1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 958 false, Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 /// getCopyFromRegs - If there was virtual register allocated for the value V 968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 970 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 971 SDValue Result; 972 973 if (It != FuncInfo.ValueMap.end()) { 974 unsigned InReg = It->second; 975 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 976 DAG.getDataLayout(), InReg, Ty); 977 SDValue Chain = DAG.getEntryNode(); 978 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 979 resolveDanglingDebugInfo(V, Result); 980 } 981 982 return Result; 983 } 984 985 /// getValue - Return an SDValue for the given Value. 986 SDValue SelectionDAGBuilder::getValue(const Value *V) { 987 // If we already have an SDValue for this value, use it. It's important 988 // to do this first, so that we don't create a CopyFromReg if we already 989 // have a regular SDValue. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // If there's a virtual register allocated and initialized for this 994 // value, use it. 995 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 996 if (copyFromReg.getNode()) { 997 return copyFromReg; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 // Return true if SDValue exists for the given Value 1008 bool SelectionDAGBuilder::findValue(const Value *V) const { 1009 return (NodeMap.find(V) != NodeMap.end()) || 1010 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1011 } 1012 1013 /// getNonRegisterValue - Return an SDValue for the given Value, but 1014 /// don't look in FuncInfo.ValueMap for a virtual register. 1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) { 1019 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1020 // Remove the debug location from the node as the node is about to be used 1021 // in a location which may differ from the original debug location. This 1022 // is relevant to Constant and ConstantFP nodes because they can appear 1023 // as constant expressions inside PHI nodes. 1024 N->setDebugLoc(DebugLoc()); 1025 } 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1037 /// Create an SDValue for the given value. 1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1040 1041 if (const Constant *C = dyn_cast<Constant>(V)) { 1042 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1043 1044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1045 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1046 1047 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1048 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1049 1050 if (isa<ConstantPointerNull>(C)) { 1051 unsigned AS = V->getType()->getPointerAddressSpace(); 1052 return DAG.getConstant(0, getCurSDLoc(), 1053 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1054 } 1055 1056 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1057 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1058 1059 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1060 return DAG.getUNDEF(VT); 1061 1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1063 visit(CE->getOpcode(), *CE); 1064 SDValue N1 = NodeMap[V]; 1065 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1066 return N1; 1067 } 1068 1069 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1070 SmallVector<SDValue, 4> Constants; 1071 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1072 OI != OE; ++OI) { 1073 SDNode *Val = getValue(*OI).getNode(); 1074 // If the operand is an empty aggregate, there are no values. 1075 if (!Val) continue; 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Constants.push_back(SDValue(Val, i)); 1080 } 1081 1082 return DAG.getMergeValues(Constants, getCurSDLoc()); 1083 } 1084 1085 if (const ConstantDataSequential *CDS = 1086 dyn_cast<ConstantDataSequential>(C)) { 1087 SmallVector<SDValue, 4> Ops; 1088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1089 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1090 // Add each leaf value from the operand to the Constants list 1091 // to form a flattened list of all the values. 1092 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1093 Ops.push_back(SDValue(Val, i)); 1094 } 1095 1096 if (isa<ArrayType>(CDS->getType())) 1097 return DAG.getMergeValues(Ops, getCurSDLoc()); 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1099 VT, Ops); 1100 } 1101 1102 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1103 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1104 "Unknown struct or array constant!"); 1105 1106 SmallVector<EVT, 4> ValueVTs; 1107 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1108 unsigned NumElts = ValueVTs.size(); 1109 if (NumElts == 0) 1110 return SDValue(); // empty struct 1111 SmallVector<SDValue, 4> Constants(NumElts); 1112 for (unsigned i = 0; i != NumElts; ++i) { 1113 EVT EltVT = ValueVTs[i]; 1114 if (isa<UndefValue>(C)) 1115 Constants[i] = DAG.getUNDEF(EltVT); 1116 else if (EltVT.isFloatingPoint()) 1117 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1118 else 1119 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1120 } 1121 1122 return DAG.getMergeValues(Constants, getCurSDLoc()); 1123 } 1124 1125 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1126 return DAG.getBlockAddress(BA, VT); 1127 1128 VectorType *VecTy = cast<VectorType>(V->getType()); 1129 unsigned NumElements = VecTy->getNumElements(); 1130 1131 // Now that we know the number and type of the elements, get that number of 1132 // elements into the Ops array based on what kind of constant it is. 1133 SmallVector<SDValue, 16> Ops; 1134 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1135 for (unsigned i = 0; i != NumElements; ++i) 1136 Ops.push_back(getValue(CV->getOperand(i))); 1137 } else { 1138 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1139 EVT EltVT = 1140 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1141 1142 SDValue Op; 1143 if (EltVT.isFloatingPoint()) 1144 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 Ops.assign(NumElements, Op); 1148 } 1149 1150 // Create a BUILD_VECTOR node. 1151 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1152 } 1153 1154 // If this is a static alloca, generate it as the frameindex instead of 1155 // computation. 1156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 DenseMap<const AllocaInst*, int>::iterator SI = 1158 FuncInfo.StaticAllocaMap.find(AI); 1159 if (SI != FuncInfo.StaticAllocaMap.end()) 1160 return DAG.getFrameIndex(SI->second, 1161 TLI.getPointerTy(DAG.getDataLayout())); 1162 } 1163 1164 // If this is an instruction which fast-isel has deferred, select it now. 1165 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1166 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1167 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1168 Inst->getType()); 1169 SDValue Chain = DAG.getEntryNode(); 1170 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1171 } 1172 1173 llvm_unreachable("Can't get register for value!"); 1174 } 1175 1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1177 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1178 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1179 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1180 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1181 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1182 if (IsMSVCCXX || IsCoreCLR) 1183 CatchPadMBB->setIsEHFuncletEntry(); 1184 1185 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1189 // Update machine-CFG edge. 1190 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1191 FuncInfo.MBB->addSuccessor(TargetMBB); 1192 1193 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1194 bool IsSEH = isAsynchronousEHPersonality(Pers); 1195 if (IsSEH) { 1196 // If this is not a fall-through branch or optimizations are switched off, 1197 // emit the branch. 1198 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1199 TM.getOptLevel() == CodeGenOpt::None) 1200 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1201 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1202 return; 1203 } 1204 1205 // Figure out the funclet membership for the catchret's successor. 1206 // This will be used by the FuncletLayout pass to determine how to order the 1207 // BB's. 1208 // A 'catchret' returns to the outer scope's color. 1209 Value *ParentPad = I.getParentPad(); 1210 const BasicBlock *SuccessorColor; 1211 if (isa<ConstantTokenNone>(ParentPad)) 1212 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1213 else 1214 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1215 assert(SuccessorColor && "No parent funclet for catchret!"); 1216 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1217 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1218 1219 // Create the terminator node. 1220 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1221 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1222 DAG.getBasicBlock(SuccessorColorMBB)); 1223 DAG.setRoot(Ret); 1224 } 1225 1226 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1227 // Don't emit any special code for the cleanuppad instruction. It just marks 1228 // the start of a funclet. 1229 FuncInfo.MBB->setIsEHFuncletEntry(); 1230 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1231 } 1232 1233 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1234 /// many places it could ultimately go. In the IR, we have a single unwind 1235 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1236 /// This function skips over imaginary basic blocks that hold catchswitch 1237 /// instructions, and finds all the "real" machine 1238 /// basic block destinations. As those destinations may not be successors of 1239 /// EHPadBB, here we also calculate the edge probability to those destinations. 1240 /// The passed-in Prob is the edge probability to EHPadBB. 1241 static void findUnwindDestinations( 1242 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1243 BranchProbability Prob, 1244 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1245 &UnwindDests) { 1246 EHPersonality Personality = 1247 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1248 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1249 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1250 1251 while (EHPadBB) { 1252 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1253 BasicBlock *NewEHPadBB = nullptr; 1254 if (isa<LandingPadInst>(Pad)) { 1255 // Stop on landingpads. They are not funclets. 1256 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1257 break; 1258 } else if (isa<CleanupPadInst>(Pad)) { 1259 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1260 // personalities. 1261 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1262 UnwindDests.back().first->setIsEHFuncletEntry(); 1263 break; 1264 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1265 // Add the catchpad handlers to the possible destinations. 1266 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1267 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1268 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1269 if (IsMSVCCXX || IsCoreCLR) 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 } 1272 NewEHPadBB = CatchSwitch->getUnwindDest(); 1273 } else { 1274 continue; 1275 } 1276 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (BPI && NewEHPadBB) 1279 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1280 EHPadBB = NewEHPadBB; 1281 } 1282 } 1283 1284 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1285 // Update successor info. 1286 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1287 auto UnwindDest = I.getUnwindDest(); 1288 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1289 BranchProbability UnwindDestProb = 1290 (BPI && UnwindDest) 1291 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1292 : BranchProbability::getZero(); 1293 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1294 for (auto &UnwindDest : UnwindDests) { 1295 UnwindDest.first->setIsEHPad(); 1296 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1297 } 1298 FuncInfo.MBB->normalizeSuccProbs(); 1299 1300 // Create the terminator node. 1301 SDValue Ret = 1302 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1303 DAG.setRoot(Ret); 1304 } 1305 1306 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1307 report_fatal_error("visitCatchSwitch not yet implemented!"); 1308 } 1309 1310 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1312 auto &DL = DAG.getDataLayout(); 1313 SDValue Chain = getControlRoot(); 1314 SmallVector<ISD::OutputArg, 8> Outs; 1315 SmallVector<SDValue, 8> OutVals; 1316 1317 if (!FuncInfo.CanLowerReturn) { 1318 unsigned DemoteReg = FuncInfo.DemoteRegister; 1319 const Function *F = I.getParent()->getParent(); 1320 1321 // Emit a store of the return value through the virtual register. 1322 // Leave Outs empty so that LowerReturn won't try to load return 1323 // registers the usual way. 1324 SmallVector<EVT, 1> PtrValueVTs; 1325 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1326 PtrValueVTs); 1327 1328 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1329 DemoteReg, PtrValueVTs[0]); 1330 SDValue RetOp = getValue(I.getOperand(0)); 1331 1332 SmallVector<EVT, 4> ValueVTs; 1333 SmallVector<uint64_t, 4> Offsets; 1334 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1335 unsigned NumValues = ValueVTs.size(); 1336 1337 // An aggregate return value cannot wrap around the address space, so 1338 // offsets to its parts don't wrap either. 1339 SDNodeFlags Flags; 1340 Flags.setNoUnsignedWrap(true); 1341 1342 SmallVector<SDValue, 4> Chains(NumValues); 1343 for (unsigned i = 0; i != NumValues; ++i) { 1344 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1345 RetPtr.getValueType(), RetPtr, 1346 DAG.getIntPtrConstant(Offsets[i], 1347 getCurSDLoc()), 1348 &Flags); 1349 Chains[i] = 1350 DAG.getStore(Chain, getCurSDLoc(), 1351 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1352 // FIXME: better loc info would be nice. 1353 Add, MachinePointerInfo(), false, false, 0); 1354 } 1355 1356 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1357 MVT::Other, Chains); 1358 } else if (I.getNumOperands() != 0) { 1359 SmallVector<EVT, 4> ValueVTs; 1360 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1361 unsigned NumValues = ValueVTs.size(); 1362 if (NumValues) { 1363 SDValue RetOp = getValue(I.getOperand(0)); 1364 1365 const Function *F = I.getParent()->getParent(); 1366 1367 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1368 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1369 Attribute::SExt)) 1370 ExtendKind = ISD::SIGN_EXTEND; 1371 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::ZExt)) 1373 ExtendKind = ISD::ZERO_EXTEND; 1374 1375 LLVMContext &Context = F->getContext(); 1376 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1377 Attribute::InReg); 1378 1379 for (unsigned j = 0; j != NumValues; ++j) { 1380 EVT VT = ValueVTs[j]; 1381 1382 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1383 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1384 1385 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1386 MVT PartVT = TLI.getRegisterType(Context, VT); 1387 SmallVector<SDValue, 4> Parts(NumParts); 1388 getCopyToParts(DAG, getCurSDLoc(), 1389 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1390 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1391 1392 // 'inreg' on function refers to return value 1393 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1394 if (RetInReg) 1395 Flags.setInReg(); 1396 1397 // Propagate extension type if any 1398 if (ExtendKind == ISD::SIGN_EXTEND) 1399 Flags.setSExt(); 1400 else if (ExtendKind == ISD::ZERO_EXTEND) 1401 Flags.setZExt(); 1402 1403 for (unsigned i = 0; i < NumParts; ++i) { 1404 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1405 VT, /*isfixed=*/true, 0, 0)); 1406 OutVals.push_back(Parts[i]); 1407 } 1408 } 1409 } 1410 } 1411 1412 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1413 CallingConv::ID CallConv = 1414 DAG.getMachineFunction().getFunction()->getCallingConv(); 1415 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1416 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1417 1418 // Verify that the target's LowerReturn behaved as expected. 1419 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1420 "LowerReturn didn't return a valid chain!"); 1421 1422 // Update the DAG with the new chain value resulting from return lowering. 1423 DAG.setRoot(Chain); 1424 } 1425 1426 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1427 /// created for it, emit nodes to copy the value into the virtual 1428 /// registers. 1429 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1430 // Skip empty types 1431 if (V->getType()->isEmptyTy()) 1432 return; 1433 1434 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1435 if (VMI != FuncInfo.ValueMap.end()) { 1436 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1437 CopyValueToVirtualRegister(V, VMI->second); 1438 } 1439 } 1440 1441 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1442 /// the current basic block, add it to ValueMap now so that we'll get a 1443 /// CopyTo/FromReg. 1444 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1445 // No need to export constants. 1446 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1447 1448 // Already exported? 1449 if (FuncInfo.isExportedInst(V)) return; 1450 1451 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1452 CopyValueToVirtualRegister(V, Reg); 1453 } 1454 1455 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1456 const BasicBlock *FromBB) { 1457 // The operands of the setcc have to be in this block. We don't know 1458 // how to export them from some other block. 1459 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1460 // Can export from current BB. 1461 if (VI->getParent() == FromBB) 1462 return true; 1463 1464 // Is already exported, noop. 1465 return FuncInfo.isExportedInst(V); 1466 } 1467 1468 // If this is an argument, we can export it if the BB is the entry block or 1469 // if it is already exported. 1470 if (isa<Argument>(V)) { 1471 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1472 return true; 1473 1474 // Otherwise, can only export this if it is already exported. 1475 return FuncInfo.isExportedInst(V); 1476 } 1477 1478 // Otherwise, constants can always be exported. 1479 return true; 1480 } 1481 1482 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1483 BranchProbability 1484 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1485 const MachineBasicBlock *Dst) const { 1486 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1487 const BasicBlock *SrcBB = Src->getBasicBlock(); 1488 const BasicBlock *DstBB = Dst->getBasicBlock(); 1489 if (!BPI) { 1490 // If BPI is not available, set the default probability as 1 / N, where N is 1491 // the number of successors. 1492 auto SuccSize = std::max<uint32_t>( 1493 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1494 return BranchProbability(1, SuccSize); 1495 } 1496 return BPI->getEdgeProbability(SrcBB, DstBB); 1497 } 1498 1499 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1500 MachineBasicBlock *Dst, 1501 BranchProbability Prob) { 1502 if (!FuncInfo.BPI) 1503 Src->addSuccessorWithoutProb(Dst); 1504 else { 1505 if (Prob.isUnknown()) 1506 Prob = getEdgeProbability(Src, Dst); 1507 Src->addSuccessor(Dst, Prob); 1508 } 1509 } 1510 1511 static bool InBlock(const Value *V, const BasicBlock *BB) { 1512 if (const Instruction *I = dyn_cast<Instruction>(V)) 1513 return I->getParent() == BB; 1514 return true; 1515 } 1516 1517 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1518 /// This function emits a branch and is used at the leaves of an OR or an 1519 /// AND operator tree. 1520 /// 1521 void 1522 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1523 MachineBasicBlock *TBB, 1524 MachineBasicBlock *FBB, 1525 MachineBasicBlock *CurBB, 1526 MachineBasicBlock *SwitchBB, 1527 BranchProbability TProb, 1528 BranchProbability FProb) { 1529 const BasicBlock *BB = CurBB->getBasicBlock(); 1530 1531 // If the leaf of the tree is a comparison, merge the condition into 1532 // the caseblock. 1533 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1534 // The operands of the cmp have to be in this block. We don't know 1535 // how to export them from some other block. If this is the first block 1536 // of the sequence, no exporting is needed. 1537 if (CurBB == SwitchBB || 1538 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1539 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1540 ISD::CondCode Condition; 1541 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1542 Condition = getICmpCondCode(IC->getPredicate()); 1543 } else { 1544 const FCmpInst *FC = cast<FCmpInst>(Cond); 1545 Condition = getFCmpCondCode(FC->getPredicate()); 1546 if (TM.Options.NoNaNsFPMath) 1547 Condition = getFCmpCodeWithoutNaN(Condition); 1548 } 1549 1550 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1551 TBB, FBB, CurBB, TProb, FProb); 1552 SwitchCases.push_back(CB); 1553 return; 1554 } 1555 } 1556 1557 // Create a CaseBlock record representing this branch. 1558 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1559 nullptr, TBB, FBB, CurBB, TProb, FProb); 1560 SwitchCases.push_back(CB); 1561 } 1562 1563 /// FindMergedConditions - If Cond is an expression like 1564 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1565 MachineBasicBlock *TBB, 1566 MachineBasicBlock *FBB, 1567 MachineBasicBlock *CurBB, 1568 MachineBasicBlock *SwitchBB, 1569 Instruction::BinaryOps Opc, 1570 BranchProbability TProb, 1571 BranchProbability FProb) { 1572 // If this node is not part of the or/and tree, emit it as a branch. 1573 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1574 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1575 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1576 BOp->getParent() != CurBB->getBasicBlock() || 1577 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1578 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1579 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1580 TProb, FProb); 1581 return; 1582 } 1583 1584 // Create TmpBB after CurBB. 1585 MachineFunction::iterator BBI(CurBB); 1586 MachineFunction &MF = DAG.getMachineFunction(); 1587 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1588 CurBB->getParent()->insert(++BBI, TmpBB); 1589 1590 if (Opc == Instruction::Or) { 1591 // Codegen X | Y as: 1592 // BB1: 1593 // jmp_if_X TBB 1594 // jmp TmpBB 1595 // TmpBB: 1596 // jmp_if_Y TBB 1597 // jmp FBB 1598 // 1599 1600 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1601 // The requirement is that 1602 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1603 // = TrueProb for original BB. 1604 // Assuming the original probabilities are A and B, one choice is to set 1605 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1606 // A/(1+B) and 2B/(1+B). This choice assumes that 1607 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1608 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1609 // TmpBB, but the math is more complicated. 1610 1611 auto NewTrueProb = TProb / 2; 1612 auto NewFalseProb = TProb / 2 + FProb; 1613 // Emit the LHS condition. 1614 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1615 NewTrueProb, NewFalseProb); 1616 1617 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1618 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1619 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1620 // Emit the RHS condition into TmpBB. 1621 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1622 Probs[0], Probs[1]); 1623 } else { 1624 assert(Opc == Instruction::And && "Unknown merge op!"); 1625 // Codegen X & Y as: 1626 // BB1: 1627 // jmp_if_X TmpBB 1628 // jmp FBB 1629 // TmpBB: 1630 // jmp_if_Y TBB 1631 // jmp FBB 1632 // 1633 // This requires creation of TmpBB after CurBB. 1634 1635 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1636 // The requirement is that 1637 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1638 // = FalseProb for original BB. 1639 // Assuming the original probabilities are A and B, one choice is to set 1640 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1641 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1642 // TrueProb for BB1 * FalseProb for TmpBB. 1643 1644 auto NewTrueProb = TProb + FProb / 2; 1645 auto NewFalseProb = FProb / 2; 1646 // Emit the LHS condition. 1647 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1648 NewTrueProb, NewFalseProb); 1649 1650 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1651 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1652 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1653 // Emit the RHS condition into TmpBB. 1654 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1655 Probs[0], Probs[1]); 1656 } 1657 } 1658 1659 /// If the set of cases should be emitted as a series of branches, return true. 1660 /// If we should emit this as a bunch of and/or'd together conditions, return 1661 /// false. 1662 bool 1663 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1664 if (Cases.size() != 2) return true; 1665 1666 // If this is two comparisons of the same values or'd or and'd together, they 1667 // will get folded into a single comparison, so don't emit two blocks. 1668 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1669 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1670 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1671 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1672 return false; 1673 } 1674 1675 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1676 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1677 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1678 Cases[0].CC == Cases[1].CC && 1679 isa<Constant>(Cases[0].CmpRHS) && 1680 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1681 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1682 return false; 1683 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1684 return false; 1685 } 1686 1687 return true; 1688 } 1689 1690 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1691 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1692 1693 // Update machine-CFG edges. 1694 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1695 1696 if (I.isUnconditional()) { 1697 // Update machine-CFG edges. 1698 BrMBB->addSuccessor(Succ0MBB); 1699 1700 // If this is not a fall-through branch or optimizations are switched off, 1701 // emit the branch. 1702 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1704 MVT::Other, getControlRoot(), 1705 DAG.getBasicBlock(Succ0MBB))); 1706 1707 return; 1708 } 1709 1710 // If this condition is one of the special cases we handle, do special stuff 1711 // now. 1712 const Value *CondVal = I.getCondition(); 1713 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1714 1715 // If this is a series of conditions that are or'd or and'd together, emit 1716 // this as a sequence of branches instead of setcc's with and/or operations. 1717 // As long as jumps are not expensive, this should improve performance. 1718 // For example, instead of something like: 1719 // cmp A, B 1720 // C = seteq 1721 // cmp D, E 1722 // F = setle 1723 // or C, F 1724 // jnz foo 1725 // Emit: 1726 // cmp A, B 1727 // je foo 1728 // cmp D, E 1729 // jle foo 1730 // 1731 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1732 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1733 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1734 !I.getMetadata(LLVMContext::MD_unpredictable) && 1735 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1736 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1737 Opcode, 1738 getEdgeProbability(BrMBB, Succ0MBB), 1739 getEdgeProbability(BrMBB, Succ1MBB)); 1740 // If the compares in later blocks need to use values not currently 1741 // exported from this block, export them now. This block should always 1742 // be the first entry. 1743 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1744 1745 // Allow some cases to be rejected. 1746 if (ShouldEmitAsBranches(SwitchCases)) { 1747 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1748 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1749 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1750 } 1751 1752 // Emit the branch for this block. 1753 visitSwitchCase(SwitchCases[0], BrMBB); 1754 SwitchCases.erase(SwitchCases.begin()); 1755 return; 1756 } 1757 1758 // Okay, we decided not to do this, remove any inserted MBB's and clear 1759 // SwitchCases. 1760 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1761 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1762 1763 SwitchCases.clear(); 1764 } 1765 } 1766 1767 // Create a CaseBlock record representing this branch. 1768 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1769 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1770 1771 // Use visitSwitchCase to actually insert the fast branch sequence for this 1772 // cond branch. 1773 visitSwitchCase(CB, BrMBB); 1774 } 1775 1776 /// visitSwitchCase - Emits the necessary code to represent a single node in 1777 /// the binary search tree resulting from lowering a switch instruction. 1778 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1779 MachineBasicBlock *SwitchBB) { 1780 SDValue Cond; 1781 SDValue CondLHS = getValue(CB.CmpLHS); 1782 SDLoc dl = getCurSDLoc(); 1783 1784 // Build the setcc now. 1785 if (!CB.CmpMHS) { 1786 // Fold "(X == true)" to X and "(X == false)" to !X to 1787 // handle common cases produced by branch lowering. 1788 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1789 CB.CC == ISD::SETEQ) 1790 Cond = CondLHS; 1791 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1792 CB.CC == ISD::SETEQ) { 1793 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1794 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1795 } else 1796 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1797 } else { 1798 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1799 1800 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1801 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1802 1803 SDValue CmpOp = getValue(CB.CmpMHS); 1804 EVT VT = CmpOp.getValueType(); 1805 1806 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1807 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1808 ISD::SETLE); 1809 } else { 1810 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1811 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1812 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1813 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1814 } 1815 } 1816 1817 // Update successor info 1818 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1819 // TrueBB and FalseBB are always different unless the incoming IR is 1820 // degenerate. This only happens when running llc on weird IR. 1821 if (CB.TrueBB != CB.FalseBB) 1822 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1823 SwitchBB->normalizeSuccProbs(); 1824 1825 // If the lhs block is the next block, invert the condition so that we can 1826 // fall through to the lhs instead of the rhs block. 1827 if (CB.TrueBB == NextBlock(SwitchBB)) { 1828 std::swap(CB.TrueBB, CB.FalseBB); 1829 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1830 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1831 } 1832 1833 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1834 MVT::Other, getControlRoot(), Cond, 1835 DAG.getBasicBlock(CB.TrueBB)); 1836 1837 // Insert the false branch. Do this even if it's a fall through branch, 1838 // this makes it easier to do DAG optimizations which require inverting 1839 // the branch condition. 1840 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1841 DAG.getBasicBlock(CB.FalseBB)); 1842 1843 DAG.setRoot(BrCond); 1844 } 1845 1846 /// visitJumpTable - Emit JumpTable node in the current MBB 1847 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1848 // Emit the code for the jump table 1849 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1850 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1851 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1852 JT.Reg, PTy); 1853 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1854 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1855 MVT::Other, Index.getValue(1), 1856 Table, Index); 1857 DAG.setRoot(BrJumpTable); 1858 } 1859 1860 /// visitJumpTableHeader - This function emits necessary code to produce index 1861 /// in the JumpTable from switch case. 1862 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1863 JumpTableHeader &JTH, 1864 MachineBasicBlock *SwitchBB) { 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // Subtract the lowest switch case value from the value being switched on and 1868 // conditional branch to default mbb if the result is greater than the 1869 // difference between smallest and largest cases. 1870 SDValue SwitchOp = getValue(JTH.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1873 DAG.getConstant(JTH.First, dl, VT)); 1874 1875 // The SDNode we just created, which holds the value being switched on minus 1876 // the smallest case value, needs to be copied to a virtual register so it 1877 // can be used as an index into the jump table in a subsequent basic block. 1878 // This value may be smaller or larger than the target's pointer type, and 1879 // therefore require extension or truncating. 1880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1881 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1882 1883 unsigned JumpTableReg = 1884 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1885 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1886 JumpTableReg, SwitchOp); 1887 JT.Reg = JumpTableReg; 1888 1889 // Emit the range check for the jump table, and branch to the default block 1890 // for the switch statement if the value being switched on exceeds the largest 1891 // case in the switch. 1892 SDValue CMP = DAG.getSetCC( 1893 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1896 1897 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1898 MVT::Other, CopyTo, CMP, 1899 DAG.getBasicBlock(JT.Default)); 1900 1901 // Avoid emitting unnecessary branches to the next block. 1902 if (JT.MBB != NextBlock(SwitchBB)) 1903 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1904 DAG.getBasicBlock(JT.MBB)); 1905 1906 DAG.setRoot(BrCond); 1907 } 1908 1909 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1910 /// tail spliced into a stack protector check success bb. 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1916 MachineBasicBlock *ParentBB) { 1917 1918 // First create the loads to the guard/stack slot for the comparison. 