1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1162 report_fatal_error("visitCleanupRet not yet implemented!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1166 report_fatal_error("visitCatchEndPad not yet implemented!"); 1167 } 1168 1169 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1170 report_fatal_error("visitCatchRet not yet implemented!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 report_fatal_error("visitCatchPad not yet implemented!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1178 report_fatal_error("visitTerminatePad not yet implemented!"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 report_fatal_error("visitCleanupPad not yet implemented!"); 1183 } 1184 1185 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1187 auto &DL = DAG.getDataLayout(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i], 1216 getCurSDLoc())); 1217 Chains[i] = 1218 DAG.getStore(Chain, getCurSDLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1220 // FIXME: better loc info would be nice. 1221 Add, MachinePointerInfo(), false, false, 0); 1222 } 1223 1224 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1225 MVT::Other, Chains); 1226 } else if (I.getNumOperands() != 0) { 1227 SmallVector<EVT, 4> ValueVTs; 1228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1229 unsigned NumValues = ValueVTs.size(); 1230 if (NumValues) { 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 const Function *F = I.getParent()->getParent(); 1234 1235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::SExt)) 1238 ExtendKind = ISD::SIGN_EXTEND; 1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::ZExt)) 1241 ExtendKind = ISD::ZERO_EXTEND; 1242 1243 LLVMContext &Context = F->getContext(); 1244 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::InReg); 1246 1247 for (unsigned j = 0; j != NumValues; ++j) { 1248 EVT VT = ValueVTs[j]; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1254 MVT PartVT = TLI.getRegisterType(Context, VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (RetInReg) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1284 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1285 1286 // Verify that the target's LowerReturn behaved as expected. 1287 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1288 "LowerReturn didn't return a valid chain!"); 1289 1290 // Update the DAG with the new chain value resulting from return lowering. 1291 DAG.setRoot(Chain); 1292 } 1293 1294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1295 /// created for it, emit nodes to copy the value into the virtual 1296 /// registers. 1297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1298 // Skip empty types 1299 if (V->getType()->isEmptyTy()) 1300 return; 1301 1302 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1303 if (VMI != FuncInfo.ValueMap.end()) { 1304 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1305 CopyValueToVirtualRegister(V, VMI->second); 1306 } 1307 } 1308 1309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1310 /// the current basic block, add it to ValueMap now so that we'll get a 1311 /// CopyTo/FromReg. 1312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1313 // No need to export constants. 1314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1315 1316 // Already exported? 1317 if (FuncInfo.isExportedInst(V)) return; 1318 1319 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1320 CopyValueToVirtualRegister(V, Reg); 1321 } 1322 1323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1324 const BasicBlock *FromBB) { 1325 // The operands of the setcc have to be in this block. We don't know 1326 // how to export them from some other block. 1327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1328 // Can export from current BB. 1329 if (VI->getParent() == FromBB) 1330 return true; 1331 1332 // Is already exported, noop. 1333 return FuncInfo.isExportedInst(V); 1334 } 1335 1336 // If this is an argument, we can export it if the BB is the entry block or 1337 // if it is already exported. 1338 if (isa<Argument>(V)) { 1339 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1340 return true; 1341 1342 // Otherwise, can only export this if it is already exported. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // Otherwise, constants can always be exported. 1347 return true; 1348 } 1349 1350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1351 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1352 const MachineBasicBlock *Dst) const { 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 if (!BPI) 1355 return 0; 1356 const BasicBlock *SrcBB = Src->getBasicBlock(); 1357 const BasicBlock *DstBB = Dst->getBasicBlock(); 1358 return BPI->getEdgeWeight(SrcBB, DstBB); 1359 } 1360 1361 void SelectionDAGBuilder:: 1362 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1363 uint32_t Weight /* = 0 */) { 1364 if (!Weight) 1365 Weight = getEdgeWeight(Src, Dst); 1366 Src->addSuccessor(Dst, Weight); 1367 } 1368 1369 1370 static bool InBlock(const Value *V, const BasicBlock *BB) { 1371 if (const Instruction *I = dyn_cast<Instruction>(V)) 1372 return I->getParent() == BB; 1373 return true; 1374 } 1375 1376 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1377 /// This function emits a branch and is used at the leaves of an OR or an 1378 /// AND operator tree. 1379 /// 1380 void 1381 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1382 MachineBasicBlock *TBB, 1383 MachineBasicBlock *FBB, 1384 MachineBasicBlock *CurBB, 1385 MachineBasicBlock *SwitchBB, 1386 uint32_t TWeight, 1387 uint32_t FWeight) { 1388 const BasicBlock *BB = CurBB->getBasicBlock(); 1389 1390 // If the leaf of the tree is a comparison, merge the condition into 1391 // the caseblock. 1392 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1393 // The operands of the cmp have to be in this block. We don't know 1394 // how to export them from some other block. If this is the first block 1395 // of the sequence, no exporting is needed. 1396 if (CurBB == SwitchBB || 1397 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1398 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1399 ISD::CondCode Condition; 1400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1401 Condition = getICmpCondCode(IC->getPredicate()); 1402 } else { 1403 const FCmpInst *FC = cast<FCmpInst>(Cond); 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 Instruction::BinaryOps Opc, 1437 uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for original BB. 1471 // Assuming the original weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for original BB. 1507 // Assuming the original weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 if (I.isUnconditional()) { 1566 // Update machine-CFG edges. 1567 BrMBB->addSuccessor(Succ0MBB); 1568 1569 // If this is not a fall-through branch or optimizations are switched off, 1570 // emit the branch. 1571 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1572 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1573 MVT::Other, getControlRoot(), 1574 DAG.getBasicBlock(Succ0MBB))); 1575 1576 return; 1577 } 1578 1579 // If this condition is one of the special cases we handle, do special stuff 1580 // now. 1581 const Value *CondVal = I.getCondition(); 1582 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1583 1584 // If this is a series of conditions that are or'd or and'd together, emit 1585 // this as a sequence of branches instead of setcc's with and/or operations. 1586 // As long as jumps are not expensive, this should improve performance. 1587 // For example, instead of something like: 1588 // cmp A, B 1589 // C = seteq 1590 // cmp D, E 1591 // F = setle 1592 // or C, F 1593 // jnz foo 1594 // Emit: 1595 // cmp A, B 1596 // je foo 1597 // cmp D, E 1598 // jle foo 1599 // 1600 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1601 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1602 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1603 BOp->getOpcode() == Instruction::Or)) { 1604 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1605 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1606 getEdgeWeight(BrMBB, Succ1MBB)); 1607 // If the compares in later blocks need to use values not currently 1608 // exported from this block, export them now. This block should always 1609 // be the first entry. 1610 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1611 1612 // Allow some cases to be rejected. 1613 if (ShouldEmitAsBranches(SwitchCases)) { 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1615 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1616 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1617 } 1618 1619 // Emit the branch for this block. 1620 visitSwitchCase(SwitchCases[0], BrMBB); 1621 SwitchCases.erase(SwitchCases.begin()); 1622 return; 1623 } 1624 1625 // Okay, we decided not to do this, remove any inserted MBB's and clear 1626 // SwitchCases. 1627 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1628 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1629 1630 SwitchCases.clear(); 1631 } 1632 } 1633 1634 // Create a CaseBlock record representing this branch. 1635 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1636 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1637 1638 // Use visitSwitchCase to actually insert the fast branch sequence for this 1639 // cond branch. 1640 visitSwitchCase(CB, BrMBB); 1641 } 1642 1643 /// visitSwitchCase - Emits the necessary code to represent a single node in 1644 /// the binary search tree resulting from lowering a switch instruction. 1645 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1646 MachineBasicBlock *SwitchBB) { 1647 SDValue Cond; 1648 SDValue CondLHS = getValue(CB.CmpLHS); 1649 SDLoc dl = getCurSDLoc(); 1650 1651 // Build the setcc now. 1652 if (!CB.CmpMHS) { 1653 // Fold "(X == true)" to X and "(X == false)" to !X to 1654 // handle common cases produced by branch lowering. 1655 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1656 CB.CC == ISD::SETEQ) 1657 Cond = CondLHS; 1658 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1659 CB.CC == ISD::SETEQ) { 1660 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1662 } else 1663 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1664 } else { 1665 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1666 1667 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1668 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1669 1670 SDValue CmpOp = getValue(CB.CmpMHS); 1671 EVT VT = CmpOp.getValueType(); 1672 1673 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1674 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1675 ISD::SETLE); 1676 } else { 1677 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1678 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1679 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1680 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1681 } 1682 } 1683 1684 // Update successor info 1685 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1686 // TrueBB and FalseBB are always different unless the incoming IR is 1687 // degenerate. This only happens when running llc on weird IR. 1688 if (CB.TrueBB != CB.FalseBB) 1689 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1690 1691 // If the lhs block is the next block, invert the condition so that we can 1692 // fall through to the lhs instead of the rhs block. 1693 if (CB.TrueBB == NextBlock(SwitchBB)) { 1694 std::swap(CB.TrueBB, CB.FalseBB); 1695 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1696 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1697 } 1698 1699 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1700 MVT::Other, getControlRoot(), Cond, 1701 DAG.getBasicBlock(CB.TrueBB)); 1702 1703 // Insert the false branch. Do this even if it's a fall through branch, 1704 // this makes it easier to do DAG optimizations which require inverting 1705 // the branch condition. 1706 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1707 DAG.getBasicBlock(CB.FalseBB)); 1708 1709 DAG.setRoot(BrCond); 1710 } 1711 1712 /// visitJumpTable - Emit JumpTable node in the current MBB 1713 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1714 // Emit the code for the jump table 1715 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1716 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1717 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1718 JT.Reg, PTy); 1719 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1720 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1721 MVT::Other, Index.getValue(1), 1722 Table, Index); 1723 DAG.setRoot(BrJumpTable); 1724 } 1725 1726 /// visitJumpTableHeader - This function emits necessary code to produce index 1727 /// in the JumpTable from switch case. 1728 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1729 JumpTableHeader &JTH, 1730 MachineBasicBlock *SwitchBB) { 1731 SDLoc dl = getCurSDLoc(); 1732 1733 // Subtract the lowest switch case value from the value being switched on and 1734 // conditional branch to default mbb if the result is greater than the 1735 // difference between smallest and largest cases. 1736 SDValue SwitchOp = getValue(JTH.SValue); 1737 EVT VT = SwitchOp.getValueType(); 1738 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1739 DAG.getConstant(JTH.First, dl, VT)); 1740 1741 // The SDNode we just created, which holds the value being switched on minus 1742 // the smallest case value, needs to be copied to a virtual register so it 1743 // can be used as an index into the jump table in a subsequent basic block. 1744 // This value may be smaller or larger than the target's pointer type, and 1745 // therefore require extension or truncating. 1746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1747 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1748 1749 unsigned JumpTableReg = 1750 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1751 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1752 JumpTableReg, SwitchOp); 1753 JT.Reg = JumpTableReg; 1754 1755 // Emit the range check for the jump table, and branch to the default block 1756 // for the switch statement if the value being switched on exceeds the largest 1757 // case in the switch. 1758 SDValue CMP = DAG.getSetCC( 1759 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1760 Sub.getValueType()), 1761 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1762 1763 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1764 MVT::Other, CopyTo, CMP, 1765 DAG.getBasicBlock(JT.Default)); 1766 1767 // Avoid emitting unnecessary branches to the next block. 1768 if (JT.MBB != NextBlock(SwitchBB)) 1769 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1770 DAG.getBasicBlock(JT.MBB)); 1771 1772 DAG.setRoot(BrCond); 1773 } 1774 1775 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1776 /// tail spliced into a stack protector check success bb. 1777 /// 1778 /// For a high level explanation of how this fits into the stack protector 1779 /// generation see the comment on the declaration of class 1780 /// StackProtectorDescriptor. 1781 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1782 MachineBasicBlock *ParentBB) { 1783 1784 // First create the loads to the guard/stack slot for the comparison. 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1787 1788 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1789 int FI = MFI->getStackProtectorIndex(); 1790 1791 const Value *IRGuard = SPD.getGuard(); 1792 SDValue GuardPtr = getValue(IRGuard); 1793 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1794 1795 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1796 1797 SDValue Guard; 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1801 // guard value from the virtual register holding the value. Otherwise, emit a 1802 // volatile load to retrieve the stack guard value. 1803 unsigned GuardReg = SPD.getGuardReg(); 1804 1805 if (GuardReg && TLI.useLoadStackGuardNode()) 1806 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1807 PtrTy); 1808 else 1809 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1810 GuardPtr, MachinePointerInfo(IRGuard, 0), 1811 true, false, false, Align); 1812 1813 SDValue StackSlot = DAG.getLoad( 1814 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1816 false, false, Align); 1817 1818 // Perform the comparison via a subtract/getsetcc. 1819 EVT VT = Guard.getValueType(); 1820 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1821 1822 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1823 *DAG.getContext(), 1824 Sub.getValueType()), 1825 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1826 1827 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1828 // branch to failure MBB. 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, StackSlot.getOperand(0), 1831 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1832 // Otherwise branch to success MBB. 1833 SDValue Br = DAG.getNode(ISD::BR, dl, 1834 MVT::Other, BrCond, 1835 DAG.getBasicBlock(SPD.getSuccessMBB())); 1836 1837 DAG.setRoot(Br); 1838 } 1839 1840 /// Codegen the failure basic block for a stack protector check. 1841 /// 1842 /// A failure stack protector machine basic block consists simply of a call to 1843 /// __stack_chk_fail(). 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void 1849 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue Chain = 1852 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1853 nullptr, 0, false, getCurSDLoc(), false, false).second; 1854 DAG.setRoot(Chain); 1855 } 1856 1857 /// visitBitTestHeader - This function emits necessary code to produce value 1858 /// suitable for "bit tests" 1859 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1860 MachineBasicBlock *SwitchBB) { 1861 SDLoc dl = getCurSDLoc(); 1862 1863 // Subtract the minimum value 1864 SDValue SwitchOp = getValue(B.SValue); 1865 EVT VT = SwitchOp.getValueType(); 1866 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1867 DAG.getConstant(B.First, dl, VT)); 1868 1869 // Check range 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue RangeCmp = DAG.getSetCC( 1872 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1873 Sub.getValueType()), 1874 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1875 1876 // Determine the type of the test operands. 1877 bool UsePtrType = false; 1878 if (!TLI.isTypeLegal(VT)) 1879 UsePtrType = true; 1880 else { 1881 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1882 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1883 // Switch table case range are encoded into series of masks. 1884 // Just use pointer type, it's guaranteed to fit. 1885 UsePtrType = true; 1886 break; 1887 } 1888 } 1889 if (UsePtrType) { 1890 VT = TLI.getPointerTy(DAG.getDataLayout()); 1891 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1892 } 1893 1894 B.RegVT = VT.getSimpleVT(); 1895 B.Reg = FuncInfo.CreateReg(B.RegVT); 1896 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1897 1898 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1899 1900 addSuccessorWithWeight(SwitchBB, B.Default); 1901 addSuccessorWithWeight(SwitchBB, MBB); 1902 1903 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1904 MVT::Other, CopyTo, RangeCmp, 1905 DAG.getBasicBlock(B.Default)); 1906 1907 // Avoid emitting unnecessary branches to the next block. 1908 if (MBB != NextBlock(SwitchBB)) 1909 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1910 DAG.getBasicBlock(MBB)); 1911 1912 DAG.setRoot(BrRange); 1913 } 1914 1915 /// visitBitTestCase - this function produces one "bit test" 1916 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1917 MachineBasicBlock* NextMBB, 1918 uint32_t BranchWeightToNext, 1919 unsigned Reg, 1920 BitTestCase &B, 1921 MachineBasicBlock *SwitchBB) { 1922 SDLoc dl = getCurSDLoc(); 1923 MVT VT = BB.RegVT; 1924 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1925 SDValue Cmp; 1926 unsigned PopCount = countPopulation(B.Mask); 1927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1928 if (PopCount == 1) { 1929 // Testing for a single bit; just compare the shift count with what it 1930 // would need to be to shift a 1 bit in that position. 1931 Cmp = DAG.getSetCC( 1932 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1933 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1934 ISD::SETEQ); 1935 } else if (PopCount == BB.Range) { 1936 // There is only one zero bit in the range, test for it directly. 1937 Cmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1939 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1940 ISD::SETNE); 1941 } else { 1942 // Make desired shift 1943 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1944 DAG.getConstant(1, dl, VT), ShiftOp); 1945 1946 // Emit bit tests and jumps 1947 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1948 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1949 Cmp = DAG.getSetCC( 1950 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1951 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1952 } 1953 1954 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1955 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1956 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1957 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1958 1959 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, getControlRoot(), 1961 Cmp, DAG.getBasicBlock(B.TargetBB)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (NextMBB != NextBlock(SwitchBB)) 1965 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1966 DAG.getBasicBlock(NextMBB)); 1967 1968 DAG.setRoot(BrAnd); 1969 } 1970 1971 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1972 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1973 1974 // Retrieve successors. 1975 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1976 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1977 1978 const Value *Callee(I.getCalledValue()); 1979 const Function *Fn = dyn_cast<Function>(Callee); 1980 if (isa<InlineAsm>(Callee)) 1981 visitInlineAsm(&I); 1982 else if (Fn && Fn->isIntrinsic()) { 1983 switch (Fn->getIntrinsicID()) { 1984 default: 1985 llvm_unreachable("Cannot invoke this intrinsic"); 1986 case Intrinsic::donothing: 1987 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1988 break; 1989 case Intrinsic::experimental_patchpoint_void: 1990 case Intrinsic::experimental_patchpoint_i64: 1991 visitPatchpoint(&I, LandingPad); 1992 break; 1993 case Intrinsic::experimental_gc_statepoint: 1994 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1995 break; 1996 } 1997 } else 1998 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1999 2000 // If the value of the invoke is used outside of its defining block, make it 2001 // available as a virtual register. 2002 // We already took care of the exported value for the statepoint instruction 2003 // during call to the LowerStatepoint. 2004 if (!isStatepoint(I)) { 2005 CopyToExportRegsIfNeeded(&I); 2006 } 2007 2008 // Update successor info 2009 addSuccessorWithWeight(InvokeMBB, Return); 2010 addSuccessorWithWeight(InvokeMBB, LandingPad); 2011 2012 // Drop into normal successor. 2013 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2014 MVT::Other, getControlRoot(), 2015 DAG.getBasicBlock(Return))); 2016 } 2017 2018 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2019 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2020 } 2021 2022 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2023 assert(FuncInfo.MBB->isLandingPad() && 2024 "Call to landingpad not in landing pad!"); 2025 2026 MachineBasicBlock *MBB = FuncInfo.MBB; 2027 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2028 AddLandingPadInfo(LP, MMI, MBB); 2029 2030 // If there aren't registers to copy the values into (e.g., during SjLj 2031 // exceptions), then don't bother to create these DAG nodes. 2032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2033 if (TLI.getExceptionPointerRegister() == 0 && 2034 TLI.getExceptionSelectorRegister() == 0) 2035 return; 2036 2037 SmallVector<EVT, 2> ValueVTs; 2038 SDLoc dl = getCurSDLoc(); 2039 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2040 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2041 2042 // Get the two live-in registers as SDValues. The physregs have already been 2043 // copied into virtual registers. 2044 SDValue Ops[2]; 2045 if (FuncInfo.ExceptionPointerVirtReg) { 2046 Ops[0] = DAG.getZExtOrTrunc( 2047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2048 FuncInfo.ExceptionPointerVirtReg, 2049 TLI.getPointerTy(DAG.getDataLayout())), 2050 dl, ValueVTs[0]); 2051 } else { 2052 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2053 } 2054 Ops[1] = DAG.getZExtOrTrunc( 2055 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2056 FuncInfo.ExceptionSelectorVirtReg, 2057 TLI.getPointerTy(DAG.getDataLayout())), 2058 dl, ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2067 #ifndef NDEBUG 2068 for (const CaseCluster &CC : Clusters) 2069 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2070 #endif 2071 2072 std::sort(Clusters.begin(), Clusters.end(), 2073 [](const CaseCluster &a, const CaseCluster &b) { 2074 return a.Low->getValue().slt(b.Low->getValue()); 2075 }); 2076 2077 // Merge adjacent clusters with the same destination. 2078 const unsigned N = Clusters.size(); 2079 unsigned DstIndex = 0; 2080 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2081 CaseCluster &CC = Clusters[SrcIndex]; 2082 const ConstantInt *CaseVal = CC.Low; 2083 MachineBasicBlock *Succ = CC.MBB; 2084 2085 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2086 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2087 // If this case has the same successor and is a neighbour, merge it into 2088 // the previous cluster. 2089 Clusters[DstIndex - 1].High = CaseVal; 2090 Clusters[DstIndex - 1].Weight += CC.Weight; 2091 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2092 } else { 2093 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2094 sizeof(Clusters[SrcIndex])); 2095 } 2096 } 2097 Clusters.resize(DstIndex); 2098 } 2099 2100 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2101 MachineBasicBlock *Last) { 2102 // Update JTCases. 2103 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2104 if (JTCases[i].first.HeaderBB == First) 2105 JTCases[i].first.HeaderBB = Last; 2106 2107 // Update BitTestCases. 2108 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2109 if (BitTestCases[i].Parent == First) 2110 BitTestCases[i].Parent = Last; 2111 } 2112 2113 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2114 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2115 2116 // Update machine-CFG edges with unique successors. 2117 SmallSet<BasicBlock*, 32> Done; 2118 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2119 BasicBlock *BB = I.getSuccessor(i); 2120 bool Inserted = Done.insert(BB).second; 2121 if (!Inserted) 2122 continue; 2123 2124 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2125 addSuccessorWithWeight(IndirectBrMBB, Succ); 2126 } 2127 2128 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2129 MVT::Other, getControlRoot(), 2130 getValue(I.getAddress()))); 2131 } 2132 2133 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2134 if (DAG.getTarget().Options.TrapUnreachable) 2135 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2136 } 2137 2138 void SelectionDAGBuilder::visitFSub(const User &I) { 2139 // -0.0 - X --> fneg 2140 Type *Ty = I.getType(); 2141 if (isa<Constant>(I.getOperand(0)) && 2142 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2143 SDValue Op2 = getValue(I.getOperand(1)); 2144 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2145 Op2.getValueType(), Op2)); 2146 return; 2147 } 2148 2149 visitBinary(I, ISD::FSUB); 2150 } 2151 2152 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2153 SDValue Op1 = getValue(I.getOperand(0)); 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 2156 bool nuw = false; 2157 bool nsw = false; 2158 bool exact = false; 2159 FastMathFlags FMF; 2160 2161 if (const OverflowingBinaryOperator *OFBinOp = 2162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2163 nuw = OFBinOp->hasNoUnsignedWrap(); 2164 nsw = OFBinOp->hasNoSignedWrap(); 2165 } 2166 if (const PossiblyExactOperator *ExactOp = 2167 dyn_cast<const PossiblyExactOperator>(&I)) 2168 exact = ExactOp->isExact(); 2169 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2170 FMF = FPOp->getFastMathFlags(); 2171 2172 SDNodeFlags Flags; 2173 Flags.setExact(exact); 2174 Flags.setNoSignedWrap(nsw); 2175 Flags.setNoUnsignedWrap(nuw); 2176 if (EnableFMFInDAG) { 2177 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2178 Flags.setNoInfs(FMF.noInfs()); 2179 Flags.setNoNaNs(FMF.noNaNs()); 2180 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2181 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2182 } 2183 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2184 Op1, Op2, &Flags); 2185 setValue(&I, BinNodeValue); 2186 } 2187 2188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2189 SDValue Op1 = getValue(I.getOperand(0)); 2190 SDValue Op2 = getValue(I.getOperand(1)); 2191 2192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2193 Op2.getValueType(), DAG.getDataLayout()); 2194 2195 // Coerce the shift amount to the right type if we can. 2196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2197 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2198 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2199 SDLoc DL = getCurSDLoc(); 2200 2201 // If the operand is smaller than the shift count type, promote it. 2202 if (ShiftSize > Op2Size) 2203 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2204 2205 // If the operand is larger than the shift count type but the shift 2206 // count type has enough bits to represent any shift value, truncate 2207 // it now. This is a common case and it exposes the truncate to 2208 // optimization early. 2209 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2210 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2211 // Otherwise we'll need to temporarily settle for some other convenient 2212 // type. Type legalization will make adjustments once the shiftee is split. 