1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.second) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs, MemVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1793 &Offsets); 1794 unsigned NumValues = ValueVTs.size(); 1795 1796 SmallVector<SDValue, 4> Chains(NumValues); 1797 for (unsigned i = 0; i != NumValues; ++i) { 1798 // An aggregate return value cannot wrap around the address space, so 1799 // offsets to its parts don't wrap either. 1800 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1801 1802 SDValue Val = RetOp.getValue(i); 1803 if (MemVTs[i] != ValueVTs[i]) 1804 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1805 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1806 // FIXME: better loc info would be nice. 1807 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1808 } 1809 1810 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1811 MVT::Other, Chains); 1812 } else if (I.getNumOperands() != 0) { 1813 SmallVector<EVT, 4> ValueVTs; 1814 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1815 unsigned NumValues = ValueVTs.size(); 1816 if (NumValues) { 1817 SDValue RetOp = getValue(I.getOperand(0)); 1818 1819 const Function *F = I.getParent()->getParent(); 1820 1821 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1822 I.getOperand(0)->getType(), F->getCallingConv(), 1823 /*IsVarArg*/ false); 1824 1825 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1826 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1827 Attribute::SExt)) 1828 ExtendKind = ISD::SIGN_EXTEND; 1829 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1830 Attribute::ZExt)) 1831 ExtendKind = ISD::ZERO_EXTEND; 1832 1833 LLVMContext &Context = F->getContext(); 1834 bool RetInReg = F->getAttributes().hasAttribute( 1835 AttributeList::ReturnIndex, Attribute::InReg); 1836 1837 for (unsigned j = 0; j != NumValues; ++j) { 1838 EVT VT = ValueVTs[j]; 1839 1840 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1841 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1842 1843 CallingConv::ID CC = F->getCallingConv(); 1844 1845 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1846 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1847 SmallVector<SDValue, 4> Parts(NumParts); 1848 getCopyToParts(DAG, getCurSDLoc(), 1849 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1850 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1851 1852 // 'inreg' on function refers to return value 1853 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1854 if (RetInReg) 1855 Flags.setInReg(); 1856 1857 if (I.getOperand(0)->getType()->isPointerTy()) { 1858 Flags.setPointer(); 1859 Flags.setPointerAddrSpace( 1860 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1861 } 1862 1863 if (NeedsRegBlock) { 1864 Flags.setInConsecutiveRegs(); 1865 if (j == NumValues - 1) 1866 Flags.setInConsecutiveRegsLast(); 1867 } 1868 1869 // Propagate extension type if any 1870 if (ExtendKind == ISD::SIGN_EXTEND) 1871 Flags.setSExt(); 1872 else if (ExtendKind == ISD::ZERO_EXTEND) 1873 Flags.setZExt(); 1874 1875 for (unsigned i = 0; i < NumParts; ++i) { 1876 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1877 VT, /*isfixed=*/true, 0, 0)); 1878 OutVals.push_back(Parts[i]); 1879 } 1880 } 1881 } 1882 } 1883 1884 // Push in swifterror virtual register as the last element of Outs. This makes 1885 // sure swifterror virtual register will be returned in the swifterror 1886 // physical register. 1887 const Function *F = I.getParent()->getParent(); 1888 if (TLI.supportSwiftError() && 1889 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1890 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1891 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1892 Flags.setSwiftError(); 1893 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1894 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1895 true /*isfixed*/, 1 /*origidx*/, 1896 0 /*partOffs*/)); 1897 // Create SDNode for the swifterror virtual register. 1898 OutVals.push_back( 1899 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1900 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1901 EVT(TLI.getPointerTy(DL)))); 1902 } 1903 1904 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1905 CallingConv::ID CallConv = 1906 DAG.getMachineFunction().getFunction().getCallingConv(); 1907 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1908 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1909 1910 // Verify that the target's LowerReturn behaved as expected. 1911 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1912 "LowerReturn didn't return a valid chain!"); 1913 1914 // Update the DAG with the new chain value resulting from return lowering. 1915 DAG.setRoot(Chain); 1916 } 1917 1918 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1919 /// created for it, emit nodes to copy the value into the virtual 1920 /// registers. 1921 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1922 // Skip empty types 1923 if (V->getType()->isEmptyTy()) 1924 return; 1925 1926 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1927 if (VMI != FuncInfo.ValueMap.end()) { 1928 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1929 CopyValueToVirtualRegister(V, VMI->second); 1930 } 1931 } 1932 1933 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1934 /// the current basic block, add it to ValueMap now so that we'll get a 1935 /// CopyTo/FromReg. 1936 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1937 // No need to export constants. 1938 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1939 1940 // Already exported? 1941 if (FuncInfo.isExportedInst(V)) return; 1942 1943 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1944 CopyValueToVirtualRegister(V, Reg); 1945 } 1946 1947 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1948 const BasicBlock *FromBB) { 1949 // The operands of the setcc have to be in this block. We don't know 1950 // how to export them from some other block. 1951 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1952 // Can export from current BB. 1953 if (VI->getParent() == FromBB) 1954 return true; 1955 1956 // Is already exported, noop. 1957 return FuncInfo.isExportedInst(V); 1958 } 1959 1960 // If this is an argument, we can export it if the BB is the entry block or 1961 // if it is already exported. 1962 if (isa<Argument>(V)) { 1963 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1964 return true; 1965 1966 // Otherwise, can only export this if it is already exported. 1967 return FuncInfo.isExportedInst(V); 1968 } 1969 1970 // Otherwise, constants can always be exported. 1971 return true; 1972 } 1973 1974 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1975 BranchProbability 1976 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1977 const MachineBasicBlock *Dst) const { 1978 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1979 const BasicBlock *SrcBB = Src->getBasicBlock(); 1980 const BasicBlock *DstBB = Dst->getBasicBlock(); 1981 if (!BPI) { 1982 // If BPI is not available, set the default probability as 1 / N, where N is 1983 // the number of successors. 1984 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1985 return BranchProbability(1, SuccSize); 1986 } 1987 return BPI->getEdgeProbability(SrcBB, DstBB); 1988 } 1989 1990 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1991 MachineBasicBlock *Dst, 1992 BranchProbability Prob) { 1993 if (!FuncInfo.BPI) 1994 Src->addSuccessorWithoutProb(Dst); 1995 else { 1996 if (Prob.isUnknown()) 1997 Prob = getEdgeProbability(Src, Dst); 1998 Src->addSuccessor(Dst, Prob); 1999 } 2000 } 2001 2002 static bool InBlock(const Value *V, const BasicBlock *BB) { 2003 if (const Instruction *I = dyn_cast<Instruction>(V)) 2004 return I->getParent() == BB; 2005 return true; 2006 } 2007 2008 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2009 /// This function emits a branch and is used at the leaves of an OR or an 2010 /// AND operator tree. 2011 void 2012 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2013 MachineBasicBlock *TBB, 2014 MachineBasicBlock *FBB, 2015 MachineBasicBlock *CurBB, 2016 MachineBasicBlock *SwitchBB, 2017 BranchProbability TProb, 2018 BranchProbability FProb, 2019 bool InvertCond) { 2020 const BasicBlock *BB = CurBB->getBasicBlock(); 2021 2022 // If the leaf of the tree is a comparison, merge the condition into 2023 // the caseblock. 2024 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2025 // The operands of the cmp have to be in this block. We don't know 2026 // how to export them from some other block. If this is the first block 2027 // of the sequence, no exporting is needed. 2028 if (CurBB == SwitchBB || 2029 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2030 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2031 ISD::CondCode Condition; 2032 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2033 ICmpInst::Predicate Pred = 2034 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2035 Condition = getICmpCondCode(Pred); 2036 } else { 2037 const FCmpInst *FC = cast<FCmpInst>(Cond); 2038 FCmpInst::Predicate Pred = 2039 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2040 Condition = getFCmpCondCode(Pred); 2041 if (TM.Options.NoNaNsFPMath) 2042 Condition = getFCmpCodeWithoutNaN(Condition); 2043 } 2044 2045 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2046 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2047 SwitchCases.push_back(CB); 2048 return; 2049 } 2050 } 2051 2052 // Create a CaseBlock record representing this branch. 2053 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2054 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2055 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2056 SwitchCases.push_back(CB); 2057 } 2058 2059 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2060 MachineBasicBlock *TBB, 2061 MachineBasicBlock *FBB, 2062 MachineBasicBlock *CurBB, 2063 MachineBasicBlock *SwitchBB, 2064 Instruction::BinaryOps Opc, 2065 BranchProbability TProb, 2066 BranchProbability FProb, 2067 bool InvertCond) { 2068 // Skip over not part of the tree and remember to invert op and operands at 2069 // next level. 2070 Value *NotCond; 2071 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2072 InBlock(NotCond, CurBB->getBasicBlock())) { 2073 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2074 !InvertCond); 2075 return; 2076 } 2077 2078 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2079 // Compute the effective opcode for Cond, taking into account whether it needs 2080 // to be inverted, e.g. 2081 // and (not (or A, B)), C 2082 // gets lowered as 2083 // and (and (not A, not B), C) 2084 unsigned BOpc = 0; 2085 if (BOp) { 2086 BOpc = BOp->getOpcode(); 2087 if (InvertCond) { 2088 if (BOpc == Instruction::And) 2089 BOpc = Instruction::Or; 2090 else if (BOpc == Instruction::Or) 2091 BOpc = Instruction::And; 2092 } 2093 } 2094 2095 // If this node is not part of the or/and tree, emit it as a branch. 2096 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2097 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2098 BOp->getParent() != CurBB->getBasicBlock() || 2099 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2100 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2101 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2102 TProb, FProb, InvertCond); 2103 return; 2104 } 2105 2106 // Create TmpBB after CurBB. 2107 MachineFunction::iterator BBI(CurBB); 2108 MachineFunction &MF = DAG.getMachineFunction(); 2109 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2110 CurBB->getParent()->insert(++BBI, TmpBB); 2111 2112 if (Opc == Instruction::Or) { 2113 // Codegen X | Y as: 2114 // BB1: 2115 // jmp_if_X TBB 2116 // jmp TmpBB 2117 // TmpBB: 2118 // jmp_if_Y TBB 2119 // jmp FBB 2120 // 2121 2122 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2123 // The requirement is that 2124 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2125 // = TrueProb for original BB. 2126 // Assuming the original probabilities are A and B, one choice is to set 2127 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2128 // A/(1+B) and 2B/(1+B). This choice assumes that 2129 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2130 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2131 // TmpBB, but the math is more complicated. 2132 2133 auto NewTrueProb = TProb / 2; 2134 auto NewFalseProb = TProb / 2 + FProb; 2135 // Emit the LHS condition. 2136 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2137 NewTrueProb, NewFalseProb, InvertCond); 2138 2139 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2140 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2141 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2142 // Emit the RHS condition into TmpBB. 2143 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2144 Probs[0], Probs[1], InvertCond); 2145 } else { 2146 assert(Opc == Instruction::And && "Unknown merge op!"); 2147 // Codegen X & Y as: 2148 // BB1: 2149 // jmp_if_X TmpBB 2150 // jmp FBB 2151 // TmpBB: 2152 // jmp_if_Y TBB 2153 // jmp FBB 2154 // 2155 // This requires creation of TmpBB after CurBB. 2156 2157 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2158 // The requirement is that 2159 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2160 // = FalseProb for original BB. 2161 // Assuming the original probabilities are A and B, one choice is to set 2162 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2163 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2164 // TrueProb for BB1 * FalseProb for TmpBB. 2165 2166 auto NewTrueProb = TProb + FProb / 2; 2167 auto NewFalseProb = FProb / 2; 2168 // Emit the LHS condition. 2169 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2170 NewTrueProb, NewFalseProb, InvertCond); 2171 2172 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2173 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2174 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2175 // Emit the RHS condition into TmpBB. 2176 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2177 Probs[0], Probs[1], InvertCond); 2178 } 2179 } 2180 2181 /// If the set of cases should be emitted as a series of branches, return true. 2182 /// If we should emit this as a bunch of and/or'd together conditions, return 2183 /// false. 2184 bool 2185 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2186 if (Cases.size() != 2) return true; 2187 2188 // If this is two comparisons of the same values or'd or and'd together, they 2189 // will get folded into a single comparison, so don't emit two blocks. 2190 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2191 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2192 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2193 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2194 return false; 2195 } 2196 2197 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2198 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2199 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2200 Cases[0].CC == Cases[1].CC && 2201 isa<Constant>(Cases[0].CmpRHS) && 2202 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2203 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2204 return false; 2205 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2206 return false; 2207 } 2208 2209 return true; 2210 } 2211 2212 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2213 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2214 2215 // Update machine-CFG edges. 2216 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2217 2218 if (I.isUnconditional()) { 2219 // Update machine-CFG edges. 2220 BrMBB->addSuccessor(Succ0MBB); 2221 2222 // If this is not a fall-through branch or optimizations are switched off, 2223 // emit the branch. 2224 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2225 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2226 MVT::Other, getControlRoot(), 2227 DAG.getBasicBlock(Succ0MBB))); 2228 2229 return; 2230 } 2231 2232 // If this condition is one of the special cases we handle, do special stuff 2233 // now. 2234 const Value *CondVal = I.getCondition(); 2235 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2236 2237 // If this is a series of conditions that are or'd or and'd together, emit 2238 // this as a sequence of branches instead of setcc's with and/or operations. 2239 // As long as jumps are not expensive, this should improve performance. 2240 // For example, instead of something like: 2241 // cmp A, B 2242 // C = seteq 2243 // cmp D, E 2244 // F = setle 2245 // or C, F 2246 // jnz foo 2247 // Emit: 2248 // cmp A, B 2249 // je foo 2250 // cmp D, E 2251 // jle foo 2252 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2253 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2254 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2255 !I.getMetadata(LLVMContext::MD_unpredictable) && 2256 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2257 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2258 Opcode, 2259 getEdgeProbability(BrMBB, Succ0MBB), 2260 getEdgeProbability(BrMBB, Succ1MBB), 2261 /*InvertCond=*/false); 2262 // If the compares in later blocks need to use values not currently 2263 // exported from this block, export them now. This block should always 2264 // be the first entry. 2265 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2266 2267 // Allow some cases to be rejected. 2268 if (ShouldEmitAsBranches(SwitchCases)) { 2269 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2270 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2271 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2272 } 2273 2274 // Emit the branch for this block. 2275 visitSwitchCase(SwitchCases[0], BrMBB); 2276 SwitchCases.erase(SwitchCases.begin()); 2277 return; 2278 } 2279 2280 // Okay, we decided not to do this, remove any inserted MBB's and clear 2281 // SwitchCases. 2282 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2283 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2284 2285 SwitchCases.clear(); 2286 } 2287 } 2288 2289 // Create a CaseBlock record representing this branch. 2290 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2291 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2292 2293 // Use visitSwitchCase to actually insert the fast branch sequence for this 2294 // cond branch. 2295 visitSwitchCase(CB, BrMBB); 2296 } 2297 2298 /// visitSwitchCase - Emits the necessary code to represent a single node in 2299 /// the binary search tree resulting from lowering a switch instruction. 2300 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2301 MachineBasicBlock *SwitchBB) { 2302 SDValue Cond; 2303 SDValue CondLHS = getValue(CB.CmpLHS); 2304 SDLoc dl = CB.DL; 2305 2306 if (CB.CC == ISD::SETTRUE) { 2307 // Branch or fall through to TrueBB. 2308 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2309 SwitchBB->normalizeSuccProbs(); 2310 if (CB.TrueBB != NextBlock(SwitchBB)) { 2311 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2312 DAG.getBasicBlock(CB.TrueBB))); 2313 } 2314 return; 2315 } 2316 2317 auto &TLI = DAG.getTargetLoweringInfo(); 2318 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2319 2320 // Build the setcc now. 2321 if (!CB.CmpMHS) { 2322 // Fold "(X == true)" to X and "(X == false)" to !X to 2323 // handle common cases produced by branch lowering. 2324 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2325 CB.CC == ISD::SETEQ) 2326 Cond = CondLHS; 2327 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2328 CB.CC == ISD::SETEQ) { 2329 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2330 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2331 } else { 2332 SDValue CondRHS = getValue(CB.CmpRHS); 2333 2334 // If a pointer's DAG type is larger than its memory type then the DAG 2335 // values are zero-extended. This breaks signed comparisons so truncate 2336 // back to the underlying type before doing the compare. 2337 if (CondLHS.getValueType() != MemVT) { 2338 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2339 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2340 } 2341 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2342 } 2343 } else { 2344 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2345 2346 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2347 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2348 2349 SDValue CmpOp = getValue(CB.CmpMHS); 2350 EVT VT = CmpOp.getValueType(); 2351 2352 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2353 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2354 ISD::SETLE); 2355 } else { 2356 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2357 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2358 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2359 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2360 } 2361 } 2362 2363 // Update successor info 2364 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2365 // TrueBB and FalseBB are always different unless the incoming IR is 2366 // degenerate. This only happens when running llc on weird IR. 2367 if (CB.TrueBB != CB.FalseBB) 2368 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2369 SwitchBB->normalizeSuccProbs(); 2370 2371 // If the lhs block is the next block, invert the condition so that we can 2372 // fall through to the lhs instead of the rhs block. 2373 if (CB.TrueBB == NextBlock(SwitchBB)) { 2374 std::swap(CB.TrueBB, CB.FalseBB); 2375 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2376 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2377 } 2378 2379 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2380 MVT::Other, getControlRoot(), Cond, 2381 DAG.getBasicBlock(CB.TrueBB)); 2382 2383 // Insert the false branch. Do this even if it's a fall through branch, 2384 // this makes it easier to do DAG optimizations which require inverting 2385 // the branch condition. 2386 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2387 DAG.getBasicBlock(CB.FalseBB)); 2388 2389 DAG.setRoot(BrCond); 2390 } 2391 2392 /// visitJumpTable - Emit JumpTable node in the current MBB 2393 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2394 // Emit the code for the jump table 2395 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2396 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2397 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2398 JT.Reg, PTy); 2399 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2400 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2401 MVT::Other, Index.getValue(1), 2402 Table, Index); 2403 DAG.setRoot(BrJumpTable); 2404 } 2405 2406 /// visitJumpTableHeader - This function emits necessary code to produce index 2407 /// in the JumpTable from switch case. 2408 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2409 JumpTableHeader &JTH, 2410 MachineBasicBlock *SwitchBB) { 2411 SDLoc dl = getCurSDLoc(); 2412 2413 // Subtract the lowest switch case value from the value being switched on. 2414 SDValue SwitchOp = getValue(JTH.SValue); 2415 EVT VT = SwitchOp.getValueType(); 2416 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2417 DAG.getConstant(JTH.First, dl, VT)); 2418 2419 // The SDNode we just created, which holds the value being switched on minus 2420 // the smallest case value, needs to be copied to a virtual register so it 2421 // can be used as an index into the jump table in a subsequent basic block. 2422 // This value may be smaller or larger than the target's pointer type, and 2423 // therefore require extension or truncating. 2424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2425 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2426 2427 unsigned JumpTableReg = 2428 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2429 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2430 JumpTableReg, SwitchOp); 2431 JT.Reg = JumpTableReg; 2432 2433 if (!JTH.OmitRangeCheck) { 2434 // Emit the range check for the jump table, and branch to the default block 2435 // for the switch statement if the value being switched on exceeds the 2436 // largest case in the switch. 2437 SDValue CMP = DAG.getSetCC( 2438 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2439 Sub.getValueType()), 2440 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2441 2442 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2443 MVT::Other, CopyTo, CMP, 2444 DAG.getBasicBlock(JT.Default)); 2445 2446 // Avoid emitting unnecessary branches to the next block. 2447 if (JT.MBB != NextBlock(SwitchBB)) 2448 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2449 DAG.getBasicBlock(JT.MBB)); 2450 2451 DAG.setRoot(BrCond); 2452 } else { 2453 // Avoid emitting unnecessary branches to the next block. 2454 if (JT.MBB != NextBlock(SwitchBB)) 2455 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2456 DAG.getBasicBlock(JT.MBB))); 2457 else 2458 DAG.setRoot(CopyTo); 2459 } 2460 } 2461 2462 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2463 /// variable if there exists one. 2464 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2465 SDValue &Chain) { 2466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2467 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2468 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2469 MachineFunction &MF = DAG.getMachineFunction(); 2470 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2471 MachineSDNode *Node = 2472 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2473 if (Global) { 2474 MachinePointerInfo MPInfo(Global); 2475 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2476 MachineMemOperand::MODereferenceable; 2477 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2478 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2479 DAG.setNodeMemRefs(Node, {MemRef}); 2480 } 2481 if (PtrTy != PtrMemTy) 2482 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2483 return SDValue(Node, 0); 2484 } 2485 2486 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2487 /// tail spliced into a stack protector check success bb. 2488 /// 2489 /// For a high level explanation of how this fits into the stack protector 2490 /// generation see the comment on the declaration of class 2491 /// StackProtectorDescriptor. 2492 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2493 MachineBasicBlock *ParentBB) { 2494 2495 // First create the loads to the guard/stack slot for the comparison. 2496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2497 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2498 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2499 2500 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2501 int FI = MFI.getStackProtectorIndex(); 2502 2503 SDValue Guard; 2504 SDLoc dl = getCurSDLoc(); 2505 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2506 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2507 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2508 2509 // Generate code to load the content of the guard slot. 2510 SDValue GuardVal = DAG.getLoad( 2511 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2512 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2513 MachineMemOperand::MOVolatile); 2514 2515 if (TLI.useStackGuardXorFP()) 2516 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2517 2518 // Retrieve guard check function, nullptr if instrumentation is inlined. 2519 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2520 // The target provides a guard check function to validate the guard value. 2521 // Generate a call to that function with the content of the guard slot as 2522 // argument. 2523 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2524 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2525 2526 TargetLowering::ArgListTy Args; 2527 TargetLowering::ArgListEntry Entry; 2528 Entry.Node = GuardVal; 2529 Entry.Ty = FnTy->getParamType(0); 2530 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2531 Entry.IsInReg = true; 2532 Args.push_back(Entry); 2533 2534 TargetLowering::CallLoweringInfo CLI(DAG); 2535 CLI.setDebugLoc(getCurSDLoc()) 2536 .setChain(DAG.getEntryNode()) 2537 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2538 getValue(GuardCheckFn), std::move(Args)); 2539 2540 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2541 DAG.setRoot(Result.second); 2542 return; 2543 } 2544 2545 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2546 // Otherwise, emit a volatile load to retrieve the stack guard value. 2547 SDValue Chain = DAG.getEntryNode(); 2548 if (TLI.useLoadStackGuardNode()) { 2549 Guard = getLoadStackGuard(DAG, dl, Chain); 2550 } else { 2551 const Value *IRGuard = TLI.getSDagStackGuard(M); 2552 SDValue GuardPtr = getValue(IRGuard); 2553 2554 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2555 MachinePointerInfo(IRGuard, 0), Align, 2556 MachineMemOperand::MOVolatile); 2557 } 2558 2559 // Perform the comparison via a subtract/getsetcc. 2560 EVT VT = Guard.getValueType(); 2561 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2562 2563 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2564 *DAG.getContext(), 2565 Sub.getValueType()), 2566 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2567 2568 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2569 // branch to failure MBB. 2570 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2571 MVT::Other, GuardVal.getOperand(0), 2572 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2573 // Otherwise branch to success MBB. 2574 SDValue Br = DAG.getNode(ISD::BR, dl, 2575 MVT::Other, BrCond, 2576 DAG.getBasicBlock(SPD.getSuccessMBB())); 2577 2578 DAG.setRoot(Br); 2579 } 2580 2581 /// Codegen the failure basic block for a stack protector check. 2582 /// 2583 /// A failure stack protector machine basic block consists simply of a call to 2584 /// __stack_chk_fail(). 2585 /// 2586 /// For a high level explanation of how this fits into the stack protector 2587 /// generation see the comment on the declaration of class 2588 /// StackProtectorDescriptor. 2589 void 2590 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2592 SDValue Chain = 2593 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2594 None, false, getCurSDLoc(), false, false).second; 2595 // On PS4, the "return address" must still be within the calling function, 2596 // even if it's at the very end, so emit an explicit TRAP here. 2597 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2598 if (TM.getTargetTriple().isPS4CPU()) 2599 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2600 2601 DAG.setRoot(Chain); 2602 } 2603 2604 /// visitBitTestHeader - This function emits necessary code to produce value 2605 /// suitable for "bit tests" 2606 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2607 MachineBasicBlock *SwitchBB) { 2608 SDLoc dl = getCurSDLoc(); 2609 2610 // Subtract the minimum value 2611 SDValue SwitchOp = getValue(B.SValue); 2612 EVT VT = SwitchOp.getValueType(); 2613 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2614 DAG.getConstant(B.First, dl, VT)); 2615 2616 // Check range 2617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2618 SDValue RangeCmp = DAG.getSetCC( 2619 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2620 Sub.getValueType()), 2621 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2622 2623 // Determine the type of the test operands. 2624 bool UsePtrType = false; 2625 if (!TLI.isTypeLegal(VT)) 2626 UsePtrType = true; 2627 else { 2628 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2629 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2630 // Switch table case range are encoded into series of masks. 2631 // Just use pointer type, it's guaranteed to fit. 2632 UsePtrType = true; 2633 break; 2634 } 2635 } 2636 if (UsePtrType) { 2637 VT = TLI.getPointerTy(DAG.getDataLayout()); 2638 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2639 } 2640 2641 B.RegVT = VT.getSimpleVT(); 2642 B.Reg = FuncInfo.CreateReg(B.RegVT); 2643 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2644 2645 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2646 2647 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2648 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2649 SwitchBB->normalizeSuccProbs(); 2650 2651 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2652 MVT::Other, CopyTo, RangeCmp, 2653 DAG.getBasicBlock(B.Default)); 2654 2655 // Avoid emitting unnecessary branches to the next block. 2656 if (MBB != NextBlock(SwitchBB)) 2657 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2658 DAG.getBasicBlock(MBB)); 2659 2660 DAG.setRoot(BrRange); 2661 } 2662 2663 /// visitBitTestCase - this function produces one "bit test" 2664 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2665 MachineBasicBlock* NextMBB, 2666 BranchProbability BranchProbToNext, 2667 unsigned Reg, 2668 BitTestCase &B, 2669 MachineBasicBlock *SwitchBB) { 2670 SDLoc dl = getCurSDLoc(); 2671 MVT VT = BB.RegVT; 2672 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2673 SDValue Cmp; 2674 unsigned PopCount = countPopulation(B.Mask); 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 if (PopCount == 1) { 2677 // Testing for a single bit; just compare the shift count with what it 2678 // would need to be to shift a 1 bit in that position. 2679 Cmp = DAG.getSetCC( 2680 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2681 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2682 ISD::SETEQ); 2683 } else if (PopCount == BB.Range) { 2684 // There is only one zero bit in the range, test for it directly. 2685 Cmp = DAG.getSetCC( 2686 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2687 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2688 ISD::SETNE); 2689 } else { 2690 // Make desired shift 2691 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2692 DAG.getConstant(1, dl, VT), ShiftOp); 2693 2694 // Emit bit tests and jumps 2695 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2696 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2700 } 2701 2702 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2703 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2704 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2705 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2706 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2707 // one as they are relative probabilities (and thus work more like weights), 2708 // and hence we need to normalize them to let the sum of them become one. 2709 SwitchBB->normalizeSuccProbs(); 2710 2711 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2712 MVT::Other, getControlRoot(), 2713 Cmp, DAG.getBasicBlock(B.TargetBB)); 2714 2715 // Avoid emitting unnecessary branches to the next block. 2716 if (NextMBB != NextBlock(SwitchBB)) 2717 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2718 DAG.getBasicBlock(NextMBB)); 2719 2720 DAG.setRoot(BrAnd); 2721 } 2722 2723 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2724 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2725 2726 // Retrieve successors. Look through artificial IR level blocks like 2727 // catchswitch for successors. 2728 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2729 const BasicBlock *EHPadBB = I.getSuccessor(1); 2730 2731 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2732 // have to do anything here to lower funclet bundles. 2733 assert(!I.hasOperandBundlesOtherThan( 2734 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2735 "Cannot lower invokes with arbitrary operand bundles yet!"); 2736 2737 const Value *Callee(I.getCalledValue()); 2738 const Function *Fn = dyn_cast<Function>(Callee); 2739 if (isa<InlineAsm>(Callee)) 2740 visitInlineAsm(&I); 2741 else if (Fn && Fn->isIntrinsic()) { 2742 switch (Fn->getIntrinsicID()) { 2743 default: 2744 llvm_unreachable("Cannot invoke this intrinsic"); 2745 case Intrinsic::donothing: 2746 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2747 break; 2748 case Intrinsic::experimental_patchpoint_void: 2749 case Intrinsic::experimental_patchpoint_i64: 2750 visitPatchpoint(&I, EHPadBB); 2751 break; 2752 case Intrinsic::experimental_gc_statepoint: 2753 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2754 break; 2755 case Intrinsic::wasm_rethrow_in_catch: { 2756 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2757 // special because it can be invoked, so we manually lower it to a DAG 2758 // node here. 2759 SmallVector<SDValue, 8> Ops; 2760 Ops.push_back(getRoot()); // inchain 2761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2762 Ops.push_back( 2763 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2764 TLI.getPointerTy(DAG.getDataLayout()))); 2765 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2766 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2767 break; 2768 } 2769 } 2770 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2771 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2772 // Eventually we will support lowering the @llvm.experimental.deoptimize 2773 // intrinsic, and right now there are no plans to support other intrinsics 2774 // with deopt state. 2775 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2776 } else { 2777 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2778 } 2779 2780 // If the value of the invoke is used outside of its defining block, make it 2781 // available as a virtual register. 2782 // We already took care of the exported value for the statepoint instruction 2783 // during call to the LowerStatepoint. 2784 if (!isStatepoint(I)) { 2785 CopyToExportRegsIfNeeded(&I); 2786 } 2787 2788 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2789 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2790 BranchProbability EHPadBBProb = 2791 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2792 : BranchProbability::getZero(); 2793 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2794 2795 // Update successor info. 2796 addSuccessorWithProb(InvokeMBB, Return); 2797 for (auto &UnwindDest : UnwindDests) { 2798 UnwindDest.first->setIsEHPad(); 2799 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2800 } 2801 InvokeMBB->normalizeSuccProbs(); 2802 2803 // Drop into normal successor. 2804 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2805 DAG.getBasicBlock(Return))); 2806 } 2807 2808 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2809 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2810 2811 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2812 // have to do anything here to lower funclet bundles. 2813 assert(!I.hasOperandBundlesOtherThan( 2814 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2815 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2816 2817 assert(isa<InlineAsm>(I.getCalledValue()) && 2818 "Only know how to handle inlineasm callbr"); 2819 visitInlineAsm(&I); 2820 2821 // Retrieve successors. 2822 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2823 2824 // Update successor info. 2825 addSuccessorWithProb(CallBrMBB, Return); 2826 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2827 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2828 addSuccessorWithProb(CallBrMBB, Target); 2829 } 2830 CallBrMBB->normalizeSuccProbs(); 2831 2832 // Drop into default successor. 2833 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2834 MVT::Other, getControlRoot(), 2835 DAG.getBasicBlock(Return))); 2836 } 2837 2838 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2839 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2840 } 2841 2842 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2843 assert(FuncInfo.MBB->isEHPad() && 2844 "Call to landingpad not in landing pad!"); 2845 2846 // If there aren't registers to copy the values into (e.g., during SjLj 2847 // exceptions), then don't bother to create these DAG nodes. 2848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2849 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2850 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2851 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2852 return; 2853 2854 // If landingpad's return type is token type, we don't create DAG nodes 2855 // for its exception pointer and selector value. The extraction of exception 2856 // pointer or selector value from token type landingpads is not currently 2857 // supported. 2858 if (LP.getType()->isTokenTy()) 2859 return; 2860 2861 SmallVector<EVT, 2> ValueVTs; 2862 SDLoc dl = getCurSDLoc(); 2863 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2864 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2865 2866 // Get the two live-in registers as SDValues. The physregs have already been 2867 // copied into virtual registers. 2868 SDValue Ops[2]; 2869 if (FuncInfo.ExceptionPointerVirtReg) { 2870 Ops[0] = DAG.getZExtOrTrunc( 2871 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2872 FuncInfo.ExceptionPointerVirtReg, 2873 TLI.getPointerTy(DAG.getDataLayout())), 2874 dl, ValueVTs[0]); 2875 } else { 2876 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2877 } 2878 Ops[1] = DAG.getZExtOrTrunc( 2879 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2880 FuncInfo.ExceptionSelectorVirtReg, 2881 TLI.getPointerTy(DAG.getDataLayout())), 2882 dl, ValueVTs[1]); 2883 2884 // Merge into one. 2885 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2886 DAG.getVTList(ValueVTs), Ops); 2887 setValue(&LP, Res); 2888 } 2889 2890 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2891 #ifndef NDEBUG 2892 for (const CaseCluster &CC : Clusters) 2893 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2894 #endif 2895 2896 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2897 return a.Low->getValue().slt(b.Low->getValue()); 2898 }); 2899 2900 // Merge adjacent clusters with the same destination. 2901 const unsigned N = Clusters.size(); 2902 unsigned DstIndex = 0; 2903 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2904 CaseCluster &CC = Clusters[SrcIndex]; 2905 const ConstantInt *CaseVal = CC.Low; 2906 MachineBasicBlock *Succ = CC.MBB; 2907 2908 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2909 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2910 // If this case has the same successor and is a neighbour, merge it into 2911 // the previous cluster. 