1919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1920 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1921 1922 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1923 int FI = MFI->getStackProtectorIndex(); 1924 1925 const Value *IRGuard = SPD.getGuard(); 1926 SDValue GuardPtr = getValue(IRGuard); 1927 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1928 1929 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1930 1931 SDValue Guard; 1932 SDLoc dl = getCurSDLoc(); 1933 1934 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1935 // guard value from the virtual register holding the value. Otherwise, emit a 1936 // volatile load to retrieve the stack guard value. 1937 unsigned GuardReg = SPD.getGuardReg(); 1938 1939 if (GuardReg && TLI.useLoadStackGuardNode()) 1940 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1941 PtrTy); 1942 else 1943 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1944 GuardPtr, MachinePointerInfo(IRGuard, 0), 1945 true, false, false, Align); 1946 1947 SDValue StackSlot = DAG.getLoad( 1948 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1949 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1950 false, false, Align); 1951 1952 // Perform the comparison via a subtract/getsetcc. 1953 EVT VT = Guard.getValueType(); 1954 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1955 1956 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1957 *DAG.getContext(), 1958 Sub.getValueType()), 1959 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1960 1961 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1962 // branch to failure MBB. 1963 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1964 MVT::Other, StackSlot.getOperand(0), 1965 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1966 // Otherwise branch to success MBB. 1967 SDValue Br = DAG.getNode(ISD::BR, dl, 1968 MVT::Other, BrCond, 1969 DAG.getBasicBlock(SPD.getSuccessMBB())); 1970 1971 DAG.setRoot(Br); 1972 } 1973 1974 /// Codegen the failure basic block for a stack protector check. 1975 /// 1976 /// A failure stack protector machine basic block consists simply of a call to 1977 /// __stack_chk_fail(). 1978 /// 1979 /// For a high level explanation of how this fits into the stack protector 1980 /// generation see the comment on the declaration of class 1981 /// StackProtectorDescriptor. 1982 void 1983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1985 SDValue Chain = 1986 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1987 None, false, getCurSDLoc(), false, false).second; 1988 DAG.setRoot(Chain); 1989 } 1990 1991 /// visitBitTestHeader - This function emits necessary code to produce value 1992 /// suitable for "bit tests" 1993 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1994 MachineBasicBlock *SwitchBB) { 1995 SDLoc dl = getCurSDLoc(); 1996 1997 // Subtract the minimum value 1998 SDValue SwitchOp = getValue(B.SValue); 1999 EVT VT = SwitchOp.getValueType(); 2000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2001 DAG.getConstant(B.First, dl, VT)); 2002 2003 // Check range 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 SDValue RangeCmp = DAG.getSetCC( 2006 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2007 Sub.getValueType()), 2008 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2009 2010 // Determine the type of the test operands. 2011 bool UsePtrType = false; 2012 if (!TLI.isTypeLegal(VT)) 2013 UsePtrType = true; 2014 else { 2015 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2016 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2017 // Switch table case range are encoded into series of masks. 2018 // Just use pointer type, it's guaranteed to fit. 2019 UsePtrType = true; 2020 break; 2021 } 2022 } 2023 if (UsePtrType) { 2024 VT = TLI.getPointerTy(DAG.getDataLayout()); 2025 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2026 } 2027 2028 B.RegVT = VT.getSimpleVT(); 2029 B.Reg = FuncInfo.CreateReg(B.RegVT); 2030 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2031 2032 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2033 2034 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2035 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2036 SwitchBB->normalizeSuccProbs(); 2037 2038 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2039 MVT::Other, CopyTo, RangeCmp, 2040 DAG.getBasicBlock(B.Default)); 2041 2042 // Avoid emitting unnecessary branches to the next block. 2043 if (MBB != NextBlock(SwitchBB)) 2044 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2045 DAG.getBasicBlock(MBB)); 2046 2047 DAG.setRoot(BrRange); 2048 } 2049 2050 /// visitBitTestCase - this function produces one "bit test" 2051 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2052 MachineBasicBlock* NextMBB, 2053 BranchProbability BranchProbToNext, 2054 unsigned Reg, 2055 BitTestCase &B, 2056 MachineBasicBlock *SwitchBB) { 2057 SDLoc dl = getCurSDLoc(); 2058 MVT VT = BB.RegVT; 2059 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2060 SDValue Cmp; 2061 unsigned PopCount = countPopulation(B.Mask); 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (PopCount == 1) { 2064 // Testing for a single bit; just compare the shift count with what it 2065 // would need to be to shift a 1 bit in that position. 2066 Cmp = DAG.getSetCC( 2067 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2068 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2069 ISD::SETEQ); 2070 } else if (PopCount == BB.Range) { 2071 // There is only one zero bit in the range, test for it directly. 2072 Cmp = DAG.getSetCC( 2073 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2074 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2075 ISD::SETNE); 2076 } else { 2077 // Make desired shift 2078 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2079 DAG.getConstant(1, dl, VT), ShiftOp); 2080 2081 // Emit bit tests and jumps 2082 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2083 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2084 Cmp = DAG.getSetCC( 2085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2086 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2087 } 2088 2089 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2090 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2091 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2092 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2093 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2094 // one as they are relative probabilities (and thus work more like weights), 2095 // and hence we need to normalize them to let the sum of them become one. 2096 SwitchBB->normalizeSuccProbs(); 2097 2098 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2099 MVT::Other, getControlRoot(), 2100 Cmp, DAG.getBasicBlock(B.TargetBB)); 2101 2102 // Avoid emitting unnecessary branches to the next block. 2103 if (NextMBB != NextBlock(SwitchBB)) 2104 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2105 DAG.getBasicBlock(NextMBB)); 2106 2107 DAG.setRoot(BrAnd); 2108 } 2109 2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2111 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2112 2113 // Retrieve successors. Look through artificial IR level blocks like 2114 // catchswitch for successors. 2115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2116 const BasicBlock *EHPadBB = I.getSuccessor(1); 2117 2118 const Value *Callee(I.getCalledValue()); 2119 const Function *Fn = dyn_cast<Function>(Callee); 2120 if (isa<InlineAsm>(Callee)) 2121 visitInlineAsm(&I); 2122 else if (Fn && Fn->isIntrinsic()) { 2123 switch (Fn->getIntrinsicID()) { 2124 default: 2125 llvm_unreachable("Cannot invoke this intrinsic"); 2126 case Intrinsic::donothing: 2127 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2128 break; 2129 case Intrinsic::experimental_patchpoint_void: 2130 case Intrinsic::experimental_patchpoint_i64: 2131 visitPatchpoint(&I, EHPadBB); 2132 break; 2133 case Intrinsic::experimental_gc_statepoint: 2134 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2135 break; 2136 } 2137 } else 2138 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2139 2140 // If the value of the invoke is used outside of its defining block, make it 2141 // available as a virtual register. 2142 // We already took care of the exported value for the statepoint instruction 2143 // during call to the LowerStatepoint. 2144 if (!isStatepoint(I)) { 2145 CopyToExportRegsIfNeeded(&I); 2146 } 2147 2148 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2150 BranchProbability EHPadBBProb = 2151 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2152 : BranchProbability::getZero(); 2153 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2154 2155 // Update successor info. 2156 addSuccessorWithProb(InvokeMBB, Return); 2157 for (auto &UnwindDest : UnwindDests) { 2158 UnwindDest.first->setIsEHPad(); 2159 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2160 } 2161 InvokeMBB->normalizeSuccProbs(); 2162 2163 // Drop into normal successor. 2164 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2165 MVT::Other, getControlRoot(), 2166 DAG.getBasicBlock(Return))); 2167 } 2168 2169 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2170 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2171 } 2172 2173 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2174 assert(FuncInfo.MBB->isEHPad() && 2175 "Call to landingpad not in landing pad!"); 2176 2177 MachineBasicBlock *MBB = FuncInfo.MBB; 2178 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2179 AddLandingPadInfo(LP, MMI, MBB); 2180 2181 // If there aren't registers to copy the values into (e.g., during SjLj 2182 // exceptions), then don't bother to create these DAG nodes. 2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2184 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2185 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2186 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2187 return; 2188 2189 // If landingpad's return type is token type, we don't create DAG nodes 2190 // for its exception pointer and selector value. The extraction of exception 2191 // pointer or selector value from token type landingpads is not currently 2192 // supported. 2193 if (LP.getType()->isTokenTy()) 2194 return; 2195 2196 SmallVector<EVT, 2> ValueVTs; 2197 SDLoc dl = getCurSDLoc(); 2198 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2199 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2200 2201 // Get the two live-in registers as SDValues. The physregs have already been 2202 // copied into virtual registers. 2203 SDValue Ops[2]; 2204 if (FuncInfo.ExceptionPointerVirtReg) { 2205 Ops[0] = DAG.getZExtOrTrunc( 2206 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2207 FuncInfo.ExceptionPointerVirtReg, 2208 TLI.getPointerTy(DAG.getDataLayout())), 2209 dl, ValueVTs[0]); 2210 } else { 2211 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2212 } 2213 Ops[1] = DAG.getZExtOrTrunc( 2214 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2215 FuncInfo.ExceptionSelectorVirtReg, 2216 TLI.getPointerTy(DAG.getDataLayout())), 2217 dl, ValueVTs[1]); 2218 2219 // Merge into one. 2220 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2221 DAG.getVTList(ValueVTs), Ops); 2222 setValue(&LP, Res); 2223 } 2224 2225 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2226 #ifndef NDEBUG 2227 for (const CaseCluster &CC : Clusters) 2228 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2229 #endif 2230 2231 std::sort(Clusters.begin(), Clusters.end(), 2232 [](const CaseCluster &a, const CaseCluster &b) { 2233 return a.Low->getValue().slt(b.Low->getValue()); 2234 }); 2235 2236 // Merge adjacent clusters with the same destination. 2237 const unsigned N = Clusters.size(); 2238 unsigned DstIndex = 0; 2239 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2240 CaseCluster &CC = Clusters[SrcIndex]; 2241 const ConstantInt *CaseVal = CC.Low; 2242 MachineBasicBlock *Succ = CC.MBB; 2243 2244 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2245 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2246 // If this case has the same successor and is a neighbour, merge it into 2247 // the previous cluster. 2248 Clusters[DstIndex - 1].High = CaseVal; 2249 Clusters[DstIndex - 1].Prob += CC.Prob; 2250 } else { 2251 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2252 sizeof(Clusters[SrcIndex])); 2253 } 2254 } 2255 Clusters.resize(DstIndex); 2256 } 2257 2258 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2259 MachineBasicBlock *Last) { 2260 // Update JTCases. 2261 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2262 if (JTCases[i].first.HeaderBB == First) 2263 JTCases[i].first.HeaderBB = Last; 2264 2265 // Update BitTestCases. 2266 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2267 if (BitTestCases[i].Parent == First) 2268 BitTestCases[i].Parent = Last; 2269 } 2270 2271 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2272 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2273 2274 // Update machine-CFG edges with unique successors. 2275 SmallSet<BasicBlock*, 32> Done; 2276 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2277 BasicBlock *BB = I.getSuccessor(i); 2278 bool Inserted = Done.insert(BB).second; 2279 if (!Inserted) 2280 continue; 2281 2282 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2283 addSuccessorWithProb(IndirectBrMBB, Succ); 2284 } 2285 IndirectBrMBB->normalizeSuccProbs(); 2286 2287 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2288 MVT::Other, getControlRoot(), 2289 getValue(I.getAddress()))); 2290 } 2291 2292 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2293 if (DAG.getTarget().Options.TrapUnreachable) 2294 DAG.setRoot( 2295 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2296 } 2297 2298 void SelectionDAGBuilder::visitFSub(const User &I) { 2299 // -0.0 - X --> fneg 2300 Type *Ty = I.getType(); 2301 if (isa<Constant>(I.getOperand(0)) && 2302 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2303 SDValue Op2 = getValue(I.getOperand(1)); 2304 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2305 Op2.getValueType(), Op2)); 2306 return; 2307 } 2308 2309 visitBinary(I, ISD::FSUB); 2310 } 2311 2312 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2313 SDValue Op1 = getValue(I.getOperand(0)); 2314 SDValue Op2 = getValue(I.getOperand(1)); 2315 2316 bool nuw = false; 2317 bool nsw = false; 2318 bool exact = false; 2319 FastMathFlags FMF; 2320 2321 if (const OverflowingBinaryOperator *OFBinOp = 2322 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2323 nuw = OFBinOp->hasNoUnsignedWrap(); 2324 nsw = OFBinOp->hasNoSignedWrap(); 2325 } 2326 if (const PossiblyExactOperator *ExactOp = 2327 dyn_cast<const PossiblyExactOperator>(&I)) 2328 exact = ExactOp->isExact(); 2329 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2330 FMF = FPOp->getFastMathFlags(); 2331 2332 SDNodeFlags Flags; 2333 Flags.setExact(exact); 2334 Flags.setNoSignedWrap(nsw); 2335 Flags.setNoUnsignedWrap(nuw); 2336 if (EnableFMFInDAG) { 2337 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2338 Flags.setNoInfs(FMF.noInfs()); 2339 Flags.setNoNaNs(FMF.noNaNs()); 2340 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2341 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2342 } 2343 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2344 Op1, Op2, &Flags); 2345 setValue(&I, BinNodeValue); 2346 } 2347 2348 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2349 SDValue Op1 = getValue(I.getOperand(0)); 2350 SDValue Op2 = getValue(I.getOperand(1)); 2351 2352 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2353 Op2.getValueType(), DAG.getDataLayout()); 2354 2355 // Coerce the shift amount to the right type if we can. 2356 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2357 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2358 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2359 SDLoc DL = getCurSDLoc(); 2360 2361 // If the operand is smaller than the shift count type, promote it. 2362 if (ShiftSize > Op2Size) 2363 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2364 2365 // If the operand is larger than the shift count type but the shift 2366 // count type has enough bits to represent any shift value, truncate 2367 // it now. This is a common case and it exposes the truncate to 2368 // optimization early. 2369 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2370 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2371 // Otherwise we'll need to temporarily settle for some other convenient 2372 // type. Type legalization will make adjustments once the shiftee is split. 2373 else 2374 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2375 } 2376 2377 bool nuw = false; 2378 bool nsw = false; 2379 bool exact = false; 2380 2381 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2382 2383 if (const OverflowingBinaryOperator *OFBinOp = 2384 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2385 nuw = OFBinOp->hasNoUnsignedWrap(); 2386 nsw = OFBinOp->hasNoSignedWrap(); 2387 } 2388 if (const PossiblyExactOperator *ExactOp = 2389 dyn_cast<const PossiblyExactOperator>(&I)) 2390 exact = ExactOp->isExact(); 2391 } 2392 SDNodeFlags Flags; 2393 Flags.setExact(exact); 2394 Flags.setNoSignedWrap(nsw); 2395 Flags.setNoUnsignedWrap(nuw); 2396 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2397 &Flags); 2398 setValue(&I, Res); 2399 } 2400 2401 void SelectionDAGBuilder::visitSDiv(const User &I) { 2402 SDValue Op1 = getValue(I.getOperand(0)); 2403 SDValue Op2 = getValue(I.getOperand(1)); 2404 2405 SDNodeFlags Flags; 2406 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2407 cast<PossiblyExactOperator>(&I)->isExact()); 2408 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2409 Op2, &Flags)); 2410 } 2411 2412 void SelectionDAGBuilder::visitICmp(const User &I) { 2413 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2414 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2415 predicate = IC->getPredicate(); 2416 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2417 predicate = ICmpInst::Predicate(IC->getPredicate()); 2418 SDValue Op1 = getValue(I.getOperand(0)); 2419 SDValue Op2 = getValue(I.getOperand(1)); 2420 ISD::CondCode Opcode = getICmpCondCode(predicate); 2421 2422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2423 I.getType()); 2424 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2425 } 2426 2427 void SelectionDAGBuilder::visitFCmp(const User &I) { 2428 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2429 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2430 predicate = FC->getPredicate(); 2431 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2432 predicate = FCmpInst::Predicate(FC->getPredicate()); 2433 SDValue Op1 = getValue(I.getOperand(0)); 2434 SDValue Op2 = getValue(I.getOperand(1)); 2435 ISD::CondCode Condition = getFCmpCondCode(predicate); 2436 2437 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2438 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2439 // further optimization, but currently FMF is only applicable to binary nodes. 2440 if (TM.Options.NoNaNsFPMath) 2441 Condition = getFCmpCodeWithoutNaN(Condition); 2442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2443 I.getType()); 2444 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2445 } 2446 2447 void SelectionDAGBuilder::visitSelect(const User &I) { 2448 SmallVector<EVT, 4> ValueVTs; 2449 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2450 ValueVTs); 2451 unsigned NumValues = ValueVTs.size(); 2452 if (NumValues == 0) return; 2453 2454 SmallVector<SDValue, 4> Values(NumValues); 2455 SDValue Cond = getValue(I.getOperand(0)); 2456 SDValue LHSVal = getValue(I.getOperand(1)); 2457 SDValue RHSVal = getValue(I.getOperand(2)); 2458 auto BaseOps = {Cond}; 2459 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2460 ISD::VSELECT : ISD::SELECT; 2461 2462 // Min/max matching is only viable if all output VTs are the same. 2463 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2464 EVT VT = ValueVTs[0]; 2465 LLVMContext &Ctx = *DAG.getContext(); 2466 auto &TLI = DAG.getTargetLoweringInfo(); 2467 2468 // We care about the legality of the operation after it has been type 2469 // legalized. 2470 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2471 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2472 VT = TLI.getTypeToTransformTo(Ctx, VT); 2473 2474 // If the vselect is legal, assume we want to leave this as a vector setcc + 2475 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2476 // min/max is legal on the scalar type. 2477 bool UseScalarMinMax = VT.isVector() && 2478 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2479 2480 Value *LHS, *RHS; 2481 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2482 ISD::NodeType Opc = ISD::DELETED_NODE; 2483 switch (SPR.Flavor) { 2484 case SPF_UMAX: Opc = ISD::UMAX; break; 2485 case SPF_UMIN: Opc = ISD::UMIN; break; 2486 case SPF_SMAX: Opc = ISD::SMAX; break; 2487 case SPF_SMIN: Opc = ISD::SMIN; break; 2488 case SPF_FMINNUM: 2489 switch (SPR.NaNBehavior) { 2490 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2491 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2492 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2493 case SPNB_RETURNS_ANY: { 2494 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2495 Opc = ISD::FMINNUM; 2496 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2497 Opc = ISD::FMINNAN; 2498 else if (UseScalarMinMax) 2499 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2500 ISD::FMINNUM : ISD::FMINNAN; 2501 break; 2502 } 2503 } 2504 break; 2505 case SPF_FMAXNUM: 2506 switch (SPR.NaNBehavior) { 2507 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2508 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2509 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2510 case SPNB_RETURNS_ANY: 2511 2512 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2513 Opc = ISD::FMAXNUM; 2514 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2515 Opc = ISD::FMAXNAN; 2516 else if (UseScalarMinMax) 2517 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2518 ISD::FMAXNUM : ISD::FMAXNAN; 2519 break; 2520 } 2521 break; 2522 default: break; 2523 } 2524 2525 if (Opc != ISD::DELETED_NODE && 2526 (TLI.isOperationLegalOrCustom(Opc, VT) || 2527 (UseScalarMinMax && 2528 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2529 // If the underlying comparison instruction is used by any other 2530 // instruction, the consumed instructions won't be destroyed, so it is 2531 // not profitable to convert to a min/max. 2532 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2533 OpCode = Opc; 2534 LHSVal = getValue(LHS); 2535 RHSVal = getValue(RHS); 2536 BaseOps = {}; 2537 } 2538 } 2539 2540 for (unsigned i = 0; i != NumValues; ++i) { 2541 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2542 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2543 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2544 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2545 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2546 Ops); 2547 } 2548 2549 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2550 DAG.getVTList(ValueVTs), Values)); 2551 } 2552 2553 void SelectionDAGBuilder::visitTrunc(const User &I) { 2554 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2555 SDValue N = getValue(I.getOperand(0)); 2556 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2557 I.getType()); 2558 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2559 } 2560 2561 void SelectionDAGBuilder::visitZExt(const User &I) { 2562 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2563 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2564 SDValue N = getValue(I.getOperand(0)); 2565 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2566 I.getType()); 2567 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2568 } 2569 2570 void SelectionDAGBuilder::visitSExt(const User &I) { 2571 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2572 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2573 SDValue N = getValue(I.getOperand(0)); 2574 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2575 I.getType()); 2576 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2580 // FPTrunc is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 SDLoc dl = getCurSDLoc(); 2583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2584 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2585 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2586 DAG.getTargetConstant( 2587 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2588 } 2589 2590 void SelectionDAGBuilder::visitFPExt(const User &I) { 2591 // FPExt is never a no-op cast, no need to check 2592 SDValue N = getValue(I.getOperand(0)); 2593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2594 I.getType()); 2595 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2596 } 2597 2598 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2599 // FPToUI is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2602 I.getType()); 2603 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2604 } 2605 2606 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2607 // FPToSI is never a no-op cast, no need to check 2608 SDValue N = getValue(I.getOperand(0)); 2609 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2610 I.getType()); 2611 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2612 } 2613 2614 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2615 // UIToFP is never a no-op cast, no need to check 2616 SDValue N = getValue(I.getOperand(0)); 2617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2618 I.getType()); 2619 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2620 } 2621 2622 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2623 // SIToFP is never a no-op cast, no need to check 2624 SDValue N = getValue(I.getOperand(0)); 2625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2626 I.getType()); 2627 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2628 } 2629 2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2631 // What to do depends on the size of the integer and the size of the pointer. 2632 // We can either truncate, zero extend, or no-op, accordingly. 2633 SDValue N = getValue(I.getOperand(0)); 2634 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2635 I.getType()); 2636 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2637 } 2638 2639 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2640 // What to do depends on the size of the integer and the size of the pointer. 2641 // We can either truncate, zero extend, or no-op, accordingly. 2642 SDValue N = getValue(I.getOperand(0)); 2643 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2644 I.getType()); 2645 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2646 } 2647 2648 void SelectionDAGBuilder::visitBitCast(const User &I) { 2649 SDValue N = getValue(I.getOperand(0)); 2650 SDLoc dl = getCurSDLoc(); 2651 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2652 I.getType()); 2653 2654 // BitCast assures us that source and destination are the same size so this is 2655 // either a BITCAST or a no-op. 2656 if (DestVT != N.getValueType()) 2657 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2658 DestVT, N)); // convert types. 2659 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2660 // might fold any kind of constant expression to an integer constant and that 2661 // is not what we are looking for. Only regcognize a bitcast of a genuine 2662 // constant integer as an opaque constant. 2663 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2664 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2665 /*isOpaque*/true)); 2666 else 2667 setValue(&I, N); // noop cast. 2668 } 2669 2670 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2672 const Value *SV = I.getOperand(0); 2673 SDValue N = getValue(SV); 2674 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2675 2676 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2677 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2678 2679 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2680 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2681 2682 setValue(&I, N); 2683 } 2684 2685 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 SDValue InVec = getValue(I.getOperand(0)); 2688 SDValue InVal = getValue(I.getOperand(1)); 2689 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2690 TLI.getVectorIdxTy(DAG.getDataLayout())); 2691 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2692 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2693 InVec, InVal, InIdx)); 2694 } 2695 2696 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2698 SDValue InVec = getValue(I.getOperand(0)); 2699 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2700 TLI.getVectorIdxTy(DAG.getDataLayout())); 2701 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2702 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2703 InVec, InIdx)); 2704 } 2705 2706 // Utility for visitShuffleVector - Return true if every element in Mask, 2707 // beginning from position Pos and ending in Pos+Size, falls within the 2708 // specified sequential range [L, L+Pos). or is undef. 2709 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2710 unsigned Pos, unsigned Size, int Low) { 2711 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2712 if (Mask[i] >= 0 && Mask[i] != Low) 2713 return false; 2714 return true; 2715 } 2716 2717 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2718 SDValue Src1 = getValue(I.getOperand(0)); 2719 SDValue Src2 = getValue(I.getOperand(1)); 2720 2721 SmallVector<int, 8> Mask; 2722 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2723 unsigned MaskNumElts = Mask.size(); 2724 2725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2726 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2727 EVT SrcVT = Src1.getValueType(); 2728 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2729 2730 if (SrcNumElts == MaskNumElts) { 2731 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2732 &Mask[0])); 2733 return; 2734 } 2735 2736 // Normalize the shuffle vector since mask and vector length don't match. 2737 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2738 // Mask is longer than the source vectors and is a multiple of the source 2739 // vectors. We can use concatenate vector to make the mask and vectors 2740 // lengths match. 2741 if (SrcNumElts*2 == MaskNumElts) { 2742 // First check for Src1 in low and Src2 in high 2743 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2744 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2745 // The shuffle is concatenating two vectors together. 2746 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2747 VT, Src1, Src2)); 2748 return; 2749 } 2750 // Then check for Src2 in low and Src1 in high 2751 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2752 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2753 // The shuffle is concatenating two vectors together. 2754 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2755 VT, Src2, Src1)); 2756 return; 2757 } 2758 } 2759 2760 // Pad both vectors with undefs to make them the same length as the mask. 2761 unsigned NumConcat = MaskNumElts / SrcNumElts; 2762 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2763 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2764 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2765 2766 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2767 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2768 MOps1[0] = Src1; 2769 MOps2[0] = Src2; 2770 2771 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2772 getCurSDLoc(), VT, MOps1); 2773 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2774 getCurSDLoc(), VT, MOps2); 2775 2776 // Readjust mask for new input vector length. 2777 SmallVector<int, 8> MappedOps; 2778 for (unsigned i = 0; i != MaskNumElts; ++i) { 2779 int Idx = Mask[i]; 2780 if (Idx >= (int)SrcNumElts) 2781 Idx -= SrcNumElts - MaskNumElts; 2782 MappedOps.push_back(Idx); 2783 } 2784 2785 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2786 &MappedOps[0])); 2787 return; 2788 } 2789 2790 if (SrcNumElts > MaskNumElts) { 2791 // Analyze the access pattern of the vector to see if we can extract 2792 // two subvectors and do the shuffle. The analysis is done by calculating 2793 // the range of elements the mask access on both vectors. 2794 int MinRange[2] = { static_cast<int>(SrcNumElts), 2795 static_cast<int>(SrcNumElts)}; 2796 int MaxRange[2] = {-1, -1}; 2797 2798 for (unsigned i = 0; i != MaskNumElts; ++i) { 2799 int Idx = Mask[i]; 2800 unsigned Input = 0; 2801 if (Idx < 0) 2802 continue; 2803 2804 if (Idx >= (int)SrcNumElts) { 2805 Input = 1; 2806 Idx -= SrcNumElts; 2807 } 2808 if (Idx > MaxRange[Input]) 2809 MaxRange[Input] = Idx; 2810 if (Idx < MinRange[Input]) 2811 MinRange[Input] = Idx; 2812 } 2813 2814 // Check if the access is smaller than the vector size and can we find 2815 // a reasonable extract index. 2816 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2817 // Extract. 2818 int StartIdx[2]; // StartIdx to extract from 2819 for (unsigned Input = 0; Input < 2; ++Input) { 2820 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2821 RangeUse[Input] = 0; // Unused 2822 StartIdx[Input] = 0; 2823 continue; 2824 } 2825 2826 // Find a good start index that is a multiple of the mask length. Then 2827 // see if the rest of the elements are in range. 2828 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2829 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2830 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2831 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2832 } 2833 2834 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2835 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2836 return; 2837 } 2838 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2839 // Extract appropriate subvector and generate a vector shuffle 2840 for (unsigned Input = 0; Input < 2; ++Input) { 2841 SDValue &Src = Input == 0 ? Src1 : Src2; 2842 if (RangeUse[Input] == 0) 2843 Src = DAG.getUNDEF(VT); 2844 else { 2845 SDLoc dl = getCurSDLoc(); 2846 Src = DAG.getNode( 2847 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2848 DAG.getConstant(StartIdx[Input], dl, 2849 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2850 } 2851 } 2852 2853 // Calculate new mask. 2854 SmallVector<int, 8> MappedOps; 2855 for (unsigned i = 0; i != MaskNumElts; ++i) { 2856 int Idx = Mask[i]; 2857 if (Idx >= 0) { 2858 if (Idx < (int)SrcNumElts) 2859 Idx -= StartIdx[0]; 2860 else 2861 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2862 } 2863 MappedOps.push_back(Idx); 2864 } 2865 2866 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2867 &MappedOps[0])); 2868 return; 2869 } 2870 } 2871 2872 // We can't use either concat vectors or extract subvectors so fall back to 2873 // replacing the shuffle with extract and build vector. 