2213 else 2214 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2215 } 2216 2217 bool nuw = false; 2218 bool nsw = false; 2219 bool exact = false; 2220 2221 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2222 2223 if (const OverflowingBinaryOperator *OFBinOp = 2224 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2225 nuw = OFBinOp->hasNoUnsignedWrap(); 2226 nsw = OFBinOp->hasNoSignedWrap(); 2227 } 2228 if (const PossiblyExactOperator *ExactOp = 2229 dyn_cast<const PossiblyExactOperator>(&I)) 2230 exact = ExactOp->isExact(); 2231 } 2232 SDNodeFlags Flags; 2233 Flags.setExact(exact); 2234 Flags.setNoSignedWrap(nsw); 2235 Flags.setNoUnsignedWrap(nuw); 2236 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2237 &Flags); 2238 setValue(&I, Res); 2239 } 2240 2241 void SelectionDAGBuilder::visitSDiv(const User &I) { 2242 SDValue Op1 = getValue(I.getOperand(0)); 2243 SDValue Op2 = getValue(I.getOperand(1)); 2244 2245 SDNodeFlags Flags; 2246 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2247 cast<PossiblyExactOperator>(&I)->isExact()); 2248 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2249 Op2, &Flags)); 2250 } 2251 2252 void SelectionDAGBuilder::visitICmp(const User &I) { 2253 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2254 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2255 predicate = IC->getPredicate(); 2256 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2257 predicate = ICmpInst::Predicate(IC->getPredicate()); 2258 SDValue Op1 = getValue(I.getOperand(0)); 2259 SDValue Op2 = getValue(I.getOperand(1)); 2260 ISD::CondCode Opcode = getICmpCondCode(predicate); 2261 2262 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2263 I.getType()); 2264 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2265 } 2266 2267 void SelectionDAGBuilder::visitFCmp(const User &I) { 2268 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2269 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2270 predicate = FC->getPredicate(); 2271 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2272 predicate = FCmpInst::Predicate(FC->getPredicate()); 2273 SDValue Op1 = getValue(I.getOperand(0)); 2274 SDValue Op2 = getValue(I.getOperand(1)); 2275 ISD::CondCode Condition = getFCmpCondCode(predicate); 2276 if (TM.Options.NoNaNsFPMath) 2277 Condition = getFCmpCodeWithoutNaN(Condition); 2278 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2279 I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2286 ValueVTs); 2287 unsigned NumValues = ValueVTs.size(); 2288 if (NumValues == 0) return; 2289 2290 SmallVector<SDValue, 4> Values(NumValues); 2291 SDValue Cond = getValue(I.getOperand(0)); 2292 SDValue LHSVal = getValue(I.getOperand(1)); 2293 SDValue RHSVal = getValue(I.getOperand(2)); 2294 auto BaseOps = {Cond}; 2295 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2296 ISD::VSELECT : ISD::SELECT; 2297 2298 // Min/max matching is only viable if all output VTs are the same. 2299 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2300 EVT VT = ValueVTs[0]; 2301 LLVMContext &Ctx = *DAG.getContext(); 2302 auto &TLI = DAG.getTargetLoweringInfo(); 2303 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2304 VT = TLI.getTypeToTransformTo(Ctx, VT); 2305 2306 Value *LHS, *RHS; 2307 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2308 ISD::NodeType Opc = ISD::DELETED_NODE; 2309 switch (SPR.Flavor) { 2310 case SPF_UMAX: Opc = ISD::UMAX; break; 2311 case SPF_UMIN: Opc = ISD::UMIN; break; 2312 case SPF_SMAX: Opc = ISD::SMAX; break; 2313 case SPF_SMIN: Opc = ISD::SMIN; break; 2314 case SPF_FMINNUM: 2315 switch (SPR.NaNBehavior) { 2316 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2317 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2318 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2319 case SPNB_RETURNS_ANY: 2320 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2321 : ISD::FMINNAN; 2322 break; 2323 } 2324 break; 2325 case SPF_FMAXNUM: 2326 switch (SPR.NaNBehavior) { 2327 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2328 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2329 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2330 case SPNB_RETURNS_ANY: 2331 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2332 : ISD::FMAXNAN; 2333 break; 2334 } 2335 break; 2336 default: break; 2337 } 2338 2339 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2340 // If the underlying comparison instruction is used by any other instruction, 2341 // the consumed instructions won't be destroyed, so it is not profitable 2342 // to convert to a min/max. 2343 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2344 OpCode = Opc; 2345 LHSVal = getValue(LHS); 2346 RHSVal = getValue(RHS); 2347 BaseOps = {}; 2348 } 2349 } 2350 2351 for (unsigned i = 0; i != NumValues; ++i) { 2352 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2353 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2354 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2355 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2356 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2357 Ops); 2358 } 2359 2360 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2361 DAG.getVTList(ValueVTs), Values)); 2362 } 2363 2364 void SelectionDAGBuilder::visitTrunc(const User &I) { 2365 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2366 SDValue N = getValue(I.getOperand(0)); 2367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2368 I.getType()); 2369 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2370 } 2371 2372 void SelectionDAGBuilder::visitZExt(const User &I) { 2373 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2374 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2377 I.getType()); 2378 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2379 } 2380 2381 void SelectionDAGBuilder::visitSExt(const User &I) { 2382 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2383 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2384 SDValue N = getValue(I.getOperand(0)); 2385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2386 I.getType()); 2387 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2388 } 2389 2390 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2391 // FPTrunc is never a no-op cast, no need to check 2392 SDValue N = getValue(I.getOperand(0)); 2393 SDLoc dl = getCurSDLoc(); 2394 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2395 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2396 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2397 DAG.getTargetConstant( 2398 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2399 } 2400 2401 void SelectionDAGBuilder::visitFPExt(const User &I) { 2402 // FPExt is never a no-op cast, no need to check 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2405 I.getType()); 2406 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2407 } 2408 2409 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2410 // FPToUI is never a no-op cast, no need to check 2411 SDValue N = getValue(I.getOperand(0)); 2412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2413 I.getType()); 2414 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2415 } 2416 2417 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2418 // FPToSI is never a no-op cast, no need to check 2419 SDValue N = getValue(I.getOperand(0)); 2420 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2421 I.getType()); 2422 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2423 } 2424 2425 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2426 // UIToFP is never a no-op cast, no need to check 2427 SDValue N = getValue(I.getOperand(0)); 2428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2429 I.getType()); 2430 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2431 } 2432 2433 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2434 // SIToFP is never a no-op cast, no need to check 2435 SDValue N = getValue(I.getOperand(0)); 2436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2437 I.getType()); 2438 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2439 } 2440 2441 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2442 // What to do depends on the size of the integer and the size of the pointer. 2443 // We can either truncate, zero extend, or no-op, accordingly. 2444 SDValue N = getValue(I.getOperand(0)); 2445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2446 I.getType()); 2447 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2448 } 2449 2450 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2451 // What to do depends on the size of the integer and the size of the pointer. 2452 // We can either truncate, zero extend, or no-op, accordingly. 2453 SDValue N = getValue(I.getOperand(0)); 2454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2455 I.getType()); 2456 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2457 } 2458 2459 void SelectionDAGBuilder::visitBitCast(const User &I) { 2460 SDValue N = getValue(I.getOperand(0)); 2461 SDLoc dl = getCurSDLoc(); 2462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2463 I.getType()); 2464 2465 // BitCast assures us that source and destination are the same size so this is 2466 // either a BITCAST or a no-op. 2467 if (DestVT != N.getValueType()) 2468 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2469 DestVT, N)); // convert types. 2470 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2471 // might fold any kind of constant expression to an integer constant and that 2472 // is not what we are looking for. Only regcognize a bitcast of a genuine 2473 // constant integer as an opaque constant. 2474 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2475 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2476 /*isOpaque*/true)); 2477 else 2478 setValue(&I, N); // noop cast. 2479 } 2480 2481 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2483 const Value *SV = I.getOperand(0); 2484 SDValue N = getValue(SV); 2485 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2486 2487 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2488 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2489 2490 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2491 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2492 2493 setValue(&I, N); 2494 } 2495 2496 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2498 SDValue InVec = getValue(I.getOperand(0)); 2499 SDValue InVal = getValue(I.getOperand(1)); 2500 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2501 TLI.getVectorIdxTy(DAG.getDataLayout())); 2502 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2503 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2504 InVec, InVal, InIdx)); 2505 } 2506 2507 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2509 SDValue InVec = getValue(I.getOperand(0)); 2510 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2511 TLI.getVectorIdxTy(DAG.getDataLayout())); 2512 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2513 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2514 InVec, InIdx)); 2515 } 2516 2517 // Utility for visitShuffleVector - Return true if every element in Mask, 2518 // beginning from position Pos and ending in Pos+Size, falls within the 2519 // specified sequential range [L, L+Pos). or is undef. 2520 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2521 unsigned Pos, unsigned Size, int Low) { 2522 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2523 if (Mask[i] >= 0 && Mask[i] != Low) 2524 return false; 2525 return true; 2526 } 2527 2528 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2529 SDValue Src1 = getValue(I.getOperand(0)); 2530 SDValue Src2 = getValue(I.getOperand(1)); 2531 2532 SmallVector<int, 8> Mask; 2533 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2534 unsigned MaskNumElts = Mask.size(); 2535 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2538 EVT SrcVT = Src1.getValueType(); 2539 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2540 2541 if (SrcNumElts == MaskNumElts) { 2542 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2543 &Mask[0])); 2544 return; 2545 } 2546 2547 // Normalize the shuffle vector since mask and vector length don't match. 2548 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2549 // Mask is longer than the source vectors and is a multiple of the source 2550 // vectors. We can use concatenate vector to make the mask and vectors 2551 // lengths match. 2552 if (SrcNumElts*2 == MaskNumElts) { 2553 // First check for Src1 in low and Src2 in high 2554 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2555 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2556 // The shuffle is concatenating two vectors together. 2557 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2558 VT, Src1, Src2)); 2559 return; 2560 } 2561 // Then check for Src2 in low and Src1 in high 2562 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2563 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2564 // The shuffle is concatenating two vectors together. 2565 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2566 VT, Src2, Src1)); 2567 return; 2568 } 2569 } 2570 2571 // Pad both vectors with undefs to make them the same length as the mask. 2572 unsigned NumConcat = MaskNumElts / SrcNumElts; 2573 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2574 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2575 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2576 2577 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2578 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2579 MOps1[0] = Src1; 2580 MOps2[0] = Src2; 2581 2582 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2583 getCurSDLoc(), VT, MOps1); 2584 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2585 getCurSDLoc(), VT, MOps2); 2586 2587 // Readjust mask for new input vector length. 2588 SmallVector<int, 8> MappedOps; 2589 for (unsigned i = 0; i != MaskNumElts; ++i) { 2590 int Idx = Mask[i]; 2591 if (Idx >= (int)SrcNumElts) 2592 Idx -= SrcNumElts - MaskNumElts; 2593 MappedOps.push_back(Idx); 2594 } 2595 2596 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2597 &MappedOps[0])); 2598 return; 2599 } 2600 2601 if (SrcNumElts > MaskNumElts) { 2602 // Analyze the access pattern of the vector to see if we can extract 2603 // two subvectors and do the shuffle. The analysis is done by calculating 2604 // the range of elements the mask access on both vectors. 2605 int MinRange[2] = { static_cast<int>(SrcNumElts), 2606 static_cast<int>(SrcNumElts)}; 2607 int MaxRange[2] = {-1, -1}; 2608 2609 for (unsigned i = 0; i != MaskNumElts; ++i) { 2610 int Idx = Mask[i]; 2611 unsigned Input = 0; 2612 if (Idx < 0) 2613 continue; 2614 2615 if (Idx >= (int)SrcNumElts) { 2616 Input = 1; 2617 Idx -= SrcNumElts; 2618 } 2619 if (Idx > MaxRange[Input]) 2620 MaxRange[Input] = Idx; 2621 if (Idx < MinRange[Input]) 2622 MinRange[Input] = Idx; 2623 } 2624 2625 // Check if the access is smaller than the vector size and can we find 2626 // a reasonable extract index. 2627 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2628 // Extract. 2629 int StartIdx[2]; // StartIdx to extract from 2630 for (unsigned Input = 0; Input < 2; ++Input) { 2631 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2632 RangeUse[Input] = 0; // Unused 2633 StartIdx[Input] = 0; 2634 continue; 2635 } 2636 2637 // Find a good start index that is a multiple of the mask length. Then 2638 // see if the rest of the elements are in range. 2639 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2640 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2641 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2642 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2643 } 2644 2645 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2646 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2647 return; 2648 } 2649 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2650 // Extract appropriate subvector and generate a vector shuffle 2651 for (unsigned Input = 0; Input < 2; ++Input) { 2652 SDValue &Src = Input == 0 ? Src1 : Src2; 2653 if (RangeUse[Input] == 0) 2654 Src = DAG.getUNDEF(VT); 2655 else { 2656 SDLoc dl = getCurSDLoc(); 2657 Src = DAG.getNode( 2658 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2659 DAG.getConstant(StartIdx[Input], dl, 2660 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2661 } 2662 } 2663 2664 // Calculate new mask. 2665 SmallVector<int, 8> MappedOps; 2666 for (unsigned i = 0; i != MaskNumElts; ++i) { 2667 int Idx = Mask[i]; 2668 if (Idx >= 0) { 2669 if (Idx < (int)SrcNumElts) 2670 Idx -= StartIdx[0]; 2671 else 2672 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2673 } 2674 MappedOps.push_back(Idx); 2675 } 2676 2677 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2678 &MappedOps[0])); 2679 return; 2680 } 2681 } 2682 2683 // We can't use either concat vectors or extract subvectors so fall back to 2684 // replacing the shuffle with extract and build vector. 2685 // to insert and build vector. 2686 EVT EltVT = VT.getVectorElementType(); 2687 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2688 SDLoc dl = getCurSDLoc(); 2689 SmallVector<SDValue,8> Ops; 2690 for (unsigned i = 0; i != MaskNumElts; ++i) { 2691 int Idx = Mask[i]; 2692 SDValue Res; 2693 2694 if (Idx < 0) { 2695 Res = DAG.getUNDEF(EltVT); 2696 } else { 2697 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2698 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2699 2700 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2701 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2702 } 2703 2704 Ops.push_back(Res); 2705 } 2706 2707 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2708 } 2709 2710 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2711 const Value *Op0 = I.getOperand(0); 2712 const Value *Op1 = I.getOperand(1); 2713 Type *AggTy = I.getType(); 2714 Type *ValTy = Op1->getType(); 2715 bool IntoUndef = isa<UndefValue>(Op0); 2716 bool FromUndef = isa<UndefValue>(Op1); 2717 2718 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2719 2720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2721 SmallVector<EVT, 4> AggValueVTs; 2722 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2723 SmallVector<EVT, 4> ValValueVTs; 2724 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2725 2726 unsigned NumAggValues = AggValueVTs.size(); 2727 unsigned NumValValues = ValValueVTs.size(); 2728 SmallVector<SDValue, 4> Values(NumAggValues); 2729 2730 // Ignore an insertvalue that produces an empty object 2731 if (!NumAggValues) { 2732 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2733 return; 2734 } 2735 2736 SDValue Agg = getValue(Op0); 2737 unsigned i = 0; 2738 // Copy the beginning value(s) from the original aggregate. 2739 for (; i != LinearIndex; ++i) 2740 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2741 SDValue(Agg.getNode(), Agg.getResNo() + i); 2742 // Copy values from the inserted value(s). 2743 if (NumValValues) { 2744 SDValue Val = getValue(Op1); 2745 for (; i != LinearIndex + NumValValues; ++i) 2746 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2747 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2748 } 2749 // Copy remaining value(s) from the original aggregate. 2750 for (; i != NumAggValues; ++i) 2751 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2752 SDValue(Agg.getNode(), Agg.getResNo() + i); 2753 2754 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2755 DAG.getVTList(AggValueVTs), Values)); 2756 } 2757 2758 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2759 const Value *Op0 = I.getOperand(0); 2760 Type *AggTy = Op0->getType(); 2761 Type *ValTy = I.getType(); 2762 bool OutOfUndef = isa<UndefValue>(Op0); 2763 2764 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2765 2766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2767 SmallVector<EVT, 4> ValValueVTs; 2768 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2769 2770 unsigned NumValValues = ValValueVTs.size(); 2771 2772 // Ignore a extractvalue that produces an empty object 2773 if (!NumValValues) { 2774 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2775 return; 2776 } 2777 2778 SmallVector<SDValue, 4> Values(NumValValues); 2779 2780 SDValue Agg = getValue(Op0); 2781 // Copy out the selected value(s). 2782 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2783 Values[i - LinearIndex] = 2784 OutOfUndef ? 2785 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2786 SDValue(Agg.getNode(), Agg.getResNo() + i); 2787 2788 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2789 DAG.getVTList(ValValueVTs), Values)); 2790 } 2791 2792 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2793 Value *Op0 = I.getOperand(0); 2794 // Note that the pointer operand may be a vector of pointers. Take the scalar 2795 // element which holds a pointer. 2796 Type *Ty = Op0->getType()->getScalarType(); 2797 unsigned AS = Ty->getPointerAddressSpace(); 2798 SDValue N = getValue(Op0); 2799 SDLoc dl = getCurSDLoc(); 2800 2801 // Normalize Vector GEP - all scalar operands should be converted to the 2802 // splat vector. 2803 unsigned VectorWidth = I.getType()->isVectorTy() ? 2804 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2805 2806 if (VectorWidth && !N.getValueType().isVector()) { 2807 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2808 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2809 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2810 } 2811 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2812 OI != E; ++OI) { 2813 const Value *Idx = *OI; 2814 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2815 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2816 if (Field) { 2817 // N = N + Offset 2818 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2819 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2820 DAG.getConstant(Offset, dl, N.getValueType())); 2821 } 2822 2823 Ty = StTy->getElementType(Field); 2824 } else { 2825 Ty = cast<SequentialType>(Ty)->getElementType(); 2826 MVT PtrTy = 2827 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2828 unsigned PtrSize = PtrTy.getSizeInBits(); 2829 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2830 2831 // If this is a scalar constant or a splat vector of constants, 2832 // handle it quickly. 2833 const auto *CI = dyn_cast<ConstantInt>(Idx); 2834 if (!CI && isa<ConstantDataVector>(Idx) && 2835 cast<ConstantDataVector>(Idx)->getSplatValue()) 2836 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2837 2838 if (CI) { 2839 if (CI->isZero()) 2840 continue; 2841 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2842 SDValue OffsVal = VectorWidth ? 2843 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2844 DAG.getConstant(Offs, dl, PtrTy); 2845 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2846 continue; 2847 } 2848 2849 // N = N + Idx * ElementSize; 2850 SDValue IdxN = getValue(Idx); 2851 2852 if (!IdxN.getValueType().isVector() && VectorWidth) { 2853 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2854 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2855 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2856 } 2857 // If the index is smaller or larger than intptr_t, truncate or extend 2858 // it. 2859 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2860 2861 // If this is a multiply by a power of two, turn it into a shl 2862 // immediately. This is a very common case. 2863 if (ElementSize != 1) { 2864 if (ElementSize.isPowerOf2()) { 2865 unsigned Amt = ElementSize.logBase2(); 2866 IdxN = DAG.getNode(ISD::SHL, dl, 2867 N.getValueType(), IdxN, 2868 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2869 } else { 2870 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2871 IdxN = DAG.getNode(ISD::MUL, dl, 2872 N.getValueType(), IdxN, Scale); 2873 } 2874 } 2875 2876 N = DAG.getNode(ISD::ADD, dl, 2877 N.getValueType(), N, IdxN); 2878 } 2879 } 2880 2881 setValue(&I, N); 2882 } 2883 2884 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2885 // If this is a fixed sized alloca in the entry block of the function, 2886 // allocate it statically on the stack. 2887 if (FuncInfo.StaticAllocaMap.count(&I)) 2888 return; // getValue will auto-populate this. 2889 2890 SDLoc dl = getCurSDLoc(); 2891 Type *Ty = I.getAllocatedType(); 2892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2893 auto &DL = DAG.getDataLayout(); 2894 uint64_t TySize = DL.getTypeAllocSize(Ty); 2895 unsigned Align = 2896 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2897 2898 SDValue AllocSize = getValue(I.getArraySize()); 2899 2900 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2901 if (AllocSize.getValueType() != IntPtr) 2902 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2903 2904 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2905 AllocSize, 2906 DAG.getConstant(TySize, dl, IntPtr)); 2907 2908 // Handle alignment. If the requested alignment is less than or equal to 2909 // the stack alignment, ignore it. If the size is greater than or equal to 2910 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2911 unsigned StackAlign = 2912 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2913 if (Align <= StackAlign) 2914 Align = 0; 2915 2916 // Round the size of the allocation up to the stack alignment size 2917 // by add SA-1 to the size. 2918 AllocSize = DAG.getNode(ISD::ADD, dl, 2919 AllocSize.getValueType(), AllocSize, 2920 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2921 2922 // Mask out the low bits for alignment purposes. 2923 AllocSize = DAG.getNode(ISD::AND, dl, 2924 AllocSize.getValueType(), AllocSize, 2925 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2926 dl)); 2927 2928 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2929 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2930 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2931 setValue(&I, DSA); 2932 DAG.setRoot(DSA.getValue(1)); 2933 2934 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2935 } 2936 2937 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2938 if (I.isAtomic()) 2939 return visitAtomicLoad(I); 2940 2941 const Value *SV = I.getOperand(0); 2942 SDValue Ptr = getValue(SV); 2943 2944 Type *Ty = I.getType(); 2945 2946 bool isVolatile = I.isVolatile(); 2947 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2948 2949 // The IR notion of invariant_load only guarantees that all *non-faulting* 2950 // invariant loads result in the same value. The MI notion of invariant load 2951 // guarantees that the load can be legally moved to any location within its 2952 // containing function. The MI notion of invariant_load is stronger than the 2953 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2954 // with a guarantee that the location being loaded from is dereferenceable 2955 // throughout the function's lifetime. 2956 2957 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2958 isDereferenceablePointer(SV, DAG.getDataLayout()); 2959 unsigned Alignment = I.getAlignment(); 2960 2961 AAMDNodes AAInfo; 2962 I.getAAMetadata(AAInfo); 2963 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2964 2965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2966 SmallVector<EVT, 4> ValueVTs; 2967 SmallVector<uint64_t, 4> Offsets; 2968 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2969 unsigned NumValues = ValueVTs.size(); 2970 if (NumValues == 0) 2971 return; 2972 2973 SDValue Root; 2974 bool ConstantMemory = false; 2975 if (isVolatile || NumValues > MaxParallelChains) 2976 // Serialize volatile loads with other side effects. 2977 Root = getRoot(); 2978 else if (AA->pointsToConstantMemory(MemoryLocation( 2979 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 2980 // Do not serialize (non-volatile) loads of constant memory with anything. 2981 Root = DAG.getEntryNode(); 2982 ConstantMemory = true; 2983 } else { 2984 // Do not serialize non-volatile loads against each other. 2985 Root = DAG.getRoot(); 2986 } 2987 2988 SDLoc dl = getCurSDLoc(); 2989 2990 if (isVolatile) 2991 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2992 2993 SmallVector<SDValue, 4> Values(NumValues); 2994 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2995 EVT PtrVT = Ptr.getValueType(); 2996 unsigned ChainI = 0; 2997 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2998 // Serializing loads here may result in excessive register pressure, and 2999 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3000 // could recover a bit by hoisting nodes upward in the chain by recognizing 3001 // they are side-effect free or do not alias. The optimizer should really 3002 // avoid this case by converting large object/array copies to llvm.memcpy 3003 // (MaxParallelChains should always remain as failsafe). 3004 if (ChainI == MaxParallelChains) { 3005 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3006 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3007 makeArrayRef(Chains.data(), ChainI)); 3008 Root = Chain; 3009 ChainI = 0; 3010 } 3011 SDValue A = DAG.getNode(ISD::ADD, dl, 3012 PtrVT, Ptr, 3013 DAG.getConstant(Offsets[i], dl, PtrVT)); 3014 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3015 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3016 isNonTemporal, isInvariant, Alignment, AAInfo, 3017 Ranges); 3018 3019 Values[i] = L; 3020 Chains[ChainI] = L.getValue(1); 3021 } 3022 3023 if (!ConstantMemory) { 3024 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3025 makeArrayRef(Chains.data(), ChainI)); 3026 if (isVolatile) 3027 DAG.setRoot(Chain); 3028 else 3029 PendingLoads.push_back(Chain); 3030 } 3031 3032 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3033 DAG.getVTList(ValueVTs), Values)); 3034 } 3035 3036 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3037 if (I.isAtomic()) 3038 return visitAtomicStore(I); 3039 3040 const Value *SrcV = I.getOperand(0); 3041 const Value *PtrV = I.getOperand(1); 3042 3043 SmallVector<EVT, 4> ValueVTs; 3044 SmallVector<uint64_t, 4> Offsets; 3045 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3046 SrcV->getType(), ValueVTs, &Offsets); 3047 unsigned NumValues = ValueVTs.size(); 3048 if (NumValues == 0) 3049 return; 3050 3051 // Get the lowered operands. Note that we do this after 3052 // checking if NumResults is zero, because with zero results 3053 // the operands won't have values in the map. 3054 SDValue Src = getValue(SrcV); 3055 SDValue Ptr = getValue(PtrV); 3056 3057 SDValue Root = getRoot(); 3058 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3059 EVT PtrVT = Ptr.getValueType(); 3060 bool isVolatile = I.isVolatile(); 3061 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3062 unsigned Alignment = I.getAlignment(); 3063 SDLoc dl = getCurSDLoc(); 3064 3065 AAMDNodes AAInfo; 3066 I.getAAMetadata(AAInfo); 3067 3068 unsigned ChainI = 0; 3069 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3070 // See visitLoad comments. 3071 if (ChainI == MaxParallelChains) { 3072 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3073 makeArrayRef(Chains.data(), ChainI)); 3074 Root = Chain; 3075 ChainI = 0; 3076 } 3077 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3078 DAG.getConstant(Offsets[i], dl, PtrVT)); 3079 SDValue St = DAG.getStore(Root, dl, 3080 SDValue(Src.getNode(), Src.getResNo() + i), 3081 Add, MachinePointerInfo(PtrV, Offsets[i]), 3082 isVolatile, isNonTemporal, Alignment, AAInfo); 3083 Chains[ChainI] = St; 3084 } 3085 3086 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3087 makeArrayRef(Chains.data(), ChainI)); 3088 DAG.setRoot(StoreNode); 3089 } 3090 3091 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3092 SDLoc sdl = getCurSDLoc(); 3093 3094 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3095 Value *PtrOperand = I.getArgOperand(1); 3096 SDValue Ptr = getValue(PtrOperand); 3097 SDValue Src0 = getValue(I.getArgOperand(0)); 3098 SDValue Mask = getValue(I.getArgOperand(3)); 3099 EVT VT = Src0.getValueType(); 3100 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3101 if (!Alignment) 3102 Alignment = DAG.getEVTAlignment(VT); 3103 3104 AAMDNodes AAInfo; 3105 I.getAAMetadata(AAInfo); 3106 3107 MachineMemOperand *MMO = 3108 DAG.getMachineFunction(). 3109 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3110 MachineMemOperand::MOStore, VT.getStoreSize(), 3111 Alignment, AAInfo); 3112 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3113 MMO, false); 3114 DAG.setRoot(StoreNode); 3115 setValue(&I, StoreNode); 3116 } 3117 3118 // Gather/scatter receive a vector of pointers. 