFromCurrentBlock(SI.getCondition()); 11804 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11805 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11806 nullptr, nullptr, TopCaseProb.getCompl()}; 11807 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11808 11809 Clusters.erase(PeeledCaseIt); 11810 for (CaseCluster &CC : Clusters) { 11811 LLVM_DEBUG( 11812 dbgs() << "Scale the probablity for one cluster, before scaling: " 11813 << CC.Prob << "\n"); 11814 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11815 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11816 } 11817 PeeledCaseProb = TopCaseProb; 11818 return PeeledSwitchMBB; 11819 } 11820 11821 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11822 // Extract cases from the switch. 11823 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11824 CaseClusterVector Clusters; 11825 Clusters.reserve(SI.getNumCases()); 11826 for (auto I : SI.cases()) { 11827 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11828 const ConstantInt *CaseVal = I.getCaseValue(); 11829 BranchProbability Prob = 11830 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11831 : BranchProbability(1, SI.getNumCases() + 1); 11832 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11833 } 11834 11835 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11836 11837 // Cluster adjacent cases with the same destination. We do this at all 11838 // optimization levels because it's cheap to do and will make codegen faster 11839 // if there are many clusters. 11840 sortAndRangeify(Clusters); 11841 11842 // The branch probablity of the peeled case. 11843 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11844 MachineBasicBlock *PeeledSwitchMBB = 11845 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11846 11847 // If there is only the default destination, jump there directly. 11848 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11849 if (Clusters.empty()) { 11850 assert(PeeledSwitchMBB == SwitchMBB); 11851 SwitchMBB->addSuccessor(DefaultMBB); 11852 if (DefaultMBB != NextBlock(SwitchMBB)) { 11853 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11854 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11855 } 11856 return; 11857 } 11858 11859 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11860 DAG.getBFI()); 11861 SL->findBitTestClusters(Clusters, &SI); 11862 11863 LLVM_DEBUG({ 11864 dbgs() << "Case clusters: "; 11865 for (const CaseCluster &C : Clusters) { 11866 if (C.Kind == CC_JumpTable) 11867 dbgs() << "JT:"; 11868 if (C.Kind == CC_BitTests) 11869 dbgs() << "BT:"; 11870 11871 C.Low->getValue().print(dbgs(), true); 11872 if (C.Low != C.High) { 11873 dbgs() << '-'; 11874 C.High->getValue().print(dbgs(), true); 11875 } 11876 dbgs() << ' '; 11877 } 11878 dbgs() << '\n'; 11879 }); 11880 11881 assert(!Clusters.empty()); 11882 SwitchWorkList WorkList; 11883 CaseClusterIt First = Clusters.begin(); 11884 CaseClusterIt Last = Clusters.end() - 1; 11885 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11886 // Scale the branchprobability for DefaultMBB if the peel occurs and 11887 // DefaultMBB is not replaced. 11888 if (PeeledCaseProb != BranchProbability::getZero() && 11889 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11890 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11891 WorkList.push_back( 11892 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11893 11894 while (!WorkList.empty()) { 11895 SwitchWorkListItem W = WorkList.pop_back_val(); 11896 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11897 11898 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11899 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11900 // For optimized builds, lower large range as a balanced binary tree. 11901 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11902 continue; 11903 } 11904 11905 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11906 } 11907 } 11908 11909 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11911 auto DL = getCurSDLoc(); 11912 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11913 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11914 } 11915 11916 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11918 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11919 11920 SDLoc DL = getCurSDLoc(); 11921 SDValue V = getValue(I.getOperand(0)); 11922 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11923 11924 if (VT.isScalableVector()) { 11925 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11926 return; 11927 } 11928 11929 // Use VECTOR_SHUFFLE for the fixed-length vector 11930 // to maintain existing behavior. 11931 SmallVector<int, 8> Mask; 11932 unsigned NumElts = VT.getVectorMinNumElements(); 11933 for (unsigned i = 0; i != NumElts; ++i) 11934 Mask.push_back(NumElts - 1 - i); 11935 11936 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11937 } 11938 11939 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11940 auto DL = getCurSDLoc(); 11941 SDValue InVec = getValue(I.getOperand(0)); 11942 EVT OutVT = 11943 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11944 11945 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11946 11947 // ISD Node needs the input vectors split into two equal parts 11948 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11949 DAG.getVectorIdxConstant(0, DL)); 11950 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11951 DAG.getVectorIdxConstant(OutNumElts, DL)); 11952 11953 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11954 // legalisation and combines. 11955 if (OutVT.isFixedLengthVector()) { 11956 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11957 createStrideMask(0, 2, OutNumElts)); 11958 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11959 createStrideMask(1, 2, OutNumElts)); 11960 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11961 setValue(&I, Res); 11962 return; 11963 } 11964 11965 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11966 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11967 setValue(&I, Res); 11968 } 11969 11970 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11971 auto DL = getCurSDLoc(); 11972 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11973 SDValue InVec0 = getValue(I.getOperand(0)); 11974 SDValue InVec1 = getValue(I.getOperand(1)); 11975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11976 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11977 11978 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11979 // legalisation and combines. 