2874 // to insert and build vector. 2875 EVT EltVT = VT.getVectorElementType(); 2876 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2877 SDLoc dl = getCurSDLoc(); 2878 SmallVector<SDValue,8> Ops; 2879 for (unsigned i = 0; i != MaskNumElts; ++i) { 2880 int Idx = Mask[i]; 2881 SDValue Res; 2882 2883 if (Idx < 0) { 2884 Res = DAG.getUNDEF(EltVT); 2885 } else { 2886 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2887 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2888 2889 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2890 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2891 } 2892 2893 Ops.push_back(Res); 2894 } 2895 2896 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2897 } 2898 2899 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2900 const Value *Op0 = I.getOperand(0); 2901 const Value *Op1 = I.getOperand(1); 2902 Type *AggTy = I.getType(); 2903 Type *ValTy = Op1->getType(); 2904 bool IntoUndef = isa<UndefValue>(Op0); 2905 bool FromUndef = isa<UndefValue>(Op1); 2906 2907 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2908 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 SmallVector<EVT, 4> AggValueVTs; 2911 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2912 SmallVector<EVT, 4> ValValueVTs; 2913 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2914 2915 unsigned NumAggValues = AggValueVTs.size(); 2916 unsigned NumValValues = ValValueVTs.size(); 2917 SmallVector<SDValue, 4> Values(NumAggValues); 2918 2919 // Ignore an insertvalue that produces an empty object 2920 if (!NumAggValues) { 2921 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2922 return; 2923 } 2924 2925 SDValue Agg = getValue(Op0); 2926 unsigned i = 0; 2927 // Copy the beginning value(s) from the original aggregate. 2928 for (; i != LinearIndex; ++i) 2929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2930 SDValue(Agg.getNode(), Agg.getResNo() + i); 2931 // Copy values from the inserted value(s). 2932 if (NumValValues) { 2933 SDValue Val = getValue(Op1); 2934 for (; i != LinearIndex + NumValValues; ++i) 2935 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2936 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2937 } 2938 // Copy remaining value(s) from the original aggregate. 2939 for (; i != NumAggValues; ++i) 2940 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2941 SDValue(Agg.getNode(), Agg.getResNo() + i); 2942 2943 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2944 DAG.getVTList(AggValueVTs), Values)); 2945 } 2946 2947 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2948 const Value *Op0 = I.getOperand(0); 2949 Type *AggTy = Op0->getType(); 2950 Type *ValTy = I.getType(); 2951 bool OutOfUndef = isa<UndefValue>(Op0); 2952 2953 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2954 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 SmallVector<EVT, 4> ValValueVTs; 2957 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2958 2959 unsigned NumValValues = ValValueVTs.size(); 2960 2961 // Ignore a extractvalue that produces an empty object 2962 if (!NumValValues) { 2963 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2964 return; 2965 } 2966 2967 SmallVector<SDValue, 4> Values(NumValValues); 2968 2969 SDValue Agg = getValue(Op0); 2970 // Copy out the selected value(s). 2971 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2972 Values[i - LinearIndex] = 2973 OutOfUndef ? 2974 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2975 SDValue(Agg.getNode(), Agg.getResNo() + i); 2976 2977 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2978 DAG.getVTList(ValValueVTs), Values)); 2979 } 2980 2981 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2982 Value *Op0 = I.getOperand(0); 2983 // Note that the pointer operand may be a vector of pointers. Take the scalar 2984 // element which holds a pointer. 2985 Type *Ty = Op0->getType()->getScalarType(); 2986 unsigned AS = Ty->getPointerAddressSpace(); 2987 SDValue N = getValue(Op0); 2988 SDLoc dl = getCurSDLoc(); 2989 2990 // Normalize Vector GEP - all scalar operands should be converted to the 2991 // splat vector. 2992 unsigned VectorWidth = I.getType()->isVectorTy() ? 2993 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2994 2995 if (VectorWidth && !N.getValueType().isVector()) { 2996 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2997 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2998 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2999 } 3000 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3001 OI != E; ++OI) { 3002 const Value *Idx = *OI; 3003 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3004 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3005 if (Field) { 3006 // N = N + Offset 3007 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3008 3009 // In an inbouds GEP with an offset that is nonnegative even when 3010 // interpreted as signed, assume there is no unsigned overflow. 3011 SDNodeFlags Flags; 3012 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3013 Flags.setNoUnsignedWrap(true); 3014 3015 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3016 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3017 } 3018 3019 Ty = StTy->getElementType(Field); 3020 } else { 3021 Ty = cast<SequentialType>(Ty)->getElementType(); 3022 MVT PtrTy = 3023 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3024 unsigned PtrSize = PtrTy.getSizeInBits(); 3025 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3026 3027 // If this is a scalar constant or a splat vector of constants, 3028 // handle it quickly. 3029 const auto *CI = dyn_cast<ConstantInt>(Idx); 3030 if (!CI && isa<ConstantDataVector>(Idx) && 3031 cast<ConstantDataVector>(Idx)->getSplatValue()) 3032 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3033 3034 if (CI) { 3035 if (CI->isZero()) 3036 continue; 3037 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3038 SDValue OffsVal = VectorWidth ? 3039 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3040 DAG.getConstant(Offs, dl, PtrTy); 3041 3042 // In an inbouds GEP with an offset that is nonnegative even when 3043 // interpreted as signed, assume there is no unsigned overflow. 3044 SDNodeFlags Flags; 3045 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3046 Flags.setNoUnsignedWrap(true); 3047 3048 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3049 continue; 3050 } 3051 3052 // N = N + Idx * ElementSize; 3053 SDValue IdxN = getValue(Idx); 3054 3055 if (!IdxN.getValueType().isVector() && VectorWidth) { 3056 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3057 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3058 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3059 } 3060 // If the index is smaller or larger than intptr_t, truncate or extend 3061 // it. 3062 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3063 3064 // If this is a multiply by a power of two, turn it into a shl 3065 // immediately. This is a very common case. 3066 if (ElementSize != 1) { 3067 if (ElementSize.isPowerOf2()) { 3068 unsigned Amt = ElementSize.logBase2(); 3069 IdxN = DAG.getNode(ISD::SHL, dl, 3070 N.getValueType(), IdxN, 3071 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3072 } else { 3073 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3074 IdxN = DAG.getNode(ISD::MUL, dl, 3075 N.getValueType(), IdxN, Scale); 3076 } 3077 } 3078 3079 N = DAG.getNode(ISD::ADD, dl, 3080 N.getValueType(), N, IdxN); 3081 } 3082 } 3083 3084 setValue(&I, N); 3085 } 3086 3087 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3088 // If this is a fixed sized alloca in the entry block of the function, 3089 // allocate it statically on the stack. 3090 if (FuncInfo.StaticAllocaMap.count(&I)) 3091 return; // getValue will auto-populate this. 3092 3093 SDLoc dl = getCurSDLoc(); 3094 Type *Ty = I.getAllocatedType(); 3095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3096 auto &DL = DAG.getDataLayout(); 3097 uint64_t TySize = DL.getTypeAllocSize(Ty); 3098 unsigned Align = 3099 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3100 3101 SDValue AllocSize = getValue(I.getArraySize()); 3102 3103 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3104 if (AllocSize.getValueType() != IntPtr) 3105 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3106 3107 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3108 AllocSize, 3109 DAG.getConstant(TySize, dl, IntPtr)); 3110 3111 // Handle alignment. If the requested alignment is less than or equal to 3112 // the stack alignment, ignore it. If the size is greater than or equal to 3113 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3114 unsigned StackAlign = 3115 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3116 if (Align <= StackAlign) 3117 Align = 0; 3118 3119 // Round the size of the allocation up to the stack alignment size 3120 // by add SA-1 to the size. This doesn't overflow because we're computing 3121 // an address inside an alloca. 3122 SDNodeFlags Flags; 3123 Flags.setNoUnsignedWrap(true); 3124 AllocSize = DAG.getNode(ISD::ADD, dl, 3125 AllocSize.getValueType(), AllocSize, 3126 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3127 3128 // Mask out the low bits for alignment purposes. 3129 AllocSize = DAG.getNode(ISD::AND, dl, 3130 AllocSize.getValueType(), AllocSize, 3131 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3132 dl)); 3133 3134 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3135 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3136 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3137 setValue(&I, DSA); 3138 DAG.setRoot(DSA.getValue(1)); 3139 3140 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3141 } 3142 3143 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3144 if (I.isAtomic()) 3145 return visitAtomicLoad(I); 3146 3147 const Value *SV = I.getOperand(0); 3148 SDValue Ptr = getValue(SV); 3149 3150 Type *Ty = I.getType(); 3151 3152 bool isVolatile = I.isVolatile(); 3153 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3154 3155 // The IR notion of invariant_load only guarantees that all *non-faulting* 3156 // invariant loads result in the same value. The MI notion of invariant load 3157 // guarantees that the load can be legally moved to any location within its 3158 // containing function. The MI notion of invariant_load is stronger than the 3159 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3160 // with a guarantee that the location being loaded from is dereferenceable 3161 // throughout the function's lifetime. 3162 3163 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3164 isDereferenceablePointer(SV, DAG.getDataLayout()); 3165 unsigned Alignment = I.getAlignment(); 3166 3167 AAMDNodes AAInfo; 3168 I.getAAMetadata(AAInfo); 3169 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3170 3171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3172 SmallVector<EVT, 4> ValueVTs; 3173 SmallVector<uint64_t, 4> Offsets; 3174 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3175 unsigned NumValues = ValueVTs.size(); 3176 if (NumValues == 0) 3177 return; 3178 3179 SDValue Root; 3180 bool ConstantMemory = false; 3181 if (isVolatile || NumValues > MaxParallelChains) 3182 // Serialize volatile loads with other side effects. 3183 Root = getRoot(); 3184 else if (AA->pointsToConstantMemory(MemoryLocation( 3185 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3186 // Do not serialize (non-volatile) loads of constant memory with anything. 3187 Root = DAG.getEntryNode(); 3188 ConstantMemory = true; 3189 } else { 3190 // Do not serialize non-volatile loads against each other. 3191 Root = DAG.getRoot(); 3192 } 3193 3194 SDLoc dl = getCurSDLoc(); 3195 3196 if (isVolatile) 3197 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3198 3199 // An aggregate load cannot wrap around the address space, so offsets to its 3200 // parts don't wrap either. 3201 SDNodeFlags Flags; 3202 Flags.setNoUnsignedWrap(true); 3203 3204 SmallVector<SDValue, 4> Values(NumValues); 3205 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3206 EVT PtrVT = Ptr.getValueType(); 3207 unsigned ChainI = 0; 3208 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3209 // Serializing loads here may result in excessive register pressure, and 3210 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3211 // could recover a bit by hoisting nodes upward in the chain by recognizing 3212 // they are side-effect free or do not alias. The optimizer should really 3213 // avoid this case by converting large object/array copies to llvm.memcpy 3214 // (MaxParallelChains should always remain as failsafe). 3215 if (ChainI == MaxParallelChains) { 3216 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3217 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3218 makeArrayRef(Chains.data(), ChainI)); 3219 Root = Chain; 3220 ChainI = 0; 3221 } 3222 SDValue A = DAG.getNode(ISD::ADD, dl, 3223 PtrVT, Ptr, 3224 DAG.getConstant(Offsets[i], dl, PtrVT), 3225 &Flags); 3226 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3227 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3228 isNonTemporal, isInvariant, Alignment, AAInfo, 3229 Ranges); 3230 3231 Values[i] = L; 3232 Chains[ChainI] = L.getValue(1); 3233 } 3234 3235 if (!ConstantMemory) { 3236 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3237 makeArrayRef(Chains.data(), ChainI)); 3238 if (isVolatile) 3239 DAG.setRoot(Chain); 3240 else 3241 PendingLoads.push_back(Chain); 3242 } 3243 3244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3245 DAG.getVTList(ValueVTs), Values)); 3246 } 3247 3248 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3249 if (I.isAtomic()) 3250 return visitAtomicStore(I); 3251 3252 const Value *SrcV = I.getOperand(0); 3253 const Value *PtrV = I.getOperand(1); 3254 3255 SmallVector<EVT, 4> ValueVTs; 3256 SmallVector<uint64_t, 4> Offsets; 3257 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3258 SrcV->getType(), ValueVTs, &Offsets); 3259 unsigned NumValues = ValueVTs.size(); 3260 if (NumValues == 0) 3261 return; 3262 3263 // Get the lowered operands. Note that we do this after 3264 // checking if NumResults is zero, because with zero results 3265 // the operands won't have values in the map. 3266 SDValue Src = getValue(SrcV); 3267 SDValue Ptr = getValue(PtrV); 3268 3269 SDValue Root = getRoot(); 3270 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3271 EVT PtrVT = Ptr.getValueType(); 3272 bool isVolatile = I.isVolatile(); 3273 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3274 unsigned Alignment = I.getAlignment(); 3275 SDLoc dl = getCurSDLoc(); 3276 3277 AAMDNodes AAInfo; 3278 I.getAAMetadata(AAInfo); 3279 3280 // An aggregate load cannot wrap around the address space, so offsets to its 3281 // parts don't wrap either. 3282 SDNodeFlags Flags; 3283 Flags.setNoUnsignedWrap(true); 3284 3285 unsigned ChainI = 0; 3286 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3287 // See visitLoad comments. 3288 if (ChainI == MaxParallelChains) { 3289 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3290 makeArrayRef(Chains.data(), ChainI)); 3291 Root = Chain; 3292 ChainI = 0; 3293 } 3294 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3295 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3296 SDValue St = DAG.getStore(Root, dl, 3297 SDValue(Src.getNode(), Src.getResNo() + i), 3298 Add, MachinePointerInfo(PtrV, Offsets[i]), 3299 isVolatile, isNonTemporal, Alignment, AAInfo); 3300 Chains[ChainI] = St; 3301 } 3302 3303 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3304 makeArrayRef(Chains.data(), ChainI)); 3305 DAG.setRoot(StoreNode); 3306 } 3307 3308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3309 SDLoc sdl = getCurSDLoc(); 3310 3311 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3312 Value *PtrOperand = I.getArgOperand(1); 3313 SDValue Ptr = getValue(PtrOperand); 3314 SDValue Src0 = getValue(I.getArgOperand(0)); 3315 SDValue Mask = getValue(I.getArgOperand(3)); 3316 EVT VT = Src0.getValueType(); 3317 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3318 if (!Alignment) 3319 Alignment = DAG.getEVTAlignment(VT); 3320 3321 AAMDNodes AAInfo; 3322 I.getAAMetadata(AAInfo); 3323 3324 MachineMemOperand *MMO = 3325 DAG.getMachineFunction(). 3326 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3327 MachineMemOperand::MOStore, VT.getStoreSize(), 3328 Alignment, AAInfo); 3329 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3330 MMO, false); 3331 DAG.setRoot(StoreNode); 3332 setValue(&I, StoreNode); 3333 } 3334 3335 // Get a uniform base for the Gather/Scatter intrinsic. 3336 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3337 // We try to represent it as a base pointer + vector of indices. 3338 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3339 // The first operand of the GEP may be a single pointer or a vector of pointers 3340 // Example: 3341 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3342 // or 3343 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3344 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3345 // 3346 // When the first GEP operand is a single pointer - it is the uniform base we 3347 // are looking for. If first operand of the GEP is a splat vector - we 3348 // extract the spalt value and use it as a uniform base. 3349 // In all other cases the function returns 'false'. 3350 // 3351 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3352 SelectionDAGBuilder* SDB) { 3353 3354 SelectionDAG& DAG = SDB->DAG; 3355 LLVMContext &Context = *DAG.getContext(); 3356 3357 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3358 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3359 if (!GEP || GEP->getNumOperands() > 2) 3360 return false; 3361 3362 const Value *GEPPtr = GEP->getPointerOperand(); 3363 if (!GEPPtr->getType()->isVectorTy()) 3364 Ptr = GEPPtr; 3365 else if (!(Ptr = getSplatValue(GEPPtr))) 3366 return false; 3367 3368 Value *IndexVal = GEP->getOperand(1); 3369 3370 // The operands of the GEP may be defined in another basic block. 3371 // In this case we'll not find nodes for the operands. 3372 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3373 return false; 3374 3375 Base = SDB->getValue(Ptr); 3376 Index = SDB->getValue(IndexVal); 3377 3378 // Suppress sign extension. 3379 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3380 if (SDB->findValue(Sext->getOperand(0))) { 3381 IndexVal = Sext->getOperand(0); 3382 Index = SDB->getValue(IndexVal); 3383 } 3384 } 3385 if (!Index.getValueType().isVector()) { 3386 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3387 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3388 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3389 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3390 } 3391 return true; 3392 } 3393 3394 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3395 SDLoc sdl = getCurSDLoc(); 3396 3397 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3398 const Value *Ptr = I.getArgOperand(1); 3399 SDValue Src0 = getValue(I.getArgOperand(0)); 3400 SDValue Mask = getValue(I.getArgOperand(3)); 3401 EVT VT = Src0.getValueType(); 3402 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3403 if (!Alignment) 3404 Alignment = DAG.getEVTAlignment(VT); 3405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3406 3407 AAMDNodes AAInfo; 3408 I.getAAMetadata(AAInfo); 3409 3410 SDValue Base; 3411 SDValue Index; 3412 const Value *BasePtr = Ptr; 3413 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3414 3415 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3416 MachineMemOperand *MMO = DAG.getMachineFunction(). 3417 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3418 MachineMemOperand::MOStore, VT.getStoreSize(), 3419 Alignment, AAInfo); 3420 if (!UniformBase) { 3421 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3422 Index = getValue(Ptr); 3423 } 3424 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3425 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3426 Ops, MMO); 3427 DAG.setRoot(Scatter); 3428 setValue(&I, Scatter); 3429 } 3430 3431 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3432 SDLoc sdl = getCurSDLoc(); 3433 3434 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3435 Value *PtrOperand = I.getArgOperand(0); 3436 SDValue Ptr = getValue(PtrOperand); 3437 SDValue Src0 = getValue(I.getArgOperand(3)); 3438 SDValue Mask = getValue(I.getArgOperand(2)); 3439 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3442 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3443 if (!Alignment) 3444 Alignment = DAG.getEVTAlignment(VT); 3445 3446 AAMDNodes AAInfo; 3447 I.getAAMetadata(AAInfo); 3448 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3449 3450 SDValue InChain = DAG.getRoot(); 3451 if (AA->pointsToConstantMemory(MemoryLocation( 3452 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3453 AAInfo))) { 3454 // Do not serialize (non-volatile) loads of constant memory with anything. 3455 InChain = DAG.getEntryNode(); 3456 } 3457 3458 MachineMemOperand *MMO = 3459 DAG.getMachineFunction(). 3460 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3461 MachineMemOperand::MOLoad, VT.getStoreSize(), 3462 Alignment, AAInfo, Ranges); 3463 3464 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3465 ISD::NON_EXTLOAD); 3466 SDValue OutChain = Load.getValue(1); 3467 DAG.setRoot(OutChain); 3468 setValue(&I, Load); 3469 } 3470 3471 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3472 SDLoc sdl = getCurSDLoc(); 3473 3474 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3475 const Value *Ptr = I.getArgOperand(0); 3476 SDValue Src0 = getValue(I.getArgOperand(3)); 3477 SDValue Mask = getValue(I.getArgOperand(2)); 3478 3479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3480 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3481 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3482 if (!Alignment) 3483 Alignment = DAG.getEVTAlignment(VT); 3484 3485 AAMDNodes AAInfo; 3486 I.getAAMetadata(AAInfo); 3487 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3488 3489 SDValue Root = DAG.getRoot(); 3490 SDValue Base; 3491 SDValue Index; 3492 const Value *BasePtr = Ptr; 3493 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3494 bool ConstantMemory = false; 3495 if (UniformBase && 3496 AA->pointsToConstantMemory(MemoryLocation( 3497 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3498 AAInfo))) { 3499 // Do not serialize (non-volatile) loads of constant memory with anything. 3500 Root = DAG.getEntryNode(); 3501 ConstantMemory = true; 3502 } 3503 3504 MachineMemOperand *MMO = 3505 DAG.getMachineFunction(). 3506 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3507 MachineMemOperand::MOLoad, VT.getStoreSize(), 3508 Alignment, AAInfo, Ranges); 3509 3510 if (!UniformBase) { 3511 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3512 Index = getValue(Ptr); 3513 } 3514 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3515 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3516 Ops, MMO); 3517 3518 SDValue OutChain = Gather.getValue(1); 3519 if (!ConstantMemory) 3520 PendingLoads.push_back(OutChain); 3521 setValue(&I, Gather); 3522 } 3523 3524 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3525 SDLoc dl = getCurSDLoc(); 3526 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3527 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3528 SynchronizationScope Scope = I.getSynchScope(); 3529 3530 SDValue InChain = getRoot(); 3531 3532 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3533 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3534 SDValue L = DAG.getAtomicCmpSwap( 3535 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3536 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3537 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3538 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3539 3540 SDValue OutChain = L.getValue(2); 3541 3542 setValue(&I, L); 3543 DAG.setRoot(OutChain); 3544 } 3545 3546 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3547 SDLoc dl = getCurSDLoc(); 3548 ISD::NodeType NT; 3549 switch (I.getOperation()) { 3550 default: llvm_unreachable("Unknown atomicrmw operation"); 3551 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3552 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3553 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3554 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3555 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3556 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3557 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3558 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3559 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3560 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3561 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3562 } 3563 AtomicOrdering Order = I.getOrdering(); 3564 SynchronizationScope Scope = I.getSynchScope(); 3565 3566 SDValue InChain = getRoot(); 3567 3568 SDValue L = 3569 DAG.getAtomic(NT, dl, 3570 getValue(I.getValOperand()).getSimpleValueType(), 3571 InChain, 3572 getValue(I.getPointerOperand()), 3573 getValue(I.getValOperand()), 3574 I.getPointerOperand(), 3575 /* Alignment=*/ 0, Order, Scope); 3576 3577 SDValue OutChain = L.getValue(1); 3578 3579 setValue(&I, L); 3580 DAG.setRoot(OutChain); 3581 } 3582 3583 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3584 SDLoc dl = getCurSDLoc(); 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 SDValue Ops[3]; 3587 Ops[0] = getRoot(); 3588 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3589 TLI.getPointerTy(DAG.getDataLayout())); 3590 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3591 TLI.getPointerTy(DAG.getDataLayout())); 3592 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3593 } 3594 3595 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3596 SDLoc dl = getCurSDLoc(); 3597 AtomicOrdering Order = I.getOrdering(); 3598 SynchronizationScope Scope = I.getSynchScope(); 3599 3600 SDValue InChain = getRoot(); 3601 3602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3603 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3604 3605 if (I.getAlignment() < VT.getSizeInBits() / 8) 3606 report_fatal_error("Cannot generate unaligned atomic load"); 3607 3608 MachineMemOperand *MMO = 3609 DAG.getMachineFunction(). 3610 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3611 MachineMemOperand::MOVolatile | 3612 MachineMemOperand::MOLoad, 3613 VT.getStoreSize(), 3614 I.getAlignment() ? I.getAlignment() : 3615 DAG.getEVTAlignment(VT)); 3616 3617 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3618 SDValue L = 3619 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3620 getValue(I.getPointerOperand()), MMO, 3621 Order, Scope); 3622 3623 SDValue OutChain = L.getValue(1); 3624 3625 setValue(&I, L); 3626 DAG.setRoot(OutChain); 3627 } 3628 3629 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3630 SDLoc dl = getCurSDLoc(); 3631 3632 AtomicOrdering Order = I.getOrdering(); 3633 SynchronizationScope Scope = I.getSynchScope(); 3634 3635 SDValue InChain = getRoot(); 3636 3637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3638 EVT VT = 3639 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3640 3641 if (I.getAlignment() < VT.getSizeInBits() / 8) 3642 report_fatal_error("Cannot generate unaligned atomic store"); 3643 3644 SDValue OutChain = 3645 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3646 InChain, 3647 getValue(I.getPointerOperand()), 3648 getValue(I.getValueOperand()), 3649 I.getPointerOperand(), I.getAlignment(), 3650 Order, Scope); 3651 3652 DAG.setRoot(OutChain); 3653 } 3654 3655 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3656 /// node. 3657 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3658 unsigned Intrinsic) { 3659 bool HasChain = !I.doesNotAccessMemory(); 3660 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3661 3662 // Build the operand list. 3663 SmallVector<SDValue, 8> Ops; 3664 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3665 if (OnlyLoad) { 3666 // We don't need to serialize loads against other loads. 3667 Ops.push_back(DAG.getRoot()); 3668 } else { 3669 Ops.push_back(getRoot()); 3670 } 3671 } 3672 3673 // Info is set by getTgtMemInstrinsic 3674 TargetLowering::IntrinsicInfo Info; 3675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3676 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3677 3678 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3679 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3680 Info.opc == ISD::INTRINSIC_W_CHAIN) 3681 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3682 TLI.getPointerTy(DAG.getDataLayout()))); 3683 3684 // Add all operands of the call to the operand list. 3685 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3686 SDValue Op = getValue(I.getArgOperand(i)); 3687 Ops.push_back(Op); 3688 } 3689 3690 SmallVector<EVT, 4> ValueVTs; 3691 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3692 3693 if (HasChain) 3694 ValueVTs.push_back(MVT::Other); 3695 3696 SDVTList VTs = DAG.getVTList(ValueVTs); 3697 3698 // Create the node. 3699 SDValue Result; 3700 if (IsTgtIntrinsic) { 3701 // This is target intrinsic that touches memory 3702 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3703 VTs, Ops, Info.memVT, 3704 MachinePointerInfo(Info.ptrVal, Info.offset), 3705 Info.align, Info.vol, 3706 Info.readMem, Info.writeMem, Info.size); 3707 } else if (!HasChain) { 3708 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3709 } else if (!I.getType()->isVoidTy()) { 3710 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3711 } else { 3712 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3713 } 3714 3715 if (HasChain) { 3716 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3717 if (OnlyLoad) 3718 PendingLoads.push_back(Chain); 3719 else 3720 DAG.setRoot(Chain); 3721 } 3722 3723 if (!I.getType()->isVoidTy()) { 3724 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3725 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3726 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3727 } 3728 3729 setValue(&I, Result); 3730 } 3731 } 3732 3733 /// GetSignificand - Get the significand and build it into a floating-point 3734 /// number with exponent of 1: 3735 /// 3736 /// Op = (Op & 0x007fffff) | 0x3f800000; 3737 /// 3738 /// where Op is the hexadecimal representation of floating point value. 3739 static SDValue 3740 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3741 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3742 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3743 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3744 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3745 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3746 } 3747 3748 /// GetExponent - Get the exponent: 3749 /// 3750 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3751 /// 3752 /// where Op is the hexadecimal representation of floating point value. 3753 static SDValue 3754 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3755 SDLoc dl) { 3756 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3757 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3758 SDValue t1 = DAG.getNode( 3759 ISD::SRL, dl, MVT::i32, t0, 3760 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3761 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3762 DAG.getConstant(127, dl, MVT::i32)); 3763 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3764 } 3765 3766 /// getF32Constant - Get 32-bit floating point constant. 3767 static SDValue 3768 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3769 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3770 MVT::f32); 3771 } 3772 3773 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3774 SelectionDAG &DAG) { 3775 // TODO: What fast-math-flags should be set on the floating-point nodes? 3776 3777 // IntegerPartOfX = ((int32_t)(t0); 3778 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3779 3780 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3781 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3782 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3783 3784 // IntegerPartOfX <<= 23; 3785 IntegerPartOfX = DAG.getNode( 3786 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3787 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3788 DAG.getDataLayout()))); 3789 3790 SDValue TwoToFractionalPartOfX; 3791 if (LimitFloatPrecision <= 6) { 3792 // For floating-point precision of 6: 3793 // 3794 // TwoToFractionalPartOfX = 3795 // 0.997535578f + 3796 // (0.735607626f + 0.252464424f * x) * x; 3797 // 3798 // error 0.0144103317, which is 6 bits 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0x3e814304, dl)); 3801 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x3f3c50c8, dl)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3806 } else if (LimitFloatPrecision <= 12) { 3807 // For floating-point precision of 12: 3808 // 3809 // TwoToFractionalPartOfX = 3810 // 0.999892986f + 3811 // (0.696457318f + 3812 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3813 // 3814 // error 0.000107046256, which is 13 to 14 bits 3815 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3816 getF32Constant(DAG, 0x3da235e3, dl)); 3817 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3818 getF32Constant(DAG, 0x3e65b8f3, dl)); 3819 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3820 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3821 getF32Constant(DAG, 0x3f324b07, dl)); 3822 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3823 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3824 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3825 } else { // LimitFloatPrecision <= 18 3826 // For floating-point precision of 18: 3827 // 3828 // TwoToFractionalPartOfX = 3829 // 0.999999982f + 3830 // (0.693148872f + 3831 // (0.240227044f + 3832 // (0.554906021e-1f + 3833 // (0.961591928e-2f + 3834 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3835 // error 2.47208000*10^(-7), which is better than 18 bits 3836 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0x3924b03e, dl)); 3838 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3839 getF32Constant(DAG, 0x3ab24b87, dl)); 3840 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3841 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3842 getF32Constant(DAG, 0x3c1d8c17, dl)); 3843 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3844 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3845 getF32Constant(DAG, 0x3d634a1d, dl)); 3846 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3847 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3848 getF32Constant(DAG, 0x3e75fe14, dl)); 3849 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3850 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3851 getF32Constant(DAG, 0x3f317234, dl)); 3852 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3853 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3854 getF32Constant(DAG, 0x3f800000, dl)); 3855 } 3856 3857 // Add the exponent into the result in integer domain. 