3119 // This vector of pointers may be represented as a base pointer + vector of 3120 // indices, it depends on GEP and instruction preceding GEP 3121 // that calculates indices 3122 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3123 SelectionDAGBuilder* SDB) { 3124 3125 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 3126 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3127 if (!Gep || Gep->getNumOperands() > 2) 3128 return false; 3129 ShuffleVectorInst *ShuffleInst = 3130 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3131 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3132 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3133 Instruction::InsertElement) 3134 return false; 3135 3136 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3137 3138 SelectionDAG& DAG = SDB->DAG; 3139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3140 // Check is the Ptr is inside current basic block 3141 // If not, look for the shuffle instruction 3142 if (SDB->findValue(Ptr)) 3143 Base = SDB->getValue(Ptr); 3144 else if (SDB->findValue(ShuffleInst)) { 3145 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3146 SDLoc sdl = ShuffleNode; 3147 Base = DAG.getNode( 3148 ISD::EXTRACT_VECTOR_ELT, sdl, 3149 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3150 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3151 SDB->setValue(Ptr, Base); 3152 } 3153 else 3154 return false; 3155 3156 Value *IndexVal = Gep->getOperand(1); 3157 if (SDB->findValue(IndexVal)) { 3158 Index = SDB->getValue(IndexVal); 3159 3160 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3161 IndexVal = Sext->getOperand(0); 3162 if (SDB->findValue(IndexVal)) 3163 Index = SDB->getValue(IndexVal); 3164 } 3165 return true; 3166 } 3167 return false; 3168 } 3169 3170 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3171 SDLoc sdl = getCurSDLoc(); 3172 3173 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3174 Value *Ptr = I.getArgOperand(1); 3175 SDValue Src0 = getValue(I.getArgOperand(0)); 3176 SDValue Mask = getValue(I.getArgOperand(3)); 3177 EVT VT = Src0.getValueType(); 3178 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3179 if (!Alignment) 3180 Alignment = DAG.getEVTAlignment(VT); 3181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3182 3183 AAMDNodes AAInfo; 3184 I.getAAMetadata(AAInfo); 3185 3186 SDValue Base; 3187 SDValue Index; 3188 Value *BasePtr = Ptr; 3189 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3190 3191 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3192 MachineMemOperand *MMO = DAG.getMachineFunction(). 3193 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3194 MachineMemOperand::MOStore, VT.getStoreSize(), 3195 Alignment, AAInfo); 3196 if (!UniformBase) { 3197 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3198 Index = getValue(Ptr); 3199 } 3200 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3201 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3202 Ops, MMO); 3203 DAG.setRoot(Scatter); 3204 setValue(&I, Scatter); 3205 } 3206 3207 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3208 SDLoc sdl = getCurSDLoc(); 3209 3210 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3211 Value *PtrOperand = I.getArgOperand(0); 3212 SDValue Ptr = getValue(PtrOperand); 3213 SDValue Src0 = getValue(I.getArgOperand(3)); 3214 SDValue Mask = getValue(I.getArgOperand(2)); 3215 3216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3217 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3218 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3219 if (!Alignment) 3220 Alignment = DAG.getEVTAlignment(VT); 3221 3222 AAMDNodes AAInfo; 3223 I.getAAMetadata(AAInfo); 3224 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3225 3226 SDValue InChain = DAG.getRoot(); 3227 if (AA->pointsToConstantMemory(MemoryLocation( 3228 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3229 AAInfo))) { 3230 // Do not serialize (non-volatile) loads of constant memory with anything. 3231 InChain = DAG.getEntryNode(); 3232 } 3233 3234 MachineMemOperand *MMO = 3235 DAG.getMachineFunction(). 3236 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3237 MachineMemOperand::MOLoad, VT.getStoreSize(), 3238 Alignment, AAInfo, Ranges); 3239 3240 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3241 ISD::NON_EXTLOAD); 3242 SDValue OutChain = Load.getValue(1); 3243 DAG.setRoot(OutChain); 3244 setValue(&I, Load); 3245 } 3246 3247 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3248 SDLoc sdl = getCurSDLoc(); 3249 3250 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3251 Value *Ptr = I.getArgOperand(0); 3252 SDValue Src0 = getValue(I.getArgOperand(3)); 3253 SDValue Mask = getValue(I.getArgOperand(2)); 3254 3255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3256 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3257 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3258 if (!Alignment) 3259 Alignment = DAG.getEVTAlignment(VT); 3260 3261 AAMDNodes AAInfo; 3262 I.getAAMetadata(AAInfo); 3263 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3264 3265 SDValue Root = DAG.getRoot(); 3266 SDValue Base; 3267 SDValue Index; 3268 Value *BasePtr = Ptr; 3269 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3270 bool ConstantMemory = false; 3271 if (UniformBase && 3272 AA->pointsToConstantMemory(MemoryLocation( 3273 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3274 AAInfo))) { 3275 // Do not serialize (non-volatile) loads of constant memory with anything. 3276 Root = DAG.getEntryNode(); 3277 ConstantMemory = true; 3278 } 3279 3280 MachineMemOperand *MMO = 3281 DAG.getMachineFunction(). 3282 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3283 MachineMemOperand::MOLoad, VT.getStoreSize(), 3284 Alignment, AAInfo, Ranges); 3285 3286 if (!UniformBase) { 3287 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3288 Index = getValue(Ptr); 3289 } 3290 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3291 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3292 Ops, MMO); 3293 3294 SDValue OutChain = Gather.getValue(1); 3295 if (!ConstantMemory) 3296 PendingLoads.push_back(OutChain); 3297 setValue(&I, Gather); 3298 } 3299 3300 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3301 SDLoc dl = getCurSDLoc(); 3302 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3303 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3304 SynchronizationScope Scope = I.getSynchScope(); 3305 3306 SDValue InChain = getRoot(); 3307 3308 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3309 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3310 SDValue L = DAG.getAtomicCmpSwap( 3311 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3312 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3313 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3314 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3315 3316 SDValue OutChain = L.getValue(2); 3317 3318 setValue(&I, L); 3319 DAG.setRoot(OutChain); 3320 } 3321 3322 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3323 SDLoc dl = getCurSDLoc(); 3324 ISD::NodeType NT; 3325 switch (I.getOperation()) { 3326 default: llvm_unreachable("Unknown atomicrmw operation"); 3327 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3328 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3329 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3330 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3331 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3332 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3333 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3334 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3335 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3336 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3337 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3338 } 3339 AtomicOrdering Order = I.getOrdering(); 3340 SynchronizationScope Scope = I.getSynchScope(); 3341 3342 SDValue InChain = getRoot(); 3343 3344 SDValue L = 3345 DAG.getAtomic(NT, dl, 3346 getValue(I.getValOperand()).getSimpleValueType(), 3347 InChain, 3348 getValue(I.getPointerOperand()), 3349 getValue(I.getValOperand()), 3350 I.getPointerOperand(), 3351 /* Alignment=*/ 0, Order, Scope); 3352 3353 SDValue OutChain = L.getValue(1); 3354 3355 setValue(&I, L); 3356 DAG.setRoot(OutChain); 3357 } 3358 3359 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3360 SDLoc dl = getCurSDLoc(); 3361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3362 SDValue Ops[3]; 3363 Ops[0] = getRoot(); 3364 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3365 TLI.getPointerTy(DAG.getDataLayout())); 3366 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3367 TLI.getPointerTy(DAG.getDataLayout())); 3368 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3369 } 3370 3371 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3372 SDLoc dl = getCurSDLoc(); 3373 AtomicOrdering Order = I.getOrdering(); 3374 SynchronizationScope Scope = I.getSynchScope(); 3375 3376 SDValue InChain = getRoot(); 3377 3378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3379 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3380 3381 if (I.getAlignment() < VT.getSizeInBits() / 8) 3382 report_fatal_error("Cannot generate unaligned atomic load"); 3383 3384 MachineMemOperand *MMO = 3385 DAG.getMachineFunction(). 3386 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3387 MachineMemOperand::MOVolatile | 3388 MachineMemOperand::MOLoad, 3389 VT.getStoreSize(), 3390 I.getAlignment() ? I.getAlignment() : 3391 DAG.getEVTAlignment(VT)); 3392 3393 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3394 SDValue L = 3395 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3396 getValue(I.getPointerOperand()), MMO, 3397 Order, Scope); 3398 3399 SDValue OutChain = L.getValue(1); 3400 3401 setValue(&I, L); 3402 DAG.setRoot(OutChain); 3403 } 3404 3405 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3406 SDLoc dl = getCurSDLoc(); 3407 3408 AtomicOrdering Order = I.getOrdering(); 3409 SynchronizationScope Scope = I.getSynchScope(); 3410 3411 SDValue InChain = getRoot(); 3412 3413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3414 EVT VT = 3415 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3416 3417 if (I.getAlignment() < VT.getSizeInBits() / 8) 3418 report_fatal_error("Cannot generate unaligned atomic store"); 3419 3420 SDValue OutChain = 3421 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3422 InChain, 3423 getValue(I.getPointerOperand()), 3424 getValue(I.getValueOperand()), 3425 I.getPointerOperand(), I.getAlignment(), 3426 Order, Scope); 3427 3428 DAG.setRoot(OutChain); 3429 } 3430 3431 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3432 /// node. 3433 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3434 unsigned Intrinsic) { 3435 bool HasChain = !I.doesNotAccessMemory(); 3436 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3437 3438 // Build the operand list. 3439 SmallVector<SDValue, 8> Ops; 3440 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3441 if (OnlyLoad) { 3442 // We don't need to serialize loads against other loads. 3443 Ops.push_back(DAG.getRoot()); 3444 } else { 3445 Ops.push_back(getRoot()); 3446 } 3447 } 3448 3449 // Info is set by getTgtMemInstrinsic 3450 TargetLowering::IntrinsicInfo Info; 3451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3452 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3453 3454 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3455 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3456 Info.opc == ISD::INTRINSIC_W_CHAIN) 3457 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3458 TLI.getPointerTy(DAG.getDataLayout()))); 3459 3460 // Add all operands of the call to the operand list. 3461 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3462 SDValue Op = getValue(I.getArgOperand(i)); 3463 Ops.push_back(Op); 3464 } 3465 3466 SmallVector<EVT, 4> ValueVTs; 3467 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3468 3469 if (HasChain) 3470 ValueVTs.push_back(MVT::Other); 3471 3472 SDVTList VTs = DAG.getVTList(ValueVTs); 3473 3474 // Create the node. 3475 SDValue Result; 3476 if (IsTgtIntrinsic) { 3477 // This is target intrinsic that touches memory 3478 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3479 VTs, Ops, Info.memVT, 3480 MachinePointerInfo(Info.ptrVal, Info.offset), 3481 Info.align, Info.vol, 3482 Info.readMem, Info.writeMem, Info.size); 3483 } else if (!HasChain) { 3484 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3485 } else if (!I.getType()->isVoidTy()) { 3486 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3487 } else { 3488 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3489 } 3490 3491 if (HasChain) { 3492 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3493 if (OnlyLoad) 3494 PendingLoads.push_back(Chain); 3495 else 3496 DAG.setRoot(Chain); 3497 } 3498 3499 if (!I.getType()->isVoidTy()) { 3500 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3501 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3502 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3503 } 3504 3505 setValue(&I, Result); 3506 } 3507 } 3508 3509 /// GetSignificand - Get the significand and build it into a floating-point 3510 /// number with exponent of 1: 3511 /// 3512 /// Op = (Op & 0x007fffff) | 0x3f800000; 3513 /// 3514 /// where Op is the hexadecimal representation of floating point value. 3515 static SDValue 3516 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3517 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3518 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3519 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3520 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3521 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3522 } 3523 3524 /// GetExponent - Get the exponent: 3525 /// 3526 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3527 /// 3528 /// where Op is the hexadecimal representation of floating point value. 3529 static SDValue 3530 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3531 SDLoc dl) { 3532 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3533 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3534 SDValue t1 = DAG.getNode( 3535 ISD::SRL, dl, MVT::i32, t0, 3536 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3537 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3538 DAG.getConstant(127, dl, MVT::i32)); 3539 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3540 } 3541 3542 /// getF32Constant - Get 32-bit floating point constant. 3543 static SDValue 3544 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3545 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3546 MVT::f32); 3547 } 3548 3549 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3550 SelectionDAG &DAG) { 3551 // IntegerPartOfX = ((int32_t)(t0); 3552 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3553 3554 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3555 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3556 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3557 3558 // IntegerPartOfX <<= 23; 3559 IntegerPartOfX = DAG.getNode( 3560 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3561 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3562 DAG.getDataLayout()))); 3563 3564 SDValue TwoToFractionalPartOfX; 3565 if (LimitFloatPrecision <= 6) { 3566 // For floating-point precision of 6: 3567 // 3568 // TwoToFractionalPartOfX = 3569 // 0.997535578f + 3570 // (0.735607626f + 0.252464424f * x) * x; 3571 // 3572 // error 0.0144103317, which is 6 bits 3573 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3574 getF32Constant(DAG, 0x3e814304, dl)); 3575 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3576 getF32Constant(DAG, 0x3f3c50c8, dl)); 3577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3578 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3579 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3580 } else if (LimitFloatPrecision <= 12) { 3581 // For floating-point precision of 12: 3582 // 3583 // TwoToFractionalPartOfX = 3584 // 0.999892986f + 3585 // (0.696457318f + 3586 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3587 // 3588 // error 0.000107046256, which is 13 to 14 bits 3589 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3590 getF32Constant(DAG, 0x3da235e3, dl)); 3591 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3592 getF32Constant(DAG, 0x3e65b8f3, dl)); 3593 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3594 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3595 getF32Constant(DAG, 0x3f324b07, dl)); 3596 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3597 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3598 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3599 } else { // LimitFloatPrecision <= 18 3600 // For floating-point precision of 18: 3601 // 3602 // TwoToFractionalPartOfX = 3603 // 0.999999982f + 3604 // (0.693148872f + 3605 // (0.240227044f + 3606 // (0.554906021e-1f + 3607 // (0.961591928e-2f + 3608 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3609 // error 2.47208000*10^(-7), which is better than 18 bits 3610 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3611 getF32Constant(DAG, 0x3924b03e, dl)); 3612 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3613 getF32Constant(DAG, 0x3ab24b87, dl)); 3614 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3615 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3616 getF32Constant(DAG, 0x3c1d8c17, dl)); 3617 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3618 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3619 getF32Constant(DAG, 0x3d634a1d, dl)); 3620 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3621 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3622 getF32Constant(DAG, 0x3e75fe14, dl)); 3623 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3624 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3625 getF32Constant(DAG, 0x3f317234, dl)); 3626 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3627 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3628 getF32Constant(DAG, 0x3f800000, dl)); 3629 } 3630 3631 // Add the exponent into the result in integer domain. 3632 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3633 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3634 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3635 } 3636 3637 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3638 /// limited-precision mode. 3639 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3640 const TargetLowering &TLI) { 3641 if (Op.getValueType() == MVT::f32 && 3642 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3643 3644 // Put the exponent in the right bit position for later addition to the 3645 // final result: 3646 // 3647 // #define LOG2OFe 1.4426950f 3648 // t0 = Op * LOG2OFe 3649 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3650 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3651 return getLimitedPrecisionExp2(t0, dl, DAG); 3652 } 3653 3654 // No special expansion. 3655 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3656 } 3657 3658 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3659 /// limited-precision mode. 3660 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3661 const TargetLowering &TLI) { 3662 if (Op.getValueType() == MVT::f32 && 3663 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3664 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3665 3666 // Scale the exponent by log(2) [0.69314718f]. 3667 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3668 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3669 getF32Constant(DAG, 0x3f317218, dl)); 3670 3671 // Get the significand and build it into a floating-point number with 3672 // exponent of 1. 3673 SDValue X = GetSignificand(DAG, Op1, dl); 3674 3675 SDValue LogOfMantissa; 3676 if (LimitFloatPrecision <= 6) { 3677 // For floating-point precision of 6: 3678 // 3679 // LogofMantissa = 3680 // -1.1609546f + 3681 // (1.4034025f - 0.23903021f * x) * x; 3682 // 3683 // error 0.0034276066, which is better than 8 bits 3684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3685 getF32Constant(DAG, 0xbe74c456, dl)); 3686 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3687 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3689 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3690 getF32Constant(DAG, 0x3f949a29, dl)); 3691 } else if (LimitFloatPrecision <= 12) { 3692 // For floating-point precision of 12: 3693 // 3694 // LogOfMantissa = 3695 // -1.7417939f + 3696 // (2.8212026f + 3697 // (-1.4699568f + 3698 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3699 // 3700 // error 0.000061011436, which is 14 bits 3701 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3702 getF32Constant(DAG, 0xbd67b6d6, dl)); 3703 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3704 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3705 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3706 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3707 getF32Constant(DAG, 0x3fbc278b, dl)); 3708 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3709 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3710 getF32Constant(DAG, 0x40348e95, dl)); 3711 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3712 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3713 getF32Constant(DAG, 0x3fdef31a, dl)); 3714 } else { // LimitFloatPrecision <= 18 3715 // For floating-point precision of 18: 3716 // 3717 // LogOfMantissa = 3718 // -2.1072184f + 3719 // (4.2372794f + 3720 // (-3.7029485f + 3721 // (2.2781945f + 3722 // (-0.87823314f + 3723 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3724 // 3725 // error 0.0000023660568, which is better than 18 bits 3726 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3727 getF32Constant(DAG, 0xbc91e5ac, dl)); 3728 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3729 getF32Constant(DAG, 0x3e4350aa, dl)); 3730 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3731 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3732 getF32Constant(DAG, 0x3f60d3e3, dl)); 3733 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3734 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3735 getF32Constant(DAG, 0x4011cdf0, dl)); 3736 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3737 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3738 getF32Constant(DAG, 0x406cfd1c, dl)); 3739 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3740 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3741 getF32Constant(DAG, 0x408797cb, dl)); 3742 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3743 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3744 getF32Constant(DAG, 0x4006dcab, dl)); 3745 } 3746 3747 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3748 } 3749 3750 // No special expansion. 3751 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3752 } 3753 3754 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3755 /// limited-precision mode. 3756 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3757 const TargetLowering &TLI) { 3758 if (Op.getValueType() == MVT::f32 && 3759 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3760 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3761 3762 // Get the exponent. 3763 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3764 3765 // Get the significand and build it into a floating-point number with 3766 // exponent of 1. 3767 SDValue X = GetSignificand(DAG, Op1, dl); 3768 3769 // Different possible minimax approximations of significand in 3770 // floating-point for various degrees of accuracy over [1,2]. 3771 SDValue Log2ofMantissa; 3772 if (LimitFloatPrecision <= 6) { 3773 // For floating-point precision of 6: 3774 // 3775 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3776 // 3777 // error 0.0049451742, which is more than 7 bits 3778 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0xbeb08fe0, dl)); 3780 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3781 getF32Constant(DAG, 0x40019463, dl)); 3782 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3783 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3784 getF32Constant(DAG, 0x3fd6633d, dl)); 3785 } else if (LimitFloatPrecision <= 12) { 3786 // For floating-point precision of 12: 3787 // 3788 // Log2ofMantissa = 3789 // -2.51285454f + 3790 // (4.07009056f + 3791 // (-2.12067489f + 3792 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3793 // 3794 // error 0.0000876136000, which is better than 13 bits 3795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3796 getF32Constant(DAG, 0xbda7262e, dl)); 3797 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3798 getF32Constant(DAG, 0x3f25280b, dl)); 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3800 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3801 getF32Constant(DAG, 0x4007b923, dl)); 3802 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3803 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3804 getF32Constant(DAG, 0x40823e2f, dl)); 3805 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3806 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3807 getF32Constant(DAG, 0x4020d29c, dl)); 3808 } else { // LimitFloatPrecision <= 18 3809 // For floating-point precision of 18: 3810 // 3811 // Log2ofMantissa = 3812 // -3.0400495f + 3813 // (6.1129976f + 3814 // (-5.3420409f + 3815 // (3.2865683f + 3816 // (-1.2669343f + 3817 // (0.27515199f - 3818 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3819 // 3820 // error 0.0000018516, which is better than 18 bits 3821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3822 getF32Constant(DAG, 0xbcd2769e, dl)); 3823 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3824 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3825 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3826 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3827 getF32Constant(DAG, 0x3fa22ae7, dl)); 3828 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3829 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3830 getF32Constant(DAG, 0x40525723, dl)); 3831 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3832 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3833 getF32Constant(DAG, 0x40aaf200, dl)); 3834 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3835 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3836 getF32Constant(DAG, 0x40c39dad, dl)); 3837 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3838 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3839 getF32Constant(DAG, 0x4042902c, dl)); 3840 } 3841 3842 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3843 } 3844 3845 // No special expansion. 3846 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3847 } 3848 3849 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3850 /// limited-precision mode. 3851 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3852 const TargetLowering &TLI) { 3853 if (Op.getValueType() == MVT::f32 && 3854 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3855 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3856 3857 // Scale the exponent by log10(2) [0.30102999f]. 3858 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3859 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3860 getF32Constant(DAG, 0x3e9a209a, dl)); 3861 3862 // Get the significand and build it into a floating-point number with 3863 // exponent of 1. 3864 SDValue X = GetSignificand(DAG, Op1, dl); 3865 3866 SDValue Log10ofMantissa; 3867 if (LimitFloatPrecision <= 6) { 3868 // For floating-point precision of 6: 3869 // 3870 // Log10ofMantissa = 3871 // -0.50419619f + 3872 // (0.60948995f - 0.10380950f * x) * x; 3873 // 3874 // error 0.0014886165, which is 6 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0xbdd49a13, dl)); 3877 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x3f1c0789, dl)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3f011300, dl)); 3882 } else if (LimitFloatPrecision <= 12) { 3883 // For floating-point precision of 12: 3884 // 3885 // Log10ofMantissa = 3886 // -0.64831180f + 3887 // (0.91751397f + 3888 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3889 // 3890 // error 0.00019228036, which is better than 12 bits 3891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3892 getF32Constant(DAG, 0x3d431f31, dl)); 3893 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3894 getF32Constant(DAG, 0x3ea21fb2, dl)); 3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3896 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x3f6ae232, dl)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x3f25f7c3, dl)); 3901 } else { // LimitFloatPrecision <= 18 3902 // For floating-point precision of 18: 3903 // 3904 // Log10ofMantissa = 3905 // -0.84299375f + 3906 // (1.5327582f + 3907 // (-1.0688956f + 3908 // (0.49102474f + 3909 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3910 // 3911 // error 0.0000037995730, which is better than 18 bits 3912 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3913 getF32Constant(DAG, 0x3c5d51ce, dl)); 3914 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3915 getF32Constant(DAG, 0x3e00685a, dl)); 3916 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3917 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3918 getF32Constant(DAG, 0x3efb6798, dl)); 3919 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3920 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3921 getF32Constant(DAG, 0x3f88d192, dl)); 3922 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3923 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3924 getF32Constant(DAG, 0x3fc4316c, dl)); 3925 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3926 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3927 getF32Constant(DAG, 0x3f57ce70, dl)); 3928 } 3929 3930 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3931 } 3932 3933 // No special expansion. 3934 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3935 } 3936 3937 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3938 /// limited-precision mode. 3939 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3940 const TargetLowering &TLI) { 3941 if (Op.getValueType() == MVT::f32 && 3942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3943 return getLimitedPrecisionExp2(Op, dl, DAG); 3944 3945 // No special expansion. 3946 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3947 } 3948 3949 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3950 /// limited-precision mode with x == 10.0f. 3951 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3952 SelectionDAG &DAG, const TargetLowering &TLI) { 3953 bool IsExp10 = false; 3954 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3955 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3956 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3957 APFloat Ten(10.0f); 3958 IsExp10 = LHSC->isExactlyValue(Ten); 3959 } 3960 } 3961 3962 if (IsExp10) { 3963 // Put the exponent in the right bit position for later addition to the 3964 // final result: 3965 // 3966 // #define LOG2OF10 3.3219281f 3967 // t0 = Op * LOG2OF10; 3968 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3969 getF32Constant(DAG, 0x40549a78, dl)); 3970 return getLimitedPrecisionExp2(t0, dl, DAG); 3971 } 3972 3973 // No special expansion. 3974 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3975 } 3976 3977 3978 /// ExpandPowI - Expand a llvm.powi intrinsic. 3979 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3980 SelectionDAG &DAG) { 3981 // If RHS is a constant, we can expand this out to a multiplication tree, 3982 // otherwise we end up lowering to a call to __powidf2 (for example). When 3983 // optimizing for size, we only want to do this if the expansion would produce 3984 // a small number of multiplies, otherwise we do the full expansion. 3985 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3986 // Get the exponent as a positive value. 3987 unsigned Val = RHSC->getSExtValue(); 3988 if ((int)Val < 0) Val = -Val; 3989 3990 // powi(x, 0) -> 1.0 3991 if (Val == 0) 3992 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3993 3994 const Function *F = DAG.getMachineFunction().getFunction(); 3995 if (!F->optForSize() || 3996 // If optimizing for size, don't insert too many multiplies. 3997 // This inserts up to 5 multiplies. 