2912 Clusters[DstIndex - 1].High = CaseVal; 2913 Clusters[DstIndex - 1].Prob += CC.Prob; 2914 } else { 2915 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2916 sizeof(Clusters[SrcIndex])); 2917 } 2918 } 2919 Clusters.resize(DstIndex); 2920 } 2921 2922 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2923 MachineBasicBlock *Last) { 2924 // Update JTCases. 2925 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2926 if (JTCases[i].first.HeaderBB == First) 2927 JTCases[i].first.HeaderBB = Last; 2928 2929 // Update BitTestCases. 2930 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2931 if (BitTestCases[i].Parent == First) 2932 BitTestCases[i].Parent = Last; 2933 } 2934 2935 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2936 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2937 2938 // Update machine-CFG edges with unique successors. 2939 SmallSet<BasicBlock*, 32> Done; 2940 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2941 BasicBlock *BB = I.getSuccessor(i); 2942 bool Inserted = Done.insert(BB).second; 2943 if (!Inserted) 2944 continue; 2945 2946 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2947 addSuccessorWithProb(IndirectBrMBB, Succ); 2948 } 2949 IndirectBrMBB->normalizeSuccProbs(); 2950 2951 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2952 MVT::Other, getControlRoot(), 2953 getValue(I.getAddress()))); 2954 } 2955 2956 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2957 if (!DAG.getTarget().Options.TrapUnreachable) 2958 return; 2959 2960 // We may be able to ignore unreachable behind a noreturn call. 2961 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2962 const BasicBlock &BB = *I.getParent(); 2963 if (&I != &BB.front()) { 2964 BasicBlock::const_iterator PredI = 2965 std::prev(BasicBlock::const_iterator(&I)); 2966 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2967 if (Call->doesNotReturn()) 2968 return; 2969 } 2970 } 2971 } 2972 2973 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2974 } 2975 2976 void SelectionDAGBuilder::visitFSub(const User &I) { 2977 // -0.0 - X --> fneg 2978 Type *Ty = I.getType(); 2979 if (isa<Constant>(I.getOperand(0)) && 2980 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2981 SDValue Op2 = getValue(I.getOperand(1)); 2982 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2983 Op2.getValueType(), Op2)); 2984 return; 2985 } 2986 2987 visitBinary(I, ISD::FSUB); 2988 } 2989 2990 /// Checks if the given instruction performs a vector reduction, in which case 2991 /// we have the freedom to alter the elements in the result as long as the 2992 /// reduction of them stays unchanged. 2993 static bool isVectorReductionOp(const User *I) { 2994 const Instruction *Inst = dyn_cast<Instruction>(I); 2995 if (!Inst || !Inst->getType()->isVectorTy()) 2996 return false; 2997 2998 auto OpCode = Inst->getOpcode(); 2999 switch (OpCode) { 3000 case Instruction::Add: 3001 case Instruction::Mul: 3002 case Instruction::And: 3003 case Instruction::Or: 3004 case Instruction::Xor: 3005 break; 3006 case Instruction::FAdd: 3007 case Instruction::FMul: 3008 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3009 if (FPOp->getFastMathFlags().isFast()) 3010 break; 3011 LLVM_FALLTHROUGH; 3012 default: 3013 return false; 3014 } 3015 3016 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3017 // Ensure the reduction size is a power of 2. 3018 if (!isPowerOf2_32(ElemNum)) 3019 return false; 3020 3021 unsigned ElemNumToReduce = ElemNum; 3022 3023 // Do DFS search on the def-use chain from the given instruction. We only 3024 // allow four kinds of operations during the search until we reach the 3025 // instruction that extracts the first element from the vector: 3026 // 3027 // 1. The reduction operation of the same opcode as the given instruction. 3028 // 3029 // 2. PHI node. 3030 // 3031 // 3. ShuffleVector instruction together with a reduction operation that 3032 // does a partial reduction. 3033 // 3034 // 4. ExtractElement that extracts the first element from the vector, and we 3035 // stop searching the def-use chain here. 3036 // 3037 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3038 // from 1-3 to the stack to continue the DFS. The given instruction is not 3039 // a reduction operation if we meet any other instructions other than those 3040 // listed above. 3041 3042 SmallVector<const User *, 16> UsersToVisit{Inst}; 3043 SmallPtrSet<const User *, 16> Visited; 3044 bool ReduxExtracted = false; 3045 3046 while (!UsersToVisit.empty()) { 3047 auto User = UsersToVisit.back(); 3048 UsersToVisit.pop_back(); 3049 if (!Visited.insert(User).second) 3050 continue; 3051 3052 for (const auto &U : User->users()) { 3053 auto Inst = dyn_cast<Instruction>(U); 3054 if (!Inst) 3055 return false; 3056 3057 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3058 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3059 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3060 return false; 3061 UsersToVisit.push_back(U); 3062 } else if (const ShuffleVectorInst *ShufInst = 3063 dyn_cast<ShuffleVectorInst>(U)) { 3064 // Detect the following pattern: A ShuffleVector instruction together 3065 // with a reduction that do partial reduction on the first and second 3066 // ElemNumToReduce / 2 elements, and store the result in 3067 // ElemNumToReduce / 2 elements in another vector. 3068 3069 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3070 if (ResultElements < ElemNum) 3071 return false; 3072 3073 if (ElemNumToReduce == 1) 3074 return false; 3075 if (!isa<UndefValue>(U->getOperand(1))) 3076 return false; 3077 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3078 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3079 return false; 3080 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3081 if (ShufInst->getMaskValue(i) != -1) 3082 return false; 3083 3084 // There is only one user of this ShuffleVector instruction, which 3085 // must be a reduction operation. 3086 if (!U->hasOneUse()) 3087 return false; 3088 3089 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3090 if (!U2 || U2->getOpcode() != OpCode) 3091 return false; 3092 3093 // Check operands of the reduction operation. 3094 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3095 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3096 UsersToVisit.push_back(U2); 3097 ElemNumToReduce /= 2; 3098 } else 3099 return false; 3100 } else if (isa<ExtractElementInst>(U)) { 3101 // At this moment we should have reduced all elements in the vector. 3102 if (ElemNumToReduce != 1) 3103 return false; 3104 3105 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3106 if (!Val || !Val->isZero()) 3107 return false; 3108 3109 ReduxExtracted = true; 3110 } else 3111 return false; 3112 } 3113 } 3114 return ReduxExtracted; 3115 } 3116 3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3118 SDNodeFlags Flags; 3119 3120 SDValue Op = getValue(I.getOperand(0)); 3121 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3122 Op, Flags); 3123 setValue(&I, UnNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3129 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3130 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3131 } 3132 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3133 Flags.setExact(ExactOp->isExact()); 3134 } 3135 if (isVectorReductionOp(&I)) { 3136 Flags.setVectorReduction(true); 3137 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3138 } 3139 3140 SDValue Op1 = getValue(I.getOperand(0)); 3141 SDValue Op2 = getValue(I.getOperand(1)); 3142 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3143 Op1, Op2, Flags); 3144 setValue(&I, BinNodeValue); 3145 } 3146 3147 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3148 SDValue Op1 = getValue(I.getOperand(0)); 3149 SDValue Op2 = getValue(I.getOperand(1)); 3150 3151 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3152 Op1.getValueType(), DAG.getDataLayout()); 3153 3154 // Coerce the shift amount to the right type if we can. 3155 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3156 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3157 unsigned Op2Size = Op2.getValueSizeInBits(); 3158 SDLoc DL = getCurSDLoc(); 3159 3160 // If the operand is smaller than the shift count type, promote it. 3161 if (ShiftSize > Op2Size) 3162 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3163 3164 // If the operand is larger than the shift count type but the shift 3165 // count type has enough bits to represent any shift value, truncate 3166 // it now. This is a common case and it exposes the truncate to 3167 // optimization early. 3168 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3169 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3170 // Otherwise we'll need to temporarily settle for some other convenient 3171 // type. Type legalization will make adjustments once the shiftee is split. 3172 else 3173 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3174 } 3175 3176 bool nuw = false; 3177 bool nsw = false; 3178 bool exact = false; 3179 3180 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3181 3182 if (const OverflowingBinaryOperator *OFBinOp = 3183 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3184 nuw = OFBinOp->hasNoUnsignedWrap(); 3185 nsw = OFBinOp->hasNoSignedWrap(); 3186 } 3187 if (const PossiblyExactOperator *ExactOp = 3188 dyn_cast<const PossiblyExactOperator>(&I)) 3189 exact = ExactOp->isExact(); 3190 } 3191 SDNodeFlags Flags; 3192 Flags.setExact(exact); 3193 Flags.setNoSignedWrap(nsw); 3194 Flags.setNoUnsignedWrap(nuw); 3195 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3196 Flags); 3197 setValue(&I, Res); 3198 } 3199 3200 void SelectionDAGBuilder::visitSDiv(const User &I) { 3201 SDValue Op1 = getValue(I.getOperand(0)); 3202 SDValue Op2 = getValue(I.getOperand(1)); 3203 3204 SDNodeFlags Flags; 3205 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3206 cast<PossiblyExactOperator>(&I)->isExact()); 3207 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3208 Op2, Flags)); 3209 } 3210 3211 void SelectionDAGBuilder::visitICmp(const User &I) { 3212 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3213 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3214 predicate = IC->getPredicate(); 3215 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3216 predicate = ICmpInst::Predicate(IC->getPredicate()); 3217 SDValue Op1 = getValue(I.getOperand(0)); 3218 SDValue Op2 = getValue(I.getOperand(1)); 3219 ISD::CondCode Opcode = getICmpCondCode(predicate); 3220 3221 auto &TLI = DAG.getTargetLoweringInfo(); 3222 EVT MemVT = 3223 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3224 3225 // If a pointer's DAG type is larger than its memory type then the DAG values 3226 // are zero-extended. This breaks signed comparisons so truncate back to the 3227 // underlying type before doing the compare. 3228 if (Op1.getValueType() != MemVT) { 3229 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3230 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3231 } 3232 3233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3234 I.getType()); 3235 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3236 } 3237 3238 void SelectionDAGBuilder::visitFCmp(const User &I) { 3239 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3240 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3241 predicate = FC->getPredicate(); 3242 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3243 predicate = FCmpInst::Predicate(FC->getPredicate()); 3244 SDValue Op1 = getValue(I.getOperand(0)); 3245 SDValue Op2 = getValue(I.getOperand(1)); 3246 3247 ISD::CondCode Condition = getFCmpCondCode(predicate); 3248 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3249 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3250 Condition = getFCmpCodeWithoutNaN(Condition); 3251 3252 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3253 I.getType()); 3254 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3255 } 3256 3257 // Check if the condition of the select has one use or two users that are both 3258 // selects with the same condition. 3259 static bool hasOnlySelectUsers(const Value *Cond) { 3260 return llvm::all_of(Cond->users(), [](const Value *V) { 3261 return isa<SelectInst>(V); 3262 }); 3263 } 3264 3265 void SelectionDAGBuilder::visitSelect(const User &I) { 3266 SmallVector<EVT, 4> ValueVTs; 3267 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3268 ValueVTs); 3269 unsigned NumValues = ValueVTs.size(); 3270 if (NumValues == 0) return; 3271 3272 SmallVector<SDValue, 4> Values(NumValues); 3273 SDValue Cond = getValue(I.getOperand(0)); 3274 SDValue LHSVal = getValue(I.getOperand(1)); 3275 SDValue RHSVal = getValue(I.getOperand(2)); 3276 auto BaseOps = {Cond}; 3277 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3278 ISD::VSELECT : ISD::SELECT; 3279 3280 bool IsUnaryAbs = false; 3281 3282 // Min/max matching is only viable if all output VTs are the same. 3283 if (is_splat(ValueVTs)) { 3284 EVT VT = ValueVTs[0]; 3285 LLVMContext &Ctx = *DAG.getContext(); 3286 auto &TLI = DAG.getTargetLoweringInfo(); 3287 3288 // We care about the legality of the operation after it has been type 3289 // legalized. 3290 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3291 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3292 VT = TLI.getTypeToTransformTo(Ctx, VT); 3293 3294 // If the vselect is legal, assume we want to leave this as a vector setcc + 3295 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3296 // min/max is legal on the scalar type. 3297 bool UseScalarMinMax = VT.isVector() && 3298 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3299 3300 Value *LHS, *RHS; 3301 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3302 ISD::NodeType Opc = ISD::DELETED_NODE; 3303 switch (SPR.Flavor) { 3304 case SPF_UMAX: Opc = ISD::UMAX; break; 3305 case SPF_UMIN: Opc = ISD::UMIN; break; 3306 case SPF_SMAX: Opc = ISD::SMAX; break; 3307 case SPF_SMIN: Opc = ISD::SMIN; break; 3308 case SPF_FMINNUM: 3309 switch (SPR.NaNBehavior) { 3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3311 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3313 case SPNB_RETURNS_ANY: { 3314 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3315 Opc = ISD::FMINNUM; 3316 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3317 Opc = ISD::FMINIMUM; 3318 else if (UseScalarMinMax) 3319 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3320 ISD::FMINNUM : ISD::FMINIMUM; 3321 break; 3322 } 3323 } 3324 break; 3325 case SPF_FMAXNUM: 3326 switch (SPR.NaNBehavior) { 3327 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3328 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3329 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3330 case SPNB_RETURNS_ANY: 3331 3332 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3333 Opc = ISD::FMAXNUM; 3334 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3335 Opc = ISD::FMAXIMUM; 3336 else if (UseScalarMinMax) 3337 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3338 ISD::FMAXNUM : ISD::FMAXIMUM; 3339 break; 3340 } 3341 break; 3342 case SPF_ABS: 3343 IsUnaryAbs = true; 3344 Opc = ISD::ABS; 3345 break; 3346 case SPF_NABS: 3347 // TODO: we need to produce sub(0, abs(X)). 3348 default: break; 3349 } 3350 3351 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3352 (TLI.isOperationLegalOrCustom(Opc, VT) || 3353 (UseScalarMinMax && 3354 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3355 // If the underlying comparison instruction is used by any other 3356 // instruction, the consumed instructions won't be destroyed, so it is 3357 // not profitable to convert to a min/max. 3358 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3359 OpCode = Opc; 3360 LHSVal = getValue(LHS); 3361 RHSVal = getValue(RHS); 3362 BaseOps = {}; 3363 } 3364 3365 if (IsUnaryAbs) { 3366 OpCode = Opc; 3367 LHSVal = getValue(LHS); 3368 BaseOps = {}; 3369 } 3370 } 3371 3372 if (IsUnaryAbs) { 3373 for (unsigned i = 0; i != NumValues; ++i) { 3374 Values[i] = 3375 DAG.getNode(OpCode, getCurSDLoc(), 3376 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3377 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3378 } 3379 } else { 3380 for (unsigned i = 0; i != NumValues; ++i) { 3381 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3382 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3383 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3384 Values[i] = DAG.getNode( 3385 OpCode, getCurSDLoc(), 3386 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3387 } 3388 } 3389 3390 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3391 DAG.getVTList(ValueVTs), Values)); 3392 } 3393 3394 void SelectionDAGBuilder::visitTrunc(const User &I) { 3395 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3396 SDValue N = getValue(I.getOperand(0)); 3397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3398 I.getType()); 3399 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3400 } 3401 3402 void SelectionDAGBuilder::visitZExt(const User &I) { 3403 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3404 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3405 SDValue N = getValue(I.getOperand(0)); 3406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3407 I.getType()); 3408 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3409 } 3410 3411 void SelectionDAGBuilder::visitSExt(const User &I) { 3412 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3413 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3421 // FPTrunc is never a no-op cast, no need to check 3422 SDValue N = getValue(I.getOperand(0)); 3423 SDLoc dl = getCurSDLoc(); 3424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3425 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3426 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3427 DAG.getTargetConstant( 3428 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3429 } 3430 3431 void SelectionDAGBuilder::visitFPExt(const User &I) { 3432 // FPExt is never a no-op cast, no need to check 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3440 // FPToUI is never a no-op cast, no need to check 3441 SDValue N = getValue(I.getOperand(0)); 3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3443 I.getType()); 3444 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3445 } 3446 3447 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3448 // FPToSI is never a no-op cast, no need to check 3449 SDValue N = getValue(I.getOperand(0)); 3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3451 I.getType()); 3452 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3453 } 3454 3455 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3456 // UIToFP is never a no-op cast, no need to check 3457 SDValue N = getValue(I.getOperand(0)); 3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3459 I.getType()); 3460 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3461 } 3462 3463 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3464 // SIToFP is never a no-op cast, no need to check 3465 SDValue N = getValue(I.getOperand(0)); 3466 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3467 I.getType()); 3468 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3469 } 3470 3471 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3472 // What to do depends on the size of the integer and the size of the pointer. 3473 // We can either truncate, zero extend, or no-op, accordingly. 3474 SDValue N = getValue(I.getOperand(0)); 3475 auto &TLI = DAG.getTargetLoweringInfo(); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 EVT PtrMemVT = 3479 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3480 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3481 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3482 setValue(&I, N); 3483 } 3484 3485 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3486 // What to do depends on the size of the integer and the size of the pointer. 3487 // We can either truncate, zero extend, or no-op, accordingly. 3488 SDValue N = getValue(I.getOperand(0)); 3489 auto &TLI = DAG.getTargetLoweringInfo(); 3490 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3491 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3492 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3493 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3494 setValue(&I, N); 3495 } 3496 3497 void SelectionDAGBuilder::visitBitCast(const User &I) { 3498 SDValue N = getValue(I.getOperand(0)); 3499 SDLoc dl = getCurSDLoc(); 3500 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3501 I.getType()); 3502 3503 // BitCast assures us that source and destination are the same size so this is 3504 // either a BITCAST or a no-op. 3505 if (DestVT != N.getValueType()) 3506 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3507 DestVT, N)); // convert types. 3508 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3509 // might fold any kind of constant expression to an integer constant and that 3510 // is not what we are looking for. Only recognize a bitcast of a genuine 3511 // constant integer as an opaque constant. 3512 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3513 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3514 /*isOpaque*/true)); 3515 else 3516 setValue(&I, N); // noop cast. 3517 } 3518 3519 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3521 const Value *SV = I.getOperand(0); 3522 SDValue N = getValue(SV); 3523 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3524 3525 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3526 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3527 3528 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3529 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3530 3531 setValue(&I, N); 3532 } 3533 3534 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3536 SDValue InVec = getValue(I.getOperand(0)); 3537 SDValue InVal = getValue(I.getOperand(1)); 3538 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3539 TLI.getVectorIdxTy(DAG.getDataLayout())); 3540 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3541 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3542 InVec, InVal, InIdx)); 3543 } 3544 3545 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3547 SDValue InVec = getValue(I.getOperand(0)); 3548 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3549 TLI.getVectorIdxTy(DAG.getDataLayout())); 3550 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3551 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3552 InVec, InIdx)); 3553 } 3554 3555 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3556 SDValue Src1 = getValue(I.getOperand(0)); 3557 SDValue Src2 = getValue(I.getOperand(1)); 3558 SDLoc DL = getCurSDLoc(); 3559 3560 SmallVector<int, 8> Mask; 3561 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3562 unsigned MaskNumElts = Mask.size(); 3563 3564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3565 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3566 EVT SrcVT = Src1.getValueType(); 3567 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3568 3569 if (SrcNumElts == MaskNumElts) { 3570 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3571 return; 3572 } 3573 3574 // Normalize the shuffle vector since mask and vector length don't match. 3575 if (SrcNumElts < MaskNumElts) { 3576 // Mask is longer than the source vectors. We can use concatenate vector to 3577 // make the mask and vectors lengths match. 3578 3579 if (MaskNumElts % SrcNumElts == 0) { 3580 // Mask length is a multiple of the source vector length. 3581 // Check if the shuffle is some kind of concatenation of the input 3582 // vectors. 3583 unsigned NumConcat = MaskNumElts / SrcNumElts; 3584 bool IsConcat = true; 3585 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3586 for (unsigned i = 0; i != MaskNumElts; ++i) { 3587 int Idx = Mask[i]; 3588 if (Idx < 0) 3589 continue; 3590 // Ensure the indices in each SrcVT sized piece are sequential and that 3591 // the same source is used for the whole piece. 3592 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3593 (ConcatSrcs[i / SrcNumElts] >= 0 && 3594 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3595 IsConcat = false; 3596 break; 3597 } 3598 // Remember which source this index came from. 3599 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3600 } 3601 3602 // The shuffle is concatenating multiple vectors together. Just emit 3603 // a CONCAT_VECTORS operation. 3604 if (IsConcat) { 3605 SmallVector<SDValue, 8> ConcatOps; 3606 for (auto Src : ConcatSrcs) { 3607 if (Src < 0) 3608 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3609 else if (Src == 0) 3610 ConcatOps.push_back(Src1); 3611 else 3612 ConcatOps.push_back(Src2); 3613 } 3614 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3615 return; 3616 } 3617 } 3618 3619 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3620 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3621 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3622 PaddedMaskNumElts); 3623 3624 // Pad both vectors with undefs to make them the same length as the mask. 3625 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3626 3627 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3628 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3629 MOps1[0] = Src1; 3630 MOps2[0] = Src2; 3631 3632 Src1 = Src1.isUndef() 3633 ? DAG.getUNDEF(PaddedVT) 3634 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3635 Src2 = Src2.isUndef() 3636 ? DAG.getUNDEF(PaddedVT) 3637 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3638 3639 // Readjust mask for new input vector length. 3640 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3641 for (unsigned i = 0; i != MaskNumElts; ++i) { 3642 int Idx = Mask[i]; 3643 if (Idx >= (int)SrcNumElts) 3644 Idx -= SrcNumElts - PaddedMaskNumElts; 3645 MappedOps[i] = Idx; 3646 } 3647 3648 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3649 3650 // If the concatenated vector was padded, extract a subvector with the 3651 // correct number of elements. 3652 if (MaskNumElts != PaddedMaskNumElts) 3653 Result = DAG.getNode( 3654 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3655 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3656 3657 setValue(&I, Result); 3658 return; 3659 } 3660 3661 if (SrcNumElts > MaskNumElts) { 3662 // Analyze the access pattern of the vector to see if we can extract 3663 // two subvectors and do the shuffle. 3664 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3665 bool CanExtract = true; 3666 for (int Idx : Mask) { 3667 unsigned Input = 0; 3668 if (Idx < 0) 3669 continue; 3670 3671 if (Idx >= (int)SrcNumElts) { 3672 Input = 1; 3673 Idx -= SrcNumElts; 3674 } 3675 3676 // If all the indices come from the same MaskNumElts sized portion of 3677 // the sources we can use extract. Also make sure the extract wouldn't 3678 // extract past the end of the source. 3679 int NewStartIdx = alignDown(Idx, MaskNumElts); 3680 if (NewStartIdx + MaskNumElts > SrcNumElts || 3681 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3682 CanExtract = false; 3683 // Make sure we always update StartIdx as we use it to track if all 3684 // elements are undef. 3685 StartIdx[Input] = NewStartIdx; 3686 } 3687 3688 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3689 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3690 return; 3691 } 3692 if (CanExtract) { 3693 // Extract appropriate subvector and generate a vector shuffle 3694 for (unsigned Input = 0; Input < 2; ++Input) { 3695 SDValue &Src = Input == 0 ? Src1 : Src2; 3696 if (StartIdx[Input] < 0) 3697 Src = DAG.getUNDEF(VT); 3698 else { 3699 Src = DAG.getNode( 3700 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3701 DAG.getConstant(StartIdx[Input], DL, 3702 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3703 } 3704 } 3705 3706 // Calculate new mask. 3707 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3708 for (int &Idx : MappedOps) { 3709 if (Idx >= (int)SrcNumElts) 3710 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3711 else if (Idx >= 0) 3712 Idx -= StartIdx[0]; 3713 } 3714 3715 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3716 return; 3717 } 3718 } 3719 3720 // We can't use either concat vectors or extract subvectors so fall back to 3721 // replacing the shuffle with extract and build vector. 3722 // to insert and build vector. 3723 EVT EltVT = VT.getVectorElementType(); 3724 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3725 SmallVector<SDValue,8> Ops; 3726 for (int Idx : Mask) { 3727 SDValue Res; 3728 3729 if (Idx < 0) { 3730 Res = DAG.getUNDEF(EltVT); 3731 } else { 3732 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3733 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3734 3735 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3736 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3737 } 3738 3739 Ops.push_back(Res); 3740 } 3741 3742 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3743 } 3744 3745 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3746 ArrayRef<unsigned> Indices; 3747 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3748 Indices = IV->getIndices(); 3749 else 3750 Indices = cast<ConstantExpr>(&I)->getIndices(); 3751 3752 const Value *Op0 = I.getOperand(0); 3753 const Value *Op1 = I.getOperand(1); 3754 Type *AggTy = I.getType(); 3755 Type *ValTy = Op1->getType(); 3756 bool IntoUndef = isa<UndefValue>(Op0); 3757 bool FromUndef = isa<UndefValue>(Op1); 3758 3759 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3760 3761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3762 SmallVector<EVT, 4> AggValueVTs; 3763 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3764 SmallVector<EVT, 4> ValValueVTs; 3765 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3766 3767 unsigned NumAggValues = AggValueVTs.size(); 3768 unsigned NumValValues = ValValueVTs.size(); 3769 SmallVector<SDValue, 4> Values(NumAggValues); 3770 3771 // Ignore an insertvalue that produces an empty object 3772 if (!NumAggValues) { 3773 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3774 return; 3775 } 3776 3777 SDValue Agg = getValue(Op0); 3778 unsigned i = 0; 3779 // Copy the beginning value(s) from the original aggregate. 3780 for (; i != LinearIndex; ++i) 3781 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3782 SDValue(Agg.getNode(), Agg.getResNo() + i); 3783 // Copy values from the inserted value(s). 3784 if (NumValValues) { 3785 SDValue Val = getValue(Op1); 3786 for (; i != LinearIndex + NumValValues; ++i) 3787 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3788 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3789 } 3790 // Copy remaining value(s) from the original aggregate. 3791 for (; i != NumAggValues; ++i) 3792 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3793 SDValue(Agg.getNode(), Agg.getResNo() + i); 3794 3795 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3796 DAG.getVTList(AggValueVTs), Values)); 3797 } 3798 3799 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3800 ArrayRef<unsigned> Indices; 3801 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3802 Indices = EV->getIndices(); 3803 else 3804 Indices = cast<ConstantExpr>(&I)->getIndices(); 3805 3806 const Value *Op0 = I.getOperand(0); 3807 Type *AggTy = Op0->getType(); 3808 Type *ValTy = I.getType(); 3809 bool OutOfUndef = isa<UndefValue>(Op0); 3810 3811 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3812 3813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3814 SmallVector<EVT, 4> ValValueVTs; 3815 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3816 3817 unsigned NumValValues = ValValueVTs.size(); 3818 3819 // Ignore a extractvalue that produces an empty object 3820 if (!NumValValues) { 3821 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3822 return; 3823 } 3824 3825 SmallVector<SDValue, 4> Values(NumValValues); 3826 3827 SDValue Agg = getValue(Op0); 3828 // Copy out the selected value(s). 3829 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3830 Values[i - LinearIndex] = 3831 OutOfUndef ? 3832 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3833 SDValue(Agg.getNode(), Agg.getResNo() + i); 3834 3835 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3836 DAG.getVTList(ValValueVTs), Values)); 3837 } 3838 3839 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3840 Value *Op0 = I.getOperand(0); 3841 // Note that the pointer operand may be a vector of pointers. Take the scalar 3842 // element which holds a pointer. 3843 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3844 SDValue N = getValue(Op0); 3845 SDLoc dl = getCurSDLoc(); 3846 auto &TLI = DAG.getTargetLoweringInfo(); 3847 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3848 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3849 3850 // Normalize Vector GEP - all scalar operands should be converted to the 3851 // splat vector. 3852 unsigned VectorWidth = I.getType()->isVectorTy() ? 3853 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3854 3855 if (VectorWidth && !N.getValueType().isVector()) { 3856 LLVMContext &Context = *DAG.getContext(); 3857 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3858 N = DAG.getSplatBuildVector(VT, dl, N); 3859 } 3860 3861 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3862 GTI != E; ++GTI) { 3863 const Value *Idx = GTI.getOperand(); 3864 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3865 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3866 if (Field) { 3867 // N = N + Offset 3868 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3869 3870 // In an inbounds GEP with an offset that is nonnegative even when 3871 // interpreted as signed, assume there is no unsigned overflow. 3872 SDNodeFlags Flags; 3873 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3874 Flags.setNoUnsignedWrap(true); 3875 3876 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3877 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3878 } 3879 } else { 3880 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3881 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3882 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3883 3884 // If this is a scalar constant or a splat vector of constants, 3885 // handle it quickly. 3886 const auto *CI = dyn_cast<ConstantInt>(Idx); 3887 if (!CI && isa<ConstantDataVector>(Idx) && 3888 cast<ConstantDataVector>(Idx)->getSplatValue()) 3889 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3890 3891 if (CI) { 3892 if (CI->isZero()) 3893 continue; 3894 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3895 LLVMContext &Context = *DAG.getContext(); 3896 SDValue OffsVal = VectorWidth ? 3897 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3898 DAG.getConstant(Offs, dl, IdxTy); 3899 3900 // In an inbouds GEP with an offset that is nonnegative even when 3901 // interpreted as signed, assume there is no unsigned overflow. 3902 SDNodeFlags Flags; 3903 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3904 Flags.setNoUnsignedWrap(true); 3905 3906 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3907 3908 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3909 continue; 3910 } 3911 3912 // N = N + Idx * ElementSize; 3913 SDValue IdxN = getValue(Idx); 3914 3915 if (!IdxN.getValueType().isVector() && VectorWidth) { 3916 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3917 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3918 } 3919 3920 // If the index is smaller or larger than intptr_t, truncate or extend 3921 // it. 3922 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3923 3924 // If this is a multiply by a power of two, turn it into a shl 3925 // immediately. This is a very common case. 3926 if (ElementSize != 1) { 3927 if (ElementSize.isPowerOf2()) { 3928 unsigned Amt = ElementSize.logBase2(); 3929 IdxN = DAG.getNode(ISD::SHL, dl, 3930 N.getValueType(), IdxN, 3931 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3932 } else { 3933 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3934 IdxN.getValueType()); 3935 IdxN = DAG.getNode(ISD::MUL, dl, 3936 N.getValueType(), IdxN, Scale); 3937 } 3938 } 3939 3940 N = DAG.getNode(ISD::ADD, dl, 3941 N.getValueType(), N, IdxN); 3942 } 3943 } 3944 3945 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3946 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3947 3948 setValue(&I, N); 3949 } 3950 3951 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3952 // If this is a fixed sized alloca in the entry block of the function, 3953 // allocate it statically on the stack. 3954 if (FuncInfo.StaticAllocaMap.count(&I)) 3955 return; // getValue will auto-populate this. 3956 3957 SDLoc dl = getCurSDLoc(); 3958 Type *Ty = I.getAllocatedType(); 3959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3960 auto &DL = DAG.getDataLayout(); 3961 uint64_t TySize = DL.getTypeAllocSize(Ty); 3962 unsigned Align = 3963 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3964 3965 SDValue AllocSize = getValue(I.getArraySize()); 3966 3967 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3968 if (AllocSize.getValueType() != IntPtr) 3969 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3970 3971 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3972 AllocSize, 3973 DAG.getConstant(TySize, dl, IntPtr)); 3974 3975 // Handle alignment. If the requested alignment is less than or equal to 3976 // the stack alignment, ignore it. If the size is greater than or equal to 3977 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3978 unsigned StackAlign = 3979 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3980 if (Align <= StackAlign) 3981 Align = 0; 3982 3983 // Round the size of the allocation up to the stack alignment size 3984 // by add SA-1 to the size. This doesn't overflow because we're computing 3985 // an address inside an alloca. 3986 SDNodeFlags Flags; 3987 Flags.setNoUnsignedWrap(true); 3988 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3989 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3990 3991 // Mask out the low bits for alignment purposes. 3992 AllocSize = 3993 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3994 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3995 3996 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3997 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3998 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3999 setValue(&I, DSA); 4000 DAG.setRoot(DSA.getValue(1)); 4001 4002 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4003 } 4004 4005 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4006 if (I.isAtomic()) 4007 return visitAtomicLoad(I); 4008 4009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4010 const Value *SV = I.getOperand(0); 4011 if (TLI.supportSwiftError()) { 4012 // Swifterror values can come from either a function parameter with 4013 // swifterror attribute or an alloca with swifterror attribute. 4014 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4015 if (Arg->hasSwiftErrorAttr()) 4016 return visitLoadFromSwiftError(I); 4017 } 4018 4019 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4020 if (Alloca->isSwiftError()) 4021 return visitLoadFromSwiftError(I); 4022 } 4023 } 4024 4025 SDValue Ptr = getValue(SV); 4026 4027 Type *Ty = I.getType(); 4028 4029 bool isVolatile = I.isVolatile(); 4030 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4031 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4032 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 4033 unsigned Alignment = I.getAlignment(); 4034 4035 AAMDNodes AAInfo; 4036 I.getAAMetadata(AAInfo); 4037 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4038 4039 SmallVector<EVT, 4> ValueVTs, MemVTs; 4040 SmallVector<uint64_t, 4> Offsets; 4041 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4042 unsigned NumValues = ValueVTs.size(); 4043 if (NumValues == 0) 4044 return; 4045 4046 SDValue Root; 4047 bool ConstantMemory = false; 4048 if (isVolatile || NumValues > MaxParallelChains) 4049 // Serialize volatile loads with other side effects. 4050 Root = getRoot(); 4051 else if (AA && 4052 AA->pointsToConstantMemory(MemoryLocation( 4053 SV, 4054 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4055 AAInfo))) { 4056 // Do not serialize (non-volatile) loads of constant memory with anything. 4057 Root = DAG.getEntryNode(); 4058 ConstantMemory = true; 4059 } else { 4060 // Do not serialize non-volatile loads against each other. 4061 Root = DAG.getRoot(); 4062 } 4063 4064 SDLoc dl = getCurSDLoc(); 4065 4066 if (isVolatile) 4067 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4068 4069 // An aggregate load cannot wrap around the address space, so offsets to its 4070 // parts don't wrap either. 4071 SDNodeFlags Flags; 4072 Flags.setNoUnsignedWrap(true); 4073 4074 SmallVector<SDValue, 4> Values(NumValues); 4075 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4076 EVT PtrVT = Ptr.getValueType(); 4077 unsigned ChainI = 0; 4078 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4079 // Serializing loads here may result in excessive register pressure, and 4080 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4081 // could recover a bit by hoisting nodes upward in the chain by recognizing 4082 // they are side-effect free or do not alias. The optimizer should really 4083 // avoid this case by converting large object/array copies to llvm.memcpy 4084 // (MaxParallelChains should always remain as failsafe). 