3858 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3859 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3860 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3861 } 3862 3863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3864 /// limited-precision mode. 3865 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3866 const TargetLowering &TLI) { 3867 if (Op.getValueType() == MVT::f32 && 3868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3869 3870 // Put the exponent in the right bit position for later addition to the 3871 // final result: 3872 // 3873 // #define LOG2OFe 1.4426950f 3874 // t0 = Op * LOG2OFe 3875 3876 // TODO: What fast-math-flags should be set here? 3877 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3878 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3879 return getLimitedPrecisionExp2(t0, dl, DAG); 3880 } 3881 3882 // No special expansion. 3883 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3884 } 3885 3886 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3887 /// limited-precision mode. 3888 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3889 const TargetLowering &TLI) { 3890 3891 // TODO: What fast-math-flags should be set on the floating-point nodes? 3892 3893 if (Op.getValueType() == MVT::f32 && 3894 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3895 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3896 3897 // Scale the exponent by log(2) [0.69314718f]. 3898 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3899 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3900 getF32Constant(DAG, 0x3f317218, dl)); 3901 3902 // Get the significand and build it into a floating-point number with 3903 // exponent of 1. 3904 SDValue X = GetSignificand(DAG, Op1, dl); 3905 3906 SDValue LogOfMantissa; 3907 if (LimitFloatPrecision <= 6) { 3908 // For floating-point precision of 6: 3909 // 3910 // LogofMantissa = 3911 // -1.1609546f + 3912 // (1.4034025f - 0.23903021f * x) * x; 3913 // 3914 // error 0.0034276066, which is better than 8 bits 3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3916 getF32Constant(DAG, 0xbe74c456, dl)); 3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3918 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3920 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3f949a29, dl)); 3922 } else if (LimitFloatPrecision <= 12) { 3923 // For floating-point precision of 12: 3924 // 3925 // LogOfMantissa = 3926 // -1.7417939f + 3927 // (2.8212026f + 3928 // (-1.4699568f + 3929 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3930 // 3931 // error 0.000061011436, which is 14 bits 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0xbd67b6d6, dl)); 3934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3935 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3fbc278b, dl)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x40348e95, dl)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x3fdef31a, dl)); 3945 } else { // LimitFloatPrecision <= 18 3946 // For floating-point precision of 18: 3947 // 3948 // LogOfMantissa = 3949 // -2.1072184f + 3950 // (4.2372794f + 3951 // (-3.7029485f + 3952 // (2.2781945f + 3953 // (-0.87823314f + 3954 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3955 // 3956 // error 0.0000023660568, which is better than 18 bits 3957 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3958 getF32Constant(DAG, 0xbc91e5ac, dl)); 3959 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3960 getF32Constant(DAG, 0x3e4350aa, dl)); 3961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3962 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3963 getF32Constant(DAG, 0x3f60d3e3, dl)); 3964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3966 getF32Constant(DAG, 0x4011cdf0, dl)); 3967 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3968 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3969 getF32Constant(DAG, 0x406cfd1c, dl)); 3970 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3971 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3972 getF32Constant(DAG, 0x408797cb, dl)); 3973 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3974 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3975 getF32Constant(DAG, 0x4006dcab, dl)); 3976 } 3977 3978 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3979 } 3980 3981 // No special expansion. 3982 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3983 } 3984 3985 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3986 /// limited-precision mode. 3987 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3988 const TargetLowering &TLI) { 3989 3990 // TODO: What fast-math-flags should be set on the floating-point nodes? 3991 3992 if (Op.getValueType() == MVT::f32 && 3993 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3994 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3995 3996 // Get the exponent. 3997 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3998 3999 // Get the significand and build it into a floating-point number with 4000 // exponent of 1. 4001 SDValue X = GetSignificand(DAG, Op1, dl); 4002 4003 // Different possible minimax approximations of significand in 4004 // floating-point for various degrees of accuracy over [1,2]. 4005 SDValue Log2ofMantissa; 4006 if (LimitFloatPrecision <= 6) { 4007 // For floating-point precision of 6: 4008 // 4009 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4010 // 4011 // error 0.0049451742, which is more than 7 bits 4012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0xbeb08fe0, dl)); 4014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4015 getF32Constant(DAG, 0x40019463, dl)); 4016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4017 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4018 getF32Constant(DAG, 0x3fd6633d, dl)); 4019 } else if (LimitFloatPrecision <= 12) { 4020 // For floating-point precision of 12: 4021 // 4022 // Log2ofMantissa = 4023 // -2.51285454f + 4024 // (4.07009056f + 4025 // (-2.12067489f + 4026 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4027 // 4028 // error 0.0000876136000, which is better than 13 bits 4029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4030 getF32Constant(DAG, 0xbda7262e, dl)); 4031 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4032 getF32Constant(DAG, 0x3f25280b, dl)); 4033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4034 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4035 getF32Constant(DAG, 0x4007b923, dl)); 4036 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4037 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4038 getF32Constant(DAG, 0x40823e2f, dl)); 4039 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4040 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4041 getF32Constant(DAG, 0x4020d29c, dl)); 4042 } else { // LimitFloatPrecision <= 18 4043 // For floating-point precision of 18: 4044 // 4045 // Log2ofMantissa = 4046 // -3.0400495f + 4047 // (6.1129976f + 4048 // (-5.3420409f + 4049 // (3.2865683f + 4050 // (-1.2669343f + 4051 // (0.27515199f - 4052 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4053 // 4054 // error 0.0000018516, which is better than 18 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0xbcd2769e, dl)); 4057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3fa22ae7, dl)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x40525723, dl)); 4065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4066 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4067 getF32Constant(DAG, 0x40aaf200, dl)); 4068 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4069 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4070 getF32Constant(DAG, 0x40c39dad, dl)); 4071 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4072 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4073 getF32Constant(DAG, 0x4042902c, dl)); 4074 } 4075 4076 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4077 } 4078 4079 // No special expansion. 4080 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4081 } 4082 4083 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4084 /// limited-precision mode. 4085 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4086 const TargetLowering &TLI) { 4087 4088 // TODO: What fast-math-flags should be set on the floating-point nodes? 4089 4090 if (Op.getValueType() == MVT::f32 && 4091 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4092 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4093 4094 // Scale the exponent by log10(2) [0.30102999f]. 4095 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4096 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4097 getF32Constant(DAG, 0x3e9a209a, dl)); 4098 4099 // Get the significand and build it into a floating-point number with 4100 // exponent of 1. 4101 SDValue X = GetSignificand(DAG, Op1, dl); 4102 4103 SDValue Log10ofMantissa; 4104 if (LimitFloatPrecision <= 6) { 4105 // For floating-point precision of 6: 4106 // 4107 // Log10ofMantissa = 4108 // -0.50419619f + 4109 // (0.60948995f - 0.10380950f * x) * x; 4110 // 4111 // error 0.0014886165, which is 6 bits 4112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4113 getF32Constant(DAG, 0xbdd49a13, dl)); 4114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4115 getF32Constant(DAG, 0x3f1c0789, dl)); 4116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4117 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x3f011300, dl)); 4119 } else if (LimitFloatPrecision <= 12) { 4120 // For floating-point precision of 12: 4121 // 4122 // Log10ofMantissa = 4123 // -0.64831180f + 4124 // (0.91751397f + 4125 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4126 // 4127 // error 0.00019228036, which is better than 12 bits 4128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4129 getF32Constant(DAG, 0x3d431f31, dl)); 4130 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4131 getF32Constant(DAG, 0x3ea21fb2, dl)); 4132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4133 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4134 getF32Constant(DAG, 0x3f6ae232, dl)); 4135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4137 getF32Constant(DAG, 0x3f25f7c3, dl)); 4138 } else { // LimitFloatPrecision <= 18 4139 // For floating-point precision of 18: 4140 // 4141 // Log10ofMantissa = 4142 // -0.84299375f + 4143 // (1.5327582f + 4144 // (-1.0688956f + 4145 // (0.49102474f + 4146 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4147 // 4148 // error 0.0000037995730, which is better than 18 bits 4149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4150 getF32Constant(DAG, 0x3c5d51ce, dl)); 4151 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4152 getF32Constant(DAG, 0x3e00685a, dl)); 4153 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4154 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4155 getF32Constant(DAG, 0x3efb6798, dl)); 4156 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4157 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4158 getF32Constant(DAG, 0x3f88d192, dl)); 4159 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4160 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4161 getF32Constant(DAG, 0x3fc4316c, dl)); 4162 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4163 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4164 getF32Constant(DAG, 0x3f57ce70, dl)); 4165 } 4166 4167 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4168 } 4169 4170 // No special expansion. 4171 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4172 } 4173 4174 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4175 /// limited-precision mode. 4176 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4177 const TargetLowering &TLI) { 4178 if (Op.getValueType() == MVT::f32 && 4179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4180 return getLimitedPrecisionExp2(Op, dl, DAG); 4181 4182 // No special expansion. 4183 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4184 } 4185 4186 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4187 /// limited-precision mode with x == 10.0f. 4188 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4189 SelectionDAG &DAG, const TargetLowering &TLI) { 4190 bool IsExp10 = false; 4191 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4193 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4194 APFloat Ten(10.0f); 4195 IsExp10 = LHSC->isExactlyValue(Ten); 4196 } 4197 } 4198 4199 // TODO: What fast-math-flags should be set on the FMUL node? 4200 if (IsExp10) { 4201 // Put the exponent in the right bit position for later addition to the 4202 // final result: 4203 // 4204 // #define LOG2OF10 3.3219281f 4205 // t0 = Op * LOG2OF10; 4206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4207 getF32Constant(DAG, 0x40549a78, dl)); 4208 return getLimitedPrecisionExp2(t0, dl, DAG); 4209 } 4210 4211 // No special expansion. 4212 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4213 } 4214 4215 4216 /// ExpandPowI - Expand a llvm.powi intrinsic. 4217 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4218 SelectionDAG &DAG) { 4219 // If RHS is a constant, we can expand this out to a multiplication tree, 4220 // otherwise we end up lowering to a call to __powidf2 (for example). When 4221 // optimizing for size, we only want to do this if the expansion would produce 4222 // a small number of multiplies, otherwise we do the full expansion. 4223 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4224 // Get the exponent as a positive value. 4225 unsigned Val = RHSC->getSExtValue(); 4226 if ((int)Val < 0) Val = -Val; 4227 4228 // powi(x, 0) -> 1.0 4229 if (Val == 0) 4230 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4231 4232 const Function *F = DAG.getMachineFunction().getFunction(); 4233 if (!F->optForSize() || 4234 // If optimizing for size, don't insert too many multiplies. 4235 // This inserts up to 5 multiplies. 4236 countPopulation(Val) + Log2_32(Val) < 7) { 4237 // We use the simple binary decomposition method to generate the multiply 4238 // sequence. There are more optimal ways to do this (for example, 4239 // powi(x,15) generates one more multiply than it should), but this has 4240 // the benefit of being both really simple and much better than a libcall. 4241 SDValue Res; // Logically starts equal to 1.0 4242 SDValue CurSquare = LHS; 4243 // TODO: Intrinsics should have fast-math-flags that propagate to these 4244 // nodes. 4245 while (Val) { 4246 if (Val & 1) { 4247 if (Res.getNode()) 4248 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4249 else 4250 Res = CurSquare; // 1.0*CurSquare. 4251 } 4252 4253 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4254 CurSquare, CurSquare); 4255 Val >>= 1; 4256 } 4257 4258 // If the original was negative, invert the result, producing 1/(x*x*x). 4259 if (RHSC->getSExtValue() < 0) 4260 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4261 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4262 return Res; 4263 } 4264 } 4265 4266 // Otherwise, expand to a libcall. 4267 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4268 } 4269 4270 // getUnderlyingArgReg - Find underlying register used for a truncated or 4271 // bitcasted argument. 4272 static unsigned getUnderlyingArgReg(const SDValue &N) { 4273 switch (N.getOpcode()) { 4274 case ISD::CopyFromReg: 4275 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4276 case ISD::BITCAST: 4277 case ISD::AssertZext: 4278 case ISD::AssertSext: 4279 case ISD::TRUNCATE: 4280 return getUnderlyingArgReg(N.getOperand(0)); 4281 default: 4282 return 0; 4283 } 4284 } 4285 4286 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4287 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4288 /// At the end of instruction selection, they will be inserted to the entry BB. 4289 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4290 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4291 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4292 const Argument *Arg = dyn_cast<Argument>(V); 4293 if (!Arg) 4294 return false; 4295 4296 MachineFunction &MF = DAG.getMachineFunction(); 4297 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4298 4299 // Ignore inlined function arguments here. 4300 // 4301 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4302 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4303 return false; 4304 4305 Optional<MachineOperand> Op; 4306 // Some arguments' frame index is recorded during argument lowering. 4307 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4308 Op = MachineOperand::CreateFI(FI); 4309 4310 if (!Op && N.getNode()) { 4311 unsigned Reg = getUnderlyingArgReg(N); 4312 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4313 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4314 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4315 if (PR) 4316 Reg = PR; 4317 } 4318 if (Reg) 4319 Op = MachineOperand::CreateReg(Reg, false); 4320 } 4321 4322 if (!Op) { 4323 // Check if ValueMap has reg number. 4324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4325 if (VMI != FuncInfo.ValueMap.end()) 4326 Op = MachineOperand::CreateReg(VMI->second, false); 4327 } 4328 4329 if (!Op && N.getNode()) 4330 // Check if frame index is available. 4331 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4332 if (FrameIndexSDNode *FINode = 4333 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4334 Op = MachineOperand::CreateFI(FINode->getIndex()); 4335 4336 if (!Op) 4337 return false; 4338 4339 assert(Variable->isValidLocationForIntrinsic(DL) && 4340 "Expected inlined-at fields to agree"); 4341 if (Op->isReg()) 4342 FuncInfo.ArgDbgValues.push_back( 4343 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4344 Op->getReg(), Offset, Variable, Expr)); 4345 else 4346 FuncInfo.ArgDbgValues.push_back( 4347 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4348 .addOperand(*Op) 4349 .addImm(Offset) 4350 .addMetadata(Variable) 4351 .addMetadata(Expr)); 4352 4353 return true; 4354 } 4355 4356 // VisualStudio defines setjmp as _setjmp 4357 #if defined(_MSC_VER) && defined(setjmp) && \ 4358 !defined(setjmp_undefined_for_msvc) 4359 # pragma push_macro("setjmp") 4360 # undef setjmp 4361 # define setjmp_undefined_for_msvc 4362 #endif 4363 4364 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4365 /// we want to emit this as a call to a named external function, return the name 4366 /// otherwise lower it and return null. 4367 const char * 4368 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4370 SDLoc sdl = getCurSDLoc(); 4371 DebugLoc dl = getCurDebugLoc(); 4372 SDValue Res; 4373 4374 switch (Intrinsic) { 4375 default: 4376 // By default, turn this into a target intrinsic node. 4377 visitTargetIntrinsic(I, Intrinsic); 4378 return nullptr; 4379 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4380 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4381 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4382 case Intrinsic::returnaddress: 4383 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4384 TLI.getPointerTy(DAG.getDataLayout()), 4385 getValue(I.getArgOperand(0)))); 4386 return nullptr; 4387 case Intrinsic::frameaddress: 4388 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4389 TLI.getPointerTy(DAG.getDataLayout()), 4390 getValue(I.getArgOperand(0)))); 4391 return nullptr; 4392 case Intrinsic::read_register: { 4393 Value *Reg = I.getArgOperand(0); 4394 SDValue Chain = getRoot(); 4395 SDValue RegName = 4396 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4397 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4398 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4399 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4400 setValue(&I, Res); 4401 DAG.setRoot(Res.getValue(1)); 4402 return nullptr; 4403 } 4404 case Intrinsic::write_register: { 4405 Value *Reg = I.getArgOperand(0); 4406 Value *RegValue = I.getArgOperand(1); 4407 SDValue Chain = getRoot(); 4408 SDValue RegName = 4409 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4410 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4411 RegName, getValue(RegValue))); 4412 return nullptr; 4413 } 4414 case Intrinsic::setjmp: 4415 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4416 case Intrinsic::longjmp: 4417 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4418 case Intrinsic::memcpy: { 4419 SDValue Op1 = getValue(I.getArgOperand(0)); 4420 SDValue Op2 = getValue(I.getArgOperand(1)); 4421 SDValue Op3 = getValue(I.getArgOperand(2)); 4422 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4423 if (!Align) 4424 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4425 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4426 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4427 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4428 false, isTC, 4429 MachinePointerInfo(I.getArgOperand(0)), 4430 MachinePointerInfo(I.getArgOperand(1))); 4431 updateDAGForMaybeTailCall(MC); 4432 return nullptr; 4433 } 4434 case Intrinsic::memset: { 4435 SDValue Op1 = getValue(I.getArgOperand(0)); 4436 SDValue Op2 = getValue(I.getArgOperand(1)); 4437 SDValue Op3 = getValue(I.getArgOperand(2)); 4438 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4439 if (!Align) 4440 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4441 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4442 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4443 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4444 isTC, MachinePointerInfo(I.getArgOperand(0))); 4445 updateDAGForMaybeTailCall(MS); 4446 return nullptr; 4447 } 4448 case Intrinsic::memmove: { 4449 SDValue Op1 = getValue(I.getArgOperand(0)); 4450 SDValue Op2 = getValue(I.getArgOperand(1)); 4451 SDValue Op3 = getValue(I.getArgOperand(2)); 4452 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4453 if (!Align) 4454 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4455 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4456 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4457 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4458 isTC, MachinePointerInfo(I.getArgOperand(0)), 4459 MachinePointerInfo(I.getArgOperand(1))); 4460 updateDAGForMaybeTailCall(MM); 4461 return nullptr; 4462 } 4463 case Intrinsic::dbg_declare: { 4464 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4465 DILocalVariable *Variable = DI.getVariable(); 4466 DIExpression *Expression = DI.getExpression(); 4467 const Value *Address = DI.getAddress(); 4468 assert(Variable && "Missing variable"); 4469 if (!Address) { 4470 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4471 return nullptr; 4472 } 4473 4474 // Check if address has undef value. 4475 if (isa<UndefValue>(Address) || 4476 (Address->use_empty() && !isa<Argument>(Address))) { 4477 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4478 return nullptr; 4479 } 4480 4481 SDValue &N = NodeMap[Address]; 4482 if (!N.getNode() && isa<Argument>(Address)) 4483 // Check unused arguments map. 4484 N = UnusedArgNodeMap[Address]; 4485 SDDbgValue *SDV; 4486 if (N.getNode()) { 4487 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4488 Address = BCI->getOperand(0); 4489 // Parameters are handled specially. 4490 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4491 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4492 if (isParameter && FINode) { 4493 // Byval parameter. We have a frame index at this point. 4494 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4495 FINode->getIndex(), 0, dl, SDNodeOrder); 4496 } else if (isa<Argument>(Address)) { 4497 // Address is an argument, so try to emit its dbg value using 4498 // virtual register info from the FuncInfo.ValueMap. 4499 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4500 N); 4501 return nullptr; 4502 } else { 4503 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4504 true, 0, dl, SDNodeOrder); 4505 } 4506 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4507 } else { 4508 // If Address is an argument then try to emit its dbg value using 4509 // virtual register info from the FuncInfo.ValueMap. 4510 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4511 N)) { 4512 // If variable is pinned by a alloca in dominating bb then 4513 // use StaticAllocaMap. 4514 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4515 if (AI->getParent() != DI.getParent()) { 4516 DenseMap<const AllocaInst*, int>::iterator SI = 4517 FuncInfo.StaticAllocaMap.find(AI); 4518 if (SI != FuncInfo.StaticAllocaMap.end()) { 4519 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4520 0, dl, SDNodeOrder); 4521 DAG.AddDbgValue(SDV, nullptr, false); 4522 return nullptr; 4523 } 4524 } 4525 } 4526 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4527 } 4528 } 4529 return nullptr; 4530 } 4531 case Intrinsic::dbg_value: { 4532 const DbgValueInst &DI = cast<DbgValueInst>(I); 4533 assert(DI.getVariable() && "Missing variable"); 4534 4535 DILocalVariable *Variable = DI.getVariable(); 4536 DIExpression *Expression = DI.getExpression(); 4537 uint64_t Offset = DI.getOffset(); 4538 const Value *V = DI.getValue(); 4539 if (!V) 4540 return nullptr; 4541 4542 SDDbgValue *SDV; 4543 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4544 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4545 SDNodeOrder); 4546 DAG.AddDbgValue(SDV, nullptr, false); 4547 } else { 4548 // Do not use getValue() in here; we don't want to generate code at 4549 // this point if it hasn't been done yet. 4550 SDValue N = NodeMap[V]; 4551 if (!N.getNode() && isa<Argument>(V)) 4552 // Check unused arguments map. 4553 N = UnusedArgNodeMap[V]; 4554 if (N.getNode()) { 4555 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4556 false, N)) { 4557 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4558 false, Offset, dl, SDNodeOrder); 4559 DAG.AddDbgValue(SDV, N.getNode(), false); 4560 } 4561 } else if (!V->use_empty() ) { 4562 // Do not call getValue(V) yet, as we don't want to generate code. 4563 // Remember it for later. 4564 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4565 DanglingDebugInfoMap[V] = DDI; 4566 } else { 4567 // We may expand this to cover more cases. One case where we have no 4568 // data available is an unreferenced parameter. 4569 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4570 } 4571 } 4572 4573 // Build a debug info table entry. 4574 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4575 V = BCI->getOperand(0); 4576 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4577 // Don't handle byval struct arguments or VLAs, for example. 4578 if (!AI) { 4579 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4580 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4581 return nullptr; 4582 } 4583 DenseMap<const AllocaInst*, int>::iterator SI = 4584 FuncInfo.StaticAllocaMap.find(AI); 4585 if (SI == FuncInfo.StaticAllocaMap.end()) 4586 return nullptr; // VLAs. 4587 return nullptr; 4588 } 4589 4590 case Intrinsic::eh_typeid_for: { 4591 // Find the type id for the given typeinfo. 4592 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4593 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4594 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4595 setValue(&I, Res); 4596 return nullptr; 4597 } 4598 4599 case Intrinsic::eh_return_i32: 4600 case Intrinsic::eh_return_i64: 4601 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4602 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4603 MVT::Other, 4604 getControlRoot(), 4605 getValue(I.getArgOperand(0)), 4606 getValue(I.getArgOperand(1)))); 4607 return nullptr; 4608 case Intrinsic::eh_unwind_init: 4609 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4610 return nullptr; 4611 case Intrinsic::eh_dwarf_cfa: { 4612 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4613 TLI.getPointerTy(DAG.getDataLayout())); 4614 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4615 CfaArg.getValueType(), 4616 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4617 CfaArg.getValueType()), 4618 CfaArg); 4619 SDValue FA = DAG.getNode( 4620 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4621 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4622 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4623 FA, Offset)); 4624 return nullptr; 4625 } 4626 case Intrinsic::eh_sjlj_callsite: { 4627 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4628 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4629 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4630 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4631 4632 MMI.setCurrentCallSite(CI->getZExtValue()); 4633 return nullptr; 4634 } 4635 case Intrinsic::eh_sjlj_functioncontext: { 4636 // Get and store the index of the function context. 4637 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4638 AllocaInst *FnCtx = 4639 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4640 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4641 MFI->setFunctionContextIndex(FI); 4642 return nullptr; 4643 } 4644 case Intrinsic::eh_sjlj_setjmp: { 4645 SDValue Ops[2]; 4646 Ops[0] = getRoot(); 4647 Ops[1] = getValue(I.getArgOperand(0)); 4648 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4649 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4650 setValue(&I, Op.getValue(0)); 4651 DAG.setRoot(Op.getValue(1)); 4652 return nullptr; 4653 } 4654 case Intrinsic::eh_sjlj_longjmp: { 4655 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4656 getRoot(), getValue(I.getArgOperand(0)))); 4657 return nullptr; 4658 } 4659 case Intrinsic::eh_sjlj_setup_dispatch: { 4660 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4661 getRoot())); 4662 return nullptr; 4663 } 4664 4665 case Intrinsic::masked_gather: 4666 visitMaskedGather(I); 4667 return nullptr; 4668 case Intrinsic::masked_load: 4669 visitMaskedLoad(I); 4670 return nullptr; 4671 case Intrinsic::masked_scatter: 4672 visitMaskedScatter(I); 4673 return nullptr; 4674 case Intrinsic::masked_store: 4675 visitMaskedStore(I); 4676 return nullptr; 4677 case Intrinsic::x86_mmx_pslli_w: 4678 case Intrinsic::x86_mmx_pslli_d: 4679 case Intrinsic::x86_mmx_pslli_q: 4680 case Intrinsic::x86_mmx_psrli_w: 4681 case Intrinsic::x86_mmx_psrli_d: 4682 case Intrinsic::x86_mmx_psrli_q: 4683 case Intrinsic::x86_mmx_psrai_w: 4684 case Intrinsic::x86_mmx_psrai_d: { 4685 SDValue ShAmt = getValue(I.getArgOperand(1)); 4686 if (isa<ConstantSDNode>(ShAmt)) { 4687 visitTargetIntrinsic(I, Intrinsic); 4688 return nullptr; 4689 } 4690 unsigned NewIntrinsic = 0; 4691 EVT ShAmtVT = MVT::v2i32; 4692 switch (Intrinsic) { 4693 case Intrinsic::x86_mmx_pslli_w: 4694 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4695 break; 4696 case Intrinsic::x86_mmx_pslli_d: 4697 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4698 break; 4699 case Intrinsic::x86_mmx_pslli_q: 4700 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4701 break; 4702 case Intrinsic::x86_mmx_psrli_w: 4703 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4704 break; 4705 case Intrinsic::x86_mmx_psrli_d: 4706 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4707 break; 4708 case Intrinsic::x86_mmx_psrli_q: 4709 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4710 break; 4711 case Intrinsic::x86_mmx_psrai_w: 4712 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4713 break; 4714 case Intrinsic::x86_mmx_psrai_d: 4715 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4716 break; 4717 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4718 } 4719 4720 // The vector shift intrinsics with scalars uses 32b shift amounts but 4721 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4722 // to be zero. 4723 // We must do this early because v2i32 is not a legal type. 4724 SDValue ShOps[2]; 4725 ShOps[0] = ShAmt; 4726 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4727 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4728 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4730 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4731 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4732 getValue(I.getArgOperand(0)), ShAmt); 4733 setValue(&I, Res); 4734 return nullptr; 4735 } 4736 case Intrinsic::convertff: 4737 case Intrinsic::convertfsi: 4738 case Intrinsic::convertfui: 4739 case Intrinsic::convertsif: 4740 case Intrinsic::convertuif: 4741 case Intrinsic::convertss: 4742 case Intrinsic::convertsu: 4743 case Intrinsic::convertus: 4744 case Intrinsic::convertuu: { 4745 ISD::CvtCode Code = ISD::CVT_INVALID; 4746 switch (Intrinsic) { 4747 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4748 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4749 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4750 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4751 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4752 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4753 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4754 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4755 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4756 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4757 } 4758 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4759 const Value *Op1 = I.getArgOperand(0); 4760 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4761 DAG.getValueType(DestVT), 4762 DAG.getValueType(getValue(Op1).getValueType()), 4763 getValue(I.getArgOperand(1)), 4764 getValue(I.getArgOperand(2)), 4765 Code); 4766 setValue(&I, Res); 4767 return nullptr; 4768 } 4769 case Intrinsic::powi: 4770 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4771 getValue(I.getArgOperand(1)), DAG)); 4772 return nullptr; 4773 case Intrinsic::log: 4774 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4775 return nullptr; 4776 case Intrinsic::log2: 4777 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4778 return nullptr; 4779 case Intrinsic::log10: 4780 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4781 return nullptr; 4782 case Intrinsic::exp: 4783 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4784 return nullptr; 4785 case Intrinsic::exp2: 4786 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4787 return nullptr; 4788 case Intrinsic::pow: 4789 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4790 getValue(I.getArgOperand(1)), DAG, TLI)); 4791 return nullptr; 4792 case Intrinsic::sqrt: 4793 case Intrinsic::fabs: 4794 case Intrinsic::sin: 4795 case Intrinsic::cos: 4796 case Intrinsic::floor: 4797 case Intrinsic::ceil: 4798 case Intrinsic::trunc: 4799 case Intrinsic::rint: 4800 case Intrinsic::nearbyint: 4801 case Intrinsic::round: { 4802 unsigned Opcode; 4803 switch (Intrinsic) { 4804 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4805 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4806 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4807 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4808 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4809 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4810 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4811 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4812 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4813 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4814 case Intrinsic::round: Opcode = ISD::FROUND; break; 4815 } 4816 4817 setValue(&I, DAG.getNode(Opcode, sdl, 4818 getValue(I.getArgOperand(0)).getValueType(), 4819 getValue(I.getArgOperand(0)))); 4820 return nullptr; 4821 } 4822 case Intrinsic::minnum: 4823 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 getValue(I.getArgOperand(0)), 4826 getValue(I.getArgOperand(1)))); 4827 return nullptr; 4828 case Intrinsic::maxnum: 4829 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4830 getValue(I.getArgOperand(0)).getValueType(), 4831 getValue(I.getArgOperand(0)), 4832 getValue(I.getArgOperand(1)))); 4833 return nullptr; 4834 case Intrinsic::copysign: 4835 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4836 getValue(I.getArgOperand(0)).getValueType(), 4837 getValue(I.getArgOperand(0)), 4838 getValue(I.getArgOperand(1)))); 4839 return nullptr; 4840 case Intrinsic::fma: 4841 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4842 getValue(I.getArgOperand(0)).getValueType(), 4843 getValue(I.getArgOperand(0)), 4844 getValue(I.getArgOperand(1)), 4845 getValue(I.getArgOperand(2)))); 4846 return nullptr; 4847 case Intrinsic::fmuladd: { 4848 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4849 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4850 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4851 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4852 getValue(I.getArgOperand(0)).getValueType(), 4853 getValue(I.getArgOperand(0)), 4854 getValue(I.getArgOperand(1)), 4855 getValue(I.getArgOperand(2)))); 4856 } else { 4857 // TODO: Intrinsic calls should have fast-math-flags. 