3998 countPopulation(Val) + Log2_32(Val) < 7) { 3999 // We use the simple binary decomposition method to generate the multiply 4000 // sequence. There are more optimal ways to do this (for example, 4001 // powi(x,15) generates one more multiply than it should), but this has 4002 // the benefit of being both really simple and much better than a libcall. 4003 SDValue Res; // Logically starts equal to 1.0 4004 SDValue CurSquare = LHS; 4005 while (Val) { 4006 if (Val & 1) { 4007 if (Res.getNode()) 4008 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4009 else 4010 Res = CurSquare; // 1.0*CurSquare. 4011 } 4012 4013 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4014 CurSquare, CurSquare); 4015 Val >>= 1; 4016 } 4017 4018 // If the original was negative, invert the result, producing 1/(x*x*x). 4019 if (RHSC->getSExtValue() < 0) 4020 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4021 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4022 return Res; 4023 } 4024 } 4025 4026 // Otherwise, expand to a libcall. 4027 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4028 } 4029 4030 // getTruncatedArgReg - Find underlying register used for an truncated 4031 // argument. 4032 static unsigned getTruncatedArgReg(const SDValue &N) { 4033 if (N.getOpcode() != ISD::TRUNCATE) 4034 return 0; 4035 4036 const SDValue &Ext = N.getOperand(0); 4037 if (Ext.getOpcode() == ISD::AssertZext || 4038 Ext.getOpcode() == ISD::AssertSext) { 4039 const SDValue &CFR = Ext.getOperand(0); 4040 if (CFR.getOpcode() == ISD::CopyFromReg) 4041 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4042 if (CFR.getOpcode() == ISD::TRUNCATE) 4043 return getTruncatedArgReg(CFR); 4044 } 4045 return 0; 4046 } 4047 4048 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4049 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4050 /// At the end of instruction selection, they will be inserted to the entry BB. 4051 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4052 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4053 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4054 const Argument *Arg = dyn_cast<Argument>(V); 4055 if (!Arg) 4056 return false; 4057 4058 MachineFunction &MF = DAG.getMachineFunction(); 4059 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4060 4061 // Ignore inlined function arguments here. 4062 // 4063 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4064 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4065 return false; 4066 4067 Optional<MachineOperand> Op; 4068 // Some arguments' frame index is recorded during argument lowering. 4069 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4070 Op = MachineOperand::CreateFI(FI); 4071 4072 if (!Op && N.getNode()) { 4073 unsigned Reg; 4074 if (N.getOpcode() == ISD::CopyFromReg) 4075 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4076 else 4077 Reg = getTruncatedArgReg(N); 4078 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4079 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4080 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4081 if (PR) 4082 Reg = PR; 4083 } 4084 if (Reg) 4085 Op = MachineOperand::CreateReg(Reg, false); 4086 } 4087 4088 if (!Op) { 4089 // Check if ValueMap has reg number. 4090 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4091 if (VMI != FuncInfo.ValueMap.end()) 4092 Op = MachineOperand::CreateReg(VMI->second, false); 4093 } 4094 4095 if (!Op && N.getNode()) 4096 // Check if frame index is available. 4097 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4098 if (FrameIndexSDNode *FINode = 4099 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4100 Op = MachineOperand::CreateFI(FINode->getIndex()); 4101 4102 if (!Op) 4103 return false; 4104 4105 assert(Variable->isValidLocationForIntrinsic(DL) && 4106 "Expected inlined-at fields to agree"); 4107 if (Op->isReg()) 4108 FuncInfo.ArgDbgValues.push_back( 4109 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4110 Op->getReg(), Offset, Variable, Expr)); 4111 else 4112 FuncInfo.ArgDbgValues.push_back( 4113 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4114 .addOperand(*Op) 4115 .addImm(Offset) 4116 .addMetadata(Variable) 4117 .addMetadata(Expr)); 4118 4119 return true; 4120 } 4121 4122 // VisualStudio defines setjmp as _setjmp 4123 #if defined(_MSC_VER) && defined(setjmp) && \ 4124 !defined(setjmp_undefined_for_msvc) 4125 # pragma push_macro("setjmp") 4126 # undef setjmp 4127 # define setjmp_undefined_for_msvc 4128 #endif 4129 4130 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4131 /// we want to emit this as a call to a named external function, return the name 4132 /// otherwise lower it and return null. 4133 const char * 4134 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4136 SDLoc sdl = getCurSDLoc(); 4137 DebugLoc dl = getCurDebugLoc(); 4138 SDValue Res; 4139 4140 switch (Intrinsic) { 4141 default: 4142 // By default, turn this into a target intrinsic node. 4143 visitTargetIntrinsic(I, Intrinsic); 4144 return nullptr; 4145 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4146 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4147 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4148 case Intrinsic::returnaddress: 4149 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4150 TLI.getPointerTy(DAG.getDataLayout()), 4151 getValue(I.getArgOperand(0)))); 4152 return nullptr; 4153 case Intrinsic::frameaddress: 4154 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4155 TLI.getPointerTy(DAG.getDataLayout()), 4156 getValue(I.getArgOperand(0)))); 4157 return nullptr; 4158 case Intrinsic::read_register: { 4159 Value *Reg = I.getArgOperand(0); 4160 SDValue Chain = getRoot(); 4161 SDValue RegName = 4162 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4163 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4164 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4165 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4166 setValue(&I, Res); 4167 DAG.setRoot(Res.getValue(1)); 4168 return nullptr; 4169 } 4170 case Intrinsic::write_register: { 4171 Value *Reg = I.getArgOperand(0); 4172 Value *RegValue = I.getArgOperand(1); 4173 SDValue Chain = getRoot(); 4174 SDValue RegName = 4175 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4176 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4177 RegName, getValue(RegValue))); 4178 return nullptr; 4179 } 4180 case Intrinsic::setjmp: 4181 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4182 case Intrinsic::longjmp: 4183 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4184 case Intrinsic::memcpy: { 4185 // FIXME: this definition of "user defined address space" is x86-specific 4186 // Assert for address < 256 since we support only user defined address 4187 // spaces. 4188 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4189 < 256 && 4190 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4191 < 256 && 4192 "Unknown address space"); 4193 SDValue Op1 = getValue(I.getArgOperand(0)); 4194 SDValue Op2 = getValue(I.getArgOperand(1)); 4195 SDValue Op3 = getValue(I.getArgOperand(2)); 4196 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4197 if (!Align) 4198 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4199 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4200 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4201 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4202 false, isTC, 4203 MachinePointerInfo(I.getArgOperand(0)), 4204 MachinePointerInfo(I.getArgOperand(1))); 4205 updateDAGForMaybeTailCall(MC); 4206 return nullptr; 4207 } 4208 case Intrinsic::memset: { 4209 // FIXME: this definition of "user defined address space" is x86-specific 4210 // Assert for address < 256 since we support only user defined address 4211 // spaces. 4212 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4213 < 256 && 4214 "Unknown address space"); 4215 SDValue Op1 = getValue(I.getArgOperand(0)); 4216 SDValue Op2 = getValue(I.getArgOperand(1)); 4217 SDValue Op3 = getValue(I.getArgOperand(2)); 4218 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4219 if (!Align) 4220 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4221 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4222 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4223 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4224 isTC, MachinePointerInfo(I.getArgOperand(0))); 4225 updateDAGForMaybeTailCall(MS); 4226 return nullptr; 4227 } 4228 case Intrinsic::memmove: { 4229 // FIXME: this definition of "user defined address space" is x86-specific 4230 // Assert for address < 256 since we support only user defined address 4231 // spaces. 4232 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4233 < 256 && 4234 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4235 < 256 && 4236 "Unknown address space"); 4237 SDValue Op1 = getValue(I.getArgOperand(0)); 4238 SDValue Op2 = getValue(I.getArgOperand(1)); 4239 SDValue Op3 = getValue(I.getArgOperand(2)); 4240 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4241 if (!Align) 4242 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4243 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4244 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4245 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4246 isTC, MachinePointerInfo(I.getArgOperand(0)), 4247 MachinePointerInfo(I.getArgOperand(1))); 4248 updateDAGForMaybeTailCall(MM); 4249 return nullptr; 4250 } 4251 case Intrinsic::dbg_declare: { 4252 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4253 DILocalVariable *Variable = DI.getVariable(); 4254 DIExpression *Expression = DI.getExpression(); 4255 const Value *Address = DI.getAddress(); 4256 assert(Variable && "Missing variable"); 4257 if (!Address) { 4258 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4259 return nullptr; 4260 } 4261 4262 // Check if address has undef value. 4263 if (isa<UndefValue>(Address) || 4264 (Address->use_empty() && !isa<Argument>(Address))) { 4265 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4266 return nullptr; 4267 } 4268 4269 SDValue &N = NodeMap[Address]; 4270 if (!N.getNode() && isa<Argument>(Address)) 4271 // Check unused arguments map. 4272 N = UnusedArgNodeMap[Address]; 4273 SDDbgValue *SDV; 4274 if (N.getNode()) { 4275 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4276 Address = BCI->getOperand(0); 4277 // Parameters are handled specially. 4278 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4279 4280 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4281 4282 if (isParameter && !AI) { 4283 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4284 if (FINode) 4285 // Byval parameter. We have a frame index at this point. 4286 SDV = DAG.getFrameIndexDbgValue( 4287 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4288 else { 4289 // Address is an argument, so try to emit its dbg value using 4290 // virtual register info from the FuncInfo.ValueMap. 4291 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4292 N); 4293 return nullptr; 4294 } 4295 } else if (AI) 4296 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4297 true, 0, dl, SDNodeOrder); 4298 else { 4299 // Can't do anything with other non-AI cases yet. 4300 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4301 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4302 DEBUG(Address->dump()); 4303 return nullptr; 4304 } 4305 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4306 } else { 4307 // If Address is an argument then try to emit its dbg value using 4308 // virtual register info from the FuncInfo.ValueMap. 4309 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4310 N)) { 4311 // If variable is pinned by a alloca in dominating bb then 4312 // use StaticAllocaMap. 4313 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4314 if (AI->getParent() != DI.getParent()) { 4315 DenseMap<const AllocaInst*, int>::iterator SI = 4316 FuncInfo.StaticAllocaMap.find(AI); 4317 if (SI != FuncInfo.StaticAllocaMap.end()) { 4318 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4319 0, dl, SDNodeOrder); 4320 DAG.AddDbgValue(SDV, nullptr, false); 4321 return nullptr; 4322 } 4323 } 4324 } 4325 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4326 } 4327 } 4328 return nullptr; 4329 } 4330 case Intrinsic::dbg_value: { 4331 const DbgValueInst &DI = cast<DbgValueInst>(I); 4332 assert(DI.getVariable() && "Missing variable"); 4333 4334 DILocalVariable *Variable = DI.getVariable(); 4335 DIExpression *Expression = DI.getExpression(); 4336 uint64_t Offset = DI.getOffset(); 4337 const Value *V = DI.getValue(); 4338 if (!V) 4339 return nullptr; 4340 4341 SDDbgValue *SDV; 4342 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4343 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4344 SDNodeOrder); 4345 DAG.AddDbgValue(SDV, nullptr, false); 4346 } else { 4347 // Do not use getValue() in here; we don't want to generate code at 4348 // this point if it hasn't been done yet. 4349 SDValue N = NodeMap[V]; 4350 if (!N.getNode() && isa<Argument>(V)) 4351 // Check unused arguments map. 4352 N = UnusedArgNodeMap[V]; 4353 if (N.getNode()) { 4354 // A dbg.value for an alloca is always indirect. 4355 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4356 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4357 IsIndirect, N)) { 4358 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4359 IsIndirect, Offset, dl, SDNodeOrder); 4360 DAG.AddDbgValue(SDV, N.getNode(), false); 4361 } 4362 } else if (!V->use_empty() ) { 4363 // Do not call getValue(V) yet, as we don't want to generate code. 4364 // Remember it for later. 4365 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4366 DanglingDebugInfoMap[V] = DDI; 4367 } else { 4368 // We may expand this to cover more cases. One case where we have no 4369 // data available is an unreferenced parameter. 4370 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4371 } 4372 } 4373 4374 // Build a debug info table entry. 4375 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4376 V = BCI->getOperand(0); 4377 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4378 // Don't handle byval struct arguments or VLAs, for example. 4379 if (!AI) { 4380 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4381 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4382 return nullptr; 4383 } 4384 DenseMap<const AllocaInst*, int>::iterator SI = 4385 FuncInfo.StaticAllocaMap.find(AI); 4386 if (SI == FuncInfo.StaticAllocaMap.end()) 4387 return nullptr; // VLAs. 4388 return nullptr; 4389 } 4390 4391 case Intrinsic::eh_typeid_for: { 4392 // Find the type id for the given typeinfo. 4393 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4394 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4395 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4396 setValue(&I, Res); 4397 return nullptr; 4398 } 4399 4400 case Intrinsic::eh_return_i32: 4401 case Intrinsic::eh_return_i64: 4402 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4403 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4404 MVT::Other, 4405 getControlRoot(), 4406 getValue(I.getArgOperand(0)), 4407 getValue(I.getArgOperand(1)))); 4408 return nullptr; 4409 case Intrinsic::eh_unwind_init: 4410 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4411 return nullptr; 4412 case Intrinsic::eh_dwarf_cfa: { 4413 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4414 TLI.getPointerTy(DAG.getDataLayout())); 4415 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4416 CfaArg.getValueType(), 4417 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4418 CfaArg.getValueType()), 4419 CfaArg); 4420 SDValue FA = DAG.getNode( 4421 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4422 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4423 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4424 FA, Offset)); 4425 return nullptr; 4426 } 4427 case Intrinsic::eh_sjlj_callsite: { 4428 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4429 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4430 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4431 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4432 4433 MMI.setCurrentCallSite(CI->getZExtValue()); 4434 return nullptr; 4435 } 4436 case Intrinsic::eh_sjlj_functioncontext: { 4437 // Get and store the index of the function context. 4438 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4439 AllocaInst *FnCtx = 4440 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4441 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4442 MFI->setFunctionContextIndex(FI); 4443 return nullptr; 4444 } 4445 case Intrinsic::eh_sjlj_setjmp: { 4446 SDValue Ops[2]; 4447 Ops[0] = getRoot(); 4448 Ops[1] = getValue(I.getArgOperand(0)); 4449 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4450 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4451 setValue(&I, Op.getValue(0)); 4452 DAG.setRoot(Op.getValue(1)); 4453 return nullptr; 4454 } 4455 case Intrinsic::eh_sjlj_longjmp: { 4456 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4457 getRoot(), getValue(I.getArgOperand(0)))); 4458 return nullptr; 4459 } 4460 case Intrinsic::eh_sjlj_setup_dispatch: { 4461 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4462 getRoot())); 4463 return nullptr; 4464 } 4465 4466 case Intrinsic::masked_gather: 4467 visitMaskedGather(I); 4468 return nullptr; 4469 case Intrinsic::masked_load: 4470 visitMaskedLoad(I); 4471 return nullptr; 4472 case Intrinsic::masked_scatter: 4473 visitMaskedScatter(I); 4474 return nullptr; 4475 case Intrinsic::masked_store: 4476 visitMaskedStore(I); 4477 return nullptr; 4478 case Intrinsic::x86_mmx_pslli_w: 4479 case Intrinsic::x86_mmx_pslli_d: 4480 case Intrinsic::x86_mmx_pslli_q: 4481 case Intrinsic::x86_mmx_psrli_w: 4482 case Intrinsic::x86_mmx_psrli_d: 4483 case Intrinsic::x86_mmx_psrli_q: 4484 case Intrinsic::x86_mmx_psrai_w: 4485 case Intrinsic::x86_mmx_psrai_d: { 4486 SDValue ShAmt = getValue(I.getArgOperand(1)); 4487 if (isa<ConstantSDNode>(ShAmt)) { 4488 visitTargetIntrinsic(I, Intrinsic); 4489 return nullptr; 4490 } 4491 unsigned NewIntrinsic = 0; 4492 EVT ShAmtVT = MVT::v2i32; 4493 switch (Intrinsic) { 4494 case Intrinsic::x86_mmx_pslli_w: 4495 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4496 break; 4497 case Intrinsic::x86_mmx_pslli_d: 4498 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4499 break; 4500 case Intrinsic::x86_mmx_pslli_q: 4501 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4502 break; 4503 case Intrinsic::x86_mmx_psrli_w: 4504 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4505 break; 4506 case Intrinsic::x86_mmx_psrli_d: 4507 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4508 break; 4509 case Intrinsic::x86_mmx_psrli_q: 4510 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4511 break; 4512 case Intrinsic::x86_mmx_psrai_w: 4513 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4514 break; 4515 case Intrinsic::x86_mmx_psrai_d: 4516 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4517 break; 4518 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4519 } 4520 4521 // The vector shift intrinsics with scalars uses 32b shift amounts but 4522 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4523 // to be zero. 4524 // We must do this early because v2i32 is not a legal type. 4525 SDValue ShOps[2]; 4526 ShOps[0] = ShAmt; 4527 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4528 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4529 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4530 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4531 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4532 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4533 getValue(I.getArgOperand(0)), ShAmt); 4534 setValue(&I, Res); 4535 return nullptr; 4536 } 4537 case Intrinsic::convertff: 4538 case Intrinsic::convertfsi: 4539 case Intrinsic::convertfui: 4540 case Intrinsic::convertsif: 4541 case Intrinsic::convertuif: 4542 case Intrinsic::convertss: 4543 case Intrinsic::convertsu: 4544 case Intrinsic::convertus: 4545 case Intrinsic::convertuu: { 4546 ISD::CvtCode Code = ISD::CVT_INVALID; 4547 switch (Intrinsic) { 4548 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4549 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4550 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4551 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4552 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4553 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4554 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4555 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4556 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4557 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4558 } 4559 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4560 const Value *Op1 = I.getArgOperand(0); 4561 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4562 DAG.getValueType(DestVT), 4563 DAG.getValueType(getValue(Op1).getValueType()), 4564 getValue(I.getArgOperand(1)), 4565 getValue(I.getArgOperand(2)), 4566 Code); 4567 setValue(&I, Res); 4568 return nullptr; 4569 } 4570 case Intrinsic::powi: 4571 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4572 getValue(I.getArgOperand(1)), DAG)); 4573 return nullptr; 4574 case Intrinsic::log: 4575 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4576 return nullptr; 4577 case Intrinsic::log2: 4578 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4579 return nullptr; 4580 case Intrinsic::log10: 4581 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4582 return nullptr; 4583 case Intrinsic::exp: 4584 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4585 return nullptr; 4586 case Intrinsic::exp2: 4587 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4588 return nullptr; 4589 case Intrinsic::pow: 4590 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4591 getValue(I.getArgOperand(1)), DAG, TLI)); 4592 return nullptr; 4593 case Intrinsic::sqrt: 4594 case Intrinsic::fabs: 4595 case Intrinsic::sin: 4596 case Intrinsic::cos: 4597 case Intrinsic::floor: 4598 case Intrinsic::ceil: 4599 case Intrinsic::trunc: 4600 case Intrinsic::rint: 4601 case Intrinsic::nearbyint: 4602 case Intrinsic::round: { 4603 unsigned Opcode; 4604 switch (Intrinsic) { 4605 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4606 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4607 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4608 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4609 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4610 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4611 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4612 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4613 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4614 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4615 case Intrinsic::round: Opcode = ISD::FROUND; break; 4616 } 4617 4618 setValue(&I, DAG.getNode(Opcode, sdl, 4619 getValue(I.getArgOperand(0)).getValueType(), 4620 getValue(I.getArgOperand(0)))); 4621 return nullptr; 4622 } 4623 case Intrinsic::minnum: 4624 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4625 getValue(I.getArgOperand(0)).getValueType(), 4626 getValue(I.getArgOperand(0)), 4627 getValue(I.getArgOperand(1)))); 4628 return nullptr; 4629 case Intrinsic::maxnum: 4630 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4631 getValue(I.getArgOperand(0)).getValueType(), 4632 getValue(I.getArgOperand(0)), 4633 getValue(I.getArgOperand(1)))); 4634 return nullptr; 4635 case Intrinsic::copysign: 4636 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4637 getValue(I.getArgOperand(0)).getValueType(), 4638 getValue(I.getArgOperand(0)), 4639 getValue(I.getArgOperand(1)))); 4640 return nullptr; 4641 case Intrinsic::fma: 4642 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4643 getValue(I.getArgOperand(0)).getValueType(), 4644 getValue(I.getArgOperand(0)), 4645 getValue(I.getArgOperand(1)), 4646 getValue(I.getArgOperand(2)))); 4647 return nullptr; 4648 case Intrinsic::fmuladd: { 4649 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4650 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4651 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4652 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4653 getValue(I.getArgOperand(0)).getValueType(), 4654 getValue(I.getArgOperand(0)), 4655 getValue(I.getArgOperand(1)), 4656 getValue(I.getArgOperand(2)))); 4657 } else { 4658 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4659 getValue(I.getArgOperand(0)).getValueType(), 4660 getValue(I.getArgOperand(0)), 4661 getValue(I.getArgOperand(1))); 4662 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4663 getValue(I.getArgOperand(0)).getValueType(), 4664 Mul, 4665 getValue(I.getArgOperand(2))); 4666 setValue(&I, Add); 4667 } 4668 return nullptr; 4669 } 4670 case Intrinsic::convert_to_fp16: 4671 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4672 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4673 getValue(I.getArgOperand(0)), 4674 DAG.getTargetConstant(0, sdl, 4675 MVT::i32)))); 4676 return nullptr; 4677 case Intrinsic::convert_from_fp16: 4678 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4679 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4680 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4681 getValue(I.getArgOperand(0))))); 4682 return nullptr; 4683 case Intrinsic::pcmarker: { 4684 SDValue Tmp = getValue(I.getArgOperand(0)); 4685 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4686 return nullptr; 4687 } 4688 case Intrinsic::readcyclecounter: { 4689 SDValue Op = getRoot(); 4690 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4691 DAG.getVTList(MVT::i64, MVT::Other), Op); 4692 setValue(&I, Res); 4693 DAG.setRoot(Res.getValue(1)); 4694 return nullptr; 4695 } 4696 case Intrinsic::bswap: 4697 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4698 getValue(I.getArgOperand(0)).getValueType(), 4699 getValue(I.getArgOperand(0)))); 4700 return nullptr; 4701 case Intrinsic::uabsdiff: 4702 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4703 getValue(I.getArgOperand(0)).getValueType(), 4704 getValue(I.getArgOperand(0)), 4705 getValue(I.getArgOperand(1)))); 4706 return nullptr; 4707 case Intrinsic::sabsdiff: 4708 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4709 getValue(I.getArgOperand(0)).getValueType(), 4710 getValue(I.getArgOperand(0)), 4711 getValue(I.getArgOperand(1)))); 4712 return nullptr; 4713 case Intrinsic::cttz: { 4714 SDValue Arg = getValue(I.getArgOperand(0)); 4715 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4716 EVT Ty = Arg.getValueType(); 4717 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4718 sdl, Ty, Arg)); 4719 return nullptr; 4720 } 4721 case Intrinsic::ctlz: { 4722 SDValue Arg = getValue(I.getArgOperand(0)); 4723 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4724 EVT Ty = Arg.getValueType(); 4725 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4726 sdl, Ty, Arg)); 4727 return nullptr; 4728 } 4729 case Intrinsic::ctpop: { 4730 SDValue Arg = getValue(I.getArgOperand(0)); 4731 EVT Ty = Arg.getValueType(); 4732 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4733 return nullptr; 4734 } 4735 case Intrinsic::stacksave: { 4736 SDValue Op = getRoot(); 4737 Res = DAG.getNode( 4738 ISD::STACKSAVE, sdl, 4739 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4740 setValue(&I, Res); 4741 DAG.setRoot(Res.getValue(1)); 4742 return nullptr; 4743 } 4744 case Intrinsic::stackrestore: { 4745 Res = getValue(I.getArgOperand(0)); 4746 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4747 return nullptr; 4748 } 4749 case Intrinsic::stackprotector: { 4750 // Emit code into the DAG to store the stack guard onto the stack. 4751 MachineFunction &MF = DAG.getMachineFunction(); 4752 MachineFrameInfo *MFI = MF.getFrameInfo(); 4753 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4754 SDValue Src, Chain = getRoot(); 4755 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4756 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4757 4758 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4759 // global variable __stack_chk_guard. 4760 if (!GV) 4761 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4762 if (BC->getOpcode() == Instruction::BitCast) 4763 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4764 4765 if (GV && TLI.useLoadStackGuardNode()) { 4766 // Emit a LOAD_STACK_GUARD node. 4767 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4768 sdl, PtrTy, Chain); 4769 MachinePointerInfo MPInfo(GV); 4770 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4771 unsigned Flags = MachineMemOperand::MOLoad | 4772 MachineMemOperand::MOInvariant; 4773 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4774 PtrTy.getSizeInBits() / 8, 4775 DAG.getEVTAlignment(PtrTy)); 4776 Node->setMemRefs(MemRefs, MemRefs + 1); 4777 4778 // Copy the guard value to a virtual register so that it can be 4779 // retrieved in the epilogue. 4780 Src = SDValue(Node, 0); 4781 const TargetRegisterClass *RC = 4782 TLI.getRegClassFor(Src.getSimpleValueType()); 4783 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4784 4785 SPDescriptor.setGuardReg(Reg); 4786 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4787 } else { 4788 Src = getValue(I.getArgOperand(0)); // The guard's value. 4789 } 4790 4791 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4792 4793 int FI = FuncInfo.StaticAllocaMap[Slot]; 4794 MFI->setStackProtectorIndex(FI); 4795 4796 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4797 4798 // Store the stack protector onto the stack. 