4085 if (ChainI == MaxParallelChains) { 4086 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4087 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4088 makeArrayRef(Chains.data(), ChainI)); 4089 Root = Chain; 4090 ChainI = 0; 4091 } 4092 SDValue A = DAG.getNode(ISD::ADD, dl, 4093 PtrVT, Ptr, 4094 DAG.getConstant(Offsets[i], dl, PtrVT), 4095 Flags); 4096 auto MMOFlags = MachineMemOperand::MONone; 4097 if (isVolatile) 4098 MMOFlags |= MachineMemOperand::MOVolatile; 4099 if (isNonTemporal) 4100 MMOFlags |= MachineMemOperand::MONonTemporal; 4101 if (isInvariant) 4102 MMOFlags |= MachineMemOperand::MOInvariant; 4103 if (isDereferenceable) 4104 MMOFlags |= MachineMemOperand::MODereferenceable; 4105 MMOFlags |= TLI.getMMOFlags(I); 4106 4107 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4108 MachinePointerInfo(SV, Offsets[i]), Alignment, 4109 MMOFlags, AAInfo, Ranges); 4110 Chains[ChainI] = L.getValue(1); 4111 4112 if (MemVTs[i] != ValueVTs[i]) 4113 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4114 4115 Values[i] = L; 4116 } 4117 4118 if (!ConstantMemory) { 4119 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4120 makeArrayRef(Chains.data(), ChainI)); 4121 if (isVolatile) 4122 DAG.setRoot(Chain); 4123 else 4124 PendingLoads.push_back(Chain); 4125 } 4126 4127 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4128 DAG.getVTList(ValueVTs), Values)); 4129 } 4130 4131 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4132 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4133 "call visitStoreToSwiftError when backend supports swifterror"); 4134 4135 SmallVector<EVT, 4> ValueVTs; 4136 SmallVector<uint64_t, 4> Offsets; 4137 const Value *SrcV = I.getOperand(0); 4138 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4139 SrcV->getType(), ValueVTs, &Offsets); 4140 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4141 "expect a single EVT for swifterror"); 4142 4143 SDValue Src = getValue(SrcV); 4144 // Create a virtual register, then update the virtual register. 4145 unsigned VReg; bool CreatedVReg; 4146 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4147 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4148 // Chain can be getRoot or getControlRoot. 4149 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4150 SDValue(Src.getNode(), Src.getResNo())); 4151 DAG.setRoot(CopyNode); 4152 if (CreatedVReg) 4153 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4154 } 4155 4156 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4157 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4158 "call visitLoadFromSwiftError when backend supports swifterror"); 4159 4160 assert(!I.isVolatile() && 4161 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4162 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4163 "Support volatile, non temporal, invariant for load_from_swift_error"); 4164 4165 const Value *SV = I.getOperand(0); 4166 Type *Ty = I.getType(); 4167 AAMDNodes AAInfo; 4168 I.getAAMetadata(AAInfo); 4169 assert( 4170 (!AA || 4171 !AA->pointsToConstantMemory(MemoryLocation( 4172 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4173 AAInfo))) && 4174 "load_from_swift_error should not be constant memory"); 4175 4176 SmallVector<EVT, 4> ValueVTs; 4177 SmallVector<uint64_t, 4> Offsets; 4178 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4179 ValueVTs, &Offsets); 4180 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4181 "expect a single EVT for swifterror"); 4182 4183 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4184 SDValue L = DAG.getCopyFromReg( 4185 getRoot(), getCurSDLoc(), 4186 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4187 ValueVTs[0]); 4188 4189 setValue(&I, L); 4190 } 4191 4192 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4193 if (I.isAtomic()) 4194 return visitAtomicStore(I); 4195 4196 const Value *SrcV = I.getOperand(0); 4197 const Value *PtrV = I.getOperand(1); 4198 4199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4200 if (TLI.supportSwiftError()) { 4201 // Swifterror values can come from either a function parameter with 4202 // swifterror attribute or an alloca with swifterror attribute. 4203 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4204 if (Arg->hasSwiftErrorAttr()) 4205 return visitStoreToSwiftError(I); 4206 } 4207 4208 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4209 if (Alloca->isSwiftError()) 4210 return visitStoreToSwiftError(I); 4211 } 4212 } 4213 4214 SmallVector<EVT, 4> ValueVTs, MemVTs; 4215 SmallVector<uint64_t, 4> Offsets; 4216 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4217 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4218 unsigned NumValues = ValueVTs.size(); 4219 if (NumValues == 0) 4220 return; 4221 4222 // Get the lowered operands. Note that we do this after 4223 // checking if NumResults is zero, because with zero results 4224 // the operands won't have values in the map. 4225 SDValue Src = getValue(SrcV); 4226 SDValue Ptr = getValue(PtrV); 4227 4228 SDValue Root = getRoot(); 4229 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4230 SDLoc dl = getCurSDLoc(); 4231 EVT PtrVT = Ptr.getValueType(); 4232 unsigned Alignment = I.getAlignment(); 4233 AAMDNodes AAInfo; 4234 I.getAAMetadata(AAInfo); 4235 4236 auto MMOFlags = MachineMemOperand::MONone; 4237 if (I.isVolatile()) 4238 MMOFlags |= MachineMemOperand::MOVolatile; 4239 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4240 MMOFlags |= MachineMemOperand::MONonTemporal; 4241 MMOFlags |= TLI.getMMOFlags(I); 4242 4243 // An aggregate load cannot wrap around the address space, so offsets to its 4244 // parts don't wrap either. 4245 SDNodeFlags Flags; 4246 Flags.setNoUnsignedWrap(true); 4247 4248 unsigned ChainI = 0; 4249 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4250 // See visitLoad comments. 4251 if (ChainI == MaxParallelChains) { 4252 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4253 makeArrayRef(Chains.data(), ChainI)); 4254 Root = Chain; 4255 ChainI = 0; 4256 } 4257 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4258 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4259 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4260 if (MemVTs[i] != ValueVTs[i]) 4261 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4262 SDValue St = 4263 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4264 Alignment, MMOFlags, AAInfo); 4265 Chains[ChainI] = St; 4266 } 4267 4268 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4269 makeArrayRef(Chains.data(), ChainI)); 4270 DAG.setRoot(StoreNode); 4271 } 4272 4273 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4274 bool IsCompressing) { 4275 SDLoc sdl = getCurSDLoc(); 4276 4277 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4278 unsigned& Alignment) { 4279 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4280 Src0 = I.getArgOperand(0); 4281 Ptr = I.getArgOperand(1); 4282 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4283 Mask = I.getArgOperand(3); 4284 }; 4285 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4286 unsigned& Alignment) { 4287 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4288 Src0 = I.getArgOperand(0); 4289 Ptr = I.getArgOperand(1); 4290 Mask = I.getArgOperand(2); 4291 Alignment = 0; 4292 }; 4293 4294 Value *PtrOperand, *MaskOperand, *Src0Operand; 4295 unsigned Alignment; 4296 if (IsCompressing) 4297 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4298 else 4299 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4300 4301 SDValue Ptr = getValue(PtrOperand); 4302 SDValue Src0 = getValue(Src0Operand); 4303 SDValue Mask = getValue(MaskOperand); 4304 4305 EVT VT = Src0.getValueType(); 4306 if (!Alignment) 4307 Alignment = DAG.getEVTAlignment(VT); 4308 4309 AAMDNodes AAInfo; 4310 I.getAAMetadata(AAInfo); 4311 4312 MachineMemOperand *MMO = 4313 DAG.getMachineFunction(). 4314 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4315 MachineMemOperand::MOStore, VT.getStoreSize(), 4316 Alignment, AAInfo); 4317 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4318 MMO, false /* Truncating */, 4319 IsCompressing); 4320 DAG.setRoot(StoreNode); 4321 setValue(&I, StoreNode); 4322 } 4323 4324 // Get a uniform base for the Gather/Scatter intrinsic. 4325 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4326 // We try to represent it as a base pointer + vector of indices. 4327 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4328 // The first operand of the GEP may be a single pointer or a vector of pointers 4329 // Example: 4330 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4331 // or 4332 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4333 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4334 // 4335 // When the first GEP operand is a single pointer - it is the uniform base we 4336 // are looking for. If first operand of the GEP is a splat vector - we 4337 // extract the splat value and use it as a uniform base. 4338 // In all other cases the function returns 'false'. 4339 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4340 SDValue &Scale, SelectionDAGBuilder* SDB) { 4341 SelectionDAG& DAG = SDB->DAG; 4342 LLVMContext &Context = *DAG.getContext(); 4343 4344 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4345 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4346 if (!GEP) 4347 return false; 4348 4349 const Value *GEPPtr = GEP->getPointerOperand(); 4350 if (!GEPPtr->getType()->isVectorTy()) 4351 Ptr = GEPPtr; 4352 else if (!(Ptr = getSplatValue(GEPPtr))) 4353 return false; 4354 4355 unsigned FinalIndex = GEP->getNumOperands() - 1; 4356 Value *IndexVal = GEP->getOperand(FinalIndex); 4357 4358 // Ensure all the other indices are 0. 4359 for (unsigned i = 1; i < FinalIndex; ++i) { 4360 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4361 if (!C || !C->isZero()) 4362 return false; 4363 } 4364 4365 // The operands of the GEP may be defined in another basic block. 4366 // In this case we'll not find nodes for the operands. 4367 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4368 return false; 4369 4370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4371 const DataLayout &DL = DAG.getDataLayout(); 4372 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4373 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4374 Base = SDB->getValue(Ptr); 4375 Index = SDB->getValue(IndexVal); 4376 4377 if (!Index.getValueType().isVector()) { 4378 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4379 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4380 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4381 } 4382 return true; 4383 } 4384 4385 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4386 SDLoc sdl = getCurSDLoc(); 4387 4388 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4389 const Value *Ptr = I.getArgOperand(1); 4390 SDValue Src0 = getValue(I.getArgOperand(0)); 4391 SDValue Mask = getValue(I.getArgOperand(3)); 4392 EVT VT = Src0.getValueType(); 4393 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4394 if (!Alignment) 4395 Alignment = DAG.getEVTAlignment(VT); 4396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4397 4398 AAMDNodes AAInfo; 4399 I.getAAMetadata(AAInfo); 4400 4401 SDValue Base; 4402 SDValue Index; 4403 SDValue Scale; 4404 const Value *BasePtr = Ptr; 4405 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4406 4407 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4408 MachineMemOperand *MMO = DAG.getMachineFunction(). 4409 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4410 MachineMemOperand::MOStore, VT.getStoreSize(), 4411 Alignment, AAInfo); 4412 if (!UniformBase) { 4413 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4414 Index = getValue(Ptr); 4415 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4416 } 4417 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4418 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4419 Ops, MMO); 4420 DAG.setRoot(Scatter); 4421 setValue(&I, Scatter); 4422 } 4423 4424 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4425 SDLoc sdl = getCurSDLoc(); 4426 4427 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4428 unsigned& Alignment) { 4429 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4430 Ptr = I.getArgOperand(0); 4431 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4432 Mask = I.getArgOperand(2); 4433 Src0 = I.getArgOperand(3); 4434 }; 4435 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4436 unsigned& Alignment) { 4437 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4438 Ptr = I.getArgOperand(0); 4439 Alignment = 0; 4440 Mask = I.getArgOperand(1); 4441 Src0 = I.getArgOperand(2); 4442 }; 4443 4444 Value *PtrOperand, *MaskOperand, *Src0Operand; 4445 unsigned Alignment; 4446 if (IsExpanding) 4447 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4448 else 4449 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4450 4451 SDValue Ptr = getValue(PtrOperand); 4452 SDValue Src0 = getValue(Src0Operand); 4453 SDValue Mask = getValue(MaskOperand); 4454 4455 EVT VT = Src0.getValueType(); 4456 if (!Alignment) 4457 Alignment = DAG.getEVTAlignment(VT); 4458 4459 AAMDNodes AAInfo; 4460 I.getAAMetadata(AAInfo); 4461 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4462 4463 // Do not serialize masked loads of constant memory with anything. 4464 bool AddToChain = 4465 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4466 PtrOperand, 4467 LocationSize::precise( 4468 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4469 AAInfo)); 4470 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4471 4472 MachineMemOperand *MMO = 4473 DAG.getMachineFunction(). 4474 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4475 MachineMemOperand::MOLoad, VT.getStoreSize(), 4476 Alignment, AAInfo, Ranges); 4477 4478 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4479 ISD::NON_EXTLOAD, IsExpanding); 4480 if (AddToChain) 4481 PendingLoads.push_back(Load.getValue(1)); 4482 setValue(&I, Load); 4483 } 4484 4485 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4486 SDLoc sdl = getCurSDLoc(); 4487 4488 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4489 const Value *Ptr = I.getArgOperand(0); 4490 SDValue Src0 = getValue(I.getArgOperand(3)); 4491 SDValue Mask = getValue(I.getArgOperand(2)); 4492 4493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4494 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4495 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4496 if (!Alignment) 4497 Alignment = DAG.getEVTAlignment(VT); 4498 4499 AAMDNodes AAInfo; 4500 I.getAAMetadata(AAInfo); 4501 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4502 4503 SDValue Root = DAG.getRoot(); 4504 SDValue Base; 4505 SDValue Index; 4506 SDValue Scale; 4507 const Value *BasePtr = Ptr; 4508 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4509 bool ConstantMemory = false; 4510 if (UniformBase && AA && 4511 AA->pointsToConstantMemory( 4512 MemoryLocation(BasePtr, 4513 LocationSize::precise( 4514 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4515 AAInfo))) { 4516 // Do not serialize (non-volatile) loads of constant memory with anything. 4517 Root = DAG.getEntryNode(); 4518 ConstantMemory = true; 4519 } 4520 4521 MachineMemOperand *MMO = 4522 DAG.getMachineFunction(). 4523 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4524 MachineMemOperand::MOLoad, VT.getStoreSize(), 4525 Alignment, AAInfo, Ranges); 4526 4527 if (!UniformBase) { 4528 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4529 Index = getValue(Ptr); 4530 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4531 } 4532 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4533 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4534 Ops, MMO); 4535 4536 SDValue OutChain = Gather.getValue(1); 4537 if (!ConstantMemory) 4538 PendingLoads.push_back(OutChain); 4539 setValue(&I, Gather); 4540 } 4541 4542 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4543 SDLoc dl = getCurSDLoc(); 4544 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4545 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4546 SyncScope::ID SSID = I.getSyncScopeID(); 4547 4548 SDValue InChain = getRoot(); 4549 4550 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4551 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4552 4553 auto Alignment = DAG.getEVTAlignment(MemVT); 4554 4555 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4556 if (I.isVolatile()) 4557 Flags |= MachineMemOperand::MOVolatile; 4558 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4559 4560 MachineFunction &MF = DAG.getMachineFunction(); 4561 MachineMemOperand *MMO = 4562 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4563 Flags, MemVT.getStoreSize(), Alignment, 4564 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4565 FailureOrdering); 4566 4567 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4568 dl, MemVT, VTs, InChain, 4569 getValue(I.getPointerOperand()), 4570 getValue(I.getCompareOperand()), 4571 getValue(I.getNewValOperand()), MMO); 4572 4573 SDValue OutChain = L.getValue(2); 4574 4575 setValue(&I, L); 4576 DAG.setRoot(OutChain); 4577 } 4578 4579 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4580 SDLoc dl = getCurSDLoc(); 4581 ISD::NodeType NT; 4582 switch (I.getOperation()) { 4583 default: llvm_unreachable("Unknown atomicrmw operation"); 4584 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4585 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4586 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4587 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4588 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4589 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4590 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4591 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4592 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4593 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4594 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4595 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4596 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4597 } 4598 AtomicOrdering Ordering = I.getOrdering(); 4599 SyncScope::ID SSID = I.getSyncScopeID(); 4600 4601 SDValue InChain = getRoot(); 4602 4603 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4604 auto Alignment = DAG.getEVTAlignment(MemVT); 4605 4606 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4607 if (I.isVolatile()) 4608 Flags |= MachineMemOperand::MOVolatile; 4609 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4610 4611 MachineFunction &MF = DAG.getMachineFunction(); 4612 MachineMemOperand *MMO = 4613 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4614 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4615 nullptr, SSID, Ordering); 4616 4617 SDValue L = 4618 DAG.getAtomic(NT, dl, MemVT, InChain, 4619 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4620 MMO); 4621 4622 SDValue OutChain = L.getValue(1); 4623 4624 setValue(&I, L); 4625 DAG.setRoot(OutChain); 4626 } 4627 4628 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4629 SDLoc dl = getCurSDLoc(); 4630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4631 SDValue Ops[3]; 4632 Ops[0] = getRoot(); 4633 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4634 TLI.getFenceOperandTy(DAG.getDataLayout())); 4635 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4636 TLI.getFenceOperandTy(DAG.getDataLayout())); 4637 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4638 } 4639 4640 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4641 SDLoc dl = getCurSDLoc(); 4642 AtomicOrdering Order = I.getOrdering(); 4643 SyncScope::ID SSID = I.getSyncScopeID(); 4644 4645 SDValue InChain = getRoot(); 4646 4647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4648 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4649 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4650 4651 if (!TLI.supportsUnalignedAtomics() && 4652 I.getAlignment() < MemVT.getSizeInBits() / 8) 4653 report_fatal_error("Cannot generate unaligned atomic load"); 4654 4655 auto Flags = MachineMemOperand::MOLoad; 4656 if (I.isVolatile()) 4657 Flags |= MachineMemOperand::MOVolatile; 4658 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4659 Flags |= MachineMemOperand::MOInvariant; 4660 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4661 Flags |= MachineMemOperand::MODereferenceable; 4662 4663 Flags |= TLI.getMMOFlags(I); 4664 4665 MachineMemOperand *MMO = 4666 DAG.getMachineFunction(). 4667 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4668 Flags, MemVT.getStoreSize(), 4669 I.getAlignment() ? I.getAlignment() : 4670 DAG.getEVTAlignment(MemVT), 4671 AAMDNodes(), nullptr, SSID, Order); 4672 4673 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4674 SDValue L = 4675 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4676 getValue(I.getPointerOperand()), MMO); 4677 4678 SDValue OutChain = L.getValue(1); 4679 if (MemVT != VT) 4680 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4681 4682 setValue(&I, L); 4683 DAG.setRoot(OutChain); 4684 } 4685 4686 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4687 SDLoc dl = getCurSDLoc(); 4688 4689 AtomicOrdering Ordering = I.getOrdering(); 4690 SyncScope::ID SSID = I.getSyncScopeID(); 4691 4692 SDValue InChain = getRoot(); 4693 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 EVT MemVT = 4696 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4697 4698 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4699 report_fatal_error("Cannot generate unaligned atomic store"); 4700 4701 auto Flags = MachineMemOperand::MOStore; 4702 if (I.isVolatile()) 4703 Flags |= MachineMemOperand::MOVolatile; 4704 Flags |= TLI.getMMOFlags(I); 4705 4706 MachineFunction &MF = DAG.getMachineFunction(); 4707 MachineMemOperand *MMO = 4708 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4709 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4710 nullptr, SSID, Ordering); 4711 4712 SDValue Val = DAG.getPtrExtOrTrunc(getValue(I.getValueOperand()), dl, MemVT); 4713 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4714 getValue(I.getPointerOperand()), Val, MMO); 4715 4716 4717 DAG.setRoot(OutChain); 4718 } 4719 4720 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4721 /// node. 4722 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4723 unsigned Intrinsic) { 4724 // Ignore the callsite's attributes. A specific call site may be marked with 4725 // readnone, but the lowering code will expect the chain based on the 4726 // definition. 4727 const Function *F = I.getCalledFunction(); 4728 bool HasChain = !F->doesNotAccessMemory(); 4729 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4730 4731 // Build the operand list. 4732 SmallVector<SDValue, 8> Ops; 4733 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4734 if (OnlyLoad) { 4735 // We don't need to serialize loads against other loads. 4736 Ops.push_back(DAG.getRoot()); 4737 } else { 4738 Ops.push_back(getRoot()); 4739 } 4740 } 4741 4742 // Info is set by getTgtMemInstrinsic 4743 TargetLowering::IntrinsicInfo Info; 4744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4745 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4746 DAG.getMachineFunction(), 4747 Intrinsic); 4748 4749 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4750 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4751 Info.opc == ISD::INTRINSIC_W_CHAIN) 4752 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4753 TLI.getPointerTy(DAG.getDataLayout()))); 4754 4755 // Add all operands of the call to the operand list. 4756 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4757 SDValue Op = getValue(I.getArgOperand(i)); 4758 Ops.push_back(Op); 4759 } 4760 4761 SmallVector<EVT, 4> ValueVTs; 4762 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4763 4764 if (HasChain) 4765 ValueVTs.push_back(MVT::Other); 4766 4767 SDVTList VTs = DAG.getVTList(ValueVTs); 4768 4769 // Create the node. 4770 SDValue Result; 4771 if (IsTgtIntrinsic) { 4772 // This is target intrinsic that touches memory 4773 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4774 Ops, Info.memVT, 4775 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4776 Info.flags, Info.size); 4777 } else if (!HasChain) { 4778 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4779 } else if (!I.getType()->isVoidTy()) { 4780 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4781 } else { 4782 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4783 } 4784 4785 if (HasChain) { 4786 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4787 if (OnlyLoad) 4788 PendingLoads.push_back(Chain); 4789 else 4790 DAG.setRoot(Chain); 4791 } 4792 4793 if (!I.getType()->isVoidTy()) { 4794 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4795 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4796 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4797 } else 4798 Result = lowerRangeToAssertZExt(DAG, I, Result); 4799 4800 setValue(&I, Result); 4801 } 4802 } 4803 4804 /// GetSignificand - Get the significand and build it into a floating-point 4805 /// number with exponent of 1: 4806 /// 4807 /// Op = (Op & 0x007fffff) | 0x3f800000; 4808 /// 4809 /// where Op is the hexadecimal representation of floating point value. 4810 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4811 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4812 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4813 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4814 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4815 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4816 } 4817 4818 /// GetExponent - Get the exponent: 4819 /// 4820 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4821 /// 4822 /// where Op is the hexadecimal representation of floating point value. 4823 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4824 const TargetLowering &TLI, const SDLoc &dl) { 4825 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4826 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4827 SDValue t1 = DAG.getNode( 4828 ISD::SRL, dl, MVT::i32, t0, 4829 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4830 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4831 DAG.getConstant(127, dl, MVT::i32)); 4832 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4833 } 4834 4835 /// getF32Constant - Get 32-bit floating point constant. 4836 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4837 const SDLoc &dl) { 4838 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4839 MVT::f32); 4840 } 4841 4842 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4843 SelectionDAG &DAG) { 4844 // TODO: What fast-math-flags should be set on the floating-point nodes? 4845 4846 // IntegerPartOfX = ((int32_t)(t0); 4847 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4848 4849 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4850 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4851 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4852 4853 // IntegerPartOfX <<= 23; 4854 IntegerPartOfX = DAG.getNode( 4855 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4856 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4857 DAG.getDataLayout()))); 4858 4859 SDValue TwoToFractionalPartOfX; 4860 if (LimitFloatPrecision <= 6) { 4861 // For floating-point precision of 6: 4862 // 4863 // TwoToFractionalPartOfX = 4864 // 0.997535578f + 4865 // (0.735607626f + 0.252464424f * x) * x; 4866 // 4867 // error 0.0144103317, which is 6 bits 4868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4869 getF32Constant(DAG, 0x3e814304, dl)); 4870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4871 getF32Constant(DAG, 0x3f3c50c8, dl)); 4872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4873 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4874 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4875 } else if (LimitFloatPrecision <= 12) { 4876 // For floating-point precision of 12: 4877 // 4878 // TwoToFractionalPartOfX = 4879 // 0.999892986f + 4880 // (0.696457318f + 4881 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4882 // 4883 // error 0.000107046256, which is 13 to 14 bits 4884 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4885 getF32Constant(DAG, 0x3da235e3, dl)); 4886 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4887 getF32Constant(DAG, 0x3e65b8f3, dl)); 4888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4889 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4890 getF32Constant(DAG, 0x3f324b07, dl)); 4891 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4892 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4893 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4894 } else { // LimitFloatPrecision <= 18 4895 // For floating-point precision of 18: 4896 // 4897 // TwoToFractionalPartOfX = 4898 // 0.999999982f + 4899 // (0.693148872f + 4900 // (0.240227044f + 4901 // (0.554906021e-1f + 4902 // (0.961591928e-2f + 4903 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4904 // error 2.47208000*10^(-7), which is better than 18 bits 4905 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4906 getF32Constant(DAG, 0x3924b03e, dl)); 4907 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4908 getF32Constant(DAG, 0x3ab24b87, dl)); 4909 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4910 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4911 getF32Constant(DAG, 0x3c1d8c17, dl)); 4912 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4913 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4914 getF32Constant(DAG, 0x3d634a1d, dl)); 4915 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4916 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4917 getF32Constant(DAG, 0x3e75fe14, dl)); 4918 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4919 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4920 getF32Constant(DAG, 0x3f317234, dl)); 4921 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4922 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4923 getF32Constant(DAG, 0x3f800000, dl)); 4924 } 4925 4926 // Add the exponent into the result in integer domain. 4927 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4928 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4929 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4930 } 4931 4932 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4933 /// limited-precision mode. 4934 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4935 const TargetLowering &TLI) { 4936 if (Op.getValueType() == MVT::f32 && 4937 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4938 4939 // Put the exponent in the right bit position for later addition to the 4940 // final result: 4941 // 4942 // #define LOG2OFe 1.4426950f 4943 // t0 = Op * LOG2OFe 4944 4945 // TODO: What fast-math-flags should be set here? 4946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4947 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4948 return getLimitedPrecisionExp2(t0, dl, DAG); 4949 } 4950 4951 // No special expansion. 4952 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4953 } 4954 4955 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4956 /// limited-precision mode. 4957 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4958 const TargetLowering &TLI) { 4959 // TODO: What fast-math-flags should be set on the floating-point nodes? 4960 4961 if (Op.getValueType() == MVT::f32 && 4962 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4963 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4964 4965 // Scale the exponent by log(2) [0.69314718f]. 4966 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4967 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4968 getF32Constant(DAG, 0x3f317218, dl)); 4969 4970 // Get the significand and build it into a floating-point number with 4971 // exponent of 1. 4972 SDValue X = GetSignificand(DAG, Op1, dl); 4973 4974 SDValue LogOfMantissa; 4975 if (LimitFloatPrecision <= 6) { 4976 // For floating-point precision of 6: 4977 // 4978 // LogofMantissa = 4979 // -1.1609546f + 4980 // (1.4034025f - 0.23903021f * x) * x; 4981 // 4982 // error 0.0034276066, which is better than 8 bits 4983 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4984 getF32Constant(DAG, 0xbe74c456, dl)); 4985 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4986 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4987 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4988 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4989 getF32Constant(DAG, 0x3f949a29, dl)); 4990 } else if (LimitFloatPrecision <= 12) { 4991 // For floating-point precision of 12: 4992 // 4993 // LogOfMantissa = 4994 // -1.7417939f + 4995 // (2.8212026f + 4996 // (-1.4699568f + 4997 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4998 // 4999 // error 0.000061011436, which is 14 bits 5000 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0xbd67b6d6, dl)); 5002 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5003 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5004 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5005 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5006 getF32Constant(DAG, 0x3fbc278b, dl)); 5007 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5008 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5009 getF32Constant(DAG, 0x40348e95, dl)); 5010 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5011 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5012 getF32Constant(DAG, 0x3fdef31a, dl)); 5013 } else { // LimitFloatPrecision <= 18 5014 // For floating-point precision of 18: 5015 // 5016 // LogOfMantissa = 5017 // -2.1072184f + 5018 // (4.2372794f + 5019 // (-3.7029485f + 5020 // (2.2781945f + 5021 // (-0.87823314f + 5022 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5023 // 5024 // error 0.0000023660568, which is better than 18 bits 5025 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5026 getF32Constant(DAG, 0xbc91e5ac, dl)); 5027 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5028 getF32Constant(DAG, 0x3e4350aa, dl)); 5029 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5030 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5031 getF32Constant(DAG, 0x3f60d3e3, dl)); 5032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5033 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5034 getF32Constant(DAG, 0x4011cdf0, dl)); 5035 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5036 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5037 getF32Constant(DAG, 0x406cfd1c, dl)); 5038 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5039 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5040 getF32Constant(DAG, 0x408797cb, dl)); 5041 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5042 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5043 getF32Constant(DAG, 0x4006dcab, dl)); 5044 } 5045 5046 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5047 } 5048 5049 // No special expansion. 5050 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5051 } 5052 5053 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5054 /// limited-precision mode. 5055 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5056 const TargetLowering &TLI) { 5057 // TODO: What fast-math-flags should be set on the floating-point nodes? 5058 5059 if (Op.getValueType() == MVT::f32 && 5060 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5061 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5062 5063 // Get the exponent. 5064 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5065 5066 // Get the significand and build it into a floating-point number with 5067 // exponent of 1. 5068 SDValue X = GetSignificand(DAG, Op1, dl); 5069 5070 // Different possible minimax approximations of significand in 5071 // floating-point for various degrees of accuracy over [1,2]. 5072 SDValue Log2ofMantissa; 5073 if (LimitFloatPrecision <= 6) { 5074 // For floating-point precision of 6: 5075 // 5076 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5077 // 5078 // error 0.0049451742, which is more than 7 bits 5079 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5080 getF32Constant(DAG, 0xbeb08fe0, dl)); 5081 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5082 getF32Constant(DAG, 0x40019463, dl)); 5083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5084 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5085 getF32Constant(DAG, 0x3fd6633d, dl)); 5086 } else if (LimitFloatPrecision <= 12) { 5087 // For floating-point precision of 12: 5088 // 5089 // Log2ofMantissa = 5090 // -2.51285454f + 5091 // (4.07009056f + 5092 // (-2.12067489f + 5093 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5094 // 5095 // error 0.0000876136000, which is better than 13 bits 5096 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5097 getF32Constant(DAG, 0xbda7262e, dl)); 5098 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5099 getF32Constant(DAG, 0x3f25280b, dl)); 5100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5101 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5102 getF32Constant(DAG, 0x4007b923, dl)); 5103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5104 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5105 getF32Constant(DAG, 0x40823e2f, dl)); 5106 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5107 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5108 getF32Constant(DAG, 0x4020d29c, dl)); 5109 } else { // LimitFloatPrecision <= 18 5110 // For floating-point precision of 18: 5111 // 5112 // Log2ofMantissa = 5113 // -3.0400495f + 5114 // (6.1129976f + 5115 // (-5.3420409f + 5116 // (3.2865683f + 5117 // (-1.2669343f + 5118 // (0.27515199f - 5119 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5120 // 5121 // error 0.0000018516, which is better than 18 bits 5122 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5123 getF32Constant(DAG, 0xbcd2769e, dl)); 5124 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5125 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5127 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5128 getF32Constant(DAG, 0x3fa22ae7, dl)); 5129 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5130 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5131 getF32Constant(DAG, 0x40525723, dl)); 5132 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5133 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5134 getF32Constant(DAG, 0x40aaf200, dl)); 5135 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5136 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5137 getF32Constant(DAG, 0x40c39dad, dl)); 5138 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5139 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5140 getF32Constant(DAG, 0x4042902c, dl)); 5141 } 5142 5143 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5144 } 5145 5146 // No special expansion. 5147 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5148 } 5149 5150 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5151 /// limited-precision mode. 5152 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5153 const TargetLowering &TLI) { 5154 // TODO: What fast-math-flags should be set on the floating-point nodes? 5155 5156 if (Op.getValueType() == MVT::f32 && 5157 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5158 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5159 5160 // Scale the exponent by log10(2) [0.30102999f]. 5161 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5162 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5163 getF32Constant(DAG, 0x3e9a209a, dl)); 5164 5165 // Get the significand and build it into a floating-point number with 5166 // exponent of 1. 5167 SDValue X = GetSignificand(DAG, Op1, dl); 5168 5169 SDValue Log10ofMantissa; 5170 if (LimitFloatPrecision <= 6) { 5171 // For floating-point precision of 6: 5172 // 5173 // Log10ofMantissa = 5174 // -0.50419619f + 5175 // (0.60948995f - 0.10380950f * x) * x; 5176 // 5177 // error 0.0014886165, which is 6 bits 5178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5179 getF32Constant(DAG, 0xbdd49a13, dl)); 5180 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5181 getF32Constant(DAG, 0x3f1c0789, dl)); 5182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5183 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5184 getF32Constant(DAG, 0x3f011300, dl)); 5185 } else if (LimitFloatPrecision <= 12) { 5186 // For floating-point precision of 12: 5187 // 5188 // Log10ofMantissa = 5189 // -0.64831180f + 5190 // (0.91751397f + 5191 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5192 // 5193 // error 0.00019228036, which is better than 12 bits 5194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0x3d431f31, dl)); 5196 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5197 getF32Constant(DAG, 0x3ea21fb2, dl)); 5198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5199 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5200 getF32Constant(DAG, 0x3f6ae232, dl)); 5201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5202 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5203 getF32Constant(DAG, 0x3f25f7c3, dl)); 5204 } else { // LimitFloatPrecision <= 18 5205 // For floating-point precision of 18: 5206 // 5207 // Log10ofMantissa = 5208 // -0.84299375f + 5209 // (1.5327582f + 5210 // (-1.0688956f + 5211 // (0.49102474f + 5212 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5213 // 5214 // error 0.0000037995730, which is better than 18 bits 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5216 getF32Constant(DAG, 0x3c5d51ce, dl)); 5217 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5218 getF32Constant(DAG, 0x3e00685a, dl)); 5219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5221 getF32Constant(DAG, 0x3efb6798, dl)); 5222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5223 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5224 getF32Constant(DAG, 0x3f88d192, dl)); 5225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5226 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5227 getF32Constant(DAG, 0x3fc4316c, dl)); 5228 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5229 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5230 getF32Constant(DAG, 0x3f57ce70, dl)); 5231 } 5232 5233 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5234 } 5235 5236 // No special expansion. 5237 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5238 } 5239 5240 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5241 /// limited-precision mode. 5242 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5243 const TargetLowering &TLI) { 5244 if (Op.getValueType() == MVT::f32 && 5245 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5246 return getLimitedPrecisionExp2(Op, dl, DAG); 5247 5248 // No special expansion. 