4858 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4859 getValue(I.getArgOperand(0)).getValueType(), 4860 getValue(I.getArgOperand(0)), 4861 getValue(I.getArgOperand(1))); 4862 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4863 getValue(I.getArgOperand(0)).getValueType(), 4864 Mul, 4865 getValue(I.getArgOperand(2))); 4866 setValue(&I, Add); 4867 } 4868 return nullptr; 4869 } 4870 case Intrinsic::convert_to_fp16: 4871 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4872 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4873 getValue(I.getArgOperand(0)), 4874 DAG.getTargetConstant(0, sdl, 4875 MVT::i32)))); 4876 return nullptr; 4877 case Intrinsic::convert_from_fp16: 4878 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4879 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4880 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4881 getValue(I.getArgOperand(0))))); 4882 return nullptr; 4883 case Intrinsic::pcmarker: { 4884 SDValue Tmp = getValue(I.getArgOperand(0)); 4885 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4886 return nullptr; 4887 } 4888 case Intrinsic::readcyclecounter: { 4889 SDValue Op = getRoot(); 4890 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4891 DAG.getVTList(MVT::i64, MVT::Other), Op); 4892 setValue(&I, Res); 4893 DAG.setRoot(Res.getValue(1)); 4894 return nullptr; 4895 } 4896 case Intrinsic::bitreverse: 4897 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4898 getValue(I.getArgOperand(0)).getValueType(), 4899 getValue(I.getArgOperand(0)))); 4900 return nullptr; 4901 case Intrinsic::bswap: 4902 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4903 getValue(I.getArgOperand(0)).getValueType(), 4904 getValue(I.getArgOperand(0)))); 4905 return nullptr; 4906 case Intrinsic::cttz: { 4907 SDValue Arg = getValue(I.getArgOperand(0)); 4908 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4909 EVT Ty = Arg.getValueType(); 4910 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4911 sdl, Ty, Arg)); 4912 return nullptr; 4913 } 4914 case Intrinsic::ctlz: { 4915 SDValue Arg = getValue(I.getArgOperand(0)); 4916 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4917 EVT Ty = Arg.getValueType(); 4918 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4919 sdl, Ty, Arg)); 4920 return nullptr; 4921 } 4922 case Intrinsic::ctpop: { 4923 SDValue Arg = getValue(I.getArgOperand(0)); 4924 EVT Ty = Arg.getValueType(); 4925 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4926 return nullptr; 4927 } 4928 case Intrinsic::stacksave: { 4929 SDValue Op = getRoot(); 4930 Res = DAG.getNode( 4931 ISD::STACKSAVE, sdl, 4932 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4933 setValue(&I, Res); 4934 DAG.setRoot(Res.getValue(1)); 4935 return nullptr; 4936 } 4937 case Intrinsic::stackrestore: { 4938 Res = getValue(I.getArgOperand(0)); 4939 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4940 return nullptr; 4941 } 4942 case Intrinsic::get_dynamic_area_offset: { 4943 SDValue Op = getRoot(); 4944 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4945 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4946 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4947 // target. 4948 if (PtrTy != ResTy) 4949 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4950 " intrinsic!"); 4951 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4952 Op); 4953 DAG.setRoot(Op); 4954 setValue(&I, Res); 4955 return nullptr; 4956 } 4957 case Intrinsic::stackprotector: { 4958 // Emit code into the DAG to store the stack guard onto the stack. 4959 MachineFunction &MF = DAG.getMachineFunction(); 4960 MachineFrameInfo *MFI = MF.getFrameInfo(); 4961 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4962 SDValue Src, Chain = getRoot(); 4963 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4964 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4965 4966 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4967 // global variable __stack_chk_guard. 4968 if (!GV) 4969 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4970 if (BC->getOpcode() == Instruction::BitCast) 4971 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4972 4973 if (GV && TLI.useLoadStackGuardNode()) { 4974 // Emit a LOAD_STACK_GUARD node. 4975 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4976 sdl, PtrTy, Chain); 4977 MachinePointerInfo MPInfo(GV); 4978 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4979 unsigned Flags = MachineMemOperand::MOLoad | 4980 MachineMemOperand::MOInvariant; 4981 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4982 PtrTy.getSizeInBits() / 8, 4983 DAG.getEVTAlignment(PtrTy)); 4984 Node->setMemRefs(MemRefs, MemRefs + 1); 4985 4986 // Copy the guard value to a virtual register so that it can be 4987 // retrieved in the epilogue. 4988 Src = SDValue(Node, 0); 4989 const TargetRegisterClass *RC = 4990 TLI.getRegClassFor(Src.getSimpleValueType()); 4991 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4992 4993 SPDescriptor.setGuardReg(Reg); 4994 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4995 } else { 4996 Src = getValue(I.getArgOperand(0)); // The guard's value. 4997 } 4998 4999 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5000 5001 int FI = FuncInfo.StaticAllocaMap[Slot]; 5002 MFI->setStackProtectorIndex(FI); 5003 5004 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5005 5006 // Store the stack protector onto the stack. 5007 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5008 DAG.getMachineFunction(), FI), 5009 true, false, 0); 5010 setValue(&I, Res); 5011 DAG.setRoot(Res); 5012 return nullptr; 5013 } 5014 case Intrinsic::objectsize: { 5015 // If we don't know by now, we're never going to know. 5016 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5017 5018 assert(CI && "Non-constant type in __builtin_object_size?"); 5019 5020 SDValue Arg = getValue(I.getCalledValue()); 5021 EVT Ty = Arg.getValueType(); 5022 5023 if (CI->isZero()) 5024 Res = DAG.getConstant(-1ULL, sdl, Ty); 5025 else 5026 Res = DAG.getConstant(0, sdl, Ty); 5027 5028 setValue(&I, Res); 5029 return nullptr; 5030 } 5031 case Intrinsic::annotation: 5032 case Intrinsic::ptr_annotation: 5033 // Drop the intrinsic, but forward the value 5034 setValue(&I, getValue(I.getOperand(0))); 5035 return nullptr; 5036 case Intrinsic::assume: 5037 case Intrinsic::var_annotation: 5038 // Discard annotate attributes and assumptions 5039 return nullptr; 5040 5041 case Intrinsic::init_trampoline: { 5042 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5043 5044 SDValue Ops[6]; 5045 Ops[0] = getRoot(); 5046 Ops[1] = getValue(I.getArgOperand(0)); 5047 Ops[2] = getValue(I.getArgOperand(1)); 5048 Ops[3] = getValue(I.getArgOperand(2)); 5049 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5050 Ops[5] = DAG.getSrcValue(F); 5051 5052 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5053 5054 DAG.setRoot(Res); 5055 return nullptr; 5056 } 5057 case Intrinsic::adjust_trampoline: { 5058 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5059 TLI.getPointerTy(DAG.getDataLayout()), 5060 getValue(I.getArgOperand(0)))); 5061 return nullptr; 5062 } 5063 case Intrinsic::gcroot: 5064 if (GFI) { 5065 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5066 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5067 5068 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5069 GFI->addStackRoot(FI->getIndex(), TypeMap); 5070 } 5071 return nullptr; 5072 case Intrinsic::gcread: 5073 case Intrinsic::gcwrite: 5074 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5075 case Intrinsic::flt_rounds: 5076 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5077 return nullptr; 5078 5079 case Intrinsic::expect: { 5080 // Just replace __builtin_expect(exp, c) with EXP. 5081 setValue(&I, getValue(I.getArgOperand(0))); 5082 return nullptr; 5083 } 5084 5085 case Intrinsic::debugtrap: 5086 case Intrinsic::trap: { 5087 StringRef TrapFuncName = 5088 I.getAttributes() 5089 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5090 .getValueAsString(); 5091 if (TrapFuncName.empty()) { 5092 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5093 ISD::TRAP : ISD::DEBUGTRAP; 5094 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5095 return nullptr; 5096 } 5097 TargetLowering::ArgListTy Args; 5098 5099 TargetLowering::CallLoweringInfo CLI(DAG); 5100 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5101 CallingConv::C, I.getType(), 5102 DAG.getExternalSymbol(TrapFuncName.data(), 5103 TLI.getPointerTy(DAG.getDataLayout())), 5104 std::move(Args), 0); 5105 5106 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5107 DAG.setRoot(Result.second); 5108 return nullptr; 5109 } 5110 5111 case Intrinsic::uadd_with_overflow: 5112 case Intrinsic::sadd_with_overflow: 5113 case Intrinsic::usub_with_overflow: 5114 case Intrinsic::ssub_with_overflow: 5115 case Intrinsic::umul_with_overflow: 5116 case Intrinsic::smul_with_overflow: { 5117 ISD::NodeType Op; 5118 switch (Intrinsic) { 5119 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5120 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5121 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5122 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5123 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5124 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5125 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5126 } 5127 SDValue Op1 = getValue(I.getArgOperand(0)); 5128 SDValue Op2 = getValue(I.getArgOperand(1)); 5129 5130 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5131 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5132 return nullptr; 5133 } 5134 case Intrinsic::prefetch: { 5135 SDValue Ops[5]; 5136 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5137 Ops[0] = getRoot(); 5138 Ops[1] = getValue(I.getArgOperand(0)); 5139 Ops[2] = getValue(I.getArgOperand(1)); 5140 Ops[3] = getValue(I.getArgOperand(2)); 5141 Ops[4] = getValue(I.getArgOperand(3)); 5142 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5143 DAG.getVTList(MVT::Other), Ops, 5144 EVT::getIntegerVT(*Context, 8), 5145 MachinePointerInfo(I.getArgOperand(0)), 5146 0, /* align */ 5147 false, /* volatile */ 5148 rw==0, /* read */ 5149 rw==1)); /* write */ 5150 return nullptr; 5151 } 5152 case Intrinsic::lifetime_start: 5153 case Intrinsic::lifetime_end: { 5154 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5155 // Stack coloring is not enabled in O0, discard region information. 5156 if (TM.getOptLevel() == CodeGenOpt::None) 5157 return nullptr; 5158 5159 SmallVector<Value *, 4> Allocas; 5160 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5161 5162 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5163 E = Allocas.end(); Object != E; ++Object) { 5164 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5165 5166 // Could not find an Alloca. 5167 if (!LifetimeObject) 5168 continue; 5169 5170 // First check that the Alloca is static, otherwise it won't have a 5171 // valid frame index. 5172 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5173 if (SI == FuncInfo.StaticAllocaMap.end()) 5174 return nullptr; 5175 5176 int FI = SI->second; 5177 5178 SDValue Ops[2]; 5179 Ops[0] = getRoot(); 5180 Ops[1] = 5181 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5182 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5183 5184 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5185 DAG.setRoot(Res); 5186 } 5187 return nullptr; 5188 } 5189 case Intrinsic::invariant_start: 5190 // Discard region information. 5191 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5192 return nullptr; 5193 case Intrinsic::invariant_end: 5194 // Discard region information. 5195 return nullptr; 5196 case Intrinsic::stackprotectorcheck: { 5197 // Do not actually emit anything for this basic block. Instead we initialize 5198 // the stack protector descriptor and export the guard variable so we can 5199 // access it in FinishBasicBlock. 5200 const BasicBlock *BB = I.getParent(); 5201 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5202 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5203 5204 // Flush our exports since we are going to process a terminator. 5205 (void)getControlRoot(); 5206 return nullptr; 5207 } 5208 case Intrinsic::clear_cache: 5209 return TLI.getClearCacheBuiltinName(); 5210 case Intrinsic::donothing: 5211 // ignore 5212 return nullptr; 5213 case Intrinsic::experimental_stackmap: { 5214 visitStackmap(I); 5215 return nullptr; 5216 } 5217 case Intrinsic::experimental_patchpoint_void: 5218 case Intrinsic::experimental_patchpoint_i64: { 5219 visitPatchpoint(&I); 5220 return nullptr; 5221 } 5222 case Intrinsic::experimental_gc_statepoint: { 5223 visitStatepoint(I); 5224 return nullptr; 5225 } 5226 case Intrinsic::experimental_gc_result: { 5227 visitGCResult(I); 5228 return nullptr; 5229 } 5230 case Intrinsic::experimental_gc_relocate: { 5231 visitGCRelocate(cast<GCRelocateInst>(I)); 5232 return nullptr; 5233 } 5234 case Intrinsic::instrprof_increment: 5235 llvm_unreachable("instrprof failed to lower an increment"); 5236 case Intrinsic::instrprof_value_profile: 5237 llvm_unreachable("instrprof failed to lower a value profiling call"); 5238 case Intrinsic::localescape: { 5239 MachineFunction &MF = DAG.getMachineFunction(); 5240 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5241 5242 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5243 // is the same on all targets. 5244 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5245 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5246 if (isa<ConstantPointerNull>(Arg)) 5247 continue; // Skip null pointers. They represent a hole in index space. 5248 AllocaInst *Slot = cast<AllocaInst>(Arg); 5249 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5250 "can only escape static allocas"); 5251 int FI = FuncInfo.StaticAllocaMap[Slot]; 5252 MCSymbol *FrameAllocSym = 5253 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5254 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5256 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5257 .addSym(FrameAllocSym) 5258 .addFrameIndex(FI); 5259 } 5260 5261 return nullptr; 5262 } 5263 5264 case Intrinsic::localrecover: { 5265 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5266 MachineFunction &MF = DAG.getMachineFunction(); 5267 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5268 5269 // Get the symbol that defines the frame offset. 5270 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5271 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5272 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5273 MCSymbol *FrameAllocSym = 5274 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5275 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5276 5277 // Create a MCSymbol for the label to avoid any target lowering 5278 // that would make this PC relative. 5279 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5280 SDValue OffsetVal = 5281 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5282 5283 // Add the offset to the FP. 5284 Value *FP = I.getArgOperand(1); 5285 SDValue FPVal = getValue(FP); 5286 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5287 setValue(&I, Add); 5288 5289 return nullptr; 5290 } 5291 5292 case Intrinsic::eh_exceptionpointer: 5293 case Intrinsic::eh_exceptioncode: { 5294 // Get the exception pointer vreg, copy from it, and resize it to fit. 5295 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5296 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5297 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5298 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5299 SDValue N = 5300 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5301 if (Intrinsic == Intrinsic::eh_exceptioncode) 5302 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5303 setValue(&I, N); 5304 return nullptr; 5305 } 5306 } 5307 } 5308 5309 std::pair<SDValue, SDValue> 5310 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5311 const BasicBlock *EHPadBB) { 5312 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5313 MCSymbol *BeginLabel = nullptr; 5314 5315 if (EHPadBB) { 5316 // Insert a label before the invoke call to mark the try range. This can be 5317 // used to detect deletion of the invoke via the MachineModuleInfo. 5318 BeginLabel = MMI.getContext().createTempSymbol(); 5319 5320 // For SjLj, keep track of which landing pads go with which invokes 5321 // so as to maintain the ordering of pads in the LSDA. 5322 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5323 if (CallSiteIndex) { 5324 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5325 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5326 5327 // Now that the call site is handled, stop tracking it. 5328 MMI.setCurrentCallSite(0); 5329 } 5330 5331 // Both PendingLoads and PendingExports must be flushed here; 5332 // this call might not return. 5333 (void)getRoot(); 5334 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5335 5336 CLI.setChain(getRoot()); 5337 } 5338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5339 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5340 5341 assert((CLI.IsTailCall || Result.second.getNode()) && 5342 "Non-null chain expected with non-tail call!"); 5343 assert((Result.second.getNode() || !Result.first.getNode()) && 5344 "Null value expected with tail call!"); 5345 5346 if (!Result.second.getNode()) { 5347 // As a special case, a null chain means that a tail call has been emitted 5348 // and the DAG root is already updated. 5349 HasTailCall = true; 5350 5351 // Since there's no actual continuation from this block, nothing can be 5352 // relying on us setting vregs for them. 5353 PendingExports.clear(); 5354 } else { 5355 DAG.setRoot(Result.second); 5356 } 5357 5358 if (EHPadBB) { 5359 // Insert a label at the end of the invoke call to mark the try range. This 5360 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5361 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5362 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5363 5364 // Inform MachineModuleInfo of range. 5365 if (MMI.hasEHFunclets()) { 5366 assert(CLI.CS); 5367 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5368 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5369 BeginLabel, EndLabel); 5370 } else { 5371 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5372 } 5373 } 5374 5375 return Result; 5376 } 5377 5378 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5379 bool isTailCall, 5380 const BasicBlock *EHPadBB) { 5381 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5382 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5383 Type *RetTy = FTy->getReturnType(); 5384 5385 TargetLowering::ArgListTy Args; 5386 TargetLowering::ArgListEntry Entry; 5387 Args.reserve(CS.arg_size()); 5388 5389 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5390 i != e; ++i) { 5391 const Value *V = *i; 5392 5393 // Skip empty types 5394 if (V->getType()->isEmptyTy()) 5395 continue; 5396 5397 SDValue ArgNode = getValue(V); 5398 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5399 5400 // Skip the first return-type Attribute to get to params. 5401 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5402 Args.push_back(Entry); 5403 5404 // If we have an explicit sret argument that is an Instruction, (i.e., it 5405 // might point to function-local memory), we can't meaningfully tail-call. 5406 if (Entry.isSRet && isa<Instruction>(V)) 5407 isTailCall = false; 5408 } 5409 5410 // Check if target-independent constraints permit a tail call here. 5411 // Target-dependent constraints are checked within TLI->LowerCallTo. 5412 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5413 isTailCall = false; 5414 5415 TargetLowering::CallLoweringInfo CLI(DAG); 5416 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5417 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5418 .setTailCall(isTailCall); 5419 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5420 5421 if (Result.first.getNode()) 5422 setValue(CS.getInstruction(), Result.first); 5423 } 5424 5425 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5426 /// value is equal or not-equal to zero. 5427 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5428 for (const User *U : V->users()) { 5429 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5430 if (IC->isEquality()) 5431 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5432 if (C->isNullValue()) 5433 continue; 5434 // Unknown instruction. 5435 return false; 5436 } 5437 return true; 5438 } 5439 5440 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5441 Type *LoadTy, 5442 SelectionDAGBuilder &Builder) { 5443 5444 // Check to see if this load can be trivially constant folded, e.g. if the 5445 // input is from a string literal. 5446 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5447 // Cast pointer to the type we really want to load. 5448 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5449 PointerType::getUnqual(LoadTy)); 5450 5451 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5452 const_cast<Constant *>(LoadInput), *Builder.DL)) 5453 return Builder.getValue(LoadCst); 5454 } 5455 5456 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5457 // still constant memory, the input chain can be the entry node. 5458 SDValue Root; 5459 bool ConstantMemory = false; 5460 5461 // Do not serialize (non-volatile) loads of constant memory with anything. 5462 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5463 Root = Builder.DAG.getEntryNode(); 5464 ConstantMemory = true; 5465 } else { 5466 // Do not serialize non-volatile loads against each other. 5467 Root = Builder.DAG.getRoot(); 5468 } 5469 5470 SDValue Ptr = Builder.getValue(PtrVal); 5471 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5472 Ptr, MachinePointerInfo(PtrVal), 5473 false /*volatile*/, 5474 false /*nontemporal*/, 5475 false /*isinvariant*/, 1 /* align=1 */); 5476 5477 if (!ConstantMemory) 5478 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5479 return LoadVal; 5480 } 5481 5482 /// processIntegerCallValue - Record the value for an instruction that 5483 /// produces an integer result, converting the type where necessary. 5484 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5485 SDValue Value, 5486 bool IsSigned) { 5487 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5488 I.getType(), true); 5489 if (IsSigned) 5490 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5491 else 5492 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5493 setValue(&I, Value); 5494 } 5495 5496 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5497 /// If so, return true and lower it, otherwise return false and it will be 5498 /// lowered like a normal call. 5499 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5500 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5501 if (I.getNumArgOperands() != 3) 5502 return false; 5503 5504 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5505 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5506 !I.getArgOperand(2)->getType()->isIntegerTy() || 5507 !I.getType()->isIntegerTy()) 5508 return false; 5509 5510 const Value *Size = I.getArgOperand(2); 5511 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5512 if (CSize && CSize->getZExtValue() == 0) { 5513 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5514 I.getType(), true); 5515 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5516 return true; 5517 } 5518 5519 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5520 std::pair<SDValue, SDValue> Res = 5521 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5522 getValue(LHS), getValue(RHS), getValue(Size), 5523 MachinePointerInfo(LHS), 5524 MachinePointerInfo(RHS)); 5525 if (Res.first.getNode()) { 5526 processIntegerCallValue(I, Res.first, true); 5527 PendingLoads.push_back(Res.second); 5528 return true; 5529 } 5530 5531 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5532 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5533 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5534 bool ActuallyDoIt = true; 5535 MVT LoadVT; 5536 Type *LoadTy; 5537 switch (CSize->getZExtValue()) { 5538 default: 5539 LoadVT = MVT::Other; 5540 LoadTy = nullptr; 5541 ActuallyDoIt = false; 5542 break; 5543 case 2: 5544 LoadVT = MVT::i16; 5545 LoadTy = Type::getInt16Ty(CSize->getContext()); 5546 break; 5547 case 4: 5548 LoadVT = MVT::i32; 5549 LoadTy = Type::getInt32Ty(CSize->getContext()); 5550 break; 5551 case 8: 5552 LoadVT = MVT::i64; 5553 LoadTy = Type::getInt64Ty(CSize->getContext()); 5554 break; 5555 /* 5556 case 16: 5557 LoadVT = MVT::v4i32; 5558 LoadTy = Type::getInt32Ty(CSize->getContext()); 5559 LoadTy = VectorType::get(LoadTy, 4); 5560 break; 5561 */ 5562 } 5563 5564 // This turns into unaligned loads. We only do this if the target natively 5565 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5566 // we'll only produce a small number of byte loads. 5567 5568 // Require that we can find a legal MVT, and only do this if the target 5569 // supports unaligned loads of that type. Expanding into byte loads would 5570 // bloat the code. 5571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5572 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5573 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5574 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5575 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5576 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5577 // TODO: Check alignment of src and dest ptrs. 5578 if (!TLI.isTypeLegal(LoadVT) || 5579 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5580 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5581 ActuallyDoIt = false; 5582 } 5583 5584 if (ActuallyDoIt) { 5585 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5586 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5587 5588 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5589 ISD::SETNE); 5590 processIntegerCallValue(I, Res, false); 5591 return true; 5592 } 5593 } 5594 5595 5596 return false; 5597 } 5598 5599 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5600 /// form. If so, return true and lower it, otherwise return false and it 5601 /// will be lowered like a normal call. 5602 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5603 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5604 if (I.getNumArgOperands() != 3) 5605 return false; 5606 5607 const Value *Src = I.getArgOperand(0); 5608 const Value *Char = I.getArgOperand(1); 5609 const Value *Length = I.getArgOperand(2); 5610 if (!Src->getType()->isPointerTy() || 5611 !Char->getType()->isIntegerTy() || 5612 !Length->getType()->isIntegerTy() || 5613 !I.getType()->isPointerTy()) 5614 return false; 5615 5616 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5617 std::pair<SDValue, SDValue> Res = 5618 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5619 getValue(Src), getValue(Char), getValue(Length), 5620 MachinePointerInfo(Src)); 5621 if (Res.first.getNode()) { 5622 setValue(&I, Res.first); 5623 PendingLoads.push_back(Res.second); 5624 return true; 5625 } 5626 5627 return false; 5628 } 5629 5630 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5631 /// optimized form. If so, return true and lower it, otherwise return false 5632 /// and it will be lowered like a normal call. 5633 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5634 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5635 if (I.getNumArgOperands() != 2) 5636 return false; 5637 5638 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5639 if (!Arg0->getType()->isPointerTy() || 5640 !Arg1->getType()->isPointerTy() || 5641 !I.getType()->isPointerTy()) 5642 return false; 5643 5644 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5645 std::pair<SDValue, SDValue> Res = 5646 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5647 getValue(Arg0), getValue(Arg1), 5648 MachinePointerInfo(Arg0), 5649 MachinePointerInfo(Arg1), isStpcpy); 5650 if (Res.first.getNode()) { 5651 setValue(&I, Res.first); 5652 DAG.setRoot(Res.second); 5653 return true; 5654 } 5655 5656 return false; 5657 } 5658 5659 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5660 /// If so, return true and lower it, otherwise return false and it will be 5661 /// lowered like a normal call. 5662 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5663 // Verify that the prototype makes sense. int strcmp(void*,void*) 5664 if (I.getNumArgOperands() != 2) 5665 return false; 5666 5667 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5668 if (!Arg0->getType()->isPointerTy() || 5669 !Arg1->getType()->isPointerTy() || 5670 !I.getType()->isIntegerTy()) 5671 return false; 5672 5673 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5674 std::pair<SDValue, SDValue> Res = 5675 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5676 getValue(Arg0), getValue(Arg1), 5677 MachinePointerInfo(Arg0), 5678 MachinePointerInfo(Arg1)); 5679 if (Res.first.getNode()) { 5680 processIntegerCallValue(I, Res.first, true); 5681 PendingLoads.push_back(Res.second); 5682 return true; 5683 } 5684 5685 return false; 5686 } 5687 5688 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5689 /// form. If so, return true and lower it, otherwise return false and it 5690 /// will be lowered like a normal call. 5691 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5692 // Verify that the prototype makes sense. size_t strlen(char *) 5693 if (I.getNumArgOperands() != 1) 5694 return false; 5695 5696 const Value *Arg0 = I.getArgOperand(0); 5697 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5698 return false; 5699 5700 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5701 std::pair<SDValue, SDValue> Res = 5702 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5703 getValue(Arg0), MachinePointerInfo(Arg0)); 5704 if (Res.first.getNode()) { 5705 processIntegerCallValue(I, Res.first, false); 5706 PendingLoads.push_back(Res.second); 5707 return true; 5708 } 5709 5710 return false; 5711 } 5712 5713 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5714 /// form. If so, return true and lower it, otherwise return false and it 5715 /// will be lowered like a normal call. 5716 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5717 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5718 if (I.getNumArgOperands() != 2) 5719 return false; 5720 5721 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5722 if (!Arg0->getType()->isPointerTy() || 5723 !Arg1->getType()->isIntegerTy() || 5724 !I.getType()->isIntegerTy()) 5725 return false; 5726 5727 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5728 std::pair<SDValue, SDValue> Res = 5729 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5730 getValue(Arg0), getValue(Arg1), 5731 MachinePointerInfo(Arg0)); 5732 if (Res.first.getNode()) { 5733 processIntegerCallValue(I, Res.first, false); 5734 PendingLoads.push_back(Res.second); 5735 return true; 5736 } 5737 5738 return false; 5739 } 5740 5741 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5742 /// operation (as expected), translate it to an SDNode with the specified opcode 5743 /// and return true. 5744 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5745 unsigned Opcode) { 5746 // Sanity check that it really is a unary floating-point call. 5747 if (I.getNumArgOperands() != 1 || 5748 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5749 I.getType() != I.getArgOperand(0)->getType() || 5750 !I.onlyReadsMemory()) 5751 return false; 5752 5753 SDValue Tmp = getValue(I.getArgOperand(0)); 5754 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5755 return true; 5756 } 5757 5758 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5759 /// operation (as expected), translate it to an SDNode with the specified opcode 5760 /// and return true. 5761 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5762 unsigned Opcode) { 5763 // Sanity check that it really is a binary floating-point call. 5764 if (I.getNumArgOperands() != 2 || 5765 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5766 I.getType() != I.getArgOperand(0)->getType() || 5767 I.getType() != I.getArgOperand(1)->getType() || 5768 !I.onlyReadsMemory()) 5769 return false; 5770 5771 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5772 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5773 EVT VT = Tmp0.getValueType(); 5774 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5775 return true; 5776 } 5777 5778 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5779 // Handle inline assembly differently. 