4799 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4800 DAG.getMachineFunction(), FI), 4801 true, false, 0); 4802 setValue(&I, Res); 4803 DAG.setRoot(Res); 4804 return nullptr; 4805 } 4806 case Intrinsic::objectsize: { 4807 // If we don't know by now, we're never going to know. 4808 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4809 4810 assert(CI && "Non-constant type in __builtin_object_size?"); 4811 4812 SDValue Arg = getValue(I.getCalledValue()); 4813 EVT Ty = Arg.getValueType(); 4814 4815 if (CI->isZero()) 4816 Res = DAG.getConstant(-1ULL, sdl, Ty); 4817 else 4818 Res = DAG.getConstant(0, sdl, Ty); 4819 4820 setValue(&I, Res); 4821 return nullptr; 4822 } 4823 case Intrinsic::annotation: 4824 case Intrinsic::ptr_annotation: 4825 // Drop the intrinsic, but forward the value 4826 setValue(&I, getValue(I.getOperand(0))); 4827 return nullptr; 4828 case Intrinsic::assume: 4829 case Intrinsic::var_annotation: 4830 // Discard annotate attributes and assumptions 4831 return nullptr; 4832 4833 case Intrinsic::init_trampoline: { 4834 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4835 4836 SDValue Ops[6]; 4837 Ops[0] = getRoot(); 4838 Ops[1] = getValue(I.getArgOperand(0)); 4839 Ops[2] = getValue(I.getArgOperand(1)); 4840 Ops[3] = getValue(I.getArgOperand(2)); 4841 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4842 Ops[5] = DAG.getSrcValue(F); 4843 4844 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4845 4846 DAG.setRoot(Res); 4847 return nullptr; 4848 } 4849 case Intrinsic::adjust_trampoline: { 4850 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4851 TLI.getPointerTy(DAG.getDataLayout()), 4852 getValue(I.getArgOperand(0)))); 4853 return nullptr; 4854 } 4855 case Intrinsic::gcroot: 4856 if (GFI) { 4857 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4858 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4859 4860 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4861 GFI->addStackRoot(FI->getIndex(), TypeMap); 4862 } 4863 return nullptr; 4864 case Intrinsic::gcread: 4865 case Intrinsic::gcwrite: 4866 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4867 case Intrinsic::flt_rounds: 4868 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4869 return nullptr; 4870 4871 case Intrinsic::expect: { 4872 // Just replace __builtin_expect(exp, c) with EXP. 4873 setValue(&I, getValue(I.getArgOperand(0))); 4874 return nullptr; 4875 } 4876 4877 case Intrinsic::debugtrap: 4878 case Intrinsic::trap: { 4879 StringRef TrapFuncName = 4880 I.getAttributes() 4881 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4882 .getValueAsString(); 4883 if (TrapFuncName.empty()) { 4884 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4885 ISD::TRAP : ISD::DEBUGTRAP; 4886 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4887 return nullptr; 4888 } 4889 TargetLowering::ArgListTy Args; 4890 4891 TargetLowering::CallLoweringInfo CLI(DAG); 4892 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4893 CallingConv::C, I.getType(), 4894 DAG.getExternalSymbol(TrapFuncName.data(), 4895 TLI.getPointerTy(DAG.getDataLayout())), 4896 std::move(Args), 0); 4897 4898 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4899 DAG.setRoot(Result.second); 4900 return nullptr; 4901 } 4902 4903 case Intrinsic::uadd_with_overflow: 4904 case Intrinsic::sadd_with_overflow: 4905 case Intrinsic::usub_with_overflow: 4906 case Intrinsic::ssub_with_overflow: 4907 case Intrinsic::umul_with_overflow: 4908 case Intrinsic::smul_with_overflow: { 4909 ISD::NodeType Op; 4910 switch (Intrinsic) { 4911 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4912 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4913 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4914 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4915 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4916 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4917 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4918 } 4919 SDValue Op1 = getValue(I.getArgOperand(0)); 4920 SDValue Op2 = getValue(I.getArgOperand(1)); 4921 4922 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4923 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4924 return nullptr; 4925 } 4926 case Intrinsic::prefetch: { 4927 SDValue Ops[5]; 4928 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4929 Ops[0] = getRoot(); 4930 Ops[1] = getValue(I.getArgOperand(0)); 4931 Ops[2] = getValue(I.getArgOperand(1)); 4932 Ops[3] = getValue(I.getArgOperand(2)); 4933 Ops[4] = getValue(I.getArgOperand(3)); 4934 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4935 DAG.getVTList(MVT::Other), Ops, 4936 EVT::getIntegerVT(*Context, 8), 4937 MachinePointerInfo(I.getArgOperand(0)), 4938 0, /* align */ 4939 false, /* volatile */ 4940 rw==0, /* read */ 4941 rw==1)); /* write */ 4942 return nullptr; 4943 } 4944 case Intrinsic::lifetime_start: 4945 case Intrinsic::lifetime_end: { 4946 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4947 // Stack coloring is not enabled in O0, discard region information. 4948 if (TM.getOptLevel() == CodeGenOpt::None) 4949 return nullptr; 4950 4951 SmallVector<Value *, 4> Allocas; 4952 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4953 4954 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4955 E = Allocas.end(); Object != E; ++Object) { 4956 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4957 4958 // Could not find an Alloca. 4959 if (!LifetimeObject) 4960 continue; 4961 4962 // First check that the Alloca is static, otherwise it won't have a 4963 // valid frame index. 4964 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4965 if (SI == FuncInfo.StaticAllocaMap.end()) 4966 return nullptr; 4967 4968 int FI = SI->second; 4969 4970 SDValue Ops[2]; 4971 Ops[0] = getRoot(); 4972 Ops[1] = 4973 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4974 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4975 4976 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4977 DAG.setRoot(Res); 4978 } 4979 return nullptr; 4980 } 4981 case Intrinsic::invariant_start: 4982 // Discard region information. 4983 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4984 return nullptr; 4985 case Intrinsic::invariant_end: 4986 // Discard region information. 4987 return nullptr; 4988 case Intrinsic::stackprotectorcheck: { 4989 // Do not actually emit anything for this basic block. Instead we initialize 4990 // the stack protector descriptor and export the guard variable so we can 4991 // access it in FinishBasicBlock. 4992 const BasicBlock *BB = I.getParent(); 4993 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4994 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4995 4996 // Flush our exports since we are going to process a terminator. 4997 (void)getControlRoot(); 4998 return nullptr; 4999 } 5000 case Intrinsic::clear_cache: 5001 return TLI.getClearCacheBuiltinName(); 5002 case Intrinsic::eh_actions: 5003 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5004 return nullptr; 5005 case Intrinsic::donothing: 5006 // ignore 5007 return nullptr; 5008 case Intrinsic::experimental_stackmap: { 5009 visitStackmap(I); 5010 return nullptr; 5011 } 5012 case Intrinsic::experimental_patchpoint_void: 5013 case Intrinsic::experimental_patchpoint_i64: { 5014 visitPatchpoint(&I); 5015 return nullptr; 5016 } 5017 case Intrinsic::experimental_gc_statepoint: { 5018 visitStatepoint(I); 5019 return nullptr; 5020 } 5021 case Intrinsic::experimental_gc_result_int: 5022 case Intrinsic::experimental_gc_result_float: 5023 case Intrinsic::experimental_gc_result_ptr: 5024 case Intrinsic::experimental_gc_result: { 5025 visitGCResult(I); 5026 return nullptr; 5027 } 5028 case Intrinsic::experimental_gc_relocate: { 5029 visitGCRelocate(I); 5030 return nullptr; 5031 } 5032 case Intrinsic::instrprof_increment: 5033 llvm_unreachable("instrprof failed to lower an increment"); 5034 5035 case Intrinsic::localescape: { 5036 MachineFunction &MF = DAG.getMachineFunction(); 5037 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5038 5039 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5040 // is the same on all targets. 5041 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5042 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5043 if (isa<ConstantPointerNull>(Arg)) 5044 continue; // Skip null pointers. They represent a hole in index space. 5045 AllocaInst *Slot = cast<AllocaInst>(Arg); 5046 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5047 "can only escape static allocas"); 5048 int FI = FuncInfo.StaticAllocaMap[Slot]; 5049 MCSymbol *FrameAllocSym = 5050 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5051 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5053 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5054 .addSym(FrameAllocSym) 5055 .addFrameIndex(FI); 5056 } 5057 5058 return nullptr; 5059 } 5060 5061 case Intrinsic::localrecover: { 5062 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5063 MachineFunction &MF = DAG.getMachineFunction(); 5064 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5065 5066 // Get the symbol that defines the frame offset. 5067 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5068 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5069 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5070 MCSymbol *FrameAllocSym = 5071 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5072 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5073 5074 // Create a MCSymbol for the label to avoid any target lowering 5075 // that would make this PC relative. 5076 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5077 SDValue OffsetVal = 5078 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5079 5080 // Add the offset to the FP. 5081 Value *FP = I.getArgOperand(1); 5082 SDValue FPVal = getValue(FP); 5083 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5084 setValue(&I, Add); 5085 5086 return nullptr; 5087 } 5088 case Intrinsic::eh_begincatch: 5089 case Intrinsic::eh_endcatch: 5090 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5091 case Intrinsic::eh_exceptioncode: { 5092 unsigned Reg = TLI.getExceptionPointerRegister(); 5093 assert(Reg && "cannot get exception code on this platform"); 5094 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5095 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5096 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5097 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5098 SDValue N = 5099 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5100 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5101 setValue(&I, N); 5102 return nullptr; 5103 } 5104 } 5105 } 5106 5107 std::pair<SDValue, SDValue> 5108 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5109 MachineBasicBlock *LandingPad) { 5110 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5111 MCSymbol *BeginLabel = nullptr; 5112 5113 if (LandingPad) { 5114 // Insert a label before the invoke call to mark the try range. This can be 5115 // used to detect deletion of the invoke via the MachineModuleInfo. 5116 BeginLabel = MMI.getContext().createTempSymbol(); 5117 5118 // For SjLj, keep track of which landing pads go with which invokes 5119 // so as to maintain the ordering of pads in the LSDA. 5120 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5121 if (CallSiteIndex) { 5122 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5123 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5124 5125 // Now that the call site is handled, stop tracking it. 5126 MMI.setCurrentCallSite(0); 5127 } 5128 5129 // Both PendingLoads and PendingExports must be flushed here; 5130 // this call might not return. 5131 (void)getRoot(); 5132 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5133 5134 CLI.setChain(getRoot()); 5135 } 5136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5137 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5138 5139 assert((CLI.IsTailCall || Result.second.getNode()) && 5140 "Non-null chain expected with non-tail call!"); 5141 assert((Result.second.getNode() || !Result.first.getNode()) && 5142 "Null value expected with tail call!"); 5143 5144 if (!Result.second.getNode()) { 5145 // As a special case, a null chain means that a tail call has been emitted 5146 // and the DAG root is already updated. 5147 HasTailCall = true; 5148 5149 // Since there's no actual continuation from this block, nothing can be 5150 // relying on us setting vregs for them. 5151 PendingExports.clear(); 5152 } else { 5153 DAG.setRoot(Result.second); 5154 } 5155 5156 if (LandingPad) { 5157 // Insert a label at the end of the invoke call to mark the try range. This 5158 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5159 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5160 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5161 5162 // Inform MachineModuleInfo of range. 5163 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5164 } 5165 5166 return Result; 5167 } 5168 5169 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5170 bool isTailCall, 5171 MachineBasicBlock *LandingPad) { 5172 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5173 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5174 Type *RetTy = FTy->getReturnType(); 5175 5176 TargetLowering::ArgListTy Args; 5177 TargetLowering::ArgListEntry Entry; 5178 Args.reserve(CS.arg_size()); 5179 5180 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5181 i != e; ++i) { 5182 const Value *V = *i; 5183 5184 // Skip empty types 5185 if (V->getType()->isEmptyTy()) 5186 continue; 5187 5188 SDValue ArgNode = getValue(V); 5189 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5190 5191 // Skip the first return-type Attribute to get to params. 5192 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5193 Args.push_back(Entry); 5194 5195 // If we have an explicit sret argument that is an Instruction, (i.e., it 5196 // might point to function-local memory), we can't meaningfully tail-call. 5197 if (Entry.isSRet && isa<Instruction>(V)) 5198 isTailCall = false; 5199 } 5200 5201 // Check if target-independent constraints permit a tail call here. 5202 // Target-dependent constraints are checked within TLI->LowerCallTo. 5203 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5204 isTailCall = false; 5205 5206 TargetLowering::CallLoweringInfo CLI(DAG); 5207 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5208 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5209 .setTailCall(isTailCall); 5210 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5211 5212 if (Result.first.getNode()) 5213 setValue(CS.getInstruction(), Result.first); 5214 } 5215 5216 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5217 /// value is equal or not-equal to zero. 5218 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5219 for (const User *U : V->users()) { 5220 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5221 if (IC->isEquality()) 5222 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5223 if (C->isNullValue()) 5224 continue; 5225 // Unknown instruction. 5226 return false; 5227 } 5228 return true; 5229 } 5230 5231 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5232 Type *LoadTy, 5233 SelectionDAGBuilder &Builder) { 5234 5235 // Check to see if this load can be trivially constant folded, e.g. if the 5236 // input is from a string literal. 5237 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5238 // Cast pointer to the type we really want to load. 5239 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5240 PointerType::getUnqual(LoadTy)); 5241 5242 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5243 const_cast<Constant *>(LoadInput), *Builder.DL)) 5244 return Builder.getValue(LoadCst); 5245 } 5246 5247 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5248 // still constant memory, the input chain can be the entry node. 5249 SDValue Root; 5250 bool ConstantMemory = false; 5251 5252 // Do not serialize (non-volatile) loads of constant memory with anything. 5253 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5254 Root = Builder.DAG.getEntryNode(); 5255 ConstantMemory = true; 5256 } else { 5257 // Do not serialize non-volatile loads against each other. 5258 Root = Builder.DAG.getRoot(); 5259 } 5260 5261 SDValue Ptr = Builder.getValue(PtrVal); 5262 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5263 Ptr, MachinePointerInfo(PtrVal), 5264 false /*volatile*/, 5265 false /*nontemporal*/, 5266 false /*isinvariant*/, 1 /* align=1 */); 5267 5268 if (!ConstantMemory) 5269 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5270 return LoadVal; 5271 } 5272 5273 /// processIntegerCallValue - Record the value for an instruction that 5274 /// produces an integer result, converting the type where necessary. 5275 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5276 SDValue Value, 5277 bool IsSigned) { 5278 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5279 I.getType(), true); 5280 if (IsSigned) 5281 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5282 else 5283 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5284 setValue(&I, Value); 5285 } 5286 5287 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5288 /// If so, return true and lower it, otherwise return false and it will be 5289 /// lowered like a normal call. 5290 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5291 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5292 if (I.getNumArgOperands() != 3) 5293 return false; 5294 5295 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5296 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5297 !I.getArgOperand(2)->getType()->isIntegerTy() || 5298 !I.getType()->isIntegerTy()) 5299 return false; 5300 5301 const Value *Size = I.getArgOperand(2); 5302 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5303 if (CSize && CSize->getZExtValue() == 0) { 5304 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5305 I.getType(), true); 5306 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5307 return true; 5308 } 5309 5310 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5311 std::pair<SDValue, SDValue> Res = 5312 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5313 getValue(LHS), getValue(RHS), getValue(Size), 5314 MachinePointerInfo(LHS), 5315 MachinePointerInfo(RHS)); 5316 if (Res.first.getNode()) { 5317 processIntegerCallValue(I, Res.first, true); 5318 PendingLoads.push_back(Res.second); 5319 return true; 5320 } 5321 5322 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5323 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5324 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5325 bool ActuallyDoIt = true; 5326 MVT LoadVT; 5327 Type *LoadTy; 5328 switch (CSize->getZExtValue()) { 5329 default: 5330 LoadVT = MVT::Other; 5331 LoadTy = nullptr; 5332 ActuallyDoIt = false; 5333 break; 5334 case 2: 5335 LoadVT = MVT::i16; 5336 LoadTy = Type::getInt16Ty(CSize->getContext()); 5337 break; 5338 case 4: 5339 LoadVT = MVT::i32; 5340 LoadTy = Type::getInt32Ty(CSize->getContext()); 5341 break; 5342 case 8: 5343 LoadVT = MVT::i64; 5344 LoadTy = Type::getInt64Ty(CSize->getContext()); 5345 break; 5346 /* 5347 case 16: 5348 LoadVT = MVT::v4i32; 5349 LoadTy = Type::getInt32Ty(CSize->getContext()); 5350 LoadTy = VectorType::get(LoadTy, 4); 5351 break; 5352 */ 5353 } 5354 5355 // This turns into unaligned loads. We only do this if the target natively 5356 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5357 // we'll only produce a small number of byte loads. 5358 5359 // Require that we can find a legal MVT, and only do this if the target 5360 // supports unaligned loads of that type. Expanding into byte loads would 5361 // bloat the code. 5362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5363 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5364 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5365 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5366 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5367 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5368 // TODO: Check alignment of src and dest ptrs. 5369 if (!TLI.isTypeLegal(LoadVT) || 5370 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5371 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5372 ActuallyDoIt = false; 5373 } 5374 5375 if (ActuallyDoIt) { 5376 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5377 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5378 5379 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5380 ISD::SETNE); 5381 processIntegerCallValue(I, Res, false); 5382 return true; 5383 } 5384 } 5385 5386 5387 return false; 5388 } 5389 5390 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5391 /// form. If so, return true and lower it, otherwise return false and it 5392 /// will be lowered like a normal call. 5393 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5394 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5395 if (I.getNumArgOperands() != 3) 5396 return false; 5397 5398 const Value *Src = I.getArgOperand(0); 5399 const Value *Char = I.getArgOperand(1); 5400 const Value *Length = I.getArgOperand(2); 5401 if (!Src->getType()->isPointerTy() || 5402 !Char->getType()->isIntegerTy() || 5403 !Length->getType()->isIntegerTy() || 5404 !I.getType()->isPointerTy()) 5405 return false; 5406 5407 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5408 std::pair<SDValue, SDValue> Res = 5409 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5410 getValue(Src), getValue(Char), getValue(Length), 5411 MachinePointerInfo(Src)); 5412 if (Res.first.getNode()) { 5413 setValue(&I, Res.first); 5414 PendingLoads.push_back(Res.second); 5415 return true; 5416 } 5417 5418 return false; 5419 } 5420 5421 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5422 /// optimized form. If so, return true and lower it, otherwise return false 5423 /// and it will be lowered like a normal call. 5424 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5425 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5426 if (I.getNumArgOperands() != 2) 5427 return false; 5428 5429 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5430 if (!Arg0->getType()->isPointerTy() || 5431 !Arg1->getType()->isPointerTy() || 5432 !I.getType()->isPointerTy()) 5433 return false; 5434 5435 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5436 std::pair<SDValue, SDValue> Res = 5437 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5438 getValue(Arg0), getValue(Arg1), 5439 MachinePointerInfo(Arg0), 5440 MachinePointerInfo(Arg1), isStpcpy); 5441 if (Res.first.getNode()) { 5442 setValue(&I, Res.first); 5443 DAG.setRoot(Res.second); 5444 return true; 5445 } 5446 5447 return false; 5448 } 5449 5450 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5451 /// If so, return true and lower it, otherwise return false and it will be 5452 /// lowered like a normal call. 5453 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5454 // Verify that the prototype makes sense. int strcmp(void*,void*) 5455 if (I.getNumArgOperands() != 2) 5456 return false; 5457 5458 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5459 if (!Arg0->getType()->isPointerTy() || 5460 !Arg1->getType()->isPointerTy() || 5461 !I.getType()->isIntegerTy()) 5462 return false; 5463 5464 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5465 std::pair<SDValue, SDValue> Res = 5466 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5467 getValue(Arg0), getValue(Arg1), 5468 MachinePointerInfo(Arg0), 5469 MachinePointerInfo(Arg1)); 5470 if (Res.first.getNode()) { 5471 processIntegerCallValue(I, Res.first, true); 5472 PendingLoads.push_back(Res.second); 5473 return true; 5474 } 5475 5476 return false; 5477 } 5478 5479 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5480 /// form. If so, return true and lower it, otherwise return false and it 5481 /// will be lowered like a normal call. 5482 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5483 // Verify that the prototype makes sense. size_t strlen(char *) 5484 if (I.getNumArgOperands() != 1) 5485 return false; 5486 5487 const Value *Arg0 = I.getArgOperand(0); 5488 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5489 return false; 5490 5491 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5492 std::pair<SDValue, SDValue> Res = 5493 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5494 getValue(Arg0), MachinePointerInfo(Arg0)); 5495 if (Res.first.getNode()) { 5496 processIntegerCallValue(I, Res.first, false); 5497 PendingLoads.push_back(Res.second); 5498 return true; 5499 } 5500 5501 return false; 5502 } 5503 5504 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5505 /// form. If so, return true and lower it, otherwise return false and it 5506 /// will be lowered like a normal call. 5507 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5508 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5509 if (I.getNumArgOperands() != 2) 5510 return false; 5511 5512 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5513 if (!Arg0->getType()->isPointerTy() || 5514 !Arg1->getType()->isIntegerTy() || 5515 !I.getType()->isIntegerTy()) 5516 return false; 5517 5518 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5519 std::pair<SDValue, SDValue> Res = 5520 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5521 getValue(Arg0), getValue(Arg1), 5522 MachinePointerInfo(Arg0)); 5523 if (Res.first.getNode()) { 5524 processIntegerCallValue(I, Res.first, false); 5525 PendingLoads.push_back(Res.second); 5526 return true; 5527 } 5528 5529 return false; 5530 } 5531 5532 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5533 /// operation (as expected), translate it to an SDNode with the specified opcode 5534 /// and return true. 5535 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5536 unsigned Opcode) { 5537 // Sanity check that it really is a unary floating-point call. 5538 if (I.getNumArgOperands() != 1 || 5539 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5540 I.getType() != I.getArgOperand(0)->getType() || 5541 !I.onlyReadsMemory()) 5542 return false; 5543 5544 SDValue Tmp = getValue(I.getArgOperand(0)); 5545 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5546 return true; 5547 } 5548 5549 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5550 /// operation (as expected), translate it to an SDNode with the specified opcode 5551 /// and return true. 5552 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5553 unsigned Opcode) { 5554 // Sanity check that it really is a binary floating-point call. 5555 if (I.getNumArgOperands() != 2 || 5556 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5557 I.getType() != I.getArgOperand(0)->getType() || 5558 I.getType() != I.getArgOperand(1)->getType() || 5559 !I.onlyReadsMemory()) 5560 return false; 5561 5562 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5563 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5564 EVT VT = Tmp0.getValueType(); 5565 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5566 return true; 5567 } 5568 5569 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5570 // Handle inline assembly differently. 5571 if (isa<InlineAsm>(I.getCalledValue())) { 5572 visitInlineAsm(&I); 5573 return; 5574 } 5575 5576 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5577 ComputeUsesVAFloatArgument(I, &MMI); 5578 5579 const char *RenameFn = nullptr; 5580 if (Function *F = I.getCalledFunction()) { 5581 if (F->isDeclaration()) { 5582 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5583 if (unsigned IID = II->getIntrinsicID(F)) { 5584 RenameFn = visitIntrinsicCall(I, IID); 5585 if (!RenameFn) 5586 return; 5587 } 5588 } 5589 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5590 RenameFn = visitIntrinsicCall(I, IID); 5591 if (!RenameFn) 5592 return; 5593 } 5594 } 5595 5596 // Check for well-known libc/libm calls. If the function is internal, it 5597 // can't be a library call. 5598 LibFunc::Func Func; 5599 if (!F->hasLocalLinkage() && F->hasName() && 5600 LibInfo->getLibFunc(F->getName(), Func) && 5601 LibInfo->hasOptimizedCodeGen(Func)) { 5602 switch (Func) { 5603 default: break; 5604 case LibFunc::copysign: 5605 case LibFunc::copysignf: 5606 case LibFunc::copysignl: 5607 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5608 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5609 I.getType() == I.getArgOperand(0)->getType() && 5610 I.getType() == I.getArgOperand(1)->getType() && 5611 I.onlyReadsMemory()) { 5612 SDValue LHS = getValue(I.getArgOperand(0)); 5613 SDValue RHS = getValue(I.getArgOperand(1)); 5614 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5615 LHS.getValueType(), LHS, RHS)); 5616 return; 5617 } 5618 break; 5619 case LibFunc::fabs: 5620 case LibFunc::fabsf: 5621 case LibFunc::fabsl: 5622 if (visitUnaryFloatCall(I, ISD::FABS)) 5623 return; 5624 break; 5625 case LibFunc::fmin: 5626 case LibFunc::fminf: 5627 case LibFunc::fminl: 5628 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5629 return; 5630 break; 5631 case LibFunc::fmax: 5632 case LibFunc::fmaxf: 5633 case LibFunc::fmaxl: 5634 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5635 return; 5636 break; 5637 case LibFunc::sin: 5638 case LibFunc::sinf: 5639 case LibFunc::sinl: 5640 if (visitUnaryFloatCall(I, ISD::FSIN)) 5641 return; 5642 break; 5643 case LibFunc::cos: 5644 case LibFunc::cosf: 5645 case LibFunc::cosl: 5646 if (visitUnaryFloatCall(I, ISD::FCOS)) 5647 return; 5648 break; 5649 case LibFunc::sqrt: 5650 case LibFunc::sqrtf: 5651 case LibFunc::sqrtl: 5652 case LibFunc::sqrt_finite: 5653 case LibFunc::sqrtf_finite: 5654 case LibFunc::sqrtl_finite: 5655 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5656 return; 5657 break; 5658 case LibFunc::floor: 5659 case LibFunc::floorf: 5660 case LibFunc::floorl: 5661 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5662 return; 5663 break; 5664 case LibFunc::nearbyint: 5665 case LibFunc::nearbyintf: 5666 case LibFunc::nearbyintl: 5667 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5668 return; 5669 break; 5670 case LibFunc::ceil: 5671 case LibFunc::ceilf: 5672 case LibFunc::ceill: 5673 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5674 return; 5675 break; 5676 case LibFunc::rint: 5677 case LibFunc::rintf: 5678 case LibFunc::rintl: 5679 if (visitUnaryFloatCall(I, ISD::FRINT)) 5680 return; 5681 break; 5682 case LibFunc::round: 5683 case LibFunc::roundf: 5684 case LibFunc::roundl: 5685 if (visitUnaryFloatCall(I, ISD::FROUND)) 5686 return; 5687 break; 5688 case LibFunc::trunc: 5689 case LibFunc::truncf: 5690 case LibFunc::truncl: 5691 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5692 return; 5693 break; 5694 case LibFunc::log2: 5695 case LibFunc::log2f: 5696 case LibFunc::log2l: 5697 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5698 return; 5699 break; 5700 case LibFunc::exp2: 5701 case LibFunc::exp2f: 5702 case LibFunc::exp2l: 5703 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5704 return; 5705 break; 5706 case LibFunc::memcmp: 5707 if (visitMemCmpCall(I)) 5708 return; 5709 break; 5710 case LibFunc::memchr: 5711 if (visitMemChrCall(I)) 5712 return; 5713 break; 5714 case LibFunc::strcpy: 5715 if (visitStrCpyCall(I, false)) 5716 return; 5717 break; 5718 case LibFunc::stpcpy: 5719 if (visitStrCpyCall(I, true)) 5720 return; 5721 break; 5722 case LibFunc::strcmp: 5723 if (visitStrCmpCall(I)) 5724 return; 5725 break; 5726 case LibFunc::strlen: 5727 if (visitStrLenCall(I)) 5728 return; 5729 break; 5730 case LibFunc::strnlen: 5731 if (visitStrNLenCall(I)) 5732 return; 5733 break; 5734 } 5735 } 5736 } 5737 5738 SDValue Callee; 5739 if (!RenameFn) 5740 Callee = getValue(I.getCalledValue()); 5741 else 5742 Callee = DAG.getExternalSymbol( 5743 RenameFn, 5744 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5745 5746 // Check if we can potentially perform a tail call. More detailed checking is 5747 // be done within LowerCallTo, after more information about the call is known. 5748 LowerCallTo(&I, Callee, I.isTailCall()); 5749 } 5750 5751 namespace { 5752 5753 /// AsmOperandInfo - This contains information for each constraint that we are 5754 /// lowering. 5755 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5756 public: 5757 /// CallOperand - If this is the result output operand or a clobber 5758 /// this is null, otherwise it is the incoming operand to the CallInst. 5759 /// This gets modified as the asm is processed. 5760 SDValue CallOperand; 5761 5762 /// AssignedRegs - If this is a register or register class operand, this 5763 /// contains the set of register corresponding to the operand. 5764 RegsForValue AssignedRegs; 5765 5766 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5767 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5768 } 5769 5770 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5771 /// corresponds to. If there is no Value* for this operand, it returns 5772 /// MVT::Other. 5773 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5774 const DataLayout &DL) const { 5775 if (!CallOperandVal) return MVT::Other; 5776 5777 if (isa<BasicBlock>(CallOperandVal)) 5778 return TLI.getPointerTy(DL); 5779 5780 llvm::Type *OpTy = CallOperandVal->getType(); 5781 5782 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5783 // If this is an indirect operand, the operand is a pointer to the 5784 // accessed type. 5785 if (isIndirect) { 5786 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5787 if (!PtrTy) 5788 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5789 OpTy = PtrTy->getElementType(); 5790 } 5791 5792 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5793 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5794 if (STy->getNumElements() == 1) 5795 OpTy = STy->getElementType(0); 5796 5797 // If OpTy is not a single value, it may be a struct/union that we 5798 // can tile with integers. 