5249 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5250 } 5251 5252 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5253 /// limited-precision mode with x == 10.0f. 5254 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5255 SelectionDAG &DAG, const TargetLowering &TLI) { 5256 bool IsExp10 = false; 5257 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5258 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5259 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5260 APFloat Ten(10.0f); 5261 IsExp10 = LHSC->isExactlyValue(Ten); 5262 } 5263 } 5264 5265 // TODO: What fast-math-flags should be set on the FMUL node? 5266 if (IsExp10) { 5267 // Put the exponent in the right bit position for later addition to the 5268 // final result: 5269 // 5270 // #define LOG2OF10 3.3219281f 5271 // t0 = Op * LOG2OF10; 5272 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5273 getF32Constant(DAG, 0x40549a78, dl)); 5274 return getLimitedPrecisionExp2(t0, dl, DAG); 5275 } 5276 5277 // No special expansion. 5278 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5279 } 5280 5281 /// ExpandPowI - Expand a llvm.powi intrinsic. 5282 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5283 SelectionDAG &DAG) { 5284 // If RHS is a constant, we can expand this out to a multiplication tree, 5285 // otherwise we end up lowering to a call to __powidf2 (for example). When 5286 // optimizing for size, we only want to do this if the expansion would produce 5287 // a small number of multiplies, otherwise we do the full expansion. 5288 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5289 // Get the exponent as a positive value. 5290 unsigned Val = RHSC->getSExtValue(); 5291 if ((int)Val < 0) Val = -Val; 5292 5293 // powi(x, 0) -> 1.0 5294 if (Val == 0) 5295 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5296 5297 const Function &F = DAG.getMachineFunction().getFunction(); 5298 if (!F.hasOptSize() || 5299 // If optimizing for size, don't insert too many multiplies. 5300 // This inserts up to 5 multiplies. 5301 countPopulation(Val) + Log2_32(Val) < 7) { 5302 // We use the simple binary decomposition method to generate the multiply 5303 // sequence. There are more optimal ways to do this (for example, 5304 // powi(x,15) generates one more multiply than it should), but this has 5305 // the benefit of being both really simple and much better than a libcall. 5306 SDValue Res; // Logically starts equal to 1.0 5307 SDValue CurSquare = LHS; 5308 // TODO: Intrinsics should have fast-math-flags that propagate to these 5309 // nodes. 5310 while (Val) { 5311 if (Val & 1) { 5312 if (Res.getNode()) 5313 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5314 else 5315 Res = CurSquare; // 1.0*CurSquare. 5316 } 5317 5318 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5319 CurSquare, CurSquare); 5320 Val >>= 1; 5321 } 5322 5323 // If the original was negative, invert the result, producing 1/(x*x*x). 5324 if (RHSC->getSExtValue() < 0) 5325 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5326 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5327 return Res; 5328 } 5329 } 5330 5331 // Otherwise, expand to a libcall. 5332 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5333 } 5334 5335 // getUnderlyingArgReg - Find underlying register used for a truncated or 5336 // bitcasted argument. 5337 static unsigned getUnderlyingArgReg(const SDValue &N) { 5338 switch (N.getOpcode()) { 5339 case ISD::CopyFromReg: 5340 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5341 case ISD::BITCAST: 5342 case ISD::AssertZext: 5343 case ISD::AssertSext: 5344 case ISD::TRUNCATE: 5345 return getUnderlyingArgReg(N.getOperand(0)); 5346 default: 5347 return 0; 5348 } 5349 } 5350 5351 /// If the DbgValueInst is a dbg_value of a function argument, create the 5352 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5353 /// instruction selection, they will be inserted to the entry BB. 5354 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5355 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5356 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5357 const Argument *Arg = dyn_cast<Argument>(V); 5358 if (!Arg) 5359 return false; 5360 5361 if (!IsDbgDeclare) { 5362 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5363 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5364 // the entry block. 5365 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5366 if (!IsInEntryBlock) 5367 return false; 5368 5369 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5370 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5371 // variable that also is a param. 5372 // 5373 // Although, if we are at the top of the entry block already, we can still 5374 // emit using ArgDbgValue. This might catch some situations when the 5375 // dbg.value refers to an argument that isn't used in the entry block, so 5376 // any CopyToReg node would be optimized out and the only way to express 5377 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5378 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5379 // we should only emit as ArgDbgValue if the Variable is an argument to the 5380 // current function, and the dbg.value intrinsic is found in the entry 5381 // block. 5382 bool VariableIsFunctionInputArg = Variable->isParameter() && 5383 !DL->getInlinedAt(); 5384 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5385 if (!IsInPrologue && !VariableIsFunctionInputArg) 5386 return false; 5387 5388 // Here we assume that a function argument on IR level only can be used to 5389 // describe one input parameter on source level. If we for example have 5390 // source code like this 5391 // 5392 // struct A { long x, y; }; 5393 // void foo(struct A a, long b) { 5394 // ... 5395 // b = a.x; 5396 // ... 5397 // } 5398 // 5399 // and IR like this 5400 // 5401 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5402 // entry: 5403 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5404 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5405 // call void @llvm.dbg.value(metadata i32 %b, "b", 5406 // ... 5407 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5408 // ... 5409 // 5410 // then the last dbg.value is describing a parameter "b" using a value that 5411 // is an argument. But since we already has used %a1 to describe a parameter 5412 // we should not handle that last dbg.value here (that would result in an 5413 // incorrect hoisting of the DBG_VALUE to the function entry). 5414 // Notice that we allow one dbg.value per IR level argument, to accomodate 5415 // for the situation with fragments above. 5416 if (VariableIsFunctionInputArg) { 5417 unsigned ArgNo = Arg->getArgNo(); 5418 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5419 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5420 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5421 return false; 5422 FuncInfo.DescribedArgs.set(ArgNo); 5423 } 5424 } 5425 5426 MachineFunction &MF = DAG.getMachineFunction(); 5427 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5428 5429 bool IsIndirect = false; 5430 Optional<MachineOperand> Op; 5431 // Some arguments' frame index is recorded during argument lowering. 5432 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5433 if (FI != std::numeric_limits<int>::max()) 5434 Op = MachineOperand::CreateFI(FI); 5435 5436 if (!Op && N.getNode()) { 5437 unsigned Reg = getUnderlyingArgReg(N); 5438 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5439 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5440 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5441 if (PR) 5442 Reg = PR; 5443 } 5444 if (Reg) { 5445 Op = MachineOperand::CreateReg(Reg, false); 5446 IsIndirect = IsDbgDeclare; 5447 } 5448 } 5449 5450 if (!Op && N.getNode()) { 5451 // Check if frame index is available. 5452 SDValue LCandidate = peekThroughBitcasts(N); 5453 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5454 if (FrameIndexSDNode *FINode = 5455 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5456 Op = MachineOperand::CreateFI(FINode->getIndex()); 5457 } 5458 5459 if (!Op) { 5460 // Check if ValueMap has reg number. 5461 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5462 if (VMI != FuncInfo.ValueMap.end()) { 5463 const auto &TLI = DAG.getTargetLoweringInfo(); 5464 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5465 V->getType(), getABIRegCopyCC(V)); 5466 if (RFV.occupiesMultipleRegs()) { 5467 unsigned Offset = 0; 5468 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5469 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5470 auto FragmentExpr = DIExpression::createFragmentExpression( 5471 Expr, Offset, RegAndSize.second); 5472 if (!FragmentExpr) 5473 continue; 5474 FuncInfo.ArgDbgValues.push_back( 5475 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5476 Op->getReg(), Variable, *FragmentExpr)); 5477 Offset += RegAndSize.second; 5478 } 5479 return true; 5480 } 5481 Op = MachineOperand::CreateReg(VMI->second, false); 5482 IsIndirect = IsDbgDeclare; 5483 } 5484 } 5485 5486 if (!Op) 5487 return false; 5488 5489 assert(Variable->isValidLocationForIntrinsic(DL) && 5490 "Expected inlined-at fields to agree"); 5491 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5492 FuncInfo.ArgDbgValues.push_back( 5493 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5494 *Op, Variable, Expr)); 5495 5496 return true; 5497 } 5498 5499 /// Return the appropriate SDDbgValue based on N. 5500 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5501 DILocalVariable *Variable, 5502 DIExpression *Expr, 5503 const DebugLoc &dl, 5504 unsigned DbgSDNodeOrder) { 5505 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5506 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5507 // stack slot locations. 5508 // 5509 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5510 // debug values here after optimization: 5511 // 5512 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5513 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5514 // 5515 // Both describe the direct values of their associated variables. 5516 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5517 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5518 } 5519 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5520 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5521 } 5522 5523 // VisualStudio defines setjmp as _setjmp 5524 #if defined(_MSC_VER) && defined(setjmp) && \ 5525 !defined(setjmp_undefined_for_msvc) 5526 # pragma push_macro("setjmp") 5527 # undef setjmp 5528 # define setjmp_undefined_for_msvc 5529 #endif 5530 5531 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5532 switch (Intrinsic) { 5533 case Intrinsic::smul_fix: 5534 return ISD::SMULFIX; 5535 case Intrinsic::umul_fix: 5536 return ISD::UMULFIX; 5537 default: 5538 llvm_unreachable("Unhandled fixed point intrinsic"); 5539 } 5540 } 5541 5542 /// Lower the call to the specified intrinsic function. If we want to emit this 5543 /// as a call to a named external function, return the name. Otherwise, lower it 5544 /// and return null. 5545 const char * 5546 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5548 SDLoc sdl = getCurSDLoc(); 5549 DebugLoc dl = getCurDebugLoc(); 5550 SDValue Res; 5551 5552 switch (Intrinsic) { 5553 default: 5554 // By default, turn this into a target intrinsic node. 5555 visitTargetIntrinsic(I, Intrinsic); 5556 return nullptr; 5557 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5558 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5559 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5560 case Intrinsic::returnaddress: 5561 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5562 TLI.getPointerTy(DAG.getDataLayout()), 5563 getValue(I.getArgOperand(0)))); 5564 return nullptr; 5565 case Intrinsic::addressofreturnaddress: 5566 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5567 TLI.getPointerTy(DAG.getDataLayout()))); 5568 return nullptr; 5569 case Intrinsic::sponentry: 5570 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5571 TLI.getPointerTy(DAG.getDataLayout()))); 5572 return nullptr; 5573 case Intrinsic::frameaddress: 5574 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5575 TLI.getPointerTy(DAG.getDataLayout()), 5576 getValue(I.getArgOperand(0)))); 5577 return nullptr; 5578 case Intrinsic::read_register: { 5579 Value *Reg = I.getArgOperand(0); 5580 SDValue Chain = getRoot(); 5581 SDValue RegName = 5582 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5583 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5584 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5585 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5586 setValue(&I, Res); 5587 DAG.setRoot(Res.getValue(1)); 5588 return nullptr; 5589 } 5590 case Intrinsic::write_register: { 5591 Value *Reg = I.getArgOperand(0); 5592 Value *RegValue = I.getArgOperand(1); 5593 SDValue Chain = getRoot(); 5594 SDValue RegName = 5595 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5596 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5597 RegName, getValue(RegValue))); 5598 return nullptr; 5599 } 5600 case Intrinsic::setjmp: 5601 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5602 case Intrinsic::longjmp: 5603 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5604 case Intrinsic::memcpy: { 5605 const auto &MCI = cast<MemCpyInst>(I); 5606 SDValue Op1 = getValue(I.getArgOperand(0)); 5607 SDValue Op2 = getValue(I.getArgOperand(1)); 5608 SDValue Op3 = getValue(I.getArgOperand(2)); 5609 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5610 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5611 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5612 unsigned Align = MinAlign(DstAlign, SrcAlign); 5613 bool isVol = MCI.isVolatile(); 5614 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5615 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5616 // node. 5617 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5618 false, isTC, 5619 MachinePointerInfo(I.getArgOperand(0)), 5620 MachinePointerInfo(I.getArgOperand(1))); 5621 updateDAGForMaybeTailCall(MC); 5622 return nullptr; 5623 } 5624 case Intrinsic::memset: { 5625 const auto &MSI = cast<MemSetInst>(I); 5626 SDValue Op1 = getValue(I.getArgOperand(0)); 5627 SDValue Op2 = getValue(I.getArgOperand(1)); 5628 SDValue Op3 = getValue(I.getArgOperand(2)); 5629 // @llvm.memset defines 0 and 1 to both mean no alignment. 5630 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5631 bool isVol = MSI.isVolatile(); 5632 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5633 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5634 isTC, MachinePointerInfo(I.getArgOperand(0))); 5635 updateDAGForMaybeTailCall(MS); 5636 return nullptr; 5637 } 5638 case Intrinsic::memmove: { 5639 const auto &MMI = cast<MemMoveInst>(I); 5640 SDValue Op1 = getValue(I.getArgOperand(0)); 5641 SDValue Op2 = getValue(I.getArgOperand(1)); 5642 SDValue Op3 = getValue(I.getArgOperand(2)); 5643 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5644 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5645 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5646 unsigned Align = MinAlign(DstAlign, SrcAlign); 5647 bool isVol = MMI.isVolatile(); 5648 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5649 // FIXME: Support passing different dest/src alignments to the memmove DAG 5650 // node. 5651 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5652 isTC, MachinePointerInfo(I.getArgOperand(0)), 5653 MachinePointerInfo(I.getArgOperand(1))); 5654 updateDAGForMaybeTailCall(MM); 5655 return nullptr; 5656 } 5657 case Intrinsic::memcpy_element_unordered_atomic: { 5658 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5659 SDValue Dst = getValue(MI.getRawDest()); 5660 SDValue Src = getValue(MI.getRawSource()); 5661 SDValue Length = getValue(MI.getLength()); 5662 5663 unsigned DstAlign = MI.getDestAlignment(); 5664 unsigned SrcAlign = MI.getSourceAlignment(); 5665 Type *LengthTy = MI.getLength()->getType(); 5666 unsigned ElemSz = MI.getElementSizeInBytes(); 5667 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5668 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5669 SrcAlign, Length, LengthTy, ElemSz, isTC, 5670 MachinePointerInfo(MI.getRawDest()), 5671 MachinePointerInfo(MI.getRawSource())); 5672 updateDAGForMaybeTailCall(MC); 5673 return nullptr; 5674 } 5675 case Intrinsic::memmove_element_unordered_atomic: { 5676 auto &MI = cast<AtomicMemMoveInst>(I); 5677 SDValue Dst = getValue(MI.getRawDest()); 5678 SDValue Src = getValue(MI.getRawSource()); 5679 SDValue Length = getValue(MI.getLength()); 5680 5681 unsigned DstAlign = MI.getDestAlignment(); 5682 unsigned SrcAlign = MI.getSourceAlignment(); 5683 Type *LengthTy = MI.getLength()->getType(); 5684 unsigned ElemSz = MI.getElementSizeInBytes(); 5685 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5686 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5687 SrcAlign, Length, LengthTy, ElemSz, isTC, 5688 MachinePointerInfo(MI.getRawDest()), 5689 MachinePointerInfo(MI.getRawSource())); 5690 updateDAGForMaybeTailCall(MC); 5691 return nullptr; 5692 } 5693 case Intrinsic::memset_element_unordered_atomic: { 5694 auto &MI = cast<AtomicMemSetInst>(I); 5695 SDValue Dst = getValue(MI.getRawDest()); 5696 SDValue Val = getValue(MI.getValue()); 5697 SDValue Length = getValue(MI.getLength()); 5698 5699 unsigned DstAlign = MI.getDestAlignment(); 5700 Type *LengthTy = MI.getLength()->getType(); 5701 unsigned ElemSz = MI.getElementSizeInBytes(); 5702 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5703 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5704 LengthTy, ElemSz, isTC, 5705 MachinePointerInfo(MI.getRawDest())); 5706 updateDAGForMaybeTailCall(MC); 5707 return nullptr; 5708 } 5709 case Intrinsic::dbg_addr: 5710 case Intrinsic::dbg_declare: { 5711 const auto &DI = cast<DbgVariableIntrinsic>(I); 5712 DILocalVariable *Variable = DI.getVariable(); 5713 DIExpression *Expression = DI.getExpression(); 5714 dropDanglingDebugInfo(Variable, Expression); 5715 assert(Variable && "Missing variable"); 5716 5717 // Check if address has undef value. 5718 const Value *Address = DI.getVariableLocation(); 5719 if (!Address || isa<UndefValue>(Address) || 5720 (Address->use_empty() && !isa<Argument>(Address))) { 5721 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5722 return nullptr; 5723 } 5724 5725 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5726 5727 // Check if this variable can be described by a frame index, typically 5728 // either as a static alloca or a byval parameter. 5729 int FI = std::numeric_limits<int>::max(); 5730 if (const auto *AI = 5731 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5732 if (AI->isStaticAlloca()) { 5733 auto I = FuncInfo.StaticAllocaMap.find(AI); 5734 if (I != FuncInfo.StaticAllocaMap.end()) 5735 FI = I->second; 5736 } 5737 } else if (const auto *Arg = dyn_cast<Argument>( 5738 Address->stripInBoundsConstantOffsets())) { 5739 FI = FuncInfo.getArgumentFrameIndex(Arg); 5740 } 5741 5742 // llvm.dbg.addr is control dependent and always generates indirect 5743 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5744 // the MachineFunction variable table. 5745 if (FI != std::numeric_limits<int>::max()) { 5746 if (Intrinsic == Intrinsic::dbg_addr) { 5747 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5748 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5749 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5750 } 5751 return nullptr; 5752 } 5753 5754 SDValue &N = NodeMap[Address]; 5755 if (!N.getNode() && isa<Argument>(Address)) 5756 // Check unused arguments map. 5757 N = UnusedArgNodeMap[Address]; 5758 SDDbgValue *SDV; 5759 if (N.getNode()) { 5760 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5761 Address = BCI->getOperand(0); 5762 // Parameters are handled specially. 5763 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5764 if (isParameter && FINode) { 5765 // Byval parameter. We have a frame index at this point. 5766 SDV = 5767 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5768 /*IsIndirect*/ true, dl, SDNodeOrder); 5769 } else if (isa<Argument>(Address)) { 5770 // Address is an argument, so try to emit its dbg value using 5771 // virtual register info from the FuncInfo.ValueMap. 5772 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5773 return nullptr; 5774 } else { 5775 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5776 true, dl, SDNodeOrder); 5777 } 5778 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5779 } else { 5780 // If Address is an argument then try to emit its dbg value using 5781 // virtual register info from the FuncInfo.ValueMap. 5782 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5783 N)) { 5784 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5785 } 5786 } 5787 return nullptr; 5788 } 5789 case Intrinsic::dbg_label: { 5790 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5791 DILabel *Label = DI.getLabel(); 5792 assert(Label && "Missing label"); 5793 5794 SDDbgLabel *SDV; 5795 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5796 DAG.AddDbgLabel(SDV); 5797 return nullptr; 5798 } 5799 case Intrinsic::dbg_value: { 5800 const DbgValueInst &DI = cast<DbgValueInst>(I); 5801 assert(DI.getVariable() && "Missing variable"); 5802 5803 DILocalVariable *Variable = DI.getVariable(); 5804 DIExpression *Expression = DI.getExpression(); 5805 dropDanglingDebugInfo(Variable, Expression); 5806 const Value *V = DI.getValue(); 5807 if (!V) 5808 return nullptr; 5809 5810 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5811 SDNodeOrder)) 5812 return nullptr; 5813 5814 // TODO: Dangling debug info will eventually either be resolved or produce 5815 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5816 // between the original dbg.value location and its resolved DBG_VALUE, which 5817 // we should ideally fill with an extra Undef DBG_VALUE. 5818 5819 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5820 return nullptr; 5821 } 5822 5823 case Intrinsic::eh_typeid_for: { 5824 // Find the type id for the given typeinfo. 5825 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5826 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5827 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5828 setValue(&I, Res); 5829 return nullptr; 5830 } 5831 5832 case Intrinsic::eh_return_i32: 5833 case Intrinsic::eh_return_i64: 5834 DAG.getMachineFunction().setCallsEHReturn(true); 5835 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5836 MVT::Other, 5837 getControlRoot(), 5838 getValue(I.getArgOperand(0)), 5839 getValue(I.getArgOperand(1)))); 5840 return nullptr; 5841 case Intrinsic::eh_unwind_init: 5842 DAG.getMachineFunction().setCallsUnwindInit(true); 5843 return nullptr; 5844 case Intrinsic::eh_dwarf_cfa: 5845 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5846 TLI.getPointerTy(DAG.getDataLayout()), 5847 getValue(I.getArgOperand(0)))); 5848 return nullptr; 5849 case Intrinsic::eh_sjlj_callsite: { 5850 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5851 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5852 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5853 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5854 5855 MMI.setCurrentCallSite(CI->getZExtValue()); 5856 return nullptr; 5857 } 5858 case Intrinsic::eh_sjlj_functioncontext: { 5859 // Get and store the index of the function context. 5860 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5861 AllocaInst *FnCtx = 5862 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5863 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5864 MFI.setFunctionContextIndex(FI); 5865 return nullptr; 5866 } 5867 case Intrinsic::eh_sjlj_setjmp: { 5868 SDValue Ops[2]; 5869 Ops[0] = getRoot(); 5870 Ops[1] = getValue(I.getArgOperand(0)); 5871 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5872 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5873 setValue(&I, Op.getValue(0)); 5874 DAG.setRoot(Op.getValue(1)); 5875 return nullptr; 5876 } 5877 case Intrinsic::eh_sjlj_longjmp: 5878 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5879 getRoot(), getValue(I.getArgOperand(0)))); 5880 return nullptr; 5881 case Intrinsic::eh_sjlj_setup_dispatch: 5882 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5883 getRoot())); 5884 return nullptr; 5885 case Intrinsic::masked_gather: 5886 visitMaskedGather(I); 5887 return nullptr; 5888 case Intrinsic::masked_load: 5889 visitMaskedLoad(I); 5890 return nullptr; 5891 case Intrinsic::masked_scatter: 5892 visitMaskedScatter(I); 5893 return nullptr; 5894 case Intrinsic::masked_store: 5895 visitMaskedStore(I); 5896 return nullptr; 5897 case Intrinsic::masked_expandload: 5898 visitMaskedLoad(I, true /* IsExpanding */); 5899 return nullptr; 5900 case Intrinsic::masked_compressstore: 5901 visitMaskedStore(I, true /* IsCompressing */); 5902 return nullptr; 5903 case Intrinsic::x86_mmx_pslli_w: 5904 case Intrinsic::x86_mmx_pslli_d: 5905 case Intrinsic::x86_mmx_pslli_q: 5906 case Intrinsic::x86_mmx_psrli_w: 5907 case Intrinsic::x86_mmx_psrli_d: 5908 case Intrinsic::x86_mmx_psrli_q: 5909 case Intrinsic::x86_mmx_psrai_w: 5910 case Intrinsic::x86_mmx_psrai_d: { 5911 SDValue ShAmt = getValue(I.getArgOperand(1)); 5912 if (isa<ConstantSDNode>(ShAmt)) { 5913 visitTargetIntrinsic(I, Intrinsic); 5914 return nullptr; 5915 } 5916 unsigned NewIntrinsic = 0; 5917 EVT ShAmtVT = MVT::v2i32; 5918 switch (Intrinsic) { 5919 case Intrinsic::x86_mmx_pslli_w: 5920 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5921 break; 5922 case Intrinsic::x86_mmx_pslli_d: 5923 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5924 break; 5925 case Intrinsic::x86_mmx_pslli_q: 5926 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5927 break; 5928 case Intrinsic::x86_mmx_psrli_w: 5929 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5930 break; 5931 case Intrinsic::x86_mmx_psrli_d: 5932 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5933 break; 5934 case Intrinsic::x86_mmx_psrli_q: 5935 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5936 break; 5937 case Intrinsic::x86_mmx_psrai_w: 5938 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5939 break; 5940 case Intrinsic::x86_mmx_psrai_d: 5941 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5942 break; 5943 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5944 } 5945 5946 // The vector shift intrinsics with scalars uses 32b shift amounts but 5947 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5948 // to be zero. 5949 // We must do this early because v2i32 is not a legal type. 5950 SDValue ShOps[2]; 5951 ShOps[0] = ShAmt; 5952 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5953 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5954 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5955 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5956 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5957 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5958 getValue(I.getArgOperand(0)), ShAmt); 5959 setValue(&I, Res); 5960 return nullptr; 5961 } 5962 case Intrinsic::powi: 5963 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5964 getValue(I.getArgOperand(1)), DAG)); 5965 return nullptr; 5966 case Intrinsic::log: 5967 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5968 return nullptr; 5969 case Intrinsic::log2: 5970 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5971 return nullptr; 5972 case Intrinsic::log10: 5973 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5974 return nullptr; 5975 case Intrinsic::exp: 5976 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5977 return nullptr; 5978 case Intrinsic::exp2: 5979 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5980 return nullptr; 5981 case Intrinsic::pow: 5982 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5983 getValue(I.getArgOperand(1)), DAG, TLI)); 5984 return nullptr; 5985 case Intrinsic::sqrt: 5986 case Intrinsic::fabs: 5987 case Intrinsic::sin: 5988 case Intrinsic::cos: 5989 case Intrinsic::floor: 5990 case Intrinsic::ceil: 5991 case Intrinsic::trunc: 5992 case Intrinsic::rint: 5993 case Intrinsic::nearbyint: 5994 case Intrinsic::round: 5995 case Intrinsic::canonicalize: { 5996 unsigned Opcode; 5997 switch (Intrinsic) { 5998 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5999 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6000 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6001 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6002 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6003 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6004 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6005 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6006 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6007 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6008 case Intrinsic::round: Opcode = ISD::FROUND; break; 6009 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6010 } 6011 6012 setValue(&I, DAG.getNode(Opcode, sdl, 6013 getValue(I.getArgOperand(0)).getValueType(), 6014 getValue(I.getArgOperand(0)))); 6015 return nullptr; 6016 } 6017 case Intrinsic::minnum: { 6018 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6019 unsigned Opc = 6020 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 6021 ? ISD::FMINIMUM 6022 : ISD::FMINNUM; 6023 setValue(&I, DAG.getNode(Opc, sdl, VT, 6024 getValue(I.getArgOperand(0)), 6025 getValue(I.getArgOperand(1)))); 6026 return nullptr; 6027 } 6028 case Intrinsic::maxnum: { 6029 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6030 unsigned Opc = 6031 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 6032 ? ISD::FMAXIMUM 6033 : ISD::FMAXNUM; 6034 setValue(&I, DAG.getNode(Opc, sdl, VT, 6035 getValue(I.getArgOperand(0)), 6036 getValue(I.getArgOperand(1)))); 6037 return nullptr; 6038 } 6039 case Intrinsic::minimum: 6040 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6041 getValue(I.getArgOperand(0)).getValueType(), 6042 getValue(I.getArgOperand(0)), 6043 getValue(I.getArgOperand(1)))); 6044 return nullptr; 6045 case Intrinsic::maximum: 6046 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6047 getValue(I.getArgOperand(0)).getValueType(), 6048 getValue(I.getArgOperand(0)), 6049 getValue(I.getArgOperand(1)))); 6050 return nullptr; 6051 case Intrinsic::copysign: 6052 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6053 getValue(I.getArgOperand(0)).getValueType(), 6054 getValue(I.getArgOperand(0)), 6055 getValue(I.getArgOperand(1)))); 6056 return nullptr; 6057 case Intrinsic::fma: 6058 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6059 getValue(I.getArgOperand(0)).getValueType(), 6060 getValue(I.getArgOperand(0)), 6061 getValue(I.getArgOperand(1)), 6062 getValue(I.getArgOperand(2)))); 6063 return nullptr; 6064 case Intrinsic::experimental_constrained_fadd: 6065 case Intrinsic::experimental_constrained_fsub: 6066 case Intrinsic::experimental_constrained_fmul: 6067 case Intrinsic::experimental_constrained_fdiv: 6068 case Intrinsic::experimental_constrained_frem: 6069 case Intrinsic::experimental_constrained_fma: 6070 case Intrinsic::experimental_constrained_sqrt: 6071 case Intrinsic::experimental_constrained_pow: 6072 case Intrinsic::experimental_constrained_powi: 6073 case Intrinsic::experimental_constrained_sin: 6074 case Intrinsic::experimental_constrained_cos: 6075 case Intrinsic::experimental_constrained_exp: 6076 case Intrinsic::experimental_constrained_exp2: 6077 case Intrinsic::experimental_constrained_log: 6078 case Intrinsic::experimental_constrained_log10: 6079 case Intrinsic::experimental_constrained_log2: 6080 case Intrinsic::experimental_constrained_rint: 6081 case Intrinsic::experimental_constrained_nearbyint: 6082 case Intrinsic::experimental_constrained_maxnum: 6083 case Intrinsic::experimental_constrained_minnum: 6084 case Intrinsic::experimental_constrained_ceil: 6085 case Intrinsic::experimental_constrained_floor: 6086 case Intrinsic::experimental_constrained_round: 6087 case Intrinsic::experimental_constrained_trunc: 6088 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6089 return nullptr; 6090 case Intrinsic::fmuladd: { 6091 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6092 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6093 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6094 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6095 getValue(I.getArgOperand(0)).getValueType(), 6096 getValue(I.getArgOperand(0)), 6097 getValue(I.getArgOperand(1)), 6098 getValue(I.getArgOperand(2)))); 6099 } else { 6100 // TODO: Intrinsic calls should have fast-math-flags. 6101 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6102 getValue(I.getArgOperand(0)).getValueType(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1))); 6105 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6106 getValue(I.getArgOperand(0)).getValueType(), 6107 Mul, 6108 getValue(I.getArgOperand(2))); 6109 setValue(&I, Add); 6110 } 6111 return nullptr; 6112 } 6113 case Intrinsic::convert_to_fp16: 6114 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6115 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6116 getValue(I.getArgOperand(0)), 6117 DAG.getTargetConstant(0, sdl, 6118 MVT::i32)))); 6119 return nullptr; 6120 case Intrinsic::convert_from_fp16: 6121 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6122 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6123 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6124 getValue(I.getArgOperand(0))))); 6125 return nullptr; 6126 case Intrinsic::pcmarker: { 6127 SDValue Tmp = getValue(I.getArgOperand(0)); 6128 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6129 return nullptr; 6130 } 6131 case Intrinsic::readcyclecounter: { 6132 SDValue Op = getRoot(); 6133 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6134 DAG.getVTList(MVT::i64, MVT::Other), Op); 6135 setValue(&I, Res); 6136 DAG.setRoot(Res.getValue(1)); 6137 return nullptr; 6138 } 6139 case Intrinsic::bitreverse: 6140 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6141 getValue(I.getArgOperand(0)).getValueType(), 6142 getValue(I.getArgOperand(0)))); 6143 return nullptr; 6144 case Intrinsic::bswap: 6145 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6146 getValue(I.getArgOperand(0)).getValueType(), 6147 getValue(I.getArgOperand(0)))); 6148 return nullptr; 6149 case Intrinsic::cttz: { 6150 SDValue Arg = getValue(I.getArgOperand(0)); 6151 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6152 EVT Ty = Arg.getValueType(); 6153 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6154 sdl, Ty, Arg)); 6155 return nullptr; 6156 } 6157 case Intrinsic::ctlz: { 6158 SDValue Arg = getValue(I.getArgOperand(0)); 6159 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6160 EVT Ty = Arg.getValueType(); 6161 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6162 sdl, Ty, Arg)); 6163 return nullptr; 6164 } 6165 case Intrinsic::ctpop: { 6166 SDValue Arg = getValue(I.getArgOperand(0)); 6167 EVT Ty = Arg.getValueType(); 6168 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6169 return nullptr; 6170 } 6171 case Intrinsic::fshl: 6172 case Intrinsic::fshr: { 6173 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6174 SDValue X = getValue(I.getArgOperand(0)); 6175 SDValue Y = getValue(I.getArgOperand(1)); 6176 SDValue Z = getValue(I.getArgOperand(2)); 6177 EVT VT = X.getValueType(); 6178 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6179 SDValue Zero = DAG.getConstant(0, sdl, VT); 6180 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6181 6182 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6183 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6184 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6185 return nullptr; 6186 } 6187 6188 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6189 // avoid the select that is necessary in the general case to filter out 6190 // the 0-shift possibility that leads to UB. 6191 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6192 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6193 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6194 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6195 return nullptr; 6196 } 6197 6198 // Some targets only rotate one way. Try the opposite direction. 6199 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6200 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6201 // Negate the shift amount because it is safe to ignore the high bits. 6202 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6203 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6204 return nullptr; 6205 } 6206 6207 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6208 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6209 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6210 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6211 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6212 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6213 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6214 return nullptr; 6215 } 6216 6217 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6218 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6219 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6220 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6221 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6222 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6223 6224 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6225 // and that is undefined. We must compare and select to avoid UB. 6226 EVT CCVT = MVT::i1; 6227 if (VT.isVector()) 6228 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6229 6230 // For fshl, 0-shift returns the 1st arg (X). 6231 // For fshr, 0-shift returns the 2nd arg (Y). 6232 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6233 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6234 return nullptr; 6235 } 6236 case Intrinsic::sadd_sat: { 6237 SDValue Op1 = getValue(I.getArgOperand(0)); 6238 SDValue Op2 = getValue(I.getArgOperand(1)); 6239 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6240 return nullptr; 6241 } 6242 case Intrinsic::uadd_sat: { 6243 SDValue Op1 = getValue(I.getArgOperand(0)); 6244 SDValue Op2 = getValue(I.getArgOperand(1)); 6245 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6246 return nullptr; 6247 } 6248 case Intrinsic::ssub_sat: { 6249 SDValue Op1 = getValue(I.getArgOperand(0)); 6250 SDValue Op2 = getValue(I.getArgOperand(1)); 6251 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6252 return nullptr; 6253 } 6254 case Intrinsic::usub_sat: { 6255 SDValue Op1 = getValue(I.getArgOperand(0)); 6256 SDValue Op2 = getValue(I.getArgOperand(1)); 6257 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6258 return nullptr; 6259 } 6260 case Intrinsic::smul_fix: 6261 case Intrinsic::umul_fix: { 6262 SDValue Op1 = getValue(I.getArgOperand(0)); 6263 SDValue Op2 = getValue(I.getArgOperand(1)); 6264 SDValue Op3 = getValue(I.getArgOperand(2)); 6265 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6266 Op1.getValueType(), Op1, Op2, Op3)); 6267 return nullptr; 6268 } 6269 case Intrinsic::stacksave: { 6270 SDValue Op = getRoot(); 6271 Res = DAG.getNode( 6272 ISD::STACKSAVE, sdl, 6273 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6274 setValue(&I, Res); 6275 DAG.setRoot(Res.getValue(1)); 6276 return nullptr; 6277 } 6278 case Intrinsic::stackrestore: 6279 Res = getValue(I.getArgOperand(0)); 6280 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6281 return nullptr; 6282 case Intrinsic::get_dynamic_area_offset: { 6283 SDValue Op = getRoot(); 6284 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6285 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6286 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6287 // target. 6288 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6289 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6290 " intrinsic!"); 6291 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6292 Op); 6293 DAG.setRoot(Op); 6294 setValue(&I, Res); 6295 return nullptr; 6296 } 6297 case Intrinsic::stackguard: { 6298 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6299 MachineFunction &MF = DAG.getMachineFunction(); 6300 const Module &M = *MF.getFunction().getParent(); 6301 SDValue Chain = getRoot(); 6302 if (TLI.useLoadStackGuardNode()) { 6303 Res = getLoadStackGuard(DAG, sdl, Chain); 6304 } else { 6305 const Value *Global = TLI.getSDagStackGuard(M); 6306 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6307 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6308 MachinePointerInfo(Global, 0), Align, 6309 MachineMemOperand::MOVolatile); 6310 } 6311 if (TLI.useStackGuardXorFP()) 6312 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6313 DAG.setRoot(Chain); 6314 setValue(&I, Res); 6315 return nullptr; 6316 } 6317 case Intrinsic::stackprotector: { 6318 // Emit code into the DAG to store the stack guard onto the stack. 6319 MachineFunction &MF = DAG.getMachineFunction(); 6320 MachineFrameInfo &MFI = MF.getFrameInfo(); 6321 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6322 SDValue Src, Chain = getRoot(); 6323 6324 if (TLI.useLoadStackGuardNode()) 6325 Src = getLoadStackGuard(DAG, sdl, Chain); 6326 else 6327 Src = getValue(I.getArgOperand(0)); // The guard's value. 6328 6329 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6330 6331 int FI = FuncInfo.StaticAllocaMap[Slot]; 6332 MFI.setStackProtectorIndex(FI); 6333 6334 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6335 6336 // Store the stack protector onto the stack. 6337 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6338 DAG.getMachineFunction(), FI), 6339 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6340 setValue(&I, Res); 6341 DAG.setRoot(Res); 6342 return nullptr; 6343 } 6344 case Intrinsic::objectsize: { 6345 // If we don't know by now, we're never going to know. 6346 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6347 6348 assert(CI && "Non-constant type in __builtin_object_size?"); 6349 6350 SDValue Arg = getValue(I.getCalledValue()); 6351 EVT Ty = Arg.getValueType(); 6352 6353 if (CI->isZero()) 6354 Res = DAG.getConstant(-1ULL, sdl, Ty); 6355 else 6356 Res = DAG.getConstant(0, sdl, Ty); 6357 6358 setValue(&I, Res); 6359 return nullptr; 6360 } 6361 6362 case Intrinsic::is_constant: 6363 // If this wasn't constant-folded away by now, then it's not a 6364 // constant. 