11980 if (OutVT.isFixedLengthVector()) { 11981 unsigned NumElts = InVT.getVectorMinNumElements(); 11982 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11983 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11984 createInterleaveMask(NumElts, 2))); 11985 return; 11986 } 11987 11988 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11989 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11990 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11991 Res.getValue(1)); 11992 setValue(&I, Res); 11993 } 11994 11995 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11996 SmallVector<EVT, 4> ValueVTs; 11997 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11998 ValueVTs); 11999 unsigned NumValues = ValueVTs.size(); 12000 if (NumValues == 0) return; 12001 12002 SmallVector<SDValue, 4> Values(NumValues); 12003 SDValue Op = getValue(I.getOperand(0)); 12004 12005 for (unsigned i = 0; i != NumValues; ++i) 12006 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12007 SDValue(Op.getNode(), Op.getResNo() + i)); 12008 12009 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12010 DAG.getVTList(ValueVTs), Values)); 12011 } 12012 12013 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12015 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12016 12017 SDLoc DL = getCurSDLoc(); 12018 SDValue V1 = getValue(I.getOperand(0)); 12019 SDValue V2 = getValue(I.getOperand(1)); 12020 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12021 12022 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12023 if (VT.isScalableVector()) { 12024 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12025 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12026 DAG.getConstant(Imm, DL, IdxVT))); 12027 return; 12028 } 12029 12030 unsigned NumElts = VT.getVectorNumElements(); 12031 12032 uint64_t Idx = (NumElts + Imm) % NumElts; 12033 12034 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12035 SmallVector<int, 8> Mask; 12036 for (unsigned i = 0; i < NumElts; ++i) 12037 Mask.push_back(Idx + i); 12038 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12039 } 12040 12041 // Consider the following MIR after SelectionDAG, which produces output in 12042 // phyregs in the first case or virtregs in the second case. 12043 // 12044 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12045 // %5:gr32 = COPY $ebx 12046 // %6:gr32 = COPY $edx 12047 // %1:gr32 = COPY %6:gr32 12048 // %0:gr32 = COPY %5:gr32 12049 // 12050 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12051 // %1:gr32 = COPY %6:gr32 12052 // %0:gr32 = COPY %5:gr32 12053 // 12054 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12055 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12056 // 12057 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12058 // to a single virtreg (such as %0). The remaining outputs monotonically 12059 // increase in virtreg number from there. If a callbr has no outputs, then it 12060 // should not have a corresponding callbr landingpad; in fact, the callbr 12061 // landingpad would not even be able to refer to such a callbr. 12062 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12063 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12064 // There is definitely at least one copy. 12065 assert(MI->getOpcode() == TargetOpcode::COPY && 12066 "start of copy chain MUST be COPY"); 12067 Reg = MI->getOperand(1).getReg(); 12068 MI = MRI.def_begin(Reg)->getParent(); 12069 // There may be an optional second copy. 12070 if (MI->getOpcode() == TargetOpcode::COPY) { 12071 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12072 Reg = MI->getOperand(1).getReg(); 12073 assert(Reg.isPhysical() && "expected COPY of physical register"); 12074 MI = MRI.def_begin(Reg)->getParent(); 12075 } 12076 // The start of the chain must be an INLINEASM_BR. 12077 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12078 "end of copy chain MUST be INLINEASM_BR"); 12079 return Reg; 12080 } 12081 12082 // We must do this walk rather than the simpler 12083 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12084 // otherwise we will end up with copies of virtregs only valid along direct 12085 // edges. 12086 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12087 SmallVector<EVT, 8> ResultVTs; 12088 SmallVector<SDValue, 8> ResultValues; 12089 const auto *CBR = 12090 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12091 12092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12093 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12094 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12095 12096 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12097 SDValue Chain = DAG.getRoot(); 12098 12099 // Re-parse the asm constraints string. 12100 TargetLowering::AsmOperandInfoVector TargetConstraints = 12101 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12102 for (auto &T : TargetConstraints) { 12103 SDISelAsmOperandInfo OpInfo(T); 12104 if (OpInfo.Type != InlineAsm::isOutput) 12105 continue; 12106 12107 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12108 // individual constraint. 12109 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12110 12111 switch (OpInfo.ConstraintType) { 12112 case TargetLowering::C_Register: 12113 case TargetLowering::C_RegisterClass: { 12114 // Fill in OpInfo.AssignedRegs.Regs. 12115 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12116 12117 // getRegistersForValue may produce 1 to many registers based on whether 12118 // the OpInfo.ConstraintVT is legal on the target or not. 12119 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12120 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12121 if (Register::isPhysicalRegister(OriginalDef)) 12122 FuncInfo.MBB->addLiveIn(OriginalDef); 12123 // Update the assigned registers to use the original defs. 12124 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12125 } 12126 12127 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12128 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12129 ResultValues.push_back(V); 12130 ResultVTs.push_back(OpInfo.ConstraintVT); 12131 break; 12132 } 12133 case TargetLowering::C_Other: { 12134 SDValue Flag; 12135 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12136 OpInfo, DAG); 12137 ++InitialDef; 12138 ResultValues.push_back(V); 12139 ResultVTs.push_back(OpInfo.ConstraintVT); 12140 break; 12141 } 12142 default: 12143 break; 12144 } 12145 } 12146 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12147 DAG.getVTList(ResultVTs), ResultValues); 12148 setValue(&I, V); 12149 } 12150