5799 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5800 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5801 switch (BitSize) { 5802 default: break; 5803 case 1: 5804 case 8: 5805 case 16: 5806 case 32: 5807 case 64: 5808 case 128: 5809 OpTy = IntegerType::get(Context, BitSize); 5810 break; 5811 } 5812 } 5813 5814 return TLI.getValueType(DL, OpTy, true); 5815 } 5816 }; 5817 5818 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5819 5820 } // end anonymous namespace 5821 5822 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5823 /// specified operand. We prefer to assign virtual registers, to allow the 5824 /// register allocator to handle the assignment process. However, if the asm 5825 /// uses features that we can't model on machineinstrs, we have SDISel do the 5826 /// allocation. This produces generally horrible, but correct, code. 5827 /// 5828 /// OpInfo describes the operand. 5829 /// 5830 static void GetRegistersForValue(SelectionDAG &DAG, 5831 const TargetLowering &TLI, 5832 SDLoc DL, 5833 SDISelAsmOperandInfo &OpInfo) { 5834 LLVMContext &Context = *DAG.getContext(); 5835 5836 MachineFunction &MF = DAG.getMachineFunction(); 5837 SmallVector<unsigned, 4> Regs; 5838 5839 // If this is a constraint for a single physreg, or a constraint for a 5840 // register class, find it. 5841 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5842 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5843 OpInfo.ConstraintCode, 5844 OpInfo.ConstraintVT); 5845 5846 unsigned NumRegs = 1; 5847 if (OpInfo.ConstraintVT != MVT::Other) { 5848 // If this is a FP input in an integer register (or visa versa) insert a bit 5849 // cast of the input value. More generally, handle any case where the input 5850 // value disagrees with the register class we plan to stick this in. 5851 if (OpInfo.Type == InlineAsm::isInput && 5852 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5853 // Try to convert to the first EVT that the reg class contains. If the 5854 // types are identical size, use a bitcast to convert (e.g. two differing 5855 // vector types). 5856 MVT RegVT = *PhysReg.second->vt_begin(); 5857 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5858 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5859 RegVT, OpInfo.CallOperand); 5860 OpInfo.ConstraintVT = RegVT; 5861 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5862 // If the input is a FP value and we want it in FP registers, do a 5863 // bitcast to the corresponding integer type. This turns an f64 value 5864 // into i64, which can be passed with two i32 values on a 32-bit 5865 // machine. 5866 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5867 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5868 RegVT, OpInfo.CallOperand); 5869 OpInfo.ConstraintVT = RegVT; 5870 } 5871 } 5872 5873 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5874 } 5875 5876 MVT RegVT; 5877 EVT ValueVT = OpInfo.ConstraintVT; 5878 5879 // If this is a constraint for a specific physical register, like {r17}, 5880 // assign it now. 5881 if (unsigned AssignedReg = PhysReg.first) { 5882 const TargetRegisterClass *RC = PhysReg.second; 5883 if (OpInfo.ConstraintVT == MVT::Other) 5884 ValueVT = *RC->vt_begin(); 5885 5886 // Get the actual register value type. This is important, because the user 5887 // may have asked for (e.g.) the AX register in i32 type. We need to 5888 // remember that AX is actually i16 to get the right extension. 5889 RegVT = *RC->vt_begin(); 5890 5891 // This is a explicit reference to a physical register. 5892 Regs.push_back(AssignedReg); 5893 5894 // If this is an expanded reference, add the rest of the regs to Regs. 5895 if (NumRegs != 1) { 5896 TargetRegisterClass::iterator I = RC->begin(); 5897 for (; *I != AssignedReg; ++I) 5898 assert(I != RC->end() && "Didn't find reg!"); 5899 5900 // Already added the first reg. 5901 --NumRegs; ++I; 5902 for (; NumRegs; --NumRegs, ++I) { 5903 assert(I != RC->end() && "Ran out of registers to allocate!"); 5904 Regs.push_back(*I); 5905 } 5906 } 5907 5908 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5909 return; 5910 } 5911 5912 // Otherwise, if this was a reference to an LLVM register class, create vregs 5913 // for this reference. 5914 if (const TargetRegisterClass *RC = PhysReg.second) { 5915 RegVT = *RC->vt_begin(); 5916 if (OpInfo.ConstraintVT == MVT::Other) 5917 ValueVT = RegVT; 5918 5919 // Create the appropriate number of virtual registers. 5920 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5921 for (; NumRegs; --NumRegs) 5922 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5923 5924 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5925 return; 5926 } 5927 5928 // Otherwise, we couldn't allocate enough registers for this. 5929 } 5930 5931 /// visitInlineAsm - Handle a call to an InlineAsm object. 5932 /// 5933 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5934 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5935 5936 /// ConstraintOperands - Information about all of the constraints. 5937 SDISelAsmOperandInfoVector ConstraintOperands; 5938 5939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5940 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5941 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5942 5943 bool hasMemory = false; 5944 5945 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5946 unsigned ResNo = 0; // ResNo - The result number of the next output. 5947 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5948 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5949 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5950 5951 MVT OpVT = MVT::Other; 5952 5953 // Compute the value type for each operand. 5954 switch (OpInfo.Type) { 5955 case InlineAsm::isOutput: 5956 // Indirect outputs just consume an argument. 5957 if (OpInfo.isIndirect) { 5958 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5959 break; 5960 } 5961 5962 // The return value of the call is this value. As such, there is no 5963 // corresponding argument. 5964 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5965 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5966 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5967 STy->getElementType(ResNo)); 5968 } else { 5969 assert(ResNo == 0 && "Asm only has one result!"); 5970 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5971 } 5972 ++ResNo; 5973 break; 5974 case InlineAsm::isInput: 5975 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5976 break; 5977 case InlineAsm::isClobber: 5978 // Nothing to do. 5979 break; 5980 } 5981 5982 // If this is an input or an indirect output, process the call argument. 5983 // BasicBlocks are labels, currently appearing only in asm's. 5984 if (OpInfo.CallOperandVal) { 5985 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5986 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5987 } else { 5988 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5989 } 5990 5991 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5992 DAG.getDataLayout()).getSimpleVT(); 5993 } 5994 5995 OpInfo.ConstraintVT = OpVT; 5996 5997 // Indirect operand accesses access memory. 5998 if (OpInfo.isIndirect) 5999 hasMemory = true; 6000 else { 6001 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6002 TargetLowering::ConstraintType 6003 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6004 if (CType == TargetLowering::C_Memory) { 6005 hasMemory = true; 6006 break; 6007 } 6008 } 6009 } 6010 } 6011 6012 SDValue Chain, Flag; 6013 6014 // We won't need to flush pending loads if this asm doesn't touch 6015 // memory and is nonvolatile. 6016 if (hasMemory || IA->hasSideEffects()) 6017 Chain = getRoot(); 6018 else 6019 Chain = DAG.getRoot(); 6020 6021 // Second pass over the constraints: compute which constraint option to use 6022 // and assign registers to constraints that want a specific physreg. 6023 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6024 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6025 6026 // If this is an output operand with a matching input operand, look up the 6027 // matching input. If their types mismatch, e.g. one is an integer, the 6028 // other is floating point, or their sizes are different, flag it as an 6029 // error. 6030 if (OpInfo.hasMatchingInput()) { 6031 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6032 6033 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6034 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6035 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6036 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6037 OpInfo.ConstraintVT); 6038 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6039 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6040 Input.ConstraintVT); 6041 if ((OpInfo.ConstraintVT.isInteger() != 6042 Input.ConstraintVT.isInteger()) || 6043 (MatchRC.second != InputRC.second)) { 6044 report_fatal_error("Unsupported asm: input constraint" 6045 " with a matching output constraint of" 6046 " incompatible type!"); 6047 } 6048 Input.ConstraintVT = OpInfo.ConstraintVT; 6049 } 6050 } 6051 6052 // Compute the constraint code and ConstraintType to use. 6053 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6054 6055 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6056 OpInfo.Type == InlineAsm::isClobber) 6057 continue; 6058 6059 // If this is a memory input, and if the operand is not indirect, do what we 6060 // need to to provide an address for the memory input. 6061 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6062 !OpInfo.isIndirect) { 6063 assert((OpInfo.isMultipleAlternative || 6064 (OpInfo.Type == InlineAsm::isInput)) && 6065 "Can only indirectify direct input operands!"); 6066 6067 // Memory operands really want the address of the value. If we don't have 6068 // an indirect input, put it in the constpool if we can, otherwise spill 6069 // it to a stack slot. 6070 // TODO: This isn't quite right. We need to handle these according to 6071 // the addressing mode that the constraint wants. Also, this may take 6072 // an additional register for the computation and we don't want that 6073 // either. 6074 6075 // If the operand is a float, integer, or vector constant, spill to a 6076 // constant pool entry to get its address. 6077 const Value *OpVal = OpInfo.CallOperandVal; 6078 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6079 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6080 OpInfo.CallOperand = DAG.getConstantPool( 6081 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6082 } else { 6083 // Otherwise, create a stack slot and emit a store to it before the 6084 // asm. 6085 Type *Ty = OpVal->getType(); 6086 auto &DL = DAG.getDataLayout(); 6087 uint64_t TySize = DL.getTypeAllocSize(Ty); 6088 unsigned Align = DL.getPrefTypeAlignment(Ty); 6089 MachineFunction &MF = DAG.getMachineFunction(); 6090 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6091 SDValue StackSlot = 6092 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6093 Chain = DAG.getStore( 6094 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6095 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6096 false, false, 0); 6097 OpInfo.CallOperand = StackSlot; 6098 } 6099 6100 // There is no longer a Value* corresponding to this operand. 6101 OpInfo.CallOperandVal = nullptr; 6102 6103 // It is now an indirect operand. 6104 OpInfo.isIndirect = true; 6105 } 6106 6107 // If this constraint is for a specific register, allocate it before 6108 // anything else. 6109 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6110 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6111 } 6112 6113 // Second pass - Loop over all of the operands, assigning virtual or physregs 6114 // to register class operands. 6115 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6116 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6117 6118 // C_Register operands have already been allocated, Other/Memory don't need 6119 // to be. 6120 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6121 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6122 } 6123 6124 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6125 std::vector<SDValue> AsmNodeOperands; 6126 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6127 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6128 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6129 6130 // If we have a !srcloc metadata node associated with it, we want to attach 6131 // this to the ultimately generated inline asm machineinstr. To do this, we 6132 // pass in the third operand as this (potentially null) inline asm MDNode. 6133 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6134 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6135 6136 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6137 // bits as operand 3. 6138 unsigned ExtraInfo = 0; 6139 if (IA->hasSideEffects()) 6140 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6141 if (IA->isAlignStack()) 6142 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6143 // Set the asm dialect. 6144 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6145 6146 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6147 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6148 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6149 6150 // Compute the constraint code and ConstraintType to use. 6151 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6152 6153 // Ideally, we would only check against memory constraints. However, the 6154 // meaning of an other constraint can be target-specific and we can't easily 6155 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6156 // for other constriants as well. 6157 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6158 OpInfo.ConstraintType == TargetLowering::C_Other) { 6159 if (OpInfo.Type == InlineAsm::isInput) 6160 ExtraInfo |= InlineAsm::Extra_MayLoad; 6161 else if (OpInfo.Type == InlineAsm::isOutput) 6162 ExtraInfo |= InlineAsm::Extra_MayStore; 6163 else if (OpInfo.Type == InlineAsm::isClobber) 6164 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6165 } 6166 } 6167 6168 AsmNodeOperands.push_back(DAG.getTargetConstant( 6169 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6170 6171 // Loop over all of the inputs, copying the operand values into the 6172 // appropriate registers and processing the output regs. 6173 RegsForValue RetValRegs; 6174 6175 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6176 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6177 6178 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6179 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6180 6181 switch (OpInfo.Type) { 6182 case InlineAsm::isOutput: { 6183 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6184 OpInfo.ConstraintType != TargetLowering::C_Register) { 6185 // Memory output, or 'other' output (e.g. 'X' constraint). 6186 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6187 6188 unsigned ConstraintID = 6189 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6190 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6191 "Failed to convert memory constraint code to constraint id."); 6192 6193 // Add information to the INLINEASM node to know about this output. 6194 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6195 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6196 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6197 MVT::i32)); 6198 AsmNodeOperands.push_back(OpInfo.CallOperand); 6199 break; 6200 } 6201 6202 // Otherwise, this is a register or register class output. 6203 6204 // Copy the output from the appropriate register. Find a register that 6205 // we can use. 6206 if (OpInfo.AssignedRegs.Regs.empty()) { 6207 LLVMContext &Ctx = *DAG.getContext(); 6208 Ctx.emitError(CS.getInstruction(), 6209 "couldn't allocate output register for constraint '" + 6210 Twine(OpInfo.ConstraintCode) + "'"); 6211 return; 6212 } 6213 6214 // If this is an indirect operand, store through the pointer after the 6215 // asm. 6216 if (OpInfo.isIndirect) { 6217 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6218 OpInfo.CallOperandVal)); 6219 } else { 6220 // This is the result value of the call. 6221 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6222 // Concatenate this output onto the outputs list. 6223 RetValRegs.append(OpInfo.AssignedRegs); 6224 } 6225 6226 // Add information to the INLINEASM node to know that this register is 6227 // set. 6228 OpInfo.AssignedRegs 6229 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6230 ? InlineAsm::Kind_RegDefEarlyClobber 6231 : InlineAsm::Kind_RegDef, 6232 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6233 break; 6234 } 6235 case InlineAsm::isInput: { 6236 SDValue InOperandVal = OpInfo.CallOperand; 6237 6238 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6239 // If this is required to match an output register we have already set, 6240 // just use its register. 6241 unsigned OperandNo = OpInfo.getMatchedOperand(); 6242 6243 // Scan until we find the definition we already emitted of this operand. 6244 // When we find it, create a RegsForValue operand. 6245 unsigned CurOp = InlineAsm::Op_FirstOperand; 6246 for (; OperandNo; --OperandNo) { 6247 // Advance to the next operand. 6248 unsigned OpFlag = 6249 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6250 assert((InlineAsm::isRegDefKind(OpFlag) || 6251 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6252 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6253 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6254 } 6255 6256 unsigned OpFlag = 6257 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6258 if (InlineAsm::isRegDefKind(OpFlag) || 6259 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6260 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6261 if (OpInfo.isIndirect) { 6262 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6263 LLVMContext &Ctx = *DAG.getContext(); 6264 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6265 " don't know how to handle tied " 6266 "indirect register inputs"); 6267 return; 6268 } 6269 6270 RegsForValue MatchedRegs; 6271 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6272 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6273 MatchedRegs.RegVTs.push_back(RegVT); 6274 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6275 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6276 i != e; ++i) { 6277 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6278 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6279 else { 6280 LLVMContext &Ctx = *DAG.getContext(); 6281 Ctx.emitError(CS.getInstruction(), 6282 "inline asm error: This value" 6283 " type register class is not natively supported!"); 6284 return; 6285 } 6286 } 6287 SDLoc dl = getCurSDLoc(); 6288 // Use the produced MatchedRegs object to 6289 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6290 Chain, &Flag, CS.getInstruction()); 6291 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6292 true, OpInfo.getMatchedOperand(), dl, 6293 DAG, AsmNodeOperands); 6294 break; 6295 } 6296 6297 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6298 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6299 "Unexpected number of operands"); 6300 // Add information to the INLINEASM node to know about this input. 6301 // See InlineAsm.h isUseOperandTiedToDef. 6302 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6303 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6304 OpInfo.getMatchedOperand()); 6305 AsmNodeOperands.push_back(DAG.getTargetConstant( 6306 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6307 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6308 break; 6309 } 6310 6311 // Treat indirect 'X' constraint as memory. 6312 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6313 OpInfo.isIndirect) 6314 OpInfo.ConstraintType = TargetLowering::C_Memory; 6315 6316 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6317 std::vector<SDValue> Ops; 6318 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6319 Ops, DAG); 6320 if (Ops.empty()) { 6321 LLVMContext &Ctx = *DAG.getContext(); 6322 Ctx.emitError(CS.getInstruction(), 6323 "invalid operand for inline asm constraint '" + 6324 Twine(OpInfo.ConstraintCode) + "'"); 6325 return; 6326 } 6327 6328 // Add information to the INLINEASM node to know about this input. 6329 unsigned ResOpType = 6330 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6331 AsmNodeOperands.push_back(DAG.getTargetConstant( 6332 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6333 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6334 break; 6335 } 6336 6337 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6338 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6339 assert(InOperandVal.getValueType() == 6340 TLI.getPointerTy(DAG.getDataLayout()) && 6341 "Memory operands expect pointer values"); 6342 6343 unsigned ConstraintID = 6344 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6345 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6346 "Failed to convert memory constraint code to constraint id."); 6347 6348 // Add information to the INLINEASM node to know about this input. 6349 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6350 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6351 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6352 getCurSDLoc(), 6353 MVT::i32)); 6354 AsmNodeOperands.push_back(InOperandVal); 6355 break; 6356 } 6357 6358 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6359 OpInfo.ConstraintType == TargetLowering::C_Register) && 6360 "Unknown constraint type!"); 6361 6362 // TODO: Support this. 6363 if (OpInfo.isIndirect) { 6364 LLVMContext &Ctx = *DAG.getContext(); 6365 Ctx.emitError(CS.getInstruction(), 6366 "Don't know how to handle indirect register inputs yet " 6367 "for constraint '" + 6368 Twine(OpInfo.ConstraintCode) + "'"); 6369 return; 6370 } 6371 6372 // Copy the input into the appropriate registers. 6373 if (OpInfo.AssignedRegs.Regs.empty()) { 6374 LLVMContext &Ctx = *DAG.getContext(); 6375 Ctx.emitError(CS.getInstruction(), 6376 "couldn't allocate input reg for constraint '" + 6377 Twine(OpInfo.ConstraintCode) + "'"); 6378 return; 6379 } 6380 6381 SDLoc dl = getCurSDLoc(); 6382 6383 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6384 Chain, &Flag, CS.getInstruction()); 6385 6386 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6387 dl, DAG, AsmNodeOperands); 6388 break; 6389 } 6390 case InlineAsm::isClobber: { 6391 // Add the clobbered value to the operand list, so that the register 6392 // allocator is aware that the physreg got clobbered. 6393 if (!OpInfo.AssignedRegs.Regs.empty()) 6394 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6395 false, 0, getCurSDLoc(), DAG, 6396 AsmNodeOperands); 6397 break; 6398 } 6399 } 6400 } 6401 6402 // Finish up input operands. Set the input chain and add the flag last. 6403 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6404 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6405 6406 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6407 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6408 Flag = Chain.getValue(1); 6409 6410 // If this asm returns a register value, copy the result from that register 6411 // and set it as the value of the call. 6412 if (!RetValRegs.Regs.empty()) { 6413 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6414 Chain, &Flag, CS.getInstruction()); 6415 6416 // FIXME: Why don't we do this for inline asms with MRVs? 6417 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6418 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6419 6420 // If any of the results of the inline asm is a vector, it may have the 6421 // wrong width/num elts. This can happen for register classes that can 6422 // contain multiple different value types. The preg or vreg allocated may 6423 // not have the same VT as was expected. Convert it to the right type 6424 // with bit_convert. 6425 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6426 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6427 ResultType, Val); 6428 6429 } else if (ResultType != Val.getValueType() && 6430 ResultType.isInteger() && Val.getValueType().isInteger()) { 6431 // If a result value was tied to an input value, the computed result may 6432 // have a wider width than the expected result. Extract the relevant 6433 // portion. 6434 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6435 } 6436 6437 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6438 } 6439 6440 setValue(CS.getInstruction(), Val); 6441 // Don't need to use this as a chain in this case. 6442 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6443 return; 6444 } 6445 6446 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6447 6448 // Process indirect outputs, first output all of the flagged copies out of 6449 // physregs. 6450 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6451 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6452 const Value *Ptr = IndirectStoresToEmit[i].second; 6453 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6454 Chain, &Flag, IA); 6455 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6456 } 6457 6458 // Emit the non-flagged stores from the physregs. 6459 SmallVector<SDValue, 8> OutChains; 6460 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6461 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6462 StoresToEmit[i].first, 6463 getValue(StoresToEmit[i].second), 6464 MachinePointerInfo(StoresToEmit[i].second), 6465 false, false, 0); 6466 OutChains.push_back(Val); 6467 } 6468 6469 if (!OutChains.empty()) 6470 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6471 6472 DAG.setRoot(Chain); 6473 } 6474 6475 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6476 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6477 MVT::Other, getRoot(), 6478 getValue(I.getArgOperand(0)), 6479 DAG.getSrcValue(I.getArgOperand(0)))); 6480 } 6481 6482 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6484 const DataLayout &DL = DAG.getDataLayout(); 6485 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6486 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6487 DAG.getSrcValue(I.getOperand(0)), 6488 DL.getABITypeAlignment(I.getType())); 6489 setValue(&I, V); 6490 DAG.setRoot(V.getValue(1)); 6491 } 6492 6493 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6494 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6495 MVT::Other, getRoot(), 6496 getValue(I.getArgOperand(0)), 6497 DAG.getSrcValue(I.getArgOperand(0)))); 6498 } 6499 6500 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6501 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6502 MVT::Other, getRoot(), 6503 getValue(I.getArgOperand(0)), 6504 getValue(I.getArgOperand(1)), 6505 DAG.getSrcValue(I.getArgOperand(0)), 6506 DAG.getSrcValue(I.getArgOperand(1)))); 6507 } 6508 6509 /// \brief Lower an argument list according to the target calling convention. 6510 /// 6511 /// \return A tuple of <return-value, token-chain> 6512 /// 6513 /// This is a helper for lowering intrinsics that follow a target calling 6514 /// convention or require stack pointer adjustment. Only a subset of the 6515 /// intrinsic's operands need to participate in the calling convention. 6516 std::pair<SDValue, SDValue> 6517 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6518 unsigned NumArgs, SDValue Callee, 6519 Type *ReturnTy, 6520 MachineBasicBlock *LandingPad, 6521 bool IsPatchPoint) { 6522 TargetLowering::ArgListTy Args; 6523 Args.reserve(NumArgs); 6524 6525 // Populate the argument list. 6526 // Attributes for args start at offset 1, after the return attribute. 6527 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6528 ArgI != ArgE; ++ArgI) { 6529 const Value *V = CS->getOperand(ArgI); 6530 6531 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6532 6533 TargetLowering::ArgListEntry Entry; 6534 Entry.Node = getValue(V); 6535 Entry.Ty = V->getType(); 6536 Entry.setAttributes(&CS, AttrI); 6537 Args.push_back(Entry); 6538 } 6539 6540 TargetLowering::CallLoweringInfo CLI(DAG); 6541 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6542 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6543 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6544 6545 return lowerInvokable(CLI, LandingPad); 6546 } 6547 6548 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6549 /// or patchpoint target node's operand list. 6550 /// 6551 /// Constants are converted to TargetConstants purely as an optimization to 6552 /// avoid constant materialization and register allocation. 6553 /// 6554 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6555 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6556 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6557 /// address materialization and register allocation, but may also be required 6558 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6559 /// alloca in the entry block, then the runtime may assume that the alloca's 6560 /// StackMap location can be read immediately after compilation and that the 6561 /// location is valid at any point during execution (this is similar to the 6562 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6563 /// only available in a register, then the runtime would need to trap when 6564 /// execution reaches the StackMap in order to read the alloca's location. 6565 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6566 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6567 SelectionDAGBuilder &Builder) { 6568 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6569 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6570 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6571 Ops.push_back( 6572 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6573 Ops.push_back( 6574 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6575 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6576 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6577 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6578 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6579 } else 6580 Ops.push_back(OpVal); 6581 } 6582 } 6583 6584 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6585 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6586 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6587 // [live variables...]) 6588 6589 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6590 6591 SDValue Chain, InFlag, Callee, NullPtr; 6592 SmallVector<SDValue, 32> Ops; 6593 6594 SDLoc DL = getCurSDLoc(); 6595 Callee = getValue(CI.getCalledValue()); 6596 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6597 6598 // The stackmap intrinsic only records the live variables (the arguemnts 6599 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6600 // intrinsic, this won't be lowered to a function call. This means we don't 6601 // have to worry about calling conventions and target specific lowering code. 6602 // Instead we perform the call lowering right here. 6603 // 6604 // chain, flag = CALLSEQ_START(chain, 0) 6605 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6606 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6607 // 6608 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6609 InFlag = Chain.getValue(1); 6610 6611 // Add the <id> and <numBytes> constants. 6612 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6613 Ops.push_back(DAG.getTargetConstant( 6614 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6615 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6616 Ops.push_back(DAG.getTargetConstant( 6617 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6618 MVT::i32)); 6619 6620 // Push live variables for the stack map. 6621 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6622 6623 // We are not pushing any register mask info here on the operands list, 6624 // because the stackmap doesn't clobber anything. 