6365 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6366 return nullptr; 6367 6368 case Intrinsic::annotation: 6369 case Intrinsic::ptr_annotation: 6370 case Intrinsic::launder_invariant_group: 6371 case Intrinsic::strip_invariant_group: 6372 // Drop the intrinsic, but forward the value 6373 setValue(&I, getValue(I.getOperand(0))); 6374 return nullptr; 6375 case Intrinsic::assume: 6376 case Intrinsic::var_annotation: 6377 case Intrinsic::sideeffect: 6378 // Discard annotate attributes, assumptions, and artificial side-effects. 6379 return nullptr; 6380 6381 case Intrinsic::codeview_annotation: { 6382 // Emit a label associated with this metadata. 6383 MachineFunction &MF = DAG.getMachineFunction(); 6384 MCSymbol *Label = 6385 MF.getMMI().getContext().createTempSymbol("annotation", true); 6386 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6387 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6388 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6389 DAG.setRoot(Res); 6390 return nullptr; 6391 } 6392 6393 case Intrinsic::init_trampoline: { 6394 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6395 6396 SDValue Ops[6]; 6397 Ops[0] = getRoot(); 6398 Ops[1] = getValue(I.getArgOperand(0)); 6399 Ops[2] = getValue(I.getArgOperand(1)); 6400 Ops[3] = getValue(I.getArgOperand(2)); 6401 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6402 Ops[5] = DAG.getSrcValue(F); 6403 6404 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6405 6406 DAG.setRoot(Res); 6407 return nullptr; 6408 } 6409 case Intrinsic::adjust_trampoline: 6410 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6411 TLI.getPointerTy(DAG.getDataLayout()), 6412 getValue(I.getArgOperand(0)))); 6413 return nullptr; 6414 case Intrinsic::gcroot: { 6415 assert(DAG.getMachineFunction().getFunction().hasGC() && 6416 "only valid in functions with gc specified, enforced by Verifier"); 6417 assert(GFI && "implied by previous"); 6418 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6419 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6420 6421 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6422 GFI->addStackRoot(FI->getIndex(), TypeMap); 6423 return nullptr; 6424 } 6425 case Intrinsic::gcread: 6426 case Intrinsic::gcwrite: 6427 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6428 case Intrinsic::flt_rounds: 6429 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6430 return nullptr; 6431 6432 case Intrinsic::expect: 6433 // Just replace __builtin_expect(exp, c) with EXP. 6434 setValue(&I, getValue(I.getArgOperand(0))); 6435 return nullptr; 6436 6437 case Intrinsic::debugtrap: 6438 case Intrinsic::trap: { 6439 StringRef TrapFuncName = 6440 I.getAttributes() 6441 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6442 .getValueAsString(); 6443 if (TrapFuncName.empty()) { 6444 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6445 ISD::TRAP : ISD::DEBUGTRAP; 6446 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6447 return nullptr; 6448 } 6449 TargetLowering::ArgListTy Args; 6450 6451 TargetLowering::CallLoweringInfo CLI(DAG); 6452 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6453 CallingConv::C, I.getType(), 6454 DAG.getExternalSymbol(TrapFuncName.data(), 6455 TLI.getPointerTy(DAG.getDataLayout())), 6456 std::move(Args)); 6457 6458 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6459 DAG.setRoot(Result.second); 6460 return nullptr; 6461 } 6462 6463 case Intrinsic::uadd_with_overflow: 6464 case Intrinsic::sadd_with_overflow: 6465 case Intrinsic::usub_with_overflow: 6466 case Intrinsic::ssub_with_overflow: 6467 case Intrinsic::umul_with_overflow: 6468 case Intrinsic::smul_with_overflow: { 6469 ISD::NodeType Op; 6470 switch (Intrinsic) { 6471 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6472 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6473 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6474 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6475 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6476 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6477 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6478 } 6479 SDValue Op1 = getValue(I.getArgOperand(0)); 6480 SDValue Op2 = getValue(I.getArgOperand(1)); 6481 6482 EVT ResultVT = Op1.getValueType(); 6483 EVT OverflowVT = MVT::i1; 6484 if (ResultVT.isVector()) 6485 OverflowVT = EVT::getVectorVT( 6486 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6487 6488 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6489 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6490 return nullptr; 6491 } 6492 case Intrinsic::prefetch: { 6493 SDValue Ops[5]; 6494 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6495 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6496 Ops[0] = DAG.getRoot(); 6497 Ops[1] = getValue(I.getArgOperand(0)); 6498 Ops[2] = getValue(I.getArgOperand(1)); 6499 Ops[3] = getValue(I.getArgOperand(2)); 6500 Ops[4] = getValue(I.getArgOperand(3)); 6501 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6502 DAG.getVTList(MVT::Other), Ops, 6503 EVT::getIntegerVT(*Context, 8), 6504 MachinePointerInfo(I.getArgOperand(0)), 6505 0, /* align */ 6506 Flags); 6507 6508 // Chain the prefetch in parallell with any pending loads, to stay out of 6509 // the way of later optimizations. 6510 PendingLoads.push_back(Result); 6511 Result = getRoot(); 6512 DAG.setRoot(Result); 6513 return nullptr; 6514 } 6515 case Intrinsic::lifetime_start: 6516 case Intrinsic::lifetime_end: { 6517 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6518 // Stack coloring is not enabled in O0, discard region information. 6519 if (TM.getOptLevel() == CodeGenOpt::None) 6520 return nullptr; 6521 6522 const int64_t ObjectSize = 6523 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6524 Value *const ObjectPtr = I.getArgOperand(1); 6525 SmallVector<const Value *, 4> Allocas; 6526 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6527 6528 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6529 E = Allocas.end(); Object != E; ++Object) { 6530 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6531 6532 // Could not find an Alloca. 6533 if (!LifetimeObject) 6534 continue; 6535 6536 // First check that the Alloca is static, otherwise it won't have a 6537 // valid frame index. 6538 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6539 if (SI == FuncInfo.StaticAllocaMap.end()) 6540 return nullptr; 6541 6542 const int FrameIndex = SI->second; 6543 int64_t Offset; 6544 if (GetPointerBaseWithConstantOffset( 6545 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6546 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6547 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6548 Offset); 6549 DAG.setRoot(Res); 6550 } 6551 return nullptr; 6552 } 6553 case Intrinsic::invariant_start: 6554 // Discard region information. 6555 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6556 return nullptr; 6557 case Intrinsic::invariant_end: 6558 // Discard region information. 6559 return nullptr; 6560 case Intrinsic::clear_cache: 6561 return TLI.getClearCacheBuiltinName(); 6562 case Intrinsic::donothing: 6563 // ignore 6564 return nullptr; 6565 case Intrinsic::experimental_stackmap: 6566 visitStackmap(I); 6567 return nullptr; 6568 case Intrinsic::experimental_patchpoint_void: 6569 case Intrinsic::experimental_patchpoint_i64: 6570 visitPatchpoint(&I); 6571 return nullptr; 6572 case Intrinsic::experimental_gc_statepoint: 6573 LowerStatepoint(ImmutableStatepoint(&I)); 6574 return nullptr; 6575 case Intrinsic::experimental_gc_result: 6576 visitGCResult(cast<GCResultInst>(I)); 6577 return nullptr; 6578 case Intrinsic::experimental_gc_relocate: 6579 visitGCRelocate(cast<GCRelocateInst>(I)); 6580 return nullptr; 6581 case Intrinsic::instrprof_increment: 6582 llvm_unreachable("instrprof failed to lower an increment"); 6583 case Intrinsic::instrprof_value_profile: 6584 llvm_unreachable("instrprof failed to lower a value profiling call"); 6585 case Intrinsic::localescape: { 6586 MachineFunction &MF = DAG.getMachineFunction(); 6587 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6588 6589 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6590 // is the same on all targets. 6591 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6592 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6593 if (isa<ConstantPointerNull>(Arg)) 6594 continue; // Skip null pointers. They represent a hole in index space. 6595 AllocaInst *Slot = cast<AllocaInst>(Arg); 6596 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6597 "can only escape static allocas"); 6598 int FI = FuncInfo.StaticAllocaMap[Slot]; 6599 MCSymbol *FrameAllocSym = 6600 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6601 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6602 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6603 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6604 .addSym(FrameAllocSym) 6605 .addFrameIndex(FI); 6606 } 6607 6608 return nullptr; 6609 } 6610 6611 case Intrinsic::localrecover: { 6612 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6613 MachineFunction &MF = DAG.getMachineFunction(); 6614 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6615 6616 // Get the symbol that defines the frame offset. 6617 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6618 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6619 unsigned IdxVal = 6620 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6621 MCSymbol *FrameAllocSym = 6622 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6623 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6624 6625 // Create a MCSymbol for the label to avoid any target lowering 6626 // that would make this PC relative. 6627 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6628 SDValue OffsetVal = 6629 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6630 6631 // Add the offset to the FP. 6632 Value *FP = I.getArgOperand(1); 6633 SDValue FPVal = getValue(FP); 6634 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6635 setValue(&I, Add); 6636 6637 return nullptr; 6638 } 6639 6640 case Intrinsic::eh_exceptionpointer: 6641 case Intrinsic::eh_exceptioncode: { 6642 // Get the exception pointer vreg, copy from it, and resize it to fit. 6643 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6644 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6645 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6646 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6647 SDValue N = 6648 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6649 if (Intrinsic == Intrinsic::eh_exceptioncode) 6650 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6651 setValue(&I, N); 6652 return nullptr; 6653 } 6654 case Intrinsic::xray_customevent: { 6655 // Here we want to make sure that the intrinsic behaves as if it has a 6656 // specific calling convention, and only for x86_64. 6657 // FIXME: Support other platforms later. 6658 const auto &Triple = DAG.getTarget().getTargetTriple(); 6659 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6660 return nullptr; 6661 6662 SDLoc DL = getCurSDLoc(); 6663 SmallVector<SDValue, 8> Ops; 6664 6665 // We want to say that we always want the arguments in registers. 6666 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6667 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6668 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6669 SDValue Chain = getRoot(); 6670 Ops.push_back(LogEntryVal); 6671 Ops.push_back(StrSizeVal); 6672 Ops.push_back(Chain); 6673 6674 // We need to enforce the calling convention for the callsite, so that 6675 // argument ordering is enforced correctly, and that register allocation can 6676 // see that some registers may be assumed clobbered and have to preserve 6677 // them across calls to the intrinsic. 6678 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6679 DL, NodeTys, Ops); 6680 SDValue patchableNode = SDValue(MN, 0); 6681 DAG.setRoot(patchableNode); 6682 setValue(&I, patchableNode); 6683 return nullptr; 6684 } 6685 case Intrinsic::xray_typedevent: { 6686 // Here we want to make sure that the intrinsic behaves as if it has a 6687 // specific calling convention, and only for x86_64. 6688 // FIXME: Support other platforms later. 6689 const auto &Triple = DAG.getTarget().getTargetTriple(); 6690 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6691 return nullptr; 6692 6693 SDLoc DL = getCurSDLoc(); 6694 SmallVector<SDValue, 8> Ops; 6695 6696 // We want to say that we always want the arguments in registers. 6697 // It's unclear to me how manipulating the selection DAG here forces callers 6698 // to provide arguments in registers instead of on the stack. 6699 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6700 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6701 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6702 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6703 SDValue Chain = getRoot(); 6704 Ops.push_back(LogTypeId); 6705 Ops.push_back(LogEntryVal); 6706 Ops.push_back(StrSizeVal); 6707 Ops.push_back(Chain); 6708 6709 // We need to enforce the calling convention for the callsite, so that 6710 // argument ordering is enforced correctly, and that register allocation can 6711 // see that some registers may be assumed clobbered and have to preserve 6712 // them across calls to the intrinsic. 6713 MachineSDNode *MN = DAG.getMachineNode( 6714 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6715 SDValue patchableNode = SDValue(MN, 0); 6716 DAG.setRoot(patchableNode); 6717 setValue(&I, patchableNode); 6718 return nullptr; 6719 } 6720 case Intrinsic::experimental_deoptimize: 6721 LowerDeoptimizeCall(&I); 6722 return nullptr; 6723 6724 case Intrinsic::experimental_vector_reduce_fadd: 6725 case Intrinsic::experimental_vector_reduce_fmul: 6726 case Intrinsic::experimental_vector_reduce_add: 6727 case Intrinsic::experimental_vector_reduce_mul: 6728 case Intrinsic::experimental_vector_reduce_and: 6729 case Intrinsic::experimental_vector_reduce_or: 6730 case Intrinsic::experimental_vector_reduce_xor: 6731 case Intrinsic::experimental_vector_reduce_smax: 6732 case Intrinsic::experimental_vector_reduce_smin: 6733 case Intrinsic::experimental_vector_reduce_umax: 6734 case Intrinsic::experimental_vector_reduce_umin: 6735 case Intrinsic::experimental_vector_reduce_fmax: 6736 case Intrinsic::experimental_vector_reduce_fmin: 6737 visitVectorReduce(I, Intrinsic); 6738 return nullptr; 6739 6740 case Intrinsic::icall_branch_funnel: { 6741 SmallVector<SDValue, 16> Ops; 6742 Ops.push_back(DAG.getRoot()); 6743 Ops.push_back(getValue(I.getArgOperand(0))); 6744 6745 int64_t Offset; 6746 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6747 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6748 if (!Base) 6749 report_fatal_error( 6750 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6751 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6752 6753 struct BranchFunnelTarget { 6754 int64_t Offset; 6755 SDValue Target; 6756 }; 6757 SmallVector<BranchFunnelTarget, 8> Targets; 6758 6759 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6760 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6761 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6762 if (ElemBase != Base) 6763 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6764 "to the same GlobalValue"); 6765 6766 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6767 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6768 if (!GA) 6769 report_fatal_error( 6770 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6771 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6772 GA->getGlobal(), getCurSDLoc(), 6773 Val.getValueType(), GA->getOffset())}); 6774 } 6775 llvm::sort(Targets, 6776 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6777 return T1.Offset < T2.Offset; 6778 }); 6779 6780 for (auto &T : Targets) { 6781 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6782 Ops.push_back(T.Target); 6783 } 6784 6785 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6786 getCurSDLoc(), MVT::Other, Ops), 6787 0); 6788 DAG.setRoot(N); 6789 setValue(&I, N); 6790 HasTailCall = true; 6791 return nullptr; 6792 } 6793 6794 case Intrinsic::wasm_landingpad_index: 6795 // Information this intrinsic contained has been transferred to 6796 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6797 // delete it now. 6798 return nullptr; 6799 } 6800 } 6801 6802 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6803 const ConstrainedFPIntrinsic &FPI) { 6804 SDLoc sdl = getCurSDLoc(); 6805 unsigned Opcode; 6806 switch (FPI.getIntrinsicID()) { 6807 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6808 case Intrinsic::experimental_constrained_fadd: 6809 Opcode = ISD::STRICT_FADD; 6810 break; 6811 case Intrinsic::experimental_constrained_fsub: 6812 Opcode = ISD::STRICT_FSUB; 6813 break; 6814 case Intrinsic::experimental_constrained_fmul: 6815 Opcode = ISD::STRICT_FMUL; 6816 break; 6817 case Intrinsic::experimental_constrained_fdiv: 6818 Opcode = ISD::STRICT_FDIV; 6819 break; 6820 case Intrinsic::experimental_constrained_frem: 6821 Opcode = ISD::STRICT_FREM; 6822 break; 6823 case Intrinsic::experimental_constrained_fma: 6824 Opcode = ISD::STRICT_FMA; 6825 break; 6826 case Intrinsic::experimental_constrained_sqrt: 6827 Opcode = ISD::STRICT_FSQRT; 6828 break; 6829 case Intrinsic::experimental_constrained_pow: 6830 Opcode = ISD::STRICT_FPOW; 6831 break; 6832 case Intrinsic::experimental_constrained_powi: 6833 Opcode = ISD::STRICT_FPOWI; 6834 break; 6835 case Intrinsic::experimental_constrained_sin: 6836 Opcode = ISD::STRICT_FSIN; 6837 break; 6838 case Intrinsic::experimental_constrained_cos: 6839 Opcode = ISD::STRICT_FCOS; 6840 break; 6841 case Intrinsic::experimental_constrained_exp: 6842 Opcode = ISD::STRICT_FEXP; 6843 break; 6844 case Intrinsic::experimental_constrained_exp2: 6845 Opcode = ISD::STRICT_FEXP2; 6846 break; 6847 case Intrinsic::experimental_constrained_log: 6848 Opcode = ISD::STRICT_FLOG; 6849 break; 6850 case Intrinsic::experimental_constrained_log10: 6851 Opcode = ISD::STRICT_FLOG10; 6852 break; 6853 case Intrinsic::experimental_constrained_log2: 6854 Opcode = ISD::STRICT_FLOG2; 6855 break; 6856 case Intrinsic::experimental_constrained_rint: 6857 Opcode = ISD::STRICT_FRINT; 6858 break; 6859 case Intrinsic::experimental_constrained_nearbyint: 6860 Opcode = ISD::STRICT_FNEARBYINT; 6861 break; 6862 case Intrinsic::experimental_constrained_maxnum: 6863 Opcode = ISD::STRICT_FMAXNUM; 6864 break; 6865 case Intrinsic::experimental_constrained_minnum: 6866 Opcode = ISD::STRICT_FMINNUM; 6867 break; 6868 case Intrinsic::experimental_constrained_ceil: 6869 Opcode = ISD::STRICT_FCEIL; 6870 break; 6871 case Intrinsic::experimental_constrained_floor: 6872 Opcode = ISD::STRICT_FFLOOR; 6873 break; 6874 case Intrinsic::experimental_constrained_round: 6875 Opcode = ISD::STRICT_FROUND; 6876 break; 6877 case Intrinsic::experimental_constrained_trunc: 6878 Opcode = ISD::STRICT_FTRUNC; 6879 break; 6880 } 6881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6882 SDValue Chain = getRoot(); 6883 SmallVector<EVT, 4> ValueVTs; 6884 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6885 ValueVTs.push_back(MVT::Other); // Out chain 6886 6887 SDVTList VTs = DAG.getVTList(ValueVTs); 6888 SDValue Result; 6889 if (FPI.isUnaryOp()) 6890 Result = DAG.getNode(Opcode, sdl, VTs, 6891 { Chain, getValue(FPI.getArgOperand(0)) }); 6892 else if (FPI.isTernaryOp()) 6893 Result = DAG.getNode(Opcode, sdl, VTs, 6894 { Chain, getValue(FPI.getArgOperand(0)), 6895 getValue(FPI.getArgOperand(1)), 6896 getValue(FPI.getArgOperand(2)) }); 6897 else 6898 Result = DAG.getNode(Opcode, sdl, VTs, 6899 { Chain, getValue(FPI.getArgOperand(0)), 6900 getValue(FPI.getArgOperand(1)) }); 6901 6902 assert(Result.getNode()->getNumValues() == 2); 6903 SDValue OutChain = Result.getValue(1); 6904 DAG.setRoot(OutChain); 6905 SDValue FPResult = Result.getValue(0); 6906 setValue(&FPI, FPResult); 6907 } 6908 6909 std::pair<SDValue, SDValue> 6910 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6911 const BasicBlock *EHPadBB) { 6912 MachineFunction &MF = DAG.getMachineFunction(); 6913 MachineModuleInfo &MMI = MF.getMMI(); 6914 MCSymbol *BeginLabel = nullptr; 6915 6916 if (EHPadBB) { 6917 // Insert a label before the invoke call to mark the try range. This can be 6918 // used to detect deletion of the invoke via the MachineModuleInfo. 6919 BeginLabel = MMI.getContext().createTempSymbol(); 6920 6921 // For SjLj, keep track of which landing pads go with which invokes 6922 // so as to maintain the ordering of pads in the LSDA. 6923 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6924 if (CallSiteIndex) { 6925 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6926 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6927 6928 // Now that the call site is handled, stop tracking it. 6929 MMI.setCurrentCallSite(0); 6930 } 6931 6932 // Both PendingLoads and PendingExports must be flushed here; 6933 // this call might not return. 6934 (void)getRoot(); 6935 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6936 6937 CLI.setChain(getRoot()); 6938 } 6939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6940 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6941 6942 assert((CLI.IsTailCall || Result.second.getNode()) && 6943 "Non-null chain expected with non-tail call!"); 6944 assert((Result.second.getNode() || !Result.first.getNode()) && 6945 "Null value expected with tail call!"); 6946 6947 if (!Result.second.getNode()) { 6948 // As a special case, a null chain means that a tail call has been emitted 6949 // and the DAG root is already updated. 6950 HasTailCall = true; 6951 6952 // Since there's no actual continuation from this block, nothing can be 6953 // relying on us setting vregs for them. 6954 PendingExports.clear(); 6955 } else { 6956 DAG.setRoot(Result.second); 6957 } 6958 6959 if (EHPadBB) { 6960 // Insert a label at the end of the invoke call to mark the try range. This 6961 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6962 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6963 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6964 6965 // Inform MachineModuleInfo of range. 6966 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6967 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6968 // actually use outlined funclets and their LSDA info style. 6969 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6970 assert(CLI.CS); 6971 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6972 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6973 BeginLabel, EndLabel); 6974 } else if (!isScopedEHPersonality(Pers)) { 6975 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6976 } 6977 } 6978 6979 return Result; 6980 } 6981 6982 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6983 bool isTailCall, 6984 const BasicBlock *EHPadBB) { 6985 auto &DL = DAG.getDataLayout(); 6986 FunctionType *FTy = CS.getFunctionType(); 6987 Type *RetTy = CS.getType(); 6988 6989 TargetLowering::ArgListTy Args; 6990 Args.reserve(CS.arg_size()); 6991 6992 const Value *SwiftErrorVal = nullptr; 6993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6994 6995 // We can't tail call inside a function with a swifterror argument. Lowering 6996 // does not support this yet. It would have to move into the swifterror 6997 // register before the call. 6998 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6999 if (TLI.supportSwiftError() && 7000 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7001 isTailCall = false; 7002 7003 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7004 i != e; ++i) { 7005 TargetLowering::ArgListEntry Entry; 7006 const Value *V = *i; 7007 7008 // Skip empty types 7009 if (V->getType()->isEmptyTy()) 7010 continue; 7011 7012 SDValue ArgNode = getValue(V); 7013 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7014 7015 Entry.setAttributes(&CS, i - CS.arg_begin()); 7016 7017 // Use swifterror virtual register as input to the call. 7018 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7019 SwiftErrorVal = V; 7020 // We find the virtual register for the actual swifterror argument. 7021 // Instead of using the Value, we use the virtual register instead. 7022 Entry.Node = DAG.getRegister(FuncInfo 7023 .getOrCreateSwiftErrorVRegUseAt( 7024 CS.getInstruction(), FuncInfo.MBB, V) 7025 .first, 7026 EVT(TLI.getPointerTy(DL))); 7027 } 7028 7029 Args.push_back(Entry); 7030 7031 // If we have an explicit sret argument that is an Instruction, (i.e., it 7032 // might point to function-local memory), we can't meaningfully tail-call. 7033 if (Entry.IsSRet && isa<Instruction>(V)) 7034 isTailCall = false; 7035 } 7036 7037 // Check if target-independent constraints permit a tail call here. 7038 // Target-dependent constraints are checked within TLI->LowerCallTo. 7039 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7040 isTailCall = false; 7041 7042 // Disable tail calls if there is an swifterror argument. Targets have not 7043 // been updated to support tail calls. 7044 if (TLI.supportSwiftError() && SwiftErrorVal) 7045 isTailCall = false; 7046 7047 TargetLowering::CallLoweringInfo CLI(DAG); 7048 CLI.setDebugLoc(getCurSDLoc()) 7049 .setChain(getRoot()) 7050 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7051 .setTailCall(isTailCall) 7052 .setConvergent(CS.isConvergent()); 7053 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7054 7055 if (Result.first.getNode()) { 7056 const Instruction *Inst = CS.getInstruction(); 7057 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7058 setValue(Inst, Result.first); 7059 } 7060 7061 // The last element of CLI.InVals has the SDValue for swifterror return. 7062 // Here we copy it to a virtual register and update SwiftErrorMap for 7063 // book-keeping. 7064 if (SwiftErrorVal && TLI.supportSwiftError()) { 7065 // Get the last element of InVals. 7066 SDValue Src = CLI.InVals.back(); 7067 unsigned VReg; bool CreatedVReg; 7068 std::tie(VReg, CreatedVReg) = 7069 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 7070 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7071 // We update the virtual register for the actual swifterror argument. 7072 if (CreatedVReg) 7073 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 7074 DAG.setRoot(CopyNode); 7075 } 7076 } 7077 7078 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7079 SelectionDAGBuilder &Builder) { 7080 // Check to see if this load can be trivially constant folded, e.g. if the 7081 // input is from a string literal. 7082 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7083 // Cast pointer to the type we really want to load. 7084 Type *LoadTy = 7085 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7086 if (LoadVT.isVector()) 7087 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7088 7089 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7090 PointerType::getUnqual(LoadTy)); 7091 7092 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7093 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7094 return Builder.getValue(LoadCst); 7095 } 7096 7097 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7098 // still constant memory, the input chain can be the entry node. 7099 SDValue Root; 7100 bool ConstantMemory = false; 7101 7102 // Do not serialize (non-volatile) loads of constant memory with anything. 7103 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7104 Root = Builder.DAG.getEntryNode(); 7105 ConstantMemory = true; 7106 } else { 7107 // Do not serialize non-volatile loads against each other. 7108 Root = Builder.DAG.getRoot(); 7109 } 7110 7111 SDValue Ptr = Builder.getValue(PtrVal); 7112 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7113 Ptr, MachinePointerInfo(PtrVal), 7114 /* Alignment = */ 1); 7115 7116 if (!ConstantMemory) 7117 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7118 return LoadVal; 7119 } 7120 7121 /// Record the value for an instruction that produces an integer result, 7122 /// converting the type where necessary. 7123 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7124 SDValue Value, 7125 bool IsSigned) { 7126 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7127 I.getType(), true); 7128 if (IsSigned) 7129 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7130 else 7131 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7132 setValue(&I, Value); 7133 } 7134 7135 /// See if we can lower a memcmp call into an optimized form. If so, return 7136 /// true and lower it. Otherwise return false, and it will be lowered like a 7137 /// normal call. 7138 /// The caller already checked that \p I calls the appropriate LibFunc with a 7139 /// correct prototype. 7140 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7141 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7142 const Value *Size = I.getArgOperand(2); 7143 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7144 if (CSize && CSize->getZExtValue() == 0) { 7145 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7146 I.getType(), true); 7147 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7148 return true; 7149 } 7150 7151 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7152 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7153 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7154 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7155 if (Res.first.getNode()) { 7156 processIntegerCallValue(I, Res.first, true); 7157 PendingLoads.push_back(Res.second); 7158 return true; 7159 } 7160 7161 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7162 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7163 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7164 return false; 7165 7166 // If the target has a fast compare for the given size, it will return a 7167 // preferred load type for that size. Require that the load VT is legal and 7168 // that the target supports unaligned loads of that type. Otherwise, return 7169 // INVALID. 7170 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7172 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7173 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7174 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7175 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7176 // TODO: Check alignment of src and dest ptrs. 7177 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7178 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7179 if (!TLI.isTypeLegal(LVT) || 7180 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7181 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7182 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7183 } 7184 7185 return LVT; 7186 }; 7187 7188 // This turns into unaligned loads. We only do this if the target natively 7189 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7190 // we'll only produce a small number of byte loads. 7191 MVT LoadVT; 7192 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7193 switch (NumBitsToCompare) { 7194 default: 7195 return false; 7196 case 16: 7197 LoadVT = MVT::i16; 7198 break; 7199 case 32: 7200 LoadVT = MVT::i32; 7201 break; 7202 case 64: 7203 case 128: 7204 case 256: 7205 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7206 break; 7207 } 7208 7209 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7210 return false; 7211 7212 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7213 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7214 7215 // Bitcast to a wide integer type if the loads are vectors. 7216 if (LoadVT.isVector()) { 7217 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7218 LoadL = DAG.getBitcast(CmpVT, LoadL); 7219 LoadR = DAG.getBitcast(CmpVT, LoadR); 7220 } 7221 7222 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7223 processIntegerCallValue(I, Cmp, false); 7224 return true; 7225 } 7226 7227 /// See if we can lower a memchr call into an optimized form. If so, return 7228 /// true and lower it. Otherwise return false, and it will be lowered like a 7229 /// normal call. 7230 /// The caller already checked that \p I calls the appropriate LibFunc with a 7231 /// correct prototype. 7232 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7233 const Value *Src = I.getArgOperand(0); 7234 const Value *Char = I.getArgOperand(1); 7235 const Value *Length = I.getArgOperand(2); 7236 7237 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7238 std::pair<SDValue, SDValue> Res = 7239 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7240 getValue(Src), getValue(Char), getValue(Length), 7241 MachinePointerInfo(Src)); 7242 if (Res.first.getNode()) { 7243 setValue(&I, Res.first); 7244 PendingLoads.push_back(Res.second); 7245 return true; 7246 } 7247 7248 return false; 7249 } 7250 7251 /// See if we can lower a mempcpy call into an optimized form. If so, return 7252 /// true and lower it. Otherwise return false, and it will be lowered like a 7253 /// normal call. 7254 /// The caller already checked that \p I calls the appropriate LibFunc with a 7255 /// correct prototype. 7256 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7257 SDValue Dst = getValue(I.getArgOperand(0)); 7258 SDValue Src = getValue(I.getArgOperand(1)); 7259 SDValue Size = getValue(I.getArgOperand(2)); 7260 7261 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7262 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7263 unsigned Align = std::min(DstAlign, SrcAlign); 7264 if (Align == 0) // Alignment of one or both could not be inferred. 7265 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7266 7267 bool isVol = false; 7268 SDLoc sdl = getCurSDLoc(); 7269 7270 // In the mempcpy context we need to pass in a false value for isTailCall 7271 // because the return pointer needs to be adjusted by the size of 7272 // the copied memory. 7273 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7274 false, /*isTailCall=*/false, 7275 MachinePointerInfo(I.getArgOperand(0)), 7276 MachinePointerInfo(I.getArgOperand(1))); 7277 assert(MC.getNode() != nullptr && 7278 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7279 DAG.setRoot(MC); 7280 7281 // Check if Size needs to be truncated or extended. 7282 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7283 7284 // Adjust return pointer to point just past the last dst byte. 7285 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7286 Dst, Size); 7287 setValue(&I, DstPlusSize); 7288 return true; 7289 } 7290 7291 /// See if we can lower a strcpy call into an optimized form. If so, return 7292 /// true and lower it, otherwise return false and it will be lowered like a 7293 /// normal call. 7294 /// The caller already checked that \p I calls the appropriate LibFunc with a 7295 /// correct prototype. 7296 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7297 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7298 7299 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7300 std::pair<SDValue, SDValue> Res = 7301 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7302 getValue(Arg0), getValue(Arg1), 7303 MachinePointerInfo(Arg0), 7304 MachinePointerInfo(Arg1), isStpcpy); 7305 if (Res.first.getNode()) { 7306 setValue(&I, Res.first); 7307 DAG.setRoot(Res.second); 7308 return true; 7309 } 7310 7311 return false; 7312 } 7313 7314 /// See if we can lower a strcmp call into an optimized form. If so, return 7315 /// true and lower it, otherwise return false and it will be lowered like a 7316 /// normal call. 7317 /// The caller already checked that \p I calls the appropriate LibFunc with a 7318 /// correct prototype. 7319 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7320 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7321 7322 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7323 std::pair<SDValue, SDValue> Res = 7324 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7325 getValue(Arg0), getValue(Arg1), 7326 MachinePointerInfo(Arg0), 7327 MachinePointerInfo(Arg1)); 7328 if (Res.first.getNode()) { 7329 processIntegerCallValue(I, Res.first, true); 7330 PendingLoads.push_back(Res.second); 7331 return true; 7332 } 7333 7334 return false; 7335 } 7336 7337 /// See if we can lower a strlen call into an optimized form. If so, return 7338 /// true and lower it, otherwise return false and it will be lowered like a 7339 /// normal call. 7340 /// The caller already checked that \p I calls the appropriate LibFunc with a 7341 /// correct prototype. 7342 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7343 const Value *Arg0 = I.getArgOperand(0); 7344 7345 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7346 std::pair<SDValue, SDValue> Res = 7347 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7348 getValue(Arg0), MachinePointerInfo(Arg0)); 7349 if (Res.first.getNode()) { 7350 processIntegerCallValue(I, Res.first, false); 7351 PendingLoads.push_back(Res.second); 7352 return true; 7353 } 7354 7355 return false; 7356 } 7357 7358 /// See if we can lower a strnlen call into an optimized form. If so, return 7359 /// true and lower it, otherwise return false and it will be lowered like a 7360 /// normal call. 7361 /// The caller already checked that \p I calls the appropriate LibFunc with a 7362 /// correct prototype. 7363 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7364 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7365 7366 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7367 std::pair<SDValue, SDValue> Res = 7368 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7369 getValue(Arg0), getValue(Arg1), 7370 MachinePointerInfo(Arg0)); 7371 if (Res.first.getNode()) { 7372 processIntegerCallValue(I, Res.first, false); 7373 PendingLoads.push_back(Res.second); 7374 return true; 7375 } 7376 7377 return false; 7378 } 7379 7380 /// See if we can lower a unary floating-point operation into an SDNode with 7381 /// the specified Opcode. If so, return true and lower it, otherwise return 7382 /// false and it will be lowered like a normal call. 7383 /// The caller already checked that \p I calls the appropriate LibFunc with a 7384 /// correct prototype. 7385 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7386 unsigned Opcode) { 7387 // We already checked this call's prototype; verify it doesn't modify errno. 7388 if (!I.onlyReadsMemory()) 7389 return false; 7390 7391 SDValue Tmp = getValue(I.getArgOperand(0)); 7392 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7393 return true; 7394 } 7395 7396 /// See if we can lower a binary floating-point operation into an SDNode with 7397 /// the specified Opcode. If so, return true and lower it. Otherwise return 7398 /// false, and it will be lowered like a normal call. 7399 /// The caller already checked that \p I calls the appropriate LibFunc with a 7400 /// correct prototype. 7401 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7402 unsigned Opcode) { 7403 // We already checked this call's prototype; verify it doesn't modify errno. 7404 if (!I.onlyReadsMemory()) 7405 return false; 7406 7407 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7408 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7409 EVT VT = Tmp0.getValueType(); 7410 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7411 return true; 7412 } 7413 7414 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7415 // Handle inline assembly differently. 7416 if (isa<InlineAsm>(I.getCalledValue())) { 7417 visitInlineAsm(&I); 7418 return; 7419 } 7420 7421 const char *RenameFn = nullptr; 7422 if (Function *F = I.getCalledFunction()) { 7423 if (F->isDeclaration()) { 7424 // Is this an LLVM intrinsic or a target-specific intrinsic? 7425 unsigned IID = F->getIntrinsicID(); 7426 if (!IID) 7427 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7428 IID = II->getIntrinsicID(F); 7429 7430 if (IID) { 7431 RenameFn = visitIntrinsicCall(I, IID); 7432 if (!RenameFn) 7433 return; 7434 } 7435 } 7436 7437 // Check for well-known libc/libm calls. If the function is internal, it 7438 // can't be a library call. Don't do the check if marked as nobuiltin for 7439 // some reason or the call site requires strict floating point semantics. 7440 LibFunc Func; 7441 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7442 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7443 LibInfo->hasOptimizedCodeGen(Func)) { 7444 switch (Func) { 7445 default: break; 7446 case LibFunc_copysign: 7447 case LibFunc_copysignf: 7448 case LibFunc_copysignl: 7449 // We already checked this call's prototype; verify it doesn't modify 7450 // errno. 