5780 if (isa<InlineAsm>(I.getCalledValue())) { 5781 visitInlineAsm(&I); 5782 return; 5783 } 5784 5785 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5786 ComputeUsesVAFloatArgument(I, &MMI); 5787 5788 const char *RenameFn = nullptr; 5789 if (Function *F = I.getCalledFunction()) { 5790 if (F->isDeclaration()) { 5791 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5792 if (unsigned IID = II->getIntrinsicID(F)) { 5793 RenameFn = visitIntrinsicCall(I, IID); 5794 if (!RenameFn) 5795 return; 5796 } 5797 } 5798 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5799 RenameFn = visitIntrinsicCall(I, IID); 5800 if (!RenameFn) 5801 return; 5802 } 5803 } 5804 5805 // Check for well-known libc/libm calls. If the function is internal, it 5806 // can't be a library call. 5807 LibFunc::Func Func; 5808 if (!F->hasLocalLinkage() && F->hasName() && 5809 LibInfo->getLibFunc(F->getName(), Func) && 5810 LibInfo->hasOptimizedCodeGen(Func)) { 5811 switch (Func) { 5812 default: break; 5813 case LibFunc::copysign: 5814 case LibFunc::copysignf: 5815 case LibFunc::copysignl: 5816 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5817 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5818 I.getType() == I.getArgOperand(0)->getType() && 5819 I.getType() == I.getArgOperand(1)->getType() && 5820 I.onlyReadsMemory()) { 5821 SDValue LHS = getValue(I.getArgOperand(0)); 5822 SDValue RHS = getValue(I.getArgOperand(1)); 5823 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5824 LHS.getValueType(), LHS, RHS)); 5825 return; 5826 } 5827 break; 5828 case LibFunc::fabs: 5829 case LibFunc::fabsf: 5830 case LibFunc::fabsl: 5831 if (visitUnaryFloatCall(I, ISD::FABS)) 5832 return; 5833 break; 5834 case LibFunc::fmin: 5835 case LibFunc::fminf: 5836 case LibFunc::fminl: 5837 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5838 return; 5839 break; 5840 case LibFunc::fmax: 5841 case LibFunc::fmaxf: 5842 case LibFunc::fmaxl: 5843 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5844 return; 5845 break; 5846 case LibFunc::sin: 5847 case LibFunc::sinf: 5848 case LibFunc::sinl: 5849 if (visitUnaryFloatCall(I, ISD::FSIN)) 5850 return; 5851 break; 5852 case LibFunc::cos: 5853 case LibFunc::cosf: 5854 case LibFunc::cosl: 5855 if (visitUnaryFloatCall(I, ISD::FCOS)) 5856 return; 5857 break; 5858 case LibFunc::sqrt: 5859 case LibFunc::sqrtf: 5860 case LibFunc::sqrtl: 5861 case LibFunc::sqrt_finite: 5862 case LibFunc::sqrtf_finite: 5863 case LibFunc::sqrtl_finite: 5864 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5865 return; 5866 break; 5867 case LibFunc::floor: 5868 case LibFunc::floorf: 5869 case LibFunc::floorl: 5870 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5871 return; 5872 break; 5873 case LibFunc::nearbyint: 5874 case LibFunc::nearbyintf: 5875 case LibFunc::nearbyintl: 5876 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5877 return; 5878 break; 5879 case LibFunc::ceil: 5880 case LibFunc::ceilf: 5881 case LibFunc::ceill: 5882 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5883 return; 5884 break; 5885 case LibFunc::rint: 5886 case LibFunc::rintf: 5887 case LibFunc::rintl: 5888 if (visitUnaryFloatCall(I, ISD::FRINT)) 5889 return; 5890 break; 5891 case LibFunc::round: 5892 case LibFunc::roundf: 5893 case LibFunc::roundl: 5894 if (visitUnaryFloatCall(I, ISD::FROUND)) 5895 return; 5896 break; 5897 case LibFunc::trunc: 5898 case LibFunc::truncf: 5899 case LibFunc::truncl: 5900 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5901 return; 5902 break; 5903 case LibFunc::log2: 5904 case LibFunc::log2f: 5905 case LibFunc::log2l: 5906 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5907 return; 5908 break; 5909 case LibFunc::exp2: 5910 case LibFunc::exp2f: 5911 case LibFunc::exp2l: 5912 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5913 return; 5914 break; 5915 case LibFunc::memcmp: 5916 if (visitMemCmpCall(I)) 5917 return; 5918 break; 5919 case LibFunc::memchr: 5920 if (visitMemChrCall(I)) 5921 return; 5922 break; 5923 case LibFunc::strcpy: 5924 if (visitStrCpyCall(I, false)) 5925 return; 5926 break; 5927 case LibFunc::stpcpy: 5928 if (visitStrCpyCall(I, true)) 5929 return; 5930 break; 5931 case LibFunc::strcmp: 5932 if (visitStrCmpCall(I)) 5933 return; 5934 break; 5935 case LibFunc::strlen: 5936 if (visitStrLenCall(I)) 5937 return; 5938 break; 5939 case LibFunc::strnlen: 5940 if (visitStrNLenCall(I)) 5941 return; 5942 break; 5943 } 5944 } 5945 } 5946 5947 SDValue Callee; 5948 if (!RenameFn) 5949 Callee = getValue(I.getCalledValue()); 5950 else 5951 Callee = DAG.getExternalSymbol( 5952 RenameFn, 5953 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5954 5955 // Check if we can potentially perform a tail call. More detailed checking is 5956 // be done within LowerCallTo, after more information about the call is known. 5957 LowerCallTo(&I, Callee, I.isTailCall()); 5958 } 5959 5960 namespace { 5961 5962 /// AsmOperandInfo - This contains information for each constraint that we are 5963 /// lowering. 5964 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5965 public: 5966 /// CallOperand - If this is the result output operand or a clobber 5967 /// this is null, otherwise it is the incoming operand to the CallInst. 5968 /// This gets modified as the asm is processed. 5969 SDValue CallOperand; 5970 5971 /// AssignedRegs - If this is a register or register class operand, this 5972 /// contains the set of register corresponding to the operand. 5973 RegsForValue AssignedRegs; 5974 5975 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5976 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5977 } 5978 5979 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5980 /// corresponds to. If there is no Value* for this operand, it returns 5981 /// MVT::Other. 5982 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5983 const DataLayout &DL) const { 5984 if (!CallOperandVal) return MVT::Other; 5985 5986 if (isa<BasicBlock>(CallOperandVal)) 5987 return TLI.getPointerTy(DL); 5988 5989 llvm::Type *OpTy = CallOperandVal->getType(); 5990 5991 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5992 // If this is an indirect operand, the operand is a pointer to the 5993 // accessed type. 5994 if (isIndirect) { 5995 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5996 if (!PtrTy) 5997 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5998 OpTy = PtrTy->getElementType(); 5999 } 6000 6001 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6002 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6003 if (STy->getNumElements() == 1) 6004 OpTy = STy->getElementType(0); 6005 6006 // If OpTy is not a single value, it may be a struct/union that we 6007 // can tile with integers. 6008 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6009 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6010 switch (BitSize) { 6011 default: break; 6012 case 1: 6013 case 8: 6014 case 16: 6015 case 32: 6016 case 64: 6017 case 128: 6018 OpTy = IntegerType::get(Context, BitSize); 6019 break; 6020 } 6021 } 6022 6023 return TLI.getValueType(DL, OpTy, true); 6024 } 6025 }; 6026 6027 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6028 6029 } // end anonymous namespace 6030 6031 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6032 /// specified operand. We prefer to assign virtual registers, to allow the 6033 /// register allocator to handle the assignment process. However, if the asm 6034 /// uses features that we can't model on machineinstrs, we have SDISel do the 6035 /// allocation. This produces generally horrible, but correct, code. 6036 /// 6037 /// OpInfo describes the operand. 6038 /// 6039 static void GetRegistersForValue(SelectionDAG &DAG, 6040 const TargetLowering &TLI, 6041 SDLoc DL, 6042 SDISelAsmOperandInfo &OpInfo) { 6043 LLVMContext &Context = *DAG.getContext(); 6044 6045 MachineFunction &MF = DAG.getMachineFunction(); 6046 SmallVector<unsigned, 4> Regs; 6047 6048 // If this is a constraint for a single physreg, or a constraint for a 6049 // register class, find it. 6050 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6051 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6052 OpInfo.ConstraintCode, 6053 OpInfo.ConstraintVT); 6054 6055 unsigned NumRegs = 1; 6056 if (OpInfo.ConstraintVT != MVT::Other) { 6057 // If this is a FP input in an integer register (or visa versa) insert a bit 6058 // cast of the input value. More generally, handle any case where the input 6059 // value disagrees with the register class we plan to stick this in. 6060 if (OpInfo.Type == InlineAsm::isInput && 6061 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6062 // Try to convert to the first EVT that the reg class contains. If the 6063 // types are identical size, use a bitcast to convert (e.g. two differing 6064 // vector types). 6065 MVT RegVT = *PhysReg.second->vt_begin(); 6066 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6067 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6068 RegVT, OpInfo.CallOperand); 6069 OpInfo.ConstraintVT = RegVT; 6070 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6071 // If the input is a FP value and we want it in FP registers, do a 6072 // bitcast to the corresponding integer type. This turns an f64 value 6073 // into i64, which can be passed with two i32 values on a 32-bit 6074 // machine. 6075 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6076 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6077 RegVT, OpInfo.CallOperand); 6078 OpInfo.ConstraintVT = RegVT; 6079 } 6080 } 6081 6082 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6083 } 6084 6085 MVT RegVT; 6086 EVT ValueVT = OpInfo.ConstraintVT; 6087 6088 // If this is a constraint for a specific physical register, like {r17}, 6089 // assign it now. 6090 if (unsigned AssignedReg = PhysReg.first) { 6091 const TargetRegisterClass *RC = PhysReg.second; 6092 if (OpInfo.ConstraintVT == MVT::Other) 6093 ValueVT = *RC->vt_begin(); 6094 6095 // Get the actual register value type. This is important, because the user 6096 // may have asked for (e.g.) the AX register in i32 type. We need to 6097 // remember that AX is actually i16 to get the right extension. 6098 RegVT = *RC->vt_begin(); 6099 6100 // This is a explicit reference to a physical register. 6101 Regs.push_back(AssignedReg); 6102 6103 // If this is an expanded reference, add the rest of the regs to Regs. 6104 if (NumRegs != 1) { 6105 TargetRegisterClass::iterator I = RC->begin(); 6106 for (; *I != AssignedReg; ++I) 6107 assert(I != RC->end() && "Didn't find reg!"); 6108 6109 // Already added the first reg. 6110 --NumRegs; ++I; 6111 for (; NumRegs; --NumRegs, ++I) { 6112 assert(I != RC->end() && "Ran out of registers to allocate!"); 6113 Regs.push_back(*I); 6114 } 6115 } 6116 6117 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6118 return; 6119 } 6120 6121 // Otherwise, if this was a reference to an LLVM register class, create vregs 6122 // for this reference. 6123 if (const TargetRegisterClass *RC = PhysReg.second) { 6124 RegVT = *RC->vt_begin(); 6125 if (OpInfo.ConstraintVT == MVT::Other) 6126 ValueVT = RegVT; 6127 6128 // Create the appropriate number of virtual registers. 6129 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6130 for (; NumRegs; --NumRegs) 6131 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6132 6133 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6134 return; 6135 } 6136 6137 // Otherwise, we couldn't allocate enough registers for this. 6138 } 6139 6140 /// visitInlineAsm - Handle a call to an InlineAsm object. 6141 /// 6142 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6143 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6144 6145 /// ConstraintOperands - Information about all of the constraints. 6146 SDISelAsmOperandInfoVector ConstraintOperands; 6147 6148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6149 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6150 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6151 6152 bool hasMemory = false; 6153 6154 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6155 unsigned ResNo = 0; // ResNo - The result number of the next output. 6156 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6157 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6158 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6159 6160 MVT OpVT = MVT::Other; 6161 6162 // Compute the value type for each operand. 6163 switch (OpInfo.Type) { 6164 case InlineAsm::isOutput: 6165 // Indirect outputs just consume an argument. 6166 if (OpInfo.isIndirect) { 6167 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6168 break; 6169 } 6170 6171 // The return value of the call is this value. As such, there is no 6172 // corresponding argument. 6173 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6174 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6175 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6176 STy->getElementType(ResNo)); 6177 } else { 6178 assert(ResNo == 0 && "Asm only has one result!"); 6179 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6180 } 6181 ++ResNo; 6182 break; 6183 case InlineAsm::isInput: 6184 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6185 break; 6186 case InlineAsm::isClobber: 6187 // Nothing to do. 6188 break; 6189 } 6190 6191 // If this is an input or an indirect output, process the call argument. 6192 // BasicBlocks are labels, currently appearing only in asm's. 6193 if (OpInfo.CallOperandVal) { 6194 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6195 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6196 } else { 6197 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6198 } 6199 6200 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6201 DAG.getDataLayout()).getSimpleVT(); 6202 } 6203 6204 OpInfo.ConstraintVT = OpVT; 6205 6206 // Indirect operand accesses access memory. 6207 if (OpInfo.isIndirect) 6208 hasMemory = true; 6209 else { 6210 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6211 TargetLowering::ConstraintType 6212 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6213 if (CType == TargetLowering::C_Memory) { 6214 hasMemory = true; 6215 break; 6216 } 6217 } 6218 } 6219 } 6220 6221 SDValue Chain, Flag; 6222 6223 // We won't need to flush pending loads if this asm doesn't touch 6224 // memory and is nonvolatile. 6225 if (hasMemory || IA->hasSideEffects()) 6226 Chain = getRoot(); 6227 else 6228 Chain = DAG.getRoot(); 6229 6230 // Second pass over the constraints: compute which constraint option to use 6231 // and assign registers to constraints that want a specific physreg. 6232 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6233 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6234 6235 // If this is an output operand with a matching input operand, look up the 6236 // matching input. If their types mismatch, e.g. one is an integer, the 6237 // other is floating point, or their sizes are different, flag it as an 6238 // error. 6239 if (OpInfo.hasMatchingInput()) { 6240 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6241 6242 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6243 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6244 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6245 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6246 OpInfo.ConstraintVT); 6247 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6248 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6249 Input.ConstraintVT); 6250 if ((OpInfo.ConstraintVT.isInteger() != 6251 Input.ConstraintVT.isInteger()) || 6252 (MatchRC.second != InputRC.second)) { 6253 report_fatal_error("Unsupported asm: input constraint" 6254 " with a matching output constraint of" 6255 " incompatible type!"); 6256 } 6257 Input.ConstraintVT = OpInfo.ConstraintVT; 6258 } 6259 } 6260 6261 // Compute the constraint code and ConstraintType to use. 6262 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6263 6264 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6265 OpInfo.Type == InlineAsm::isClobber) 6266 continue; 6267 6268 // If this is a memory input, and if the operand is not indirect, do what we 6269 // need to to provide an address for the memory input. 6270 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6271 !OpInfo.isIndirect) { 6272 assert((OpInfo.isMultipleAlternative || 6273 (OpInfo.Type == InlineAsm::isInput)) && 6274 "Can only indirectify direct input operands!"); 6275 6276 // Memory operands really want the address of the value. If we don't have 6277 // an indirect input, put it in the constpool if we can, otherwise spill 6278 // it to a stack slot. 6279 // TODO: This isn't quite right. We need to handle these according to 6280 // the addressing mode that the constraint wants. Also, this may take 6281 // an additional register for the computation and we don't want that 6282 // either. 6283 6284 // If the operand is a float, integer, or vector constant, spill to a 6285 // constant pool entry to get its address. 6286 const Value *OpVal = OpInfo.CallOperandVal; 6287 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6288 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6289 OpInfo.CallOperand = DAG.getConstantPool( 6290 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6291 } else { 6292 // Otherwise, create a stack slot and emit a store to it before the 6293 // asm. 6294 Type *Ty = OpVal->getType(); 6295 auto &DL = DAG.getDataLayout(); 6296 uint64_t TySize = DL.getTypeAllocSize(Ty); 6297 unsigned Align = DL.getPrefTypeAlignment(Ty); 6298 MachineFunction &MF = DAG.getMachineFunction(); 6299 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6300 SDValue StackSlot = 6301 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6302 Chain = DAG.getStore( 6303 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6304 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6305 false, false, 0); 6306 OpInfo.CallOperand = StackSlot; 6307 } 6308 6309 // There is no longer a Value* corresponding to this operand. 6310 OpInfo.CallOperandVal = nullptr; 6311 6312 // It is now an indirect operand. 6313 OpInfo.isIndirect = true; 6314 } 6315 6316 // If this constraint is for a specific register, allocate it before 6317 // anything else. 6318 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6319 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6320 } 6321 6322 // Second pass - Loop over all of the operands, assigning virtual or physregs 6323 // to register class operands. 6324 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6325 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6326 6327 // C_Register operands have already been allocated, Other/Memory don't need 6328 // to be. 6329 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6330 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6331 } 6332 6333 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6334 std::vector<SDValue> AsmNodeOperands; 6335 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6336 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6337 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6338 6339 // If we have a !srcloc metadata node associated with it, we want to attach 6340 // this to the ultimately generated inline asm machineinstr. To do this, we 6341 // pass in the third operand as this (potentially null) inline asm MDNode. 6342 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6343 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6344 6345 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6346 // bits as operand 3. 6347 unsigned ExtraInfo = 0; 6348 if (IA->hasSideEffects()) 6349 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6350 if (IA->isAlignStack()) 6351 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6352 // Set the asm dialect. 6353 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6354 6355 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6356 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6357 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6358 6359 // Compute the constraint code and ConstraintType to use. 6360 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6361 6362 // Ideally, we would only check against memory constraints. However, the 6363 // meaning of an other constraint can be target-specific and we can't easily 6364 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6365 // for other constriants as well. 6366 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6367 OpInfo.ConstraintType == TargetLowering::C_Other) { 6368 if (OpInfo.Type == InlineAsm::isInput) 6369 ExtraInfo |= InlineAsm::Extra_MayLoad; 6370 else if (OpInfo.Type == InlineAsm::isOutput) 6371 ExtraInfo |= InlineAsm::Extra_MayStore; 6372 else if (OpInfo.Type == InlineAsm::isClobber) 6373 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6374 } 6375 } 6376 6377 AsmNodeOperands.push_back(DAG.getTargetConstant( 6378 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6379 6380 // Loop over all of the inputs, copying the operand values into the 6381 // appropriate registers and processing the output regs. 6382 RegsForValue RetValRegs; 6383 6384 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6385 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6386 6387 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6388 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6389 6390 switch (OpInfo.Type) { 6391 case InlineAsm::isOutput: { 6392 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6393 OpInfo.ConstraintType != TargetLowering::C_Register) { 6394 // Memory output, or 'other' output (e.g. 'X' constraint). 6395 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6396 6397 unsigned ConstraintID = 6398 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6399 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6400 "Failed to convert memory constraint code to constraint id."); 6401 6402 // Add information to the INLINEASM node to know about this output. 6403 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6404 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6405 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6406 MVT::i32)); 6407 AsmNodeOperands.push_back(OpInfo.CallOperand); 6408 break; 6409 } 6410 6411 // Otherwise, this is a register or register class output. 6412 6413 // Copy the output from the appropriate register. Find a register that 6414 // we can use. 6415 if (OpInfo.AssignedRegs.Regs.empty()) { 6416 LLVMContext &Ctx = *DAG.getContext(); 6417 Ctx.emitError(CS.getInstruction(), 6418 "couldn't allocate output register for constraint '" + 6419 Twine(OpInfo.ConstraintCode) + "'"); 6420 return; 6421 } 6422 6423 // If this is an indirect operand, store through the pointer after the 6424 // asm. 6425 if (OpInfo.isIndirect) { 6426 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6427 OpInfo.CallOperandVal)); 6428 } else { 6429 // This is the result value of the call. 6430 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6431 // Concatenate this output onto the outputs list. 6432 RetValRegs.append(OpInfo.AssignedRegs); 6433 } 6434 6435 // Add information to the INLINEASM node to know that this register is 6436 // set. 6437 OpInfo.AssignedRegs 6438 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6439 ? InlineAsm::Kind_RegDefEarlyClobber 6440 : InlineAsm::Kind_RegDef, 6441 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6442 break; 6443 } 6444 case InlineAsm::isInput: { 6445 SDValue InOperandVal = OpInfo.CallOperand; 6446 6447 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6448 // If this is required to match an output register we have already set, 6449 // just use its register. 6450 unsigned OperandNo = OpInfo.getMatchedOperand(); 6451 6452 // Scan until we find the definition we already emitted of this operand. 6453 // When we find it, create a RegsForValue operand. 6454 unsigned CurOp = InlineAsm::Op_FirstOperand; 6455 for (; OperandNo; --OperandNo) { 6456 // Advance to the next operand. 6457 unsigned OpFlag = 6458 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6459 assert((InlineAsm::isRegDefKind(OpFlag) || 6460 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6461 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6462 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6463 } 6464 6465 unsigned OpFlag = 6466 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6467 if (InlineAsm::isRegDefKind(OpFlag) || 6468 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6469 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6470 if (OpInfo.isIndirect) { 6471 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6472 LLVMContext &Ctx = *DAG.getContext(); 6473 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6474 " don't know how to handle tied " 6475 "indirect register inputs"); 6476 return; 6477 } 6478 6479 RegsForValue MatchedRegs; 6480 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6481 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6482 MatchedRegs.RegVTs.push_back(RegVT); 6483 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6484 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6485 i != e; ++i) { 6486 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6487 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6488 else { 6489 LLVMContext &Ctx = *DAG.getContext(); 6490 Ctx.emitError(CS.getInstruction(), 6491 "inline asm error: This value" 6492 " type register class is not natively supported!"); 6493 return; 6494 } 6495 } 6496 SDLoc dl = getCurSDLoc(); 6497 // Use the produced MatchedRegs object to 6498 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6499 Chain, &Flag, CS.getInstruction()); 6500 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6501 true, OpInfo.getMatchedOperand(), dl, 6502 DAG, AsmNodeOperands); 6503 break; 6504 } 6505 6506 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6507 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6508 "Unexpected number of operands"); 6509 // Add information to the INLINEASM node to know about this input. 6510 // See InlineAsm.h isUseOperandTiedToDef. 6511 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6512 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6513 OpInfo.getMatchedOperand()); 6514 AsmNodeOperands.push_back(DAG.getTargetConstant( 6515 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6516 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6517 break; 6518 } 6519 6520 // Treat indirect 'X' constraint as memory. 6521 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6522 OpInfo.isIndirect) 6523 OpInfo.ConstraintType = TargetLowering::C_Memory; 6524 6525 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6526 std::vector<SDValue> Ops; 6527 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6528 Ops, DAG); 6529 if (Ops.empty()) { 6530 LLVMContext &Ctx = *DAG.getContext(); 6531 Ctx.emitError(CS.getInstruction(), 6532 "invalid operand for inline asm constraint '" + 6533 Twine(OpInfo.ConstraintCode) + "'"); 6534 return; 6535 } 6536 6537 // Add information to the INLINEASM node to know about this input. 6538 unsigned ResOpType = 6539 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6540 AsmNodeOperands.push_back(DAG.getTargetConstant( 6541 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6542 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6543 break; 6544 } 6545 6546 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6547 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6548 assert(InOperandVal.getValueType() == 6549 TLI.getPointerTy(DAG.getDataLayout()) && 6550 "Memory operands expect pointer values"); 6551 6552 unsigned ConstraintID = 6553 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6554 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6555 "Failed to convert memory constraint code to constraint id."); 6556 6557 // Add information to the INLINEASM node to know about this input. 6558 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6559 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6560 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6561 getCurSDLoc(), 6562 MVT::i32)); 6563 AsmNodeOperands.push_back(InOperandVal); 6564 break; 6565 } 6566 6567 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6568 OpInfo.ConstraintType == TargetLowering::C_Register) && 6569 "Unknown constraint type!"); 6570 6571 // TODO: Support this. 6572 if (OpInfo.isIndirect) { 6573 LLVMContext &Ctx = *DAG.getContext(); 6574 Ctx.emitError(CS.getInstruction(), 6575 "Don't know how to handle indirect register inputs yet " 6576 "for constraint '" + 6577 Twine(OpInfo.ConstraintCode) + "'"); 6578 return; 6579 } 6580 6581 // Copy the input into the appropriate registers. 6582 if (OpInfo.AssignedRegs.Regs.empty()) { 6583 LLVMContext &Ctx = *DAG.getContext(); 6584 Ctx.emitError(CS.getInstruction(), 6585 "couldn't allocate input reg for constraint '" + 6586 Twine(OpInfo.ConstraintCode) + "'"); 6587 return; 6588 } 6589 6590 SDLoc dl = getCurSDLoc(); 6591 6592 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6593 Chain, &Flag, CS.getInstruction()); 6594 6595 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6596 dl, DAG, AsmNodeOperands); 6597 break; 6598 } 6599 case InlineAsm::isClobber: { 6600 // Add the clobbered value to the operand list, so that the register 6601 // allocator is aware that the physreg got clobbered. 6602 if (!OpInfo.AssignedRegs.Regs.empty()) 6603 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6604 false, 0, getCurSDLoc(), DAG, 6605 AsmNodeOperands); 6606 break; 6607 } 6608 } 6609 } 6610 6611 // Finish up input operands. Set the input chain and add the flag last. 6612 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6613 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6614 6615 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6616 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6617 Flag = Chain.getValue(1); 6618 6619 // If this asm returns a register value, copy the result from that register 6620 // and set it as the value of the call. 6621 if (!RetValRegs.Regs.empty()) { 6622 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6623 Chain, &Flag, CS.getInstruction()); 6624 6625 // FIXME: Why don't we do this for inline asms with MRVs? 6626 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6627 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6628 6629 // If any of the results of the inline asm is a vector, it may have the 6630 // wrong width/num elts. This can happen for register classes that can 6631 // contain multiple different value types. The preg or vreg allocated may 6632 // not have the same VT as was expected. Convert it to the right type 6633 // with bit_convert. 6634 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6635 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6636 ResultType, Val); 6637 6638 } else if (ResultType != Val.getValueType() && 6639 ResultType.isInteger() && Val.getValueType().isInteger()) { 6640 // If a result value was tied to an input value, the computed result may 6641 // have a wider width than the expected result. Extract the relevant 6642 // portion. 6643 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6644 } 6645 6646 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6647 } 6648 6649 setValue(CS.getInstruction(), Val); 6650 // Don't need to use this as a chain in this case. 6651 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6652 return; 6653 } 6654 6655 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6656 6657 // Process indirect outputs, first output all of the flagged copies out of 6658 // physregs. 6659 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6660 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6661 const Value *Ptr = IndirectStoresToEmit[i].second; 6662 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6663 Chain, &Flag, IA); 6664 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6665 } 6666 6667 // Emit the non-flagged stores from the physregs. 6668 SmallVector<SDValue, 8> OutChains; 6669 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6670 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6671 StoresToEmit[i].first, 6672 getValue(StoresToEmit[i].second), 6673 MachinePointerInfo(StoresToEmit[i].second), 6674 false, false, 0); 6675 OutChains.push_back(Val); 6676 } 6677 6678 if (!OutChains.empty()) 6679 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6680 6681 DAG.setRoot(Chain); 6682 } 6683 6684 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6685 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6686 MVT::Other, getRoot(), 6687 getValue(I.getArgOperand(0)), 6688 DAG.getSrcValue(I.getArgOperand(0)))); 6689 } 6690 6691 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6693 const DataLayout &DL = DAG.getDataLayout(); 6694 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6695 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6696 DAG.getSrcValue(I.getOperand(0)), 6697 DL.getABITypeAlignment(I.getType())); 6698 setValue(&I, V); 6699 DAG.setRoot(V.getValue(1)); 6700 } 6701 6702 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6703 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6704 MVT::Other, getRoot(), 6705 getValue(I.getArgOperand(0)), 6706 DAG.getSrcValue(I.getArgOperand(0)))); 6707 } 6708 6709 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6710 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6711 MVT::Other, getRoot(), 6712 getValue(I.getArgOperand(0)), 6713 getValue(I.getArgOperand(1)), 6714 DAG.getSrcValue(I.getArgOperand(0)), 6715 DAG.getSrcValue(I.getArgOperand(1)))); 6716 } 6717 6718 /// \brief Lower an argument list according to the target calling convention. 6719 /// 6720 /// \return A tuple of <return-value, token-chain> 6721 /// 6722 /// This is a helper for lowering intrinsics that follow a target calling 6723 /// convention or require stack pointer adjustment. Only a subset of the 6724 /// intrinsic's operands need to participate in the calling convention. 6725 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6726 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6727 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6728 TargetLowering::ArgListTy Args; 6729 Args.reserve(NumArgs); 6730 6731 // Populate the argument list. 6732 // Attributes for args start at offset 1, after the return attribute. 