6625 6626 // Push the chain and the glue flag. 6627 Ops.push_back(Chain); 6628 Ops.push_back(InFlag); 6629 6630 // Create the STACKMAP node. 6631 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6632 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6633 Chain = SDValue(SM, 0); 6634 InFlag = Chain.getValue(1); 6635 6636 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6637 6638 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6639 6640 // Set the root to the target-lowered call chain. 6641 DAG.setRoot(Chain); 6642 6643 // Inform the Frame Information that we have a stackmap in this function. 6644 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6645 } 6646 6647 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6648 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6649 MachineBasicBlock *LandingPad) { 6650 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6651 // i32 <numBytes>, 6652 // i8* <target>, 6653 // i32 <numArgs>, 6654 // [Args...], 6655 // [live variables...]) 6656 6657 CallingConv::ID CC = CS.getCallingConv(); 6658 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6659 bool HasDef = !CS->getType()->isVoidTy(); 6660 SDLoc dl = getCurSDLoc(); 6661 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6662 6663 // Handle immediate and symbolic callees. 6664 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6665 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6666 /*isTarget=*/true); 6667 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6668 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6669 SDLoc(SymbolicCallee), 6670 SymbolicCallee->getValueType(0)); 6671 6672 // Get the real number of arguments participating in the call <numArgs> 6673 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6674 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6675 6676 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6677 // Intrinsics include all meta-operands up to but not including CC. 6678 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6679 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6680 "Not enough arguments provided to the patchpoint intrinsic"); 6681 6682 // For AnyRegCC the arguments are lowered later on manually. 6683 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6684 Type *ReturnTy = 6685 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6686 std::pair<SDValue, SDValue> Result = 6687 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6688 LandingPad, true); 6689 6690 SDNode *CallEnd = Result.second.getNode(); 6691 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6692 CallEnd = CallEnd->getOperand(0).getNode(); 6693 6694 /// Get a call instruction from the call sequence chain. 6695 /// Tail calls are not allowed. 6696 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6697 "Expected a callseq node."); 6698 SDNode *Call = CallEnd->getOperand(0).getNode(); 6699 bool HasGlue = Call->getGluedNode(); 6700 6701 // Replace the target specific call node with the patchable intrinsic. 6702 SmallVector<SDValue, 8> Ops; 6703 6704 // Add the <id> and <numBytes> constants. 6705 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6706 Ops.push_back(DAG.getTargetConstant( 6707 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6708 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6709 Ops.push_back(DAG.getTargetConstant( 6710 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6711 MVT::i32)); 6712 6713 // Add the callee. 6714 Ops.push_back(Callee); 6715 6716 // Adjust <numArgs> to account for any arguments that have been passed on the 6717 // stack instead. 6718 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6719 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6720 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6721 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6722 6723 // Add the calling convention 6724 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6725 6726 // Add the arguments we omitted previously. The register allocator should 6727 // place these in any free register. 6728 if (IsAnyRegCC) 6729 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6730 Ops.push_back(getValue(CS.getArgument(i))); 6731 6732 // Push the arguments from the call instruction up to the register mask. 6733 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6734 Ops.append(Call->op_begin() + 2, e); 6735 6736 // Push live variables for the stack map. 6737 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6738 6739 // Push the register mask info. 6740 if (HasGlue) 6741 Ops.push_back(*(Call->op_end()-2)); 6742 else 6743 Ops.push_back(*(Call->op_end()-1)); 6744 6745 // Push the chain (this is originally the first operand of the call, but 6746 // becomes now the last or second to last operand). 6747 Ops.push_back(*(Call->op_begin())); 6748 6749 // Push the glue flag (last operand). 6750 if (HasGlue) 6751 Ops.push_back(*(Call->op_end()-1)); 6752 6753 SDVTList NodeTys; 6754 if (IsAnyRegCC && HasDef) { 6755 // Create the return types based on the intrinsic definition 6756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6757 SmallVector<EVT, 3> ValueVTs; 6758 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6759 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6760 6761 // There is always a chain and a glue type at the end 6762 ValueVTs.push_back(MVT::Other); 6763 ValueVTs.push_back(MVT::Glue); 6764 NodeTys = DAG.getVTList(ValueVTs); 6765 } else 6766 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6767 6768 // Replace the target specific call node with a PATCHPOINT node. 6769 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6770 dl, NodeTys, Ops); 6771 6772 // Update the NodeMap. 6773 if (HasDef) { 6774 if (IsAnyRegCC) 6775 setValue(CS.getInstruction(), SDValue(MN, 0)); 6776 else 6777 setValue(CS.getInstruction(), Result.first); 6778 } 6779 6780 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6781 // call sequence. Furthermore the location of the chain and glue can change 6782 // when the AnyReg calling convention is used and the intrinsic returns a 6783 // value. 6784 if (IsAnyRegCC && HasDef) { 6785 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6786 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6787 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6788 } else 6789 DAG.ReplaceAllUsesWith(Call, MN); 6790 DAG.DeleteNode(Call); 6791 6792 // Inform the Frame Information that we have a patchpoint in this function. 6793 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6794 } 6795 6796 /// Returns an AttributeSet representing the attributes applied to the return 6797 /// value of the given call. 6798 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6799 SmallVector<Attribute::AttrKind, 2> Attrs; 6800 if (CLI.RetSExt) 6801 Attrs.push_back(Attribute::SExt); 6802 if (CLI.RetZExt) 6803 Attrs.push_back(Attribute::ZExt); 6804 if (CLI.IsInReg) 6805 Attrs.push_back(Attribute::InReg); 6806 6807 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6808 Attrs); 6809 } 6810 6811 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6812 /// implementation, which just calls LowerCall. 6813 /// FIXME: When all targets are 6814 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6815 std::pair<SDValue, SDValue> 6816 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6817 // Handle the incoming return values from the call. 6818 CLI.Ins.clear(); 6819 Type *OrigRetTy = CLI.RetTy; 6820 SmallVector<EVT, 4> RetTys; 6821 SmallVector<uint64_t, 4> Offsets; 6822 auto &DL = CLI.DAG.getDataLayout(); 6823 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6824 6825 SmallVector<ISD::OutputArg, 4> Outs; 6826 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6827 6828 bool CanLowerReturn = 6829 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6830 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6831 6832 SDValue DemoteStackSlot; 6833 int DemoteStackIdx = -100; 6834 if (!CanLowerReturn) { 6835 // FIXME: equivalent assert? 6836 // assert(!CS.hasInAllocaArgument() && 6837 // "sret demotion is incompatible with inalloca"); 6838 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6839 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6840 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6841 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6842 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6843 6844 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6845 ArgListEntry Entry; 6846 Entry.Node = DemoteStackSlot; 6847 Entry.Ty = StackSlotPtrType; 6848 Entry.isSExt = false; 6849 Entry.isZExt = false; 6850 Entry.isInReg = false; 6851 Entry.isSRet = true; 6852 Entry.isNest = false; 6853 Entry.isByVal = false; 6854 Entry.isReturned = false; 6855 Entry.Alignment = Align; 6856 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6857 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6858 6859 // sret demotion isn't compatible with tail-calls, since the sret argument 6860 // points into the callers stack frame. 6861 CLI.IsTailCall = false; 6862 } else { 6863 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6864 EVT VT = RetTys[I]; 6865 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6866 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6867 for (unsigned i = 0; i != NumRegs; ++i) { 6868 ISD::InputArg MyFlags; 6869 MyFlags.VT = RegisterVT; 6870 MyFlags.ArgVT = VT; 6871 MyFlags.Used = CLI.IsReturnValueUsed; 6872 if (CLI.RetSExt) 6873 MyFlags.Flags.setSExt(); 6874 if (CLI.RetZExt) 6875 MyFlags.Flags.setZExt(); 6876 if (CLI.IsInReg) 6877 MyFlags.Flags.setInReg(); 6878 CLI.Ins.push_back(MyFlags); 6879 } 6880 } 6881 } 6882 6883 // Handle all of the outgoing arguments. 6884 CLI.Outs.clear(); 6885 CLI.OutVals.clear(); 6886 ArgListTy &Args = CLI.getArgs(); 6887 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6888 SmallVector<EVT, 4> ValueVTs; 6889 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6890 Type *FinalType = Args[i].Ty; 6891 if (Args[i].isByVal) 6892 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6893 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6894 FinalType, CLI.CallConv, CLI.IsVarArg); 6895 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6896 ++Value) { 6897 EVT VT = ValueVTs[Value]; 6898 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6899 SDValue Op = SDValue(Args[i].Node.getNode(), 6900 Args[i].Node.getResNo() + Value); 6901 ISD::ArgFlagsTy Flags; 6902 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6903 6904 if (Args[i].isZExt) 6905 Flags.setZExt(); 6906 if (Args[i].isSExt) 6907 Flags.setSExt(); 6908 if (Args[i].isInReg) 6909 Flags.setInReg(); 6910 if (Args[i].isSRet) 6911 Flags.setSRet(); 6912 if (Args[i].isByVal) 6913 Flags.setByVal(); 6914 if (Args[i].isInAlloca) { 6915 Flags.setInAlloca(); 6916 // Set the byval flag for CCAssignFn callbacks that don't know about 6917 // inalloca. This way we can know how many bytes we should've allocated 6918 // and how many bytes a callee cleanup function will pop. If we port 6919 // inalloca to more targets, we'll have to add custom inalloca handling 6920 // in the various CC lowering callbacks. 6921 Flags.setByVal(); 6922 } 6923 if (Args[i].isByVal || Args[i].isInAlloca) { 6924 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6925 Type *ElementTy = Ty->getElementType(); 6926 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6927 // For ByVal, alignment should come from FE. BE will guess if this 6928 // info is not there but there are cases it cannot get right. 6929 unsigned FrameAlign; 6930 if (Args[i].Alignment) 6931 FrameAlign = Args[i].Alignment; 6932 else 6933 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6934 Flags.setByValAlign(FrameAlign); 6935 } 6936 if (Args[i].isNest) 6937 Flags.setNest(); 6938 if (NeedsRegBlock) 6939 Flags.setInConsecutiveRegs(); 6940 Flags.setOrigAlign(OriginalAlignment); 6941 6942 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6943 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6944 SmallVector<SDValue, 4> Parts(NumParts); 6945 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6946 6947 if (Args[i].isSExt) 6948 ExtendKind = ISD::SIGN_EXTEND; 6949 else if (Args[i].isZExt) 6950 ExtendKind = ISD::ZERO_EXTEND; 6951 6952 // Conservatively only handle 'returned' on non-vectors for now 6953 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6954 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6955 "unexpected use of 'returned'"); 6956 // Before passing 'returned' to the target lowering code, ensure that 6957 // either the register MVT and the actual EVT are the same size or that 6958 // the return value and argument are extended in the same way; in these 6959 // cases it's safe to pass the argument register value unchanged as the 6960 // return register value (although it's at the target's option whether 6961 // to do so) 6962 // TODO: allow code generation to take advantage of partially preserved 6963 // registers rather than clobbering the entire register when the 6964 // parameter extension method is not compatible with the return 6965 // extension method 6966 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6967 (ExtendKind != ISD::ANY_EXTEND && 6968 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6969 Flags.setReturned(); 6970 } 6971 6972 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6973 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6974 6975 for (unsigned j = 0; j != NumParts; ++j) { 6976 // if it isn't first piece, alignment must be 1 6977 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6978 i < CLI.NumFixedArgs, 6979 i, j*Parts[j].getValueType().getStoreSize()); 6980 if (NumParts > 1 && j == 0) 6981 MyFlags.Flags.setSplit(); 6982 else if (j != 0) 6983 MyFlags.Flags.setOrigAlign(1); 6984 6985 CLI.Outs.push_back(MyFlags); 6986 CLI.OutVals.push_back(Parts[j]); 6987 } 6988 6989 if (NeedsRegBlock && Value == NumValues - 1) 6990 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6991 } 6992 } 6993 6994 SmallVector<SDValue, 4> InVals; 6995 CLI.Chain = LowerCall(CLI, InVals); 6996 6997 // Verify that the target's LowerCall behaved as expected. 6998 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6999 "LowerCall didn't return a valid chain!"); 7000 assert((!CLI.IsTailCall || InVals.empty()) && 7001 "LowerCall emitted a return value for a tail call!"); 7002 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7003 "LowerCall didn't emit the correct number of values!"); 7004 7005 // For a tail call, the return value is merely live-out and there aren't 7006 // any nodes in the DAG representing it. Return a special value to 7007 // indicate that a tail call has been emitted and no more Instructions 7008 // should be processed in the current block. 7009 if (CLI.IsTailCall) { 7010 CLI.DAG.setRoot(CLI.Chain); 7011 return std::make_pair(SDValue(), SDValue()); 7012 } 7013 7014 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7015 assert(InVals[i].getNode() && 7016 "LowerCall emitted a null value!"); 7017 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7018 "LowerCall emitted a value with the wrong type!"); 7019 }); 7020 7021 SmallVector<SDValue, 4> ReturnValues; 7022 if (!CanLowerReturn) { 7023 // The instruction result is the result of loading from the 7024 // hidden sret parameter. 7025 SmallVector<EVT, 1> PVTs; 7026 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7027 7028 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7029 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7030 EVT PtrVT = PVTs[0]; 7031 7032 unsigned NumValues = RetTys.size(); 7033 ReturnValues.resize(NumValues); 7034 SmallVector<SDValue, 4> Chains(NumValues); 7035 7036 for (unsigned i = 0; i < NumValues; ++i) { 7037 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7038 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7039 PtrVT)); 7040 SDValue L = CLI.DAG.getLoad( 7041 RetTys[i], CLI.DL, CLI.Chain, Add, 7042 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7043 DemoteStackIdx, Offsets[i]), 7044 false, false, false, 1); 7045 ReturnValues[i] = L; 7046 Chains[i] = L.getValue(1); 7047 } 7048 7049 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7050 } else { 7051 // Collect the legal value parts into potentially illegal values 7052 // that correspond to the original function's return values. 7053 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7054 if (CLI.RetSExt) 7055 AssertOp = ISD::AssertSext; 7056 else if (CLI.RetZExt) 7057 AssertOp = ISD::AssertZext; 7058 unsigned CurReg = 0; 7059 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7060 EVT VT = RetTys[I]; 7061 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7062 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7063 7064 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7065 NumRegs, RegisterVT, VT, nullptr, 7066 AssertOp)); 7067 CurReg += NumRegs; 7068 } 7069 7070 // For a function returning void, there is no return value. We can't create 7071 // such a node, so we just return a null return value in that case. In 7072 // that case, nothing will actually look at the value. 7073 if (ReturnValues.empty()) 7074 return std::make_pair(SDValue(), CLI.Chain); 7075 } 7076 7077 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7078 CLI.DAG.getVTList(RetTys), ReturnValues); 7079 return std::make_pair(Res, CLI.Chain); 7080 } 7081 7082 void TargetLowering::LowerOperationWrapper(SDNode *N, 7083 SmallVectorImpl<SDValue> &Results, 7084 SelectionDAG &DAG) const { 7085 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7086 if (Res.getNode()) 7087 Results.push_back(Res); 7088 } 7089 7090 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7091 llvm_unreachable("LowerOperation not implemented for this target!"); 7092 } 7093 7094 void 7095 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7096 SDValue Op = getNonRegisterValue(V); 7097 assert((Op.getOpcode() != ISD::CopyFromReg || 7098 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7099 "Copy from a reg to the same reg!"); 7100 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7101 7102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7103 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7104 V->getType()); 7105 SDValue Chain = DAG.getEntryNode(); 7106 7107 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7108 FuncInfo.PreferredExtendType.end()) 7109 ? ISD::ANY_EXTEND 7110 : FuncInfo.PreferredExtendType[V]; 7111 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7112 PendingExports.push_back(Chain); 7113 } 7114 7115 #include "llvm/CodeGen/SelectionDAGISel.h" 7116 7117 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7118 /// entry block, return true. This includes arguments used by switches, since 7119 /// the switch may expand into multiple basic blocks. 7120 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7121 // With FastISel active, we may be splitting blocks, so force creation 7122 // of virtual registers for all non-dead arguments. 7123 if (FastISel) 7124 return A->use_empty(); 7125 7126 const BasicBlock *Entry = A->getParent()->begin(); 7127 for (const User *U : A->users()) 7128 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7129 return false; // Use not in entry block. 7130 7131 return true; 7132 } 7133 7134 void SelectionDAGISel::LowerArguments(const Function &F) { 7135 SelectionDAG &DAG = SDB->DAG; 7136 SDLoc dl = SDB->getCurSDLoc(); 7137 const DataLayout &DL = DAG.getDataLayout(); 7138 SmallVector<ISD::InputArg, 16> Ins; 7139 7140 if (!FuncInfo->CanLowerReturn) { 7141 // Put in an sret pointer parameter before all the other parameters. 7142 SmallVector<EVT, 1> ValueVTs; 7143 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7144 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7145 7146 // NOTE: Assuming that a pointer will never break down to more than one VT 7147 // or one register. 7148 ISD::ArgFlagsTy Flags; 7149 Flags.setSRet(); 7150 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7151 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7152 ISD::InputArg::NoArgIndex, 0); 7153 Ins.push_back(RetArg); 7154 } 7155 7156 // Set up the incoming argument description vector. 7157 unsigned Idx = 1; 7158 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7159 I != E; ++I, ++Idx) { 7160 SmallVector<EVT, 4> ValueVTs; 7161 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7162 bool isArgValueUsed = !I->use_empty(); 7163 unsigned PartBase = 0; 7164 Type *FinalType = I->getType(); 7165 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7166 FinalType = cast<PointerType>(FinalType)->getElementType(); 7167 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7168 FinalType, F.getCallingConv(), F.isVarArg()); 7169 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7170 Value != NumValues; ++Value) { 7171 EVT VT = ValueVTs[Value]; 7172 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7173 ISD::ArgFlagsTy Flags; 7174 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7175 7176 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7177 Flags.setZExt(); 7178 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7179 Flags.setSExt(); 7180 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7181 Flags.setInReg(); 7182 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7183 Flags.setSRet(); 7184 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7185 Flags.setByVal(); 7186 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7187 Flags.setInAlloca(); 7188 // Set the byval flag for CCAssignFn callbacks that don't know about 7189 // inalloca. This way we can know how many bytes we should've allocated 7190 // and how many bytes a callee cleanup function will pop. If we port 7191 // inalloca to more targets, we'll have to add custom inalloca handling 7192 // in the various CC lowering callbacks. 7193 Flags.setByVal(); 7194 } 7195 if (Flags.isByVal() || Flags.isInAlloca()) { 7196 PointerType *Ty = cast<PointerType>(I->getType()); 7197 Type *ElementTy = Ty->getElementType(); 7198 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7199 // For ByVal, alignment should be passed from FE. BE will guess if 7200 // this info is not there but there are cases it cannot get right. 7201 unsigned FrameAlign; 7202 if (F.getParamAlignment(Idx)) 7203 FrameAlign = F.getParamAlignment(Idx); 7204 else 7205 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7206 Flags.setByValAlign(FrameAlign); 7207 } 7208 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7209 Flags.setNest(); 7210 if (NeedsRegBlock) 7211 Flags.setInConsecutiveRegs(); 7212 Flags.setOrigAlign(OriginalAlignment); 7213 7214 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7215 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7216 for (unsigned i = 0; i != NumRegs; ++i) { 7217 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7218 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7219 if (NumRegs > 1 && i == 0) 7220 MyFlags.Flags.setSplit(); 7221 // if it isn't first piece, alignment must be 1 7222 else if (i > 0) 7223 MyFlags.Flags.setOrigAlign(1); 7224 Ins.push_back(MyFlags); 7225 } 7226 if (NeedsRegBlock && Value == NumValues - 1) 7227 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7228 PartBase += VT.getStoreSize(); 7229 } 7230 } 7231 7232 // Call the target to set up the argument values. 7233 SmallVector<SDValue, 8> InVals; 7234 SDValue NewRoot = TLI->LowerFormalArguments( 7235 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7236 7237 // Verify that the target's LowerFormalArguments behaved as expected. 7238 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7239 "LowerFormalArguments didn't return a valid chain!"); 7240 assert(InVals.size() == Ins.size() && 7241 "LowerFormalArguments didn't emit the correct number of values!"); 7242 DEBUG({ 7243 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7244 assert(InVals[i].getNode() && 7245 "LowerFormalArguments emitted a null value!"); 7246 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7247 "LowerFormalArguments emitted a value with the wrong type!"); 7248 } 7249 }); 7250 7251 // Update the DAG with the new chain value resulting from argument lowering. 7252 DAG.setRoot(NewRoot); 7253 7254 // Set up the argument values. 7255 unsigned i = 0; 7256 Idx = 1; 7257 if (!FuncInfo->CanLowerReturn) { 7258 // Create a virtual register for the sret pointer, and put in a copy 7259 // from the sret argument into it. 7260 SmallVector<EVT, 1> ValueVTs; 7261 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7262 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7263 MVT VT = ValueVTs[0].getSimpleVT(); 7264 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7265 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7266 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7267 RegVT, VT, nullptr, AssertOp); 7268 7269 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7270 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7271 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7272 FuncInfo->DemoteRegister = SRetReg; 7273 NewRoot = 7274 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7275 DAG.setRoot(NewRoot); 7276 7277 // i indexes lowered arguments. Bump it past the hidden sret argument. 7278 // Idx indexes LLVM arguments. Don't touch it. 7279 ++i; 7280 } 7281 7282 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7283 ++I, ++Idx) { 7284 SmallVector<SDValue, 4> ArgValues; 7285 SmallVector<EVT, 4> ValueVTs; 7286 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7287 unsigned NumValues = ValueVTs.size(); 7288 7289 // If this argument is unused then remember its value. It is used to generate 7290 // debugging information. 7291 if (I->use_empty() && NumValues) { 7292 SDB->setUnusedArgValue(I, InVals[i]); 7293 7294 // Also remember any frame index for use in FastISel. 7295 if (FrameIndexSDNode *FI = 7296 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7297 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7298 } 7299 7300 for (unsigned Val = 0; Val != NumValues; ++Val) { 7301 EVT VT = ValueVTs[Val]; 7302 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7303 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7304 7305 if (!I->use_empty()) { 7306 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7307 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7308 AssertOp = ISD::AssertSext; 7309 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7310 AssertOp = ISD::AssertZext; 7311 7312 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7313 NumParts, PartVT, VT, 7314 nullptr, AssertOp)); 7315 } 7316 7317 i += NumParts; 7318 } 7319 7320 // We don't need to do anything else for unused arguments. 7321 if (ArgValues.empty()) 7322 continue; 7323 7324 // Note down frame index. 7325 if (FrameIndexSDNode *FI = 7326 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7327 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7328 7329 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7330 SDB->getCurSDLoc()); 7331 7332 SDB->setValue(I, Res); 7333 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7334 if (LoadSDNode *LNode = 7335 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7336 if (FrameIndexSDNode *FI = 7337 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7338 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7339 } 7340 7341 // If this argument is live outside of the entry block, insert a copy from 7342 // wherever we got it to the vreg that other BB's will reference it as. 7343 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7344 // If we can, though, try to skip creating an unnecessary vreg. 7345 // FIXME: This isn't very clean... it would be nice to make this more 7346 // general. It's also subtly incompatible with the hacks FastISel 7347 // uses with vregs. 7348 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7349 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7350 FuncInfo->ValueMap[I] = Reg; 7351 continue; 7352 } 7353 } 7354 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7355 FuncInfo->InitializeRegForValue(I); 7356 SDB->CopyToExportRegsIfNeeded(I); 7357 } 7358 } 7359 7360 assert(i == InVals.size() && "Argument register count mismatch!"); 7361 7362 // Finally, if the target has anything special to do, allow it to do so. 7363 EmitFunctionEntryCode(); 7364 } 7365 7366 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7367 /// ensure constants are generated when needed. Remember the virtual registers 7368 /// that need to be added to the Machine PHI nodes as input. We cannot just 7369 /// directly add them, because expansion might result in multiple MBB's for one 7370 /// BB. As such, the start of the BB might correspond to a different MBB than 7371 /// the end. 7372 /// 7373 void 7374 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7375 const TerminatorInst *TI = LLVMBB->getTerminator(); 7376 7377 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7378 7379 // Check PHI nodes in successors that expect a value to be available from this 7380 // block. 7381 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7382 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7383 if (!isa<PHINode>(SuccBB->begin())) continue; 7384 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7385 7386 // If this terminator has multiple identical successors (common for 7387 // switches), only handle each succ once. 7388 if (!SuccsHandled.insert(SuccMBB).second) 7389 continue; 7390 7391 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7392 7393 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7394 // nodes and Machine PHI nodes, but the incoming operands have not been 7395 // emitted yet. 7396 for (BasicBlock::const_iterator I = SuccBB->begin(); 7397 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7398 // Ignore dead phi's. 7399 if (PN->use_empty()) continue; 7400 7401 // Skip empty types 7402 if (PN->getType()->isEmptyTy()) 7403 continue; 7404 7405 unsigned Reg; 7406 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7407 7408 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7409 unsigned &RegOut = ConstantsOut[C]; 7410 if (RegOut == 0) { 7411 RegOut = FuncInfo.CreateRegs(C->getType()); 7412 CopyValueToVirtualRegister(C, RegOut); 7413 } 7414 Reg = RegOut; 7415 } else { 7416 DenseMap<const Value *, unsigned>::iterator I = 7417 FuncInfo.ValueMap.find(PHIOp); 7418 if (I != FuncInfo.ValueMap.end()) 7419 Reg = I->second; 7420 else { 7421 assert(isa<AllocaInst>(PHIOp) && 7422 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7423 "Didn't codegen value into a register!??"); 7424 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7425 CopyValueToVirtualRegister(PHIOp, Reg); 7426 } 7427 } 7428 7429 // Remember that this register needs to added to the machine PHI node as 7430 // the input for this MBB. 7431 SmallVector<EVT, 4> ValueVTs; 7432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7433 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7434 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7435 EVT VT = ValueVTs[vti]; 7436 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7437 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7438 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7439 Reg += NumRegisters; 7440 } 7441 } 7442 } 7443 7444 ConstantsOut.clear(); 7445 } 7446 7447 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7448 /// is 0. 7449 MachineBasicBlock * 7450 SelectionDAGBuilder::StackProtectorDescriptor:: 7451 AddSuccessorMBB(const BasicBlock *BB, 7452 MachineBasicBlock *ParentMBB, 7453 bool IsLikely, 7454 MachineBasicBlock *SuccMBB) { 7455 // If SuccBB has not been created yet, create it. 7456 if (!SuccMBB) { 7457 MachineFunction *MF = ParentMBB->getParent(); 7458 MachineFunction::iterator BBI = ParentMBB; 7459 SuccMBB = MF->CreateMachineBasicBlock(BB); 7460 MF->insert(++BBI, SuccMBB); 7461 } 7462 // Add it as a successor of ParentMBB. 