7451 if (I.onlyReadsMemory()) { 7452 SDValue LHS = getValue(I.getArgOperand(0)); 7453 SDValue RHS = getValue(I.getArgOperand(1)); 7454 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7455 LHS.getValueType(), LHS, RHS)); 7456 return; 7457 } 7458 break; 7459 case LibFunc_fabs: 7460 case LibFunc_fabsf: 7461 case LibFunc_fabsl: 7462 if (visitUnaryFloatCall(I, ISD::FABS)) 7463 return; 7464 break; 7465 case LibFunc_fmin: 7466 case LibFunc_fminf: 7467 case LibFunc_fminl: 7468 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7469 return; 7470 break; 7471 case LibFunc_fmax: 7472 case LibFunc_fmaxf: 7473 case LibFunc_fmaxl: 7474 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7475 return; 7476 break; 7477 case LibFunc_sin: 7478 case LibFunc_sinf: 7479 case LibFunc_sinl: 7480 if (visitUnaryFloatCall(I, ISD::FSIN)) 7481 return; 7482 break; 7483 case LibFunc_cos: 7484 case LibFunc_cosf: 7485 case LibFunc_cosl: 7486 if (visitUnaryFloatCall(I, ISD::FCOS)) 7487 return; 7488 break; 7489 case LibFunc_sqrt: 7490 case LibFunc_sqrtf: 7491 case LibFunc_sqrtl: 7492 case LibFunc_sqrt_finite: 7493 case LibFunc_sqrtf_finite: 7494 case LibFunc_sqrtl_finite: 7495 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7496 return; 7497 break; 7498 case LibFunc_floor: 7499 case LibFunc_floorf: 7500 case LibFunc_floorl: 7501 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7502 return; 7503 break; 7504 case LibFunc_nearbyint: 7505 case LibFunc_nearbyintf: 7506 case LibFunc_nearbyintl: 7507 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7508 return; 7509 break; 7510 case LibFunc_ceil: 7511 case LibFunc_ceilf: 7512 case LibFunc_ceill: 7513 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7514 return; 7515 break; 7516 case LibFunc_rint: 7517 case LibFunc_rintf: 7518 case LibFunc_rintl: 7519 if (visitUnaryFloatCall(I, ISD::FRINT)) 7520 return; 7521 break; 7522 case LibFunc_round: 7523 case LibFunc_roundf: 7524 case LibFunc_roundl: 7525 if (visitUnaryFloatCall(I, ISD::FROUND)) 7526 return; 7527 break; 7528 case LibFunc_trunc: 7529 case LibFunc_truncf: 7530 case LibFunc_truncl: 7531 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7532 return; 7533 break; 7534 case LibFunc_log2: 7535 case LibFunc_log2f: 7536 case LibFunc_log2l: 7537 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7538 return; 7539 break; 7540 case LibFunc_exp2: 7541 case LibFunc_exp2f: 7542 case LibFunc_exp2l: 7543 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7544 return; 7545 break; 7546 case LibFunc_memcmp: 7547 if (visitMemCmpCall(I)) 7548 return; 7549 break; 7550 case LibFunc_mempcpy: 7551 if (visitMemPCpyCall(I)) 7552 return; 7553 break; 7554 case LibFunc_memchr: 7555 if (visitMemChrCall(I)) 7556 return; 7557 break; 7558 case LibFunc_strcpy: 7559 if (visitStrCpyCall(I, false)) 7560 return; 7561 break; 7562 case LibFunc_stpcpy: 7563 if (visitStrCpyCall(I, true)) 7564 return; 7565 break; 7566 case LibFunc_strcmp: 7567 if (visitStrCmpCall(I)) 7568 return; 7569 break; 7570 case LibFunc_strlen: 7571 if (visitStrLenCall(I)) 7572 return; 7573 break; 7574 case LibFunc_strnlen: 7575 if (visitStrNLenCall(I)) 7576 return; 7577 break; 7578 } 7579 } 7580 } 7581 7582 SDValue Callee; 7583 if (!RenameFn) 7584 Callee = getValue(I.getCalledValue()); 7585 else 7586 Callee = DAG.getExternalSymbol( 7587 RenameFn, 7588 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7589 7590 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7591 // have to do anything here to lower funclet bundles. 7592 assert(!I.hasOperandBundlesOtherThan( 7593 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7594 "Cannot lower calls with arbitrary operand bundles!"); 7595 7596 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7597 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7598 else 7599 // Check if we can potentially perform a tail call. More detailed checking 7600 // is be done within LowerCallTo, after more information about the call is 7601 // known. 7602 LowerCallTo(&I, Callee, I.isTailCall()); 7603 } 7604 7605 namespace { 7606 7607 /// AsmOperandInfo - This contains information for each constraint that we are 7608 /// lowering. 7609 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7610 public: 7611 /// CallOperand - If this is the result output operand or a clobber 7612 /// this is null, otherwise it is the incoming operand to the CallInst. 7613 /// This gets modified as the asm is processed. 7614 SDValue CallOperand; 7615 7616 /// AssignedRegs - If this is a register or register class operand, this 7617 /// contains the set of register corresponding to the operand. 7618 RegsForValue AssignedRegs; 7619 7620 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7621 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7622 } 7623 7624 /// Whether or not this operand accesses memory 7625 bool hasMemory(const TargetLowering &TLI) const { 7626 // Indirect operand accesses access memory. 7627 if (isIndirect) 7628 return true; 7629 7630 for (const auto &Code : Codes) 7631 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7632 return true; 7633 7634 return false; 7635 } 7636 7637 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7638 /// corresponds to. If there is no Value* for this operand, it returns 7639 /// MVT::Other. 7640 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7641 const DataLayout &DL) const { 7642 if (!CallOperandVal) return MVT::Other; 7643 7644 if (isa<BasicBlock>(CallOperandVal)) 7645 return TLI.getPointerTy(DL); 7646 7647 llvm::Type *OpTy = CallOperandVal->getType(); 7648 7649 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7650 // If this is an indirect operand, the operand is a pointer to the 7651 // accessed type. 7652 if (isIndirect) { 7653 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7654 if (!PtrTy) 7655 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7656 OpTy = PtrTy->getElementType(); 7657 } 7658 7659 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7660 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7661 if (STy->getNumElements() == 1) 7662 OpTy = STy->getElementType(0); 7663 7664 // If OpTy is not a single value, it may be a struct/union that we 7665 // can tile with integers. 7666 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7667 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7668 switch (BitSize) { 7669 default: break; 7670 case 1: 7671 case 8: 7672 case 16: 7673 case 32: 7674 case 64: 7675 case 128: 7676 OpTy = IntegerType::get(Context, BitSize); 7677 break; 7678 } 7679 } 7680 7681 return TLI.getValueType(DL, OpTy, true); 7682 } 7683 }; 7684 7685 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7686 7687 } // end anonymous namespace 7688 7689 /// Make sure that the output operand \p OpInfo and its corresponding input 7690 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7691 /// out). 7692 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7693 SDISelAsmOperandInfo &MatchingOpInfo, 7694 SelectionDAG &DAG) { 7695 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7696 return; 7697 7698 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7699 const auto &TLI = DAG.getTargetLoweringInfo(); 7700 7701 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7702 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7703 OpInfo.ConstraintVT); 7704 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7705 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7706 MatchingOpInfo.ConstraintVT); 7707 if ((OpInfo.ConstraintVT.isInteger() != 7708 MatchingOpInfo.ConstraintVT.isInteger()) || 7709 (MatchRC.second != InputRC.second)) { 7710 // FIXME: error out in a more elegant fashion 7711 report_fatal_error("Unsupported asm: input constraint" 7712 " with a matching output constraint of" 7713 " incompatible type!"); 7714 } 7715 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7716 } 7717 7718 /// Get a direct memory input to behave well as an indirect operand. 7719 /// This may introduce stores, hence the need for a \p Chain. 7720 /// \return The (possibly updated) chain. 7721 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7722 SDISelAsmOperandInfo &OpInfo, 7723 SelectionDAG &DAG) { 7724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7725 7726 // If we don't have an indirect input, put it in the constpool if we can, 7727 // otherwise spill it to a stack slot. 7728 // TODO: This isn't quite right. We need to handle these according to 7729 // the addressing mode that the constraint wants. Also, this may take 7730 // an additional register for the computation and we don't want that 7731 // either. 7732 7733 // If the operand is a float, integer, or vector constant, spill to a 7734 // constant pool entry to get its address. 7735 const Value *OpVal = OpInfo.CallOperandVal; 7736 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7737 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7738 OpInfo.CallOperand = DAG.getConstantPool( 7739 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7740 return Chain; 7741 } 7742 7743 // Otherwise, create a stack slot and emit a store to it before the asm. 7744 Type *Ty = OpVal->getType(); 7745 auto &DL = DAG.getDataLayout(); 7746 uint64_t TySize = DL.getTypeAllocSize(Ty); 7747 unsigned Align = DL.getPrefTypeAlignment(Ty); 7748 MachineFunction &MF = DAG.getMachineFunction(); 7749 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7750 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7751 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7752 MachinePointerInfo::getFixedStack(MF, SSFI), 7753 TLI.getMemValueType(DL, Ty)); 7754 OpInfo.CallOperand = StackSlot; 7755 7756 return Chain; 7757 } 7758 7759 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7760 /// specified operand. We prefer to assign virtual registers, to allow the 7761 /// register allocator to handle the assignment process. However, if the asm 7762 /// uses features that we can't model on machineinstrs, we have SDISel do the 7763 /// allocation. This produces generally horrible, but correct, code. 7764 /// 7765 /// OpInfo describes the operand 7766 /// RefOpInfo describes the matching operand if any, the operand otherwise 7767 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7768 SDISelAsmOperandInfo &OpInfo, 7769 SDISelAsmOperandInfo &RefOpInfo) { 7770 LLVMContext &Context = *DAG.getContext(); 7771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7772 7773 MachineFunction &MF = DAG.getMachineFunction(); 7774 SmallVector<unsigned, 4> Regs; 7775 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7776 7777 // No work to do for memory operations. 7778 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7779 return; 7780 7781 // If this is a constraint for a single physreg, or a constraint for a 7782 // register class, find it. 7783 unsigned AssignedReg; 7784 const TargetRegisterClass *RC; 7785 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7786 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7787 // RC is unset only on failure. Return immediately. 7788 if (!RC) 7789 return; 7790 7791 // Get the actual register value type. This is important, because the user 7792 // may have asked for (e.g.) the AX register in i32 type. We need to 7793 // remember that AX is actually i16 to get the right extension. 7794 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7795 7796 if (OpInfo.ConstraintVT != MVT::Other) { 7797 // If this is an FP operand in an integer register (or visa versa), or more 7798 // generally if the operand value disagrees with the register class we plan 7799 // to stick it in, fix the operand type. 7800 // 7801 // If this is an input value, the bitcast to the new type is done now. 7802 // Bitcast for output value is done at the end of visitInlineAsm(). 7803 if ((OpInfo.Type == InlineAsm::isOutput || 7804 OpInfo.Type == InlineAsm::isInput) && 7805 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7806 // Try to convert to the first EVT that the reg class contains. If the 7807 // types are identical size, use a bitcast to convert (e.g. two differing 7808 // vector types). Note: output bitcast is done at the end of 7809 // visitInlineAsm(). 7810 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7811 // Exclude indirect inputs while they are unsupported because the code 7812 // to perform the load is missing and thus OpInfo.CallOperand still 7813 // refers to the input address rather than the pointed-to value. 7814 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7815 OpInfo.CallOperand = 7816 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7817 OpInfo.ConstraintVT = RegVT; 7818 // If the operand is an FP value and we want it in integer registers, 7819 // use the corresponding integer type. This turns an f64 value into 7820 // i64, which can be passed with two i32 values on a 32-bit machine. 7821 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7822 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7823 if (OpInfo.Type == InlineAsm::isInput) 7824 OpInfo.CallOperand = 7825 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7826 OpInfo.ConstraintVT = VT; 7827 } 7828 } 7829 } 7830 7831 // No need to allocate a matching input constraint since the constraint it's 7832 // matching to has already been allocated. 7833 if (OpInfo.isMatchingInputConstraint()) 7834 return; 7835 7836 EVT ValueVT = OpInfo.ConstraintVT; 7837 if (OpInfo.ConstraintVT == MVT::Other) 7838 ValueVT = RegVT; 7839 7840 // Initialize NumRegs. 7841 unsigned NumRegs = 1; 7842 if (OpInfo.ConstraintVT != MVT::Other) 7843 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7844 7845 // If this is a constraint for a specific physical register, like {r17}, 7846 // assign it now. 7847 7848 // If this associated to a specific register, initialize iterator to correct 7849 // place. If virtual, make sure we have enough registers 7850 7851 // Initialize iterator if necessary 7852 TargetRegisterClass::iterator I = RC->begin(); 7853 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7854 7855 // Do not check for single registers. 7856 if (AssignedReg) { 7857 for (; *I != AssignedReg; ++I) 7858 assert(I != RC->end() && "AssignedReg should be member of RC"); 7859 } 7860 7861 for (; NumRegs; --NumRegs, ++I) { 7862 assert(I != RC->end() && "Ran out of registers to allocate!"); 7863 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7864 Regs.push_back(R); 7865 } 7866 7867 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7868 } 7869 7870 static unsigned 7871 findMatchingInlineAsmOperand(unsigned OperandNo, 7872 const std::vector<SDValue> &AsmNodeOperands) { 7873 // Scan until we find the definition we already emitted of this operand. 7874 unsigned CurOp = InlineAsm::Op_FirstOperand; 7875 for (; OperandNo; --OperandNo) { 7876 // Advance to the next operand. 7877 unsigned OpFlag = 7878 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7879 assert((InlineAsm::isRegDefKind(OpFlag) || 7880 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7881 InlineAsm::isMemKind(OpFlag)) && 7882 "Skipped past definitions?"); 7883 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7884 } 7885 return CurOp; 7886 } 7887 7888 namespace { 7889 7890 class ExtraFlags { 7891 unsigned Flags = 0; 7892 7893 public: 7894 explicit ExtraFlags(ImmutableCallSite CS) { 7895 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7896 if (IA->hasSideEffects()) 7897 Flags |= InlineAsm::Extra_HasSideEffects; 7898 if (IA->isAlignStack()) 7899 Flags |= InlineAsm::Extra_IsAlignStack; 7900 if (CS.isConvergent()) 7901 Flags |= InlineAsm::Extra_IsConvergent; 7902 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7903 } 7904 7905 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7906 // Ideally, we would only check against memory constraints. However, the 7907 // meaning of an Other constraint can be target-specific and we can't easily 7908 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7909 // for Other constraints as well. 7910 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7911 OpInfo.ConstraintType == TargetLowering::C_Other) { 7912 if (OpInfo.Type == InlineAsm::isInput) 7913 Flags |= InlineAsm::Extra_MayLoad; 7914 else if (OpInfo.Type == InlineAsm::isOutput) 7915 Flags |= InlineAsm::Extra_MayStore; 7916 else if (OpInfo.Type == InlineAsm::isClobber) 7917 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7918 } 7919 } 7920 7921 unsigned get() const { return Flags; } 7922 }; 7923 7924 } // end anonymous namespace 7925 7926 /// visitInlineAsm - Handle a call to an InlineAsm object. 7927 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7928 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7929 7930 /// ConstraintOperands - Information about all of the constraints. 7931 SDISelAsmOperandInfoVector ConstraintOperands; 7932 7933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7934 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7935 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7936 7937 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7938 // AsmDialect, MayLoad, MayStore). 7939 bool HasSideEffect = IA->hasSideEffects(); 7940 ExtraFlags ExtraInfo(CS); 7941 7942 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7943 unsigned ResNo = 0; // ResNo - The result number of the next output. 7944 for (auto &T : TargetConstraints) { 7945 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7946 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7947 7948 // Compute the value type for each operand. 7949 if (OpInfo.Type == InlineAsm::isInput || 7950 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7951 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7952 7953 // Process the call argument. BasicBlocks are labels, currently appearing 7954 // only in asm's. 7955 const Instruction *I = CS.getInstruction(); 7956 if (isa<CallBrInst>(I) && 7957 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7958 cast<CallBrInst>(I)->getNumIndirectDests())) { 7959 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7960 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7961 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7962 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7963 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7964 } else { 7965 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7966 } 7967 7968 OpInfo.ConstraintVT = 7969 OpInfo 7970 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7971 .getSimpleVT(); 7972 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7973 // The return value of the call is this value. As such, there is no 7974 // corresponding argument. 7975 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7976 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7977 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7978 DAG.getDataLayout(), STy->getElementType(ResNo)); 7979 } else { 7980 assert(ResNo == 0 && "Asm only has one result!"); 7981 OpInfo.ConstraintVT = 7982 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7983 } 7984 ++ResNo; 7985 } else { 7986 OpInfo.ConstraintVT = MVT::Other; 7987 } 7988 7989 if (!HasSideEffect) 7990 HasSideEffect = OpInfo.hasMemory(TLI); 7991 7992 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7993 // FIXME: Could we compute this on OpInfo rather than T? 7994 7995 // Compute the constraint code and ConstraintType to use. 7996 TLI.ComputeConstraintToUse(T, SDValue()); 7997 7998 ExtraInfo.update(T); 7999 } 8000 8001 // We won't need to flush pending loads if this asm doesn't touch 8002 // memory and is nonvolatile. 8003 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8004 8005 // Second pass over the constraints: compute which constraint option to use. 8006 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8007 // If this is an output operand with a matching input operand, look up the 8008 // matching input. If their types mismatch, e.g. one is an integer, the 8009 // other is floating point, or their sizes are different, flag it as an 8010 // error. 8011 if (OpInfo.hasMatchingInput()) { 8012 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8013 patchMatchingInput(OpInfo, Input, DAG); 8014 } 8015 8016 // Compute the constraint code and ConstraintType to use. 8017 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8018 8019 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8020 OpInfo.Type == InlineAsm::isClobber) 8021 continue; 8022 8023 // If this is a memory input, and if the operand is not indirect, do what we 8024 // need to provide an address for the memory input. 8025 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8026 !OpInfo.isIndirect) { 8027 assert((OpInfo.isMultipleAlternative || 8028 (OpInfo.Type == InlineAsm::isInput)) && 8029 "Can only indirectify direct input operands!"); 8030 8031 // Memory operands really want the address of the value. 8032 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8033 8034 // There is no longer a Value* corresponding to this operand. 8035 OpInfo.CallOperandVal = nullptr; 8036 8037 // It is now an indirect operand. 8038 OpInfo.isIndirect = true; 8039 } 8040 8041 } 8042 8043 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8044 std::vector<SDValue> AsmNodeOperands; 8045 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8046 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8047 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8048 8049 // If we have a !srcloc metadata node associated with it, we want to attach 8050 // this to the ultimately generated inline asm machineinstr. To do this, we 8051 // pass in the third operand as this (potentially null) inline asm MDNode. 8052 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8053 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8054 8055 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8056 // bits as operand 3. 8057 AsmNodeOperands.push_back(DAG.getTargetConstant( 8058 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8059 8060 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8061 // this, assign virtual and physical registers for inputs and otput. 8062 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8063 // Assign Registers. 8064 SDISelAsmOperandInfo &RefOpInfo = 8065 OpInfo.isMatchingInputConstraint() 8066 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8067 : OpInfo; 8068 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8069 8070 switch (OpInfo.Type) { 8071 case InlineAsm::isOutput: 8072 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8073 (OpInfo.ConstraintType == TargetLowering::C_Other && 8074 OpInfo.isIndirect)) { 8075 unsigned ConstraintID = 8076 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8077 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8078 "Failed to convert memory constraint code to constraint id."); 8079 8080 // Add information to the INLINEASM node to know about this output. 8081 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8082 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8083 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8084 MVT::i32)); 8085 AsmNodeOperands.push_back(OpInfo.CallOperand); 8086 break; 8087 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8088 !OpInfo.isIndirect) || 8089 OpInfo.ConstraintType == TargetLowering::C_Register || 8090 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8091 // Otherwise, this outputs to a register (directly for C_Register / 8092 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8093 // register that we can use. 8094 if (OpInfo.AssignedRegs.Regs.empty()) { 8095 emitInlineAsmError( 8096 CS, "couldn't allocate output register for constraint '" + 8097 Twine(OpInfo.ConstraintCode) + "'"); 8098 return; 8099 } 8100 8101 // Add information to the INLINEASM node to know that this register is 8102 // set. 8103 OpInfo.AssignedRegs.AddInlineAsmOperands( 8104 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8105 : InlineAsm::Kind_RegDef, 8106 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8107 } 8108 break; 8109 8110 case InlineAsm::isInput: { 8111 SDValue InOperandVal = OpInfo.CallOperand; 8112 8113 if (OpInfo.isMatchingInputConstraint()) { 8114 // If this is required to match an output register we have already set, 8115 // just use its register. 8116 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8117 AsmNodeOperands); 8118 unsigned OpFlag = 8119 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8120 if (InlineAsm::isRegDefKind(OpFlag) || 8121 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8122 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8123 if (OpInfo.isIndirect) { 8124 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8125 emitInlineAsmError(CS, "inline asm not supported yet:" 8126 " don't know how to handle tied " 8127 "indirect register inputs"); 8128 return; 8129 } 8130 8131 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8132 SmallVector<unsigned, 4> Regs; 8133 8134 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8135 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8136 MachineRegisterInfo &RegInfo = 8137 DAG.getMachineFunction().getRegInfo(); 8138 for (unsigned i = 0; i != NumRegs; ++i) 8139 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8140 } else { 8141 emitInlineAsmError(CS, "inline asm error: This value type register " 8142 "class is not natively supported!"); 8143 return; 8144 } 8145 8146 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8147 8148 SDLoc dl = getCurSDLoc(); 8149 // Use the produced MatchedRegs object to 8150 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8151 CS.getInstruction()); 8152 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8153 true, OpInfo.getMatchedOperand(), dl, 8154 DAG, AsmNodeOperands); 8155 break; 8156 } 8157 8158 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8159 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8160 "Unexpected number of operands"); 8161 // Add information to the INLINEASM node to know about this input. 8162 // See InlineAsm.h isUseOperandTiedToDef. 8163 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8164 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8165 OpInfo.getMatchedOperand()); 8166 AsmNodeOperands.push_back(DAG.getTargetConstant( 8167 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8168 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8169 break; 8170 } 8171 8172 // Treat indirect 'X' constraint as memory. 8173 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8174 OpInfo.isIndirect) 8175 OpInfo.ConstraintType = TargetLowering::C_Memory; 8176 8177 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8178 std::vector<SDValue> Ops; 8179 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8180 Ops, DAG); 8181 if (Ops.empty()) { 8182 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8183 Twine(OpInfo.ConstraintCode) + "'"); 8184 return; 8185 } 8186 8187 // Add information to the INLINEASM node to know about this input. 8188 unsigned ResOpType = 8189 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8190 AsmNodeOperands.push_back(DAG.getTargetConstant( 8191 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8192 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8193 break; 8194 } 8195 8196 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8197 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8198 assert(InOperandVal.getValueType() == 8199 TLI.getPointerTy(DAG.getDataLayout()) && 8200 "Memory operands expect pointer values"); 8201 8202 unsigned ConstraintID = 8203 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8204 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8205 "Failed to convert memory constraint code to constraint id."); 8206 8207 // Add information to the INLINEASM node to know about this input. 8208 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8209 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8210 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8211 getCurSDLoc(), 8212 MVT::i32)); 8213 AsmNodeOperands.push_back(InOperandVal); 8214 break; 8215 } 8216 8217 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8218 OpInfo.ConstraintType == TargetLowering::C_Register) && 8219 "Unknown constraint type!"); 8220 8221 // TODO: Support this. 8222 if (OpInfo.isIndirect) { 8223 emitInlineAsmError( 8224 CS, "Don't know how to handle indirect register inputs yet " 8225 "for constraint '" + 8226 Twine(OpInfo.ConstraintCode) + "'"); 8227 return; 8228 } 8229 8230 // Copy the input into the appropriate registers. 8231 if (OpInfo.AssignedRegs.Regs.empty()) { 8232 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8233 Twine(OpInfo.ConstraintCode) + "'"); 8234 return; 8235 } 8236 8237 SDLoc dl = getCurSDLoc(); 8238 8239 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8240 Chain, &Flag, CS.getInstruction()); 8241 8242 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8243 dl, DAG, AsmNodeOperands); 8244 break; 8245 } 8246 case InlineAsm::isClobber: 8247 // Add the clobbered value to the operand list, so that the register 8248 // allocator is aware that the physreg got clobbered. 8249 if (!OpInfo.AssignedRegs.Regs.empty()) 8250 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8251 false, 0, getCurSDLoc(), DAG, 8252 AsmNodeOperands); 8253 break; 8254 } 8255 } 8256 8257 // Finish up input operands. Set the input chain and add the flag last. 8258 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8259 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8260 8261 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR 8262 : ISD::INLINEASM; 8263 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8264 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8265 Flag = Chain.getValue(1); 8266 8267 // Do additional work to generate outputs. 8268 8269 SmallVector<EVT, 1> ResultVTs; 8270 SmallVector<SDValue, 1> ResultValues; 8271 SmallVector<SDValue, 8> OutChains; 8272 8273 llvm::Type *CSResultType = CS.getType(); 8274 ArrayRef<Type *> ResultTypes; 8275 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8276 ResultTypes = StructResult->elements(); 8277 else if (!CSResultType->isVoidTy()) 8278 ResultTypes = makeArrayRef(CSResultType); 8279 8280 auto CurResultType = ResultTypes.begin(); 8281 auto handleRegAssign = [&](SDValue V) { 8282 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8283 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8284 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8285 ++CurResultType; 8286 // If the type of the inline asm call site return value is different but has 8287 // same size as the type of the asm output bitcast it. One example of this 8288 // is for vectors with different width / number of elements. This can 8289 // happen for register classes that can contain multiple different value 8290 // types. The preg or vreg allocated may not have the same VT as was 8291 // expected. 8292 // 8293 // This can also happen for a return value that disagrees with the register 8294 // class it is put in, eg. a double in a general-purpose register on a 8295 // 32-bit machine. 8296 if (ResultVT != V.getValueType() && 8297 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8298 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8299 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8300 V.getValueType().isInteger()) { 8301 // If a result value was tied to an input value, the computed result 8302 // may have a wider width than the expected result. Extract the 8303 // relevant portion. 8304 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8305 } 8306 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8307 ResultVTs.push_back(ResultVT); 8308 ResultValues.push_back(V); 8309 }; 8310 8311 // Deal with output operands. 8312 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8313 if (OpInfo.Type == InlineAsm::isOutput) { 8314 SDValue Val; 8315 // Skip trivial output operands. 8316 if (OpInfo.AssignedRegs.Regs.empty()) 8317 continue; 8318 8319 switch (OpInfo.ConstraintType) { 8320 case TargetLowering::C_Register: 8321 case TargetLowering::C_RegisterClass: 8322 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8323 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8324 break; 8325 case TargetLowering::C_Other: 8326 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8327 OpInfo, DAG); 8328 break; 8329 case TargetLowering::C_Memory: 8330 break; // Already handled. 8331 case TargetLowering::C_Unknown: 8332 assert(false && "Unexpected unknown constraint"); 8333 } 8334 8335 // Indirect output manifest as stores. Record output chains. 8336 if (OpInfo.isIndirect) { 8337 const Value *Ptr = OpInfo.CallOperandVal; 8338 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8339 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8340 MachinePointerInfo(Ptr)); 8341 OutChains.push_back(Store); 8342 } else { 8343 // generate CopyFromRegs to associated registers. 8344 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8345 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8346 for (const SDValue &V : Val->op_values()) 8347 handleRegAssign(V); 8348 } else 8349 handleRegAssign(Val); 8350 } 8351 } 8352 } 8353 8354 // Set results. 8355 if (!ResultValues.empty()) { 8356 assert(CurResultType == ResultTypes.end() && 8357 "Mismatch in number of ResultTypes"); 8358 assert(ResultValues.size() == ResultTypes.size() && 8359 "Mismatch in number of output operands in asm result"); 8360 8361 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8362 DAG.getVTList(ResultVTs), ResultValues); 8363 setValue(CS.getInstruction(), V); 8364 } 8365 8366 // Collect store chains. 8367 if (!OutChains.empty()) 8368 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8369 8370 // Only Update Root if inline assembly has a memory effect. 8371 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8372 DAG.setRoot(Chain); 8373 } 8374 8375 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8376 const Twine &Message) { 8377 LLVMContext &Ctx = *DAG.getContext(); 8378 Ctx.emitError(CS.getInstruction(), Message); 8379 8380 // Make sure we leave the DAG in a valid state 8381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8382 SmallVector<EVT, 1> ValueVTs; 8383 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8384 8385 if (ValueVTs.empty()) 8386 return; 8387 8388 SmallVector<SDValue, 1> Ops; 8389 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8390 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8391 8392 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8393 } 8394 8395 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8396 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8397 MVT::Other, getRoot(), 8398 getValue(I.getArgOperand(0)), 8399 DAG.getSrcValue(I.getArgOperand(0)))); 8400 } 8401 8402 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8404 const DataLayout &DL = DAG.getDataLayout(); 8405 SDValue V = DAG.getVAArg( 8406 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8407 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8408 DL.getABITypeAlignment(I.getType())); 8409 DAG.setRoot(V.getValue(1)); 8410 8411 if (I.getType()->isPointerTy()) 8412 V = DAG.getPtrExtOrTrunc( 8413 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8414 setValue(&I, V); 8415 } 8416 8417 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8418 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8419 MVT::Other, getRoot(), 8420 getValue(I.getArgOperand(0)), 8421 DAG.getSrcValue(I.getArgOperand(0)))); 8422 } 8423 8424 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8425 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8426 MVT::Other, getRoot(), 8427 getValue(I.getArgOperand(0)), 8428 getValue(I.getArgOperand(1)), 8429 DAG.getSrcValue(I.getArgOperand(0)), 8430 DAG.getSrcValue(I.getArgOperand(1)))); 8431 } 8432 8433 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8434 const Instruction &I, 8435 SDValue Op) { 8436 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8437 if (!Range) 8438 return Op; 8439 8440 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8441 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8442 return Op; 8443 8444 APInt Lo = CR.getUnsignedMin(); 8445 if (!Lo.isMinValue()) 8446 return Op; 8447 8448 APInt Hi = CR.getUnsignedMax(); 8449 unsigned Bits = std::max(Hi.getActiveBits(), 8450 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8451 8452 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8453 8454 SDLoc SL = getCurSDLoc(); 8455 8456 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8457 DAG.getValueType(SmallVT)); 8458 unsigned NumVals = Op.getNode()->getNumValues(); 8459 if (NumVals == 1) 8460 return ZExt; 8461 8462 SmallVector<SDValue, 4> Ops; 8463 8464 Ops.push_back(ZExt); 8465 for (unsigned I = 1; I != NumVals; ++I) 8466 Ops.push_back(Op.getValue(I)); 8467 8468 return DAG.getMergeValues(Ops, SL); 8469 } 8470 8471 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8472 /// the call being lowered. 8473 /// 8474 /// This is a helper for lowering intrinsics that follow a target calling 8475 /// convention or require stack pointer adjustment. Only a subset of the 8476 /// intrinsic's operands need to participate in the calling convention. 8477 void SelectionDAGBuilder::populateCallLoweringInfo( 8478 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8479 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8480 bool IsPatchPoint) { 8481 TargetLowering::ArgListTy Args; 8482 Args.reserve(NumArgs); 8483 8484 // Populate the argument list. 8485 // Attributes for args start at offset 1, after the return attribute. 8486 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8487 ArgI != ArgE; ++ArgI) { 8488 const Value *V = Call->getOperand(ArgI); 8489 8490 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8491 8492 TargetLowering::ArgListEntry Entry; 8493 Entry.Node = getValue(V); 8494 Entry.Ty = V->getType(); 8495 Entry.setAttributes(Call, ArgI); 8496 Args.push_back(Entry); 8497 } 8498 8499 CLI.setDebugLoc(getCurSDLoc()) 8500 .setChain(getRoot()) 8501 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8502 .setDiscardResult(Call->use_empty()) 8503 .setIsPatchPoint(IsPatchPoint); 8504 } 8505 8506 /// Add a stack map intrinsic call's live variable operands to a stackmap 8507 /// or patchpoint target node's operand list. 8508 /// 8509 /// Constants are converted to TargetConstants purely as an optimization to 8510 /// avoid constant materialization and register allocation. 8511 /// 8512 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8513 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8514 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8515 /// address materialization and register allocation, but may also be required 8516 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8517 /// alloca in the entry block, then the runtime may assume that the alloca's 8518 /// StackMap location can be read immediately after compilation and that the 8519 /// location is valid at any point during execution (this is similar to the 8520 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8521 /// only available in a register, then the runtime would need to trap when 8522 /// execution reaches the StackMap in order to read the alloca's location. 8523 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8524 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8525 SelectionDAGBuilder &Builder) { 8526 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8527 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8528 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8529 Ops.push_back( 8530 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8531 Ops.push_back( 8532 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8533 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8534 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8535 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8536 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8537 } else 8538 Ops.push_back(OpVal); 8539 } 8540 } 8541 8542 /// Lower llvm.experimental.stackmap directly to its target opcode. 8543 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8544 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8545 // [live variables...]) 8546 8547 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8548 8549 SDValue Chain, InFlag, Callee, NullPtr; 8550 SmallVector<SDValue, 32> Ops; 8551 8552 SDLoc DL = getCurSDLoc(); 8553 Callee = getValue(CI.getCalledValue()); 8554 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8555 8556 // The stackmap intrinsic only records the live variables (the arguemnts 8557 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8558 // intrinsic, this won't be lowered to a function call. This means we don't 8559 // have to worry about calling conventions and target specific lowering code. 8560 // Instead we perform the call lowering right here. 8561 // 8562 // chain, flag = CALLSEQ_START(chain, 0, 0) 8563 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8564 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8565 // 8566 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8567 InFlag = Chain.getValue(1); 8568 8569 // Add the <id> and <numBytes> constants. 8570 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8571 Ops.push_back(DAG.getTargetConstant( 8572 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8573 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8574 Ops.push_back(DAG.getTargetConstant( 8575 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8576 MVT::i32)); 8577 8578 // Push live variables for the stack map. 8579 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8580 8581 // We are not pushing any register mask info here on the operands list, 8582 // because the stackmap doesn't clobber anything. 8583 8584 // Push the chain and the glue flag. 8585 Ops.push_back(Chain); 8586 Ops.push_back(InFlag); 8587 8588 // Create the STACKMAP node. 8589 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8590 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8591 Chain = SDValue(SM, 0); 8592 InFlag = Chain.getValue(1); 8593 8594 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8595 8596 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8597 8598 // Set the root to the target-lowered call chain. 8599 DAG.setRoot(Chain); 8600 8601 // Inform the Frame Information that we have a stackmap in this function. 8602 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8603 } 8604 8605 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8606 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8607 const BasicBlock *EHPadBB) { 8608 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8609 // i32 <numBytes>, 8610 // i8* <target>, 8611 // i32 <numArgs>, 8612 // [Args...], 8613 // [live variables...]) 8614 8615 CallingConv::ID CC = CS.getCallingConv(); 8616 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8617 bool HasDef = !CS->getType()->isVoidTy(); 8618 SDLoc dl = getCurSDLoc(); 8619 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8620 8621 // Handle immediate and symbolic callees. 