6733 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6734 ArgI != ArgE; ++ArgI) { 6735 const Value *V = CS->getOperand(ArgI); 6736 6737 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6738 6739 TargetLowering::ArgListEntry Entry; 6740 Entry.Node = getValue(V); 6741 Entry.Ty = V->getType(); 6742 Entry.setAttributes(&CS, AttrI); 6743 Args.push_back(Entry); 6744 } 6745 6746 TargetLowering::CallLoweringInfo CLI(DAG); 6747 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6748 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6749 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6750 6751 return lowerInvokable(CLI, EHPadBB); 6752 } 6753 6754 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6755 /// or patchpoint target node's operand list. 6756 /// 6757 /// Constants are converted to TargetConstants purely as an optimization to 6758 /// avoid constant materialization and register allocation. 6759 /// 6760 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6761 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6762 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6763 /// address materialization and register allocation, but may also be required 6764 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6765 /// alloca in the entry block, then the runtime may assume that the alloca's 6766 /// StackMap location can be read immediately after compilation and that the 6767 /// location is valid at any point during execution (this is similar to the 6768 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6769 /// only available in a register, then the runtime would need to trap when 6770 /// execution reaches the StackMap in order to read the alloca's location. 6771 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6772 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6773 SelectionDAGBuilder &Builder) { 6774 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6775 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6776 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6777 Ops.push_back( 6778 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6779 Ops.push_back( 6780 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6781 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6782 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6783 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6784 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6785 } else 6786 Ops.push_back(OpVal); 6787 } 6788 } 6789 6790 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6791 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6792 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6793 // [live variables...]) 6794 6795 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6796 6797 SDValue Chain, InFlag, Callee, NullPtr; 6798 SmallVector<SDValue, 32> Ops; 6799 6800 SDLoc DL = getCurSDLoc(); 6801 Callee = getValue(CI.getCalledValue()); 6802 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6803 6804 // The stackmap intrinsic only records the live variables (the arguemnts 6805 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6806 // intrinsic, this won't be lowered to a function call. This means we don't 6807 // have to worry about calling conventions and target specific lowering code. 6808 // Instead we perform the call lowering right here. 6809 // 6810 // chain, flag = CALLSEQ_START(chain, 0) 6811 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6812 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6813 // 6814 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6815 InFlag = Chain.getValue(1); 6816 6817 // Add the <id> and <numBytes> constants. 6818 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6819 Ops.push_back(DAG.getTargetConstant( 6820 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6821 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6822 Ops.push_back(DAG.getTargetConstant( 6823 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6824 MVT::i32)); 6825 6826 // Push live variables for the stack map. 6827 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6828 6829 // We are not pushing any register mask info here on the operands list, 6830 // because the stackmap doesn't clobber anything. 6831 6832 // Push the chain and the glue flag. 6833 Ops.push_back(Chain); 6834 Ops.push_back(InFlag); 6835 6836 // Create the STACKMAP node. 6837 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6838 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6839 Chain = SDValue(SM, 0); 6840 InFlag = Chain.getValue(1); 6841 6842 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6843 6844 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6845 6846 // Set the root to the target-lowered call chain. 6847 DAG.setRoot(Chain); 6848 6849 // Inform the Frame Information that we have a stackmap in this function. 6850 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6851 } 6852 6853 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6854 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6855 const BasicBlock *EHPadBB) { 6856 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6857 // i32 <numBytes>, 6858 // i8* <target>, 6859 // i32 <numArgs>, 6860 // [Args...], 6861 // [live variables...]) 6862 6863 CallingConv::ID CC = CS.getCallingConv(); 6864 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6865 bool HasDef = !CS->getType()->isVoidTy(); 6866 SDLoc dl = getCurSDLoc(); 6867 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6868 6869 // Handle immediate and symbolic callees. 6870 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6871 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6872 /*isTarget=*/true); 6873 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6874 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6875 SDLoc(SymbolicCallee), 6876 SymbolicCallee->getValueType(0)); 6877 6878 // Get the real number of arguments participating in the call <numArgs> 6879 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6880 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6881 6882 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6883 // Intrinsics include all meta-operands up to but not including CC. 6884 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6885 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6886 "Not enough arguments provided to the patchpoint intrinsic"); 6887 6888 // For AnyRegCC the arguments are lowered later on manually. 6889 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6890 Type *ReturnTy = 6891 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6892 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6893 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6894 6895 SDNode *CallEnd = Result.second.getNode(); 6896 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6897 CallEnd = CallEnd->getOperand(0).getNode(); 6898 6899 /// Get a call instruction from the call sequence chain. 6900 /// Tail calls are not allowed. 6901 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6902 "Expected a callseq node."); 6903 SDNode *Call = CallEnd->getOperand(0).getNode(); 6904 bool HasGlue = Call->getGluedNode(); 6905 6906 // Replace the target specific call node with the patchable intrinsic. 6907 SmallVector<SDValue, 8> Ops; 6908 6909 // Add the <id> and <numBytes> constants. 6910 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6911 Ops.push_back(DAG.getTargetConstant( 6912 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6913 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6914 Ops.push_back(DAG.getTargetConstant( 6915 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6916 MVT::i32)); 6917 6918 // Add the callee. 6919 Ops.push_back(Callee); 6920 6921 // Adjust <numArgs> to account for any arguments that have been passed on the 6922 // stack instead. 6923 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6924 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6925 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6926 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6927 6928 // Add the calling convention 6929 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6930 6931 // Add the arguments we omitted previously. The register allocator should 6932 // place these in any free register. 6933 if (IsAnyRegCC) 6934 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6935 Ops.push_back(getValue(CS.getArgument(i))); 6936 6937 // Push the arguments from the call instruction up to the register mask. 6938 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6939 Ops.append(Call->op_begin() + 2, e); 6940 6941 // Push live variables for the stack map. 6942 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6943 6944 // Push the register mask info. 6945 if (HasGlue) 6946 Ops.push_back(*(Call->op_end()-2)); 6947 else 6948 Ops.push_back(*(Call->op_end()-1)); 6949 6950 // Push the chain (this is originally the first operand of the call, but 6951 // becomes now the last or second to last operand). 6952 Ops.push_back(*(Call->op_begin())); 6953 6954 // Push the glue flag (last operand). 6955 if (HasGlue) 6956 Ops.push_back(*(Call->op_end()-1)); 6957 6958 SDVTList NodeTys; 6959 if (IsAnyRegCC && HasDef) { 6960 // Create the return types based on the intrinsic definition 6961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6962 SmallVector<EVT, 3> ValueVTs; 6963 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6964 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6965 6966 // There is always a chain and a glue type at the end 6967 ValueVTs.push_back(MVT::Other); 6968 ValueVTs.push_back(MVT::Glue); 6969 NodeTys = DAG.getVTList(ValueVTs); 6970 } else 6971 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6972 6973 // Replace the target specific call node with a PATCHPOINT node. 6974 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6975 dl, NodeTys, Ops); 6976 6977 // Update the NodeMap. 6978 if (HasDef) { 6979 if (IsAnyRegCC) 6980 setValue(CS.getInstruction(), SDValue(MN, 0)); 6981 else 6982 setValue(CS.getInstruction(), Result.first); 6983 } 6984 6985 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6986 // call sequence. Furthermore the location of the chain and glue can change 6987 // when the AnyReg calling convention is used and the intrinsic returns a 6988 // value. 6989 if (IsAnyRegCC && HasDef) { 6990 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6991 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6992 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6993 } else 6994 DAG.ReplaceAllUsesWith(Call, MN); 6995 DAG.DeleteNode(Call); 6996 6997 // Inform the Frame Information that we have a patchpoint in this function. 6998 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6999 } 7000 7001 /// Returns an AttributeSet representing the attributes applied to the return 7002 /// value of the given call. 7003 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7004 SmallVector<Attribute::AttrKind, 2> Attrs; 7005 if (CLI.RetSExt) 7006 Attrs.push_back(Attribute::SExt); 7007 if (CLI.RetZExt) 7008 Attrs.push_back(Attribute::ZExt); 7009 if (CLI.IsInReg) 7010 Attrs.push_back(Attribute::InReg); 7011 7012 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7013 Attrs); 7014 } 7015 7016 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7017 /// implementation, which just calls LowerCall. 7018 /// FIXME: When all targets are 7019 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7020 std::pair<SDValue, SDValue> 7021 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7022 // Handle the incoming return values from the call. 7023 CLI.Ins.clear(); 7024 Type *OrigRetTy = CLI.RetTy; 7025 SmallVector<EVT, 4> RetTys; 7026 SmallVector<uint64_t, 4> Offsets; 7027 auto &DL = CLI.DAG.getDataLayout(); 7028 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7029 7030 SmallVector<ISD::OutputArg, 4> Outs; 7031 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7032 7033 bool CanLowerReturn = 7034 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7035 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7036 7037 SDValue DemoteStackSlot; 7038 int DemoteStackIdx = -100; 7039 if (!CanLowerReturn) { 7040 // FIXME: equivalent assert? 7041 // assert(!CS.hasInAllocaArgument() && 7042 // "sret demotion is incompatible with inalloca"); 7043 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7044 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7045 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7046 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7047 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7048 7049 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7050 ArgListEntry Entry; 7051 Entry.Node = DemoteStackSlot; 7052 Entry.Ty = StackSlotPtrType; 7053 Entry.isSExt = false; 7054 Entry.isZExt = false; 7055 Entry.isInReg = false; 7056 Entry.isSRet = true; 7057 Entry.isNest = false; 7058 Entry.isByVal = false; 7059 Entry.isReturned = false; 7060 Entry.Alignment = Align; 7061 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7062 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7063 7064 // sret demotion isn't compatible with tail-calls, since the sret argument 7065 // points into the callers stack frame. 7066 CLI.IsTailCall = false; 7067 } else { 7068 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7069 EVT VT = RetTys[I]; 7070 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7071 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7072 for (unsigned i = 0; i != NumRegs; ++i) { 7073 ISD::InputArg MyFlags; 7074 MyFlags.VT = RegisterVT; 7075 MyFlags.ArgVT = VT; 7076 MyFlags.Used = CLI.IsReturnValueUsed; 7077 if (CLI.RetSExt) 7078 MyFlags.Flags.setSExt(); 7079 if (CLI.RetZExt) 7080 MyFlags.Flags.setZExt(); 7081 if (CLI.IsInReg) 7082 MyFlags.Flags.setInReg(); 7083 CLI.Ins.push_back(MyFlags); 7084 } 7085 } 7086 } 7087 7088 // Handle all of the outgoing arguments. 7089 CLI.Outs.clear(); 7090 CLI.OutVals.clear(); 7091 ArgListTy &Args = CLI.getArgs(); 7092 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7093 SmallVector<EVT, 4> ValueVTs; 7094 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7095 Type *FinalType = Args[i].Ty; 7096 if (Args[i].isByVal) 7097 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7098 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7099 FinalType, CLI.CallConv, CLI.IsVarArg); 7100 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7101 ++Value) { 7102 EVT VT = ValueVTs[Value]; 7103 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7104 SDValue Op = SDValue(Args[i].Node.getNode(), 7105 Args[i].Node.getResNo() + Value); 7106 ISD::ArgFlagsTy Flags; 7107 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7108 7109 if (Args[i].isZExt) 7110 Flags.setZExt(); 7111 if (Args[i].isSExt) 7112 Flags.setSExt(); 7113 if (Args[i].isInReg) 7114 Flags.setInReg(); 7115 if (Args[i].isSRet) 7116 Flags.setSRet(); 7117 if (Args[i].isByVal) 7118 Flags.setByVal(); 7119 if (Args[i].isInAlloca) { 7120 Flags.setInAlloca(); 7121 // Set the byval flag for CCAssignFn callbacks that don't know about 7122 // inalloca. This way we can know how many bytes we should've allocated 7123 // and how many bytes a callee cleanup function will pop. If we port 7124 // inalloca to more targets, we'll have to add custom inalloca handling 7125 // in the various CC lowering callbacks. 7126 Flags.setByVal(); 7127 } 7128 if (Args[i].isByVal || Args[i].isInAlloca) { 7129 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7130 Type *ElementTy = Ty->getElementType(); 7131 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7132 // For ByVal, alignment should come from FE. BE will guess if this 7133 // info is not there but there are cases it cannot get right. 7134 unsigned FrameAlign; 7135 if (Args[i].Alignment) 7136 FrameAlign = Args[i].Alignment; 7137 else 7138 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7139 Flags.setByValAlign(FrameAlign); 7140 } 7141 if (Args[i].isNest) 7142 Flags.setNest(); 7143 if (NeedsRegBlock) 7144 Flags.setInConsecutiveRegs(); 7145 Flags.setOrigAlign(OriginalAlignment); 7146 7147 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7148 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7149 SmallVector<SDValue, 4> Parts(NumParts); 7150 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7151 7152 if (Args[i].isSExt) 7153 ExtendKind = ISD::SIGN_EXTEND; 7154 else if (Args[i].isZExt) 7155 ExtendKind = ISD::ZERO_EXTEND; 7156 7157 // Conservatively only handle 'returned' on non-vectors for now 7158 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7159 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7160 "unexpected use of 'returned'"); 7161 // Before passing 'returned' to the target lowering code, ensure that 7162 // either the register MVT and the actual EVT are the same size or that 7163 // the return value and argument are extended in the same way; in these 7164 // cases it's safe to pass the argument register value unchanged as the 7165 // return register value (although it's at the target's option whether 7166 // to do so) 7167 // TODO: allow code generation to take advantage of partially preserved 7168 // registers rather than clobbering the entire register when the 7169 // parameter extension method is not compatible with the return 7170 // extension method 7171 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7172 (ExtendKind != ISD::ANY_EXTEND && 7173 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7174 Flags.setReturned(); 7175 } 7176 7177 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7178 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7179 7180 for (unsigned j = 0; j != NumParts; ++j) { 7181 // if it isn't first piece, alignment must be 1 7182 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7183 i < CLI.NumFixedArgs, 7184 i, j*Parts[j].getValueType().getStoreSize()); 7185 if (NumParts > 1 && j == 0) 7186 MyFlags.Flags.setSplit(); 7187 else if (j != 0) { 7188 MyFlags.Flags.setOrigAlign(1); 7189 if (j == NumParts - 1) 7190 MyFlags.Flags.setSplitEnd(); 7191 } 7192 7193 CLI.Outs.push_back(MyFlags); 7194 CLI.OutVals.push_back(Parts[j]); 7195 } 7196 7197 if (NeedsRegBlock && Value == NumValues - 1) 7198 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7199 } 7200 } 7201 7202 SmallVector<SDValue, 4> InVals; 7203 CLI.Chain = LowerCall(CLI, InVals); 7204 7205 // Verify that the target's LowerCall behaved as expected. 7206 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7207 "LowerCall didn't return a valid chain!"); 7208 assert((!CLI.IsTailCall || InVals.empty()) && 7209 "LowerCall emitted a return value for a tail call!"); 7210 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7211 "LowerCall didn't emit the correct number of values!"); 7212 7213 // For a tail call, the return value is merely live-out and there aren't 7214 // any nodes in the DAG representing it. Return a special value to 7215 // indicate that a tail call has been emitted and no more Instructions 7216 // should be processed in the current block. 7217 if (CLI.IsTailCall) { 7218 CLI.DAG.setRoot(CLI.Chain); 7219 return std::make_pair(SDValue(), SDValue()); 7220 } 7221 7222 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7223 assert(InVals[i].getNode() && 7224 "LowerCall emitted a null value!"); 7225 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7226 "LowerCall emitted a value with the wrong type!"); 7227 }); 7228 7229 SmallVector<SDValue, 4> ReturnValues; 7230 if (!CanLowerReturn) { 7231 // The instruction result is the result of loading from the 7232 // hidden sret parameter. 7233 SmallVector<EVT, 1> PVTs; 7234 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7235 7236 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7237 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7238 EVT PtrVT = PVTs[0]; 7239 7240 unsigned NumValues = RetTys.size(); 7241 ReturnValues.resize(NumValues); 7242 SmallVector<SDValue, 4> Chains(NumValues); 7243 7244 // An aggregate return value cannot wrap around the address space, so 7245 // offsets to its parts don't wrap either. 7246 SDNodeFlags Flags; 7247 Flags.setNoUnsignedWrap(true); 7248 7249 for (unsigned i = 0; i < NumValues; ++i) { 7250 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7251 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7252 PtrVT), &Flags); 7253 SDValue L = CLI.DAG.getLoad( 7254 RetTys[i], CLI.DL, CLI.Chain, Add, 7255 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7256 DemoteStackIdx, Offsets[i]), 7257 false, false, false, 1); 7258 ReturnValues[i] = L; 7259 Chains[i] = L.getValue(1); 7260 } 7261 7262 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7263 } else { 7264 // Collect the legal value parts into potentially illegal values 7265 // that correspond to the original function's return values. 7266 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7267 if (CLI.RetSExt) 7268 AssertOp = ISD::AssertSext; 7269 else if (CLI.RetZExt) 7270 AssertOp = ISD::AssertZext; 7271 unsigned CurReg = 0; 7272 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7273 EVT VT = RetTys[I]; 7274 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7275 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7276 7277 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7278 NumRegs, RegisterVT, VT, nullptr, 7279 AssertOp)); 7280 CurReg += NumRegs; 7281 } 7282 7283 // For a function returning void, there is no return value. We can't create 7284 // such a node, so we just return a null return value in that case. In 7285 // that case, nothing will actually look at the value. 7286 if (ReturnValues.empty()) 7287 return std::make_pair(SDValue(), CLI.Chain); 7288 } 7289 7290 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7291 CLI.DAG.getVTList(RetTys), ReturnValues); 7292 return std::make_pair(Res, CLI.Chain); 7293 } 7294 7295 void TargetLowering::LowerOperationWrapper(SDNode *N, 7296 SmallVectorImpl<SDValue> &Results, 7297 SelectionDAG &DAG) const { 7298 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7299 if (Res.getNode()) 7300 Results.push_back(Res); 7301 } 7302 7303 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7304 llvm_unreachable("LowerOperation not implemented for this target!"); 7305 } 7306 7307 void 7308 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7309 SDValue Op = getNonRegisterValue(V); 7310 assert((Op.getOpcode() != ISD::CopyFromReg || 7311 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7312 "Copy from a reg to the same reg!"); 7313 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7314 7315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7316 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7317 V->getType()); 7318 SDValue Chain = DAG.getEntryNode(); 7319 7320 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7321 FuncInfo.PreferredExtendType.end()) 7322 ? ISD::ANY_EXTEND 7323 : FuncInfo.PreferredExtendType[V]; 7324 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7325 PendingExports.push_back(Chain); 7326 } 7327 7328 #include "llvm/CodeGen/SelectionDAGISel.h" 7329 7330 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7331 /// entry block, return true. This includes arguments used by switches, since 7332 /// the switch may expand into multiple basic blocks. 7333 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7334 // With FastISel active, we may be splitting blocks, so force creation 7335 // of virtual registers for all non-dead arguments. 7336 if (FastISel) 7337 return A->use_empty(); 7338 7339 const BasicBlock &Entry = A->getParent()->front(); 7340 for (const User *U : A->users()) 7341 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7342 return false; // Use not in entry block. 7343 7344 return true; 7345 } 7346 7347 void SelectionDAGISel::LowerArguments(const Function &F) { 7348 SelectionDAG &DAG = SDB->DAG; 7349 SDLoc dl = SDB->getCurSDLoc(); 7350 const DataLayout &DL = DAG.getDataLayout(); 7351 SmallVector<ISD::InputArg, 16> Ins; 7352 7353 if (!FuncInfo->CanLowerReturn) { 7354 // Put in an sret pointer parameter before all the other parameters. 7355 SmallVector<EVT, 1> ValueVTs; 7356 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7357 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7358 7359 // NOTE: Assuming that a pointer will never break down to more than one VT 7360 // or one register. 7361 ISD::ArgFlagsTy Flags; 7362 Flags.setSRet(); 7363 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7364 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7365 ISD::InputArg::NoArgIndex, 0); 7366 Ins.push_back(RetArg); 7367 } 7368 7369 // Set up the incoming argument description vector. 7370 unsigned Idx = 1; 7371 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7372 I != E; ++I, ++Idx) { 7373 SmallVector<EVT, 4> ValueVTs; 7374 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7375 bool isArgValueUsed = !I->use_empty(); 7376 unsigned PartBase = 0; 7377 Type *FinalType = I->getType(); 7378 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7379 FinalType = cast<PointerType>(FinalType)->getElementType(); 7380 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7381 FinalType, F.getCallingConv(), F.isVarArg()); 7382 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7383 Value != NumValues; ++Value) { 7384 EVT VT = ValueVTs[Value]; 7385 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7386 ISD::ArgFlagsTy Flags; 7387 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7388 7389 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7390 Flags.setZExt(); 7391 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7392 Flags.setSExt(); 7393 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7394 Flags.setInReg(); 7395 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7396 Flags.setSRet(); 7397 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7398 Flags.setByVal(); 7399 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7400 Flags.setInAlloca(); 7401 // Set the byval flag for CCAssignFn callbacks that don't know about 7402 // inalloca. This way we can know how many bytes we should've allocated 7403 // and how many bytes a callee cleanup function will pop. If we port 7404 // inalloca to more targets, we'll have to add custom inalloca handling 7405 // in the various CC lowering callbacks. 7406 Flags.setByVal(); 7407 } 7408 if (F.getCallingConv() == CallingConv::X86_INTR) { 7409 // IA Interrupt passes frame (1st parameter) by value in the stack. 7410 if (Idx == 1) 7411 Flags.setByVal(); 7412 } 7413 if (Flags.isByVal() || Flags.isInAlloca()) { 7414 PointerType *Ty = cast<PointerType>(I->getType()); 7415 Type *ElementTy = Ty->getElementType(); 7416 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7417 // For ByVal, alignment should be passed from FE. BE will guess if 7418 // this info is not there but there are cases it cannot get right. 7419 unsigned FrameAlign; 7420 if (F.getParamAlignment(Idx)) 7421 FrameAlign = F.getParamAlignment(Idx); 7422 else 7423 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7424 Flags.setByValAlign(FrameAlign); 7425 } 7426 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7427 Flags.setNest(); 7428 if (NeedsRegBlock) 7429 Flags.setInConsecutiveRegs(); 7430 Flags.setOrigAlign(OriginalAlignment); 7431 7432 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7433 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7434 for (unsigned i = 0; i != NumRegs; ++i) { 7435 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7436 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7437 if (NumRegs > 1 && i == 0) 7438 MyFlags.Flags.setSplit(); 7439 // if it isn't first piece, alignment must be 1 7440 else if (i > 0) { 7441 MyFlags.Flags.setOrigAlign(1); 7442 if (i == NumRegs - 1) 7443 MyFlags.Flags.setSplitEnd(); 7444 } 7445 Ins.push_back(MyFlags); 7446 } 7447 if (NeedsRegBlock && Value == NumValues - 1) 7448 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7449 PartBase += VT.getStoreSize(); 7450 } 7451 } 7452 7453 // Call the target to set up the argument values. 7454 SmallVector<SDValue, 8> InVals; 7455 SDValue NewRoot = TLI->LowerFormalArguments( 7456 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7457 7458 // Verify that the target's LowerFormalArguments behaved as expected. 7459 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7460 "LowerFormalArguments didn't return a valid chain!"); 7461 assert(InVals.size() == Ins.size() && 7462 "LowerFormalArguments didn't emit the correct number of values!"); 7463 DEBUG({ 7464 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7465 assert(InVals[i].getNode() && 7466 "LowerFormalArguments emitted a null value!"); 7467 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7468 "LowerFormalArguments emitted a value with the wrong type!"); 7469 } 7470 }); 7471 7472 // Update the DAG with the new chain value resulting from argument lowering. 7473 DAG.setRoot(NewRoot); 7474 7475 // Set up the argument values. 7476 unsigned i = 0; 7477 Idx = 1; 7478 if (!FuncInfo->CanLowerReturn) { 7479 // Create a virtual register for the sret pointer, and put in a copy 7480 // from the sret argument into it. 7481 SmallVector<EVT, 1> ValueVTs; 7482 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7483 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7484 MVT VT = ValueVTs[0].getSimpleVT(); 7485 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7486 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7487 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7488 RegVT, VT, nullptr, AssertOp); 7489 7490 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7491 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7492 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7493 FuncInfo->DemoteRegister = SRetReg; 7494 NewRoot = 7495 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7496 DAG.setRoot(NewRoot); 7497 7498 // i indexes lowered arguments. Bump it past the hidden sret argument. 7499 // Idx indexes LLVM arguments. Don't touch it. 7500 ++i; 7501 } 7502 7503 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7504 ++I, ++Idx) { 7505 SmallVector<SDValue, 4> ArgValues; 7506 SmallVector<EVT, 4> ValueVTs; 7507 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7508 unsigned NumValues = ValueVTs.size(); 7509 7510 // If this argument is unused then remember its value. It is used to generate 7511 // debugging information. 7512 if (I->use_empty() && NumValues) { 7513 SDB->setUnusedArgValue(&*I, InVals[i]); 7514 7515 // Also remember any frame index for use in FastISel. 7516 if (FrameIndexSDNode *FI = 7517 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7518 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7519 } 7520 7521 for (unsigned Val = 0; Val != NumValues; ++Val) { 7522 EVT VT = ValueVTs[Val]; 7523 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7524 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7525 7526 if (!I->use_empty()) { 7527 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7528 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7529 AssertOp = ISD::AssertSext; 7530 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7531 AssertOp = ISD::AssertZext; 7532 7533 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7534 NumParts, PartVT, VT, 7535 nullptr, AssertOp)); 7536 } 7537 7538 i += NumParts; 7539 } 7540 7541 // We don't need to do anything else for unused arguments. 7542 if (ArgValues.empty()) 7543 continue; 7544 7545 // Note down frame index. 7546 if (FrameIndexSDNode *FI = 7547 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7548 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7549 7550 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7551 SDB->getCurSDLoc()); 7552 7553 SDB->setValue(&*I, Res); 7554 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7555 if (LoadSDNode *LNode = 7556 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7557 if (FrameIndexSDNode *FI = 7558 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7559 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7560 } 7561 7562 // If this argument is live outside of the entry block, insert a copy from 7563 // wherever we got it to the vreg that other BB's will reference it as. 7564 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7565 // If we can, though, try to skip creating an unnecessary vreg. 7566 // FIXME: This isn't very clean... it would be nice to make this more 7567 // general. It's also subtly incompatible with the hacks FastISel 7568 // uses with vregs. 7569 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7570 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7571 FuncInfo->ValueMap[&*I] = Reg; 7572 continue; 7573 } 7574 } 7575 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7576 FuncInfo->InitializeRegForValue(&*I); 7577 SDB->CopyToExportRegsIfNeeded(&*I); 7578 } 7579 } 7580 7581 assert(i == InVals.size() && "Argument register count mismatch!"); 7582 7583 // Finally, if the target has anything special to do, allow it to do so. 7584 EmitFunctionEntryCode(); 7585 } 7586 7587 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7588 /// ensure constants are generated when needed. Remember the virtual registers 7589 /// that need to be added to the Machine PHI nodes as input. We cannot just 7590 /// directly add them, because expansion might result in multiple MBB's for one 7591 /// BB. As such, the start of the BB might correspond to a different MBB than 7592 /// the end. 7593 /// 7594 void 7595 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7596 const TerminatorInst *TI = LLVMBB->getTerminator(); 7597 7598 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7599 7600 // Check PHI nodes in successors that expect a value to be available from this 7601 // block. 7602 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7603 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7604 if (!isa<PHINode>(SuccBB->begin())) continue; 7605 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7606 7607 // If this terminator has multiple identical successors (common for 7608 // switches), only handle each succ once. 7609 if (!SuccsHandled.insert(SuccMBB).second) 7610 continue; 7611 7612 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7613 7614 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7615 // nodes and Machine PHI nodes, but the incoming operands have not been 7616 // emitted yet. 7617 for (BasicBlock::const_iterator I = SuccBB->begin(); 7618 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7619 // Ignore dead phi's. 7620 if (PN->use_empty()) continue; 7621 7622 // Skip empty types 7623 if (PN->getType()->isEmptyTy()) 7624 continue; 7625 7626 unsigned Reg; 7627 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7628 7629 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7630 unsigned &RegOut = ConstantsOut[C]; 7631 if (RegOut == 0) { 7632 RegOut = FuncInfo.CreateRegs(C->getType()); 7633 CopyValueToVirtualRegister(C, RegOut); 7634 } 7635 Reg = RegOut; 7636 } else { 7637 DenseMap<const Value *, unsigned>::iterator I = 7638 FuncInfo.ValueMap.find(PHIOp); 7639 if (I != FuncInfo.ValueMap.end()) 7640 Reg = I->second; 7641 else { 7642 assert(isa<AllocaInst>(PHIOp) && 7643 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7644 "Didn't codegen value into a register!??"); 7645 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7646 CopyValueToVirtualRegister(PHIOp, Reg); 7647 } 7648 } 7649 7650 // Remember that this register needs to added to the machine PHI node as 7651 // the input for this MBB. 7652 SmallVector<EVT, 4> ValueVTs; 7653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7654 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7655 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7656 EVT VT = ValueVTs[vti]; 7657 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7658 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7659 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7660 Reg += NumRegisters; 7661 } 7662 } 7663 } 7664 7665 ConstantsOut.clear(); 7666 } 7667 7668 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7669 /// is 0. 