7463 ParentMBB->addSuccessor( 7464 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7465 return SuccMBB; 7466 } 7467 7468 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7469 MachineFunction::iterator I = MBB; 7470 if (++I == FuncInfo.MF->end()) 7471 return nullptr; 7472 return I; 7473 } 7474 7475 /// During lowering new call nodes can be created (such as memset, etc.). 7476 /// Those will become new roots of the current DAG, but complications arise 7477 /// when they are tail calls. In such cases, the call lowering will update 7478 /// the root, but the builder still needs to know that a tail call has been 7479 /// lowered in order to avoid generating an additional return. 7480 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7481 // If the node is null, we do have a tail call. 7482 if (MaybeTC.getNode() != nullptr) 7483 DAG.setRoot(MaybeTC); 7484 else 7485 HasTailCall = true; 7486 } 7487 7488 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7489 unsigned *TotalCases, unsigned First, 7490 unsigned Last) { 7491 assert(Last >= First); 7492 assert(TotalCases[Last] >= TotalCases[First]); 7493 7494 APInt LowCase = Clusters[First].Low->getValue(); 7495 APInt HighCase = Clusters[Last].High->getValue(); 7496 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7497 7498 // FIXME: A range of consecutive cases has 100% density, but only requires one 7499 // comparison to lower. We should discriminate against such consecutive ranges 7500 // in jump tables. 7501 7502 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7503 uint64_t Range = Diff + 1; 7504 7505 uint64_t NumCases = 7506 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7507 7508 assert(NumCases < UINT64_MAX / 100); 7509 assert(Range >= NumCases); 7510 7511 return NumCases * 100 >= Range * MinJumpTableDensity; 7512 } 7513 7514 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7515 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7516 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7517 } 7518 7519 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7520 unsigned First, unsigned Last, 7521 const SwitchInst *SI, 7522 MachineBasicBlock *DefaultMBB, 7523 CaseCluster &JTCluster) { 7524 assert(First <= Last); 7525 7526 uint32_t Weight = 0; 7527 unsigned NumCmps = 0; 7528 std::vector<MachineBasicBlock*> Table; 7529 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7530 for (unsigned I = First; I <= Last; ++I) { 7531 assert(Clusters[I].Kind == CC_Range); 7532 Weight += Clusters[I].Weight; 7533 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7534 APInt Low = Clusters[I].Low->getValue(); 7535 APInt High = Clusters[I].High->getValue(); 7536 NumCmps += (Low == High) ? 1 : 2; 7537 if (I != First) { 7538 // Fill the gap between this and the previous cluster. 7539 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7540 assert(PreviousHigh.slt(Low)); 7541 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7542 for (uint64_t J = 0; J < Gap; J++) 7543 Table.push_back(DefaultMBB); 7544 } 7545 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7546 for (uint64_t J = 0; J < ClusterSize; ++J) 7547 Table.push_back(Clusters[I].MBB); 7548 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7549 } 7550 7551 unsigned NumDests = JTWeights.size(); 7552 if (isSuitableForBitTests(NumDests, NumCmps, 7553 Clusters[First].Low->getValue(), 7554 Clusters[Last].High->getValue())) { 7555 // Clusters[First..Last] should be lowered as bit tests instead. 7556 return false; 7557 } 7558 7559 // Create the MBB that will load from and jump through the table. 7560 // Note: We create it here, but it's not inserted into the function yet. 7561 MachineFunction *CurMF = FuncInfo.MF; 7562 MachineBasicBlock *JumpTableMBB = 7563 CurMF->CreateMachineBasicBlock(SI->getParent()); 7564 7565 // Add successors. Note: use table order for determinism. 7566 SmallPtrSet<MachineBasicBlock *, 8> Done; 7567 for (MachineBasicBlock *Succ : Table) { 7568 if (Done.count(Succ)) 7569 continue; 7570 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7571 Done.insert(Succ); 7572 } 7573 7574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7575 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7576 ->createJumpTableIndex(Table); 7577 7578 // Set up the jump table info. 7579 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7580 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7581 Clusters[Last].High->getValue(), SI->getCondition(), 7582 nullptr, false); 7583 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7584 7585 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7586 JTCases.size() - 1, Weight); 7587 return true; 7588 } 7589 7590 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7591 const SwitchInst *SI, 7592 MachineBasicBlock *DefaultMBB) { 7593 #ifndef NDEBUG 7594 // Clusters must be non-empty, sorted, and only contain Range clusters. 7595 assert(!Clusters.empty()); 7596 for (CaseCluster &C : Clusters) 7597 assert(C.Kind == CC_Range); 7598 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7599 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7600 #endif 7601 7602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7603 if (!areJTsAllowed(TLI)) 7604 return; 7605 7606 const int64_t N = Clusters.size(); 7607 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7608 7609 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7610 SmallVector<unsigned, 8> TotalCases(N); 7611 7612 for (unsigned i = 0; i < N; ++i) { 7613 APInt Hi = Clusters[i].High->getValue(); 7614 APInt Lo = Clusters[i].Low->getValue(); 7615 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7616 if (i != 0) 7617 TotalCases[i] += TotalCases[i - 1]; 7618 } 7619 7620 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7621 // Cheap case: the whole range might be suitable for jump table. 7622 CaseCluster JTCluster; 7623 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7624 Clusters[0] = JTCluster; 7625 Clusters.resize(1); 7626 return; 7627 } 7628 } 7629 7630 // The algorithm below is not suitable for -O0. 7631 if (TM.getOptLevel() == CodeGenOpt::None) 7632 return; 7633 7634 // Split Clusters into minimum number of dense partitions. The algorithm uses 7635 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7636 // for the Case Statement'" (1994), but builds the MinPartitions array in 7637 // reverse order to make it easier to reconstruct the partitions in ascending 7638 // order. In the choice between two optimal partitionings, it picks the one 7639 // which yields more jump tables. 7640 7641 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7642 SmallVector<unsigned, 8> MinPartitions(N); 7643 // LastElement[i] is the last element of the partition starting at i. 7644 SmallVector<unsigned, 8> LastElement(N); 7645 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7646 SmallVector<unsigned, 8> NumTables(N); 7647 7648 // Base case: There is only one way to partition Clusters[N-1]. 7649 MinPartitions[N - 1] = 1; 7650 LastElement[N - 1] = N - 1; 7651 assert(MinJumpTableSize > 1); 7652 NumTables[N - 1] = 0; 7653 7654 // Note: loop indexes are signed to avoid underflow. 7655 for (int64_t i = N - 2; i >= 0; i--) { 7656 // Find optimal partitioning of Clusters[i..N-1]. 7657 // Baseline: Put Clusters[i] into a partition on its own. 7658 MinPartitions[i] = MinPartitions[i + 1] + 1; 7659 LastElement[i] = i; 7660 NumTables[i] = NumTables[i + 1]; 7661 7662 // Search for a solution that results in fewer partitions. 7663 for (int64_t j = N - 1; j > i; j--) { 7664 // Try building a partition from Clusters[i..j]. 7665 if (isDense(Clusters, &TotalCases[0], i, j)) { 7666 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7667 bool IsTable = j - i + 1 >= MinJumpTableSize; 7668 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7669 7670 // If this j leads to fewer partitions, or same number of partitions 7671 // with more lookup tables, it is a better partitioning. 7672 if (NumPartitions < MinPartitions[i] || 7673 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7674 MinPartitions[i] = NumPartitions; 7675 LastElement[i] = j; 7676 NumTables[i] = Tables; 7677 } 7678 } 7679 } 7680 } 7681 7682 // Iterate over the partitions, replacing some with jump tables in-place. 7683 unsigned DstIndex = 0; 7684 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7685 Last = LastElement[First]; 7686 assert(Last >= First); 7687 assert(DstIndex <= First); 7688 unsigned NumClusters = Last - First + 1; 7689 7690 CaseCluster JTCluster; 7691 if (NumClusters >= MinJumpTableSize && 7692 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7693 Clusters[DstIndex++] = JTCluster; 7694 } else { 7695 for (unsigned I = First; I <= Last; ++I) 7696 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7697 } 7698 } 7699 Clusters.resize(DstIndex); 7700 } 7701 7702 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7703 // FIXME: Using the pointer type doesn't seem ideal. 7704 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7705 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7706 return Range <= BW; 7707 } 7708 7709 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7710 unsigned NumCmps, 7711 const APInt &Low, 7712 const APInt &High) { 7713 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7714 // range of cases both require only one branch to lower. Just looking at the 7715 // number of clusters and destinations should be enough to decide whether to 7716 // build bit tests. 7717 7718 // To lower a range with bit tests, the range must fit the bitwidth of a 7719 // machine word. 7720 if (!rangeFitsInWord(Low, High)) 7721 return false; 7722 7723 // Decide whether it's profitable to lower this range with bit tests. Each 7724 // destination requires a bit test and branch, and there is an overall range 7725 // check branch. For a small number of clusters, separate comparisons might be 7726 // cheaper, and for many destinations, splitting the range might be better. 7727 return (NumDests == 1 && NumCmps >= 3) || 7728 (NumDests == 2 && NumCmps >= 5) || 7729 (NumDests == 3 && NumCmps >= 6); 7730 } 7731 7732 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7733 unsigned First, unsigned Last, 7734 const SwitchInst *SI, 7735 CaseCluster &BTCluster) { 7736 assert(First <= Last); 7737 if (First == Last) 7738 return false; 7739 7740 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7741 unsigned NumCmps = 0; 7742 for (int64_t I = First; I <= Last; ++I) { 7743 assert(Clusters[I].Kind == CC_Range); 7744 Dests.set(Clusters[I].MBB->getNumber()); 7745 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7746 } 7747 unsigned NumDests = Dests.count(); 7748 7749 APInt Low = Clusters[First].Low->getValue(); 7750 APInt High = Clusters[Last].High->getValue(); 7751 assert(Low.slt(High)); 7752 7753 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7754 return false; 7755 7756 APInt LowBound; 7757 APInt CmpRange; 7758 7759 const int BitWidth = DAG.getTargetLoweringInfo() 7760 .getPointerTy(DAG.getDataLayout()) 7761 .getSizeInBits(); 7762 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7763 7764 if (Low.isNonNegative() && High.slt(BitWidth)) { 7765 // Optimize the case where all the case values fit in a 7766 // word without having to subtract minValue. In this case, 7767 // we can optimize away the subtraction. 7768 LowBound = APInt::getNullValue(Low.getBitWidth()); 7769 CmpRange = High; 7770 } else { 7771 LowBound = Low; 7772 CmpRange = High - Low; 7773 } 7774 7775 CaseBitsVector CBV; 7776 uint32_t TotalWeight = 0; 7777 for (unsigned i = First; i <= Last; ++i) { 7778 // Find the CaseBits for this destination. 7779 unsigned j; 7780 for (j = 0; j < CBV.size(); ++j) 7781 if (CBV[j].BB == Clusters[i].MBB) 7782 break; 7783 if (j == CBV.size()) 7784 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7785 CaseBits *CB = &CBV[j]; 7786 7787 // Update Mask, Bits and ExtraWeight. 7788 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7789 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7790 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7791 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7792 CB->Bits += Hi - Lo + 1; 7793 CB->ExtraWeight += Clusters[i].Weight; 7794 TotalWeight += Clusters[i].Weight; 7795 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7796 } 7797 7798 BitTestInfo BTI; 7799 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7800 // Sort by weight first, number of bits second. 7801 if (a.ExtraWeight != b.ExtraWeight) 7802 return a.ExtraWeight > b.ExtraWeight; 7803 return a.Bits > b.Bits; 7804 }); 7805 7806 for (auto &CB : CBV) { 7807 MachineBasicBlock *BitTestBB = 7808 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7809 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7810 } 7811 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7812 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7813 nullptr, std::move(BTI)); 7814 7815 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7816 BitTestCases.size() - 1, TotalWeight); 7817 return true; 7818 } 7819 7820 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7821 const SwitchInst *SI) { 7822 // Partition Clusters into as few subsets as possible, where each subset has a 7823 // range that fits in a machine word and has <= 3 unique destinations. 7824 7825 #ifndef NDEBUG 7826 // Clusters must be sorted and contain Range or JumpTable clusters. 7827 assert(!Clusters.empty()); 7828 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7829 for (const CaseCluster &C : Clusters) 7830 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7831 for (unsigned i = 1; i < Clusters.size(); ++i) 7832 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7833 #endif 7834 7835 // The algorithm below is not suitable for -O0. 7836 if (TM.getOptLevel() == CodeGenOpt::None) 7837 return; 7838 7839 // If target does not have legal shift left, do not emit bit tests at all. 7840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7841 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7842 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7843 return; 7844 7845 int BitWidth = PTy.getSizeInBits(); 7846 const int64_t N = Clusters.size(); 7847 7848 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7849 SmallVector<unsigned, 8> MinPartitions(N); 7850 // LastElement[i] is the last element of the partition starting at i. 7851 SmallVector<unsigned, 8> LastElement(N); 7852 7853 // FIXME: This might not be the best algorithm for finding bit test clusters. 7854 7855 // Base case: There is only one way to partition Clusters[N-1]. 7856 MinPartitions[N - 1] = 1; 7857 LastElement[N - 1] = N - 1; 7858 7859 // Note: loop indexes are signed to avoid underflow. 7860 for (int64_t i = N - 2; i >= 0; --i) { 7861 // Find optimal partitioning of Clusters[i..N-1]. 7862 // Baseline: Put Clusters[i] into a partition on its own. 7863 MinPartitions[i] = MinPartitions[i + 1] + 1; 7864 LastElement[i] = i; 7865 7866 // Search for a solution that results in fewer partitions. 7867 // Note: the search is limited by BitWidth, reducing time complexity. 7868 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7869 // Try building a partition from Clusters[i..j]. 7870 7871 // Check the range. 7872 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7873 Clusters[j].High->getValue())) 7874 continue; 7875 7876 // Check nbr of destinations and cluster types. 7877 // FIXME: This works, but doesn't seem very efficient. 7878 bool RangesOnly = true; 7879 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7880 for (int64_t k = i; k <= j; k++) { 7881 if (Clusters[k].Kind != CC_Range) { 7882 RangesOnly = false; 7883 break; 7884 } 7885 Dests.set(Clusters[k].MBB->getNumber()); 7886 } 7887 if (!RangesOnly || Dests.count() > 3) 7888 break; 7889 7890 // Check if it's a better partition. 7891 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7892 if (NumPartitions < MinPartitions[i]) { 7893 // Found a better partition. 7894 MinPartitions[i] = NumPartitions; 7895 LastElement[i] = j; 7896 } 7897 } 7898 } 7899 7900 // Iterate over the partitions, replacing with bit-test clusters in-place. 7901 unsigned DstIndex = 0; 7902 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7903 Last = LastElement[First]; 7904 assert(First <= Last); 7905 assert(DstIndex <= First); 7906 7907 CaseCluster BitTestCluster; 7908 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7909 Clusters[DstIndex++] = BitTestCluster; 7910 } else { 7911 size_t NumClusters = Last - First + 1; 7912 std::memmove(&Clusters[DstIndex], &Clusters[First], 7913 sizeof(Clusters[0]) * NumClusters); 7914 DstIndex += NumClusters; 7915 } 7916 } 7917 Clusters.resize(DstIndex); 7918 } 7919 7920 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7921 MachineBasicBlock *SwitchMBB, 7922 MachineBasicBlock *DefaultMBB) { 7923 MachineFunction *CurMF = FuncInfo.MF; 7924 MachineBasicBlock *NextMBB = nullptr; 7925 MachineFunction::iterator BBI = W.MBB; 7926 if (++BBI != FuncInfo.MF->end()) 7927 NextMBB = BBI; 7928 7929 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7930 7931 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7932 7933 if (Size == 2 && W.MBB == SwitchMBB) { 7934 // If any two of the cases has the same destination, and if one value 7935 // is the same as the other, but has one bit unset that the other has set, 7936 // use bit manipulation to do two compares at once. For example: 7937 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7938 // TODO: This could be extended to merge any 2 cases in switches with 3 7939 // cases. 7940 // TODO: Handle cases where W.CaseBB != SwitchBB. 7941 CaseCluster &Small = *W.FirstCluster; 7942 CaseCluster &Big = *W.LastCluster; 7943 7944 if (Small.Low == Small.High && Big.Low == Big.High && 7945 Small.MBB == Big.MBB) { 7946 const APInt &SmallValue = Small.Low->getValue(); 7947 const APInt &BigValue = Big.Low->getValue(); 7948 7949 // Check that there is only one bit different. 7950 APInt CommonBit = BigValue ^ SmallValue; 7951 if (CommonBit.isPowerOf2()) { 7952 SDValue CondLHS = getValue(Cond); 7953 EVT VT = CondLHS.getValueType(); 7954 SDLoc DL = getCurSDLoc(); 7955 7956 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7957 DAG.getConstant(CommonBit, DL, VT)); 7958 SDValue Cond = DAG.getSetCC( 7959 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7960 ISD::SETEQ); 7961 7962 // Update successor info. 7963 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7964 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7965 addSuccessorWithWeight( 7966 SwitchMBB, DefaultMBB, 7967 // The default destination is the first successor in IR. 7968 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7969 : 0); 7970 7971 // Insert the true branch. 7972 SDValue BrCond = 7973 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7974 DAG.getBasicBlock(Small.MBB)); 7975 // Insert the false branch. 7976 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7977 DAG.getBasicBlock(DefaultMBB)); 7978 7979 DAG.setRoot(BrCond); 7980 return; 7981 } 7982 } 7983 } 7984 7985 if (TM.getOptLevel() != CodeGenOpt::None) { 7986 // Order cases by weight so the most likely case will be checked first. 7987 std::sort(W.FirstCluster, W.LastCluster + 1, 7988 [](const CaseCluster &a, const CaseCluster &b) { 7989 return a.Weight > b.Weight; 7990 }); 7991 7992 // Rearrange the case blocks so that the last one falls through if possible 7993 // without without changing the order of weights. 7994 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7995 --I; 7996 if (I->Weight > W.LastCluster->Weight) 7997 break; 7998 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7999 std::swap(*I, *W.LastCluster); 8000 break; 8001 } 8002 } 8003 } 8004 8005 // Compute total weight. 8006 uint32_t UnhandledWeights = 0; 8007 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8008 UnhandledWeights += I->Weight; 8009 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8010 } 8011 8012 MachineBasicBlock *CurMBB = W.MBB; 8013 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8014 MachineBasicBlock *Fallthrough; 8015 if (I == W.LastCluster) { 8016 // For the last cluster, fall through to the default destination. 8017 Fallthrough = DefaultMBB; 8018 } else { 8019 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8020 CurMF->insert(BBI, Fallthrough); 8021 // Put Cond in a virtual register to make it available from the new blocks. 8022 ExportFromCurrentBlock(Cond); 8023 } 8024 8025 switch (I->Kind) { 8026 case CC_JumpTable: { 8027 // FIXME: Optimize away range check based on pivot comparisons. 8028 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8029 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8030 8031 // The jump block hasn't been inserted yet; insert it here. 8032 MachineBasicBlock *JumpMBB = JT->MBB; 8033 CurMF->insert(BBI, JumpMBB); 8034 addSuccessorWithWeight(CurMBB, Fallthrough); 8035 addSuccessorWithWeight(CurMBB, JumpMBB); 8036 8037 // The jump table header will be inserted in our current block, do the 8038 // range check, and fall through to our fallthrough block. 8039 JTH->HeaderBB = CurMBB; 8040 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8041 8042 // If we're in the right place, emit the jump table header right now. 8043 if (CurMBB == SwitchMBB) { 8044 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8045 JTH->Emitted = true; 8046 } 8047 break; 8048 } 8049 case CC_BitTests: { 8050 // FIXME: Optimize away range check based on pivot comparisons. 8051 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8052 8053 // The bit test blocks haven't been inserted yet; insert them here. 8054 for (BitTestCase &BTC : BTB->Cases) 8055 CurMF->insert(BBI, BTC.ThisBB); 8056 8057 // Fill in fields of the BitTestBlock. 8058 BTB->Parent = CurMBB; 8059 BTB->Default = Fallthrough; 8060 8061 // If we're in the right place, emit the bit test header header right now. 8062 if (CurMBB ==SwitchMBB) { 8063 visitBitTestHeader(*BTB, SwitchMBB); 8064 BTB->Emitted = true; 8065 } 8066 break; 8067 } 8068 case CC_Range: { 8069 const Value *RHS, *LHS, *MHS; 8070 ISD::CondCode CC; 8071 if (I->Low == I->High) { 8072 // Check Cond == I->Low. 8073 CC = ISD::SETEQ; 8074 LHS = Cond; 8075 RHS=I->Low; 8076 MHS = nullptr; 8077 } else { 8078 // Check I->Low <= Cond <= I->High. 8079 CC = ISD::SETLE; 8080 LHS = I->Low; 8081 MHS = Cond; 8082 RHS = I->High; 8083 } 8084 8085 // The false weight is the sum of all unhandled cases. 8086 UnhandledWeights -= I->Weight; 8087 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8088 UnhandledWeights); 8089 8090 if (CurMBB == SwitchMBB) 8091 visitSwitchCase(CB, SwitchMBB); 8092 else 8093 SwitchCases.push_back(CB); 8094 8095 break; 8096 } 8097 } 8098 CurMBB = Fallthrough; 8099 } 8100 } 8101 8102 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8103 CaseClusterIt First, 8104 CaseClusterIt Last) { 8105 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8106 if (X.Weight != CC.Weight) 8107 return X.Weight > CC.Weight; 8108 8109 // Ties are broken by comparing the case value. 8110 return X.Low->getValue().slt(CC.Low->getValue()); 8111 }); 8112 } 8113 8114 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8115 const SwitchWorkListItem &W, 8116 Value *Cond, 8117 MachineBasicBlock *SwitchMBB) { 8118 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8119 "Clusters not sorted?"); 8120 8121 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8122 8123 // Balance the tree based on branch weights to create a near-optimal (in terms 8124 // of search time given key frequency) binary search tree. See e.g. Kurt 8125 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8126 CaseClusterIt LastLeft = W.FirstCluster; 8127 CaseClusterIt FirstRight = W.LastCluster; 8128 uint32_t LeftWeight = LastLeft->Weight; 8129 uint32_t RightWeight = FirstRight->Weight; 8130 8131 // Move LastLeft and FirstRight towards each other from opposite directions to 8132 // find a partitioning of the clusters which balances the weight on both 8133 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8134 // taken to ensure 0-weight nodes are distributed evenly. 8135 unsigned I = 0; 8136 while (LastLeft + 1 < FirstRight) { 8137 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8138 LeftWeight += (++LastLeft)->Weight; 8139 else 8140 RightWeight += (--FirstRight)->Weight; 8141 I++; 8142 } 8143 8144 for (;;) { 8145 // Our binary search tree differs from a typical BST in that ours can have up 8146 // to three values in each leaf. The pivot selection above doesn't take that 8147 // into account, which means the tree might require more nodes and be less 8148 // efficient. We compensate for this here. 8149 8150 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8151 unsigned NumRight = W.LastCluster - FirstRight + 1; 8152 8153 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8154 // If one side has less than 3 clusters, and the other has more than 3, 8155 // consider taking a cluster from the other side. 8156 8157 if (NumLeft < NumRight) { 8158 // Consider moving the first cluster on the right to the left side. 8159 CaseCluster &CC = *FirstRight; 8160 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8161 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8162 if (LeftSideRank <= RightSideRank) { 8163 // Moving the cluster to the left does not demote it. 8164 ++LastLeft; 8165 ++FirstRight; 8166 continue; 8167 } 8168 } else { 8169 assert(NumRight < NumLeft); 8170 // Consider moving the last element on the left to the right side. 8171 CaseCluster &CC = *LastLeft; 8172 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8173 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8174 if (RightSideRank <= LeftSideRank) { 8175 // Moving the cluster to the right does not demot it. 8176 --LastLeft; 8177 --FirstRight; 8178 continue; 8179 } 8180 } 8181 } 8182 break; 8183 } 8184 8185 assert(LastLeft + 1 == FirstRight); 8186 assert(LastLeft >= W.FirstCluster); 8187 assert(FirstRight <= W.LastCluster); 8188 8189 // Use the first element on the right as pivot since we will make less-than 8190 // comparisons against it. 8191 CaseClusterIt PivotCluster = FirstRight; 8192 assert(PivotCluster > W.FirstCluster); 8193 assert(PivotCluster <= W.LastCluster); 8194 8195 CaseClusterIt FirstLeft = W.FirstCluster; 8196 CaseClusterIt LastRight = W.LastCluster; 8197 8198 const ConstantInt *Pivot = PivotCluster->Low; 8199 8200 // New blocks will be inserted immediately after the current one. 8201 MachineFunction::iterator BBI = W.MBB; 8202 ++BBI; 8203 8204 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8205 // we can branch to its destination directly if it's squeezed exactly in 8206 // between the known lower bound and Pivot - 1. 8207 MachineBasicBlock *LeftMBB; 8208 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8209 FirstLeft->Low == W.GE && 8210 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8211 LeftMBB = FirstLeft->MBB; 8212 } else { 8213 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8214 FuncInfo.MF->insert(BBI, LeftMBB); 8215 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8216 // Put Cond in a virtual register to make it available from the new blocks. 8217 ExportFromCurrentBlock(Cond); 8218 } 8219 8220 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8221 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8222 // directly if RHS.High equals the current upper bound. 8223 MachineBasicBlock *RightMBB; 8224 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8225 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8226 RightMBB = FirstRight->MBB; 8227 } else { 8228 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8229 FuncInfo.MF->insert(BBI, RightMBB); 8230 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8231 // Put Cond in a virtual register to make it available from the new blocks. 8232 ExportFromCurrentBlock(Cond); 8233 } 8234 8235 // Create the CaseBlock record that will be used to lower the branch. 8236 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8237 LeftWeight, RightWeight); 8238 8239 if (W.MBB == SwitchMBB) 8240 visitSwitchCase(CB, SwitchMBB); 8241 else 8242 SwitchCases.push_back(CB); 8243 } 8244 8245 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8246 // Extract cases from the switch. 8247 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8248 CaseClusterVector Clusters; 8249 Clusters.reserve(SI.getNumCases()); 8250 for (auto I : SI.cases()) { 8251 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8252 const ConstantInt *CaseVal = I.getCaseValue(); 8253 uint32_t Weight = 8254 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8255 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8256 } 8257 8258 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8259 8260 // Cluster adjacent cases with the same destination. We do this at all 8261 // optimization levels because it's cheap to do and will make codegen faster 8262 // if there are many clusters. 8263 sortAndRangeify(Clusters); 8264 8265 if (TM.getOptLevel() != CodeGenOpt::None) { 8266 // Replace an unreachable default with the most popular destination. 8267 // FIXME: Exploit unreachable default more aggressively. 8268 bool UnreachableDefault = 8269 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8270 if (UnreachableDefault && !Clusters.empty()) { 8271 DenseMap<const BasicBlock *, unsigned> Popularity; 8272 unsigned MaxPop = 0; 8273 const BasicBlock *MaxBB = nullptr; 8274 for (auto I : SI.cases()) { 8275 const BasicBlock *BB = I.getCaseSuccessor(); 8276 if (++Popularity[BB] > MaxPop) { 8277 MaxPop = Popularity[BB]; 8278 MaxBB = BB; 8279 } 8280 } 8281 // Set new default. 8282 assert(MaxPop > 0 && MaxBB); 8283 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8284 8285 // Remove cases that were pointing to the destination that is now the 8286 // default. 8287 CaseClusterVector New; 8288 New.reserve(Clusters.size()); 8289 for (CaseCluster &CC : Clusters) { 8290 if (CC.MBB != DefaultMBB) 8291 New.push_back(CC); 8292 } 8293 Clusters = std::move(New); 8294 } 8295 } 8296 8297 // If there is only the default destination, jump there directly. 8298 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8299 if (Clusters.empty()) { 8300 SwitchMBB->addSuccessor(DefaultMBB); 8301 if (DefaultMBB != NextBlock(SwitchMBB)) { 8302 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8303 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8304 } 8305 return; 8306 } 8307 8308 findJumpTables(Clusters, &SI, DefaultMBB); 8309 findBitTestClusters(Clusters, &SI); 8310 8311 DEBUG({ 8312 dbgs() << "Case clusters: "; 8313 for (const CaseCluster &C : Clusters) { 8314 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8315 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8316 8317 C.Low->getValue().print(dbgs(), true); 8318 if (C.Low != C.High) { 8319 dbgs() << '-'; 8320 C.High->getValue().print(dbgs(), true); 8321 } 8322 dbgs() << ' '; 8323 } 8324 dbgs() << '\n'; 8325 }); 8326 8327 assert(!Clusters.empty()); 8328 SwitchWorkList WorkList; 8329 CaseClusterIt First = Clusters.begin(); 8330 CaseClusterIt Last = Clusters.end() - 1; 8331 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8332 8333 while (!WorkList.empty()) { 8334 SwitchWorkListItem W = WorkList.back(); 8335 WorkList.pop_back(); 8336 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8337 8338 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8339 // For optimized builds, lower large range as a balanced binary tree. 8340 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8341 continue; 8342 } 8343 8344 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8345 } 8346 } 8347