8622 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8623 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8624 /*isTarget=*/true); 8625 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8626 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8627 SDLoc(SymbolicCallee), 8628 SymbolicCallee->getValueType(0)); 8629 8630 // Get the real number of arguments participating in the call <numArgs> 8631 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8632 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8633 8634 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8635 // Intrinsics include all meta-operands up to but not including CC. 8636 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8637 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8638 "Not enough arguments provided to the patchpoint intrinsic"); 8639 8640 // For AnyRegCC the arguments are lowered later on manually. 8641 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8642 Type *ReturnTy = 8643 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8644 8645 TargetLowering::CallLoweringInfo CLI(DAG); 8646 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8647 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8648 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8649 8650 SDNode *CallEnd = Result.second.getNode(); 8651 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8652 CallEnd = CallEnd->getOperand(0).getNode(); 8653 8654 /// Get a call instruction from the call sequence chain. 8655 /// Tail calls are not allowed. 8656 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8657 "Expected a callseq node."); 8658 SDNode *Call = CallEnd->getOperand(0).getNode(); 8659 bool HasGlue = Call->getGluedNode(); 8660 8661 // Replace the target specific call node with the patchable intrinsic. 8662 SmallVector<SDValue, 8> Ops; 8663 8664 // Add the <id> and <numBytes> constants. 8665 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8666 Ops.push_back(DAG.getTargetConstant( 8667 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8668 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8669 Ops.push_back(DAG.getTargetConstant( 8670 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8671 MVT::i32)); 8672 8673 // Add the callee. 8674 Ops.push_back(Callee); 8675 8676 // Adjust <numArgs> to account for any arguments that have been passed on the 8677 // stack instead. 8678 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8679 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8680 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8681 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8682 8683 // Add the calling convention 8684 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8685 8686 // Add the arguments we omitted previously. The register allocator should 8687 // place these in any free register. 8688 if (IsAnyRegCC) 8689 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8690 Ops.push_back(getValue(CS.getArgument(i))); 8691 8692 // Push the arguments from the call instruction up to the register mask. 8693 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8694 Ops.append(Call->op_begin() + 2, e); 8695 8696 // Push live variables for the stack map. 8697 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8698 8699 // Push the register mask info. 8700 if (HasGlue) 8701 Ops.push_back(*(Call->op_end()-2)); 8702 else 8703 Ops.push_back(*(Call->op_end()-1)); 8704 8705 // Push the chain (this is originally the first operand of the call, but 8706 // becomes now the last or second to last operand). 8707 Ops.push_back(*(Call->op_begin())); 8708 8709 // Push the glue flag (last operand). 8710 if (HasGlue) 8711 Ops.push_back(*(Call->op_end()-1)); 8712 8713 SDVTList NodeTys; 8714 if (IsAnyRegCC && HasDef) { 8715 // Create the return types based on the intrinsic definition 8716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8717 SmallVector<EVT, 3> ValueVTs; 8718 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8719 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8720 8721 // There is always a chain and a glue type at the end 8722 ValueVTs.push_back(MVT::Other); 8723 ValueVTs.push_back(MVT::Glue); 8724 NodeTys = DAG.getVTList(ValueVTs); 8725 } else 8726 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8727 8728 // Replace the target specific call node with a PATCHPOINT node. 8729 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8730 dl, NodeTys, Ops); 8731 8732 // Update the NodeMap. 8733 if (HasDef) { 8734 if (IsAnyRegCC) 8735 setValue(CS.getInstruction(), SDValue(MN, 0)); 8736 else 8737 setValue(CS.getInstruction(), Result.first); 8738 } 8739 8740 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8741 // call sequence. Furthermore the location of the chain and glue can change 8742 // when the AnyReg calling convention is used and the intrinsic returns a 8743 // value. 8744 if (IsAnyRegCC && HasDef) { 8745 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8746 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8747 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8748 } else 8749 DAG.ReplaceAllUsesWith(Call, MN); 8750 DAG.DeleteNode(Call); 8751 8752 // Inform the Frame Information that we have a patchpoint in this function. 8753 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8754 } 8755 8756 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8757 unsigned Intrinsic) { 8758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8759 SDValue Op1 = getValue(I.getArgOperand(0)); 8760 SDValue Op2; 8761 if (I.getNumArgOperands() > 1) 8762 Op2 = getValue(I.getArgOperand(1)); 8763 SDLoc dl = getCurSDLoc(); 8764 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8765 SDValue Res; 8766 FastMathFlags FMF; 8767 if (isa<FPMathOperator>(I)) 8768 FMF = I.getFastMathFlags(); 8769 8770 switch (Intrinsic) { 8771 case Intrinsic::experimental_vector_reduce_fadd: 8772 if (FMF.isFast()) 8773 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8774 else 8775 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8776 break; 8777 case Intrinsic::experimental_vector_reduce_fmul: 8778 if (FMF.isFast()) 8779 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8780 else 8781 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8782 break; 8783 case Intrinsic::experimental_vector_reduce_add: 8784 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8785 break; 8786 case Intrinsic::experimental_vector_reduce_mul: 8787 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8788 break; 8789 case Intrinsic::experimental_vector_reduce_and: 8790 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8791 break; 8792 case Intrinsic::experimental_vector_reduce_or: 8793 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8794 break; 8795 case Intrinsic::experimental_vector_reduce_xor: 8796 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8797 break; 8798 case Intrinsic::experimental_vector_reduce_smax: 8799 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8800 break; 8801 case Intrinsic::experimental_vector_reduce_smin: 8802 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8803 break; 8804 case Intrinsic::experimental_vector_reduce_umax: 8805 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8806 break; 8807 case Intrinsic::experimental_vector_reduce_umin: 8808 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8809 break; 8810 case Intrinsic::experimental_vector_reduce_fmax: 8811 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8812 break; 8813 case Intrinsic::experimental_vector_reduce_fmin: 8814 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8815 break; 8816 default: 8817 llvm_unreachable("Unhandled vector reduce intrinsic"); 8818 } 8819 setValue(&I, Res); 8820 } 8821 8822 /// Returns an AttributeList representing the attributes applied to the return 8823 /// value of the given call. 8824 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8825 SmallVector<Attribute::AttrKind, 2> Attrs; 8826 if (CLI.RetSExt) 8827 Attrs.push_back(Attribute::SExt); 8828 if (CLI.RetZExt) 8829 Attrs.push_back(Attribute::ZExt); 8830 if (CLI.IsInReg) 8831 Attrs.push_back(Attribute::InReg); 8832 8833 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8834 Attrs); 8835 } 8836 8837 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8838 /// implementation, which just calls LowerCall. 8839 /// FIXME: When all targets are 8840 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8841 std::pair<SDValue, SDValue> 8842 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8843 // Handle the incoming return values from the call. 8844 CLI.Ins.clear(); 8845 Type *OrigRetTy = CLI.RetTy; 8846 SmallVector<EVT, 4> RetTys; 8847 SmallVector<uint64_t, 4> Offsets; 8848 auto &DL = CLI.DAG.getDataLayout(); 8849 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8850 8851 if (CLI.IsPostTypeLegalization) { 8852 // If we are lowering a libcall after legalization, split the return type. 8853 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8854 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8855 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8856 EVT RetVT = OldRetTys[i]; 8857 uint64_t Offset = OldOffsets[i]; 8858 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8859 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8860 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8861 RetTys.append(NumRegs, RegisterVT); 8862 for (unsigned j = 0; j != NumRegs; ++j) 8863 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8864 } 8865 } 8866 8867 SmallVector<ISD::OutputArg, 4> Outs; 8868 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8869 8870 bool CanLowerReturn = 8871 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8872 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8873 8874 SDValue DemoteStackSlot; 8875 int DemoteStackIdx = -100; 8876 if (!CanLowerReturn) { 8877 // FIXME: equivalent assert? 8878 // assert(!CS.hasInAllocaArgument() && 8879 // "sret demotion is incompatible with inalloca"); 8880 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8881 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8882 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8883 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8884 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8885 DL.getAllocaAddrSpace()); 8886 8887 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8888 ArgListEntry Entry; 8889 Entry.Node = DemoteStackSlot; 8890 Entry.Ty = StackSlotPtrType; 8891 Entry.IsSExt = false; 8892 Entry.IsZExt = false; 8893 Entry.IsInReg = false; 8894 Entry.IsSRet = true; 8895 Entry.IsNest = false; 8896 Entry.IsByVal = false; 8897 Entry.IsReturned = false; 8898 Entry.IsSwiftSelf = false; 8899 Entry.IsSwiftError = false; 8900 Entry.Alignment = Align; 8901 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8902 CLI.NumFixedArgs += 1; 8903 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8904 8905 // sret demotion isn't compatible with tail-calls, since the sret argument 8906 // points into the callers stack frame. 8907 CLI.IsTailCall = false; 8908 } else { 8909 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8910 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8911 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8912 ISD::ArgFlagsTy Flags; 8913 if (NeedsRegBlock) { 8914 Flags.setInConsecutiveRegs(); 8915 if (I == RetTys.size() - 1) 8916 Flags.setInConsecutiveRegsLast(); 8917 } 8918 EVT VT = RetTys[I]; 8919 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8920 CLI.CallConv, VT); 8921 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8922 CLI.CallConv, VT); 8923 for (unsigned i = 0; i != NumRegs; ++i) { 8924 ISD::InputArg MyFlags; 8925 MyFlags.Flags = Flags; 8926 MyFlags.VT = RegisterVT; 8927 MyFlags.ArgVT = VT; 8928 MyFlags.Used = CLI.IsReturnValueUsed; 8929 if (CLI.RetTy->isPointerTy()) { 8930 MyFlags.Flags.setPointer(); 8931 MyFlags.Flags.setPointerAddrSpace( 8932 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8933 } 8934 if (CLI.RetSExt) 8935 MyFlags.Flags.setSExt(); 8936 if (CLI.RetZExt) 8937 MyFlags.Flags.setZExt(); 8938 if (CLI.IsInReg) 8939 MyFlags.Flags.setInReg(); 8940 CLI.Ins.push_back(MyFlags); 8941 } 8942 } 8943 } 8944 8945 // We push in swifterror return as the last element of CLI.Ins. 8946 ArgListTy &Args = CLI.getArgs(); 8947 if (supportSwiftError()) { 8948 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8949 if (Args[i].IsSwiftError) { 8950 ISD::InputArg MyFlags; 8951 MyFlags.VT = getPointerTy(DL); 8952 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8953 MyFlags.Flags.setSwiftError(); 8954 CLI.Ins.push_back(MyFlags); 8955 } 8956 } 8957 } 8958 8959 // Handle all of the outgoing arguments. 8960 CLI.Outs.clear(); 8961 CLI.OutVals.clear(); 8962 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8963 SmallVector<EVT, 4> ValueVTs; 8964 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8965 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8966 Type *FinalType = Args[i].Ty; 8967 if (Args[i].IsByVal) 8968 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8969 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8970 FinalType, CLI.CallConv, CLI.IsVarArg); 8971 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8972 ++Value) { 8973 EVT VT = ValueVTs[Value]; 8974 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8975 SDValue Op = SDValue(Args[i].Node.getNode(), 8976 Args[i].Node.getResNo() + Value); 8977 ISD::ArgFlagsTy Flags; 8978 8979 // Certain targets (such as MIPS), may have a different ABI alignment 8980 // for a type depending on the context. Give the target a chance to 8981 // specify the alignment it wants. 8982 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8983 8984 if (Args[i].Ty->isPointerTy()) { 8985 Flags.setPointer(); 8986 Flags.setPointerAddrSpace( 8987 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 8988 } 8989 if (Args[i].IsZExt) 8990 Flags.setZExt(); 8991 if (Args[i].IsSExt) 8992 Flags.setSExt(); 8993 if (Args[i].IsInReg) { 8994 // If we are using vectorcall calling convention, a structure that is 8995 // passed InReg - is surely an HVA 8996 if (CLI.CallConv == CallingConv::X86_VectorCall && 8997 isa<StructType>(FinalType)) { 8998 // The first value of a structure is marked 8999 if (0 == Value) 9000 Flags.setHvaStart(); 9001 Flags.setHva(); 9002 } 9003 // Set InReg Flag 9004 Flags.setInReg(); 9005 } 9006 if (Args[i].IsSRet) 9007 Flags.setSRet(); 9008 if (Args[i].IsSwiftSelf) 9009 Flags.setSwiftSelf(); 9010 if (Args[i].IsSwiftError) 9011 Flags.setSwiftError(); 9012 if (Args[i].IsByVal) 9013 Flags.setByVal(); 9014 if (Args[i].IsInAlloca) { 9015 Flags.setInAlloca(); 9016 // Set the byval flag for CCAssignFn callbacks that don't know about 9017 // inalloca. This way we can know how many bytes we should've allocated 9018 // and how many bytes a callee cleanup function will pop. If we port 9019 // inalloca to more targets, we'll have to add custom inalloca handling 9020 // in the various CC lowering callbacks. 9021 Flags.setByVal(); 9022 } 9023 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9024 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9025 Type *ElementTy = Ty->getElementType(); 9026 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9027 // For ByVal, alignment should come from FE. BE will guess if this 9028 // info is not there but there are cases it cannot get right. 9029 unsigned FrameAlign; 9030 if (Args[i].Alignment) 9031 FrameAlign = Args[i].Alignment; 9032 else 9033 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9034 Flags.setByValAlign(FrameAlign); 9035 } 9036 if (Args[i].IsNest) 9037 Flags.setNest(); 9038 if (NeedsRegBlock) 9039 Flags.setInConsecutiveRegs(); 9040 Flags.setOrigAlign(OriginalAlignment); 9041 9042 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9043 CLI.CallConv, VT); 9044 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9045 CLI.CallConv, VT); 9046 SmallVector<SDValue, 4> Parts(NumParts); 9047 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9048 9049 if (Args[i].IsSExt) 9050 ExtendKind = ISD::SIGN_EXTEND; 9051 else if (Args[i].IsZExt) 9052 ExtendKind = ISD::ZERO_EXTEND; 9053 9054 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9055 // for now. 9056 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9057 CanLowerReturn) { 9058 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 9059 "unexpected use of 'returned'"); 9060 // Before passing 'returned' to the target lowering code, ensure that 9061 // either the register MVT and the actual EVT are the same size or that 9062 // the return value and argument are extended in the same way; in these 9063 // cases it's safe to pass the argument register value unchanged as the 9064 // return register value (although it's at the target's option whether 9065 // to do so) 9066 // TODO: allow code generation to take advantage of partially preserved 9067 // registers rather than clobbering the entire register when the 9068 // parameter extension method is not compatible with the return 9069 // extension method 9070 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9071 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9072 CLI.RetZExt == Args[i].IsZExt)) 9073 Flags.setReturned(); 9074 } 9075 9076 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9077 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9078 9079 for (unsigned j = 0; j != NumParts; ++j) { 9080 // if it isn't first piece, alignment must be 1 9081 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9082 i < CLI.NumFixedArgs, 9083 i, j*Parts[j].getValueType().getStoreSize()); 9084 if (NumParts > 1 && j == 0) 9085 MyFlags.Flags.setSplit(); 9086 else if (j != 0) { 9087 MyFlags.Flags.setOrigAlign(1); 9088 if (j == NumParts - 1) 9089 MyFlags.Flags.setSplitEnd(); 9090 } 9091 9092 CLI.Outs.push_back(MyFlags); 9093 CLI.OutVals.push_back(Parts[j]); 9094 } 9095 9096 if (NeedsRegBlock && Value == NumValues - 1) 9097 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9098 } 9099 } 9100 9101 SmallVector<SDValue, 4> InVals; 9102 CLI.Chain = LowerCall(CLI, InVals); 9103 9104 // Update CLI.InVals to use outside of this function. 9105 CLI.InVals = InVals; 9106 9107 // Verify that the target's LowerCall behaved as expected. 9108 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9109 "LowerCall didn't return a valid chain!"); 9110 assert((!CLI.IsTailCall || InVals.empty()) && 9111 "LowerCall emitted a return value for a tail call!"); 9112 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9113 "LowerCall didn't emit the correct number of values!"); 9114 9115 // For a tail call, the return value is merely live-out and there aren't 9116 // any nodes in the DAG representing it. Return a special value to 9117 // indicate that a tail call has been emitted and no more Instructions 9118 // should be processed in the current block. 9119 if (CLI.IsTailCall) { 9120 CLI.DAG.setRoot(CLI.Chain); 9121 return std::make_pair(SDValue(), SDValue()); 9122 } 9123 9124 #ifndef NDEBUG 9125 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9126 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9127 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9128 "LowerCall emitted a value with the wrong type!"); 9129 } 9130 #endif 9131 9132 SmallVector<SDValue, 4> ReturnValues; 9133 if (!CanLowerReturn) { 9134 // The instruction result is the result of loading from the 9135 // hidden sret parameter. 9136 SmallVector<EVT, 1> PVTs; 9137 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9138 9139 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9140 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9141 EVT PtrVT = PVTs[0]; 9142 9143 unsigned NumValues = RetTys.size(); 9144 ReturnValues.resize(NumValues); 9145 SmallVector<SDValue, 4> Chains(NumValues); 9146 9147 // An aggregate return value cannot wrap around the address space, so 9148 // offsets to its parts don't wrap either. 9149 SDNodeFlags Flags; 9150 Flags.setNoUnsignedWrap(true); 9151 9152 for (unsigned i = 0; i < NumValues; ++i) { 9153 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9154 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9155 PtrVT), Flags); 9156 SDValue L = CLI.DAG.getLoad( 9157 RetTys[i], CLI.DL, CLI.Chain, Add, 9158 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9159 DemoteStackIdx, Offsets[i]), 9160 /* Alignment = */ 1); 9161 ReturnValues[i] = L; 9162 Chains[i] = L.getValue(1); 9163 } 9164 9165 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9166 } else { 9167 // Collect the legal value parts into potentially illegal values 9168 // that correspond to the original function's return values. 9169 Optional<ISD::NodeType> AssertOp; 9170 if (CLI.RetSExt) 9171 AssertOp = ISD::AssertSext; 9172 else if (CLI.RetZExt) 9173 AssertOp = ISD::AssertZext; 9174 unsigned CurReg = 0; 9175 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9176 EVT VT = RetTys[I]; 9177 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9178 CLI.CallConv, VT); 9179 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9180 CLI.CallConv, VT); 9181 9182 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9183 NumRegs, RegisterVT, VT, nullptr, 9184 CLI.CallConv, AssertOp)); 9185 CurReg += NumRegs; 9186 } 9187 9188 // For a function returning void, there is no return value. We can't create 9189 // such a node, so we just return a null return value in that case. In 9190 // that case, nothing will actually look at the value. 9191 if (ReturnValues.empty()) 9192 return std::make_pair(SDValue(), CLI.Chain); 9193 } 9194 9195 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9196 CLI.DAG.getVTList(RetTys), ReturnValues); 9197 return std::make_pair(Res, CLI.Chain); 9198 } 9199 9200 void TargetLowering::LowerOperationWrapper(SDNode *N, 9201 SmallVectorImpl<SDValue> &Results, 9202 SelectionDAG &DAG) const { 9203 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9204 Results.push_back(Res); 9205 } 9206 9207 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9208 llvm_unreachable("LowerOperation not implemented for this target!"); 9209 } 9210 9211 void 9212 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9213 SDValue Op = getNonRegisterValue(V); 9214 assert((Op.getOpcode() != ISD::CopyFromReg || 9215 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9216 "Copy from a reg to the same reg!"); 9217 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9218 9219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9220 // If this is an InlineAsm we have to match the registers required, not the 9221 // notional registers required by the type. 9222 9223 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9224 None); // This is not an ABI copy. 9225 SDValue Chain = DAG.getEntryNode(); 9226 9227 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9228 FuncInfo.PreferredExtendType.end()) 9229 ? ISD::ANY_EXTEND 9230 : FuncInfo.PreferredExtendType[V]; 9231 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9232 PendingExports.push_back(Chain); 9233 } 9234 9235 #include "llvm/CodeGen/SelectionDAGISel.h" 9236 9237 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9238 /// entry block, return true. This includes arguments used by switches, since 9239 /// the switch may expand into multiple basic blocks. 9240 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9241 // With FastISel active, we may be splitting blocks, so force creation 9242 // of virtual registers for all non-dead arguments. 9243 if (FastISel) 9244 return A->use_empty(); 9245 9246 const BasicBlock &Entry = A->getParent()->front(); 9247 for (const User *U : A->users()) 9248 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9249 return false; // Use not in entry block. 9250 9251 return true; 9252 } 9253 9254 using ArgCopyElisionMapTy = 9255 DenseMap<const Argument *, 9256 std::pair<const AllocaInst *, const StoreInst *>>; 9257 9258 /// Scan the entry block of the function in FuncInfo for arguments that look 9259 /// like copies into a local alloca. Record any copied arguments in 9260 /// ArgCopyElisionCandidates. 9261 static void 9262 findArgumentCopyElisionCandidates(const DataLayout &DL, 9263 FunctionLoweringInfo *FuncInfo, 9264 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9265 // Record the state of every static alloca used in the entry block. Argument 9266 // allocas are all used in the entry block, so we need approximately as many 9267 // entries as we have arguments. 9268 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9269 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9270 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9271 StaticAllocas.reserve(NumArgs * 2); 9272 9273 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9274 if (!V) 9275 return nullptr; 9276 V = V->stripPointerCasts(); 9277 const auto *AI = dyn_cast<AllocaInst>(V); 9278 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9279 return nullptr; 9280 auto Iter = StaticAllocas.insert({AI, Unknown}); 9281 return &Iter.first->second; 9282 }; 9283 9284 // Look for stores of arguments to static allocas. Look through bitcasts and 9285 // GEPs to handle type coercions, as long as the alloca is fully initialized 9286 // by the store. Any non-store use of an alloca escapes it and any subsequent 9287 // unanalyzed store might write it. 9288 // FIXME: Handle structs initialized with multiple stores. 9289 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9290 // Look for stores, and handle non-store uses conservatively. 9291 const auto *SI = dyn_cast<StoreInst>(&I); 9292 if (!SI) { 9293 // We will look through cast uses, so ignore them completely. 9294 if (I.isCast()) 9295 continue; 9296 // Ignore debug info intrinsics, they don't escape or store to allocas. 9297 if (isa<DbgInfoIntrinsic>(I)) 9298 continue; 9299 // This is an unknown instruction. Assume it escapes or writes to all 9300 // static alloca operands. 9301 for (const Use &U : I.operands()) { 9302 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9303 *Info = StaticAllocaInfo::Clobbered; 9304 } 9305 continue; 9306 } 9307 9308 // If the stored value is a static alloca, mark it as escaped. 9309 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9310 *Info = StaticAllocaInfo::Clobbered; 9311 9312 // Check if the destination is a static alloca. 9313 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9314 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9315 if (!Info) 9316 continue; 9317 const AllocaInst *AI = cast<AllocaInst>(Dst); 9318 9319 // Skip allocas that have been initialized or clobbered. 9320 if (*Info != StaticAllocaInfo::Unknown) 9321 continue; 9322 9323 // Check if the stored value is an argument, and that this store fully 9324 // initializes the alloca. Don't elide copies from the same argument twice. 9325 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9326 const auto *Arg = dyn_cast<Argument>(Val); 9327 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9328 Arg->getType()->isEmptyTy() || 9329 DL.getTypeStoreSize(Arg->getType()) != 9330 DL.getTypeAllocSize(AI->getAllocatedType()) || 9331 ArgCopyElisionCandidates.count(Arg)) { 9332 *Info = StaticAllocaInfo::Clobbered; 9333 continue; 9334 } 9335 9336 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9337 << '\n'); 9338 9339 // Mark this alloca and store for argument copy elision. 9340 *Info = StaticAllocaInfo::Elidable; 9341 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9342 9343 // Stop scanning if we've seen all arguments. This will happen early in -O0 9344 // builds, which is useful, because -O0 builds have large entry blocks and 9345 // many allocas. 9346 if (ArgCopyElisionCandidates.size() == NumArgs) 9347 break; 9348 } 9349 } 9350 9351 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9352 /// ArgVal is a load from a suitable fixed stack object. 9353 static void tryToElideArgumentCopy( 9354 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9355 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9356 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9357 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9358 SDValue ArgVal, bool &ArgHasUses) { 9359 // Check if this is a load from a fixed stack object. 9360 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9361 if (!LNode) 9362 return; 9363 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9364 if (!FINode) 9365 return; 9366 9367 // Check that the fixed stack object is the right size and alignment. 9368 // Look at the alignment that the user wrote on the alloca instead of looking 9369 // at the stack object. 9370 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9371 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9372 const AllocaInst *AI = ArgCopyIter->second.first; 9373 int FixedIndex = FINode->getIndex(); 9374 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9375 int OldIndex = AllocaIndex; 9376 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9377 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9378 LLVM_DEBUG( 9379 dbgs() << " argument copy elision failed due to bad fixed stack " 9380 "object size\n"); 9381 return; 9382 } 9383 unsigned RequiredAlignment = AI->getAlignment(); 9384 if (!RequiredAlignment) { 9385 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9386 AI->getAllocatedType()); 9387 } 9388 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9389 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9390 "greater than stack argument alignment (" 9391 << RequiredAlignment << " vs " 9392 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9393 return; 9394 } 9395 9396 // Perform the elision. Delete the old stack object and replace its only use 9397 // in the variable info map. Mark the stack object as mutable. 9398 LLVM_DEBUG({ 9399 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9400 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9401 << '\n'; 9402 }); 9403 MFI.RemoveStackObject(OldIndex); 9404 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9405 AllocaIndex = FixedIndex; 9406 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9407 Chains.push_back(ArgVal.getValue(1)); 9408 9409 // Avoid emitting code for the store implementing the copy. 9410 const StoreInst *SI = ArgCopyIter->second.second; 9411 ElidedArgCopyInstrs.insert(SI); 9412 9413 // Check for uses of the argument again so that we can avoid exporting ArgVal 9414 // if it is't used by anything other than the store. 9415 for (const Value *U : Arg.users()) { 9416 if (U != SI) { 9417 ArgHasUses = true; 9418 break; 9419 } 9420 } 9421 } 9422 9423 void SelectionDAGISel::LowerArguments(const Function &F) { 9424 SelectionDAG &DAG = SDB->DAG; 9425 SDLoc dl = SDB->getCurSDLoc(); 9426 const DataLayout &DL = DAG.getDataLayout(); 9427 SmallVector<ISD::InputArg, 16> Ins; 9428 9429 if (!FuncInfo->CanLowerReturn) { 9430 // Put in an sret pointer parameter before all the other parameters. 9431 SmallVector<EVT, 1> ValueVTs; 9432 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9433 F.getReturnType()->getPointerTo( 9434 DAG.getDataLayout().getAllocaAddrSpace()), 9435 ValueVTs); 9436 9437 // NOTE: Assuming that a pointer will never break down to more than one VT 9438 // or one register. 9439 ISD::ArgFlagsTy Flags; 9440 Flags.setSRet(); 9441 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9442 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9443 ISD::InputArg::NoArgIndex, 0); 9444 Ins.push_back(RetArg); 9445 } 9446 9447 // Look for stores of arguments to static allocas. Mark such arguments with a 9448 // flag to ask the target to give us the memory location of that argument if 9449 // available. 9450 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9451 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9452 9453 // Set up the incoming argument description vector. 9454 for (const Argument &Arg : F.args()) { 9455 unsigned ArgNo = Arg.getArgNo(); 9456 SmallVector<EVT, 4> ValueVTs; 9457 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9458 bool isArgValueUsed = !Arg.use_empty(); 9459 unsigned PartBase = 0; 9460 Type *FinalType = Arg.getType(); 9461 if (Arg.hasAttribute(Attribute::ByVal)) 9462 FinalType = cast<PointerType>(FinalType)->getElementType(); 9463 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9464 FinalType, F.getCallingConv(), F.isVarArg()); 9465 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9466 Value != NumValues; ++Value) { 9467 EVT VT = ValueVTs[Value]; 9468 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9469 ISD::ArgFlagsTy Flags; 9470 9471 // Certain targets (such as MIPS), may have a different ABI alignment 9472 // for a type depending on the context. Give the target a chance to 9473 // specify the alignment it wants. 9474 unsigned OriginalAlignment = 9475 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9476 9477 if (Arg.getType()->isPointerTy()) { 9478 Flags.setPointer(); 9479 Flags.setPointerAddrSpace( 9480 cast<PointerType>(Arg.getType())->getAddressSpace()); 9481 } 9482 if (Arg.hasAttribute(Attribute::ZExt)) 9483 Flags.setZExt(); 9484 if (Arg.hasAttribute(Attribute::SExt)) 9485 Flags.setSExt(); 9486 if (Arg.hasAttribute(Attribute::InReg)) { 9487 // If we are using vectorcall calling convention, a structure that is 9488 // passed InReg - is surely an HVA 9489 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9490 isa<StructType>(Arg.getType())) { 9491 // The first value of a structure is marked 9492 if (0 == Value) 9493 Flags.setHvaStart(); 9494 Flags.setHva(); 9495 } 9496 // Set InReg Flag 9497 Flags.setInReg(); 9498 } 9499 if (Arg.hasAttribute(Attribute::StructRet)) 9500 Flags.setSRet(); 9501 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9502 Flags.setSwiftSelf(); 9503 if (Arg.hasAttribute(Attribute::SwiftError)) 9504 Flags.setSwiftError(); 9505 if (Arg.hasAttribute(Attribute::ByVal)) 9506 Flags.setByVal(); 9507 if (Arg.hasAttribute(Attribute::InAlloca)) { 9508 Flags.setInAlloca(); 9509 // Set the byval flag for CCAssignFn callbacks that don't know about 9510 // inalloca. This way we can know how many bytes we should've allocated 9511 // and how many bytes a callee cleanup function will pop. If we port 9512 // inalloca to more targets, we'll have to add custom inalloca handling 9513 // in the various CC lowering callbacks. 9514 Flags.setByVal(); 9515 } 9516 if (F.getCallingConv() == CallingConv::X86_INTR) { 9517 // IA Interrupt passes frame (1st parameter) by value in the stack. 9518 if (ArgNo == 0) 9519 Flags.setByVal(); 9520 } 9521 if (Flags.isByVal() || Flags.isInAlloca()) { 9522 PointerType *Ty = cast<PointerType>(Arg.getType()); 9523 Type *ElementTy = Ty->getElementType(); 9524 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9525 // For ByVal, alignment should be passed from FE. BE will guess if 9526 // this info is not there but there are cases it cannot get right. 9527 unsigned FrameAlign; 9528 if (Arg.getParamAlignment()) 9529 FrameAlign = Arg.getParamAlignment(); 9530 else 9531 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9532 Flags.setByValAlign(FrameAlign); 9533 } 9534 if (Arg.hasAttribute(Attribute::Nest)) 9535 Flags.setNest(); 9536 if (NeedsRegBlock) 9537 Flags.setInConsecutiveRegs(); 9538 Flags.setOrigAlign(OriginalAlignment); 9539 if (ArgCopyElisionCandidates.count(&Arg)) 9540 Flags.setCopyElisionCandidate(); 9541 9542 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9543 *CurDAG->getContext(), F.getCallingConv(), VT); 9544 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9545 *CurDAG->getContext(), F.getCallingConv(), VT); 9546 for (unsigned i = 0; i != NumRegs; ++i) { 9547 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9548 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9549 if (NumRegs > 1 && i == 0) 9550 MyFlags.Flags.setSplit(); 9551 // if it isn't first piece, alignment must be 1 9552 else if (i > 0) { 9553 MyFlags.Flags.setOrigAlign(1); 9554 if (i == NumRegs - 1) 9555 MyFlags.Flags.setSplitEnd(); 9556 } 9557 Ins.push_back(MyFlags); 9558 } 9559 if (NeedsRegBlock && Value == NumValues - 1) 9560 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9561 PartBase += VT.getStoreSize(); 9562 } 9563 } 9564 9565 // Call the target to set up the argument values. 9566 SmallVector<SDValue, 8> InVals; 9567 SDValue NewRoot = TLI->LowerFormalArguments( 9568 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9569 9570 // Verify that the target's LowerFormalArguments behaved as expected. 9571 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9572 "LowerFormalArguments didn't return a valid chain!"); 9573 assert(InVals.size() == Ins.size() && 9574 "LowerFormalArguments didn't emit the correct number of values!"); 9575 LLVM_DEBUG({ 9576 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9577 assert(InVals[i].getNode() && 9578 "LowerFormalArguments emitted a null value!"); 9579 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9580 "LowerFormalArguments emitted a value with the wrong type!"); 9581 } 9582 }); 9583 9584 // Update the DAG with the new chain value resulting from argument lowering. 9585 DAG.setRoot(NewRoot); 9586 9587 // Set up the argument values. 9588 unsigned i = 0; 9589 if (!FuncInfo->CanLowerReturn) { 9590 // Create a virtual register for the sret pointer, and put in a copy 9591 // from the sret argument into it. 9592 SmallVector<EVT, 1> ValueVTs; 9593 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9594 F.getReturnType()->getPointerTo( 9595 DAG.getDataLayout().getAllocaAddrSpace()), 9596 ValueVTs); 9597 MVT VT = ValueVTs[0].getSimpleVT(); 9598 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9599 Optional<ISD::NodeType> AssertOp = None; 9600 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9601 nullptr, F.getCallingConv(), AssertOp); 9602 9603 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9604 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9605 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9606 FuncInfo->DemoteRegister = SRetReg; 9607 NewRoot = 9608 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9609 DAG.setRoot(NewRoot); 9610 9611 // i indexes lowered arguments. Bump it past the hidden sret argument. 9612 ++i; 9613 } 9614 9615 SmallVector<SDValue, 4> Chains; 9616 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9617 for (const Argument &Arg : F.args()) { 9618 SmallVector<SDValue, 4> ArgValues; 9619 SmallVector<EVT, 4> ValueVTs; 9620 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9621 unsigned NumValues = ValueVTs.size(); 9622 if (NumValues == 0) 9623 continue; 9624 9625 bool ArgHasUses = !Arg.use_empty(); 9626 9627 // Elide the copying store if the target loaded this argument from a 9628 // suitable fixed stack object. 9629 if (Ins[i].Flags.isCopyElisionCandidate()) { 9630 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9631 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9632 InVals[i], ArgHasUses); 9633 } 9634 9635 // If this argument is unused then remember its value. It is used to generate 9636 // debugging information. 9637 bool isSwiftErrorArg = 9638 TLI->supportSwiftError() && 9639 Arg.hasAttribute(Attribute::SwiftError); 9640 if (!ArgHasUses && !isSwiftErrorArg) { 9641 SDB->setUnusedArgValue(&Arg, InVals[i]); 9642 9643 // Also remember any frame index for use in FastISel. 9644 if (FrameIndexSDNode *FI = 9645 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9646 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9647 } 9648 9649 for (unsigned Val = 0; Val != NumValues; ++Val) { 9650 EVT VT = ValueVTs[Val]; 9651 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9652 F.getCallingConv(), VT); 9653 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9654 *CurDAG->getContext(), F.getCallingConv(), VT); 9655 9656 // Even an apparant 'unused' swifterror argument needs to be returned. So 9657 // we do generate a copy for it that can be used on return from the 9658 // function. 9659 if (ArgHasUses || isSwiftErrorArg) { 9660 Optional<ISD::NodeType> AssertOp; 9661 if (Arg.hasAttribute(Attribute::SExt)) 9662 AssertOp = ISD::AssertSext; 9663 else if (Arg.hasAttribute(Attribute::ZExt)) 9664 AssertOp = ISD::AssertZext; 9665 9666 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9667 PartVT, VT, nullptr, 9668 F.getCallingConv(), AssertOp)); 9669 } 9670 9671 i += NumParts; 9672 } 9673 9674 // We don't need to do anything else for unused arguments. 9675 if (ArgValues.empty()) 9676 continue; 9677 9678 // Note down frame index. 9679 if (FrameIndexSDNode *FI = 9680 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9681 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9682 9683 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9684 SDB->getCurSDLoc()); 9685 9686 SDB->setValue(&Arg, Res); 9687 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9688 // We want to associate the argument with the frame index, among 9689 // involved operands, that correspond to the lowest address. The 9690 // getCopyFromParts function, called earlier, is swapping the order of 9691 // the operands to BUILD_PAIR depending on endianness. The result of 9692 // that swapping is that the least significant bits of the argument will 9693 // be in the first operand of the BUILD_PAIR node, and the most 9694 // significant bits will be in the second operand. 9695 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9696 if (LoadSDNode *LNode = 9697 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9698 if (FrameIndexSDNode *FI = 9699 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9700 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9701 } 9702 9703 // Update the SwiftErrorVRegDefMap. 9704 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9705 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9706 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9707 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9708 FuncInfo->SwiftErrorArg, Reg); 9709 } 9710 9711 // If this argument is live outside of the entry block, insert a copy from 9712 // wherever we got it to the vreg that other BB's will reference it as. 9713 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9714 // If we can, though, try to skip creating an unnecessary vreg. 9715 // FIXME: This isn't very clean... it would be nice to make this more 9716 // general. It's also subtly incompatible with the hacks FastISel 9717 // uses with vregs. 