7670 MachineBasicBlock * 7671 SelectionDAGBuilder::StackProtectorDescriptor:: 7672 AddSuccessorMBB(const BasicBlock *BB, 7673 MachineBasicBlock *ParentMBB, 7674 bool IsLikely, 7675 MachineBasicBlock *SuccMBB) { 7676 // If SuccBB has not been created yet, create it. 7677 if (!SuccMBB) { 7678 MachineFunction *MF = ParentMBB->getParent(); 7679 MachineFunction::iterator BBI(ParentMBB); 7680 SuccMBB = MF->CreateMachineBasicBlock(BB); 7681 MF->insert(++BBI, SuccMBB); 7682 } 7683 // Add it as a successor of ParentMBB. 7684 ParentMBB->addSuccessor( 7685 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7686 return SuccMBB; 7687 } 7688 7689 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7690 MachineFunction::iterator I(MBB); 7691 if (++I == FuncInfo.MF->end()) 7692 return nullptr; 7693 return &*I; 7694 } 7695 7696 /// During lowering new call nodes can be created (such as memset, etc.). 7697 /// Those will become new roots of the current DAG, but complications arise 7698 /// when they are tail calls. In such cases, the call lowering will update 7699 /// the root, but the builder still needs to know that a tail call has been 7700 /// lowered in order to avoid generating an additional return. 7701 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7702 // If the node is null, we do have a tail call. 7703 if (MaybeTC.getNode() != nullptr) 7704 DAG.setRoot(MaybeTC); 7705 else 7706 HasTailCall = true; 7707 } 7708 7709 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7710 unsigned *TotalCases, unsigned First, 7711 unsigned Last) { 7712 assert(Last >= First); 7713 assert(TotalCases[Last] >= TotalCases[First]); 7714 7715 APInt LowCase = Clusters[First].Low->getValue(); 7716 APInt HighCase = Clusters[Last].High->getValue(); 7717 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7718 7719 // FIXME: A range of consecutive cases has 100% density, but only requires one 7720 // comparison to lower. We should discriminate against such consecutive ranges 7721 // in jump tables. 7722 7723 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7724 uint64_t Range = Diff + 1; 7725 7726 uint64_t NumCases = 7727 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7728 7729 assert(NumCases < UINT64_MAX / 100); 7730 assert(Range >= NumCases); 7731 7732 return NumCases * 100 >= Range * MinJumpTableDensity; 7733 } 7734 7735 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7736 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7737 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7738 } 7739 7740 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7741 unsigned First, unsigned Last, 7742 const SwitchInst *SI, 7743 MachineBasicBlock *DefaultMBB, 7744 CaseCluster &JTCluster) { 7745 assert(First <= Last); 7746 7747 auto Prob = BranchProbability::getZero(); 7748 unsigned NumCmps = 0; 7749 std::vector<MachineBasicBlock*> Table; 7750 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7751 7752 // Initialize probabilities in JTProbs. 7753 for (unsigned I = First; I <= Last; ++I) 7754 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7755 7756 for (unsigned I = First; I <= Last; ++I) { 7757 assert(Clusters[I].Kind == CC_Range); 7758 Prob += Clusters[I].Prob; 7759 APInt Low = Clusters[I].Low->getValue(); 7760 APInt High = Clusters[I].High->getValue(); 7761 NumCmps += (Low == High) ? 1 : 2; 7762 if (I != First) { 7763 // Fill the gap between this and the previous cluster. 7764 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7765 assert(PreviousHigh.slt(Low)); 7766 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7767 for (uint64_t J = 0; J < Gap; J++) 7768 Table.push_back(DefaultMBB); 7769 } 7770 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7771 for (uint64_t J = 0; J < ClusterSize; ++J) 7772 Table.push_back(Clusters[I].MBB); 7773 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7774 } 7775 7776 unsigned NumDests = JTProbs.size(); 7777 if (isSuitableForBitTests(NumDests, NumCmps, 7778 Clusters[First].Low->getValue(), 7779 Clusters[Last].High->getValue())) { 7780 // Clusters[First..Last] should be lowered as bit tests instead. 7781 return false; 7782 } 7783 7784 // Create the MBB that will load from and jump through the table. 7785 // Note: We create it here, but it's not inserted into the function yet. 7786 MachineFunction *CurMF = FuncInfo.MF; 7787 MachineBasicBlock *JumpTableMBB = 7788 CurMF->CreateMachineBasicBlock(SI->getParent()); 7789 7790 // Add successors. Note: use table order for determinism. 7791 SmallPtrSet<MachineBasicBlock *, 8> Done; 7792 for (MachineBasicBlock *Succ : Table) { 7793 if (Done.count(Succ)) 7794 continue; 7795 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7796 Done.insert(Succ); 7797 } 7798 JumpTableMBB->normalizeSuccProbs(); 7799 7800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7801 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7802 ->createJumpTableIndex(Table); 7803 7804 // Set up the jump table info. 7805 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7806 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7807 Clusters[Last].High->getValue(), SI->getCondition(), 7808 nullptr, false); 7809 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7810 7811 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7812 JTCases.size() - 1, Prob); 7813 return true; 7814 } 7815 7816 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7817 const SwitchInst *SI, 7818 MachineBasicBlock *DefaultMBB) { 7819 #ifndef NDEBUG 7820 // Clusters must be non-empty, sorted, and only contain Range clusters. 7821 assert(!Clusters.empty()); 7822 for (CaseCluster &C : Clusters) 7823 assert(C.Kind == CC_Range); 7824 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7825 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7826 #endif 7827 7828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7829 if (!areJTsAllowed(TLI)) 7830 return; 7831 7832 const int64_t N = Clusters.size(); 7833 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7834 7835 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7836 SmallVector<unsigned, 8> TotalCases(N); 7837 7838 for (unsigned i = 0; i < N; ++i) { 7839 APInt Hi = Clusters[i].High->getValue(); 7840 APInt Lo = Clusters[i].Low->getValue(); 7841 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7842 if (i != 0) 7843 TotalCases[i] += TotalCases[i - 1]; 7844 } 7845 7846 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7847 // Cheap case: the whole range might be suitable for jump table. 7848 CaseCluster JTCluster; 7849 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7850 Clusters[0] = JTCluster; 7851 Clusters.resize(1); 7852 return; 7853 } 7854 } 7855 7856 // The algorithm below is not suitable for -O0. 7857 if (TM.getOptLevel() == CodeGenOpt::None) 7858 return; 7859 7860 // Split Clusters into minimum number of dense partitions. The algorithm uses 7861 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7862 // for the Case Statement'" (1994), but builds the MinPartitions array in 7863 // reverse order to make it easier to reconstruct the partitions in ascending 7864 // order. In the choice between two optimal partitionings, it picks the one 7865 // which yields more jump tables. 7866 7867 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7868 SmallVector<unsigned, 8> MinPartitions(N); 7869 // LastElement[i] is the last element of the partition starting at i. 7870 SmallVector<unsigned, 8> LastElement(N); 7871 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7872 SmallVector<unsigned, 8> NumTables(N); 7873 7874 // Base case: There is only one way to partition Clusters[N-1]. 7875 MinPartitions[N - 1] = 1; 7876 LastElement[N - 1] = N - 1; 7877 assert(MinJumpTableSize > 1); 7878 NumTables[N - 1] = 0; 7879 7880 // Note: loop indexes are signed to avoid underflow. 7881 for (int64_t i = N - 2; i >= 0; i--) { 7882 // Find optimal partitioning of Clusters[i..N-1]. 7883 // Baseline: Put Clusters[i] into a partition on its own. 7884 MinPartitions[i] = MinPartitions[i + 1] + 1; 7885 LastElement[i] = i; 7886 NumTables[i] = NumTables[i + 1]; 7887 7888 // Search for a solution that results in fewer partitions. 7889 for (int64_t j = N - 1; j > i; j--) { 7890 // Try building a partition from Clusters[i..j]. 7891 if (isDense(Clusters, &TotalCases[0], i, j)) { 7892 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7893 bool IsTable = j - i + 1 >= MinJumpTableSize; 7894 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7895 7896 // If this j leads to fewer partitions, or same number of partitions 7897 // with more lookup tables, it is a better partitioning. 7898 if (NumPartitions < MinPartitions[i] || 7899 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7900 MinPartitions[i] = NumPartitions; 7901 LastElement[i] = j; 7902 NumTables[i] = Tables; 7903 } 7904 } 7905 } 7906 } 7907 7908 // Iterate over the partitions, replacing some with jump tables in-place. 7909 unsigned DstIndex = 0; 7910 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7911 Last = LastElement[First]; 7912 assert(Last >= First); 7913 assert(DstIndex <= First); 7914 unsigned NumClusters = Last - First + 1; 7915 7916 CaseCluster JTCluster; 7917 if (NumClusters >= MinJumpTableSize && 7918 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7919 Clusters[DstIndex++] = JTCluster; 7920 } else { 7921 for (unsigned I = First; I <= Last; ++I) 7922 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7923 } 7924 } 7925 Clusters.resize(DstIndex); 7926 } 7927 7928 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7929 // FIXME: Using the pointer type doesn't seem ideal. 7930 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7931 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7932 return Range <= BW; 7933 } 7934 7935 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7936 unsigned NumCmps, 7937 const APInt &Low, 7938 const APInt &High) { 7939 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7940 // range of cases both require only one branch to lower. Just looking at the 7941 // number of clusters and destinations should be enough to decide whether to 7942 // build bit tests. 7943 7944 // To lower a range with bit tests, the range must fit the bitwidth of a 7945 // machine word. 7946 if (!rangeFitsInWord(Low, High)) 7947 return false; 7948 7949 // Decide whether it's profitable to lower this range with bit tests. Each 7950 // destination requires a bit test and branch, and there is an overall range 7951 // check branch. For a small number of clusters, separate comparisons might be 7952 // cheaper, and for many destinations, splitting the range might be better. 7953 return (NumDests == 1 && NumCmps >= 3) || 7954 (NumDests == 2 && NumCmps >= 5) || 7955 (NumDests == 3 && NumCmps >= 6); 7956 } 7957 7958 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7959 unsigned First, unsigned Last, 7960 const SwitchInst *SI, 7961 CaseCluster &BTCluster) { 7962 assert(First <= Last); 7963 if (First == Last) 7964 return false; 7965 7966 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7967 unsigned NumCmps = 0; 7968 for (int64_t I = First; I <= Last; ++I) { 7969 assert(Clusters[I].Kind == CC_Range); 7970 Dests.set(Clusters[I].MBB->getNumber()); 7971 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7972 } 7973 unsigned NumDests = Dests.count(); 7974 7975 APInt Low = Clusters[First].Low->getValue(); 7976 APInt High = Clusters[Last].High->getValue(); 7977 assert(Low.slt(High)); 7978 7979 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7980 return false; 7981 7982 APInt LowBound; 7983 APInt CmpRange; 7984 7985 const int BitWidth = DAG.getTargetLoweringInfo() 7986 .getPointerTy(DAG.getDataLayout()) 7987 .getSizeInBits(); 7988 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7989 7990 // Check if the clusters cover a contiguous range such that no value in the 7991 // range will jump to the default statement. 7992 bool ContiguousRange = true; 7993 for (int64_t I = First + 1; I <= Last; ++I) { 7994 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7995 ContiguousRange = false; 7996 break; 7997 } 7998 } 7999 8000 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8001 // Optimize the case where all the case values fit in a word without having 8002 // to subtract minValue. In this case, we can optimize away the subtraction. 8003 LowBound = APInt::getNullValue(Low.getBitWidth()); 8004 CmpRange = High; 8005 ContiguousRange = false; 8006 } else { 8007 LowBound = Low; 8008 CmpRange = High - Low; 8009 } 8010 8011 CaseBitsVector CBV; 8012 auto TotalProb = BranchProbability::getZero(); 8013 for (unsigned i = First; i <= Last; ++i) { 8014 // Find the CaseBits for this destination. 8015 unsigned j; 8016 for (j = 0; j < CBV.size(); ++j) 8017 if (CBV[j].BB == Clusters[i].MBB) 8018 break; 8019 if (j == CBV.size()) 8020 CBV.push_back( 8021 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8022 CaseBits *CB = &CBV[j]; 8023 8024 // Update Mask, Bits and ExtraProb. 8025 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8026 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8027 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8028 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8029 CB->Bits += Hi - Lo + 1; 8030 CB->ExtraProb += Clusters[i].Prob; 8031 TotalProb += Clusters[i].Prob; 8032 } 8033 8034 BitTestInfo BTI; 8035 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8036 // Sort by probability first, number of bits second. 8037 if (a.ExtraProb != b.ExtraProb) 8038 return a.ExtraProb > b.ExtraProb; 8039 return a.Bits > b.Bits; 8040 }); 8041 8042 for (auto &CB : CBV) { 8043 MachineBasicBlock *BitTestBB = 8044 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8045 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8046 } 8047 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8048 SI->getCondition(), -1U, MVT::Other, false, 8049 ContiguousRange, nullptr, nullptr, std::move(BTI), 8050 TotalProb); 8051 8052 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8053 BitTestCases.size() - 1, TotalProb); 8054 return true; 8055 } 8056 8057 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8058 const SwitchInst *SI) { 8059 // Partition Clusters into as few subsets as possible, where each subset has a 8060 // range that fits in a machine word and has <= 3 unique destinations. 8061 8062 #ifndef NDEBUG 8063 // Clusters must be sorted and contain Range or JumpTable clusters. 8064 assert(!Clusters.empty()); 8065 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8066 for (const CaseCluster &C : Clusters) 8067 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8068 for (unsigned i = 1; i < Clusters.size(); ++i) 8069 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8070 #endif 8071 8072 // The algorithm below is not suitable for -O0. 8073 if (TM.getOptLevel() == CodeGenOpt::None) 8074 return; 8075 8076 // If target does not have legal shift left, do not emit bit tests at all. 8077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8078 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8079 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8080 return; 8081 8082 int BitWidth = PTy.getSizeInBits(); 8083 const int64_t N = Clusters.size(); 8084 8085 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8086 SmallVector<unsigned, 8> MinPartitions(N); 8087 // LastElement[i] is the last element of the partition starting at i. 8088 SmallVector<unsigned, 8> LastElement(N); 8089 8090 // FIXME: This might not be the best algorithm for finding bit test clusters. 8091 8092 // Base case: There is only one way to partition Clusters[N-1]. 8093 MinPartitions[N - 1] = 1; 8094 LastElement[N - 1] = N - 1; 8095 8096 // Note: loop indexes are signed to avoid underflow. 8097 for (int64_t i = N - 2; i >= 0; --i) { 8098 // Find optimal partitioning of Clusters[i..N-1]. 8099 // Baseline: Put Clusters[i] into a partition on its own. 8100 MinPartitions[i] = MinPartitions[i + 1] + 1; 8101 LastElement[i] = i; 8102 8103 // Search for a solution that results in fewer partitions. 8104 // Note: the search is limited by BitWidth, reducing time complexity. 8105 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8106 // Try building a partition from Clusters[i..j]. 8107 8108 // Check the range. 8109 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8110 Clusters[j].High->getValue())) 8111 continue; 8112 8113 // Check nbr of destinations and cluster types. 8114 // FIXME: This works, but doesn't seem very efficient. 8115 bool RangesOnly = true; 8116 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8117 for (int64_t k = i; k <= j; k++) { 8118 if (Clusters[k].Kind != CC_Range) { 8119 RangesOnly = false; 8120 break; 8121 } 8122 Dests.set(Clusters[k].MBB->getNumber()); 8123 } 8124 if (!RangesOnly || Dests.count() > 3) 8125 break; 8126 8127 // Check if it's a better partition. 8128 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8129 if (NumPartitions < MinPartitions[i]) { 8130 // Found a better partition. 8131 MinPartitions[i] = NumPartitions; 8132 LastElement[i] = j; 8133 } 8134 } 8135 } 8136 8137 // Iterate over the partitions, replacing with bit-test clusters in-place. 8138 unsigned DstIndex = 0; 8139 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8140 Last = LastElement[First]; 8141 assert(First <= Last); 8142 assert(DstIndex <= First); 8143 8144 CaseCluster BitTestCluster; 8145 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8146 Clusters[DstIndex++] = BitTestCluster; 8147 } else { 8148 size_t NumClusters = Last - First + 1; 8149 std::memmove(&Clusters[DstIndex], &Clusters[First], 8150 sizeof(Clusters[0]) * NumClusters); 8151 DstIndex += NumClusters; 8152 } 8153 } 8154 Clusters.resize(DstIndex); 8155 } 8156 8157 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8158 MachineBasicBlock *SwitchMBB, 8159 MachineBasicBlock *DefaultMBB) { 8160 MachineFunction *CurMF = FuncInfo.MF; 8161 MachineBasicBlock *NextMBB = nullptr; 8162 MachineFunction::iterator BBI(W.MBB); 8163 if (++BBI != FuncInfo.MF->end()) 8164 NextMBB = &*BBI; 8165 8166 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8167 8168 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8169 8170 if (Size == 2 && W.MBB == SwitchMBB) { 8171 // If any two of the cases has the same destination, and if one value 8172 // is the same as the other, but has one bit unset that the other has set, 8173 // use bit manipulation to do two compares at once. For example: 8174 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8175 // TODO: This could be extended to merge any 2 cases in switches with 3 8176 // cases. 8177 // TODO: Handle cases where W.CaseBB != SwitchBB. 8178 CaseCluster &Small = *W.FirstCluster; 8179 CaseCluster &Big = *W.LastCluster; 8180 8181 if (Small.Low == Small.High && Big.Low == Big.High && 8182 Small.MBB == Big.MBB) { 8183 const APInt &SmallValue = Small.Low->getValue(); 8184 const APInt &BigValue = Big.Low->getValue(); 8185 8186 // Check that there is only one bit different. 8187 APInt CommonBit = BigValue ^ SmallValue; 8188 if (CommonBit.isPowerOf2()) { 8189 SDValue CondLHS = getValue(Cond); 8190 EVT VT = CondLHS.getValueType(); 8191 SDLoc DL = getCurSDLoc(); 8192 8193 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8194 DAG.getConstant(CommonBit, DL, VT)); 8195 SDValue Cond = DAG.getSetCC( 8196 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8197 ISD::SETEQ); 8198 8199 // Update successor info. 8200 // Both Small and Big will jump to Small.BB, so we sum up the 8201 // probabilities. 8202 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8203 if (BPI) 8204 addSuccessorWithProb( 8205 SwitchMBB, DefaultMBB, 8206 // The default destination is the first successor in IR. 8207 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8208 else 8209 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8210 8211 // Insert the true branch. 8212 SDValue BrCond = 8213 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8214 DAG.getBasicBlock(Small.MBB)); 8215 // Insert the false branch. 8216 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8217 DAG.getBasicBlock(DefaultMBB)); 8218 8219 DAG.setRoot(BrCond); 8220 return; 8221 } 8222 } 8223 } 8224 8225 if (TM.getOptLevel() != CodeGenOpt::None) { 8226 // Order cases by probability so the most likely case will be checked first. 8227 std::sort(W.FirstCluster, W.LastCluster + 1, 8228 [](const CaseCluster &a, const CaseCluster &b) { 8229 return a.Prob > b.Prob; 8230 }); 8231 8232 // Rearrange the case blocks so that the last one falls through if possible 8233 // without without changing the order of probabilities. 8234 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8235 --I; 8236 if (I->Prob > W.LastCluster->Prob) 8237 break; 8238 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8239 std::swap(*I, *W.LastCluster); 8240 break; 8241 } 8242 } 8243 } 8244 8245 // Compute total probability. 8246 BranchProbability DefaultProb = W.DefaultProb; 8247 BranchProbability UnhandledProbs = DefaultProb; 8248 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8249 UnhandledProbs += I->Prob; 8250 8251 MachineBasicBlock *CurMBB = W.MBB; 8252 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8253 MachineBasicBlock *Fallthrough; 8254 if (I == W.LastCluster) { 8255 // For the last cluster, fall through to the default destination. 8256 Fallthrough = DefaultMBB; 8257 } else { 8258 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8259 CurMF->insert(BBI, Fallthrough); 8260 // Put Cond in a virtual register to make it available from the new blocks. 8261 ExportFromCurrentBlock(Cond); 8262 } 8263 UnhandledProbs -= I->Prob; 8264 8265 switch (I->Kind) { 8266 case CC_JumpTable: { 8267 // FIXME: Optimize away range check based on pivot comparisons. 8268 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8269 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8270 8271 // The jump block hasn't been inserted yet; insert it here. 8272 MachineBasicBlock *JumpMBB = JT->MBB; 8273 CurMF->insert(BBI, JumpMBB); 8274 8275 auto JumpProb = I->Prob; 8276 auto FallthroughProb = UnhandledProbs; 8277 8278 // If the default statement is a target of the jump table, we evenly 8279 // distribute the default probability to successors of CurMBB. Also 8280 // update the probability on the edge from JumpMBB to Fallthrough. 8281 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8282 SE = JumpMBB->succ_end(); 8283 SI != SE; ++SI) { 8284 if (*SI == DefaultMBB) { 8285 JumpProb += DefaultProb / 2; 8286 FallthroughProb -= DefaultProb / 2; 8287 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8288 JumpMBB->normalizeSuccProbs(); 8289 break; 8290 } 8291 } 8292 8293 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8294 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8295 CurMBB->normalizeSuccProbs(); 8296 8297 // The jump table header will be inserted in our current block, do the 8298 // range check, and fall through to our fallthrough block. 8299 JTH->HeaderBB = CurMBB; 8300 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8301 8302 // If we're in the right place, emit the jump table header right now. 8303 if (CurMBB == SwitchMBB) { 8304 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8305 JTH->Emitted = true; 8306 } 8307 break; 8308 } 8309 case CC_BitTests: { 8310 // FIXME: Optimize away range check based on pivot comparisons. 8311 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8312 8313 // The bit test blocks haven't been inserted yet; insert them here. 8314 for (BitTestCase &BTC : BTB->Cases) 8315 CurMF->insert(BBI, BTC.ThisBB); 8316 8317 // Fill in fields of the BitTestBlock. 8318 BTB->Parent = CurMBB; 8319 BTB->Default = Fallthrough; 8320 8321 BTB->DefaultProb = UnhandledProbs; 8322 // If the cases in bit test don't form a contiguous range, we evenly 8323 // distribute the probability on the edge to Fallthrough to two 8324 // successors of CurMBB. 8325 if (!BTB->ContiguousRange) { 8326 BTB->Prob += DefaultProb / 2; 8327 BTB->DefaultProb -= DefaultProb / 2; 8328 } 8329 8330 // If we're in the right place, emit the bit test header right now. 8331 if (CurMBB == SwitchMBB) { 8332 visitBitTestHeader(*BTB, SwitchMBB); 8333 BTB->Emitted = true; 8334 } 8335 break; 8336 } 8337 case CC_Range: { 8338 const Value *RHS, *LHS, *MHS; 8339 ISD::CondCode CC; 8340 if (I->Low == I->High) { 8341 // Check Cond == I->Low. 8342 CC = ISD::SETEQ; 8343 LHS = Cond; 8344 RHS=I->Low; 8345 MHS = nullptr; 8346 } else { 8347 // Check I->Low <= Cond <= I->High. 8348 CC = ISD::SETLE; 8349 LHS = I->Low; 8350 MHS = Cond; 8351 RHS = I->High; 8352 } 8353 8354 // The false probability is the sum of all unhandled cases. 8355 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8356 UnhandledProbs); 8357 8358 if (CurMBB == SwitchMBB) 8359 visitSwitchCase(CB, SwitchMBB); 8360 else 8361 SwitchCases.push_back(CB); 8362 8363 break; 8364 } 8365 } 8366 CurMBB = Fallthrough; 8367 } 8368 } 8369 8370 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8371 CaseClusterIt First, 8372 CaseClusterIt Last) { 8373 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8374 if (X.Prob != CC.Prob) 8375 return X.Prob > CC.Prob; 8376 8377 // Ties are broken by comparing the case value. 8378 return X.Low->getValue().slt(CC.Low->getValue()); 8379 }); 8380 } 8381 8382 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8383 const SwitchWorkListItem &W, 8384 Value *Cond, 8385 MachineBasicBlock *SwitchMBB) { 8386 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8387 "Clusters not sorted?"); 8388 8389 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8390 8391 // Balance the tree based on branch probabilities to create a near-optimal (in 8392 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8393 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8394 CaseClusterIt LastLeft = W.FirstCluster; 8395 CaseClusterIt FirstRight = W.LastCluster; 8396 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8397 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8398 8399 // Move LastLeft and FirstRight towards each other from opposite directions to 8400 // find a partitioning of the clusters which balances the probability on both 8401 // sides. If LeftProb and RightProb are equal, alternate which side is 8402 // taken to ensure 0-probability nodes are distributed evenly. 8403 unsigned I = 0; 8404 while (LastLeft + 1 < FirstRight) { 8405 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8406 LeftProb += (++LastLeft)->Prob; 8407 else 8408 RightProb += (--FirstRight)->Prob; 8409 I++; 8410 } 8411 8412 for (;;) { 8413 // Our binary search tree differs from a typical BST in that ours can have up 8414 // to three values in each leaf. The pivot selection above doesn't take that 8415 // into account, which means the tree might require more nodes and be less 8416 // efficient. We compensate for this here. 8417 8418 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8419 unsigned NumRight = W.LastCluster - FirstRight + 1; 8420 8421 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8422 // If one side has less than 3 clusters, and the other has more than 3, 8423 // consider taking a cluster from the other side. 8424 8425 if (NumLeft < NumRight) { 8426 // Consider moving the first cluster on the right to the left side. 8427 CaseCluster &CC = *FirstRight; 8428 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8429 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8430 if (LeftSideRank <= RightSideRank) { 8431 // Moving the cluster to the left does not demote it. 8432 ++LastLeft; 8433 ++FirstRight; 8434 continue; 8435 } 8436 } else { 8437 assert(NumRight < NumLeft); 8438 // Consider moving the last element on the left to the right side. 8439 CaseCluster &CC = *LastLeft; 8440 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8441 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8442 if (RightSideRank <= LeftSideRank) { 8443 // Moving the cluster to the right does not demot it. 8444 --LastLeft; 8445 --FirstRight; 8446 continue; 8447 } 8448 } 8449 } 8450 break; 8451 } 8452 8453 assert(LastLeft + 1 == FirstRight); 8454 assert(LastLeft >= W.FirstCluster); 8455 assert(FirstRight <= W.LastCluster); 8456 8457 // Use the first element on the right as pivot since we will make less-than 8458 // comparisons against it. 8459 CaseClusterIt PivotCluster = FirstRight; 8460 assert(PivotCluster > W.FirstCluster); 8461 assert(PivotCluster <= W.LastCluster); 8462 8463 CaseClusterIt FirstLeft = W.FirstCluster; 8464 CaseClusterIt LastRight = W.LastCluster; 8465 8466 const ConstantInt *Pivot = PivotCluster->Low; 8467 8468 // New blocks will be inserted immediately after the current one. 8469 MachineFunction::iterator BBI(W.MBB); 8470 ++BBI; 8471 8472 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8473 // we can branch to its destination directly if it's squeezed exactly in 8474 // between the known lower bound and Pivot - 1. 8475 MachineBasicBlock *LeftMBB; 8476 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8477 FirstLeft->Low == W.GE && 8478 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8479 LeftMBB = FirstLeft->MBB; 8480 } else { 8481 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8482 FuncInfo.MF->insert(BBI, LeftMBB); 8483 WorkList.push_back( 8484 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8485 // Put Cond in a virtual register to make it available from the new blocks. 8486 ExportFromCurrentBlock(Cond); 8487 } 8488 8489 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8490 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8491 // directly if RHS.High equals the current upper bound. 8492 MachineBasicBlock *RightMBB; 8493 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8494 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8495 RightMBB = FirstRight->MBB; 8496 } else { 8497 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8498 FuncInfo.MF->insert(BBI, RightMBB); 8499 WorkList.push_back( 8500 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8501 // Put Cond in a virtual register to make it available from the new blocks. 8502 ExportFromCurrentBlock(Cond); 8503 } 8504 8505 // Create the CaseBlock record that will be used to lower the branch. 8506 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8507 LeftProb, RightProb); 8508 8509 if (W.MBB == SwitchMBB) 8510 visitSwitchCase(CB, SwitchMBB); 8511 else 8512 SwitchCases.push_back(CB); 8513 } 8514 8515 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8516 // Extract cases from the switch. 8517 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8518 CaseClusterVector Clusters; 8519 Clusters.reserve(SI.getNumCases()); 8520 for (auto I : SI.cases()) { 8521 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8522 const ConstantInt *CaseVal = I.getCaseValue(); 8523 BranchProbability Prob = 8524 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8525 : BranchProbability(1, SI.getNumCases() + 1); 8526 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8527 } 8528 8529 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8530 8531 // Cluster adjacent cases with the same destination. We do this at all 8532 // optimization levels because it's cheap to do and will make codegen faster 8533 // if there are many clusters. 8534 sortAndRangeify(Clusters); 8535 8536 if (TM.getOptLevel() != CodeGenOpt::None) { 8537 // Replace an unreachable default with the most popular destination. 8538 // FIXME: Exploit unreachable default more aggressively. 8539 bool UnreachableDefault = 8540 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8541 if (UnreachableDefault && !Clusters.empty()) { 8542 DenseMap<const BasicBlock *, unsigned> Popularity; 8543 unsigned MaxPop = 0; 8544 const BasicBlock *MaxBB = nullptr; 8545 for (auto I : SI.cases()) { 8546 const BasicBlock *BB = I.getCaseSuccessor(); 8547 if (++Popularity[BB] > MaxPop) { 8548 MaxPop = Popularity[BB]; 8549 MaxBB = BB; 8550 } 8551 } 8552 // Set new default. 8553 assert(MaxPop > 0 && MaxBB); 8554 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8555 8556 // Remove cases that were pointing to the destination that is now the 8557 // default. 8558 CaseClusterVector New; 8559 New.reserve(Clusters.size()); 8560 for (CaseCluster &CC : Clusters) { 8561 if (CC.MBB != DefaultMBB) 8562 New.push_back(CC); 8563 } 8564 Clusters = std::move(New); 8565 } 8566 } 8567 8568 // If there is only the default destination, jump there directly. 8569 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8570 if (Clusters.empty()) { 8571 SwitchMBB->addSuccessor(DefaultMBB); 8572 if (DefaultMBB != NextBlock(SwitchMBB)) { 8573 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8574 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8575 } 8576 return; 8577 } 8578 8579 findJumpTables(Clusters, &SI, DefaultMBB); 8580 findBitTestClusters(Clusters, &SI); 8581 8582 DEBUG({ 8583 dbgs() << "Case clusters: "; 8584 for (const CaseCluster &C : Clusters) { 8585 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8586 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8587 8588 C.Low->getValue().print(dbgs(), true); 8589 if (C.Low != C.High) { 8590 dbgs() << '-'; 8591 C.High->getValue().print(dbgs(), true); 8592 } 8593 dbgs() << ' '; 8594 } 8595 dbgs() << '\n'; 8596 }); 8597 8598 assert(!Clusters.empty()); 8599 SwitchWorkList WorkList; 8600 CaseClusterIt First = Clusters.begin(); 8601 CaseClusterIt Last = Clusters.end() - 1; 8602 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8603 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8604 8605 while (!WorkList.empty()) { 8606 SwitchWorkListItem W = WorkList.back(); 8607 WorkList.pop_back(); 8608 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8609 8610 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8611 // For optimized builds, lower large range as a balanced binary tree. 8612 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8613 continue; 8614 } 8615 8616 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8617 } 8618 } 8619