9718 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9719 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9720 FuncInfo->ValueMap[&Arg] = Reg; 9721 continue; 9722 } 9723 } 9724 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9725 FuncInfo->InitializeRegForValue(&Arg); 9726 SDB->CopyToExportRegsIfNeeded(&Arg); 9727 } 9728 } 9729 9730 if (!Chains.empty()) { 9731 Chains.push_back(NewRoot); 9732 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9733 } 9734 9735 DAG.setRoot(NewRoot); 9736 9737 assert(i == InVals.size() && "Argument register count mismatch!"); 9738 9739 // If any argument copy elisions occurred and we have debug info, update the 9740 // stale frame indices used in the dbg.declare variable info table. 9741 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9742 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9743 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9744 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9745 if (I != ArgCopyElisionFrameIndexMap.end()) 9746 VI.Slot = I->second; 9747 } 9748 } 9749 9750 // Finally, if the target has anything special to do, allow it to do so. 9751 EmitFunctionEntryCode(); 9752 } 9753 9754 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9755 /// ensure constants are generated when needed. Remember the virtual registers 9756 /// that need to be added to the Machine PHI nodes as input. We cannot just 9757 /// directly add them, because expansion might result in multiple MBB's for one 9758 /// BB. As such, the start of the BB might correspond to a different MBB than 9759 /// the end. 9760 void 9761 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9762 const Instruction *TI = LLVMBB->getTerminator(); 9763 9764 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9765 9766 // Check PHI nodes in successors that expect a value to be available from this 9767 // block. 9768 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9769 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9770 if (!isa<PHINode>(SuccBB->begin())) continue; 9771 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9772 9773 // If this terminator has multiple identical successors (common for 9774 // switches), only handle each succ once. 9775 if (!SuccsHandled.insert(SuccMBB).second) 9776 continue; 9777 9778 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9779 9780 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9781 // nodes and Machine PHI nodes, but the incoming operands have not been 9782 // emitted yet. 9783 for (const PHINode &PN : SuccBB->phis()) { 9784 // Ignore dead phi's. 9785 if (PN.use_empty()) 9786 continue; 9787 9788 // Skip empty types 9789 if (PN.getType()->isEmptyTy()) 9790 continue; 9791 9792 unsigned Reg; 9793 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9794 9795 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9796 unsigned &RegOut = ConstantsOut[C]; 9797 if (RegOut == 0) { 9798 RegOut = FuncInfo.CreateRegs(C->getType()); 9799 CopyValueToVirtualRegister(C, RegOut); 9800 } 9801 Reg = RegOut; 9802 } else { 9803 DenseMap<const Value *, unsigned>::iterator I = 9804 FuncInfo.ValueMap.find(PHIOp); 9805 if (I != FuncInfo.ValueMap.end()) 9806 Reg = I->second; 9807 else { 9808 assert(isa<AllocaInst>(PHIOp) && 9809 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9810 "Didn't codegen value into a register!??"); 9811 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9812 CopyValueToVirtualRegister(PHIOp, Reg); 9813 } 9814 } 9815 9816 // Remember that this register needs to added to the machine PHI node as 9817 // the input for this MBB. 9818 SmallVector<EVT, 4> ValueVTs; 9819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9820 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9821 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9822 EVT VT = ValueVTs[vti]; 9823 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9824 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9825 FuncInfo.PHINodesToUpdate.push_back( 9826 std::make_pair(&*MBBI++, Reg + i)); 9827 Reg += NumRegisters; 9828 } 9829 } 9830 } 9831 9832 ConstantsOut.clear(); 9833 } 9834 9835 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9836 /// is 0. 9837 MachineBasicBlock * 9838 SelectionDAGBuilder::StackProtectorDescriptor:: 9839 AddSuccessorMBB(const BasicBlock *BB, 9840 MachineBasicBlock *ParentMBB, 9841 bool IsLikely, 9842 MachineBasicBlock *SuccMBB) { 9843 // If SuccBB has not been created yet, create it. 9844 if (!SuccMBB) { 9845 MachineFunction *MF = ParentMBB->getParent(); 9846 MachineFunction::iterator BBI(ParentMBB); 9847 SuccMBB = MF->CreateMachineBasicBlock(BB); 9848 MF->insert(++BBI, SuccMBB); 9849 } 9850 // Add it as a successor of ParentMBB. 9851 ParentMBB->addSuccessor( 9852 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9853 return SuccMBB; 9854 } 9855 9856 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9857 MachineFunction::iterator I(MBB); 9858 if (++I == FuncInfo.MF->end()) 9859 return nullptr; 9860 return &*I; 9861 } 9862 9863 /// During lowering new call nodes can be created (such as memset, etc.). 9864 /// Those will become new roots of the current DAG, but complications arise 9865 /// when they are tail calls. In such cases, the call lowering will update 9866 /// the root, but the builder still needs to know that a tail call has been 9867 /// lowered in order to avoid generating an additional return. 9868 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9869 // If the node is null, we do have a tail call. 9870 if (MaybeTC.getNode() != nullptr) 9871 DAG.setRoot(MaybeTC); 9872 else 9873 HasTailCall = true; 9874 } 9875 9876 uint64_t 9877 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9878 unsigned First, unsigned Last) const { 9879 assert(Last >= First); 9880 const APInt &LowCase = Clusters[First].Low->getValue(); 9881 const APInt &HighCase = Clusters[Last].High->getValue(); 9882 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9883 9884 // FIXME: A range of consecutive cases has 100% density, but only requires one 9885 // comparison to lower. We should discriminate against such consecutive ranges 9886 // in jump tables. 9887 9888 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9889 } 9890 9891 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9892 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9893 unsigned Last) const { 9894 assert(Last >= First); 9895 assert(TotalCases[Last] >= TotalCases[First]); 9896 uint64_t NumCases = 9897 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9898 return NumCases; 9899 } 9900 9901 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9902 unsigned First, unsigned Last, 9903 const SwitchInst *SI, 9904 MachineBasicBlock *DefaultMBB, 9905 CaseCluster &JTCluster) { 9906 assert(First <= Last); 9907 9908 auto Prob = BranchProbability::getZero(); 9909 unsigned NumCmps = 0; 9910 std::vector<MachineBasicBlock*> Table; 9911 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9912 9913 // Initialize probabilities in JTProbs. 9914 for (unsigned I = First; I <= Last; ++I) 9915 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9916 9917 for (unsigned I = First; I <= Last; ++I) { 9918 assert(Clusters[I].Kind == CC_Range); 9919 Prob += Clusters[I].Prob; 9920 const APInt &Low = Clusters[I].Low->getValue(); 9921 const APInt &High = Clusters[I].High->getValue(); 9922 NumCmps += (Low == High) ? 1 : 2; 9923 if (I != First) { 9924 // Fill the gap between this and the previous cluster. 9925 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9926 assert(PreviousHigh.slt(Low)); 9927 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9928 for (uint64_t J = 0; J < Gap; J++) 9929 Table.push_back(DefaultMBB); 9930 } 9931 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9932 for (uint64_t J = 0; J < ClusterSize; ++J) 9933 Table.push_back(Clusters[I].MBB); 9934 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9935 } 9936 9937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9938 unsigned NumDests = JTProbs.size(); 9939 if (TLI.isSuitableForBitTests( 9940 NumDests, NumCmps, Clusters[First].Low->getValue(), 9941 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9942 // Clusters[First..Last] should be lowered as bit tests instead. 9943 return false; 9944 } 9945 9946 // Create the MBB that will load from and jump through the table. 9947 // Note: We create it here, but it's not inserted into the function yet. 9948 MachineFunction *CurMF = FuncInfo.MF; 9949 MachineBasicBlock *JumpTableMBB = 9950 CurMF->CreateMachineBasicBlock(SI->getParent()); 9951 9952 // Add successors. Note: use table order for determinism. 9953 SmallPtrSet<MachineBasicBlock *, 8> Done; 9954 for (MachineBasicBlock *Succ : Table) { 9955 if (Done.count(Succ)) 9956 continue; 9957 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9958 Done.insert(Succ); 9959 } 9960 JumpTableMBB->normalizeSuccProbs(); 9961 9962 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9963 ->createJumpTableIndex(Table); 9964 9965 // Set up the jump table info. 9966 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9967 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9968 Clusters[Last].High->getValue(), SI->getCondition(), 9969 nullptr, false); 9970 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9971 9972 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9973 JTCases.size() - 1, Prob); 9974 return true; 9975 } 9976 9977 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9978 const SwitchInst *SI, 9979 MachineBasicBlock *DefaultMBB) { 9980 #ifndef NDEBUG 9981 // Clusters must be non-empty, sorted, and only contain Range clusters. 9982 assert(!Clusters.empty()); 9983 for (CaseCluster &C : Clusters) 9984 assert(C.Kind == CC_Range); 9985 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9986 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9987 #endif 9988 9989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9990 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9991 return; 9992 9993 const int64_t N = Clusters.size(); 9994 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9995 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9996 9997 if (N < 2 || N < MinJumpTableEntries) 9998 return; 9999 10000 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 10001 SmallVector<unsigned, 8> TotalCases(N); 10002 for (unsigned i = 0; i < N; ++i) { 10003 const APInt &Hi = Clusters[i].High->getValue(); 10004 const APInt &Lo = Clusters[i].Low->getValue(); 10005 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 10006 if (i != 0) 10007 TotalCases[i] += TotalCases[i - 1]; 10008 } 10009 10010 // Cheap case: the whole range may be suitable for jump table. 10011 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 10012 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 10013 assert(NumCases < UINT64_MAX / 100); 10014 assert(Range >= NumCases); 10015 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10016 CaseCluster JTCluster; 10017 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 10018 Clusters[0] = JTCluster; 10019 Clusters.resize(1); 10020 return; 10021 } 10022 } 10023 10024 // The algorithm below is not suitable for -O0. 10025 if (TM.getOptLevel() == CodeGenOpt::None) 10026 return; 10027 10028 // Split Clusters into minimum number of dense partitions. The algorithm uses 10029 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 10030 // for the Case Statement'" (1994), but builds the MinPartitions array in 10031 // reverse order to make it easier to reconstruct the partitions in ascending 10032 // order. In the choice between two optimal partitionings, it picks the one 10033 // which yields more jump tables. 10034 10035 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10036 SmallVector<unsigned, 8> MinPartitions(N); 10037 // LastElement[i] is the last element of the partition starting at i. 10038 SmallVector<unsigned, 8> LastElement(N); 10039 // PartitionsScore[i] is used to break ties when choosing between two 10040 // partitionings resulting in the same number of partitions. 10041 SmallVector<unsigned, 8> PartitionsScore(N); 10042 // For PartitionsScore, a small number of comparisons is considered as good as 10043 // a jump table and a single comparison is considered better than a jump 10044 // table. 10045 enum PartitionScores : unsigned { 10046 NoTable = 0, 10047 Table = 1, 10048 FewCases = 1, 10049 SingleCase = 2 10050 }; 10051 10052 // Base case: There is only one way to partition Clusters[N-1]. 10053 MinPartitions[N - 1] = 1; 10054 LastElement[N - 1] = N - 1; 10055 PartitionsScore[N - 1] = PartitionScores::SingleCase; 10056 10057 // Note: loop indexes are signed to avoid underflow. 10058 for (int64_t i = N - 2; i >= 0; i--) { 10059 // Find optimal partitioning of Clusters[i..N-1]. 10060 // Baseline: Put Clusters[i] into a partition on its own. 10061 MinPartitions[i] = MinPartitions[i + 1] + 1; 10062 LastElement[i] = i; 10063 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 10064 10065 // Search for a solution that results in fewer partitions. 10066 for (int64_t j = N - 1; j > i; j--) { 10067 // Try building a partition from Clusters[i..j]. 10068 uint64_t Range = getJumpTableRange(Clusters, i, j); 10069 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 10070 assert(NumCases < UINT64_MAX / 100); 10071 assert(Range >= NumCases); 10072 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10073 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10074 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 10075 int64_t NumEntries = j - i + 1; 10076 10077 if (NumEntries == 1) 10078 Score += PartitionScores::SingleCase; 10079 else if (NumEntries <= SmallNumberOfEntries) 10080 Score += PartitionScores::FewCases; 10081 else if (NumEntries >= MinJumpTableEntries) 10082 Score += PartitionScores::Table; 10083 10084 // If this leads to fewer partitions, or to the same number of 10085 // partitions with better score, it is a better partitioning. 10086 if (NumPartitions < MinPartitions[i] || 10087 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 10088 MinPartitions[i] = NumPartitions; 10089 LastElement[i] = j; 10090 PartitionsScore[i] = Score; 10091 } 10092 } 10093 } 10094 } 10095 10096 // Iterate over the partitions, replacing some with jump tables in-place. 10097 unsigned DstIndex = 0; 10098 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10099 Last = LastElement[First]; 10100 assert(Last >= First); 10101 assert(DstIndex <= First); 10102 unsigned NumClusters = Last - First + 1; 10103 10104 CaseCluster JTCluster; 10105 if (NumClusters >= MinJumpTableEntries && 10106 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 10107 Clusters[DstIndex++] = JTCluster; 10108 } else { 10109 for (unsigned I = First; I <= Last; ++I) 10110 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 10111 } 10112 } 10113 Clusters.resize(DstIndex); 10114 } 10115 10116 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 10117 unsigned First, unsigned Last, 10118 const SwitchInst *SI, 10119 CaseCluster &BTCluster) { 10120 assert(First <= Last); 10121 if (First == Last) 10122 return false; 10123 10124 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10125 unsigned NumCmps = 0; 10126 for (int64_t I = First; I <= Last; ++I) { 10127 assert(Clusters[I].Kind == CC_Range); 10128 Dests.set(Clusters[I].MBB->getNumber()); 10129 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10130 } 10131 unsigned NumDests = Dests.count(); 10132 10133 APInt Low = Clusters[First].Low->getValue(); 10134 APInt High = Clusters[Last].High->getValue(); 10135 assert(Low.slt(High)); 10136 10137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10138 const DataLayout &DL = DAG.getDataLayout(); 10139 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10140 return false; 10141 10142 APInt LowBound; 10143 APInt CmpRange; 10144 10145 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10146 assert(TLI.rangeFitsInWord(Low, High, DL) && 10147 "Case range must fit in bit mask!"); 10148 10149 // Check if the clusters cover a contiguous range such that no value in the 10150 // range will jump to the default statement. 10151 bool ContiguousRange = true; 10152 for (int64_t I = First + 1; I <= Last; ++I) { 10153 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10154 ContiguousRange = false; 10155 break; 10156 } 10157 } 10158 10159 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10160 // Optimize the case where all the case values fit in a word without having 10161 // to subtract minValue. In this case, we can optimize away the subtraction. 10162 LowBound = APInt::getNullValue(Low.getBitWidth()); 10163 CmpRange = High; 10164 ContiguousRange = false; 10165 } else { 10166 LowBound = Low; 10167 CmpRange = High - Low; 10168 } 10169 10170 CaseBitsVector CBV; 10171 auto TotalProb = BranchProbability::getZero(); 10172 for (unsigned i = First; i <= Last; ++i) { 10173 // Find the CaseBits for this destination. 10174 unsigned j; 10175 for (j = 0; j < CBV.size(); ++j) 10176 if (CBV[j].BB == Clusters[i].MBB) 10177 break; 10178 if (j == CBV.size()) 10179 CBV.push_back( 10180 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10181 CaseBits *CB = &CBV[j]; 10182 10183 // Update Mask, Bits and ExtraProb. 10184 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10185 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10186 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10187 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10188 CB->Bits += Hi - Lo + 1; 10189 CB->ExtraProb += Clusters[i].Prob; 10190 TotalProb += Clusters[i].Prob; 10191 } 10192 10193 BitTestInfo BTI; 10194 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10195 // Sort by probability first, number of bits second, bit mask third. 10196 if (a.ExtraProb != b.ExtraProb) 10197 return a.ExtraProb > b.ExtraProb; 10198 if (a.Bits != b.Bits) 10199 return a.Bits > b.Bits; 10200 return a.Mask < b.Mask; 10201 }); 10202 10203 for (auto &CB : CBV) { 10204 MachineBasicBlock *BitTestBB = 10205 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10206 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10207 } 10208 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10209 SI->getCondition(), -1U, MVT::Other, false, 10210 ContiguousRange, nullptr, nullptr, std::move(BTI), 10211 TotalProb); 10212 10213 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10214 BitTestCases.size() - 1, TotalProb); 10215 return true; 10216 } 10217 10218 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10219 const SwitchInst *SI) { 10220 // Partition Clusters into as few subsets as possible, where each subset has a 10221 // range that fits in a machine word and has <= 3 unique destinations. 10222 10223 #ifndef NDEBUG 10224 // Clusters must be sorted and contain Range or JumpTable clusters. 10225 assert(!Clusters.empty()); 10226 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10227 for (const CaseCluster &C : Clusters) 10228 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10229 for (unsigned i = 1; i < Clusters.size(); ++i) 10230 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10231 #endif 10232 10233 // The algorithm below is not suitable for -O0. 10234 if (TM.getOptLevel() == CodeGenOpt::None) 10235 return; 10236 10237 // If target does not have legal shift left, do not emit bit tests at all. 10238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10239 const DataLayout &DL = DAG.getDataLayout(); 10240 10241 EVT PTy = TLI.getPointerTy(DL); 10242 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10243 return; 10244 10245 int BitWidth = PTy.getSizeInBits(); 10246 const int64_t N = Clusters.size(); 10247 10248 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10249 SmallVector<unsigned, 8> MinPartitions(N); 10250 // LastElement[i] is the last element of the partition starting at i. 10251 SmallVector<unsigned, 8> LastElement(N); 10252 10253 // FIXME: This might not be the best algorithm for finding bit test clusters. 10254 10255 // Base case: There is only one way to partition Clusters[N-1]. 10256 MinPartitions[N - 1] = 1; 10257 LastElement[N - 1] = N - 1; 10258 10259 // Note: loop indexes are signed to avoid underflow. 10260 for (int64_t i = N - 2; i >= 0; --i) { 10261 // Find optimal partitioning of Clusters[i..N-1]. 10262 // Baseline: Put Clusters[i] into a partition on its own. 10263 MinPartitions[i] = MinPartitions[i + 1] + 1; 10264 LastElement[i] = i; 10265 10266 // Search for a solution that results in fewer partitions. 10267 // Note: the search is limited by BitWidth, reducing time complexity. 10268 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10269 // Try building a partition from Clusters[i..j]. 10270 10271 // Check the range. 10272 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10273 Clusters[j].High->getValue(), DL)) 10274 continue; 10275 10276 // Check nbr of destinations and cluster types. 10277 // FIXME: This works, but doesn't seem very efficient. 10278 bool RangesOnly = true; 10279 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10280 for (int64_t k = i; k <= j; k++) { 10281 if (Clusters[k].Kind != CC_Range) { 10282 RangesOnly = false; 10283 break; 10284 } 10285 Dests.set(Clusters[k].MBB->getNumber()); 10286 } 10287 if (!RangesOnly || Dests.count() > 3) 10288 break; 10289 10290 // Check if it's a better partition. 10291 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10292 if (NumPartitions < MinPartitions[i]) { 10293 // Found a better partition. 10294 MinPartitions[i] = NumPartitions; 10295 LastElement[i] = j; 10296 } 10297 } 10298 } 10299 10300 // Iterate over the partitions, replacing with bit-test clusters in-place. 10301 unsigned DstIndex = 0; 10302 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10303 Last = LastElement[First]; 10304 assert(First <= Last); 10305 assert(DstIndex <= First); 10306 10307 CaseCluster BitTestCluster; 10308 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10309 Clusters[DstIndex++] = BitTestCluster; 10310 } else { 10311 size_t NumClusters = Last - First + 1; 10312 std::memmove(&Clusters[DstIndex], &Clusters[First], 10313 sizeof(Clusters[0]) * NumClusters); 10314 DstIndex += NumClusters; 10315 } 10316 } 10317 Clusters.resize(DstIndex); 10318 } 10319 10320 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10321 MachineBasicBlock *SwitchMBB, 10322 MachineBasicBlock *DefaultMBB) { 10323 MachineFunction *CurMF = FuncInfo.MF; 10324 MachineBasicBlock *NextMBB = nullptr; 10325 MachineFunction::iterator BBI(W.MBB); 10326 if (++BBI != FuncInfo.MF->end()) 10327 NextMBB = &*BBI; 10328 10329 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10330 10331 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10332 10333 if (Size == 2 && W.MBB == SwitchMBB) { 10334 // If any two of the cases has the same destination, and if one value 10335 // is the same as the other, but has one bit unset that the other has set, 10336 // use bit manipulation to do two compares at once. For example: 10337 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10338 // TODO: This could be extended to merge any 2 cases in switches with 3 10339 // cases. 10340 // TODO: Handle cases where W.CaseBB != SwitchBB. 10341 CaseCluster &Small = *W.FirstCluster; 10342 CaseCluster &Big = *W.LastCluster; 10343 10344 if (Small.Low == Small.High && Big.Low == Big.High && 10345 Small.MBB == Big.MBB) { 10346 const APInt &SmallValue = Small.Low->getValue(); 10347 const APInt &BigValue = Big.Low->getValue(); 10348 10349 // Check that there is only one bit different. 10350 APInt CommonBit = BigValue ^ SmallValue; 10351 if (CommonBit.isPowerOf2()) { 10352 SDValue CondLHS = getValue(Cond); 10353 EVT VT = CondLHS.getValueType(); 10354 SDLoc DL = getCurSDLoc(); 10355 10356 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10357 DAG.getConstant(CommonBit, DL, VT)); 10358 SDValue Cond = DAG.getSetCC( 10359 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10360 ISD::SETEQ); 10361 10362 // Update successor info. 10363 // Both Small and Big will jump to Small.BB, so we sum up the 10364 // probabilities. 10365 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10366 if (BPI) 10367 addSuccessorWithProb( 10368 SwitchMBB, DefaultMBB, 10369 // The default destination is the first successor in IR. 10370 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10371 else 10372 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10373 10374 // Insert the true branch. 10375 SDValue BrCond = 10376 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10377 DAG.getBasicBlock(Small.MBB)); 10378 // Insert the false branch. 10379 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10380 DAG.getBasicBlock(DefaultMBB)); 10381 10382 DAG.setRoot(BrCond); 10383 return; 10384 } 10385 } 10386 } 10387 10388 if (TM.getOptLevel() != CodeGenOpt::None) { 10389 // Here, we order cases by probability so the most likely case will be 10390 // checked first. However, two clusters can have the same probability in 10391 // which case their relative ordering is non-deterministic. So we use Low 10392 // as a tie-breaker as clusters are guaranteed to never overlap. 10393 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10394 [](const CaseCluster &a, const CaseCluster &b) { 10395 return a.Prob != b.Prob ? 10396 a.Prob > b.Prob : 10397 a.Low->getValue().slt(b.Low->getValue()); 10398 }); 10399 10400 // Rearrange the case blocks so that the last one falls through if possible 10401 // without changing the order of probabilities. 10402 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10403 --I; 10404 if (I->Prob > W.LastCluster->Prob) 10405 break; 10406 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10407 std::swap(*I, *W.LastCluster); 10408 break; 10409 } 10410 } 10411 } 10412 10413 // Compute total probability. 10414 BranchProbability DefaultProb = W.DefaultProb; 10415 BranchProbability UnhandledProbs = DefaultProb; 10416 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10417 UnhandledProbs += I->Prob; 10418 10419 MachineBasicBlock *CurMBB = W.MBB; 10420 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10421 bool FallthroughUnreachable = false; 10422 MachineBasicBlock *Fallthrough; 10423 if (I == W.LastCluster) { 10424 // For the last cluster, fall through to the default destination. 10425 Fallthrough = DefaultMBB; 10426 FallthroughUnreachable = isa<UnreachableInst>( 10427 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10428 } else { 10429 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10430 CurMF->insert(BBI, Fallthrough); 10431 // Put Cond in a virtual register to make it available from the new blocks. 10432 ExportFromCurrentBlock(Cond); 10433 } 10434 UnhandledProbs -= I->Prob; 10435 10436 switch (I->Kind) { 10437 case CC_JumpTable: { 10438 // FIXME: Optimize away range check based on pivot comparisons. 10439 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10440 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10441 10442 // The jump block hasn't been inserted yet; insert it here. 10443 MachineBasicBlock *JumpMBB = JT->MBB; 10444 CurMF->insert(BBI, JumpMBB); 10445 10446 auto JumpProb = I->Prob; 10447 auto FallthroughProb = UnhandledProbs; 10448 10449 // If the default statement is a target of the jump table, we evenly 10450 // distribute the default probability to successors of CurMBB. Also 10451 // update the probability on the edge from JumpMBB to Fallthrough. 10452 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10453 SE = JumpMBB->succ_end(); 10454 SI != SE; ++SI) { 10455 if (*SI == DefaultMBB) { 10456 JumpProb += DefaultProb / 2; 10457 FallthroughProb -= DefaultProb / 2; 10458 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10459 JumpMBB->normalizeSuccProbs(); 10460 break; 10461 } 10462 } 10463 10464 if (FallthroughUnreachable) { 10465 // Skip the range check if the fallthrough block is unreachable. 10466 JTH->OmitRangeCheck = true; 10467 } 10468 10469 if (!JTH->OmitRangeCheck) 10470 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10471 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10472 CurMBB->normalizeSuccProbs(); 10473 10474 // The jump table header will be inserted in our current block, do the 10475 // range check, and fall through to our fallthrough block. 10476 JTH->HeaderBB = CurMBB; 10477 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10478 10479 // If we're in the right place, emit the jump table header right now. 10480 if (CurMBB == SwitchMBB) { 10481 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10482 JTH->Emitted = true; 10483 } 10484 break; 10485 } 10486 case CC_BitTests: { 10487 // FIXME: If Fallthrough is unreachable, skip the range check. 10488 10489 // FIXME: Optimize away range check based on pivot comparisons. 10490 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10491 10492 // The bit test blocks haven't been inserted yet; insert them here. 10493 for (BitTestCase &BTC : BTB->Cases) 10494 CurMF->insert(BBI, BTC.ThisBB); 10495 10496 // Fill in fields of the BitTestBlock. 10497 BTB->Parent = CurMBB; 10498 BTB->Default = Fallthrough; 10499 10500 BTB->DefaultProb = UnhandledProbs; 10501 // If the cases in bit test don't form a contiguous range, we evenly 10502 // distribute the probability on the edge to Fallthrough to two 10503 // successors of CurMBB. 10504 if (!BTB->ContiguousRange) { 10505 BTB->Prob += DefaultProb / 2; 10506 BTB->DefaultProb -= DefaultProb / 2; 10507 } 10508 10509 // If we're in the right place, emit the bit test header right now. 10510 if (CurMBB == SwitchMBB) { 10511 visitBitTestHeader(*BTB, SwitchMBB); 10512 BTB->Emitted = true; 10513 } 10514 break; 10515 } 10516 case CC_Range: { 10517 const Value *RHS, *LHS, *MHS; 10518 ISD::CondCode CC; 10519 if (I->Low == I->High) { 10520 // Check Cond == I->Low. 10521 CC = ISD::SETEQ; 10522 LHS = Cond; 10523 RHS=I->Low; 10524 MHS = nullptr; 10525 } else { 10526 // Check I->Low <= Cond <= I->High. 10527 CC = ISD::SETLE; 10528 LHS = I->Low; 10529 MHS = Cond; 10530 RHS = I->High; 10531 } 10532 10533 // If Fallthrough is unreachable, fold away the comparison. 10534 if (FallthroughUnreachable) 10535 CC = ISD::SETTRUE; 10536 10537 // The false probability is the sum of all unhandled cases. 10538 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10539 getCurSDLoc(), I->Prob, UnhandledProbs); 10540 10541 if (CurMBB == SwitchMBB) 10542 visitSwitchCase(CB, SwitchMBB); 10543 else 10544 SwitchCases.push_back(CB); 10545 10546 break; 10547 } 10548 } 10549 CurMBB = Fallthrough; 10550 } 10551 } 10552 10553 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10554 CaseClusterIt First, 10555 CaseClusterIt Last) { 10556 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10557 if (X.Prob != CC.Prob) 10558 return X.Prob > CC.Prob; 10559 10560 // Ties are broken by comparing the case value. 10561 return X.Low->getValue().slt(CC.Low->getValue()); 10562 }); 10563 } 10564 10565 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10566 const SwitchWorkListItem &W, 10567 Value *Cond, 10568 MachineBasicBlock *SwitchMBB) { 10569 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10570 "Clusters not sorted?"); 10571 10572 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10573 10574 // Balance the tree based on branch probabilities to create a near-optimal (in 10575 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10576 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10577 CaseClusterIt LastLeft = W.FirstCluster; 10578 CaseClusterIt FirstRight = W.LastCluster; 10579 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10580 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10581 10582 // Move LastLeft and FirstRight towards each other from opposite directions to 10583 // find a partitioning of the clusters which balances the probability on both 10584 // sides. If LeftProb and RightProb are equal, alternate which side is 10585 // taken to ensure 0-probability nodes are distributed evenly. 10586 unsigned I = 0; 10587 while (LastLeft + 1 < FirstRight) { 10588 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10589 LeftProb += (++LastLeft)->Prob; 10590 else 10591 RightProb += (--FirstRight)->Prob; 10592 I++; 10593 } 10594 10595 while (true) { 10596 // Our binary search tree differs from a typical BST in that ours can have up 10597 // to three values in each leaf. The pivot selection above doesn't take that 10598 // into account, which means the tree might require more nodes and be less 10599 // efficient. We compensate for this here. 10600 10601 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10602 unsigned NumRight = W.LastCluster - FirstRight + 1; 10603 10604 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10605 // If one side has less than 3 clusters, and the other has more than 3, 10606 // consider taking a cluster from the other side. 10607 10608 if (NumLeft < NumRight) { 10609 // Consider moving the first cluster on the right to the left side. 10610 CaseCluster &CC = *FirstRight; 10611 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10612 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10613 if (LeftSideRank <= RightSideRank) { 10614 // Moving the cluster to the left does not demote it. 10615 ++LastLeft; 10616 ++FirstRight; 10617 continue; 10618 } 10619 } else { 10620 assert(NumRight < NumLeft); 10621 // Consider moving the last element on the left to the right side. 10622 CaseCluster &CC = *LastLeft; 10623 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10624 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10625 if (RightSideRank <= LeftSideRank) { 10626 // Moving the cluster to the right does not demot it. 10627 --LastLeft; 10628 --FirstRight; 10629 continue; 10630 } 10631 } 10632 } 10633 break; 10634 } 10635 10636 assert(LastLeft + 1 == FirstRight); 10637 assert(LastLeft >= W.FirstCluster); 10638 assert(FirstRight <= W.LastCluster); 10639 10640 // Use the first element on the right as pivot since we will make less-than 10641 // comparisons against it. 10642 CaseClusterIt PivotCluster = FirstRight; 10643 assert(PivotCluster > W.FirstCluster); 10644 assert(PivotCluster <= W.LastCluster); 10645 10646 CaseClusterIt FirstLeft = W.FirstCluster; 10647 CaseClusterIt LastRight = W.LastCluster; 10648 10649 const ConstantInt *Pivot = PivotCluster->Low; 10650 10651 // New blocks will be inserted immediately after the current one. 10652 MachineFunction::iterator BBI(W.MBB); 10653 ++BBI; 10654 10655 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10656 // we can branch to its destination directly if it's squeezed exactly in 10657 // between the known lower bound and Pivot - 1. 10658 MachineBasicBlock *LeftMBB; 10659 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10660 FirstLeft->Low == W.GE && 10661 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10662 LeftMBB = FirstLeft->MBB; 10663 } else { 10664 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10665 FuncInfo.MF->insert(BBI, LeftMBB); 10666 WorkList.push_back( 10667 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10668 // Put Cond in a virtual register to make it available from the new blocks. 10669 ExportFromCurrentBlock(Cond); 10670 } 10671 10672 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10673 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10674 // directly if RHS.High equals the current upper bound. 10675 MachineBasicBlock *RightMBB; 10676 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10677 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10678 RightMBB = FirstRight->MBB; 10679 } else { 10680 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10681 FuncInfo.MF->insert(BBI, RightMBB); 10682 WorkList.push_back( 10683 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10684 // Put Cond in a virtual register to make it available from the new blocks. 10685 ExportFromCurrentBlock(Cond); 10686 } 10687 10688 // Create the CaseBlock record that will be used to lower the branch. 10689 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10690 getCurSDLoc(), LeftProb, RightProb); 10691 10692 if (W.MBB == SwitchMBB) 10693 visitSwitchCase(CB, SwitchMBB); 10694 else 10695 SwitchCases.push_back(CB); 10696 } 10697 10698 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10699 // from the swith statement. 10700 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10701 BranchProbability PeeledCaseProb) { 10702 if (PeeledCaseProb == BranchProbability::getOne()) 10703 return BranchProbability::getZero(); 10704 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10705 10706 uint32_t Numerator = CaseProb.getNumerator(); 10707 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10708 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10709 } 10710 10711 // Try to peel the top probability case if it exceeds the threshold. 10712 // Return current MachineBasicBlock for the switch statement if the peeling 10713 // does not occur. 10714 // If the peeling is performed, return the newly created MachineBasicBlock 10715 // for the peeled switch statement. Also update Clusters to remove the peeled 10716 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10717 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10718 const SwitchInst &SI, CaseClusterVector &Clusters, 10719 BranchProbability &PeeledCaseProb) { 10720 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10721 // Don't perform if there is only one cluster or optimizing for size. 10722 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10723 TM.getOptLevel() == CodeGenOpt::None || 10724 SwitchMBB->getParent()->getFunction().hasMinSize()) 10725 return SwitchMBB; 10726 10727 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10728 unsigned PeeledCaseIndex = 0; 10729 bool SwitchPeeled = false; 10730 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10731 CaseCluster &CC = Clusters[Index]; 10732 if (CC.Prob < TopCaseProb) 10733 continue; 10734 TopCaseProb = CC.Prob; 10735 PeeledCaseIndex = Index; 10736 SwitchPeeled = true; 10737 } 10738 if (!SwitchPeeled) 10739 return SwitchMBB; 10740 10741 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10742 << TopCaseProb << "\n"); 10743 10744 // Record the MBB for the peeled switch statement. 10745 MachineFunction::iterator BBI(SwitchMBB); 10746 ++BBI; 10747 MachineBasicBlock *PeeledSwitchMBB = 10748 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10749 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10750 10751 ExportFromCurrentBlock(SI.getCondition()); 10752 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10753 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10754 nullptr, nullptr, TopCaseProb.getCompl()}; 10755 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10756 10757 Clusters.erase(PeeledCaseIt); 10758 for (CaseCluster &CC : Clusters) { 10759 LLVM_DEBUG( 10760 dbgs() << "Scale the probablity for one cluster, before scaling: " 10761 << CC.Prob << "\n"); 10762 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10763 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10764 } 10765 PeeledCaseProb = TopCaseProb; 10766 return PeeledSwitchMBB; 10767 } 10768 10769 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10770 // Extract cases from the switch. 10771 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10772 CaseClusterVector Clusters; 10773 Clusters.reserve(SI.getNumCases()); 10774 for (auto I : SI.cases()) { 10775 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10776 const ConstantInt *CaseVal = I.getCaseValue(); 10777 BranchProbability Prob = 10778 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10779 : BranchProbability(1, SI.getNumCases() + 1); 10780 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10781 } 10782 10783 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10784 10785 // Cluster adjacent cases with the same destination. We do this at all 10786 // optimization levels because it's cheap to do and will make codegen faster 10787 // if there are many clusters. 10788 sortAndRangeify(Clusters); 10789 10790 // The branch probablity of the peeled case. 10791 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10792 MachineBasicBlock *PeeledSwitchMBB = 10793 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10794 10795 // If there is only the default destination, jump there directly. 10796 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10797 if (Clusters.empty()) { 10798 assert(PeeledSwitchMBB == SwitchMBB); 10799 SwitchMBB->addSuccessor(DefaultMBB); 10800 if (DefaultMBB != NextBlock(SwitchMBB)) { 10801 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10802 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10803 } 10804 return; 10805 } 10806 10807 findJumpTables(Clusters, &SI, DefaultMBB); 10808 findBitTestClusters(Clusters, &SI); 10809 10810 LLVM_DEBUG({ 10811 dbgs() << "Case clusters: "; 10812 for (const CaseCluster &C : Clusters) { 10813 if (C.Kind == CC_JumpTable) 10814 dbgs() << "JT:"; 10815 if (C.Kind == CC_BitTests) 10816 dbgs() << "BT:"; 10817 10818 C.Low->getValue().print(dbgs(), true); 10819 if (C.Low != C.High) { 10820 dbgs() << '-'; 10821 C.High->getValue().print(dbgs(), true); 10822 } 10823 dbgs() << ' '; 10824 } 10825 dbgs() << '\n'; 10826 }); 10827 10828 assert(!Clusters.empty()); 10829 SwitchWorkList WorkList; 10830 CaseClusterIt First = Clusters.begin(); 10831 CaseClusterIt Last = Clusters.end() - 1; 10832 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10833 // Scale the branchprobability for DefaultMBB if the peel occurs and 10834 // DefaultMBB is not replaced. 10835 if (PeeledCaseProb != BranchProbability::getZero() && 10836 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10837 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10838 WorkList.push_back( 10839 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10840 10841 while (!WorkList.empty()) { 10842 SwitchWorkListItem W = WorkList.back(); 10843 WorkList.pop_back(); 10844 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10845 10846 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10847 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10848 // For optimized builds, lower large range as a balanced binary tree. 10849 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10850 continue; 10851 } 10852 10853 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10854 } 10855 } 10856